WO2011129161A1 - モジュール基板、モジュール基板の製造方法、及び端子接続基板 - Google Patents

モジュール基板、モジュール基板の製造方法、及び端子接続基板 Download PDF

Info

Publication number
WO2011129161A1
WO2011129161A1 PCT/JP2011/055028 JP2011055028W WO2011129161A1 WO 2011129161 A1 WO2011129161 A1 WO 2011129161A1 JP 2011055028 W JP2011055028 W JP 2011055028W WO 2011129161 A1 WO2011129161 A1 WO 2011129161A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
module
terminal connection
terminal
module substrate
Prior art date
Application number
PCT/JP2011/055028
Other languages
English (en)
French (fr)
Inventor
一生 山元
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN2011800137615A priority Critical patent/CN102792785A/zh
Priority to JP2011545513A priority patent/JP5510461B2/ja
Publication of WO2011129161A1 publication Critical patent/WO2011129161A1/ja
Priority to US13/597,811 priority patent/US9192051B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49805Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the leads being also applied on the sidewalls or the bottom of the substrate, e.g. leadless packages for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19106Disposition of discrete passive components in a mirrored arrangement on two different side of a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0052Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.

Definitions

  • the present invention relates to a module substrate cut out from a collective substrate by dividing a collective substrate on which a plurality of electronic components are mounted on one side or both sides, a method for manufacturing a module substrate that cuts out a plurality of module substrates from the collective substrate, and a terminal connection substrate .
  • module substrates mounted on electronic devices have been required to be smaller and lighter.
  • electronic components are mounted on both sides of the module substrate using lead terminals, solder balls, cavity structures, and the like, thereby reducing the size and weight.
  • Patent Document 1 discloses an inexpensive method for manufacturing a semiconductor device having a double-sided electrode structure without forming a cavity structure or the like. That is, a plurality of connection electrodes integrated by a connecting plate are fixed on a module substrate on which electronic components are mounted, and the connecting plate is removed by polishing to form a connecting electrode. Accordingly, even when the connecting plate is inclined because a plurality of connection electrodes are fixed to the module substrate by solder or the like, for example, the coplanarity of the module substrate is maintained by polishing until the connecting plate is removed. be able to.
  • Patent Document 2 discloses a module in which a spacer substrate (connecting substrate) on which electrodes are formed using through holes is arranged.
  • the lands of the spacer substrate are electrically connected by through holes. Thereby, the reliability of the electrical connection between the module and the external substrate can be maintained high.
  • Patent Document 1 requires a polishing step because it is necessary to remove the connecting plate by polishing. Therefore, there is a problem that it is difficult to further reduce the manufacturing cost. Further, when the connecting plate cannot be polished sufficiently, there is a possibility that connection failure of the connection electrode may occur.
  • connection electrode exposed from the connecting plate is relatively long, and the connection electrode may be deformed depending on the handling in the taping process before being fixed to the module substrate. For this reason, there is a possibility that adjacent connection electrodes may be short-circuited.
  • the module disclosed in Patent Document 2 uses a through hole, the end face electrode is formed of a thin plating film, and there is a problem that a large current cannot be passed. In addition, a complicated process such as forming a plated film by forming a through hole is necessary.
  • the present invention has been made in view of such circumstances, and can simplify a manufacturing process and can reliably connect terminal electrodes without short-circuiting each other, a method for manufacturing a module substrate, and a terminal connection substrate The purpose is to provide.
  • a module substrate is a module substrate in which a plurality of electronic components are mounted on at least one side of a base substrate, and a plurality of columnar terminal electrodes are arranged on at least one side surface of an insulator.
  • a terminal connection board is provided, and a plurality of the terminal connection boards are mounted on the base board so that one end sides of the plurality of columnar terminal electrodes are in contact with the base board.
  • a terminal connection substrate having a plurality of columnar terminal electrodes arranged on at least one side surface of the insulator is provided, and a plurality of terminal connections are made such that one end side of the plurality of columnar terminal electrodes is in contact with the base substrate.
  • the board is mounted on the base board.
  • the module substrate according to a second invention is characterized in that, in the first invention, the terminal connection substrate has a plurality of columnar terminal electrodes arranged on both side surfaces of the insulator.
  • a terminal connection substrate having a plurality of columnar terminal electrodes arranged on both side surfaces of the insulator is provided, and the plurality of terminal connection substrates are arranged such that one end sides of the plurality of columnar terminal electrodes are in contact with the base substrate. Is mounted on the base substrate.
  • electrical connection can be made not by a thin plating film formed in a through hole but by a columnar terminal electrode, so that a relatively large current can flow.
  • a complicated process such as forming a through hole to form a plating film is not necessary, and the manufacturing process can be simplified, so that the manufacturing cost can be reduced as a whole.
  • the module substrate according to a third aspect of the present invention is the module according to the second aspect, wherein the terminal connection substrate has a plurality of the terminal electrodes arranged in a row on both side surfaces of the insulator.
  • the terminal connection board has a plurality of terminal electrodes arranged in a row on both side surfaces of the insulator, so that two terminal electrode rows can be provided on one terminal connection board.
  • the module substrate according to a fourth invention is characterized in that, in the second or third invention, the terminal connection substrate is printed with a resist between the plurality of terminal electrodes.
  • the terminal connection substrate is printed with a resist between the terminal electrodes, it is possible to suppress the occurrence of burrs, elongation, etc. that are likely to occur when the collective substrate is divided into a plurality of module substrates. It becomes possible to prevent the terminal electrode from being deformed.
  • a module substrate according to a fifth invention is the module substrate according to any one of the first to fourth inventions, wherein the plurality of electronic components mounted on the base substrate and the terminal connection substrate are sealed with a resin.
  • the resin has the same composition as the insulator.
  • the strength against impact when the module substrate is dropped is improved, and the reliability as the module substrate is improved.
  • the resin is made the same composition as the insulator of the terminal connection board, the adhesion between the sealed resin and the insulator is increased, the strength against impact when the module board is dropped is further improved, and as a module board Reliability is also improved.
  • a module substrate manufacturing method is a module in which a plurality of electronic components are mounted on at least one surface, and a plurality of module substrates are cut out from the assembly substrate.
  • a plurality of terminal connection substrates in which a plurality of columnar terminal electrodes are arranged on both side surfaces of an insulator are mounted on one side of the collective substrate so as to straddle at least the plurality of adjacent module substrates.
  • the method includes a first step and a second step of dividing the assembly substrate on which the plurality of terminal connection substrates and the electronic components are mounted at a position where the module substrate is cut out.
  • a plurality of terminal connection substrates having a plurality of columnar terminal electrodes arranged on both side surfaces of the insulator are mounted so as to straddle at least a plurality of adjacent module substrates.
  • the assembly board on which the terminal connection board and the electronic component are mounted is divided at a position where the module board is cut out.
  • a module substrate manufacturing method wherein the module substrate has a rectangular outer shape in plan view, and the first step is performed on two opposite sides of the outer periphery of the module substrate.
  • the terminal connection board is arranged.
  • the module substrate has a rectangular outer shape in plan view, and by arranging the terminal connection substrates on two opposite sides of the outer periphery of the module substrate, the number of work steps for mounting the terminal connection substrate on the collective substrate is reduced. The manufacturing cost can be reduced.
  • the module substrate manufacturing method is the method of manufacturing the module substrate according to the sixth aspect, wherein the module substrate has a rectangular outer shape in plan view, and the first step is the connection of the terminal to four sides on the outer periphery of the module substrate. A substrate is arranged.
  • the module substrate has a rectangular outer shape in plan view, and by arranging the terminal connection substrate on the four sides on the outer periphery of the module substrate, more terminal electrodes can be connected to the terminals of the external device.
  • a module substrate having the same can be manufactured.
  • the method for manufacturing a module substrate according to any one of the sixth to eighth aspects wherein the terminal connection substrate has a plurality of the terminal electrodes arranged in a row on both side surfaces of the insulator. It is characterized by doing.
  • the terminal connection board can be provided on two module boards with one terminal connection board by arranging a plurality of terminal electrodes in a row on both sides of the insulator. Become.
  • the module substrate manufacturing method according to the tenth invention is characterized in that, in any one of the seventh to ninth inventions, the terminal connection substrate prints a resist between the plurality of terminal electrodes.
  • the terminal connection substrate can suppress the occurrence of burrs, elongation, etc. that are likely to occur when the assembly substrate is divided into a plurality of module substrates by printing a resist between the terminal electrodes. It becomes possible to prevent the deformation of.
  • the module substrate manufacturing method according to an eleventh aspect of the present invention is the module substrate manufacturing method according to any one of the sixth to tenth aspects of the present invention, wherein the second step is to remove all of the insulators of the terminal connection substrate when dividing the aggregate substrate It is characterized by removing.
  • the terminal electrode when the collective substrate is divided, it is possible to form the terminal electrode as the side electrode exposed on the side surface of the module substrate by removing all of the insulator of the terminal connection substrate.
  • the module substrate manufacturing method according to a twelfth aspect of the present invention is the module substrate manufacturing method according to any one of the sixth to tenth aspects of the present invention, wherein the second step leaves the insulator of the terminal connection substrate when the aggregate substrate is divided. It is characterized by making it.
  • the terminal electrode when the collective substrate is divided, by leaving the insulator of the terminal connection substrate, the terminal electrode is not exposed on the side surface of the module substrate, and surface treatment such as plating on the exposed portion is unnecessary. Become. Therefore, the manufacturing cost can be reduced.
  • a module substrate manufacturing method is the method according to any one of the sixth to tenth aspects, wherein after the first step, the plurality of electronic components mounted on the collective substrate and the terminal connection are provided. It includes a step of sealing the substrate with a resin and polishing the upper surface of the sealed resin.
  • the plurality of electronic components mounted on the collective substrate and the terminal connection substrate are sealed with resin, and the upper surface of the sealed resin is polished.
  • the module substrate manufacturing method includes a step of forming an NC electrode with a conductive paste after the step of polishing the upper surface of the sealed resin.
  • the number of electrodes to be connected to the mother substrate can be easily increased by forming NC electrodes with a conductive paste, and the impact at the time of dropping is reduced. It becomes easy to be dispersed.
  • the module substrate manufacturing method according to the fifteenth aspect of the invention is characterized in that, in the thirteenth or fourteenth aspect of the invention, the method further comprises a step of wiring again on the upper surface of the sealed resin.
  • the position of the external electrode is not limited to the position where the terminal electrode is disposed (near the outer periphery of the module substrate). The degree of freedom is improved.
  • the module substrate manufacturing method according to the sixteenth aspect of the invention is characterized in that, in any one of the thirteenth to fifteenth aspects, a step of performing resist printing is included.
  • the peripheral edge of the terminal electrode can be coated by performing resist printing, so that it is possible to prevent moisture from entering from the upper surface.
  • the method for manufacturing a module substrate according to any one of the thirteenth to sixteenth aspects wherein the sealed resin has the same composition as the insulator of the terminal connection substrate. To do.
  • the sealed resin since the sealed resin has the same composition as the insulator of the terminal connection substrate, the degree of adhesion between the sealed resin and the insulator is increased, and the strength against impact when the module substrate is dropped is improved. In addition, the reliability as a module substrate is improved.
  • the terminal connection substrate according to the eighteenth invention is characterized in that a plurality of columnar terminal electrodes are arranged on at least one side surface of the insulator.
  • a terminal connection substrate having a plurality of columnar terminal electrodes arranged on at least one side surface of the insulator is mounted so that one end side of the plurality of columnar terminal electrodes is in contact with the base substrate. Since electrical connection can be made not by a thin plating film formed in a hole but by a columnar terminal electrode, a relatively large current can be passed.
  • a terminal connection substrate is characterized in that, in the eighteenth invention, a plurality of columnar terminal electrodes are arranged on both side surfaces of the insulator.
  • the nineteenth aspect of the present invention by mounting a terminal connection substrate having a plurality of columnar terminal electrodes arranged on both side surfaces of the insulator so that one end side of the plurality of columnar terminal electrodes is in contact with the base substrate, Since the electrical connection can be made by the columnar terminal electrodes rather than the thin plating film formed in the above, a relatively large current can flow.
  • the electrical connection can be made by the columnar terminal electrode, not by the thin plating film formed in the through hole, a relatively large current can be passed. Further, since a complicated process such as forming a through hole and forming a plating film is not required, and the manufacturing process can be simplified, the manufacturing cost can be reduced as a whole.
  • FIG. 1 is a perspective view showing a configuration of a terminal connection board arranged on a module board according to Embodiment 1 of the present invention.
  • the terminal connection substrate 14 according to the first exemplary embodiment of the present invention includes an insulator 141 made of ceramic, glass, epoxy resin, or the like, and a plurality of columnar terminal electrodes arranged in a row on both side surfaces of the insulator 141, respectively. 142.
  • the height of the terminal electrode 142 when the terminal connection substrate 14 is mounted on the base substrate is preferably higher than the height of the electronic component (SMD) mounted on the base substrate.
  • FIG. 2 is a perspective view showing another configuration of the terminal connection board 14 arranged on the module board according to Embodiment 1 of the present invention.
  • the plurality of columnar terminal electrodes 142 arranged on both side surfaces of the insulator 141 are not limited to the prismatic shape as shown in FIG. 1, and are, for example, cylindrical as shown in FIG. Alternatively, it may be a hexagonal columnar shape as shown in FIG. 2 (b) or a trapezoidal columnar shape as shown in FIG. 2 (c).
  • FIG. 3 is a perspective view showing a manufacturing process of the terminal connection board 14 arranged on the module board according to Embodiment 1 of the present invention.
  • a copper foil 32 having a predetermined thickness is attached to both surfaces of an insulating substrate 31 made of ceramic, glass, epoxy resin, or the like.
  • the thickness of each copper foil 32 is 300 ⁇ m.
  • the insulating substrate 31 made of an epoxy resin or the like may be a highly rigid substrate or a flexible substrate.
  • the copper foil 32 is not limited to pure copper, and may be a copper alloy such as phosphor bronze or brass. Since the copper alloy has higher workability than pure copper, burrs, elongation, and the like are less likely to occur when cutting with a dicer or polishing the top surface.
  • the copper foil 32 may have a predetermined thickness by plating.
  • a copper foil 32 having a thickness of about 150 ⁇ m may be pasted on both surfaces of the insulating substrate 31 and plated to form a thickness of 200 to 400 ⁇ m.
  • the thickness of the copper foil 32 is preferably 100 to 500 ⁇ m, particularly preferably 200 to 400 ⁇ m.
  • the thickness of the copper foil 32 is the length of one side of the cross section of the terminal electrode 142.
  • the length of one side of the terminal electrode 142 is 200 ⁇ m or more, even when a relatively large current of several amperes is passed, no disconnection occurs.
  • the terminal electrode 142 is 400 ⁇ m or less, the terminal electrode 142 is not easily deformed because the height is relatively low.
  • a plurality of grooves 33 are formed in a comb blade shape at the same position on the front and back sides of the attached copper foil 32.
  • the method for forming the groove 33 is not particularly limited.
  • the groove 33 can be formed by reliably removing the copper foil 32 such as etching, cutting with a dicer, or processing using both. I just need it.
  • the terminal electrode 142 When the plurality of grooves 33 are formed by etching, the terminal electrode 142 has a trapezoidal column shape as shown in FIG. This is because the portion closer to the surface is more easily etched. Moreover, when forming the some groove
  • a copper wire, a copper rod, or the like in a columnar shape or a hexagonal column shape may be directly attached to both surfaces of the insulating substrate 31 at a predetermined interval.
  • the terminal connection substrate 14 provided with a plurality of columnar terminal electrodes 142 as shown in FIG. 2A and a plurality of hexagonal columnar terminal electrodes 142 as shown in FIG. Can be manufactured.
  • the width of the copper foil 32 remaining after forming the plurality of grooves 33 is determined when the terminal connection board 14 is mounted on the base board when the cross-sectional shape of the terminal electrode 142 is rectangular (square). This is the width of the terminal electrode 142.
  • the insulating substrate 31 is divided by a dicer in a direction intersecting the plurality of grooves 33 formed, for example, in a direction orthogonal thereto, and the terminal connection substrate 14 shown in FIG. Cut out.
  • the width cut out by dividing with a dicer is the height of the terminal electrode 142 when the terminal connection substrate 14 is mounted on the base substrate. Therefore, it is necessary that the width cut out by dividing with a dicer is at least 100 ⁇ m longer than the height of the electronic component mounted on the base substrate. This is because the height of the electronic component may be higher than the height of the terminal electrode 142 due to variations in the height of the electronic component mounted on the base substrate, which may cause a connection failure with the mother substrate. is there.
  • the plurality of terminal electrodes 142 of the cut-out terminal connection substrate 14 are plated or rust-proofed and rotated 90 degrees as shown in FIG. 3 (e), so that the plurality of terminal electrodes 142 are formed on both sides of the insulator 141. It is mounted at a predetermined position on the base substrate in the arranged state.
  • the plating film is formed by wet plating or the like of Ni / Sn or Ni / Au. Further, by applying the rust prevention treatment, the progress of oxidation of copper used for the terminal electrode 142 can be suppressed, and the solder wettability at the time of mounting can be improved.
  • the terminal connection substrate 14 provided with a desired number of terminal electrodes 142 can be manufactured by dividing the groove 33 by the desired groove 33 among the plurality of grooves 33 formed by the dicer.
  • FIG. 4 is a perspective view showing a configuration of the terminal connection substrate 14 in which a resist is printed between the terminal electrodes 142 arranged on the module substrate according to the first embodiment of the present invention.
  • a resist 143 is printed so as to fill a space between the plurality of terminal electrodes 142 formed in a row on both side surfaces of the insulator 141.
  • FIG. 5 is a perspective view showing a manufacturing process of the module substrate according to Embodiment 1 of the present invention.
  • solder is printed on a desired surface electrode among the surface electrodes of the base substrate 10 having a rectangular outer shape.
  • the base substrate 10 is not particularly limited, such as an LTCC (Low Temperature Co-fired Ceramics) substrate or an organic substrate.
  • a ceramic slurry is coated on a PET film and then dried to produce a ceramic green sheet having a thickness of 10 to 200 ⁇ m.
  • a via hole having a diameter of about 0.1 mm is formed on the prepared ceramic green sheet from the PET film side by a mold, a laser, or the like.
  • an electrode paste kneaded with metal powder, resin and organic solvent mainly composed of silver or copper is filled in the via hole and dried. Then, an equivalent electrode paste is screen printed in a desired pattern on the ceramic green sheet and dried.
  • a plurality of ceramic green sheets are stacked and pressure-bonded at a pressure of 100-1500 kg / cm 2 and a temperature of 40-100 ° C.
  • the electrode paste is mainly composed of silver
  • the electrode paste is fired at about 850 ° C. in air, and when copper is the main component, it is fired at about 950 ° C. in a nitrogen atmosphere, and Ni / Sn or Ni / Sn is applied to the electrode.
  • the base substrate 10 is formed by depositing Au or the like by wet plating or the like.
  • a plurality of electronic components 12 are mounted on a surface electrode on which solder is printed, and a plurality of terminal connection boards 14 are also mounted.
  • the terminal connection substrate 14 is mounted at a position where it does not come into contact with the plurality of mounted electronic components 12 so that one end side of the terminal electrode 142 is in contact with the base substrate 10.
  • the terminal connection substrate 14 may be disposed on two opposite sides of the outer periphery of the base substrate 10, or the terminal connection substrate 14 may be disposed on the four sides of the outer periphery of the base substrate 10. It may be arranged.
  • the plurality of electronic components 12 can be mounted not only on the front surface of the base substrate 10 but also on the back surface.
  • the plurality of terminal connection substrates 14 can be arranged other than near the outer periphery of the base substrate 10 as necessary.
  • the base substrate 10 is disposed at a substantially central portion, since there is no insulator between the plurality of terminal electrodes 142 and the plurality of electronic components 12, they can be brought close to each other.
  • the module substrate can be reduced in size.
  • FIG. 6 is a cross-sectional view taken along a plane orthogonal to the arrangement direction of the terminal connection board 14 of the module board according to Embodiment 1 of the present invention.
  • the terminal connection substrate 14 is disposed so as to be substantially in contact with two opposing sides on the outer periphery of the base substrate 10, and is further disposed at a substantially central portion of the base substrate 10.
  • the columnar terminal electrode 142 since electrical connection can be performed by the columnar terminal electrode 142 instead of the thin plating film formed in the through hole, a relatively large current can flow.
  • a complicated process such as forming a through hole to form a plating film is not necessary, and the manufacturing process can be simplified, so that the manufacturing cost can be reduced as a whole.
  • the configuration of the terminal connection board 14 arranged on the module board according to the second embodiment of the present invention is the same as that of the first embodiment, the detailed description is omitted by attaching the same reference numerals.
  • the module substrate according to Embodiment 2 of the present invention after mounting the plurality of electronic components 12 and the plurality of terminal connection substrates 14 on the base substrate 10, the plurality of mounted electronic components 12 and the terminal connection substrate 14 are made of resin. It differs from the first embodiment in that it is sealed and the upper surface of the sealed resin is polished.
  • FIG. 7 is a cross-sectional view taken along a plane orthogonal to the arrangement direction of the terminal connection board 14, showing the module board manufacturing process according to the second embodiment of the present invention.
  • a plurality of electronic components 12 are mounted on a surface electrode of a base substrate 10 on which solder is printed, and a plurality of terminal connection substrates 14 are also mounted.
  • the plurality of terminal connection substrates 14 are mounted so as to be arranged on the peripheral edge of the base substrate 10, for example, two opposing sides on the outer periphery of the base substrate 10, and are further mounted on a substantially central portion of the base substrate 10.
  • the plurality of electronic components 12 can be mounted not only on the front surface of the base substrate 10 but also on the back surface. In the second embodiment, it is mounted on both the front and back sides.
  • the resin sheet (resin) 21 is laminated on both front and back surfaces.
  • the resin sheet 21 is made by molding a composite resin on a PET film and semi-curing it.
  • the composite resin is a composite material in which a thermosetting resin such as epoxy, phenol, or cyanate is mixed with an inorganic filler such as Al 2 O 3 , SiO 2 , or TiO 2 .
  • a desired thickness can be secured to the laminated resin sheet 21 by arranging a spacer having a desired thickness around the base substrate 10. The base substrate 10 in this state is put in an oven, and the resin sheet 21 is completely cured.
  • the resin sheet 21 is laminated and cured together on both the front and back surfaces, but the front and back surfaces may be laminated and cured separately.
  • the upper surface of the sealed resin 21 is polished with a roller blade (not shown). Even when the heights of the plurality of terminal connection substrates 14 vary due to solder or the like, the plurality of terminal electrodes 142 are columnar, and as a result of polishing the cured resin sheet 21, the top of the resin 21 The shapes of the plurality of terminal electrodes 142 exposed from the surface are substantially the same. Therefore, it can be reliably connected to the mother board.
  • the NC electrode may be formed of a conductive paste before the Ni / Au plating.
  • FIG. 8 is a cross-sectional view taken along a plane orthogonal to the arrangement direction of the terminal connection board 14, showing a process when forming the NC electrode of the module board according to the second embodiment of the present invention.
  • FIG. 8A before the Ni / Au plating is performed on the upper surfaces of the exposed terminal electrodes 142, a plurality of NC electrodes 101 are printed and formed on the upper surface of the sealed resin 21.
  • FIG. 8B Ni / Au plating 102 is applied to the exposed upper surfaces of the terminal electrodes 142 and the formed upper surfaces of the NC electrodes 101.
  • FIG. 9 is a perspective view showing a process when resist printing is performed on the module substrate according to Embodiment 2 of the present invention.
  • the cross-sectional shape of the plurality of terminal electrodes 142 of the terminal connection substrate 14 is a hexagon.
  • the resist 111 is printed so that the cross-sectional shape of the plurality of terminal electrodes 142 is a rectangle 112, and Ni / Au plating is performed on the exposed upper surfaces of the terminal electrodes 142.
  • the peripheral portions of the plurality of terminal electrodes 142 can be covered, so that intrusion of moisture from the upper surface can be prevented, and the reliability as a module substrate is improved. Also, the cross-sectional shape of the plurality of terminal electrodes 142 can be easily changed to an arbitrary shape, in the example of FIG.
  • rewiring may be performed before Ni / Au plating.
  • the terminal connection substrate 14 is arranged in the vicinity of the outer periphery of the module substrate, the plurality of terminal electrodes 142 are concentrated on the peripheral portion of the module substrate. Therefore, rewiring is performed so that the position of the terminal electrode 142 is changed from the peripheral edge of the module substrate to a desired position.
  • Rewiring is performed on the upper surface of the sealed resin 21 by screen printing, ink jet, or the like. Further, after forming the shield wiring pattern, re-wiring may be performed by electroless plating. A solder resist may be printed around the re-wired terminal electrode 142 to form bumps for external connection.
  • FIG. 10 is a cross-sectional view taken along a plane orthogonal to the arrangement direction of the terminal connection board 14 when rewiring is performed on the module board according to the second embodiment of the present invention.
  • a solder resist 121 is printed around the rewiring pattern, and a plurality of bumps 122 are formed according to the rewiring pattern.
  • the position of the external electrode is not limited to the position of the plurality of terminal electrodes 142 (near the outer periphery of the module substrate), and the degree of freedom in design is improved.
  • the electrical connection can be made by the columnar terminal electrode 142 instead of the thin plating film formed in the through hole, a relatively large current can flow.
  • a complicated process such as forming a through hole to form a plating film is not necessary, and the manufacturing process can be simplified, so that the manufacturing cost can be reduced as a whole.
  • FIG. 11 is a perspective view showing a module board manufacturing process according to Embodiment 3 of the present invention.
  • solder is printed on a desired surface electrode among the surface electrodes of the collective substrate 1 from which a plurality of module substrates (base substrates 10) can be cut.
  • the collective substrate 1 is not particularly limited, such as an LTCC (Low Temperature Co-fired Ceramics) substrate or an organic substrate.
  • a ceramic slurry is coated on a PET film and then dried to produce a ceramic green sheet having a thickness of 10 to 200 ⁇ m.
  • a via hole having a diameter of about 0.1 mm is formed on the prepared ceramic green sheet from the PET film side by a mold, a laser, or the like.
  • an electrode paste kneaded with metal powder, resin and organic solvent mainly composed of silver or copper is filled in the via hole and dried. Then, an equivalent electrode paste is screen printed in a desired pattern on the ceramic green sheet and dried.
  • a plurality of ceramic green sheets are stacked and pressure-bonded at a pressure of 100-1500 kg / cm 2 and a temperature of 40-100 ° C.
  • the electrode paste is mainly composed of silver
  • the electrode paste is fired at about 850 ° C. in air, and when copper is the main component, it is fired at about 950 ° C. in a nitrogen atmosphere.
  • the collective substrate 1 is formed by depositing Au or the like by wet plating or the like.
  • a plurality of electronic components 12 are mounted on the surface electrode on which the solder is printed, and a plurality of terminal connection boards 14 are also mounted.
  • the terminal connection board 14 is mounted so as to straddle two adjacent module boards. That is, as shown in FIG. 11B, the terminal connection substrate 14 may be arranged on two opposite sides of the outer periphery of the base substrate 10, or the terminal connection substrate 14 is arranged on the four sides of the outer periphery of the base substrate 10. It may be arranged. Needless to say, the electronic component 12 can be mounted not only on the front surface of the collective substrate 1 but also on the back surface.
  • substrate 14 can be arrange
  • the dicer 11 is used to divide into two module substrates along the insulator 141 of the terminal connection substrate 14 arranged so as to straddle two adjacent module substrates. .
  • the blade thickness of the dicer 11 thicker than the width of the insulator 141, all of the insulator 141 is removed at the time of division, and a plurality of terminal electrodes 142 are exposed on the side surface as shown in FIG.
  • the module substrate that is present can be cut out.
  • the plurality of terminal electrodes 142 exposed on the side surfaces are formed by depositing Ni / Sn or Ni / Au by wet plating or the like.
  • FIG. 12 is a cross-sectional view of the module substrate according to Embodiment 3 of the present invention on a plane orthogonal to the dividing direction by the dicer 11.
  • the insulator 141 of the terminal connection substrate 14 is completely removed, and only the columnar terminal electrodes 142 are left on both side surfaces of the module substrate. Thereby, there is no extra insulator other than the plurality of terminal electrodes 142, and it is possible to secure the maximum area where the electronic component 12 can be mounted. Therefore, the number of electronic components 12 that can be mounted can be increased. When a certain number of electronic components 12 are mounted, the module substrate can be downsized.
  • the blade thickness of the dicer 11 may be thinner than the width of the insulator 141. In this case, it is possible to cut out a module substrate in which the insulator 141 is not completely removed at the time of division and remains, and the plurality of terminal electrodes 142 are not exposed on the side surfaces.
  • FIG. 13 is a perspective view when the insulator 141 of the module substrate according to the third embodiment of the present invention remains, and FIG. 14 shows the insulator 141 of the module substrate according to the third embodiment of the present invention. It is sectional drawing in the surface orthogonal to the dividing direction by the dicer 11 in the case of doing.
  • the side terminal electrodes 142 can be protected from oxidation or the like.
  • the plurality of terminal electrodes 142 are not exposed on the side surfaces, it is possible to prevent the solder from spreading on the side surfaces of the module substrate, and it is possible to reliably ensure insulation from the external shield.
  • the terminal connection substrate 14 in which a plurality of columnar terminal electrodes 142 are arranged on both side surfaces of the insulator 141 is divided after being mounted on the collective substrate 1, whereby the insulator 141 is separated.
  • the terminal connection board 14 having a plurality of columnar terminal electrodes 142 arranged on one side is manufactured.
  • a terminal connection board 14 in which a plurality of columnar terminal electrodes 142 are arranged on one side surface of the insulator 141 is prepared in advance and mounted on the collective board 1 or the cut base board 10 to manufacture a module board. You may do it.
  • FIG. 15 is a perspective view showing another configuration of the terminal connection board 14 arranged on the module board according to the third embodiment of the present invention.
  • the terminal connection substrate 14 has columnar terminal electrodes 142 arranged on one side surface of the insulator 141.
  • the manufacturing process does not require a polishing process, a via formation process, and the like, and the manufacturing cost can be greatly reduced.
  • the insulator 141 of the terminal connection substrate 14 is completely removed, and only a plurality of columnar terminal electrodes 142 are left on both side surfaces of the module substrate. Thereby, there is no extra insulator other than the plurality of terminal electrodes 142, and it is possible to secure the maximum area where the electronic component 12 can be mounted. Therefore, the number of electronic components 12 that can be mounted can be increased. When a certain number of electronic components 12 are mounted, the module substrate can be downsized.
  • FIG. 16 is a cross-sectional view taken along a plane orthogonal to the arrangement direction of the terminal connection board 14, showing the module board manufacturing process according to Embodiment 4 of the present invention.
  • a plurality of electronic components 12 are mounted on a surface electrode of the collective substrate 1 on which solder is printed, and a plurality of terminal connection substrates 14 are also mounted.
  • the terminal connection board 14 is mounted so as to straddle two adjacent module boards.
  • the plurality of electronic components 12 can be mounted not only on the front surface of the collective substrate 1 but also on the back surface. In this Embodiment 4, it mounts on both front and back.
  • the resin sheet 21 is laminated on front and back both surfaces.
  • the resin sheet (resin) 21 is obtained by molding a composite resin on a PET film and semi-curing it.
  • the composite resin is a composite material in which a thermosetting resin such as epoxy, phenol, or cyanate is mixed with an inorganic filler such as Al 2 O 3 , SiO 2 , or TiO 2 .
  • a desired thickness of the laminated resin sheet 21 can be ensured by arranging a spacer having a desired thickness around the position where the module substrate is cut out.
  • the collective substrate 1 in this state is put in an oven, and the resin sheet 21 is completely cured.
  • the resin sheet 21 is laminated and cured together on both the front and back surfaces, but the front and back surfaces may be laminated and cured separately.
  • the resin sheet 21 is sealed with resin, and the upper surface of the sealed resin 21 is polished with a roller-type blade (not shown).
  • a roller-type blade (not shown).
  • the plurality of terminal electrodes 142 are columnar, and as a result of polishing the cured resin sheet 21, a plurality of exposed plurality of terminal electrodes 142 are exposed.
  • the shape of the terminal electrode 142 is substantially the same. Therefore, it can be reliably connected to the mother board.
  • the NC electrode may be formed of a conductive paste before the Ni / Au plating.
  • FIG. 17 is a cross-sectional view taken along a plane orthogonal to the arrangement direction of the terminal connection board 14, showing a process for forming the NC electrode of the module board according to the fourth embodiment of the present invention.
  • FIG. 17A before the Ni / Au plating is performed on the exposed upper surfaces of the terminal electrodes 142, printing is performed on the upper surface of the resin 21 in which the NC electrodes 101 are sealed. Then, as shown in FIG. 17B, Ni / Au plating 102 is applied to the exposed upper surfaces of the terminal electrodes 142 and the printed upper surfaces of the NC electrodes 101.
  • the number of electrodes connected to the mother board can be increased, the strength against an impact when the module board is dropped is improved.
  • FIG. 18 is a perspective view showing a process when resist printing is performed on a module substrate according to Embodiment 4 of the present invention.
  • the cross-sectional shape of the plurality of terminal electrodes 142 of the terminal connection substrate 14 is a hexagon.
  • the resist 111 is printed so that the cross-sectional shape of the plurality of terminal electrodes 142 is a rectangle 112, and Ni / Au plating is performed at positions where the exposed portions on the upper surfaces of the plurality of terminal electrodes 142 are in contact.
  • the peripheral portions of the plurality of terminal electrodes 142 can be covered, so that intrusion of moisture from the upper surface can be prevented, and the reliability as a module substrate is improved. Also, the cross-sectional shape of the plurality of terminal electrodes 142 can be easily changed to an arbitrary shape, and in the example of FIG.
  • rewiring may be performed before Ni / Au plating.
  • a plurality of terminal electrodes 142 may be provided according to the position where the terminal connection substrate 14 is arranged. In this case, the plurality of terminal electrodes 142 are concentrated on the peripheral edge of the module substrate. Therefore, rewiring is performed so that the position of the terminal electrode 142 is arranged from the peripheral edge of the module substrate to a desired position.
  • Rewiring is performed on the upper surface of the sealed resin 21 by screen printing, ink jet, or the like. Further, after the seed wiring pattern is formed, re-wiring may be performed by electroless plating. A solder resist may be printed around the re-wired terminal electrode 142 to form bumps for external connection.
  • FIG. 19 is a cross-sectional view taken along a plane orthogonal to the arrangement direction of the terminal connection board 14 when rewiring is performed on the module board according to Embodiment 4 of the present invention.
  • a solder resist 121 is printed around the rewiring pattern, and a plurality of bumps 122 are formed according to the rewiring pattern.
  • the position of the external electrode is not limited to the position of the terminal electrode 142 (near the outer periphery of the module substrate), and the degree of freedom in design is improved.
  • the assembled substrate 1 in which the upper surface of the sealed resin 21 is polished to ensure coplanarity is divided into a plurality of module substrates using a dicer 11. Since the terminal connection board 14 is arranged so as to straddle two adjacent module boards, the insulator 141 is completely removed at the time of division by making the blade thickness of the dicer 11 thinner than the width of the insulator 141. It is possible to manufacture a module substrate that remains without being exposed and has a plurality of terminal electrodes 142 exposed on the side surfaces.
  • the insulator 141 remains outside the plurality of terminal electrodes 142, the plurality of terminal electrodes 142 can be protected from oxidation or the like. In addition, since the plurality of terminal electrodes 142 are not exposed on the side surfaces, it is possible to prevent the solder from spreading on the side surfaces of the module substrate, and it is possible to reliably ensure insulation from the external shield.
  • a via formation process or the like is not necessary in the manufacturing process, and the manufacturing cost can be greatly reduced. Further, since the insulator 141 of the terminal connection substrate 14 remains, the terminal electrode 142 on the side surface can be protected from oxidation or the like. Further, since the terminal electrode 142 is not exposed on the side surface, it is possible to prevent the solder from spreading on the side surface of the module substrate, and to ensure the insulation with the external shield.
  • the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications and substitutions are possible within the scope of the present invention.
  • the insulator 141 of the terminal connection substrate 14 and the resin 21 that seals the mounted electronic components 12 and the terminal connection substrate 14 may have the same composition. In this case, the degree of adhesion between the sealed resin 21 and the insulator 141 is increased, the strength against impact when the module substrate is dropped is improved, and the reliability of the entire module substrate is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

 製造工程を簡素化しつつ、端子電極同士を短絡させることなく確実に接続することができるモジュール基板、モジュール基板の製造方法及び端子接続基板を提供する。 複数の柱状の端子電極142を絶縁体141の一側面又は両側面に配置してある端子接続基板14を、少なくとも隣接する複数のモジュール基板を跨ぐように、集合基板1の片面に複数実装する。片面に複数の端子接続基板14、及び少なくとも片面に複数の電子部品12を実装した集合基板1を、モジュール基板を切り出す位置で分断する。

Description

モジュール基板、モジュール基板の製造方法、及び端子接続基板
 本発明は、片面又は両面に複数の電子部品を実装した集合基板を分断して、集合基板から切り出したモジュール基板、集合基板から複数のモジュール基板を切り出すモジュール基板の製造方法、及び端子接続基板に関する。
 近年、電子機器の小型化、軽量化に伴い、電子機器に実装するモジュール基板自体も小型化、軽量化が求められている。そのため、リード端子、半田ボール、キャビティ構造等を用いて電子部品をモジュール基板の両面に実装することで小型化、軽量化が行われている。
 特許文献1には、キャビティ構造等を形成することなく、安価な両面電極構造の半導体装置の製造方法が開示されている。すなわち、連結板により一体化した複数の接続用電極を、電子部品を実装したモジュール基板上に固着し、連結板を研磨することにより除去して接続用電極を形成する。これにより、例えば半田等により複数の接続用電極をモジュール基板に固着したために連結板が傾いている場合であっても、連結板がなくなるまで研磨することによりモジュール基板のコプラナリティ(Coplanarity)を維持することができる。
 特許文献2には、スルーホールを用いて電極が形成されているスペーサ基板(接続用基板)を配置してあるモジュールが開示されている。特許文献2では、スペーサ基板のランド間をスルーホールにて電気的に接続してある。これにより、モジュールと外部基板との電気的接続の信頼性を高く維持することができる。
特許第3960479号公報 特開2009-123869号公報
 しかし、特許文献1に開示してある半導体装置の製造方法では、連結板を研磨することにより除去する必要があることから、研磨工程が必要であった。したがって、製造コストをより低減することが困難であるという問題点があった。また、十分に連結板を研磨することができなかった場合、接続用電極の接続不良が発生するおそれもあった。
 さらに、接続用電極は連結板から露出している部分の長さが比較的長く、モジュール基板に固着する前のテーピング工程等における取扱いによっては接続用電極が変形するおそれがあった。このため、隣接する接続用電極同士を短絡させるおそれもあった。
 また、特許文献2に開示してあるモジュールは、スルーホールを用いているため、端面電極は薄いメッキ膜にて形成されており、大きな電流を流すことができないという問題点があった。また、スルーホールを形成してメッキ膜を形成する等の煩雑な工程が必要であった。
 本発明は斯かる事情に鑑みてなされたものであり、製造工程を簡素化しつつ、端子電極同士を短絡させることなく確実に接続することができるモジュール基板、モジュール基板の製造方法、及び端子接続基板を提供することを目的とする。
 上記目的を達成するために第1発明に係るモジュール基板は、ベース基板の少なくとも片面に複数の電子部品を実装したモジュール基板において、複数の柱状の端子電極を絶縁体の少なくとも一側面に配置してある端子接続基板を備え、複数の柱状の前記端子電極の一端側が前記ベース基板に接触するように、複数の前記端子接続基板を前記ベース基板に実装してあることを特徴とする。
 第1発明では、複数の柱状の端子電極を絶縁体の少なくとも一側面に配置してある端子接続基板を備え、複数の柱状の端子電極の一端側がベース基板に接触するように、複数の端子接続基板をベース基板に実装してある。これにより、スルーホールに形成した薄いメッキ膜ではなく、柱状の端子電極により電気的接続を行うことができるので、比較的大きな電流を流すことができる。また、スルーホールを形成してメッキ膜を形成する等の煩雑な工程が不要となり、製造工程を簡素化することができるので、全体として製造コストを低減することが可能となる。
 また、第2発明に係るモジュール基板は、第1発明において、前記端子接続基板は、複数の柱状の前記端子電極を前記絶縁体の両側面に配置してあることを特徴とする。
 第2発明では、複数の柱状の端子電極を絶縁体の両側面に配置してある端子接続基板を備え、複数の柱状の端子電極の一端側がベース基板に接触するように、複数の端子接続基板をベース基板に実装してある。これにより、スルーホールに形成した薄いメッキ膜ではなく、柱状の端子電極により電気的接続を行うことができるので、比較的大きな電流を流すことができる。また、スルーホールを形成してメッキ膜を形成する等の煩雑な工程が不要となり、製造工程を簡素化することができるので、全体として製造コストを低減することが可能となる。
 また、第3発明に係るモジュール基板は、第2発明において、前記端子接続基板は、複数の前記端子電極を前記絶縁体の両側面にそれぞれ一列に配置してあることを特徴とする。
 第3発明では、端子接続基板は、複数の端子電極を絶縁体の両側面にそれぞれ一列に配置してあることにより、一つの端子接続基板で二列の端子電極列を設けることが可能となる。
 また、第4発明に係るモジュール基板は、第2又は第3発明において、前記端子接続基板は、複数の前記端子電極間にレジストを印刷してあることを特徴とする。
 第4発明では、端子接続基板は、端子電極間にレジストを印刷してあることにより、集合基板を複数のモジュール基板へ分断する場合に生じやすいバリ、延び等の発生を抑制することができ、端子電極の変形を防止することが可能となる。
 また、第5発明に係るモジュール基板は、第1乃至第4発明のいずれか1つにおいて、前記ベース基板に実装された複数の前記電子部品と前記端子接続基板とを樹脂で封止してあり、前記樹脂は、前記絶縁体と同じ組成であることを特徴とする。
 第5発明では、ベース基板に実装された複数の電子部品と端子接続基板とを樹脂で封止することにより、モジュール基板の落下時の衝撃に対する強度が向上し、モジュール基板としての信頼性が向上する。また、樹脂を、端子接続基板の絶縁体と同じ組成とすることにより、封止した樹脂と絶縁体との密着度が増し、モジュール基板の落下時の衝撃に対する強度がより向上し、モジュール基板としての信頼性もより向上する。
 次に、上記目的を達成するために第6発明に係るモジュール基板の製造方法は、少なくとも片面に複数の電子部品を実装した集合基板を分断して、前記集合基板から複数のモジュール基板を切り出すモジュール基板の製造方法において、複数の柱状の端子電極を絶縁体の両側面に配置してある端子接続基板を、少なくとも隣接する複数の前記モジュール基板を跨ぐように、前記集合基板の片面に複数実装する第1工程と、複数の前記端子接続基板及び前記電子部品を実装した前記集合基板を、前記モジュール基板を切り出す位置で分断する第2工程とを含むことを特徴とする。
 第6発明では、複数の柱状の端子電極を絶縁体の両側面に配置してある端子接続基板を、少なくとも隣接する複数のモジュール基板を跨ぐように複数実装する。端子接続基板及び電子部品を実装した集合基板を、モジュール基板を切り出す位置で分断する。これにより、複数の端子電極を一体化する連結板が存在しないので連結板の研磨工程、及び端子電極ごとにビアを形成するビア形成工程が不要となり、製造工程を簡素化することができるので、全体として製造コストを大きく低減することが可能となる。また、端子電極の端部を確実に外部へ露出させることができ、接続不良が生じるおそれがない。さらに、端子電極の露出している部分の高さが比較的低いので、端子電極が変形しにくく、端子電極同士を短絡させることなく確実に接続することが可能となる。
 また、第7発明に係るモジュール基板の製造方法は、第6発明において、前記モジュール基板の平面視した外形は矩形であり、前記第1工程は、前記モジュール基板の外周辺の対向する二辺に前記端子接続基板を配置することを特徴とする。
 第7発明では、モジュール基板の平面視した外形は矩形であり、モジュール基板の外周辺の対向する二辺に端子接続基板を配置することにより、端子接続基板を集合基板に実装する作業工数が減り、製造コストを低減することができる。
 また、第8発明に係るモジュール基板の製造方法は、第6発明において、前記モジュール基板の平面視した外形は矩形であり、前記第1工程は、前記モジュール基板の外周辺の四辺に前記端子接続基板を配置することを特徴とする。
 第8発明では、モジュール基板の平面視した外形は矩形であり、モジュール基板の外周辺の四辺に端子接続基板を配置することにより、外部機器の端子と接続することが可能な端子電極をより多く有するモジュール基板を製造することができる。
 また、第9発明に係るモジュール基板の製造方法は、第6乃至第8発明のいずれか1つにおいて、前記端子接続基板は、複数の前記端子電極を前記絶縁体の両側面にそれぞれ一列に配置することを特徴とする。
 第9発明では、端子接続基板は、複数の端子電極を絶縁体の両側面にそれぞれ一列に配置することにより、一つの端子接続基板で二つのモジュール基板に対して端子電極を設けることが可能となる。
 また、第10発明に係るモジュール基板の製造方法は、第7乃至第9発明のいずれか1つにおいて、前記端子接続基板は、複数の前記端子電極間にレジストを印刷することを特徴とする。
 第10発明では、端子接続基板は、端子電極間にレジストを印刷することにより、集合基板を複数のモジュール基板へ分断する場合に生じやすいバリ、延び等の発生を抑制することができ、端子電極の変形を防止することが可能となる。
 また、第11発明に係るモジュール基板の製造方法は、第6乃至第10発明のいずれか1つにおいて、前記第2工程は、前記集合基板を分断する場合、前記端子接続基板の絶縁体をすべて除去することを特徴とする。
 第11発明では、集合基板を分断する場合、端子接続基板の絶縁体をすべて除去することにより、モジュール基板の側面に露出した側面電極として端子電極を形成することが可能となる。
 また、第12発明に係るモジュール基板の製造方法は、第6乃至第10発明のいずれか1つにおいて、前記第2工程は、前記集合基板を分断する場合、前記端子接続基板の絶縁体を残存させることを特徴とする。
 第12発明では、集合基板を分断する場合、端子接続基板の絶縁体を残存させることにより、モジュール基板の側面に端子電極が露出することがなく、露出部分に対するメッキ処理等の表面処理が不要となる。したがって、製造コストを低減することが可能となる。
 また、第13発明に係るモジュール基板の製造方法は、第6乃至第10発明のいずれか1つにおいて、前記第1工程の後、前記集合基板に実装された複数の前記電子部品と前記端子接続基板とを樹脂で封止し、封止した前記樹脂の上面を研磨する工程を含むことを特徴とする。
 第13発明では、集合基板に実装された複数の電子部品と端子接続基板とを樹脂で封止し、封止した樹脂の上面を研磨する。端子電極の周囲が樹脂にて封止・固定されることにより、モジュール基板の落下時の衝撃に対する強度が向上し、モジュール基板としての信頼性が向上する。
 また、第14発明に係るモジュール基板の製造方法は、第13発明において、封止した前記樹脂の上面を研磨する工程の後、導電性ペーストによりNC電極を形成する工程を含むことを特徴とする。
 第14発明では、封止した樹脂の上面を研磨する工程の後、導電性ペーストによりNC電極を形成することにより、マザー基板と接続する電極数を容易に増やすことができ、落下時の衝撃が分散されやすくなる。
 また、第15発明に係るモジュール基板の製造方法は、第13又は第14発明において、封止した前記樹脂の上面に再度配線を施す工程を含むことを特徴とする。
 第15発明では、封止した樹脂の上面に再度配線を施すことにより、外部電極の位置が端子電極が配置された位置(モジュール基板の外周辺近傍)に限定されることがなく、設計上の自由度が向上する。
 また、第16発明に係るモジュール基板の製造方法は、第13乃至第15発明のいずれか1つにおいて、レジスト印刷を施す工程を含むことを特徴とする。
 第16発明では、レジスト印刷を施すことにより、端子電極の周縁部を被覆することができるので、上面からの水分の侵入等を防止することができる。
 また、第17発明に係るモジュール基板の製造方法は、第13乃至第16発明のいずれか1つにおいて、封止した前記樹脂は、前記端子接続基板の絶縁体と同じ組成であることを特徴とする。
 第17発明では、封止した樹脂は、端子接続基板の絶縁体と同じ組成であることにより、封止した樹脂と絶縁体との密着度が増し、モジュール基板の落下時の衝撃に対する強度が向上し、モジュール基板としての信頼性が向上する。
 次に、上記目的を達成するために第18発明に係る端子接続基板は、複数の柱状の端子電極が、絶縁体の少なくとも一側面に配置してあることを特徴とする。
 第18発明では、複数の柱状の端子電極を絶縁体の少なくとも一側面に配置してある端子接続基板を、複数の柱状の端子電極の一端側がベース基板に接触するように実装することにより、スルーホールに形成した薄いメッキ膜ではなく、柱状の端子電極により電気的接続を行うことができるので、比較的大きな電流を流すことができる。
 第19発明に係る端子接続基板は、第18発明において、複数の柱状の端子電極が、絶縁体の両側面に配置してあることを特徴とする。
 第19発明では、複数の柱状の端子電極を絶縁体の両側面に配置してある端子接続基板を、複数の柱状の端子電極の一端側がベース基板に接触するように実装することにより、スルーホールに形成した薄いメッキ膜ではなく、柱状の端子電極により電気的接続を行うことができるので、比較的大きな電流を流すことができる。
 上記構成によれば、スルーホールに形成した薄いメッキ膜ではなく、柱状の端子電極により電気的接続を行うことができるので、比較的大きな電流を流すことができる。また、スルーホールを形成してメッキ膜を形成する等の煩雑な工程が不要となり製造工程を簡素化することができるので、全体として製造コストを低減することが可能となる。
 また、上記構成によれば、複数の端子電極を一体化する連結板が存在しないので連結板の研磨工程、及び端子電極ごとにビアを形成するビア形成工程が不要となり、全体として製造コストを大きく低減することが可能となる。また、端子電極の端部を確実に外部へ露出させることができ、接続不良が生じるおそれがない。さらに、端子電極の露出している部分の高さが比較的低いので、端子電極が変形しにくく、端子電極同士を短絡させることなく確実に接続することが可能となる。
本発明の実施の形態1に係るモジュール基板に配置する端子接続基板の構成を示す斜視図である。 本発明の実施の形態1に係るモジュール基板に配置する端子接続基板の他の構成を示す斜視図である。 本発明の実施の形態1に係るモジュール基板に配置する端子接続基板の製造工程を示す斜視図である。 本発明の実施の形態1に係るモジュール基板に配置する端子電極間にレジストを印刷してある端子接続基板の構成を示す斜視図である。 本発明の実施の形態1に係るモジュール基板の製造工程を示す斜視図である。 本発明の実施の形態1に係るモジュール基板の端子接続基板の配置方向と直交する面での断面図である。 本発明の実施の形態2に係るモジュール基板の製造工程を示す、端子接続基板の配置方向と直交する面での断面図である。 本発明の実施の形態2に係るモジュール基板のNC電極を形成する場合の工程を示す、端子接続基板の配置方向と直交する面での断面図である。 本発明の実施の形態2に係るモジュール基板にレジスト印刷を施す場合の工程を示す斜視図である。 本発明の実施の形態2に係るモジュール基板に再配線を施す場合の、端子接続基板の配置方向と直交する面での断面図である。 本発明の実施の形態3に係るモジュール基板の製造工程を示す斜視図である。 本発明の実施の形態3に係るモジュール基板のダイサーによる分断方向と直交する面での断面図である。 本発明の実施の形態3に係るモジュール基板の絶縁体が残存する場合の斜視図である。 本発明の実施の形態3に係るモジュール基板の絶縁体が残存する場合の、ダイサーによる分断方向と直交する面での断面図である。 本発明の実施の形態3に係るモジュール基板に配置する端子接続基板の他の構成を示す斜視図である。 本発明の実施の形態4に係るモジュール基板の製造工程を示す、端子接続基板の配置方向と直交する面での断面図である。 本発明の実施の形態4に係るモジュール基板のNC電極を形成する場合の工程を示す、端子接続基板の配置方向と直交する面での断面図である。 本発明の実施の形態4に係るモジュール基板にレジスト印刷を施す場合の工程を示す斜視図である。 本発明の実施の形態4に係るモジュール基板に再配線を施す場合の、端子接続基板の配置方向と直交する面での断面図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係るモジュール基板に配置する端子接続基板の構成を示す斜視図である。本発明の実施の形態1に係る端子接続基板14は、セラミック、ガラス、エポキシ樹脂等からなる絶縁体141と、絶縁体141の両側面に、それぞれ一列に配置されている複数の柱状の端子電極142とで構成されている。
 端子接続基板14をベース基板に実装した場合の端子電極142の高さは、ベース基板に実装する電子部品(SMD)の高さよりも高いことが好ましい。そして、図1に示すように端子電極142が角柱状である場合、端子電極142の高さと幅とのアスペクト比(=高さ/幅)がほぼ1である角柱とすることにより、端子電極142の変形を防止することができる。
 図2は、本発明の実施の形態1に係るモジュール基板に配置する端子接続基板14の他の構成を示す斜視図である。絶縁体141の両側面に配置されている複数の柱状の端子電極142は、図1のような角柱状に限定されるものではなく、例えば図2(a)に示すように円柱状であっても良いし、図2(b)に示すように六角柱状、図2(c)に示すように台形柱状であっても良い。
 図3は、本発明の実施の形態1に係るモジュール基板に配置する端子接続基板14の製造工程を示す斜視図である。まず図3(a)に示すように、セラミック、ガラス、エポキシ樹脂等からなる絶縁基板31の両面に所定の厚みを有する銅箔32を張り付ける。本実施の形態1では、銅箔32の厚みをそれぞれ300μmとする。なお、エポキシ樹脂等からなる絶縁基板31は、剛性の高い基板であっても良いし、可撓性を有する基板であっても良い。また、銅箔32は純銅に限定されるものではなく、リン青銅、黄銅等の銅合金であっても良い。銅合金は純銅と比較して加工性が高いので、ダイサーによる分断時、上面研磨時等にバリ、延び等が発生しにくい。
 さらに、銅箔32はメッキ加工により所定の厚みにしても良い。例えば150μm前後の厚みを有する銅箔32を絶縁基板31の両面に張り付け、その上にメッキ加工することにより200~400μmの厚みにすれば足りる。銅箔32の厚みは100~500μm、特に200~400μmが好ましい。
 端子電極142が角柱状である場合、銅箔32の厚みが端子電極142の断面の一辺の長さとなる。端子電極142の一辺の長さが200μm以上である場合、数アンペアの比較的大きな電流を流したときであっても断線することがない。また、端子電極142の一辺の長さが400μm以下である場合、高さが比較的低いことから、端子電極142が変形しにくい。
 次に、図3(b)に示すように、張り付けた銅箔32の表裏の同じ位置に、複数の溝33を櫛刃状に形成する。溝33の形成方法は特に限定されるものではないが、例えばエッチング加工、ダイサーによる切削加工、両者を併用する加工等、確実に銅箔32を除去して溝33を形成することができる方法であれば良い。
 エッチング加工にて複数の溝33を形成する場合、端子電極142の形状は、図2(c)に示すように台形柱状となる。表面に近い部分ほどエッチングされやすいからである。また、ダイサーによる切削加工にて複数の溝33を形成する場合、端子電極142の形状は、図1に示すように角柱状となる。したがって、ダイサーによる切削加工にて複数の溝33を形成する方が端子電極142の断面積が大きくなるので、耐電流値を大きくすることができる。切削加工時間を短縮するためにマルチブレードを有するダイサー、マルチワイヤーソー等を使用しても良い。
 さらに、銅箔32の代わりに、絶縁基板31の両面に、円柱状、六角柱状等の銅のワイヤー、銅棒等を、所定の間隔で直接張り付けても良い。このようにすることで、図2(a)に示すような複数の円柱状の端子電極142、図2(b)に示すような複数の六角柱状の端子電極142をそれぞれ設けた端子接続基板14を製造することができる。
 なお、複数の溝33を形成した後の残存している銅箔32の幅は、端子電極142の断面形状が矩形(正方形)である場合には、端子接続基板14をベース基板に実装した場合の端子電極142の幅となる。
 そして、図3(c)に示すように、形成した複数の溝33に交差する方向、例えば直交する方向に、絶縁基板31をダイサーにて分断し、図3(d)に示す端子接続基板14を切り出す。ダイサーで分断して切り出す幅は、端子接続基板14をベース基板に実装した場合の端子電極142の高さとなる。したがって、ダイサーで分断して切り出す幅は、ベース基板に実装する電子部品の高さよりも少なくとも100μmは長くなるようにする必要がある。ベース基板に実装する電子部品の高さのばらつきにより、電子部品の高さの方が端子電極142の高さよりも高くなるおそれがあり、マザー基板との間で接続不良が生じるおそれがあるからである。切り出した端子接続基板14の複数の端子電極142にメッキ処理、又は防錆処理を施し、図3(e)に示すように90度回転させ、絶縁体141の両側面に複数の端子電極142が配置されている状態でベース基板の所定の位置に実装する。なお、メッキ膜は、Ni/Sn又はNi/Au等を湿式メッキ等で成膜する。また、防錆処理を施すことにより、端子電極142に用いられている銅の酸化の進行を抑制することができ、実装時の半田濡れ性を向上させることができる。
 さらに、ダイサーにて形成した複数の溝33のうち、所望の溝33にて分断することにより、所望の数の端子電極142を設けた端子接続基板14を製造することができる。
 また、端子電極142と端子電極142との間にレジストを印刷しても良い。図4は、本発明の実施の形態1に係るモジュール基板に配置する端子電極142間にレジストを印刷してある端子接続基板14の構成を示す斜視図である。図4に示すように、絶縁体141の両側面にそれぞれ一列に形成してある複数の端子電極142の間を埋めるようにレジスト143を印刷する。このようにすることで、分断時等に生じやすい端子電極142のバリ、延び等の発生を抑制することができ、端子電極142の変形を防止することも可能となる。
 図5は、本発明の実施の形態1に係るモジュール基板の製造工程を示す斜視図である。まず、図5(a)に示すように、外形が矩形であるベース基板10の表面電極のうち、所望の表面電極上に半田を印刷する。ベース基板10としては、LTCC(低温同時焼成セラミックス:Low Temperature Co-fired Ceramics)基板、有機基板等、特に限定されるものではない。
 LTCC基板を用いてベース基板10を作成する場合、まずPETフィルム上にセラミックスラリーをコーティングした後、乾燥させ、厚み10~200μmのセラミックグリーンシートを作成する。作成したセラミックグリーンシートに金型、レーザ等により直径略0.1mmのビアホールをPETフィルム側から形成する。
 次に、銀又は銅を主成分とする金属粉、樹脂、有機溶剤を混練した電極ペーストをビアホール内に充填して乾燥させる。そして、セラミックグリーンシート上に同等の電極ペーストを所望のパターンにスクリーン印刷等し、乾燥させる。
 この状態で複数のセラミックグリーンシートを積み重ね、圧力100~1500kg/cm、温度40~100℃にて圧着する。その後、電極ペーストが銀を主成分とする場合には空気中で略850℃、銅を主成分とする場合には窒素雰囲気中で略950℃にて焼成し、電極にNi/Sn又はNi/Au等を湿式メッキ等で成膜することで、ベース基板10を作成する。
 次に、図5(b)に示すように、半田が印刷されている表面電極上に複数の電子部品12を実装するとともに、複数の端子接続基板14も実装する。端子接続基板14は、実装されている複数の電子部品12と接触しない位置に、端子電極142の一端側がベース基板10と接触するように実装する。例えば、図5(b)に示すように、ベース基板10の外周辺の対向する二辺に端子接続基板14を配置しても良いし、ベース基板10の外周辺の四辺に端子接続基板14を配置しても良い。また、複数の電子部品12は、ベース基板10の表面だけでなく、裏面にも実装することができることは言うまでもない。
 なお、複数の端子接続基板14は、必要に応じてベース基板10の外周辺近傍以外にも配置することができる。例えばベース基板10の略中央部分に配置した場合、複数の端子電極142と複数の電子部品12との間には絶縁体が存在しないため接近させることができ、同じ数の端子電極142、電子部品12を配置する場合にはモジュール基板を小型化することができる。
 図6は、本発明の実施の形態1に係るモジュール基板の端子接続基板14の配置方向と直交する面での断面図である。図6の例では、端子接続基板14はベース基板10の外周辺の対向する二辺に略接するように配置してあり、さらにベース基板10の略中央部分に配置してある。
 以上のように本実施の形態1によれば、スルーホールに形成した薄いメッキ膜ではなく柱状の端子電極142により電気的接続を行うことができるので、比較的大きな電流を流すことができる。また、スルーホールを形成してメッキ膜を形成する等の煩雑な工程が不要となり、製造工程を簡素化することができるので、全体として製造コストを低減することが可能となる。
 (実施の形態2)
 本発明の実施の形態2に係るモジュール基板に配置する端子接続基板14の構成は実施の形態1と同様であることから、同一の符号を付することにより詳細な説明は省略する。本発明の実施の形態2に係るモジュール基板は、ベース基板10に複数の電子部品12及び複数の端子接続基板14を実装した後、実装された複数の電子部品12及び端子接続基板14を樹脂で封止し、封止した樹脂の上面を研磨する点で実施の形態1と相違する。
 図7は、本発明の実施の形態2に係るモジュール基板の製造工程を示す、端子接続基板14の配置方向と直交する面での断面図である。まず、図7(a)に示すように、半田が印刷されているベース基板10の表面電極上に複数の電子部品12を実装するとともに、複数の端子接続基板14も実装する。複数の端子接続基板14は、ベース基板10の周縁部、例えばベース基板10の外周辺の対向する二辺に配置されるように実装し、さらにベース基板10の略中央部分にも実装する。また、複数の電子部品12は、ベース基板10の表面だけでなく、裏面にも実装することができる。本実施の形態2では、表裏両面に実装している。
 そして、図7(b)に示すように、表裏両面に樹脂シート(樹脂)21をラミネートする。樹脂シート21は、PETフィルム上に複合樹脂を成型して半硬化させたものを用いる。複合樹脂は、エポキシ、フェノール、シアネート等の熱硬化性樹脂と、Al、SiO、TiO等の無機フィラーとを混合させた複合材料である。樹脂シート21をラミネートする場合、所望の厚みを有するスペーサを、ベース基板10の周囲に配置することにより、ラミネートした樹脂シート21に所望の厚みを確保することができる。この状態のベース基板10をオーブンに入れて、樹脂シート21を完全に硬化させる。
 本実施の形態2では、上述したように表裏両面に樹脂シート21を一括してラミネートして硬化させているが、表面、裏面を別個にラミネートして硬化させても良い。
 次に、図7(c)に示すように、封止した樹脂21の上面を、図示しないローラ型ブレード等で研磨する。複数の端子接続基板14の高さが、半田等によりばらついている場合であっても、複数の端子電極142が柱状であることから、硬化した樹脂シート21を研磨した結果として、樹脂21の天面から露出した複数の端子電極142の形状は略一致する。したがって、マザー基板と確実に接続することができる。
 そして、露出した複数の端子電極142の上面にNi/Auメッキを施す。もちろん、Ni/Auメッキを施す前に導電性ペーストによりNC電極を形成しても良い。NC電極を形成することにより、マザー基板と接続する電極数を増やすことができ、衝撃が分散されやすくなるので、モジュール基板の落下時の衝撃に対する強度が向上する。
 図8は、本発明の実施の形態2に係るモジュール基板のNC電極を形成する場合の工程を示す、端子接続基板14の配置方向と直交する面での断面図である。図8(a)に示すように、露出した複数の端子電極142の上面にNi/Auメッキを施す前に、封止した樹脂21の上面に複数のNC電極101を印刷して形成する。そして、図8(b)に示すように、露出した複数の端子電極142の上面、及び形成した複数のNC電極101の上面にNi/Auメッキ102を施す。これにより、マザー基板と接続する電極数を増やすことができるので、モジュール基板の落下時の衝撃に対する強度が向上する。
 また、Ni/Auメッキ102を施す前にレジスト印刷を施しても良い。図9は、本発明の実施の形態2に係るモジュール基板にレジスト印刷を施す場合の工程を示す斜視図である。図9(a)の例では、端子接続基板14の複数の端子電極142の断面形状が六角形である。図9(b)は、複数の端子電極142の断面形状が矩形112となるようにレジスト111を印刷し、露出した複数の端子電極142の上面にNi/Auメッキを施す。
 このようにすることで、複数の端子電極142の周縁部を被覆することができるので、上面からの水分の侵入等を防止することができ、モジュール基板としての信頼性が向上する。また、複数の端子電極142の断面形状も任意の形状、図9の例では六角形を矩形へと容易に変更することができる。
 さらに、Ni/Auメッキを施す前に再配線を施しても良い。端子接続基板14をモジュール基板の外周辺近傍に配置した場合、モジュール基板の周縁部に複数の端子電極142が集中する。そこで、端子電極142の位置をモジュール基板の周縁部から所望の位置へと変更するよう再配線する。
 再配線は、封止した樹脂21の上面にスクリーン印刷、インクジェット等により施される。また、シールド用配線パターンを形成した後、無電解メッキすることで再配線しても良い。再配線した端子電極142の周辺にソルダレジストを印刷し、外部接続用のバンプを形成しても良い。
 図10は、本発明の実施の形態2に係るモジュール基板に再配線を施す場合の、端子接続基板14の配置方向と直交する面での断面図である。図10に示すように、ソルダレジスト121を再配線パターンの周辺に印刷し、複数のバンプ122を再配線パターンに応じて形成してある。これにより、外部電極の位置が複数の端子電極142の位置(モジュール基板の外周辺近傍)に限定されることがなく、設計上の自由度が向上する。
 以上のように本実施の形態2によれば、スルーホールに形成した薄いメッキ膜ではなく柱状の端子電極142により電気的接続を行うことができるので、比較的大きな電流を流すことができる。また、スルーホールを形成してメッキ膜を形成する等の煩雑な工程が不要となり、製造工程を簡素化することができるので、全体として製造コストを低減することが可能となる。
 (実施の形態3)
 図11は、本発明の実施の形態3に係るモジュール基板の製造工程を示す斜視図である。まず、図11(a)に示すように、複数のモジュール基板(ベース基板10)を切り出すことができる集合基板1の表面電極のうち、所望の表面電極上に半田を印刷する。集合基板1としては、LTCC(低温同時焼成セラミックス:Low Temperature Co-fired Ceramics)基板、有機基板等、特に限定されるものではない。
 LTCC基板を用いてモジュール基板を作成する場合、まずPETフィルム上にセラミックスラリーをコーティングした後、乾燥させ、厚み10~200μmのセラミックグリーンシートを作成する。作成したセラミックグリーンシートに金型、レーザ等により直径略0.1mmのビアホールをPETフィルム側から形成する。
 次に、銀又は銅を主成分とする金属粉、樹脂、有機溶剤を混練した電極ペーストをビアホール内に充填して乾燥させる。そして、セラミックグリーンシート上に同等の電極ペーストを所望のパターンにスクリーン印刷等し、乾燥させる。
 この状態で複数のセラミックグリーンシートを積み重ね、圧力100~1500kg/cm、温度40~100℃にて圧着する。その後、電極ペーストが銀を主成分とする場合には空気中で略850℃、銅を主成分とする場合には窒素雰囲気中で略950℃にて焼成し、電極にNi/Sn又はNi/Au等を湿式メッキ等で成膜することで、集合基板1を作成する。
 次に、図11(b)に示すように、半田が印刷されている表面電極上に複数の電子部品12を実装するとともに、複数の端子接続基板14も実装する。端子接続基板14は、隣接する2つのモジュール基板を跨ぐように実装する。すなわち、図11(b)に示すように、ベース基板10の外周辺の対向する二辺に端子接続基板14を配置しても良いし、ベース基板10の外周辺の四辺に端子接続基板14を配置しても良い。また、電子部品12は、集合基板1の表面だけでなく、裏面にも実装することができることは言うまでもない。
 なお、端子接続基板14は、必要に応じて隣接する2つのモジュール基板を跨ぐ位置以外にも配置することができる。例えばモジュール基板の略中央部分に配置した場合、複数の端子電極142と複数の電子部品12との間には絶縁体が存在しないため接近させることができ、同じ数の端子電極142、電子部品12を配置する場合にはモジュール基板を小型化することができる。
 そして、図11(c)に示すように、ダイサー11を用いて、隣接する2つのモジュール基板を跨ぐように配置されている端子接続基板14の絶縁体141に沿って2つのモジュール基板に分断する。ダイサー11の刃厚を絶縁体141の幅よりも厚くしておくことにより、分断時に絶縁体141がすべて除去され、図11(d)に示すように側面に複数の端子電極142が露出しているモジュール基板を切り出すことができる。なお、側面に露出した複数の端子電極142は、Ni/Sn又はNi/Au等を湿式メッキ等で成膜する。
 図12は、本発明の実施の形態3に係るモジュール基板のダイサー11による分断方向と直交する面での断面図である。図12に示すように、端子接続基板14の絶縁体141は完全に除去されており、モジュール基板の両側面には柱状の端子電極142のみが残されている。これにより、複数の端子電極142以外に余分な絶縁物が存在せず、電子部品12を実装することができる領域を最大限確保することが可能となる。したがって、実装することが可能な電子部品12の点数を増加させることができ、一定の数の電子部品12を実装する場合には、モジュール基板を小型化することが可能となる。
 なお、ダイサー11の刃厚は、絶縁体141の幅より薄くても良い。この場合、分断時に絶縁体141がすべて除去されることはなく残存し、側面に複数の端子電極142が露出していないモジュール基板を切り出すことができる。図13は、本発明の実施の形態3に係るモジュール基板の絶縁体141が残存する場合の斜視図であり、図14は、本発明の実施の形態3に係るモジュール基板の絶縁体141が残存する場合の、ダイサー11による分断方向と直交する面での断面図である。
 図13及び図14に示すように、複数の端子電極142の外側に絶縁体141が残存しているので、側面の複数の端子電極142を酸化等から保護することができる。また、複数の端子電極142が側面に露出していないので、半田がモジュール基板の側面に濡れ広がることを防止することができ、外部シールドとの絶縁性を確実に確保することも可能となる。
 なお、本実施の形態3では、複数の柱状の端子電極142が絶縁体141の両側面に配置してある端子接続基板14を、集合基板1上に実装した後に分断することにより、絶縁体141の一側面に複数の柱状の端子電極142を配置してある端子接続基板14を製造している。しかし、事前に絶縁体141の一側面に複数の柱状の端子電極142を配置してある端子接続基板14を準備しておき、集合基板1又は切り出したベース基板10に実装してモジュール基板を製造しても良い。
 図15は、本発明の実施の形態3に係るモジュール基板に配置する端子接続基板14の他の構成を示す斜視図である。図15に示すように、端子接続基板14は、絶縁体141の一側面に柱状の端子電極142を配置してある。
 以上のように本実施の形態3によれば、製造工程に研磨工程、ビア形成工程等が不要であり、製造コストを大きく低減することが可能となる。また、端子接続基板14の絶縁体141は完全に除去されており、モジュール基板の両側面には複数の柱状の端子電極142のみが残されている。これにより、複数の端子電極142以外に余分な絶縁物が存在せず、電子部品12を実装することができる領域を最大限確保することが可能となる。したがって、実装することが可能な電子部品12の点数を増加させることができ、一定の数の電子部品12を実装する場合には、モジュール基板を小型化することが可能となる。
 また、複数の端子電極142は端部が確実に露出しており、接続不良が生じるおそれがないだけでなく、高さが比較的低いので端子電極142が変形しにくく、隣接する端子電極142同士を短絡させるおそれが少ない。
 (実施の形態4)
 本発明の実施の形態4に係るモジュール基板に配置する端子接続基板14の構成は実施の形態3と同様であることから、同一の符号を付することにより詳細な説明は省略する。本発明の実施の形態4に係るモジュール基板の製造方法は、集合基板1に複数の電子部品12及び複数の端子接続基板14を実装した後、実装された複数の電子部品12及び端子接続基板14を樹脂で封止し、封止した樹脂の上面を研磨する点で実施の形態3と相違する。
 図16は、本発明の実施の形態4に係るモジュール基板の製造工程を示す、端子接続基板14の配置方向と直交する面での断面図である。まず、図16(a)に示すように、半田が印刷されている集合基板1の表面電極上に複数の電子部品12を実装するとともに、複数の端子接続基板14も実装する。端子接続基板14は、隣接する2つのモジュール基板を跨ぐように実装する。また、複数の電子部品12は、集合基板1の表面だけでなく、裏面にも実装することができる。本実施の形態4では、表裏両面に実装している。
 そして、図16(b)に示すように、表裏両面に樹脂シート21をラミネートする。樹脂シート(樹脂)21は、PETフィルム上に複合樹脂を成型して半硬化させたものを用いる。複合樹脂は、エポキシ、フェノール、シアネート等の熱硬化性樹脂と、Al、SiO、TiO等の無機フィラーとを混合させた複合材料である。樹脂シート21をラミネートする場合、所望の厚みを有するスペーサを、モジュール基板を切り出す位置の周囲に配置することにより、ラミネートした樹脂シート21の所望の厚みを確保することができる。この状態の集合基板1をオーブンに入れて、樹脂シート21を完全に硬化させる。
 本実施の形態4では、上述したように表裏両面に樹脂シート21を一括してラミネートして硬化させているが、表面、裏面を別個にラミネートして硬化させても良い。
 次に、図16(c)に示すように、樹脂シート21を用いて樹脂で封止し、封止した樹脂21の上面を、図示しないローラ型ブレード等で研磨する。複数の端子接続基板14の高さが、半田等によりばらついている場合であっても、複数の端子電極142が柱状であることから、硬化した樹脂シート21を研磨した結果として、露出した複数の端子電極142の形状は略一致する。したがって、マザー基板と確実に接続することができる。
 そして、露出した複数の端子電極142の上面にNi/Auメッキを施す。もちろん、Ni/Auメッキを施す前に導電性ペーストによりNC電極を形成しても良い。NC電極を形成することにより、マザー基板と接続する電極数を増やすことができ、衝撃が分散されやすくなるので、モジュール基板の落下時の衝撃に対する強度が向上する。
 図17は、本発明の実施の形態4に係るモジュール基板のNC電極を形成する場合の工程を示す、端子接続基板14の配置方向と直交する面での断面図である。図17(a)に示すように、露出した複数の端子電極142の上面にNi/Auメッキを施す前に、複数のNC電極101を封止した樹脂21の上面に印刷する。そして、図17(b)に示すように、露出した複数の端子電極142の上面、及び印刷した複数のNC電極101の上面にNi/Auメッキ102を施す。これにより、マザー基板と接続する電極数を増やすことができるので、モジュール基板の落下時の衝撃に対する強度が向上する。
 また、Ni/Auメッキ102を施す前にレジストを印刷しても良い。図18は、本発明の実施の形態4に係るモジュール基板にレジスト印刷を施す場合の工程を示す斜視図である。図18(a)の例では、端子接続基板14の複数の端子電極142の断面形状が六角形である。図18(b)は、複数の端子電極142の断面形状が矩形112となるようにレジスト111を印刷し、複数の端子電極142の上面の露出部分と接触する位置にNi/Auメッキを施す。
 このようにすることで、複数の端子電極142の周縁部を被覆することができるので、上面からの水分の侵入等を防止することができ、モジュール基板としての信頼性が向上する。また、複数の端子電極142の断面形状も任意の形状、図18の例では六角形を矩形へと容易に変更することができる。
 さらに、Ni/Auメッキを施す前に再配線を施しても良い。端子接続基板14を配置した位置に応じて複数の端子電極142を設けても良いが、この場合、モジュール基板の周縁部に複数の端子電極142が集中する。そこで、端子電極142の位置をモジュール基板の周縁部から所望の位置へ配置するよう再配線する。
 再配線は、封止した樹脂21の上面にスクリーン印刷、インクジェット等により施される。また、シード用配線パターンを形成した後、無電解メッキすることで再配線しても良い。再配線した端子電極142の周辺にソルダレジストを印刷し、外部接続用のバンプを形成しても良い。
 図19は、本発明の実施の形態4に係るモジュール基板に再配線を施す場合の、端子接続基板14の配置方向と直交する面での断面図である。図19に示すように、ソルダレジスト121を再配線パターンの周辺に印刷し、複数のバンプ122を再配線パターンに応じて形成してある。これにより、外部電極の位置が端子電極142の位置(モジュール基板の外周辺近傍)に限定されることがなく、設計上の自由度が向上する。
 図16に戻って、図16(d)に示すように、封止した樹脂21の上面を研磨してコプラナリティを確保した集合基板1を、ダイサー11を用いて複数のモジュール基板に分断する。端子接続基板14は、隣接する2つのモジュール基板を跨ぐように配置されているので、ダイサー11の刃厚を絶縁体141の幅よりも薄くしておくことにより、分断時に絶縁体141がすべて除去されることはなく残存し、側面に複数の端子電極142が露出していないモジュール基板を製造することができる。
 複数の端子電極142の外側に絶縁体141が残存しているので、複数の端子電極142を酸化等から保護することができる。また、複数の端子電極142が側面に露出していないので、半田がモジュール基板の側面に濡れ広がることを防止することができ、外部シールドとの絶縁性を確実に確保することも可能となる。
 以上のように本実施の形態4によれば、製造工程にビア形成工程等が不要であり、製造コストを大きく低減することが可能となる。また、端子接続基板14の絶縁体141が残存しているので、側面の端子電極142を酸化等から保護することができる。また、端子電極142が側面に露出していないので、半田がモジュール基板の側面に濡れ広がることを防止することができ、外部シールドとの絶縁性を確実に確保することも可能となる。
 なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨の範囲内であれば多種の変形、置換等が可能であることは言うまでもない。例えば、端子接続基板14の絶縁体141と、実装された複数の電子部品12及び端子接続基板14を封止する樹脂21とが、同一の組成であっても良い。この場合、封止した樹脂21と絶縁体141との密着度が増し、モジュール基板の落下時の衝撃に対する強度が向上し、モジュール基板全体としての信頼性が向上する。
 1 集合基板
 10 ベース基板
 12 電子部品
 14 端子接続基板
 21 樹脂シート、樹脂
 141 絶縁体
 142 端子電極

Claims (19)

  1.  ベース基板の少なくとも片面に複数の電子部品を実装したモジュール基板において、
     複数の柱状の端子電極を絶縁体の少なくとも一側面に配置してある端子接続基板を備え、
     複数の柱状の前記端子電極の一端側が前記ベース基板に接触するように、複数の前記端子接続基板を前記ベース基板に実装してあることを特徴とするモジュール基板。
  2.  前記端子接続基板は、複数の柱状の前記端子電極を前記絶縁体の両側面に配置してあることを特徴とする請求項1記載のモジュール基板。
  3.  前記端子接続基板は、複数の前記端子電極を前記絶縁体の両側面にそれぞれ一列に配置してあることを特徴とする請求項2記載のモジュール基板。
  4.  前記端子接続基板は、複数の前記端子電極間にレジストを印刷してあることを特徴とする請求項2又は3に記載のモジュール基板。
  5.  前記ベース基板に実装された複数の前記電子部品と前記端子接続基板とを樹脂で封止してあり、
     前記樹脂は、前記絶縁体と同じ組成であることを特徴とする請求項1乃至4のいずれか一項に記載のモジュール基板。
  6.  少なくとも片面に複数の電子部品を実装した集合基板を分断して、前記集合基板から複数のモジュール基板を切り出すモジュール基板の製造方法において、
     複数の柱状の端子電極を絶縁体の両側面に配置してある端子接続基板を、少なくとも隣接する複数の前記モジュール基板を跨ぐように、前記集合基板の片面に複数実装する第1工程と、
     複数の前記端子接続基板及び前記電子部品を実装した前記集合基板を、前記モジュール基板を切り出す位置で分断する第2工程と
     を含むことを特徴とするモジュール基板の製造方法。
  7.  前記モジュール基板の平面視した外形は矩形であり、
     前記第1工程は、前記モジュール基板の外周辺の対向する二辺に前記端子接続基板を配置することを特徴とする請求項6に記載のモジュール基板の製造方法。
  8.  前記モジュール基板の平面視した外形は矩形であり、
     前記第1工程は、前記モジュール基板の外周辺の四辺に前記端子接続基板を配置することを特徴とする請求項6に記載のモジュール基板の製造方法。
  9.  前記端子接続基板は、複数の前記端子電極を前記絶縁体の両側面にそれぞれ一列に配置することを特徴とする請求項6乃至8のいずれか一項に記載のモジュール基板の製造方法。
  10.  前記端子接続基板は、複数の前記端子電極間にレジストを印刷することを特徴とする請求項7乃至9のいずれか一項に記載のモジュール基板の製造方法。
  11.  前記第2工程は、前記集合基板を分断する場合、前記端子接続基板の絶縁体をすべて除去することを特徴とする請求項6乃至10のいずれか一項に記載のモジュール基板の製造方法。
  12.  前記第2工程は、前記集合基板を分断する場合、前記端子接続基板の絶縁体を残存させることを特徴とする請求項6乃至10のいずれか一項に記載のモジュール基板の製造方法。
  13.  前記第1工程の後、前記集合基板に実装された複数の前記電子部品と前記端子接続基板とを樹脂で封止し、封止した前記樹脂の上面を研磨する工程を含むことを特徴とする請求項6乃至10のいずれか一項に記載のモジュール基板の製造方法。
  14.  封止した前記樹脂の上面を研磨する工程の後、導電性ペーストによりNC電極を形成する工程を含むことを特徴とする請求項13に記載のモジュール基板の製造方法。
  15.  封止した前記樹脂の上面に再度配線を施す工程を含むことを特徴とする請求項13又は14に記載のモジュール基板の製造方法。
  16.  レジスト印刷を施す工程を含むことを特徴とする請求項13乃至15のいずれか一項に記載のモジュール基板の製造方法。
  17.  封止した前記樹脂は、前記端子接続基板の絶縁体と同じ組成であることを特徴とする請求項13乃至16のいずれか一項に記載のモジュール基板の製造方法。
  18.  複数の柱状の端子電極が、絶縁体の少なくとも一側面に配置してあることを特徴とする端子接続基板。
  19.  複数の柱状の端子電極が、絶縁体の両側面に配置してあることを特徴とする請求項18記載の端子接続基板。
PCT/JP2011/055028 2010-04-13 2011-03-04 モジュール基板、モジュール基板の製造方法、及び端子接続基板 WO2011129161A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800137615A CN102792785A (zh) 2010-04-13 2011-03-04 模块基板、模块基板的制造方法、以及端子连接基板
JP2011545513A JP5510461B2 (ja) 2010-04-13 2011-03-04 モジュール基板、及びモジュール基板の製造方法
US13/597,811 US9192051B2 (en) 2010-04-13 2012-08-29 Module substrate, module-substrate manufacturing method, and terminal connection substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-091913 2010-04-13
JP2010091913 2010-04-13
JP2010104791 2010-04-30
JP2010-104791 2010-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/597,811 Continuation US9192051B2 (en) 2010-04-13 2012-08-29 Module substrate, module-substrate manufacturing method, and terminal connection substrate

Publications (1)

Publication Number Publication Date
WO2011129161A1 true WO2011129161A1 (ja) 2011-10-20

Family

ID=44798540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055028 WO2011129161A1 (ja) 2010-04-13 2011-03-04 モジュール基板、モジュール基板の製造方法、及び端子接続基板

Country Status (5)

Country Link
US (1) US9192051B2 (ja)
JP (1) JP5510461B2 (ja)
CN (1) CN102792785A (ja)
TW (1) TWI455267B (ja)
WO (1) WO2011129161A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135849A (ja) * 2014-01-16 2015-07-27 ミツミ電機株式会社 電子部品モジュール及びその製造方法
WO2019181760A1 (ja) * 2018-03-20 2019-09-26 株式会社村田製作所 高周波モジュール
US10602614B2 (en) 2016-04-21 2020-03-24 Murata Manufacturing Co., Ltd. Power supply module and power supply device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035655A1 (ja) * 2011-09-09 2013-03-14 株式会社村田製作所 モジュール基板
US10128175B2 (en) * 2013-01-29 2018-11-13 Taiwan Semiconductor Manufacturing Company Packaging methods and packaged semiconductor devices
KR101548801B1 (ko) 2013-08-28 2015-08-31 삼성전기주식회사 전자 소자 모듈 및 그 제조 방법
KR20150053592A (ko) 2013-11-08 2015-05-18 삼성전기주식회사 전자 소자 모듈 및 그 제조 방법
KR102207270B1 (ko) 2013-11-20 2021-01-25 삼성전기주식회사 반도체 패키지 및 그 제조방법
KR20150092876A (ko) 2014-02-06 2015-08-17 삼성전기주식회사 전자 소자 모듈 및 그 제조 방법
JP2017199761A (ja) * 2016-04-26 2017-11-02 キヤノン株式会社 セラミックパッケージ、その製造方法、電子部品及びモジュール
US10068854B2 (en) * 2016-10-24 2018-09-04 Advanced Semiconductor Engineering, Inc. Semiconductor package device and method of manufacturing the same
CN111566805B (zh) 2018-01-11 2023-11-14 株式会社村田制作所 部件内置模块及其制造方法
JP6962305B2 (ja) * 2018-10-16 2021-11-05 株式会社村田製作所 積層セラミック電子部品
US11296034B2 (en) 2020-06-18 2022-04-05 Advanced Semiconductor Engineering, Inc. Substrate and semiconductor package comprising an interposer element with a slot and method of manufacturing the same
US20230369234A1 (en) * 2022-05-11 2023-11-16 Qualcomm Incorporated Package comprising a substrate and an interconnection die configured for high density interconnection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236265A (ja) * 1990-02-14 1991-10-22 Tdk Corp Icパッケージ及びその製造方法
JPH06216314A (ja) * 1993-01-14 1994-08-05 Matsushita Electric Works Ltd 半導体装置
JP2001156222A (ja) * 1999-11-30 2001-06-08 Xanavi Informatics Corp 基板接続構造、基板接続用プリント配線基板および基板接続方法
JP2004172422A (ja) * 2002-11-20 2004-06-17 Fujitsu Media Device Kk 立体構造基板及びその製造方法
JP2007103553A (ja) * 2005-10-03 2007-04-19 Rohm Co Ltd ハイブリッド集積回路装置とその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216314A (ja) * 1992-02-07 1993-08-27 Ricoh Co Ltd 画像形成装置
JP2001024312A (ja) * 1999-07-13 2001-01-26 Taiyo Yuden Co Ltd 電子装置の製造方法及び電子装置並びに樹脂充填方法
US6625036B1 (en) * 1999-08-31 2003-09-23 Rohm Co., Ltd. Infrared data communication module and method of making the same
JP3681155B2 (ja) * 1999-12-22 2005-08-10 新光電気工業株式会社 電子部品の実装構造、電子部品装置、電子部品の実装方法及び電子部品装置の製造方法
US6713854B1 (en) * 2000-10-16 2004-03-30 Legacy Electronics, Inc Electronic circuit module with a carrier having a mounting pad array
JP2004303944A (ja) 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd モジュール基板及びその製造方法
WO2007046197A1 (ja) * 2005-10-20 2007-04-26 Murata Manufacturing Co., Ltd. 回路モジュールおよびこの回路モジュールを用いた回路装置
JP3960479B1 (ja) 2006-07-07 2007-08-15 国立大学法人九州工業大学 両面電極構造の半導体装置の製造方法
JP5023982B2 (ja) * 2007-11-14 2012-09-12 パナソニック株式会社 モジュールとこれを用いた電子機器
JP2010238691A (ja) * 2009-03-30 2010-10-21 Fujitsu Ltd 中継部材およびプリント基板ユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236265A (ja) * 1990-02-14 1991-10-22 Tdk Corp Icパッケージ及びその製造方法
JPH06216314A (ja) * 1993-01-14 1994-08-05 Matsushita Electric Works Ltd 半導体装置
JP2001156222A (ja) * 1999-11-30 2001-06-08 Xanavi Informatics Corp 基板接続構造、基板接続用プリント配線基板および基板接続方法
JP2004172422A (ja) * 2002-11-20 2004-06-17 Fujitsu Media Device Kk 立体構造基板及びその製造方法
JP2007103553A (ja) * 2005-10-03 2007-04-19 Rohm Co Ltd ハイブリッド集積回路装置とその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135849A (ja) * 2014-01-16 2015-07-27 ミツミ電機株式会社 電子部品モジュール及びその製造方法
US10602614B2 (en) 2016-04-21 2020-03-24 Murata Manufacturing Co., Ltd. Power supply module and power supply device
WO2019181760A1 (ja) * 2018-03-20 2019-09-26 株式会社村田製作所 高周波モジュール
US11153967B2 (en) 2018-03-20 2021-10-19 Murata Manufacturing Co., Ltd. High-frequency module

Also Published As

Publication number Publication date
US20120320536A1 (en) 2012-12-20
JPWO2011129161A1 (ja) 2013-07-11
CN102792785A (zh) 2012-11-21
TW201145483A (en) 2011-12-16
JP5510461B2 (ja) 2014-06-04
US9192051B2 (en) 2015-11-17
TWI455267B (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5510461B2 (ja) モジュール基板、及びモジュール基板の製造方法
US9781828B2 (en) Module substrate and method for manufacturing module substrate
US9591747B2 (en) Module board
US9585260B2 (en) Electronic component module and manufacturing method thereof
US9485867B2 (en) Wiring board
US11121076B2 (en) Semiconductor die with conversion coating
EP2637484B1 (en) Multi-part wired substrate, wired substrate, and electronic device
US9894790B2 (en) Electronic component module and manufacturing method thereof
JP5673123B2 (ja) モジュール基板及びモジュール基板の製造方法
JP4272550B2 (ja) 多数個取り配線基板
JP5956185B2 (ja) 多数個取り配線基板
JP5381881B2 (ja) モジュール基板の製造方法
WO2011077968A1 (ja) 回路モジュールの製造方法、回路モジュール及び回路モジュールを備える電子機器
JP7237990B2 (ja) 電子素子実装用基板、および電子装置
JP4057960B2 (ja) 多数個取り配線基板
JP5574848B2 (ja) 多数個取り配線基板
JP4606303B2 (ja) 多数個取り配線基板、電子装置の製造方法
JP2012049522A (ja) 多数個取り配線基板および電子装置
JP3798992B2 (ja) 多数個取りセラミック配線基板
JP2005136172A (ja) 多数個取り配線基板
JP2005340562A (ja) 多数個取り配線基板
JP2010177320A (ja) 多数個取り配線基板
JP2004179543A (ja) 多数個取り配線基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013761.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011545513

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768682

Country of ref document: EP

Kind code of ref document: A1