WO2011157094A1 - 车身倾角调整单元、油气悬架机构以及流动式起重机 - Google Patents

车身倾角调整单元、油气悬架机构以及流动式起重机 Download PDF

Info

Publication number
WO2011157094A1
WO2011157094A1 PCT/CN2011/074259 CN2011074259W WO2011157094A1 WO 2011157094 A1 WO2011157094 A1 WO 2011157094A1 CN 2011074259 W CN2011074259 W CN 2011074259W WO 2011157094 A1 WO2011157094 A1 WO 2011157094A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
valve
cylinder
oil
leveling
Prior art date
Application number
PCT/CN2011/074259
Other languages
English (en)
French (fr)
Inventor
詹纯新
刘权
李义
李英智
王启涛
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Priority to US13/704,198 priority Critical patent/US20130220110A1/en
Publication of WO2011157094A1 publication Critical patent/WO2011157094A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01908Acceleration or inclination sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics
    • B60G17/0523Regulating distributors or valves for pneumatic springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/06Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid
    • B60G21/073Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/72Counterweights or supports for balancing lifting couples
    • B66C23/78Supports, e.g. outriggers, for mobile cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/413Hydraulic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • B60G2204/83Type of interconnection
    • B60G2204/8304Type of interconnection using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/06Cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0511Roll angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition

Definitions

  • Body tilt adjustment unit oil and gas suspension mechanism and mobile crane
  • the invention relates to a vehicle body tilt adjusting unit and an automatic leveling oil and gas suspension mechanism. Furthermore, the invention relates to a mobile crane comprising the self-leveling oil and gas suspension mechanism. Background technique
  • a mobile crane generally refers to a lifting device that is free to move on the ground, typically a lifting device that is mounted on a construction vehicle.
  • Mobile cranes are widely used in construction machinery for their flexibility and flexibility.
  • the hydraulic cranes of large-tonnage or over-tonnage mobile cranes, especially all-terrain cranes, must have the following functions: lifting, rigid-flexible switching, load driving, buffer damping, and road condition adaptation of the suspension mechanism. Adapt to the requirements of different working conditions of mobile cranes.
  • the oil and gas suspension mechanism is a new type of chassis suspension technology that began in the 1960s. Its main principle is to convert the vertical axle load of construction machinery (such as mobile crane) into the pressure of the oil in the suspension cylinder. The pressure is transmitted through the pipeline to the corresponding control unit and accumulator.
  • the accumulator uses an inert gas (usually nitrogen) with a certain initial pressure as the elastic medium and controls the oil through the corresponding check valve and orifice on the oil passage. The flow direction of the liquid or the throttling, thereby reducing the vibration.
  • the oil and gas suspension mechanism mainly includes a suspension cylinder, an accumulator, a suspension valve, and corresponding control elements.
  • the oil and gas suspension mechanism is widely used in various construction machinery, such as wheel loaders, mine dump trucks, wheeled excavators, and mobile cranes, because of its significant advantages in improving the ride comfort of construction machinery (typically For all-terrain cranes etc.
  • the frame and the body should be kept level during the travel of the mobile crane to prevent the tilting accident of the mobile crane.
  • the mobile crane does not always travel on a level road with good road conditions, it often travels on roads with poor road conditions, such as on a longitudinal ramp or a lateral ramp, where the frame and body of the mobile crane are The reason for the slope of the road surface may be longitudinal inclination or lateral inclination, which is prone to tipping accidents.
  • the hydro-suspension mechanism of the mobile crane is required to automatically adjust the posture of the frame and the body so that the frame and the body are horizontal, which is the road condition adaptive function of the hydro-suspension mechanism of the mobile crane.
  • the automatic leveling performance of the oil and gas suspension mechanism plays a key leading role in realizing the adaptive function of the road condition.
  • the existing oil and gas suspension mechanism of the mobile crane is mainly designed for good road conditions, and there are only a few manufacturers or scientific research institutions that are working on the poor road conditions, especially for the cross-slope road conditions. A precedent for applications.
  • the Chinese utility model CN2649377Y discloses a hydro-hydraulic suspension mechanism of a mobile crane, which mainly adopts manual or electronic control mode to perform static adjustment of cross-slope and longitudinal slope road conditions when the vehicle is static.
  • the leveling operation of the oil and gas suspension mechanism of the utility model patent CN2649377Y is mainly realized by oil inlet or oil return compensation, and in the dynamic driving condition, it is impossible to control the amount of compensation oil at all, so the flow type cannot be
  • the dynamic leveling operation of the mobile crane is realized when the crane is running, and in particular, the dynamic adaptive leveling performance of the cross slope of the hydro-suspension mechanism of the mobile crane cannot be truly realized.
  • One technical problem to be solved by the present invention is to provide a vehicle body tilt adjusting unit that can be applied to an oil and gas suspension mechanism to realize a dynamic adaptive leveling operation of the oil and gas suspension mechanism.
  • Another technical problem to be solved by the present invention is to provide an automatic leveling oil and gas suspension mechanism capable of dynamically implementing a cross slope when a mobile engineering machine travels on a cross slope Adapting to the leveling performance, it can effectively prevent major accidents such as rollovers that are easily caused by the existing oil and gas suspension mechanism to be insensitive to lateral slope, and effectively improve the safety of the mobile construction machinery.
  • the present invention also provides a mobile crane, the hydro-pneumatic suspension mechanism of the mobile crane has excellent dynamic adaptive leveling performance of the cross slope, thereby effectively preventing the oil and gas suspension mechanism of the existing mobile crane A rollover accident caused by insensitivity to lateral slope.
  • the present invention provides a vehicle body tilt adjusting unit, wherein the vehicle body tilt adjusting unit includes a balance oil cylinder, and a cavity of the balance oil cylinder is connected to the first one-way damping valve via a hydraulic line through a first one-way damping valve.
  • An electrically controlled switching valve the other chamber of the balance cylinder being connected to the second one-way damping valve via a hydraulic control via an electronically controlled locking valve, the electronically controlled locking valve selectively making the balance cylinder non-spring
  • the oil passage of the chamber is turned on or off.
  • the present invention provides an automatic leveling oil and gas suspension mechanism, the automatic leveling oil and gas suspension mechanism comprising at least two pairs of suspension cylinders, each pair of the suspension cylinders being respectively disposed in a corresponding vehicle The left and right sides of the bridge, wherein the self-leveling oil and gas suspension mechanism further includes: a vehicle body tilt adjusting unit, wherein each of the hanging oil cylinders is connected with one of the vehicle body tilt adjusting units, and the vehicle body tilt adjusting unit a protrusion and a retraction for adjusting a cylinder rod of each of the suspension cylinders; a vehicle body lateral inclination sensor that detects a vehicle body lateral inclination; and a control unit that receives the vehicle body lateral inclination sensor transmission Body cross
  • the tilting signal is connected to the leveling operating oil source and each of the body tilt adjusting units via an electronic control line.
  • the present invention provides a mobile crane, wherein the mobile crane comprises the above-described self-leveling oil and gas suspension mechanism.
  • the self-leveling oil and gas suspension mechanism of the present invention can select various preset vehicle body inclinations by the control unit according to the vehicle body inclination signal (preferably including the suspension mechanism axle load pressure signal).
  • the control mode realizes the control of the vehicle body tilt adjusting unit, ensures that the oil and gas suspension mechanism maintains the vehicle body in a horizontal state, and the control unit continuously and automatically realizes the maintenance or switching of various postures of the vehicle body according to the leveled signal, thereby realizing the flow type.
  • the adaptive dynamic leveling performance of construction machinery such as mobile cranes for various road conditions, especially for cross-slopes.
  • the self-leveling oil and gas suspension mechanism of the present invention provides power to stabilize the hydraulic oil in the balance cylinder by a stable leveling operation oil source (preferably a constant pressure oil source) when maintaining or switching various postures of the vehicle body. Or, the automatic maintenance of the oil quantity in the oil and gas suspension mechanism and the balance of the left and right axle load are automatically maintained, which can ensure the smoothness of the automatic leveling operation of the mobile crane and effectively ensure the safety of the mobile crane.
  • the self-leveling oil and gas suspension mechanism of the invention effectively solves the dynamic adaptive leveling performance of the mobile engineering machinery (such as the mobile crane) for various road conditions, in particular, the adaptive dynamic leveling of the lateral ramp
  • the automatic leveling oil and gas suspension mechanism of the invention is simple and convenient to operate and has strong logic.
  • Figure 1 is a diagram showing an example of a frame or body articulation of a suspension cylinder and a mobile crane
  • Figure 2 is a schematic view of the working condition of the mobile crane traveling on the lateral ramp
  • FIG. 3 is a block diagram showing a control principle of an automatic leveling oil and gas suspension mechanism according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of a vehicle body tilt adjusting unit according to an embodiment of the present invention
  • Figure 5 is a schematic diagram of the vehicle body tilt adjusting unit shown in Figure 4.
  • FIG. 6 is a block diagram showing the overall arrangement structure of an automatic leveling oil and gas suspension mechanism according to an embodiment of the present invention, wherein a thick line represents a hydraulic pipe route, and a thin line represents an electronic control connection line or a signal line;
  • Figure 7 is a diagram showing an example of the connection relationship between the suspension cylinder and the suspension valve and the accumulator
  • Figure 8 is a system schematic diagram of the self-leveling oil and gas suspension mechanism of Figure 6; Description of the reference signs:
  • control unit 4 constant pressure oil source
  • Second one-way damping valve 10 Balance cylinder (spring-return cylinder)
  • Hydro-pneumatic suspension mechanisms are widely used in a variety of mobile construction machinery, such as wheel loaders, mine dump trucks, wheeled excavators, and mobile cranes (typically all-terrain cranes), etc., therefore, the following
  • the inventive auto-leveling hydro-pneumatic suspension mechanism is not limited to application to a specific construction machine, but can be applied to various flow-type construction machines in accordance with the application purpose of the present invention, for example, to a mobile crane.
  • a mobile crane For convenience of explanation, the following description will be made by taking a mobile crane as an example.
  • the auto-leveling oil and gas suspension mechanism of the embodiment of the present invention mainly includes a suspension cylinder 12, an accumulator 11, a suspension valve 13, a pressure oil source 2, a vehicle body lateral inclination sensor 1, and a leveling operation oil source ( It is preferably a constant pressure oil source 4), a vehicle body tilt adjusting unit 17, and a control unit 3.
  • the self-leveling hydro-pneumatic suspension mechanism of the present invention may further include a body longitudinal tilt sensor 6.
  • the self-leveling hydro-pneumatic suspension mechanism of the present invention may further include a suspension mechanism pressure sensor 18 (see FIG. 3), which enables the control unit 3 to operate based on more signal values, thereby enhancing operation and detection. reliability.
  • the suspension cylinder 12 is disposed between the frame 15 and the axle 16, and specifically, is disposed on the frame rail Between the axle 16 and the axle 16, the upper end can be hinged to the frame 15, and the lower end can be hinged to the axle 16.
  • the upper end of the suspension cylinder 12 can generally be hinged to the frame 15, but on some special construction machines, it can also be directly hinged to the vehicle body, for example, a mine dump truck with a load-bearing body without a frame, hanging
  • the upper end of the cylinder 12 can be directly hinged to the vehicle body.
  • the suspension cylinder 12 is symmetrically disposed with respect to the longitudinal center axis of the mobile crane.
  • suspension cylinders 12 For a two-axle mobile crane, four suspension cylinders 12 are generally provided, and for a multi-vehicle mobile crane, A plurality of suspension cylinders 12 are provided, that is, the suspension cylinders 12 are symmetrically disposed on both sides of each axle.
  • the suspension cylinder 12 described herein is mainly used to bear the axial force of the mobile crane.
  • the oil and gas suspension mechanism generally further includes a plurality of guiding thrust rods, the guiding The thrust rod is mainly used to bear the lateral force and the traction force. Since the guide thrust rod is not directly related to the automatic leveling performance of the present invention, it will not be described in detail.
  • the suspension cylinder 12 plays a key role in the leveling operation of the frame or body of the mobile crane.
  • the frame or body of the mobile crane can be raised or lowered.
  • FIG. 2 when the mobile crane is on the lateral ramp, if the suspension cylinder 12 is not controlled and adjusted, the frame or the body of the mobile crane will be inclined to the left direction in FIG. 2 due to the lateral slope. This makes the mobile crane prone to tipping accidents.
  • the frame 15 of the mobile crane and the vehicle body are horizontal when traveling on a cross-slope, in FIG.
  • the oil and gas suspension mechanism includes corresponding control elements (for example, the vehicle body roll angle sensor 1, the suspension mechanism pressure sensor 18, the vehicle body tilt adjusting unit 17 and the control unit 3, etc.), and the control element functions mainly to control the suspension.
  • the automatic leveling hydro-pneumatic suspension mechanism of the present invention needs to realize the basic functions: when the mobile engineering machine (such as a mobile crane) travels on a sloping ramp, the hydro-pneumatic suspension mechanism has dynamic traverse adaptive Leveling performance.
  • the automatic leveling system of the present invention also has dynamic vertical ramp adaptive leveling performance. On this basis, through the comprehensive application of the horizontal slope adaptive leveling performance and the vertical slope adaptive leveling performance, It is possible to adapt, for example, a mobile crane to various tough road conditions.
  • the hydro-pneumatic suspension mechanism has dynamic cross-slope adaptive leveling performance when traveling on a crosswalk in a mobile construction machine (e.g., a mobile crane).
  • the automatic leveling oil and gas suspension mechanism of the present invention comprises a plurality of body inclination adjusting units 17, a vehicle body lateral inclination sensor 1 and a control unit 3, wherein each of the vehicle body inclination adjusting units 17 is correspondingly used for operating a suspension cylinder 12, that is, The number of the body tilt adjusting units 17 corresponds to the number of the suspension cylinders 9.
  • FIG. 3 is a block diagram showing the control principle of the self-leveling oil and gas suspension mechanism of the present invention, and the control principle of the self-leveling oil and gas suspension mechanism of the present invention is shown by taking a double-axle type mobile crane as an example in FIG. That is, the suspension cylinders 12 are symmetrically mounted on both sides of each axle 16 of the two-axle mobile crane. Accordingly, the vehicle body inclination adjusting unit 17 in FIG. 3 corresponds to the front left suspension cylinder and the front right suspension, respectively. A cylinder, a rear left suspension cylinder, and a rear right suspension cylinder for controlling the expansion and contraction of the corresponding suspension cylinder.
  • the vehicle body lateral inclination sensor 1 senses the lateral inclination angle of the vehicle body
  • the suspension mechanism pressure sensor 18 senses the suspension mechanism axle load pressure
  • the vehicle body lateral inclination angle sensor 1 and the suspension mechanism pressure sensor 18 respectively apply the vehicle body lateral inclination signal.
  • the suspension mechanism axle load pressure signal is transmitted to the control unit 3 (for example, PLC or microcomputer control unit), and the control unit 3 performs judgment according to the vehicle body lateral inclination signal and the suspension mechanism pressure signal, and is preset from various vehicle bodies.
  • the vehicle body lateral tilt control mode is selected, and the software module corresponding to the vehicle body lateral tilt mode is used for analysis and calculation, and then the control signal is output to the corresponding vehicle body tilt adjusting unit 17, thereby realizing the control of the vehicle body tilt adjusting unit 17.
  • the body tilt adjustment unit 17 controls the lifting or retracting of the corresponding suspension cylinder 12, thereby ensuring that the oil and gas suspension mechanism maintains the vehicle body in a horizontal or substantially horizontal state.
  • the control unit 3 for example, PLC or microcomputer control unit
  • the adaptive ramping function of the cross slope of the suspension is only a preferred embodiment.
  • the control unit 3 The automatic leveling operation can be effectively performed only according to the vehicle body lateral inclination signal transmitted by the vehicle body lateral inclination sensor 1.
  • the control unit 3 can be made to Many parameter values are analyzed, calculated, and operated to enhance operational reliability.
  • the above-mentioned vehicle body tilt control mode mainly refers to the grading design according to the lateral slope value and the longitudinal slope value of the road surface during the dynamic driving of the mobile crane, and/or the left and right axle load difference of the mobile crane and the front and rear axle load difference values.
  • the corresponding control mode is adopted, and each body tilt control mode corresponds to a corresponding software module (for example PLC user program).
  • the vehicle body lateral inclination sensor 1 transmits the current lateral inclination value of the vehicle body to the control unit 3 (for example, the programmable controller PLC) when the vehicle body lateral inclination value reaches a set value.
  • the control unit 3 for example, the programmable controller PLC
  • different sets of cranes will have different set values.
  • the set value is generally an empirical value or a conservative value, which is usually less than the limit value that causes the mobile crane to tip over (ie, the set value has a safety factor relative to the tipping limit value), depending on the type of crane
  • the set value will vary, generally in order to be able to effectively ensure the flow crane.
  • the body of the mobile crane must be leveled horizontally, for example, when the lateral inclination of the vehicle body is greater than the corresponding vehicle body lateral inclination setting value, otherwise the mobile crane is prone to lateral tilting accidents.
  • the control unit 3 selects a software module corresponding to the vehicle body lateral inclination control mode built in the control unit 3 according to the input lateral inclination signal (preferably also including the left and right axle load signals), so that the present invention
  • the self-leveling hydro-pneumatic suspension mechanism begins the adaptive dynamic leveling operation of the lateral ramp, so that when the mobile construction machinery (such as mobile crane) travels on the cross slope, its body and frame are always automatically horizontal. Or a basic level of state.
  • the auto-leveling oil and gas suspension mechanism includes a suspension cylinder 12, an accumulator 11, a suspension valve 13, a pressure oil source 2, a vehicle body lateral inclination sensor 1, a leveling operation oil source, and a vehicle body.
  • the self-leveling hydro-pneumatic suspension mechanism further includes a suspension mechanism pressure sensor 18 and a vehicle body longitudinal inclination sensor 6.
  • the control unit 3 of the present invention is primarily for receiving sensors (e.g., the tilt signal of the tilt sensor 1 and the axle load pressure signal of the suspension mechanism pressure sensor 18 to be based on the tilt signal and/or the axle load pressure
  • the signal selects a corresponding inclination control mode, for example, a vehicle body lateral inclination control mode, and the control software module corresponding to the inclination control mode calculates an adjustment operation required for the corresponding suspension cylinder 12, and transmits the corresponding to each vehicle body inclination adjustment unit 17 Electrical control signals to control the corresponding body tilt adjustment unit 17
  • the expansion and contraction of the suspension cylinder 12 realizes the lifting and lowering of the vehicle body by the expansion and contraction of the corresponding suspension cylinder 12, so that the vehicle body is adjusted to a horizontal or substantially horizontal state to ensure safe driving of the mobile crane.
  • the control unit 3 can have various types, which can achieve the control purposes of the present invention, such as a single chip microcomputer, an electronic control unit (ECU), and the like.
  • the control unit 3 of the automatic leveling system of the present invention adopts a programmable logic controller (PLC).
  • PLC programmable logic controller
  • the advantage of using the programmable controller is that it is widely used in the field of industrial automatic control due to the instruction of the PLC and the relative standard of the interface. It can conveniently edit or modify the user program blocks (ie the above-mentioned software modules) in various body tilt control modes through the programmer, so that the user program modules of various body tilt control modes can be conveniently managed and edited, thereby The automatic leveling function of the present invention can be more conveniently implemented.
  • the body lateral inclination sensor 1 can be installed at the center of gravity of the mobile crane or at the center of gravity of the vehicle.
  • a tilt sensor is a sensor for measuring the amount of change in the tilt of an object relative to a horizontal plane. According to its principle, it can be divided into a solid pendulum tilt sensor, a liquid pendulum tilt sensor, and a gas pendulum tilt sensor.
  • the automatic leveling system of the present invention may employ any one of the above-described types of inclination sensors. Since the gas pendulum angle sensor is highly resistant to vibration and shock, the body roll angle sensor 1 may preferably be gas pendulum type. Tilt sensor.
  • the vehicle body lateral inclination sensor 1 dynamically monitors the lateral inclination of the vehicle body, and transmits the detected vehicle body lateral inclination signal to the field bus, such as the CAN bus (ie, ISO international standardized serial communication protocol bus).
  • a control unit 3 such as a programmable controller. The control unit 3 determines whether it is necessary to perform the leveling operation of the lateral inclination of the vehicle body according to the received vehicle body lateral inclination signal.
  • the control unit 3 selects the vehicle body lateral inclination control mode and applies to the corresponding vehicle body inclination adjustment unit 17
  • the control signal is transmitted to operate the corresponding suspension cylinder 12 by the vehicle body tilt adjusting unit 17, thereby realizing the leveling operation of the vehicle body.
  • the automatic leveling oil and gas suspension mechanism of the present invention since the automatic leveling oil and gas suspension mechanism of the present invention also needs to implement an automatic leveling operation of the longitudinal ramp, preferably, the automatic leveling is performed.
  • the oil and gas suspension mechanism further includes a vehicle body longitudinal inclination sensor 6, which can adopt the same type of inclination sensor as the vehicle body lateral inclination sensor 1, such as a gas pendulum inclination sensor, which can also be disposed in the same manner.
  • the center of gravity or center of gravity of the body of the mobile crane which is mainly used to detect the longitudinal inclination value of the body of the mobile crane, and transmits the longitudinal inclination value signal to the control unit 3 via the field bus (for example, CAN bus) for the control unit 3 Perform analytical calculations and perform adaptive leveling operations on the corresponding longitudinal ramps as appropriate.
  • the suspension mechanism pressure sensor 18 can generally be an oil pressure sensor, and the oil pressure sensor can be installed on the special detection port of the suspension valve 13 or the suspension cylinder 12, and the oil pressure signal is transmitted through analog-to-digital conversion (the oil pressure signal is suspended) There is a corresponding relationship between the axle load pressure signals of the frame mechanism, so that the axle load pressure signal can be converted by the oil pressure signal conversion)
  • the control unit 3 is input via a fieldbus (for example a CAN bus) and is analyzed and calculated by the control unit 3.
  • suspension mechanism pressure sensor 18 does not necessarily use the above-described oil pressure sensor, and may also employ a piezoelectric sensor or a pressure sensor, etc., in which case a pressure sensitive element (such as a strain gauge) of the piezoelectric sensor or the pressure sensor may A connection portion between the suspension cylinder 12 and the frame 15 is disposed.
  • a pressure sensitive element such as a strain gauge
  • the vehicle body tilt adjusting unit 17 of the self-leveling oil and gas suspension mechanism of the present invention includes an electronically controlled switching valve 7, a first one-way damping valve 8, an electronically controlled locking valve 14, and a second one-way damping valve 9; Balance the cylinder 10.
  • the electronically controlled switching valve 7 may be a two-position three-way solenoid valve, which is mainly used for switching between pressure oil and oil return; the first one-way damping valve 8 and the second single
  • the damper valve 9 is a well-known component.
  • the first unidirectional damper valve 8 and the second unidirectional damper valve 9 each include a parallel check valve and a damper valve, which are mainly used to realize the fast forward and slow return function of the oil passage.
  • the balance cylinder 10 is preferably a spring-return type cylinder, that is, one of the chambers on both sides of the cylinder piston is provided with a return spring, which is mainly used for realizing an oil storage function, and of course, in addition to the spring-return type cylinder, the present invention
  • the balance cylinder 10 can be implemented in a variety of other forms to achieve the oil storage function. For example, an accumulator or the like is used.
  • the spring in the above-mentioned spring-resetting cylinder can be replaced with other elastic members (for example, rubber elastic members), and these simple modifications are easily conceivable to those skilled in the art (
  • the spring-type reset cylinder is exemplified below;
  • the electronically controlled lock valve 14 can be a two-position two-way solenoid valve, which is mainly used for switching and locking the pressure oil. It should be noted that the above-mentioned electronically controlled lock valve 14 and the electronically controlled switching valve 7 are only examples for the description, and the valve for realizing the oil path reversal or locking may be a plurality of electronically controlled valves, and is not limited thereto.
  • the two-position two-way solenoid valve and the two-position three-way solenoid valve shown in Fig. 5 are only required to realize the oil circuit switching connection relationship shown in Fig. 5.
  • the electronically controlled switching valve 7 is connected to the first one-way damping valve 8, which is in turn connected to the spring chamber interface of the balancing cylinder 10; the springless chamber interface of the balancing cylinder 10 is connected to the electric
  • the lock valve 14 is controlled, and the electronically controlled lock valve 14 is connected to the second one-way damping valve 9.
  • the pressure oil source 2 may be a hydraulic pump that draws oil from the oil tank 5 and pressurizes the oil, so that the pressure oil can be supplied to the self-leveling oil and gas suspension mechanism of the present invention.
  • the self-leveling oil and gas suspension mechanism of the present invention further includes a leveling operation oil source, the leveling operation oil source preferably adopting a constant pressure oil source 4, and the constant pressure oil source 4 is mainly used to provide a relatively constant pressure hydraulic pressure. Oil, which can generally be provided with a relief valve on the output line of the hydraulic pump to provide a relatively constant pressure hydraulic oil.
  • the constant pressure oil source 4 is connected to the electronically controlled switching valve 7 in the above-described vehicle body tilt adjusting unit 17 by a hydraulic pipe.
  • the constant pressure oil source 4 is also electrically connected to the control unit 3 through a control line.
  • the operating state of the hydraulic pump of the constant pressure oil source 4 is controlled by the control unit 3 to selectively supply oil to the electronically controlled switching valve 7 under the control of the control unit 3.
  • the constant pressure oil source 4 is mainly used to drive the balance cylinder 10 of the vehicle body tilt adjusting unit 17 of the present invention, and the constant pressure oil source 4 is mainly used to ensure the leveling operation.
  • constant pressure oil source 4 Time stability, avoid fluctuations in operating pressure during leveling operation, but the use of constant pressure oil source 4 is only a preferred method, it can also use a conventional pressure oil source as a leveling operation oil source, although at this time The stability of the leveling operation is not as good as that of the constant pressure oil source 4, but it is also capable of achieving the object of the present invention.
  • the fuel tank 5 is an auxiliary hydraulic component of the hydraulic system, which is mainly used to store the oil of the hydraulic system.
  • the suspension cylinder 12 is a common component of the oil and gas suspension mechanism (for example, CN2601870Y and CN2454171Y), and its structure is basically similar, generally including components such as a cylinder, a piston, a cylinder rod, etc., wherein the bottom of the cylinder barrel and the top of the cylinder rod are respectively provided with hinged support Holes for hinged to the axle 16 and the frame 15, respectively.
  • the suspension cylinder 12 is mainly used to bear the axial load of the mobile construction machine (for example, a mobile crane) in the oil and gas suspension mechanism, and can control the suspension by controlling the hydraulic oil to enter the rod cavity or the rodless cavity of the suspension cylinder 12.
  • the cylinder rod of the cylinder 12 is expanded and contracted to raise or lower the frame 15.
  • the self-leveling oil and gas suspension mechanism of the present invention further includes a suspension valve 13 and an accumulator 11, which is also referred to as a "suspension valve group” or a “suspension valve” by the person skilled in the art.
  • the suspension valve 13 is mainly used to control the rigid flexible transition of the suspension cylinder 12 and the extension and retraction.
  • the suspension valve 13 is a combination valve having substantially similar constituent elements, preferably including a suspension cylinder rigid flexible control valve 19, a suspension cylinder extension control valve 20, and a suspension cylinder retracting control valve 21.
  • the accumulator 11 is a well-known component in a hydraulic system in which hydraulic oil is accommodated, and an inert gas (e.g., nitrogen gas) having a certain initial pressure is enclosed above the hydraulic oil.
  • an inert gas e.g., nitrogen gas
  • the connection relationship between the suspension cylinder 12, the suspension valve 13 and the accumulator 11 is not directly related to the automatic leveling performance of the self-leveling oil and gas suspension mechanism of the present invention, but since it is the current oil and gas suspension mechanism
  • the common components of the present invention are related to the understanding of the present invention. Therefore, the connection relationship between the suspension cylinder 12, the suspension valve 13, the accumulator 11, and the corresponding functional state of use will be briefly described below.
  • the suspension cylinders 12 are symmetrically disposed on both sides of the axle 16, corresponding to the arrangement of the suspension cylinders 12, and the suspension valves 13 are generally required to be used in pairs.
  • suspension valves There are a variety of suspension valves in the prior art, but the components of these types of suspension valves are basically similar (mainly adding or reducing some damping valves or check valves, etc.), and the functions are basically the same, that is, mainly used for controlling suspension.
  • the rigid flexible conversion of the cylinder 12 and the extension and retraction (ie, the oil returning to the oil cylinder 12, etc.), etc. of course, there are some relatively simple suspension valves in the early oil and gas suspension technology (for example, the suspension cylinder 12 is matched).
  • the self-leveling oil and gas suspension structure of the present invention can use various types of suspension valves 13, and the specific type of suspension valve 13 does not constitute a limitation to the scope of the present invention.
  • Figure 7 shows a schematic diagram of a typical suspension valve 13 and suspension cylinder 12, where P represents Inlet port, T means oil return port. It is assumed that the two side suspension cylinders 12 in the figure are respectively installed on both sides of the rear axle 16 (hereinafter, the left and right sides are described separately, for example, the left suspension cylinder 12, the right suspension cylinder 12, etc., correspondingly, assuming a diagram The lower side of 7 is the left side and the upper side is the right side). As shown in FIG. 7, the left suspension valve 13 and the right suspension valve 13 are respectively mounted on both sides of the rear axle 16, and the upper end of the cylinder rod is hinged to the frame 15, and the lower end of the cylinder is hinged to the rear axle 16 on.
  • the left and right suspension valves 13 correspond to the left and right suspension cylinders 12, the left and right suspension valves 13 and the left and right suspension cylinders 12 are not independent of each other, but have a corresponding connection relationship. In order to form a mating relationship, the vibration damping mechanism of the oil and gas suspension mechanism and the height of the frame from the ground can be better realized.
  • the left and right suspension valves 13 may each include a suspension cylinder rigid flexible control valve 19, wherein the oil port of the left accumulator 11 is connected to the left side via a hydraulic line via a left suspension cylinder rigid flexible control valve 19.
  • the rodless cavity of the suspension cylinder 12, the oil port of the right accumulator 11 is connected to the rodless cavity of the right suspension cylinder 12 via the hydraulic cylinder via the right suspension cylinder rigid flexible control valve 19, and the left and right suspension cylinders are rigid.
  • the flexible control valve 19 needs to have two working states, that is, an on and off state. Accordingly, the left and right suspension cylinder rigid flexible control valve 19 can adopt a normally closed two-position two-way electromagnetic reversing valve or an electromagnetic on-off valve. Etc. (In FIG. 6, each of the suspension valves 13 is electrically connected to the control unit 3 through an electric control connection line, so that the conduction or the closed state of the left and right suspension cylinder rigid flexible control valves 19 can be controlled by the control unit 3).
  • the left and right suspension cylinder rigid flexible control valves 19 can be energized by the control unit 3, so that the left and right suspension cylinders 12 are respectively associated with the left and right accumulators. 11 is turned on, thereby absorbing the buffer vibration by the left and right accumulators 11, thereby improving ride comfort and ride comfort.
  • the left and right suspension cylinder rigid flexible control valves 19 are de-energized by the control unit 3, so that the left and right suspension cylinders 12 are each disconnected from the left and right accumulators 11
  • the communication relationship is such that the hydraulic oil in the rodless cavity of the left and right suspension cylinders 12 is in the substantially closed rodless cavity.
  • the oil and gas suspension mechanism In a rigid state, no matter how much pressure the frame 15 exerts on the cylinder rod of the suspension cylinder 12, the suspension cylinder 12 is not subjected to pressure retraction, thereby ensuring the safety of the load hoisting (of course, once driving on a lateral ramp or On the vertical ramp, the body or frame 15 will be tilted due to the slope of the road. If dynamic leveling is not performed, there is still a risk of rollover. Further, as shown in FIG.
  • the rod cavity of the left suspension cylinder 12 is also in communication with the oil port of the right accumulator 11 through a pipeline (generally, the rod cavity of the left suspension cylinder 12 can be passed through the pipeline
  • a corresponding interface connected to the right side suspension valve 13 is connected to the oil port of the right accumulator 11 via the internal line of the right side suspension valve 13), and the rod cavity of the right suspension cylinder 12 is also passed through the line. It communicates with the oil port of the left accumulator 11.
  • each of the suspension valves 13 preferably further includes a suspension cylinder extension control valve 20 and a suspension cylinder retracting control valve 21, wherein the inlet port P extends out of the control valve 20 via the pipe via the left suspension cylinder Connected to the rodless cavity of the left suspension cylinder 12, and the oil inlet P is also connected to the rodless cavity of the right suspension cylinder 12 via the right suspension cylinder extension control valve 20 through the pipeline, and the left suspension cylinder is contracted
  • the return control valve 21 is disposed on a pipeline between the oil return port T and the rodless chamber of the left suspension cylinder 12, and the right suspension cylinder retracting control valve 21 is disposed at the oil return port T and the right suspension cylinder 12 without a rod. On the line between the chambers.
  • the left and right suspension cylinder extension control valve 20 and the left and right suspension cylinder retraction control valves 21 are two-position two-way electromagnetic reversing valves or electronically controlled on-off valves (the suspension valves 13 are passed in FIG. 6).
  • the control line is electrically connected to the control unit 3, so that the left and right suspension cylinder extension control valves 20 and the on/off state of the suspension cylinder retracting control valve 21 can be controlled by the control unit 3.
  • the pressurized oil reaches the left and right suspension cylinders 12 from the inlet port P via the left and right suspension cylinders respectively extending out of the control valve 20.
  • this adjustment is generally an adjustment in the case of a mobile crane in a static situation, since adjusting the height of the frame 15 of the mobile crane or the ground of the vehicle body by the suspension valve 13 is a relatively rough adjustment, and in the suspension valve 13
  • the suspension cylinder retracting control valve 21 When the suspension cylinder retracting control valve 21 is electrically conducted, the rodless cavity of the suspension cylinder 12 is equivalent to unloading, which is quite dangerous when traveling on a mobile crane (especially on a lateral ramp), and by making the suspension valve 13
  • the suspension cylinder extends out of the control valve 20 to conduct electric oil, the amount of oil in the rodless chamber of the suspension cylinder 12 cannot be controlled, so the height of the frame or the vehicle body from the ground through the suspension valve 13 is adjusted.
  • this adjustment is generally based on specific operating conditions, such as lowering the height of the mobile crane before the mobile crane passes the culvert.
  • the suspension valve 13 is In the description of the energy device 11, the connection relationship between the suspension cylinder 12, the suspension valve 13, and the accumulator 11 is briefly described. It should be noted that since the suspension cylinder 12, the suspension valve 13 and the accumulator 11 belong to common components of the oil and gas suspension mechanism, and the connection relationship between the suspension cylinder 12, the suspension valve 13 and the accumulator 11 is also a technology in the art. As is well known in the art, in general, it is only necessary to state that the suspension cylinder 12 is connected to the suspension valve 13 and the accumulator 11, and those skilled in the art can clarify the connection relationship between them (the commercially available suspension valve 13 has a standard Connection interface).
  • connection relationship of the self-leveling oil and gas suspension mechanism of the present invention the connection relationship between the suspension cylinder 12, the suspension valve 13 and the accumulator 11 is only briefly described, and the emphasis is given.
  • the hydraulic line connection relationship and the electronically controlled connection relationship of important components directly related to the automatic leveling performance of the present invention lie in the electronically controlled connection relationship and the hydraulic control pipeline connection relationship, and not in the mechanical installation relationship, such as the suspension valve 13, the vehicle body tilt adjusting unit 17, and the like.
  • Mechanical mounting structure these components can be installed on the frame 15 or the body by using corresponding mounting brackets, fasteners, etc., depending on the situation.
  • FIG. 6 is a block diagram of the overall arrangement structure of the self-leveling oil and gas suspension mechanism of the present invention
  • FIG. 8 is a system schematic diagram of the self-leveling oil and gas suspension mechanism shown in FIG.
  • the self-leveling hydro-pneumatic suspension mechanism of the present invention includes at least two pairs of suspension cylinders 12, each pair of the suspension cylinders 12 being symmetrically disposed at respective axles 16 (e.g., each of the front axles and Rear axle) on both sides.
  • Each pair of the suspension cylinders 12 is connected with a matching suspension valve 13 and an accumulator 11, and the connection relationship between the suspension cylinders 12 and the suspension valve 13 and the accumulator 11 has been described above, and the connection relationship thereof
  • the formula is well known to those skilled in the art and therefore will not be described here.
  • the oil source 2 (pressure oil source) at the oil inlet port P is mainly used to supply the pressure oil to each of the suspension cylinders 12, and the oil tank 5 at the oil outlet port T is mainly used for oil return. Further, in order to control the suspension valve 13, each of the suspension valves 13 is connected to the control unit 3 through an electric control line, thereby realizing the conventional rigid flexible conversion of the oil and gas suspension mechanism and the oil returning of the suspension cylinder 12 by controlling the suspension valve 13.
  • Each of the suspension cylinders 12 is provided with a vehicle body tilt adjusting unit 17, which, as described above, includes an electronically controlled switching valve 7, a first one-way damping valve 8, an electronically controlled locking valve 14, and a second one-way
  • the damping valve 9 and the balance cylinder 10 in the embodiment, the balance cylinder 10 is a spring-reset cylinder, and the spring chamber of the balance cylinder 10 is connected to the tank through the hydraulic line via the first one-way damping valve 8 and the electronically controlled switching valve 7. 5 and a constant pressure oil source 4, the electronically controlled switching valve 7 selectively causes the spring chamber of the balance cylinder 10 to be electrically connected to the oil tank 5 or the constant pressure oil source 4.
  • the electronically controlled switching valve 7 adopts an electromagnetic two-position three-way reversing valve
  • the spring chamber of the balancing cylinder 10 passes through the hydraulic line through the first one-way damping valve 8 (the one-way valve of the one-way damping valve 8)
  • the cut-off side is connected to the spring chamber of the balance cylinder 10 through the hydraulic line) and is connected to one interface of the electromagnetic two-position three-way valve, and the other two interfaces of the two-position three-way electromagnetic reversing valve are respectively connected to the oil tank 5 and the constant Pressure oil source 4.
  • the spring chamber of the balance cylinder 10 communicates with the oil tank 5 via the first one-way damping valve 8 and the electronically controlled switching valve 7, and the two-position three-way electromagnetic reversing valve is obtained.
  • the valve core in the two-position three-way electromagnetic reversing valve is displaced, so that the spring chamber of the balance cylinder 10 is electrically connected to the constant pressure oil source 4 via the first one-way damping valve 8 and the electronically controlled switching valve 7, thereby
  • the constant pressure oil source 4 is controlled by the control unit 3 to supply oil into the spring chamber of the balance cylinder 10.
  • the electronically controlled switching valve 7 can also adopt other types of valves, such as a two-position four-way electromagnetic reversing valve. In this case, only the first one-way damping valve 8 shown in FIG. 5 is needed.
  • a branch line is connected to the connecting line between the electronically controlled switching valve 7 and connected to an interface of the two-position four-way electromagnetic reversing valve.
  • the electronically controlled switching valve 7 can adopt other types of electronically controlled valves, which can realize the right path of the spring chamber of the balance cylinder 10 in the oil tank 5 and the constant pressure oil source 4 Switch between.
  • the springless chamber of the balance cylinder 10 (i.e., the chamber opposite the spring chamber, without the spring) is connected to the suspension via a hydraulic line via the electronically controlled latching valve 14 and the second one-way damping valve 9.
  • the cut-off side of the check valve of the second one-way damping valve 9 is connected to the rodless cavity of the suspension cylinder 12 by a hydraulic line.
  • the electronically controlled locking valve 14 adopts a two-position two-way electromagnetic valve, which is mainly used to implement a switching function, and those skilled in the art may think of various electronically controlled valves that implement the switching function, such as electricity. Control switch valves, etc.
  • the constituent elements of the one-way damper valves 8, 9 are well known, that is, each includes a parallel check valve and a damper valve, and in the internal connection relationship of the vehicle body tilt adjusting unit 17, the first one-way damper valve
  • the conduction side of the check valve of 8 is connected to the interface of the electromagnetic switching valve 7, and the conduction side of the check valve of the second one-way damping valve 9 is connected to the electronically controlled locking valve 14.
  • the electronically controlled switching valve 7 and the electronically controlled locking valve 14 of each of the vehicle body tilt adjusting units 17 are connected to the control unit 3 through an electronically controlled connecting line, and the constant pressure oil source 4 is also connected to the control unit 3 through an electronically controlled connecting line.
  • the constant pressure oil source 4 is controlled by the control unit 3 so that the constant pressure oil source 4 selectively supplies oil to the electronically controlled switching valve 7.
  • the auto-leveling hydro-pneumatic suspension mechanism of the present invention may further include a suspension mechanism pressure sensor 18, which is also connected to the control unit 3 via a signal line, The axle load pressure signals on both sides of the mobile crane are transmitted to the control unit 3.
  • the vehicle body longitudinal inclination sensor 6 included in the self-leveling oil and gas suspension mechanism of the present invention transmits a vehicle body longitudinal inclination signal to the control unit 3 via a signal line such as a CAN bus.
  • FIG. 8 is a control schematic diagram of the self-leveling oil and gas suspension mechanism shown in FIG. 6, wherein the connection relationship between the associated suspension valve 13 and the accumulator connected between each pair of suspension cylinders 12 has been described with reference to FIG. . Further, it can be clearly seen from Fig. 8 that each of the suspension cylinders 12 is connected to a respective body inclination adjusting unit 17, wherein the connection relationship of the hydraulic lines and the electronically controlled connection relationship have been described in detail above. Further, in Fig. 8, Pk represents an output line of the constant pressure oil source 4, Px represents an output line of the pressure oil source 2, Pp represents an electric control line, and Al, A2, A3 indicated at each of the suspension valves 13 M, N, P, T, and SP represent the corresponding interfaces. In general, the commercially available suspension valve 13 can form the connection relationship shown in Fig. 8 according to the corresponding interface.
  • the vehicle body tilt adjusting unit 17 includes an electronically controlled switching valve 7, a first one-way damping valve 8, and an electronically controlled locking valve 14, a two-way damper valve 9 and a balance cylinder 10, wherein the balance cylinder 10 is a spring-reset cylinder, and a spring chamber of the balance cylinder 10 is connected to the electronically controlled switching valve 7 via a first unidirectional damper valve 8 via a hydraulic line,
  • the electronically controlled switching valve 7 selectively switches the oil passage of the spring chamber of the balance cylinder 10, and the springless chamber of the balance cylinder 10 is connected to the second one-way damping via the hydraulic control via the electronically controlled lock valve 14
  • the valve 9, the electronically controlled locking valve 14 selectively turns on or off the oil passage of the balance cylinder 10 without the spring chamber.
  • the basic technical solution of the automatic leveling oil and gas suspension mechanism of the present invention is as follows:
  • the automatic leveling oil and gas suspension mechanism comprises at least two pairs of suspension cylinders 12, and each pair of the suspension cylinders 12 are respectively disposed on two of the corresponding axles 16
  • the side, wherein the self-leveling oil and gas suspension mechanism further comprises: a vehicle body tilt adjusting unit 17, each of the hanging oil cylinders 12 is correspondingly provided with the vehicle body tilt adjusting unit 17, and the vehicle body tilt adjusting unit 17 comprises an electronically controlled switching valve 7.
  • the damping valve 8 and the electronically controlled switching valve 4 are connected to the oil tank 5 and a leveling operation oil source (preferably a constant pressure oil source 4), which selectively causes the spring chamber of the balance cylinder 10 to The oil tank 5 or the constant pressure oil source 4 is turned on, and the springless chamber of the balance cylinder 10 is connected to the corresponding suspension cylinder 12 via a hydraulic control line via an electronically controlled lock valve 14 and a second one-way damping valve 9.
  • the vehicle body lateral inclination signal is connected to the leveling operation oil source and the electronically controlled switching valve 7 and the electronically controlled locking valve 14 of each of the vehicle body inclination adjusting units 17 through an electric control line.
  • the auto-leveling hydro-pneumatic suspension mechanism further includes a vehicle body longitudinal inclination sensor 6, which can be connected to the control unit 3 via a field bus (for example, a CAN signal line) to transmit the vehicle body longitudinal direction to the control unit 3. Inclination signal.
  • a field bus for example, a CAN signal line
  • the self-leveling automatic suspension structure of the present invention can be applied to a variety of mobile construction machines, such as wheel loaders, mine dump trucks, wheeled excavators, and mobile cranes (typically all-terrain cranes). ) Wait. To this end, the present invention also provides a mobile crane comprising the above-described self-leveling oil and gas suspension mechanism.
  • the adaptive dynamic leveling operation of the traverse ramp of the self-leveling oil and gas suspension mechanism of the present invention will be described below with reference to FIGS. 6 and 8.
  • the two-axle bridge (front axle and rear axle) mobile crane is taken as an example. description. For convenience of description, it is assumed that the upper side in Fig. 6 is the head direction of the mobile crane, and the lower side is the tail direction of the mobile crane. Accordingly, the left side in Fig.
  • FIG. 6 is the left side of the mobile crane, and the right side is The right side of the mobile crane, wherein the two suspension cylinders 12 at the front position are suspension cylinders on both sides of the front axle (referred to as front left suspension cylinder and front right suspension cylinder, respectively), two in the rear position
  • the suspension cylinders 12 are suspension cylinders 12 on both sides of the rear axle (referred to as rear left suspension cylinders and rear right suspension cylinders, respectively).
  • FIG. 6 is only a schematic arrangement of the automatic leveling oil and gas suspension structure of the present invention. Block diagram, although the cylinder rod of the suspension cylinder 12 in Figure 6 (and Figure 8) is drawn downward, during actual installation, the cylinder rod of the suspension cylinder should be upwardly and hinged to the frame 15 or the body.
  • the slope of the lateral ramp when the mobile crane is in the load-bearing state, the rigid flexible control valve 10 in the suspension valve 13 of the oil-spindle suspension mechanism is in a de-energized state, at which time the suspension cylinder 12 is in a rigid state, when the mobile crane is driven
  • the flow crane is integral (including the frame 15 and the body, of course) due to the objective slope of the lateral slope. The angle of the roll will wait The slope of the lateral ramp.
  • the vehicle body lateral inclination sensor 1 and the suspension mechanism pressure sensor 18 laterally move the vehicle body laterally
  • the inclination angle and the left and right axle load pressure signals of the axle are transmitted to the control unit 3.
  • the control unit 3 When the control unit 3 maintains or changes various postures of the vehicle body, it is preferably powered by the stable constant pressure oil source 4 and controlled by the control unit 3 for electronic control.
  • the lock valve 14 and the electronically controlled switching valve 7 pressurize or cut off the hydraulic oil in the balance cylinder 10, thereby maintaining the constant oil quantity and the balance of the left and right axle loads in the existing oil and gas suspension mechanism, thereby realizing a dynamic suspension cross slope. Road leveling performance.
  • the vehicle body momentarily tilts to the right, and the vehicle body lateral inclination sensor 1 immediately transmits the lateral inclination signal to the control unit 3, preferably the suspension mechanism pressure sensor 18 will also be left
  • the right suspension pressure signal is transmitted to the control unit 3.
  • the control unit 3 determines whether the lateral inclination of the vehicle body reaches the set value.
  • the control unit 3 selects the vehicle body lateral inclination control mode for control, and the control unit 3 After the software module corresponding to the lateral inclination control mode of the vehicle body is analyzed, the output current or voltage control signal is output, and the constant pressure oil source 4 is controlled to not output the hydraulic oil (ie, the hydraulic pump of the constant pressure oil source 4 does not work at this time).
  • the respective electronically controlled locking valves 14 on the left side of the mobile crane are energized, so that the pressure oil in the rodless chamber of each of the left suspension cylinders 12 is gradually moved to the corresponding one through the corresponding second one-way damping valve 9.
  • the spring-free chamber of the left balance cylinder 10 is filled with oil, and at the same time, the electric control switching valves 7 on the left side are de-energized, and the left side is respectively
  • the oil in the spring chamber of the balance cylinder 10 is returned to the oil tank 5 through the first one-way damping valve 8, so that the cylinder rods of the respective suspension cylinders 12 on the left side of the mobile crane are retracted, so that the frame and the body that have been tilted to the right are It is lowered to the left under the action of its own gravity.
  • the vehicle body lateral inclination sensor 1 and the suspension mechanism pressure sensor 18 continue to monitor the lateral inclination signal and the left axle load pressure signal of the vehicle body in real time until the left and right axle load pressure difference and the vehicle body inclination return to
  • the initial body level setting value is controlled by the control unit 3 to control the electric control valves 7 on the left side to be electrically charged, so that the hydraulic oil in the spring chamber of each of the balance cylinders 10 on the left side is closed (ie, the spring of the balance cylinder 10 at this time)
  • the oil passage of the chamber is switched to be in communication with the constant pressure oil source 4, but the constant pressure oil source 4 is not working at this time, so that the mobile crane maintains the posture of the vehicle body after leveling.
  • the vehicle body lateral inclination sensor 1 and the suspension mechanism pressure sensor 18 continue to transmit the vehicle body lateral inclination control signal to the control unit 3 in real time.
  • the number and the left and right axle load pressure signals since the mobile crane has entered the horizontal road surface, the above-mentioned vehicle body posture leveled on the lateral slope necessarily indicates that the vehicle body is tilted to the left on the horizontal road surface, and the control unit 3 receives the vehicle body at this time.
  • the signals transmitted by the lateral inclination sensor 1 and the suspension mechanism pressure sensor 18 are controlled by the control unit 3 to control the output of the constant pressure oil source 4 so that the respective electronically controlled lock valves 14 on the left side are energized, so that the respective suspension cylinders 12 on the left side are
  • the rodless chamber communicates with the springless chamber of the corresponding balancing cylinder 10 on the left side through the first one-way damping valve 9, and simultaneously causes the respective electronically controlled switching valves 7 on the left side to be energized, thereby supplying the hydraulic oil of the constant pressure oil source 4
  • the first one-way damping valve 8 on the left side is charged into the spring chamber of the corresponding balance cylinder 10 to push the piston of the balance cylinder 10, so that the hydraulic fluid in the spring-free chamber of the balance cylinder 10 passes through the corresponding second one-way damping.
  • the valve 9 is pressed into the rodless cavity of the suspension cylinder 12, so that the cylinder rods of the respective suspension cylinders 12 on the left side are extended, so that the left side of the body of the mobile crane rises until the left and right suspension pressure difference The value and the body angle are restored to the initial body level set value, and finally, by de-energizing the respective electronically controlled lock valves 14 on the left side, the hydraulic oil in the left suspension cylinder 12 is closed to maintain the horizontal posture of the vehicle body.
  • the above describes the lateral tilting adaptive dynamic leveling operation of the mobile crane on a lateral ramp inclined to the right and the reversal of the lateral ramp inclined to the horizontal road surface, correspondingly, when the mobile crane is moving
  • the lateral tilting adaptive dynamic leveling operation on the left-sloping lateral ramp and the lateral ramp inclined to the left to the horizontal road surface is similar, in which case only the body on the right side of the mobile crane needs to be passed accordingly.
  • the reclining unit 17 may adjust each of the suspension cylinders 12 on the right side.
  • the self-leveling hydro-pneumatic suspension mechanism of the present invention further includes a vehicle body longitudinal inclination sensor 6, and the control unit 3 receives the vehicle body longitudinal inclination signal of the vehicle body longitudinal inclination sensor 6, and the vehicle body longitudinal inclination control mode can also pass the present invention.
  • the body tilt adjustment unit 17 easily achieves an adaptive dynamic leveling operation of the longitudinal inclination of the vehicle body.
  • the vehicle body tilt adjusting unit 3 at the front side of the mobile crane needs to be controlled by the control unit 3 so that the front side
  • the cylinder rods of the respective suspension cylinders 12 are retracted, thereby reducing the front height of the mobile crane body and maintaining the horizontal state of the mobile crane.
  • the control unit 3 selects the corresponding vehicle inclination control mode, for example, first selects the lateral inclination control mode, and after the vehicle body lateral inclination is eliminated by the leveling, the longitudinal inclination control mode is selected, thereby eliminating the longitudinal direction of the vehicle body.
  • the inclination angle can be used to comprehensively adjust the lateral inclination and longitudinal inclination of the mobile crane, so that the mobile crane can achieve adaptive dynamic leveling performance under various bad road conditions, ensuring the safety of the mobile crane and avoiding the mobile crane. There is a risk of tipping during driving.
  • the auto-leveling hydro-pneumatic suspension mechanism of the present invention can select various preset vehicle body tilt control modes by the control unit 3 according to the vehicle body inclination signal (preferably including the suspension mechanism axle load pressure signal).
  • the control of the vehicle body tilt adjusting unit 17 is realized, and the corresponding telescopic operation of the suspension cylinder 12 is realized by the vehicle body tilt adjusting unit 17, to ensure that the oil and gas suspension mechanism maintains the vehicle body in a horizontal state, and the control unit 3 continues according to the leveled signal.
  • the maintenance or switching of various postures of the vehicle body is realized, thereby realizing the adaptive dynamic leveling performance of the flow engineering machine (for example, the mobile crane) for various road conditions, especially the cross slope.
  • the self-leveling oil and gas suspension mechanism of the present invention realizes the maintenance or switching of various postures of the vehicle body, it is preferable to provide power from a stable constant-pressure oil source to press or cut off the hydraulic oil in the balance cylinder 10, and automatically maintain the oil and gas suspension.
  • the constant oil volume in the frame mechanism and the balance of the left and right axle load ensure the smoothness of the automatic leveling operation of the mobile crane and ensure the safety of the mobile crane.
  • the self-leveling oil and gas suspension mechanism of the invention effectively solves the dynamic adaptive leveling performance of the mobile engineering machinery (such as the mobile crane) for various road conditions, in particular, the adaptive dynamic leveling of the lateral ramp
  • the automatic leveling oil and gas suspension mechanism of the invention is simple and convenient to operate and has strong logic. All operations are automatically completed by the control unit 3, and the use thereof is safe and reliable, and the safety of the vehicle is significantly improved. Performance, to avoid the occurrence of major accidents such as vehicle rollover.
  • control unit 3 may employ a single chip or the like in addition to the PLC.
  • scope of protection of the invention is defined by the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)

Description

车身倾角调整单元、 油气悬架机构以及流动式起重机
技术领域
本发明涉及一种车身倾角调整单元以及自动调平式油气悬架机构。 此外, 本发明 还涉及一种包括所述自动调平式油气悬架机构的流动式起重机。 背景技术
流动式起重机一般是指能够在地面上自由移动的起重设备, 典型地是指安装在工 程车辆上的起重设备。 流动式起重机因其机动性和灵活性而在工程机械领域广泛使用。 大吨位或超大吨位的流动式起重机、尤其是全地面起重机的油气悬架机构必须具备如下 功能, 即悬架机构的升降、 刚柔切换、 负载行驶、 缓冲减震以及路况自适应等功能, 以 适应流动式起重机不同工况的要求。
油气悬架机构是一种始于二十世纪六十年代的新型底盘悬架技术, 其主要原理是 将工程机械(例如流动式起重机) 的垂直轴荷转换为悬挂油缸内的油液的压力, 压力通 过管路传递至相应的控制单元和蓄能器, 蓄能器以具有一定初始压力的惰性气体(通常 为氮气)作为弹性介质, 并通过油路上的相应单向阀和节流孔控制油液的流向或进行节 流, 从而起到减振作用。 相应地, 油气悬架机构主要包括悬挂油缸、 蓄能器、 悬挂阀以 及相应的控制元件。 油气悬架机构因其在改善工程机械的行驶平顺性方面的显著优点, 而广泛地用于各种工程机械, 例如轮式装卸车、 矿山自卸车、 轮式挖掘机以及流动式起 重机 (典型地为全地面起重机) 等。
一般而言, 由于流动式起重机的重心较高、 重量较大, 因此在流动式起重机行驶 过程中应当确保车架和车身保持水平, 以防止流动式起重机出现翻倾事故。 但是, 由于 流动式起重机并非总是行驶在良好路况的水平路面上, 其常常行驶在恶劣路况的路面 上, 例如行驶在纵向坡道或横向坡道上, 此时流动式起重机的车架和车身因为路面坡度 的原因会出现纵向倾角或横向倾角, 极易出现翻倾事故。 在这些恶劣路况下, 要求流动 式起重机的油气悬架机构能够自动调整车架和车身的姿态, 以使得车架和车身处于水平 状态, 这就是流动式起重机油气悬架机构的路况自适应功能, 而油气悬架机构的自动调 平性能在实现路况自适应功能方面起着关键的主导作用。
现有的流动式起重机的油气悬架机构主要针对良好路况进行设计, 而针对恶劣路 况、尤其是针对横坡道路况的油气悬架机构只有极少数厂家或科研机构在研究, 尚无实 际应用的先例。此外, 中国实用型专利 CN2649377Y公开了一种流动式起重机的油气悬 架机构,该油气悬架机构主要在车辆处于静态时采用手动或电控方式进行横坡道和纵坡 道路况的静态的调平操作(一般是通过悬挂阀进行进油或排油以调整悬挂油缸的举升高 度来进行静态调节), 但是, 实际上在流动式起重机行驶时进行动态调平操作是更为重 要的, 另外, 该实用新型专利 CN2649377Y的油气悬架机构的调平操作主要是通过进油 或回油补偿来实现, 而在动态行驶工况时根本无法控制补偿油量的多少, 因此无法在所 述流动式起重机行驶时真正实现该流动式起重机的动态调平操作, 尤其是, 无法真正地 实现流动式起重机油气悬架机构的横坡道动态自适应调平性能。
因此, 需要一种新型的自动调平式油气悬架机构, 以能够在各种恶劣路况、 尤其 是横坡道路况下动态地实现所述流动式起重机或其它流动式工程机械的自动调平操作。 发明内容
本发明所要解决的一个技术问题是提供车身倾角调整单元, 该车身倾角调整单元 能够应用于油气悬架机构, 以实现油气悬架机构的动态自适应调平操作。
本发明所要解决的另一技术问题是提供一种自动调平式油气悬架机构, 该自动调 平式油气悬架机构能够在流动式工程机械在横坡道上行驶时动态地实现横坡道自适应 调平性能,从而能够有效地防止因现有的油气悬架机构对横向坡度不敏感而容易造成的 翻车等重大事故, 有效地改善流动式工程机械的安全性。
此外, 本发明还提供一种流动式起重机, 该流动式起重机的油气悬架机构具有优 良的横坡道动态自适应调平性能,从而能够有效地防止现有的流动式起重机的油气悬架 机构对横向坡度不敏感而造成的翻车事故。
为解决上述第一个技术问题, 本发明提供一种车身倾角调整单元, 其中, 该车身 倾角调整单元包括平衡油缸,所述平衡油缸的一个腔通过液压管路经由第一单向阻尼阀 连接于电控切换阀,所述平衡油缸的另一个腔通过液压管路经由电控锁止阀连接于第二 单向阻尼阀, 所述电控锁止阀选择性地使得所述平衡油缸的无簧腔的油路导通或截止。
为解决上述第二个技术问题, 本发明提供一种自动调平式油气悬架机构, 该自动 调平式油气悬架机构包括至少两对悬挂油缸,各对所述悬挂油缸各自设置在相应车桥的 左、 右两侧, 其中, 所述自动调平式油气悬架机构还包括: 车身倾角调整单元, 每个所 述悬挂油缸对应连接有一个所述车身倾角调整单元,该车身倾角调整单元用于调整每个 所述悬挂油缸的缸杆的伸出和縮回; 车身横向倾角传感器, 该车身横向倾角传感器检测 车身横向倾角; 以及控制单元, 该控制单元接收所述车身横向倾角传感器传输的车身横 向倾角信号, 并通过电控线路连接于所述调平操作油源以及各个所述车身倾角调整单 元。
此外, 本发明还提供一种流动式起重机, 其中, 该流动式起重机包括上述自动调 平式油气悬架机构。
通过本发明的上述技术方案, 本发明的自动调平式油气悬架机构能够根据车身倾 角信号 (优选地可以包括悬架机构轴荷压力信号), 由控制单元选择预先设定的各种车 身倾角控制模式, 实现对车身倾角调整单元的控制, 确保油气悬架机构维持车身处于水 平状态, 控制单元再根据调平后的信号持续自动地实现车身各种姿态的保持或切换, 从 而实现了流动式工程机械(例如流动式起重机)对各种路况、 尤其是横坡道的自适应动 态调平性能。 本发明的自动调平式油气悬架机构在实现车身各种姿态的保持或切换时, 由稳定的调平操作油源(优选恒压油源)提供动力以将平衡油缸内的液压油压出或截止, 自动维持所述油气悬架机构内油量恒定和左右轴荷平衡,其能够确保流动式起重机的自 动调平操作的平稳性, 并有效保证流动式起重机的安全性。 本发明的自动调平式油气悬 架机构有效地解决了流动式工程机械(例如流动式起重机)对各种路况动态自适应调平 性能, 尤其是实现了对横向坡道的自适应动态调平功能; 同时, 本发明的自动调平式油 气悬架机构的操作简单方便、逻辑性强,所有操作均由控制单元自动完成,其使用安全、 可靠, 显著地提高了车辆纵横坡道行驶的安全性能, 避免了翻车等重大事故的发生。 本 发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。 附图说明
附图是用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 具体实施方式一起用于解释本发明, 但并不构成对本发明的限制。 在附图中:
图 1是悬架油缸与流动式起重机的车架或车身铰接的示例图;
图 2是流动式起重机在横向坡道上行驶的工况示意图;
图 3是本发明具体实施方式的自动调平式油气悬架机构的控制原理框图; 图 4是本发明具体实施方式的车身倾角调整单元的结构框图;
图 5是图 4所示的车身倾角调整单元的原理图;
图 6是本发明具体实施方式的自动调平式油气悬架机构的总体布置结构框图, 图 中粗线代表液压管路线, 细线代表电控连接线或信号线;
图 7是悬挂油缸与悬挂阀以及蓄能器之间的连接关系的示例图; 以及
图 8是图 6的自动调平式油气悬架机构的系统原理图; 附图标记说明:
1 车身横向倾角传感器 2 压力油源
3 控制单元 4 恒压油源
5 油箱 6 车身纵向倾角传感器
7 电控切换阀 8 第一单向阻尼阀;
9 第二单向阻尼阀 10 平衡油缸 (弹簧复位式油缸)
11 蓄能器 12 悬挂油缸
13 悬挂阀 14 电控锁止阀
15 车架 16 车桥
17 车身倾角调整单元 18 悬架机构压力传感器
19 悬挂油缸刚性柔性控制阀 20 悬挂油缸伸出控制阀
21 悬挂油缸縮回控制阀 具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。 应当理解的是, 此处所描 述的具体实施方式仅用于说明和解释本发明, 并不用于限制本发明的保护范围。
油气悬架机构广泛地用于各种流动式工程机械, 例如轮式装卸车、 矿山自卸车、 轮式挖掘机以及流动式起重机(典型地为全地面起重机)等, 因此, 下文所述的本发明 的自动调平式油气悬架机构并不限于应用于特定的工程机械,而是可以应用于符合本发 明应用目的的各种流动式工程机械, 例如应用于流动式起重机。 为阐述的方便, 下文将 以流动式起重机为例进行描述。
参见图 6, 本发明具体实施方式的自动调平式油气悬架机构主要包括悬挂油缸 12、 蓄能器 11、 悬挂阀 13、 压力油源 2、 车身横向倾角传感器 1、 调平操作油源 (优选为恒 压油源 4)、 车身倾角调整单元 17以及控制单元 3。 在优选实施方式下, 为了实现纵向 坡道的自动调平性能,本发明的自动调平式油气悬架机构还可以包括车身纵向倾角传感 器 6。 此外, 本发明的自动调平式油气悬架机构还可以包括悬架机构压力传感器 18 (参 见图 3),这样可以使得控制单元 3能够根据更多的信号值进行操作,从而增强操作和检 测的可靠性。
为便于理解对本发明自动调平式油气悬架机构, 以下首先描述自动调平式油气悬 架机构的悬架油缸 12的机械连接结构及其在自动调平操作中的作用。
参见图 1, 悬挂油缸 12设置在车架 15与车桥 16之间, 具体地, 设置在车架纵梁 与车桥 16之间, 其上端可以与车架 15铰接, 下端可以与车桥 16铰接。 悬挂油缸 12的 上端一般可以铰接到车架 15上, 但是在一些特殊的工程机械上, 其也可以直接铰接到 车身上, 例如对一些不设置车架而设置承载式车身的矿山自卸车, 悬挂油缸 12的上端 可以直接铰接到车身上。 显然地, 悬挂油缸 12相对于流动式起重机的纵向中心轴线对 称设置, 对于双车桥式流动式起重机而言, 一般设置有四个悬挂油缸 12, 而对于多车桥 式流动式起重机而言,则设置有多个悬挂油缸 12, 即每个车桥的两侧对称设置有悬挂油 缸 12。 此外, 需要说明的是, 此处描述的悬挂油缸 12主要用于承受流动式起重机的轴 向力, 除了悬挂油缸 12之外, 所述油气悬架机构一般还包括多根导向推力杆, 该导向 推力杆主要用于承受侧向力以及牵引力, 由于导向推力杆与本发明的自动调平性能并无 直接的关联, 因此对此不进行详细描述。
悬挂油缸 12对于流动式起重机的车架或车身的调平操作起着关键作用。 原则上, 通过操作悬挂油缸 12, 可以使得流动式起重机的车架或车身升高或降低。 参见图 2, 当 流动式起重机处于横向坡道上时, 此时如果对悬挂油缸 12不进行控制调节, 则流动式 起重机的车架或车身会因横向坡度而向图 2中的左侧方向倾斜,这使得所述流动式起重 机很容易发生翻倾事故。 为了在横坡道行驶时确保流动式起重机的车架 15 以及车身处 于水平状态, 在图 2中需要使得左侧的悬挂油缸 12举升, 右侧的悬挂油缸 12下降, 从 而使得流动式起重机的车架 15 以及车身保持在水平或基本水平的状态, 以有效地防止 流动式起重机发生侧倾事故。 此外, 尽管附图中没有显示, 但是容易想到的是, 当流动 式起重机行驶在纵向坡道上时, 由于纵向坡度的原因, 流动式起重机的车架 15 以及车 身必然因为纵向坡度的原因, 而呈现出前高后低或前低后高的状态, 此时为了防止流动 式起重机向前或向后翻倾,需要相应地调整流动式起重机前桥和 /或后桥的悬挂油缸 12, 以使得流动式起重机的车架 15或车身保持在水平状态。
以下描述本发明的自动调平式油气悬架机构的控制原理。
如上所述, 所述油气悬架机构包括相应的控制元件 (例如车身横向倾角传感器 1、 悬架机构压力传感器 18、车身倾角调整单元 17以及控制单元 3等),控制元件的作用主 要在于控制悬挂油缸 12的工作状态。 本发明的自动调平式油气悬架机构需要实现基本 功能为: 在流动式工程机械 (例如流动式起重机)在横坡道上行驶时, 使得所述油气悬 架机构具有动态的横坡道自适应调平性能。 当然, 除了该基本功能之外, 在本发明下述 的进一步优选实施方式中, 本发明的自动调平系统还具有动态的纵坡道自适应调平性 能。 在此基础上, 通过综合地运用横坡道自适应调平性能以及纵坡道自适应调平性能, 能够使得例如流动式起重机适应各种恶劣的路况。
为了实现本发明自动调平系统的上述基本功能, 即在流动式工程机械 (例如流动 式起重机) 行驶在横坡道上时使得所述油气悬架机构具有动态的横坡道自适应调平性 能。本发明的自动调平式油气悬架机构包括多个车身倾角调整单元 17、车身横向倾角传 感器 1以及控制单元 3,其中,每个车身倾角调整单元 17对应地用于操作一个悬挂油缸 12, 即车身倾角调整单元 17的数量与悬挂油缸 9的数量相对应。 图 3是本发明的自动 调平式油气悬架机构的控制原理框图,在图 3中以双车桥式流动式起重机为例来显示本 发明的自动调平式油气悬架机构的控制原理, 也就是说, 在双车桥流动式起重机的每根 车桥 16的两侧对称安装有悬挂油缸 12,相应地, 图 3中的车身倾角调整单元 17分别对 应于前左悬挂油缸、 前右悬挂油缸、 后左悬挂油缸以及后右悬挂油缸, 以用于控制相应 悬挂油缸的伸縮。
参见图 3, 车身横向倾角传感器 1感测车身的横向倾角, 悬架机构压力传感器 18 感测悬架机构轴荷压力, 且车身横向倾角传感器 1和悬架机构压力传感器 18分别将车 身横向倾角信号以及悬架机构轴荷压力信号传递给控制单元 3 (例如 PLC或微机控制单 元), 所述控制单元 3根据车身横向倾角信号以及悬架机构压力信号进行判断, 并从预 先设定的多种车身倾角控制模式中选择车身横向倾角控制模式,通过该车身横向倾角模 式所对应的软件模块进行分析计算,进而向相应的车身倾角调整单元 17输出控制信号, 从而实现对车身倾角调整单元 17的控制,车身倾角调整单元 17控制对应的悬挂油缸 12 的举升或縮回, 由此确保所述油气悬架机构维持车身处于水平或基本水平的状态。 随着 流动式起重机在横坡道上行驶状况的改变, 控制单元 3 (例如 PLC或微机控制单元)会 根据车身调平后的信号持续实现车身姿态的保持或改变,从而动态地实现了油气调平悬 架的横坡道自适应调平功能。 此外, 在此需要说明的是, 上述车身横向倾角传感器 1以 及悬架机构压力传感器 18 同时传输信号仅是一种优选实施方式, 在本发明的自动调平 式油气悬架机构中,控制单元 3仅根据车身横向倾角传感器 1传输的车身横向倾角信号 即可有效地完成自动调平操作, 当然, 在悬架机构压力传感器 18 同时传输轴荷压力信 号的情形下, 可以使得控制单元 3能够根据更多的参数值进行分析计算、 检测和操作, 从而增强操作可靠性。
上述车身倾角控制模式主要是指根据流动式起重机在动态行驶过程中路面的横向 坡度值和纵向坡度值、和 /或流动式起重机的左右轴荷差值以及前后轴荷差值所进行的分 级设定而采用的相应的控制模式, 每种车身倾角控制模式对应有相应的软件模块(例如 PLC的用户程序)。 例如, 车身横向倾角传感器 1将车身当前的横向倾角值传递到所述 控制单元 3 (例如可编程序控制器 PLC), 当车身横向倾角值达到设定值。 一般而言, 不同的型号的起重机该设定值会有所不同,一般大于这个设定值时流动式起重机会有翻 倾危险, 此时需要进行调整, 而小于该设定值时, 通常可以不进行调整, 从而可以避免 进行油气悬架机构不停地进行一些不必要的调整。 该设定值一般是一种经验值或保守 值, 其通常小于导致流动式起重机翻倾的极限值(即设定值相对于翻倾极限值具有一个 安全系数), 根据不同的型号的起重机该设定值会有所不同, 一般以能够有效的确保流 动式起重机为准。在例如车身横向倾角大于相应的车身横向倾角设定值时必须对流动式 起重机的车身进行横向调平, 否则流动式起重机容易发生横向翻倾事故。 相应地, 所述 控制单元 3根据输入的横向倾角信号 (优选地还包括左右轴荷信号), 选择内置在该控 制单元 3内的车身横向倾角控制模式所对应的软件模块进行控制,从而本发明自动调平 式油气悬架机构开始进行横向坡道的自适应动态调平操作, 使得在流动式工程机械(例 如流动式起重机)在横坡道上行驶时, 其车身以及车架始终自动地属于水平或基本水平 的状态。
如上所述, 本发明具体实施方式的自动调平式油气悬架机构包括悬挂油缸 12、 蓄 能器 11、 悬挂阀 13、 压力油源 2、 车身横向倾角传感器 1、 调平操作油源、 车身倾角调 整单元 17以及控制单元 3。优选地,该自动调平式油气悬架机构还包括悬架机构压力传 感器 18和车身纵向倾角传感器 6。
由于本发明的自动调平式油气悬架机构的连接关系比较复杂, 以下首先参照附图 对本发明自动调平式油气悬架机构的主要部件进行说明,在对各个部件进行描述的基础 上, 进而说明其电控连接关系、 液压连接关系以及相应的自动调平操作过程。 需要说明 的是, 由于本发明的自动调平式油气悬架机构的一些部件 (例如悬挂油缸 12、 蓄能器 11等)是公知的, 因此在对各个部件进行说明的过程中, 将根据情况对一些公知部件简 略描述,而重点说明本发明自动调平式悬架机构的关键部件,例如车身倾角调整单元 17 等。
参照图 3和图 6, 本发明的控制单元 3主要用于接收传感器(例如横向倾角传感器 1的倾角信号和悬架机构压力传感器 18的轴荷压力信号, 以根据倾角信号和 /或轴荷压 力信号选择相应的倾角控制模式, 例如车身横向倾角控制模式, 通过该倾角控制模式所 对应的控制软件模块计算出对相应的悬挂油缸 12需要进行的调整操作, 并向各个车身 倾角调整单元 17传输相应的电控信号,从而通过各个车身倾角调整单元 17控制相应的 悬挂油缸 12的伸縮, 以通过相应的悬挂油缸 12的伸縮实现车身的升降, 使得车身被调 整到水平或基本水平的状态, 确保流动式起重机的安全行驶。 其中, 控制单元 3可以具 有多种类型, 其均能实现本发明的控制目的, 例如单片机、 电子控制单元 (ECU) 等。 优选地, 本发明的自动调平系统的控制单元 3 采用可编程序控制器 (PLC), 采用可编 程序控制器的优点在于, 由于 PLC 的指令以及接口相对标准, 在工业自动控制领域应 用广泛, 其可以方便地通过编程器编辑或修改各种车身倾角控制模式下的用户程序块 (即上述的软件模块), 因此可以方便地对各种车身倾角控制模式的用户程序模块进行 管理编辑, 从而能够更方便地实现本发明的自动调平功能。
参见图 3和图 6,车身横向倾角传感器 1可以安装在流动式起重机的车身重心位置 或车身重心区域。 一般而言, 倾角传感器是一种用于测量物体相对于水平面的倾角变化 量的传感器, 按其原理可以分为固体摆式倾角传感器、 液体摆式倾角传感器以及气体摆 式倾角传感器。 本发明的自动调平系统可以采用上述类型中的倾角传感器中的任意一 种, 由于气体摆式倾角传感器抗振动和抗冲击的能力强, 因此优选地, 车身横向倾角传 感器 1可以采用气体摆式倾角传感器。当流动式起重机行驶在横向坡道上时车身横向倾 角传感器 1动态监测车身横向倾角, 并通过现场总线, 例如 CAN总线 (即 ISO国际标 准化串行通信协议总线) 将监测到的车身横向倾角信号传递给控制单元 3, 例如可编程 序控制器。控制单元 3根据接收的车身横向倾角信号判断是否需要进行车身横向倾角的 调平操作, 一旦车身横向倾角大于设定值, 控制单元 3选择车身横向倾角控制模式, 并 向相应的车身倾角调整单元 17发送控制信号, 以通过车身倾角调整单元 17操作相应的 悬挂油缸 12,从而实现车身的调平操作。在本发明自动调平式油气悬架机构的优选实施 方式下, 由于本发明的自动调平式油气悬架机构还需要实现纵向坡道的自动调平操作, 因此优选地, 所述自动调平式油气悬架机构还包括车身纵向倾角传感器 6, 该车身纵向 倾角传感器 6可以采用与车身横向倾角传感器 1相同类型的倾角传感器,例如气体摆式 倾角传感器,该车身纵向倾角传感器 6可以同样设置在流动式起重机车身的重心位置或 重心区域, 其主要用于检测流动式起重机的车身的纵向倾角值, 并通过现场总线 (例如 CAN总线)将纵向倾角值信号传输到控制单元 3, 以供控制单元 3进行分析计算并根据 情形进行相应的纵向坡道的自适应调平操作。
悬架机构压力传感器 18—般可以为油压传感器, 该油压传感器可以安装在悬挂阀 13或悬挂油缸 12专设的检测口上, 并通过模数转换将油压信号 (该油压信号与悬架机 构的轴荷压力信号存在对应关系, 从而可以通过油压信号换算得到轴荷压力信号)转换 为数字信息, 通过现场总线 (例如 CAN总线) 输入控制单元 3, 并由控制单元 3进行 分析计算。 此外, 悬架机构压力传感器 18并不一定采用上述油压传感器, 其还可以采 用压电传感器或压力传感器等, 在此情形下, 压电传感器或压力传感器的压力敏感元件 (例如应变片) 可以布置悬挂油缸 12与车架 15的连接部位上。
参见图 4, 本发明自动调平式油气悬架机构的车身倾角调整单元 17包括电控切换 阀 7、 第一单向阻尼阀 8、 电控锁止阀 14、 第二单向阻尼阀 9以及平衡油缸 10。 参见图 5, 在车身倾角调整单元 17中, 电控切换阀 7可以为两位三通电磁阀, 其主要用于实现 压力油和回油的切换; 第一单向阻尼阀 8和第二单向阻尼阀 9属于公知部件, 具体地, 第一单向阻尼阀 8和第二单向阻尼阀 9均包括并联的单向阀和阻尼阀,其主要用于实现 油路的快进慢回功能; 平衡油缸 10优选是一种弹簧复位式油缸, 即油缸活塞两侧腔室 中的一个设置有复位弹簧,其主要用于实现蓄油功能, 当然, 除了弹簧复位式油缸之外, 在本发明的技术构思范围内, 平衡油缸 10可以采用多种其它形式来实现蓄油功能。 例 如采用蓄能器等, 最简单地, 可以将上述弹簧复位式油缸中的弹簧替换为其它弹性元件 (例如橡胶弹性件), 这些简单的变形方式对于本领域技术人员来说是容易想到的 (下 文将以弹簧式复位油缸为例进行阐述); 电控锁止阀 14可以为两位两通电磁阀, 其主要 用于实现压力油的切换和锁止。 需要说明的是, 上述电控锁止阀 14和电控切换阀 7仅 是为描述而进行的示例, 用于实现油路换向或锁止的阀门可以是多种电控阀门, 而不限 于图 5所示的两位两通电磁阀和两位三通电磁阀,其只要能够实现图 5所示的油路切换 连接关系即可。 在图 5中, 电控切换阀 7连接于第一单向阻尼阀 8, 该第一单向阻尼阀 8进而连接于平衡油缸 10的弹簧腔接口; 平衡油缸 10的无弹簧腔接口连接于电控锁止 阀 14, 该电控锁止阀 14连接于第二单向阻尼阀 9。
参见图 6,压力油源 2可以是液压泵,该液压泵从油箱 5中抽吸油液并对油液增压, 从而可以对本发明的自动调平式油气悬架机构供应压力油。此外, 本发明的自动调平式 油气悬架机构还包括调平操作油源, 该调平操作油源优选地采用恒压油源 4, 恒压油源 4主要用于提供压力相对恒定的液压油, 其一般可以在液压泵的输出管道上设置溢流阀 来提供压力相对恒定的液压油。在图 6中, 恒压油源 4通过液压管道连接于上述车身倾 角调整单元 17中的电控切换阀 7,此外,该恒压油源 4还通过控制线路电连接于控制单 元 3, 因此, 该恒压油源 4的液压泵的工作状态由控制单元 3控制, 以在控制单元 3的 控制下选择性地向电控切换阀 7供油。 当然, 在此需要说明的是, 恒压油源 4主要用于 驱动本发明的车身倾角调整单元 17的平衡油缸 10, 采用恒压油源 4主要确保调平操作 时的稳定性, 避免在调平操作时出现操作压力的波动, 但是采用恒压油源 4仅是一种优 选方式, 其也可以采用常规的压力油源作为调平操作油源, 虽然此时调平操作的稳定性 不如采用恒压油源 4, 但其同样能够实现本发明的目的。 此外, 油箱 5属于液压系统的 辅助液压元件, 其主要用于储存液压系统的油液。
悬挂油缸 12属于油气悬架机构的常用部件 (例如 CN2601870Y以及 CN2454171Y), 其结构基本类似, 一般包括缸筒、 活塞、 缸杆等构件, 其中缸筒的底部以及缸杆的顶部 分别设置有铰接支承孔, 以分别用于铰接到车桥 16和车架 15上。 悬挂油缸 12在所述 油气悬架机构中主要用于承受移动式工程机械(例如移动式起重机) 的轴向载荷, 通过 控制液压油进入悬挂油缸 12的有杆腔或无杆腔, 可以控制悬挂油缸 12的缸杆伸縮, 从 而升高或降低车架 15。
参见图 6, 本发明的自动调平式油气悬架机构还包括悬挂阀 13和蓄能器 11, 就悬 挂阀 13而言, 本领域技术人员也称为 "悬挂阀组"或 "悬架阀", 其中 "悬挂" 即 "悬 架" 的同义语, 其属于油气悬架机构的一种常用部件 (例如 CN2601870Y)。 悬挂阀 13 主要用于控制悬挂油缸 12的刚性柔性转换以及伸出縮回。悬挂阀 13是一种组合阀, 该 组合阀的组成元件基本类似,优选地可以包括悬挂油缸刚性柔性控制阀 19、悬挂油缸伸 出控制阀 20以及悬挂油缸縮回控制阀 21。此外, 蓄能器 11是液压系统中公知部件, 其 内部容纳有液压油, 并且在液压油的上方封装有具备一定初始压力的惰性气体(例如氮 气)。 需要说明的是, 悬挂油缸 12、 悬挂阀 13以及蓄能器 11的连接关系与本发明自动 调平式油气悬架机构的自动调平性能并不直接相关,但由于其是目前油气悬架机构的常 用部件, 并且涉及到对本发明的理解, 因此以下对悬挂油缸 12、 悬挂阀 13、 蓄能器 11 的连接关系以及相应的使用功能状态进行简略的说明。
如上所述, 悬挂油缸 12对称设置在车桥 16的两侧, 与悬挂油缸 12的设置结构相 对应, 悬挂阀 13—般也需要成对配套使用。 现有技术中存在多种悬挂阀, 但这些类型 的悬挂阀的组成元件基本类似 (主要是增加或减少一些阻尼阀或单向阀等), 实现的功 能也基本相同, 即主要用于控制悬挂油缸 12的刚性柔性转换以及伸出縮回 (即悬挂油 缸 12的进油回油等) 等, 当然, 早期油气悬架技术中也存在一些结构相对简单的悬挂 阀 (例如与悬挂油缸 12配套的换向阀, 本发明统称为 "悬挂阀")。 本发明的自动调平 式油气悬架结构可以使用各种类型的悬挂阀 13, 悬挂阀 13的具体类型并不构成对本发 明保护范围的限制。
例如, 图 7显示一种典型的悬挂阀 13与悬挂油缸 12的连接原理图, 其中 P表示 进油口, T表示回油口。 假设图中的两侧悬挂油缸 12分别安装在后车桥 16的两侧 (以 下以左侧和右侧进行区分描述, 例如左侧悬挂油缸 12、 右侧悬挂油缸 12等, 相应地, 假设图 7中的下侧为左侧, 上侧为右侧)。如图 7所示, 左侧悬挂阀 13与右侧悬挂阀 13 分别安装在后车桥 16的两侧, 其缸杆的上端铰接在车架 15上, 缸筒的下端铰接在后车 桥 16上。 左、 右侧悬挂阀 13虽然与左、 右侧悬挂油缸 12对应, 但该左、 右侧悬挂阀 13以及左、 右侧悬挂油缸 12相互之间并非是独立的, 而是存在相应的连接关系以形成 配合关系, 从而更好地实现油气悬架机构的减振、 静态调节车架离地高度等功能。 具体 地, 左、 右侧悬挂阀 13可以各自包括悬挂油缸刚性柔性控制阀 19, 其中, 左侧蓄能器 11 的油口通过液压管路经由左侧悬挂油缸刚性柔性控制阀 19连接于左侧悬挂油缸 12 的无杆腔, 右侧蓄能器 11的油口通过液压管路经由右侧悬挂油缸刚性柔性控制阀 19连 接于右侧悬挂油缸 12的无杆腔, 左、 右侧悬挂油缸刚性柔性控制阀 19需要具有两种工 作状态, 即导通和截止状态, 相应地, 该左、 右侧悬挂油缸刚性柔性控制阀 19可以采 用常闭式二位二通电磁换向阀或电磁开关阀等 (在图 6中各个悬挂阀 13通过电控连接 线电连接于控制单元 3, 因此通过控制单元 3可以控制该左、 右侧悬挂油缸刚性柔性控 制阀 19的导通或截止状态)。 这样, 例如在流动式起重机的一般行驶状态下, 可以通过 控制单元 3使得左、 右侧悬挂油缸刚性柔性控制阀 19得电, 使得左、 右侧悬挂油缸 12 各自与左、 右侧蓄能器 11导通, 从而利用左、 右侧蓄能器 11吸收缓冲振动, 改善行驶 的平顺性和乘坐舒适性。 在流动式起重机负载起重的状态下, 通过控制单元 3使得左、 右侧悬挂油缸刚性柔性控制阀 19失电, 使得左、 右侧悬挂油缸 12各自与左、 右侧蓄能 器 11断开连通关系, 从而使得左、 右侧悬挂油缸 12的无杆腔中的液压油处于基本封闭 的无杆腔内, 由于液压油的不可压縮性或准不可压縮性, 此时油气悬架机构处于刚性状 态, 无论车架 15对悬挂油缸 12的缸杆施加多大的压力, 悬挂油缸 12均不会受压回縮, 从而确保了负载起重行驶的安全(当然, 一旦行驶在横向坡道或纵向坡道上车身或车架 15会因道路坡度的原因发生倾斜, 如果不进行动态的调平, 仍然会产生翻车危险)。 此 夕卜,如图 7所示,左侧悬挂油缸 12的有杆腔还通过管路与右侧蓄能器 11的油口连通(一 般可以将左侧悬挂油缸 12的有杆腔通过管路连接于右侧悬挂阀 13的一个相应的接口, 再经由右侧悬挂阀 13的内部管路与右侧蓄能器 11的油口连通), 右侧悬挂油缸 12的有 杆腔也通过管路与左侧蓄能器 11 的油口连通。 这样, 在流动式起重机正常行驶时 (此 时左、右侧悬挂油缸刚性柔性控制阀 19处于得电状态),如果流动式起重机在左弯道(左 弯道路面一般具有一定的向左的坡度) 上行驶时, 则车桥 16的左侧承载载荷会显著增 大, 左侧悬挂油缸 12的缸杆向下移动, 相应地, 左侧悬挂油缸 12与左侧蓄能器 11之 间的油压会迅速升高, 该升高的油压会通过上述连接管路作用于右侧悬挂油缸 12的有 杆腔, 从而将右侧悬挂油缸 12的活塞向下压, 阻止右侧悬挂油缸 12的缸杆伸出, 从而 能够有效地减小流动式起重机的侧倾角度。 当然, 在流动起重机在右弯道上行驶时, 情 形是类似的。
此外, 如上所述, 各个悬挂阀 13优选地还可以包括悬挂油缸伸出控制阀 20和悬 挂油缸縮回控制阀 21, 其中, 进油口 P通过管路经由左侧悬挂油缸伸出控制阀 20连接 到左侧悬挂油缸 12的无杆腔, 并且该进油口 P同样通过管路经由右侧悬挂油缸伸出控 制阀 20连接到右侧悬挂油缸 12的无杆腔, 而左侧悬挂油缸縮回控制阀 21设置在回油 口 T与左侧悬挂油缸 12的无杆腔之间的管路上,右侧悬挂油缸縮回控制阀 21设置在回 油口 T与右侧悬挂油缸 12的无杆腔之间的管路上。 所述左、 右侧悬挂油缸伸出控制阀 20以及左、 右侧悬挂油缸縮回控制阀 21均为二位二通电磁换向阀或电控开关阀 (在图 6中各个悬挂阀 13通过控制线电连接于控制单元 3,因此通过控制单元 3可以控制该左、 右侧悬挂油缸伸出控制阀 20以及悬挂油缸縮回控制阀 21的导通或截止状态)。 这样, 当使得左、 右侧悬挂油缸伸出控制阀 20处于得电状态时, 压力油从进油口 P分别经由 左、 右侧悬挂油缸伸出控制阀 20到达左、 右侧悬挂油缸 12的无杆腔, 从而使得左、 右 侧悬挂油缸 12的缸杆向外伸出, 此时车架 15或车身升高。 此外, 当使得左、 右侧悬挂 油缸縮回控制阀 21处于得电状态时, 左、 右侧悬挂油缸 12的无杆腔内的液压油会在车 架 15以及车身的压力作用下向外排出, 从而左、 右侧悬挂油缸 12的缸杆縮回, 使得流 动式起重机的车架以及车身调低。 当然, 上述各个悬挂油缸 12的升降状态并不一定同 步进行, 即使位于同一车桥 16两侧的悬挂油缸, 也可以进行单独调节。 但是, 这种调 节一般是在流动式起重机处于静态情形下的调节, 由于通过悬挂阀 13调整流动式起重 机的车架 15或车身的离地高度属于一种比较粗略的调整, 并且在悬挂阀 13的悬挂油缸 縮回控制阀 21得电导通时, 悬挂油缸 12的无杆腔等同于卸载, 这在流动式起重机(尤 其是在横向坡道上) 行驶时是相当危险的, 此外通过使得悬挂阀 13 的悬挂油缸伸出控 制阀 20得电导通而进行进油时, 悬挂油缸 12的无杆腔的进油量无法控制, 因此这种通 过悬挂阀 13进行的车架或车身离地高度的调整并不适于进行车身或车架的动态自适应 调平操作, 并且这种调节一般是根据具体的作业情况进行的调节, 例如在流动式起重机 通过涵洞前降低流动式起重机的车身高度。
以上描述了本发明的自动调平式油气悬架机构的主要部件, 在对悬挂阀 13以及蓄 能器 11进行描述过程中, 简略描述了悬挂油缸 12、 悬挂阀 13以及蓄能器 11之间的连 接关系。 需要说明的是, 由于悬挂油缸 12、悬挂阀 13以及蓄能器 11属于油气悬架机构 的常用部件, 并且该悬挂油缸 12、悬挂阀 13以及蓄能器 11之间的连接关系也是本领域 技术人员熟知的, 一般而言, 只需说明悬挂油缸 12连接有悬挂阀 13和蓄能器 11, 本领 域技术人员即可明确其相互之间的连接关系 (市场上销售的悬挂阀 13具有标准的连接 接口)。 因此, 在下文对本发明的自动调平式油气悬架机构的连接关系进行描述的过程 中, 对于该悬挂油缸 12、悬挂阀 13以及蓄能器 11之间的连接关系仅简略描述, 而重点 说明与本发明的自动调平性能直接相关的重要部件的液压管路连接关系和电控连接关 系。此外, 本发明的自动调平式油气悬架机构的主要技术构思在于其电控连接关系和液 控管路连接关系, 而不在于机械安装关系, 例如悬挂阀 13、 车身倾角调整单元 17等的 机械安装结构, 这些部件在实际安装过程中完全可以根据情形采用相应的安装支架、 紧 固件等安装到车架 15或车身上。
以下参照图 6和图 8说明本发明优选实施方式的自动调平式油气悬架机构的液压 管路连接关系以及电控连接关系。图 6和图 8均以双车桥式流动式起重机为例进行显示, 但是, 显然地, 本发明的自动调平式油气悬架机构的技术方案同样可以适用于多车桥式 流动式起重机或其他移动式工程机械。其中, 图 6为本发明自动调平式油气悬架机构的 总体布置结构框图, 图 8为图 6所示的自动调平式油气悬架机构的系统原理图。
参见图 6, 本发明的自动调平式油气悬架机构包括至少两对悬挂油缸 12, 每对所 述悬挂油缸 12对称布置在相应的车桥 16 (例如图 6中各自布置在前车桥和后车桥) 两 侧。 每对所述悬挂油缸 12连接有配套的悬挂阀 13和蓄能器 11, 有关悬挂油缸 12与悬 挂阀 13以及蓄能器 11之间的连接关系已经在上文中进行了说明, 并且其连接关系式本 领域技术人员熟知的, 因此在此不再描述。在图 6中, 进油口 P处的油源 2 (压力油源) 主要用于向各个悬挂油缸 12供应压力油, 出油口 T处的油箱 5主要用于回油。 此外, 为了控制悬挂阀 13, 各个悬挂阀 13通过电控线路连接于控制单元 3, 从而通过控制悬 挂阀 13来实现油气悬架机构常规的刚性柔性转换以及悬挂油缸 12的进油回油等。
每个悬挂油缸 12配设有车身倾角调整单元 17, 如上文所述, 车身倾角调整单元 17包括电控切换阀 7、 第一单向阻尼阀 8、 电控锁止阀 14、 第二单向阻尼阀 9以及平衡 油缸 10, 本具体实施例中, 平衡油缸 10为弹簧复位式油缸, 平衡油缸 10的弹簧腔通过 液压管路经由第一单向阻尼阀 8和电控切换阀 7连接于油箱 5和恒压油源 4, 所述电控 切换阀 7选择性地使得平衡油缸 10的弹簧腔与油箱 5或恒压油源 4导通。 参见图 5和 图 8, 优选地, 电控切换阀 7采用电磁二位三通换向阀, 平衡油缸 10的弹簧腔通过液压 管路经由第一单向阻尼阀 8 (单向阻尼阀 8的单向阀的截止侧通过液压管路连接于平衡 油缸 10的弹簧腔) 连接于电磁二位三通阀的一个接口, 而该二位三通电磁换向阀的另 外两个接口则分别连接于油箱 5和恒压油源 4。 在该二位三通电磁换向阀失电时, 平衡 油缸 10的弹簧腔经由第一单向阻尼阀 8和电控切换阀 7与油箱 5连通, 在该二位三通 电磁换向阀得电时, 二位三通电磁换向阀内的阀芯移位, 从而平衡油缸 10的弹簧腔经 由第一单向阻尼阀 8和电控切换阀 7与恒压油源 4导通,从而可以通过控制单元 3控制 恒压油源 4工作以向平衡油缸 10的弹簧腔内供油。此外, 需要说明的是, 电控切换阀 7 也可以采用其它类型的阀门, 例如二位四通电磁换向阀, 在此情形下, 只需从图 5所示 的第一单向阻尼阀 8与电控切换阀 7之间的连接管路上分出一个分支管路连接到二位四 通电磁换向阀的一个接口上即可。 当然, 本领域的技术人员还可以想到电控切换阀 7可 以采用其它多种类型的电控阀,其均能够实现使得平衡油缸 10的弹簧腔的右路在油箱 5 与恒压油源 4之间切换。参见图 5和图 6, 平衡油缸 10的无簧腔(即与弹簧腔相对、 未 设置弹簧的腔室) 通过液压管路经由电控锁止阀 14以及第二单向阻尼阀 9连接于悬挂 油缸 12的无杆腔。 第二单向阻尼阀 9的单向阀的截止侧通过液压管路连接于悬挂油缸 12的无杆腔)。优选地, 如图 5所示, 电控锁止阀 14采用二位二通电磁阀, 其主要是用 于实现开关功能, 本领域技术人员可以想到多种实现开关功能的电控阀, 例如电控开关 阀等。 此外, 如上所述, 单向阻尼阀 8, 9的组成元件为公知的, 即各自包括并联的单 向阀和阻尼阀, 在车身倾角调整单元 17的内部连接关系中, 第一单向阻尼阀 8的单向 阀的导通侧连接于电磁切换阀 7的接口,第二单向阻尼阀 9的单向阀的导通侧连接于电 控锁止阀 14。
同时, 各个车身倾角调整单元 17的电控切换阀 7以及电控锁止阀 14通过电控连 接线连接于控制单元 3, 恒压油源 4也通过电控连接线连接于控制单元 3 (在此情形下, 恒压油源 4由控制单元 3控制, 以使得恒压油源 4选择性地向电控切换阀 7供油)。 此 夕卜, 如上所述, 由于本发明的自动调平式油气悬架机构所要实现的基本功能为横坡道自 适应动态调平性能, 因此需要设置车身倾角传感器 1, 该车身倾角传感器 1通过现场总 线 (例如 CAN信号线) 连接于控制单元 3, 以向控制单元 3传输流动式起重机的车身 横向倾角信号。 尽管图 6中未显示, 但是优选地, 本发明的自动调平式油气悬架机构还 可以包括悬架机构压力传感器 18, 该悬架机构压力传感器 18同样通过信号线连接于控 制单元 3, 以向控制单元 3传输流动式起重机的两侧的轴荷压力信号。 在优选方式下, 本发明自动调平式油气悬架机构所包括的车身纵向倾角传感器 6通过信号线,例如 CAN 总线向控制单元 3传输车身纵向倾角信号。
图 8是图 6所示的自动调平式油气悬架机构的控制原理图, 其中每对悬挂油缸 12 之间连接的配套的悬挂阀 13以及蓄能器的连接关系已经参照图 7进行了说明。 此外, 从图 8中可以清楚地看到每个悬挂油缸 12连接有各自的车身倾角调整单元 17, 其中液 压管路的连接关系以及电控连接关系在上文中已经进行了详细说明。 此外, 在图 8中, Pk代表恒压油源 4的输出管路, Px代表压力油源 2的输出管路, Pp代表电控线路, 每 个悬挂阀 13处标示的 Al、 A2、 A3、 M、 N、 P、 T以及 SP等代表相应的接口, 一般而 言, 商购的悬挂阀 13按照相应的接口形成图 8所示的连接关系即可。
以上参照附图描述了本发明的自动调平式油气悬架机构的主要部件以及相应的液 压管路连接关系和电控线路连接关系。以下简略总结本发明的车身倾角调整单元 17、 自 动调平式油气悬架机构以及流动式起重机的基本技术方案, 在此基础上, 描述本发明的 自动调平式油气悬架机构的自动调平操作过程。
通过上述说明可以看出, 本发明提供的车身倾角调整单元 17的技术方案为: 该车 身倾角调整单元 17包括电控切换阀 7、第一单向阻尼阀 8、 电控锁止阀 14、第二单向阻 尼阀 9以及平衡油缸 10,其中平衡油缸 10为弹簧复位式油缸,该平衡油缸 10的弹簧腔 通过液压管路经由第一单向阻尼阀 8连接于电控切换阀 7, 所述电控切换阀 7选择性地 使得所述平衡油缸 10的弹簧腔的油路切换方向,所述平衡油缸 10的无簧腔通过液压管 路经由电控锁止阀 14连接于第二单向阻尼阀 9, 所述电控锁止阀 14选择性地使得所述 平衡油缸 10的无簧腔的油路导通或截止。
本发明的自动调平式油气悬架机构的基本技术方案为: 该自动调平式油气悬架机 构包括至少两对悬挂油缸 12,各对所述悬挂油缸 12各自设置在相应车桥 16的两侧,其 中, 所述自动调平式油气悬架机构还包括: 车身倾角调整单元 17, 每个悬挂油缸 12对 应设置有所述车身倾角调整单元 17, 该车身倾角调整单元 17包括电控切换阀 7、 第一 单向阻尼阀 8、 电控锁止阀 14、 第二单向阻尼阀 9以及平衡油缸 10, 其中平衡油缸 10 为弹簧复位式油缸, 该平衡油缸 10的弹簧腔经由第一单向阻尼阀 8和电控切换阀 4连 接于油箱 5和调平操作油源(优选为恒压油源 4),所述电控切换阀 7选择性地使得所述 平衡油缸 10的弹簧腔与所述油箱 5或恒压油源 4导通,所述平衡油缸 10的无簧腔通过 液压管路经由电控锁止阀 14和第二单向阻尼阀 9连接于相应的所述悬挂油缸 12的无杆 腔, 所述电控锁止阀 14选择性地使得所述平衡油缸 10的无簧腔与所述悬挂油缸 12的 无杆腔之间的通路导通或截止; 车身横向倾角传感器 1, 该车身横向倾角传感器用于检 测所述车身的横向倾角; 以及控制单元 3, 该控制单元 3接收来自所述车身横向倾角传 感器 1的车身横向倾角信号, 并通过电控线路连接于调平操作油源以及各个所述车身倾 角调整单元 17的电控切换阀 7和电控锁止阀 14。
优选地, 所述自动调平式油气悬架机构还包括车身纵向倾角传感器 6, 该车身纵向 传感器 6可以通过现场总线 (例如 CAN信号线) 连接于控制单元 3, 以向控制单元 3 传输车身纵向倾角信号。
需要说明的是, 本发明的自动调平式自动悬架结构可以适用多种流动式工程机械, 例如轮式装卸车、矿山自卸车、轮式挖掘机以及流动式起重机(典型地为全地面起重机) 等。 为此, 本发明还提供一种流动式起重机, 该流动起重机包括上述自动调平式油气悬 架机构。
以下参照图 6和图 8说明本发明自动调平式油气悬架机构横坡道自适应动态调平 操作, 其中以双车桥(即前车桥和后车桥) 式流动式起重机为例进行描述。 为了描述方 便, 假设图 6中的上侧为流动式起重机的车头方向, 下侧为流动式起重机的车尾方向, 相应地, 图 6中的左侧为流动式起重机的左侧, 右侧为流动式起重机的右侧, 其中, 处 在前部位置的两个悬挂油缸 12为前车桥两侧的悬挂油缸 (分别称为前左悬挂油缸和前 右悬挂油缸),处于后部位置的两个悬挂油缸 12为后车桥两侧的悬挂油缸 12 (分别称为 后左悬挂油缸和后右悬挂油缸), 需要说明的是, 图 6仅是本发明自动调平式油气悬架 结构布置示意框图, 尽管图 6 (以及图 8) 中悬挂油缸 12的缸杆绘制为朝下, 但在实际 安装过程中, 悬挂油缸的缸杆应当是朝上并铰接与车架 15或车身上的。
一般而言, 在流动式起重机行驶过程中, 无论流动式起重机是否负载, 当其行驶 在横向坡道上时, 其车架 15或车身均会呈现出侧倾状态。 具体地, 如上所述, 当流动 式起重机处于一般行驶状态(未负载重物), 油气悬架机构的悬挂阀 13中的刚性柔性控 制阀 19处于得电状态, 此时悬挂油缸 12处于弹性状态, 当流动式起重机在横向坡道上 行驶时, 由于油气悬架机构两侧的悬挂油缸 12处于弹性状态, 因此在自身重力的作用 下, 流动式起重机的车架 15或车身的侧倾角度会大于横向坡道的坡度; 当流动式起重 机处于负重行驶状态时,油气悬架机构的悬挂阀 13中的刚性柔性控制阀 10处于失电状 态, 此时悬挂油缸 12处于刚性状态, 当流动式起重机行驶在横向坡道上时, 虽然油气 悬架机构两侧的悬挂油缸 12 由于处于刚性状态不能进行一定幅度的伸縮, 但是由于横 向坡道坡度客观存在, 流动式起重机整体 (当然包括车架 15和车身) 的侧倾角度会等 于横向坡道的坡度。
在流动式起重机设置有本发明的上述自动调平式油气悬架机构的情形下, 当流动 式起重机行驶在横向坡道上时, 车身横向倾角传感器 1 以及悬架机构压力传感器 18实 时地将车身横向倾角以及车桥左右轴荷压力信号传递到控制单元 3, 控制单元 3在实现 车身各种姿态的保持或改变时, 优选由稳定的恒压油源 4提供动力、 并由控制单元 3控 制电控锁止阀 14和电控切换阀 7将平衡油缸 10内液压油压出或截止,从而始终维持现 有的油气悬架机构内的油量恒定以及左右轴荷平衡, 实现动态的悬架横坡道调平性能。
例如, 当流动式起重机通过向右倾斜的横坡道时, 车身瞬时向右出现倾斜, 车身 横向倾角传感器 1立即将横向倾角信号传输给控制单元 3, 优选地悬架机构压力传感器 18也将左、 右悬挂压力信号传递给控制单元 3, 控制单元 3判断此时车身横向倾角是否 达到设定值, 当车身横向倾角达到设定值时, 控制单元 3选择车身横向倾角控制模式进 行控制,控制单元 3通过车身横向倾角控制模式对应的软件模块分析后输出电流或电压 控制信号, 其控制恒压油源 4不工作即不向外输出液压油 (即此时恒压油源 4的液压泵 不工作), 同时使得流动式起重机左侧的各个电控锁止阀 14得电, 让左侧的各个悬挂油 缸 12的无杆腔内的压力油通过相应的第二单向阻尼阀 9逐步向相应的左侧平衡油缸 10 的无簧腔内充油, 同时使得左侧的各个电控切换阀 7失电, 左侧各个平衡油缸 10的弹 簧腔内的油通过第一单向阻尼阀 8回到油箱 5, 从而流动式起重机左侧的各个悬挂油缸 12的缸杆縮回,使得已经向右倾斜的车架和车身在自身重力作用下向左下降,需要说明 的是, 此时虽然流动式起重机左侧的各个悬挂油缸 12的无杆腔内的液压油向平衡油缸 10的无簧腔内流动, 但是由于平衡油缸 10内的活塞受到复位弹簧的抵抗, 因此悬挂油 缸 12的无杆腔内的液压油仍然能够保持相应的压力, 从而相对平稳地支撑车架或车身 (即此时左侧各个悬挂油缸 12并未卸载),这能够确保流动式起重机的自动调平操作的 平稳性, 并确保流动式起重机的安全性。 在该自动调平操作过程中, 车身横向倾角传感 器 1 以及悬架机构压力传感器 18继续实时地监测车身的横向倾角信号和左侧轴荷压力 信号, 直至左右轴荷压力差值和车身倾角回复到初始车身水平设定值, 再通过控制单元 3控制左侧各个电控切换阀 7得电,从而使得左侧各个平衡油缸 10的弹簧腔内的液压油 封闭住 (即此时平衡油缸 10的弹簧腔的油路切换到与恒压油源 4连通, 但恒压油源 4 此时不工作), 从而使得流动式起重机保持车身调平后的姿态。
当流动式起重机完全通过向右倾斜的横坡道而进入水平路面时, 车身横向倾角传 感器 1以及悬架机构压力传感器 18继续实时地向控制单元 3传递车身横向倾角控制信 号以及左右轴荷压力信号, 此时由于流动式起重机已经进入水平路面, 上述在横向坡道 上调平的车身姿态在水平路面必然显示出车身是向左倾斜的,此时控制单元 3接收到车 身横向倾角传感器 1以及悬架机构压力传感器 18传递的信号, 由控制单元 3控制恒压 油源 4输出, 使得左侧的各个电控锁止阀 14得电, 让左侧的各个悬挂油缸 12的无杆腔 通过第一单向阻尼阀 9与左侧相应的平衡油缸 10的无簧腔连通, 同时使得左侧的各个 电控切换阀 7得电, 从而将恒压油源 4输送的液压油通过左侧的各个第一单向阻尼阀 8 充入相应的平衡油缸 10的弹簧腔内进而推动平衡油缸 10的活塞, 使平衡油缸 10的无 簧腔内液压油通过相应的第二单向阻尼阀 9压入悬挂油缸 12的无杆腔, 从而使得左侧 的各个悬挂油缸 12的缸杆伸出, 使得流动式起重机的车身的左侧上升, 直至左右悬挂 压力差值和车身倾角回复到初始车身水平设定值,最后通过使得左侧的各个电控锁止阀 14失电, 从而使左侧悬挂油缸 12内的液压油封闭即能保持车身此种水平姿态。
以上描述了流动式起重机在向右倾斜的横向坡道上行驶以及由该向右倾斜的横向 坡道重新行驶到水平路面上的横向倾角自适应动态调平操作, 相应地, 当流动式起重机 在向左倾斜的横向坡道上行驶以及由该向左倾斜的横向坡道重新行驶到水平路面上的 横向倾角自适应动态调平操作也是类似的,此时只需要相应地通过流动式起重机右侧的 车身倾角调整单元 17对右侧的各个悬挂油缸 12进行调整即可。
此外, 优选地, 本发明的自动调平式油气悬架机构还包括车身纵向倾角传感器 6, 控制单元 3接收车身纵向倾角传感器 6的车身纵向倾角信号,通过车身纵向倾角控制模 式同样能够通过本发明的车身倾角调整单元 17容易地实现车身纵向倾角的自适应动态 调平操作。 例如, 在流动式起重机爬坡时, 此时流动式起重机的车身处于前高后低的状 态, 相应地, 需要通过控制单元 3控制处于流动式起重机前侧的车身倾角调整单元 3, 使得前侧的各个悬挂油缸 12的缸杆縮回, 从而降低流动式起重机车身的前部高度, 保 持流动式起重机的水平状态。
同时, 在本发明的自动调平式油气悬架机构同时包括上述车身横向倾角传感器 1 和车身纵向倾角传感器 6的情形下, 本领域技术人员显然能够想到的是, 当流动式起重 机的车身同时存在横向倾角和纵向倾角的情形下,控制单元 3通过选择相应的车身倾角 控制模式, 例如首先选择横向倾角控制模式, 在车身横向倾角通过调平消除后, 再选择 纵向倾角控制模式, 进而消除车身纵向倾角, 从而可以综合地调整流动式起重机的横向 倾角和纵向倾角,从而使得流动式起重机处于各种恶劣路况下均能够实现自适应动态调 平性能, 保证流动式起重机的安全性, 避免流动式起重机在行驶过程中出现翻倾危险。 由上描述可知, 本发明的自动调平式油气悬架机构能够根据车身倾角信号 (优选 地可以包括悬架机构轴荷压力信号), 由控制单元 3选择预先设定的各种车身倾角控制 模式, 实现对车身倾角调整单元 17的控制, 并通过车身倾角调整单元 17实现相应的悬 挂油缸 12的伸縮操作, 确保油气悬架机构维持车身处于水平状态, 控制单元 3再根据 调平后的信号持续地实现车身各种姿态的保持或切换, 从而实现了流动式工程机械(例 如流动式起重机)对各种路况、 尤其是横坡道的自适应动态调平性能。 本发明的自动调 平式油气悬架机构在实现车身各种姿态的保持或切换时,优选由稳定的恒压油源提供动 力将平衡油缸 10 内的液压油压出或截止, 自动维持油气悬架机构内油量恒定、 左右轴 荷平衡, 其能够确保流动式起重机的自动调平操作的平稳性, 并保证流动式起重机的安 全性。本发明的自动调平式油气悬架机构有效地解决了流动式工程机械(例如流动式起 重机)对各种路况动态自适应调平性能, 尤其是实现了对横向坡道的自适应动态调平功 能; 同时, 本发明自动调平式油气悬架机构的操作简单方便、 逻辑性强, 所有操作均由 控制单元 3自动完成,其使用安全、可靠,显著地提高了车辆纵横坡道行驶的安全性能, 避免车辆翻车等重大事故的发生。
需要说明的是, 在上述具体实施方式中所描述的各个具体技术特征, 可以通过任 何合适的方式进行任意组合, 其同样落入本发明所公开的范围之内。 另外, 本发明的各 种不同的实施方式之间也可以进行任意组合, 只要其不违背本发明的思想, 其同样应当 视为本发明所公开的内容。
以上结合附图详细描述了本发明的优选实施方式, 但是, 本发明并不限于上述实 施方式中的具体细节, 在本发明的技术构思范围内, 可以对本发明的技术方案进行多种 简单变型, 这些简单变型均属于本发明的保护范围。 例如, 在本发明的上述具体实施方 式中, 控制单元 3除了可以采用 PLC之外, 其还可以采用单片机等。 本发明的保护范 围由权利要求进行限定。

Claims

权利要求
1. 一种车身倾角调整单元, 其中, 该车身倾角调整单元(17)包括平衡油缸(10), 所述平衡油缸 (10) 的一个腔通过液压管路经由第一单向阻尼阀 (8 ) 连接于电控切换 阀 (7), 所述平衡油缸 (10) 的另一个腔通过液压管路经由电控锁止阀 (14)连接于第 二单向阻尼阀 (9), 所述电控锁止阀 (14) 选择性地使得所述平衡油缸 (10) 的另一个 腔的油路导通或截止。
2. 根据权利要求 1所述的车身倾角调整单元, 其中, 所述平衡油缸 (10) 为弹簧 复位式油缸, 所述平衡油缸 (10) 通过液压管路经由第一单向阻尼阀 (8 ) 连接于电控 切换阀 (7 ) 的腔为弹簧腔, 所述平衡油缸 (10) 通过液压管路经由电控锁止阀 (14) 连接于第二单向阻尼阀 (9) 的腔为无簧腔。
3. 根据权利要求 1 所述的车身倾角调整单元, 其中, 所述电控切换阀 (7) 为二 位三通电磁换向阀或二位四通电磁换向阀, 所述电控锁止阀 (14)为二位二通电磁换向 阀或电磁开关阀。
4. 一种自动调平式油气悬架机构, 该自动调平式油气悬架机构包括至少两对悬挂 油缸 (12), 各对所述悬挂油缸 (12) 各自设置在相应车桥 (16) 的左、 右两侧, 其中, 所述自动调平式油气悬架机构还包括:
车身倾角调整单元 (17), 每个所述悬挂油缸 (12) 对应连接有一个所述车身倾角 调整单元 (17), 该车身倾角调整单元 (17) 用于调整对应悬挂油缸 (12) 的缸杆的伸 出和縮回;
车身横向倾角传感器 (1 ), 该车身横向倾角传感器 (1 ) 检测车身横向倾角; 以及 控制单元 (3), 该控制单元 (3 ) 接收所述车身横向倾角传感器 (1 ) 传输的车身 横向倾角信号, 并通过电控线路连接于各个所述车身倾角调整单元 (17)。
5. 根据权利要求 4所述的自动调平式油气悬架机构, 其中, 所述车身倾角调整单 元 (17) 包括平衡油缸 (10), 所述平衡油缸 (10) 的一个腔通过液压管路经由第一单 向阻尼阀 (8) 和电控切换阀 (7 ) 连接于油箱 (5) 和调平操作油源, 所述电控切换阀 (7)选择性地使得所述平衡油缸(10)的一个腔与所述油箱(5)或调平操作油源导通, 所述平衡油缸(10) 的另一个腔通过液压管路经由电控锁止阀 (14)和第二单向阻尼阀
(9) 连接于所述悬挂油缸 (12) 的无杆腔, 所述电控锁止阀 (14) 选择性地使得所述 平衡油缸(10)的另一个腔与所述悬挂油缸(12)的无杆腔之间的连通管路导通或截止; 所述控制单元 (3) 通过电控线路连接于所述调平操作油源以及所述车身倾角调整单元
( 17) 的电控切换阀 (7) 和电控锁止阀 (14)。
6. 根据权利要求 5所述的自动调平式油气悬架机构, 其中, 所述平衡油缸 (10) 为弹簧复位式油缸,所述平衡油缸(10)的弹簧腔通过液压管路经由第一单向阻尼阀(8) 和电控切换阀 (7) 连接于所述油箱 (5) 和调平操作油源, 所述平衡油缸 (10) 的无簧 腔通过液压管路经由电控锁止阀(14)和第二单向阻尼阀(9)连接于所述悬挂油缸(12) 的无杆腔。
7. 根据权利要求 4所述的自动调平式油气悬架机构, 其中, 所述自动调平式油气 悬架机构包括两对悬挂油缸 (12), 该两对悬挂油缸 (12) 各自设置在前、 后车桥 (16) 的左、 右两侧。
8. 根据权利要求 4所述的自动调平式油气悬架机构, 其中, 所述调平操作油源为 恒压油源 (4)。
9. 根据权利要求 4所述的自动调平式油气悬架机构, 其中, 所述自动调平式油气 悬架机构还包括悬架机构压力传感器 (18), 该悬架机构压力传感器 (18 ) 检测所述车 桥 (16) 的轴荷压力并向所述控制单元 (3) 传输轴荷压力信号。
10. 根据权利要求 9所述的自动调平式油气悬架机构, 其中, 所述悬架机构压力 传感器(18)为油压传感器,该油压传感器设置在所述悬挂油缸(12)或所述悬挂阀(13) 的检测口内。
11. 根据权利要求 9所述的自动调平式油气悬架机构, 其中, 所述悬架机构压力 传感器 (18) 为压电传感器, 该压电传感器设置所述悬挂油缸 (12) 与车架 (15) 的连 接部位。
12. 根据权利要求 4至 11中任一项所述的自动调平式油气悬架机构, 其中, 所述 自动调平式油气悬架机构还包括车身纵向倾角传感器(6), 该车身纵向倾角传感器(6) 检测车身纵向倾角并向所述控制单元 (3) 传输车身纵向倾角信号。
13. 根据权利要求 12所述的自动调平式油气悬架机构, 其中, 所述悬架油缸(12) 的上端铰接到车架 (15) 或车身上, 下端铰接到相应的所述车桥 (16) 上。
14. 根据权利要求 4所述的自动调平式油气悬架机构, 其中, 各对所述悬挂油缸 ( 12) 还连接有配套的左、 右侧悬挂阀 (13) 和左、 右侧蓄能器 (11 ), 所述左侧悬挂 阀 (13) 包括左侧悬挂油缸刚性柔性控制阀 (19), 所述右侧悬挂阀 (13 ) 包括右侧悬 挂油缸刚性柔性控制阀 (19),
所述左侧悬挂油缸刚性柔性控制阀 (19) 设置在所述左侧蓄能器 (11 ) 的油口与 一侧的所述悬挂油缸(12)的无杆腔之间的通路上,以选择性地使得所述左侧蓄能器(11 ) 的油口与一侧的所述悬挂油缸(12) 的无杆腔之间的通路导通或截止; 所述右侧悬挂油 缸刚性柔性控制阀 (19) 设置在所述右侧蓄能器 (11 ) 的油口与另一侧的所述悬挂油缸 ( 12) 的无杆腔之间的通路上, 以选择性地使得所述右侧蓄能器 (11 ) 的油口与另一侧 的所述悬挂油缸 (12) 的无杆腔之间的通路导通或截止。
15. 根据权利要求 14所述的自动调平式油气悬架机构, 其中, 一侧的所述悬挂油 缸 (12) 的有杆腔通过管路与所述右侧蓄能器 (11 ) 的油口连通, 并且另一侧的所述悬 挂油缸 (12) 的有杆腔通过管路与所述左侧蓄能器 (11 ) 的油口连通。
16. 根据权利要求 14所述的自动调平式油气悬架机构, 其中, 所述左侧悬挂油缸 刚性柔性控制阀 (19)和右侧悬挂油缸刚性柔性控制阀 (19) 为二位二通电磁换向阀或 电磁开关阀。
17.根据权利要求 14所述的自动调平式油气悬架机构,其中,所述左侧悬挂阀(13) 还包括左侧悬挂油缸伸出控制阀 (20) 和左侧悬挂油缸縮回控制阀 (21 ), 所述右侧悬 挂阀 (13) 还包括右侧悬挂油缸伸出控制阀 (20) 和右侧悬挂油缸縮回控制阀 (21 ), 其中
所述左侧悬挂油缸伸出控制阀 (20) 设置在压力油源 (2) 与一侧的所述悬挂油缸 ( 12) 的无杆腔之间的通路上, 以选择性地使得所述压力油源 (2) 与一侧的所述悬挂 油缸 (12) 的无杆腔之间的通路导通或截止, 所述右侧悬挂油缸伸出控制阀 (20) 设置 在所述压力油源 (2) 与另一侧的所述悬挂油缸 (12) 的无杆腔之间的通路上, 以选择 性地使得所述压力油源 (2) 与另一侧的所述悬挂油缸 (12) 的无杆腔之间的通路导通 或截止;
所述左侧悬挂油缸縮回控制阀 (21 ) 设置在所述油箱 (5) 与一侧的所述悬挂油缸 ( 12) 的无杆腔之间的通路上, 以选择性地使得所述油箱 (5 ) 与一侧的所述悬挂油缸 ( 12) 的无杆腔之间的通路导通或截止, 所述右侧悬挂油缸縮回控制阀 (21 ) 设置在所 述油箱 (5 ) 与另一侧的所述悬挂油缸 (12) 的无杆腔之间的通路上, 以选择性地使得 所述油箱 (5) 与另一侧的所述悬挂油缸 (12) 的无杆腔之间的通路导通或截止。
18. 根据权利要求 17所述的自动调平式油气悬架机构, 其中, 所述左、 右侧悬挂 油缸伸出控制阀 (20) 以及左、 右侧悬挂油缸縮回控制阀 (21 )均为二位二通电磁换向 阀或电磁开关阀。
19. 一种流动式起重机, 其中, 该流动式起重机包括根据权利要求 4至 18中任一 项所述的自动调平式油气悬架机构。
PCT/CN2011/074259 2010-06-13 2011-05-18 车身倾角调整单元、油气悬架机构以及流动式起重机 WO2011157094A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/704,198 US20130220110A1 (en) 2010-06-13 2011-05-18 Vehicle body inclination-angle regulating uint, hydropneumatic suspension mechanism and mobile crane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010207621.9A CN102039791B (zh) 2010-06-13 2010-06-13 车身倾角调整单元、油气悬架机构以及流动式起重机
CN201010207621.9 2010-06-13

Publications (1)

Publication Number Publication Date
WO2011157094A1 true WO2011157094A1 (zh) 2011-12-22

Family

ID=43906469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074259 WO2011157094A1 (zh) 2010-06-13 2011-05-18 车身倾角调整单元、油气悬架机构以及流动式起重机

Country Status (3)

Country Link
US (1) US20130220110A1 (zh)
CN (1) CN102039791B (zh)
WO (1) WO2011157094A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103009955A (zh) * 2012-12-24 2013-04-03 中联重科股份有限公司 气压可调式油气悬架系统及其气压调节方法和工程车辆
US9416658B2 (en) 2014-01-21 2016-08-16 Joy Mm Delaware, Inc. Fluid tank balancing system for mining machine
CN107379910A (zh) * 2017-06-21 2017-11-24 长安大学 油气悬挂液压系统
CN107471949A (zh) * 2017-08-30 2017-12-15 湖北优软商用车悬架有限公司 一种高度可调的空满载自适应汽车油气悬架
CN107801481A (zh) * 2017-12-05 2018-03-16 济南大学 一种基于谷物收获机械的车体自动调平探杆装置
CN108005974A (zh) * 2017-12-27 2018-05-08 中船重工中南装备有限责任公司 一种钻车的履带调平控制系统及调节控制方法
CN109515100A (zh) * 2019-01-16 2019-03-26 徐工集团工程机械股份有限公司 油气悬挂系统、车辆及油气悬挂系统的控制方法
CN117492476A (zh) * 2024-01-03 2024-02-02 四川公路桥梁建设集团有限公司 一种运梁炮车自动化调姿系统和方法

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11306798B2 (en) 2008-05-09 2022-04-19 Fox Factory, Inc. Position sensitive suspension damping with an active valve
US10060499B2 (en) 2009-01-07 2018-08-28 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10047817B2 (en) * 2009-01-07 2018-08-14 Fox Factory, Inc. Method and apparatus for an adjustable damper
US20100170760A1 (en) 2009-01-07 2010-07-08 John Marking Remotely Operated Bypass for a Suspension Damper
US9452654B2 (en) 2009-01-07 2016-09-27 Fox Factory, Inc. Method and apparatus for an adjustable damper
US8627932B2 (en) 2009-01-07 2014-01-14 Fox Factory, Inc. Bypass for a suspension damper
US8393446B2 (en) 2008-08-25 2013-03-12 David M Haugen Methods and apparatus for suspension lock out and signal generation
US9422018B2 (en) 2008-11-25 2016-08-23 Fox Factory, Inc. Seat post
US10036443B2 (en) 2009-03-19 2018-07-31 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US9038791B2 (en) 2009-01-07 2015-05-26 Fox Factory, Inc. Compression isolator for a suspension damper
US11299233B2 (en) 2009-01-07 2022-04-12 Fox Factory, Inc. Method and apparatus for an adjustable damper
US8955653B2 (en) 2009-10-13 2015-02-17 Fox Factory, Incorporated Methods and apparatus for controlling a fluid damper
US10697514B2 (en) 2010-01-20 2020-06-30 Fox Factory, Inc. Remotely operated bypass for a suspension damper
CN102039791B (zh) * 2010-06-13 2012-07-25 中联重科股份有限公司 车身倾角调整单元、油气悬架机构以及流动式起重机
EP3636953B1 (en) 2011-05-31 2023-09-27 Fox Factory, Inc. Apparatus for position sensitive and/or adjustable suspension damping
EP2567839B1 (en) 2011-09-12 2019-03-13 Fox Factory, Inc. Methods and apparatus for suspension set up
CN102431411B (zh) * 2011-11-08 2014-01-08 中联重科股份有限公司 辅助支撑装置、油气悬挂系统及多轴车辆
CN102431410B (zh) * 2011-12-21 2013-12-11 中联重科股份有限公司 车辆的悬挂分组控制系统及悬挂分组控制方法
US11279199B2 (en) 2012-01-25 2022-03-22 Fox Factory, Inc. Suspension damper with by-pass valves
US10330171B2 (en) 2012-05-10 2019-06-25 Fox Factory, Inc. Method and apparatus for an adjustable damper
WO2014047814A1 (zh) * 2012-09-26 2014-04-03 中联重科股份有限公司 一种悬挂系统、通断控制系统及其检测方法
CN103009953A (zh) * 2012-12-21 2013-04-03 徐州燕大传动与控制技术有限公司 工程车辆补偿式单纵臂液压主动悬挂系统
CN103204042B (zh) * 2012-12-28 2016-06-08 中联重科股份有限公司 压力平衡装置、油气悬挂自动调平系统及工程车辆
CN104597915A (zh) * 2013-10-30 2015-05-06 上海直川电子科技有限公司 一体化自动调平控制装置
CN103612549B (zh) * 2013-11-29 2015-08-19 中联重科股份有限公司 轮式起重机悬架调节控制系统、方法、装置及轮式起重机
CN103738136B (zh) 2014-01-27 2017-02-15 徐州重型机械有限公司 独立悬架系统及具有该独立悬架系统的起重机
CN104179754B (zh) * 2014-08-07 2017-02-01 常州万安汽车部件科技有限公司 注油排气系统
CN104401198B (zh) * 2014-09-23 2016-10-05 东北农业大学 液压式车辆主动悬架系统
CN104442268B (zh) * 2014-11-26 2017-01-11 北京特种机械研究所 一种液压驱动的独立平衡悬架装置
CN104553661B (zh) * 2014-12-26 2016-09-14 东莞光洋信息科技有限公司 应用于数码机车的独立悬挂避震系统
CN105539056B (zh) * 2015-12-25 2019-03-19 徐州重型机械有限公司 用于起重机的空气悬架控制系统、方法和起重机
CN105459748B (zh) * 2015-12-31 2018-01-02 东风汽车公司 一种油气悬架液压调节系统
CN105774460B (zh) * 2016-03-24 2018-08-21 中国北方车辆研究所 车姿调节系统用工作流程
CN105835650B (zh) * 2016-03-24 2018-10-26 中国北方车辆研究所 车姿调节系统控制方法
US10737546B2 (en) 2016-04-08 2020-08-11 Fox Factory, Inc. Electronic compression and rebound control
CN106114113B (zh) * 2016-08-03 2018-06-01 江苏大学 一种汽车悬架振动能量液压式回收和利用系统及其控制方法
CN109906158A (zh) * 2016-08-22 2019-06-18 斯太姆科产品公司 气动防侧倾系统
CN106640816B (zh) * 2016-12-30 2018-06-26 徐州重型机械有限公司 悬挂阀组件、悬架系统及工程车辆
CN106740404B (zh) * 2017-01-18 2023-07-21 吉林大学 一种降低液体横向晃动的液罐车液罐调整装置及控制方法
DE102017103641A1 (de) * 2017-02-22 2018-08-23 Horsch Leeb Application Systems Gmbh Fahrwerk eines landwirtschaftlichen Fahrzeuges und Verfahren zu dessen Federungs- und/oder Dämpfungssteuerung
CN106982812B (zh) * 2017-04-03 2023-11-28 重庆亘坤农业科技发展有限公司 一种具有多种功能的打药机
DE102018119748B4 (de) * 2017-08-16 2022-11-10 Tadano Demag Gmbh Verfahren zum Steuern einer hydropneumatischen Federung eines Fahrzeugkrans
US10625557B2 (en) * 2017-10-10 2020-04-21 Franklin Ross Knisley Tilting vehicle with non-tilting wheels
CN107914537A (zh) * 2017-11-28 2018-04-17 德迈智能装备有限公司 卡车车架调平辅助系统及车架调平方法
CN108128113A (zh) * 2017-12-12 2018-06-08 长安大学 一种矿用自卸车复合连通式油气悬挂系统及工作方法
CN108128111B (zh) * 2017-12-15 2020-03-31 中联重科股份有限公司 悬架装置、系统及工程车辆
CN108032700A (zh) * 2017-12-21 2018-05-15 山河智能特种装备有限公司 一种平衡位置可调悬架油气缸及其单摆臂油气悬架结构
CN108312801A (zh) * 2018-04-10 2018-07-24 叶能 一种汽车底盘升降装置
CN108358079A (zh) * 2018-04-24 2018-08-03 徐工集团工程机械股份有限公司 一种多功能工作平台
DE102018112835A1 (de) * 2018-05-29 2019-12-05 Fsp Fluid Systems Partner Holding Ag Hydrauliksystem, Hydraulikeinheit, Fahrzeug, Verfahren und Verwendung
CN108772821B (zh) * 2018-06-11 2024-03-08 深圳凌鼎智能装备科技有限公司 一种自适应机器人新型底盘及自适应平衡调节方法
CN108944327B (zh) * 2018-07-25 2023-11-10 农业部南京农业机械化研究所 一种适用于丘陵山区的双层可自动调节悬架
CN109050689B (zh) * 2018-09-28 2023-04-07 深圳壹智云科技有限公司 一种智能调节车辆水平的控制系统
CN113165464B (zh) * 2018-10-16 2024-03-19 特雷克斯澳大利亚有限公司 装卸起重机悬架
CN109441913B (zh) * 2018-10-18 2020-01-31 中联重科股份有限公司 悬挂阀、悬挂系统及工程车辆
CN113272242A (zh) * 2018-11-05 2021-08-17 奥斯克什公司 用于提升装置的调平系统
CN109466265A (zh) * 2018-12-28 2019-03-15 上海豪高机电科技有限公司 一种油气液压悬挂系统
WO2020154765A1 (en) * 2019-01-30 2020-08-06 Westfield Nominees Pty Ltd Mobile crane
CN109699624A (zh) * 2019-02-28 2019-05-03 湖南农业大学 一种高地隙植保机的底盘结构及其离地间隙调节方法
CN109910712A (zh) * 2019-03-11 2019-06-21 烟台文进智能装备有限公司 双向多功能车
CN109907031A (zh) * 2019-04-11 2019-06-21 湖南农业大学 一种高地隙植保机的底盘结构及其调平方法
CN109931304A (zh) * 2019-04-18 2019-06-25 徐工消防安全装备有限公司 液压系统及其控制系统和方法、工程机械
CN110293808B (zh) * 2019-06-27 2020-12-04 北京机械设备研究所 基于位置控制模式的车辆双缸调平装置
CN110885017A (zh) * 2019-10-30 2020-03-17 中联重科股份有限公司 配重安装支座及轮式起重机
CN111038207B (zh) * 2019-12-16 2021-06-22 中联重科股份有限公司 油气悬挂模组、油气悬挂系统及车辆
CN111152619A (zh) * 2020-01-13 2020-05-15 徐工集团工程机械股份有限公司 一种可自动调节油气悬架的控制系统及方法
DE202020105150U1 (de) * 2020-09-07 2020-09-14 Manitowoc Crane Group France Sas Mobilkran-Federungssystem mit deaktivierbarer Wankstabilisierung
CN112222430A (zh) * 2020-10-26 2021-01-15 无锡透平叶片有限公司 一种精密加工中心重量平衡装置
CN112976980B (zh) * 2021-04-20 2022-07-08 中国北方车辆研究所 基于倾角传感器的多轴车辆同步车姿及载荷分布控制方法
CN113210700B (zh) * 2021-05-10 2023-12-29 安徽省亚威机床制造有限公司 一种剪板机剪切平行度调节装置及其实施方法
CN113865840B (zh) * 2021-08-23 2022-11-18 中联重科股份有限公司 用于检测轴荷的方法、控制器及工程机械
CN114253231A (zh) * 2021-11-26 2022-03-29 海鹰企业集团有限责任公司 一种船用多级布放控制系统
CN114290866A (zh) * 2022-01-12 2022-04-08 太原科技大学 一种油气悬挂式自卸车超载监测与偏载调节系统及方法
CN115653957B (zh) * 2022-12-09 2023-04-07 临工重机股份有限公司 一种液压调平系统及高空作业平台
CN116671298A (zh) * 2023-06-19 2023-09-01 重庆鑫源农机股份有限公司 一种调平机架及其调平方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620542A (en) * 1968-05-15 1971-11-16 Langen & Co Level control assemblage for vehicles
DE3933370A1 (de) * 1989-10-06 1991-04-18 Orenstein & Koppel Ag Hydropneumatische achsfederung bei schwerlast-transportfahrzeugen
JP2001047834A (ja) * 1999-08-10 2001-02-20 Nissan Diesel Motor Co Ltd 車両水平矯正装置
CN2649377Y (zh) * 2003-09-02 2004-10-20 中国人民解放军63983部队 油气悬架液压调节装置
CN2759819Y (zh) * 2004-12-15 2006-02-22 中国人民解放军63983部队 油气悬架控制装置
JP2007145093A (ja) * 2005-11-24 2007-06-14 Toyota Motor Corp 車高調整装置
US20070289298A1 (en) * 2006-06-15 2007-12-20 Thompson Dennis G Suspension arrangement for a boom assembly mounted on an agricultural sprayer
CN101618669A (zh) * 2008-06-30 2010-01-06 徐州重型机械有限公司 油气悬架控制回路、多轴车辆油气悬架系统及起重机
JP2010030416A (ja) * 2008-07-29 2010-02-12 Mitsubishi Heavy Ind Ltd 走行安定装置及び該装置を備えた産業車両
CN102039791A (zh) * 2010-06-13 2011-05-04 长沙中联重工科技发展股份有限公司 车身倾角调整单元、油气悬架机构以及流动式起重机

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3035713A (en) * 1958-10-03 1962-05-22 United Equipment Accessories I Full rotary truck mounted crane and bracing outriggers
FR2360801A1 (fr) * 1976-04-30 1978-03-03 Ppm Sa Dispositif de controle de la mise en communication de deux enceintes et suspension de vehicule en faisant application
US4344497A (en) * 1979-10-19 1982-08-17 Harnischfeger Corporation Override control for axle locking apparatus of mobile crane
US4394912A (en) * 1980-11-07 1983-07-26 Harnischfeger Corporation Mobile crane having telescoping outriggers and power operated screw means for same
US4394913A (en) * 1980-11-07 1983-07-26 Harnischfeger Corporation Crane having power operated outriggers and lock means therefor
SE451699B (sv) * 1983-08-05 1987-10-26 Umea Mekaniska Ab Terrenggaende fordon eller maskin
SE451189B (sv) * 1983-08-05 1987-09-14 Umea Mekaniska Ab Anordning vid terrenggaende fordon eller maskiner
US4607861A (en) * 1984-12-17 1986-08-26 General Motors Corporation Hydraulic stabilizing system for vehicle suspension
JPS6412906A (en) * 1987-07-03 1989-01-17 Aisin Seiki Shock absorber
JPH0452087Y2 (zh) * 1988-11-14 1992-12-08
JPH0325016A (ja) * 1989-06-23 1991-02-01 Kayaba Ind Co Ltd サスペンションの油圧回路
JP2963471B2 (ja) * 1989-08-23 1999-10-18 株式会社シヨーワ 車両用油圧緩衝器のセルフポンプ式車高調整装置
JPH03107631A (ja) * 1989-09-22 1991-05-08 Kayaba Ind Co Ltd ロータリダンパ
US5338010A (en) * 1990-06-28 1994-08-16 Zahnradfabrik Friedrichshafen Ag Hydropneumatic vehicle suspension
JP3038832B2 (ja) * 1990-07-31 2000-05-08 日産自動車株式会社 車両用減衰力制御装置
US5110152A (en) * 1991-04-26 1992-05-05 Trw Inc. Active suspension system
JP2628947B2 (ja) * 1991-08-06 1997-07-09 本田技研工業株式会社 能動型懸架装置の油圧制御装置
US5388857A (en) * 1992-08-27 1995-02-14 Badger Equipment Company Operator controlled vehicle stabilizer
US5639119A (en) * 1992-12-04 1997-06-17 Trak International, Inc. Forklift stabilizing apparatus
US5383680A (en) * 1992-12-21 1995-01-24 Cadillac Gage Textron Inc. Anti-roll system for wheeled vehicles
US5362094A (en) * 1993-06-09 1994-11-08 General Motors Corporation Hydraulically controlled stabilizer bar system
US5601307A (en) * 1993-10-26 1997-02-11 Kinetic Limited Vehicle suspension system
US5549328A (en) * 1995-01-17 1996-08-27 Gabriel Ride Control Products, Inc. Roll control system
DE19748224B4 (de) * 1997-10-31 2005-07-14 Deere & Company, Moline Hydropneumatische Achsfederung für angetriebene Fahrzeugachsen
DE19844493A1 (de) * 1998-09-29 2000-03-30 Zahnradfabrik Friedrichshafen Hydropneumatisches Federungssystem
KR100444193B1 (ko) * 1999-02-09 2004-08-21 히다찌 겐끼 가부시키가이샤 휠식 작업차량
GB2387821B (en) * 2000-02-01 2004-03-24 Bamford Excavators Ltd Working apparatus
DE10112082B4 (de) * 2001-03-12 2009-05-07 Carl Freudenberg Kg Hydropneumatische niveaugeregelte Achsfederung an Fahrzeugen insbesondere für vollgefederte Fahrzeuge
US6578855B2 (en) * 2001-07-11 2003-06-17 Deere & Company Vehicle suspension control system
CN2736315Y (zh) * 2004-08-21 2005-10-26 山东临工工程机械有限公司 轮式装载机行驶稳定装置
FR2882694B1 (fr) * 2005-03-02 2007-05-11 Manitou Bf Sa Dispositif de stabilisation laterale, pour chariot comportant un pont oscillant
KR20080023817A (ko) * 2006-09-12 2008-03-17 현대자동차주식회사 반능동 현가장치용 실부하 시뮬레이션 시스템
US20080224428A1 (en) * 2007-03-14 2008-09-18 Smith Mark C Control unit for suspension using single pressure sensor
GB2451244B (en) * 2007-07-21 2011-09-28 Bamford Excavators Ltd Working machine
CN201105321Y (zh) * 2007-10-09 2008-08-27 张卫东 铁水包车的液压自动调平系统
CN201272219Y (zh) * 2008-06-30 2009-07-15 徐州重型机械有限公司 油气悬架控制回路、多轴车辆油气悬架系统及起重机
US7735838B2 (en) * 2008-08-20 2010-06-15 Husco International, Inc. Vehicle suspension with selectable roll stabilization
FR2966790B1 (fr) * 2010-11-03 2012-12-21 Egi Systeme de commande d’un pied stabilisateur, dispositif de stabilisation et vehicule comprenant un dispositif de stabilisation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620542A (en) * 1968-05-15 1971-11-16 Langen & Co Level control assemblage for vehicles
DE3933370A1 (de) * 1989-10-06 1991-04-18 Orenstein & Koppel Ag Hydropneumatische achsfederung bei schwerlast-transportfahrzeugen
JP2001047834A (ja) * 1999-08-10 2001-02-20 Nissan Diesel Motor Co Ltd 車両水平矯正装置
CN2649377Y (zh) * 2003-09-02 2004-10-20 中国人民解放军63983部队 油气悬架液压调节装置
CN2759819Y (zh) * 2004-12-15 2006-02-22 中国人民解放军63983部队 油气悬架控制装置
JP2007145093A (ja) * 2005-11-24 2007-06-14 Toyota Motor Corp 車高調整装置
US20070289298A1 (en) * 2006-06-15 2007-12-20 Thompson Dennis G Suspension arrangement for a boom assembly mounted on an agricultural sprayer
CN101618669A (zh) * 2008-06-30 2010-01-06 徐州重型机械有限公司 油气悬架控制回路、多轴车辆油气悬架系统及起重机
JP2010030416A (ja) * 2008-07-29 2010-02-12 Mitsubishi Heavy Ind Ltd 走行安定装置及び該装置を備えた産業車両
CN102039791A (zh) * 2010-06-13 2011-05-04 长沙中联重工科技发展股份有限公司 车身倾角调整单元、油气悬架机构以及流动式起重机

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103009955A (zh) * 2012-12-24 2013-04-03 中联重科股份有限公司 气压可调式油气悬架系统及其气压调节方法和工程车辆
US9416658B2 (en) 2014-01-21 2016-08-16 Joy Mm Delaware, Inc. Fluid tank balancing system for mining machine
CN107379910A (zh) * 2017-06-21 2017-11-24 长安大学 油气悬挂液压系统
CN107379910B (zh) * 2017-06-21 2023-03-14 长安大学 油气悬挂液压系统
CN107471949A (zh) * 2017-08-30 2017-12-15 湖北优软商用车悬架有限公司 一种高度可调的空满载自适应汽车油气悬架
CN107801481A (zh) * 2017-12-05 2018-03-16 济南大学 一种基于谷物收获机械的车体自动调平探杆装置
CN108005974A (zh) * 2017-12-27 2018-05-08 中船重工中南装备有限责任公司 一种钻车的履带调平控制系统及调节控制方法
CN108005974B (zh) * 2017-12-27 2023-06-30 中船重工中南装备有限责任公司 一种钻车的履带调平控制系统及调节控制方法
CN109515100A (zh) * 2019-01-16 2019-03-26 徐工集团工程机械股份有限公司 油气悬挂系统、车辆及油气悬挂系统的控制方法
CN117492476A (zh) * 2024-01-03 2024-02-02 四川公路桥梁建设集团有限公司 一种运梁炮车自动化调姿系统和方法
CN117492476B (zh) * 2024-01-03 2024-03-19 四川公路桥梁建设集团有限公司 一种运梁炮车自动化调姿系统和方法

Also Published As

Publication number Publication date
CN102039791A (zh) 2011-05-04
US20130220110A1 (en) 2013-08-29
CN102039791B (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2011157094A1 (zh) 车身倾角调整单元、油气悬架机构以及流动式起重机
AU746811B2 (en) Roll-resistant hydraulic suspension system, kit and method for load handling vehicles
US5195864A (en) Hydraulic system for a wheel loader
US7726665B2 (en) Suspension system
US8033614B2 (en) Transporter vehicle
US7753385B2 (en) Suspension system
EP1123894B1 (en) Load handling apparatus
CN103009955B (zh) 气压可调式油气悬架系统及其气压调节方法和工程车辆
US7963528B2 (en) Working machine
US10494790B2 (en) Ride control system for power machine
CN105236305A (zh) 具有坡道抬升功能的地面运输工具
CN107923152B (zh) 用于使工程机械的工具移动的液压系统和方法
WO2018115098A1 (en) Paver and method for operating a paver
JPWO2020189596A1 (ja) ダンプトラックの荷台昇降装置
CN107428282B (zh) 运输用车辆
CN112431241A (zh) 电动挖掘机
ITBO990026A1 (it) Sospensione ammortizzata e ad assetto variabile , particolarmente perle ruote posteriori e sterzanti di un carrello elevatore a tre ruote .
CN109808435B (zh) 悬架系统和车辆
JP6524038B2 (ja) 運搬車両
CN102963233B (zh) 可升降式防爆胶轮车底盘
CN211009327U (zh) 一种底架主动浮动控制系统及其高空作业平台
JP2001200804A (ja) 作業車両のダイナミックダンパー
EP4361086A1 (en) Telescopic handler
CN203078601U (zh) 可升降式防爆胶轮车底盘
CN216518915U (zh) 一种承载可调式油气悬挂液压系统及工程机械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13704198

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11795060

Country of ref document: EP

Kind code of ref document: A1