WO2011125153A1 - 電子材料用Cu-Ni-Si系合金 - Google Patents

電子材料用Cu-Ni-Si系合金 Download PDF

Info

Publication number
WO2011125153A1
WO2011125153A1 PCT/JP2010/056075 JP2010056075W WO2011125153A1 WO 2011125153 A1 WO2011125153 A1 WO 2011125153A1 JP 2010056075 W JP2010056075 W JP 2010056075W WO 2011125153 A1 WO2011125153 A1 WO 2011125153A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper alloy
particles
less
small particles
Prior art date
Application number
PCT/JP2010/056075
Other languages
English (en)
French (fr)
Inventor
光浩 大久保
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2012509204A priority Critical patent/JP5654571B2/ja
Priority to US13/638,806 priority patent/US9005521B2/en
Priority to PCT/JP2010/056075 priority patent/WO2011125153A1/ja
Priority to EP10849397.4A priority patent/EP2554691A4/en
Priority to CN2010800660459A priority patent/CN102822364A/zh
Priority to KR1020127027855A priority patent/KR20120130342A/ko
Publication of WO2011125153A1 publication Critical patent/WO2011125153A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a precipitation hardening type copper alloy, and more particularly to a Cu—Ni—Si based alloy suitable for use in various electronic device parts.
  • Copper alloys for electronic materials used in various electronic equipment components such as lead frames, connectors, pins, terminals, relays, switches, etc., have both high strength and high conductivity (or thermal conductivity) as basic characteristics. Required. In recent years, high integration and miniaturization / thinning of electronic components have been rapidly progressing, and the level of demand for copper alloys used in electronic device components has been increased accordingly.
  • the amount of precipitation hardening type copper alloys has increased in place of conventional solid solution strengthened copper alloys such as phosphor bronze and brass as copper alloys for electronic materials. ing.
  • precipitation-hardened copper alloys by aging the supersaturated solid solution that has undergone solution treatment, fine precipitates are uniformly dispersed, increasing the strength of the alloy and reducing the amount of solid solution elements in the copper. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.
  • Cu-Ni-Si copper alloys commonly called Corson alloys
  • Corson alloys are representative copper alloys that have relatively high electrical conductivity, strength, stress relaxation characteristics and bending workability. Is one of the alloys that is currently under active development. In this copper alloy, the strength and conductivity can be improved by precipitating fine Ni—Si intermetallic compound particles in the copper matrix.
  • Patent Document 1 there are Ni—Si compound particles having a particle size of 0.003 ⁇ m or more and less than 0.03 ⁇ m (small particles) and 0.03 ⁇ m to 100 ⁇ m (large particles).
  • the ratio of the number of small particles / large particles is 1.5 or more.
  • Small particles having a particle size of less than 0.03 ⁇ m mainly improve the strength and heat resistance of the alloy, but do not contribute much to the shear processability.
  • large particles with a particle size of 0.03 ⁇ m or more do not contribute much to the improvement of the strength and heat resistance of the alloy, but receive stress intensively during the shearing process and become a source of microcracking, which significantly improves the shearing processability.
  • the copper alloy of patent document 1 is a copper alloy which has characteristics, such as intensity
  • the following is disclosed as a method for producing the copper alloy described in Patent Document 1. 1) When the Ni content is 4 wt% and the Si content is 1 wt% or more, coarsening of the crystallized particles is particularly likely to occur. Therefore, in order to keep the size of the crystallized particles within the target range, After the addition of Ni and Si, the molten metal is maintained at a temperature of 1300 ° C.
  • the cooling rate in the mold is set to 0.3 ° C./second or higher from the casting temperature to the solidification temperature.
  • the hot-rolled material after hot rolling is quenched in water, and the cold-rolled material is heated at 500 to 700 ° C. for 1 minute to 2 hours to precipitate large particles. Thereafter, cold rolling is further performed, and this time heating is performed at 300 to 600 ° C. for 30 minutes or more to precipitate small particles.
  • Patent Document 2 Ni—Si precipitates in the structure of a copper alloy, the grain size of other precipitates, the ratio of the distribution density, and the relationship between the suppression of crystal grain coarsening Paying attention to the above, the precipitate X made of Ni and Si and the precipitate Y not containing one or both of Ni and Si, the particle diameter of the precipitate X being 0.001 to 0.1 ⁇ m, It is described that the particle size of the precipitate Y is 0.01 to 1 ⁇ m. In order to achieve both strength and bending workability, the number of precipitates X should be 20 to 2000 times the number of precipitates Y, or the number of precipitates X can be 10 8 to 10 12 per mm 2 .
  • the number of precipitates Y is 10 4 to 10 8 per 1 mm 2 .
  • the following is disclosed as a method for producing the copper alloy described in Patent Document 2.
  • the ingot is heated at a heating rate of 20 to 200 ° C./hour, hot-rolled at 850 to 1050 ° C. for 0.5 to 5 hours, and the end temperature of hot rolling Rapidly cools to 300-700 ° C.
  • precipitates X and Y are generated.
  • hot rolling for example, solution heat treatment, annealing, and cold rolling are combined to obtain a desired plate thickness.
  • the purpose of the solution heat treatment is a heat treatment in which Ni and Si precipitated during casting and hot working are re-solidified and recrystallized at the same time.
  • the temperature of the solution heat treatment is adjusted according to the amount of added Ni. For example, when the Ni amount is 2.0 to less than 2.5% by mass, 650 ° C., and when the amount of Ni is less than 2.5 to 3.0% by mass, 800 ° C. 0.0 to less than 3.5% by mass is 850 ° C, 3.5 to less than 4.0% by mass is 900 ° C, 4.0 to less than 4.5% by mass is 950 ° C, 4.5 to 5.0% by mass Is 980 ° C.
  • Patent Document 3 is formed of a copper alloy containing 2.0 to 5.0 mass% of Ni and 0.43 to 1.5 mass% of Si with the balance being Cu and inevitable impurities.
  • the copper alloy sheet material contains three types of intermetallic compounds A, B, and C containing 50 mass% or more of Ni and Si in total, and the compound diameter of the intermetallic compound A is 0.3 ⁇ m or more and 2 ⁇ m or less.
  • the compound diameter of the intermetallic compound B is 0.05 ⁇ m or more and less than 0.3 ⁇ m
  • the compound diameter of the intermetallic compound C is more than 0.001 ⁇ m and less than 0.05 ⁇ m.
  • a copper alloy sheet for equipment is disclosed.
  • a copper alloy ingot containing 2.0 to 5.0 mass% of Ni, 0.43 to 1.5 mass% of Si, and the balance of Cu and inevitable impurities is reheated at 850 to 950 ° C. for 2 to 10 hours.
  • a method for producing a copper alloy sheet for electrical and electronic equipment comprising the steps of: aging heat treatment of the quenched copper alloy sheet at 400 to 550 ° C. for 1 to 4 hours.
  • Patent Document 1 In the copper alloy described in Patent Document 1, only the ratio of the number of small particles to the number of large particles has been examined, and the number density of particles is not mentioned.
  • the large particles and the small particles are precipitated by being aged twice, but the small particles precipitated in the second time have a concentration of Ni and Si dissolved in comparison with the first time. Since it is low, it is difficult to precipitate, and since both the number density and the particle diameter are small, the positive effect on the strength is insufficient (see Comparative Example 5 described later).
  • the method of aging twice also has a problem that it is difficult to control the particle diameter and density because the amount of Ni and Si dissolved in the solution changes depending on the first aging.
  • the Ni—Si compound particles are controlled only in the range of 0.001 to 0.1 ⁇ m in particle size, and Ni—Si compound particles having a larger particle size are considered as alloy characteristics. The effect on it has not been studied.
  • the large particles described in Patent Document 2 are precipitates that do not contain one or both of Ni and Si. Such large particles are coarsened depending on the amount of additive elements and temperature conditions, and are liable to adversely affect bending workability.
  • the solution treatment is performed by heating at 950 ° C. for 20 seconds, and the crystal grains exemplified in this document have a Ni concentration of 3.3% by mass. Then, it is considered that when such a solution treatment is performed, the particle size exceeds 30 ⁇ m and is coarsened.
  • an object of the present invention is to improve the characteristics of the Corson alloy by controlling the distribution state of the Ni—Si compound particles more strictly.
  • the Ni—Si compound particles precipitated in the copper matrix have a particle size that tends to precipitate mainly in the crystal grains of 0.01 ⁇ m to 0.3 ⁇ m.
  • the Ni-Si compound particles (small particles) that are less than the particle size and the Ni-Si compound particles (large particles) that have a particle size that is likely to precipitate mainly at the grain boundaries of 0.3 ⁇ m or more and less than 1.5 ⁇ m It was found that by controlling the size and number density, it is possible to obtain a Corson-based alloy having an excellent balance between strength and electrical conductivity and excellent bending workability.
  • the small particles are controlled to a size in the range of 0.01 ⁇ m to less than 0.3 ⁇ m to control the number density to 1 to 2000 / ⁇ m 2 and the large particles to 0.3 ⁇ m or more. It has been found that it is effective to control the number density to 0.05 to 2 / ⁇ m 2 by controlling the size to a range of less than 1.5 ⁇ m.
  • the present invention completed on the basis of such knowledge, in one aspect, contains Ni: 0.4 to 6.0 mass%, Si: 0.1 to 1.4 mass%, and is composed of the balance Cu and inevitable impurities. And a Ni—Si compound small particle having a particle size of 0.01 ⁇ m or more and less than 0.3 ⁇ m, and a Ni—Si compound having a particle size of 0.3 ⁇ m or more and less than 1.5 ⁇ m A copper alloy for electronic materials in which large particles are present, the number density of the small particles is 1 to 2000 / ⁇ m 2 , and the number density of the large particles is 0.05 to 2 / ⁇ m 2. .
  • the copper alloy for electronic materials according to the present invention has a unit area of 0.5 ⁇ m ⁇ 0.5 ⁇ m as one field of view, and 10 fields of view selected for a copper alloy surface area of 100 mm 2 are observed.
  • the maximum value of the density ratio is 10 or less, and when the 10 areas selected at a surface area of 100 mm 2 of the copper alloy are observed with a unit area of 20 ⁇ m ⁇ 20 ⁇ m as one field of view, The maximum value is 5 or less.
  • the ratio of the average particle size of the large particles to the average particle size of the small particles is 2 to 50.
  • the average crystal grain size is 1 to 30 ⁇ m in terms of equivalent circle diameter when observed from the cross section in the thickness direction parallel to the rolling direction.
  • the maximum ratio of length ratios of adjacent crystal grain sizes in the thickness direction parallel to the rolling direction is 3 or less.
  • the copper alloy for electronic materials according to the present invention includes one or more selected from Cr, Co, Mg, Mn, Fe, Sn, Zn, Al, and P in a total of 1. Contains up to 0% by weight.
  • a copper-drawn product made of the copper alloy for electronic materials according to the present invention.
  • the present invention is an electronic component including the copper alloy for electronic materials according to the present invention.
  • a molten metal obtained by melting a raw material containing Ni and Si is maintained at 1130 to 1300 ° C. when the Ni concentration is 0.4 to 3.0 mass%. When it is 0 to 6.0% by mass, it is held at 1250 to 1350 ° C., and then an ingot having a desired composition is melt cast, and when Ni in the ingot is less than 2.0% by mass, 800 to 900 When the temperature is 2.0% by mass or more and less than 3.0% by mass, the temperature is 850 to 950 ° C., and when 3.0% by mass or more and less than 4.0% by mass, the temperature is 900 to 1000 ° C. and 4.0% by mass. In the above case, when heating at 950 ° C.
  • a method of manufacturing a copper alloy according to the present invention include performing the step of performing an aging treatment, in this order.
  • FIG. 1 shows large particles in a cross section in the thickness direction parallel to the rolling direction observed by SEM for a copper alloy (working degree 0%) according to the present invention.
  • FIG. 2 shows large particles in a cross section in the thickness direction parallel to the rolling direction observed by TEM for the copper alloy according to the present invention (working degree 66%).
  • FIG. 3 shows small particles in a cross section in the thickness direction parallel to the rolling direction observed by TEM for the copper alloy according to the present invention (working degree 0%).
  • FIG. 4 shows small particles in a cross section in the thickness direction parallel to the rolling direction observed by TEM for the copper alloy (working degree 99%) according to the present invention.
  • Ni and Si form Ni—Si compound particles (such as Ni 2 Si) as an intermetallic compound by performing an appropriate heat treatment, and can increase the strength without deteriorating conductivity. If the amount of Si or Ni added is too small, the desired strength cannot be obtained. If it is too large, the strength can be increased, but the electrical conductivity is remarkably lowered, and the hot workability is lowered. In addition, hydrogen may be dissolved in Ni, which may cause blowholes during melt casting, so increasing the amount of Ni added may cause breakage in intermediate processing. Since Si reacts with C and reacts with O, if the addition amount is large, a very large amount of inclusions are formed, which causes breakage during bending.
  • an appropriate Si addition amount is 0.1 to 1.4% by mass, preferably 0.2 to 1.0%.
  • a suitable Ni addition amount is 0.4 to 6.0% by mass, preferably 1.0 to 5.0% by mass.
  • Sn Sn has the same effect as Mg. However, unlike Mg, the amount dissolved in Cu is large, so it is added when more heat resistance is required. However, the conductivity decreases significantly as the amount increases. Therefore, Sn is preferably added up to 0.5% by mass, preferably 0.1 to 0.4% by mass. However, when both Mg and Sn are added, in order to suppress adverse effects on the electrical conductivity, the total concentration of both is up to 1.0 mass%, preferably up to 0.8 mass%. (4) Zn Zn has an effect of suppressing solder embrittlement. However, since the conductivity decreases when the amount added is large, it is preferable to add up to 0.5% by mass, and preferably 0.1 to 0.4% by mass.
  • Ni—Si compound particles In the present invention, the Ni—Si compound particles precipitated in the copper matrix are divided into two types, small particles and large particles, and the number density and particle size of each particle, and their mutual relationship are also controlled.
  • a small particle means a Ni—Si compound particle having a particle size of 0.01 ⁇ m or more and less than 0.3 ⁇ m
  • a large particle is a Ni—Si particle having a particle size of 0.3 ⁇ m or more and less than 1.5 ⁇ m.
  • Si compound particles Small particles are mainly particles precipitated in crystal grains, and large particles are mainly particles precipitated in crystal grain boundaries.
  • Ni—Si compound particles refer to particles in which both Ni and Si are detected by elemental analysis.
  • FIG. 1 shows large particles in a cross section in the thickness direction parallel to the rolling direction observed by SEM for the copper alloy (working degree 0%) according to the present invention.
  • FIG. 2 the large particle in the cross section of the thickness direction parallel to the rolling direction observed with TEM about the copper alloy (working degree 66%) which concerns on this invention is shown.
  • FIG. 3 the small particle in the cross section of the thickness direction parallel to the rolling direction observed with TEM about the copper alloy (working degree 0%) which concerns on this invention is shown.
  • FIG. 4 the small particle in the cross section of the thickness direction parallel to the rolling direction observed with TEM about the copper alloy (working degree 99%) which concerns on this invention is shown.
  • Ni—Si compound particles precipitated in the crystal grains can generally be fine precipitates of about several tens of nm.
  • Ni—Si compound particles having a size of less than 0.3 ⁇ m have a dislocation pinning effect, so that the dislocation density is increased and the strength of the entire alloy is easily improved. Since the Ni—Si compound particles having such a particle size have a small inter-particle distance and a large number, the rate of contributing to the strength is high. Moreover, since it has the effect
  • particles of this size are sheared when the large strain is applied and the surface area of the particles is reduced, so that the force required for shearing is reduced. Therefore, the dislocation density is not increased without leaving a dislocation loop. Therefore, Ni—Si compound particles of less than 0.01 ⁇ m hardly contribute to strength.
  • the sheared particles may be dissolved again in the copper matrix, leading to a decrease in conductivity. Further, since the sheared particles do not act as nucleation sites for recrystallization, there is a high possibility that the recrystallized grains become coarse. Coarse crystal grains have an adverse effect on strength and bendability.
  • the number density of small particles having a particle size of 0.01 ⁇ m or more and less than 0.3 ⁇ m.
  • Small particles greatly contribute to the improvement of strength, but if they increase, the conductivity tends to decrease. Therefore, in order to balance strength and conductivity, the number density of small particles should be 1 to 2000 / ⁇ m 2. is necessary.
  • the number density of the small particles can be measured by observing the structure with a transmission electron microscope.
  • the Ni—Si compound particles precipitated at the crystal grain boundaries can generally become precipitates having a size of about several hundred nm to several ⁇ m.
  • Ni—Si compound particles that are 0.3 ⁇ m or more and less than 1.5 ⁇ m can act as strong particles that are not sheared.
  • the strength and heat resistance of the alloy can be improved in the same way as small particles, but the number of particles is small due to the large particle size and the distance between particles is large, so the contribution to strength and heat resistance is smaller than that of small particles. .
  • the unsheared particles can serve as nucleation sites during recrystallization.
  • Fine crystal grains particularly contribute to strength and bendability.
  • Ni and Si to be used for forming small particles are insufficient, and the strength tends to decrease.
  • Ag plating or the like is performed on the material, the plating thickness locally increases, which may lead to protrusion-like defects.
  • the number density of large particles of 0.3 ⁇ m or more and less than 1.5 ⁇ m Large particles contribute to the refinement of crystal grains and electrical conductivity, while increasing the number of small particles tends to reduce the number density of small particles, so if the ratio of the number of large particles to small particles is not within the appropriate range, -The balance of conductivity is lost. Specifically, the strength decreases as the number of large particles increases, and the conductivity decreases as the number of small particles increases. Therefore, in order to balance strength and conductivity, the number density in the particle size range of 0.3 ⁇ m or more and less than 1.5 ⁇ m needs to be 0.05 to 2 / ⁇ m 2 . The number density of large particles can be measured by observing the structure with a scanning electron microscope.
  • the precipitated particles distort each matrix.
  • the particles are dispersed at a non-uniform density, stress is generated due to non-uniform strain and remains.
  • this residual stress is large, the stress cannot be relaxed even by strain relief annealing.
  • large particles are concentrated in a cluster shape, unevenness is often caused due to a difference from the surroundings during plating or etching, resulting in a protrusion-like defect.
  • cold rolling is performed after the aging treatment, the particles dispersed at a non-uniform density cause non-uniform deformation because the work hardening ability varies from place to place.
  • the small particles and the large particles are present at a uniform density in the copper alloy. Therefore, when 10 fields randomly selected with a surface area of 100 mm 2 of copper alloy are observed with a unit area of 0.5 ⁇ m ⁇ 0.5 ⁇ m as one field, the maximum value of the density ratio between the fields related to small particles is 10 or less. There is a unit area of 20 ⁇ m ⁇ 20 ⁇ m as one field, and when 10 fields selected at random in a copper alloy surface area of 100 mm 2 are observed, the maximum value of the density ratio between fields related to large particles is 5 or less. preferable.
  • the ratio of the average particle size of the large particles to the average particle size of the small particles is preferably 2 to 50.
  • the copper alloy according to the present invention has an average crystal grain size of 1 to 30 ⁇ m expressed in terms of an equivalent circle diameter when observed from a cross section in the thickness direction parallel to the rolling direction.
  • non-uniform crystal grain size means that the precipitated particles become non-uniform, which is not preferable from the above point.
  • the lengths of the crystal grains in the thickness direction are made uniform because the plastic deformation ability in this direction is greatly affected when rolling is considered as deformation in the thickness direction.
  • the plate thickness tends to be thin, and if the number density of crystal grains is not uniform with respect to the plate thickness, it is expected to break from that point. For this reason, it is preferable that the crystal grain size has a uniform length in the thickness direction parallel to the rolling direction. Therefore, it is preferable that the maximum value of the ratio of the lengths in the thickness direction parallel to the rolling direction between adjacent crystal grain sizes is 3 or less.
  • the copper alloy according to the present invention can be manufactured through some characteristic processes, based on the conventional manufacturing process of Cu—Ni—Si alloys.
  • this molten metal is cast into an ingot.
  • Ni in the ingot is less than 2.0% by mass, it is 800 to 900 ° C., and when it is 2.0% by mass or more and less than 3.0% by mass, it is 850 to 950 ° C. and 3.0% by mass or more.
  • it is less than 4.0% by mass, it is heated at 900 to 1000 ° C., and when it is 4.0% by mass or more, it is heated at 950 ° C. or more, followed by hot rolling. If the large particles are not sufficiently lost or reduced in diameter by this heat treatment before hot rolling, the solution treatment becomes difficult and large particles remain.
  • the higher the Ni concentration the higher the solid solution temperature.
  • the heat treatment temperature is increased as the Ni concentration increases. If it is lower than the above-mentioned temperature, Ni and Si are not sufficiently dissolved. When the temperature is higher than the above-mentioned temperature, solid solution is promoted, but cracking may proceed due to the interaction between the coarsening of recrystallized grains at a high temperature and the high temperature product, which is not preferable. By reducing the thickness at the end of hot rolling to less than 20 mm, cooling can be accelerated, and precipitation of precipitates that do not contribute to properties can be suppressed. The temperature at this time may be terminated at a high temperature of 600 ° C. or higher. However, when it is difficult to form a solution in a later step, it is more effective to terminate at a lower temperature.
  • the sheet thickness after cold rolling is desirably 1 mm or less, more desirably 0.5 mm or less, and most desirably 0.3 mm or less.
  • a solution treatment is performed.
  • the Ni—Si compound is dissolved in the Cu matrix and the Cu matrix is recrystallized at the same time.
  • solid solution of Ni and Si is promoted at higher temperatures.
  • the cause was the cooling process in the hot rolling process after casting and reheating.
  • the crystal grain size after solution treatment should be in the range of 5 to 30 ⁇ m when observed in a cross section perpendicular to the rolling direction. It is important to adjust the temperature and time of the solution treatment. In addition, if the thickness of the material during the solution treatment is large, a sufficient cooling rate cannot be obtained even when water-cooled after the solution treatment, and the solidified additive element may be precipitated during the cooling. Accordingly, it is desirable that the thickness of the solution treatment is 0.3 mm or less. In order to suppress the precipitation of the additive element, the average cooling rate from the solution temperature to 400 ° C.
  • a cooling rate is preferably 10 ° C./second or more, and more preferably 15 ° C./second or more.
  • Such a cooling rate can be achieved by air cooling if the plate thickness is about 0.3 mm or less, but water cooling is still better. However, even if the cooling rate is increased too much, the shape of the product is deteriorated, so that it is preferably 30 ° C./second or less, and more preferably 20 ° C./second or less.
  • aging treatment is performed without performing cold rolling.
  • cold rolling defects in the parent phase such as crystal grain boundaries, vacancies, and dislocations are preferentially used as precipitation sites, so that the dislocation density is increased and precipitation of precipitates is promoted. Therefore, although cold rolling promotes precipitation, as described above, the particles precipitated at the grain boundaries are large particles, and the ratio of precipitates intended by the present invention is lost.
  • the grain boundaries formed by cold rolling have different properties from those after heat treatment (after solution treatment).
  • the grain boundaries formed by cold rolling are mainly composed of dislocations, and the energy of the grain boundaries is considered to be higher at the grain boundaries by cold rolling.
  • Patent Document 1 employs a method of precipitating large particles and small particles by performing aging treatment twice.
  • the solid particles are solidified in copper. Since the dissolved Ni and Si concentrations are low, Ni and Si are less likely to diffuse and therefore less likely to precipitate. For this reason, small particles having a number density as intended by the present invention cannot be obtained.
  • the size of the precipitated particles already generated in the first aging treatment is affected during the second aging treatment, it is difficult to control the particle size and density.
  • the solution treatment is properly performed in the previous step, but the temperature and time should be within the appropriate ranges. is important.
  • This aging treatment increases strength and conductivity.
  • the aging treatment can be carried out at a temperature of 300 to 600 ° C. for 0.5 to 50 hours, but the shorter the heating temperature is, the longer the heating temperature is. This is because Ni—Si compound particles are likely to be coarsened when heated at a high temperature for a long time, and Ni—Si compound particles are not sufficiently precipitated when heated at a low temperature for a short time.
  • the heating temperature t is 300 ° C.
  • the aging time indicated by 25 is approximately z (h). For example, it may be about 15 h at 400 ° C., about 2 h-5 h at 500 ° C., and about 0.5 h-1 h at 600 ° C.
  • cold rolling can also be performed after aging. When cold rolling is performed after aging, strain relief annealing (low temperature annealing) may be performed after cold rolling.
  • the copper alloy according to the present invention can be processed into various copper products, such as plates, strips, tubes, rods and wires, and the copper alloy according to the present invention has high strength and high electrical conductivity (or heat conduction).
  • Can be used for electronic device parts such as lead frames, connectors, pins, terminals, relays, switches, and foil materials for secondary batteries.
  • Copper alloys having various component compositions shown in Tables 1 to 4 were melted in a high-frequency melting furnace, held at each melting holding temperature, and cast into a 30 mm thick ingot. Next, after heating this ingot at each reheating temperature, it was hot-rolled to a plate thickness of 10 mm at 850 to 1050 ° C. ⁇ 0.5 to 5 hours (the material temperature at the end of hot rolling was 500 ° C.) Face removal was applied to a thickness of 8 mm for scale removal. Subsequently, after the plate thickness was reduced to 0.15 mm or 0.10 mm by cold rolling, solution treatment was performed under the conditions described in Tables 1 to 4. Thereafter, an aging treatment was performed in an inert atmosphere under the conditions shown in Tables 1 to 4.
  • the plate thickness of 0.15 mm was further reduced to 0.10 mm by cold rolling.
  • Tables 1, 3 and 4 show production examples of Cu—Ni—Si based copper alloys, and Table 2 further shows Cu—Ni— with appropriate addition of Mg, Cr, Sn, Zn, Mn, Co, Fe and P. An example of producing a Si-based copper alloy will be shown.
  • cold rolling under the conditions described in Table 3 is performed between the solution treatment and the aging treatment, respectively.
  • the cross section in the thickness direction parallel to the rolling direction was cut with a fine cutter, followed by cold resin filling, followed by mirror polishing (1 micron buff).
  • electrolytic polishing was performed, and crystal grains were observed using a scanning electron microscope (SEM): HITACHI-S-4700.
  • SEM scanning electron microscope
  • the crystal grain size an average value of 10 crystal grains was obtained for the width in the processing direction. From the final product, the crystal grain size can be measured by the following method. First, a cross section in the thickness direction parallel to the rolling direction is electropolished, the cross-sectional structure is observed by SEM, and the number of crystal grains per unit area is counted.
  • the areas of all observation fields are summed, and the total area is divided by the total number of crystal grains counted to calculate the area per crystal grain. From the area, the diameter (equivalent circle diameter) of a perfect circle having the same area as that area can be calculated and used as the average crystal grain size.
  • the small particles were observed at 10 fields randomly selected with a surface area of 100 mm 2 of the copper alloy, with a unit area of 0.5 ⁇ m ⁇ 0.5 ⁇ m as one field of view.
  • the large particles were observed at 10 fields randomly selected with a surface area of 100 mm 2 of the copper alloy with a unit area of 20 ⁇ m ⁇ 20 ⁇ m as one field of view.
  • the size of the precipitate was 5 to 100 nm, the image was taken at a magnification of 500,000 to 700,000 times, and when it was 100 to 5000 nm, the image was taken at 50,000 to 100,000 times.
  • the area is calculated from the major axis and minor axis of each particle, and from the area, the diameter of a perfect circle having the same area as that area (equivalent circle diameter) is calculated. It can be a diameter.
  • the particle size is divided into small particles and large particles, the particle size and the number of particles are counted, the sum of the particle sizes is divided by the number of particles to obtain the average particle size, and the sum of the particle numbers is divided by the total area of the observation field. Thus, the number density was obtained.
  • the major axis refers to the length of the longest line segment that passes through the particle's center of gravity and has intersections at both ends with the boundary line of the particle
  • the minor axis refers to the particle's center of gravity.
  • the observed particles are Ni-Si compound particles, which means that elemental mapping with a scanning electron microscope equipped with EDS, especially a field emission electron microscope with high elemental analysis accuracy, and transmission type equipped with EELS for small precipitates. This was confirmed by the element mapping method using an electron microscope. In the final product, there are cases in which dislocations are very large and it is difficult to observe precipitates.
  • strain relief annealing may be performed at a temperature of about 200 ° C. at which no precipitation occurs for easy observation.
  • an electropolishing method is used, but measurement may be performed by forming a thin film by FIB (Focused Ion Beam).
  • the copper alloys corresponding to the examples of the present invention described in Tables 1 and 2 are maintained in a well-balanced strength, conductivity and bending workability.
  • Comparative Example 1 since Si was out of the composition range, the Ni / Si ratio was not an appropriate ratio, and cracks occurred during hot rolling due to the coarse crystallized product.
  • Comparative Example 2 since Ni was out of the composition range, Ni was in an excessive state. This deteriorated hot workability and cracked during hot rolling. Since Comparative Example 3 had a low solution temperature, coarse particles remained. As a result, the conductivity increased, but the strength decreased because the number density of small particles decreased. Further, during the bending, the fracture occurred starting from coarse particles.
  • Comparative Example 4 since the solution temperature was high, the crystal grain size was increased, the large particles were decreased, and the number of small particles was increased. As a result, the strength increased, but the conductivity decreased. Since the crystal grains at the time of solution treatment were large, the bendability deteriorated due to grain boundary fracture during bending. Comparative Example 5 corresponds to the copper alloy described in Patent Document 1. Since the aging was performed twice, the size of the small particles precipitated by the second aging was small, and the number density was remarkably reduced. The ratio of large particles to small particles is appropriate, but the number density of small particles has decreased and the strength has decreased. Since Comparative Example 6 had a high aging temperature, coarse precipitates increased. As a result, the density of small particles decreased and the strength decreased.
  • Comparative Example 19 corresponds to the copper alloy described in Patent Document 3.
  • the solution holding temperature and the reheat treatment temperature are not appropriately changed depending on the Ni concentration, and are carried out at a constant value, and since the solution treatment after hot rolling is not performed, the size of the large particles is It became large and bending workability was poor.
  • Comparative Example 20 the cooling rate after the solution treatment was slow, the solution was precipitated during cooling, and the crystal grains became coarse. For this reason, the particles already precipitated by the aging treatment became coarse particles. This caused bending fracture due to large particles.
  • the cooling rate after the solution treatment was slow, and precipitation occurred during cooling. In particular, since the Ni concentration was high and the pinning effect of the precipitate occurred at the same time, the crystal grains became non-uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

 Ni-Si化合物粒子の分布状態を制御することでコルソン系合金の特性向上を図る。Ni:0.4~6.0質量%、Si:0.1~1.4質量%を含有し、残部Cuおよび不可避的不純物から構成される電子材料用銅合金であって、粒径が0.01μm以上で0.3μm未満であるNi-Si化合物小粒子と、粒径が0.3μm以上で1.5μm未満であるNi-Si化合物大粒子が存在しており、前記小粒子の個数密度が1~2000個/μm2であり、前記大粒子の個数密度が0.05~2個/μm2である電子材料用銅合金。

Description

電子材料用Cu-Ni-Si系合金
 本発明は析出硬化型銅合金に関し、とりわけ各種電子機器部品に用いるのに好適なCu-Ni-Si系合金に関する。
 リードフレーム、コネクタ、ピン、端子、リレー、スイッチ等の各種電子機器部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。近年、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに対応して電子機器部品に使用される銅合金に対する要求レベルはますます高度化している。
 高強度及び高導電性の観点から、近年、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、析出硬化型の銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。
 析出硬化型銅合金のうち、コルソン系合金と一般に呼ばれるCu-Ni-Si系銅合金は比較的高い導電性、強度、応力緩和特性及び曲げ加工性を兼備する代表的な銅合金であり、業界において現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi-Si系金属間化合物粒子を析出させることによって強度と導電率の向上が図れる。
 Ni-Si化合物粒子の析出状態は合金特性に影響を与えることが知られている。
 特許第3797736号公報(特許文献1)では、Ni-Si化合物粒子の粒径が0.003μm以上0.03μm未満のもの(小粒子)及び0.03μm~100μmのもの(大粒子)が存在し、かつ小粒子/大粒子の数の比率が1.5以上とすることが記載されている。そして、粒径が0.03μm未満の小粒子は、主に合金の強度及び耐熱性を向上させるが剪断加工性にはあまり寄与しない。一方、粒径が0.03μm以上の大粒子は合金の強度及び耐熱性の向上にはあまり寄与しないが、剪断加工時に応力を集中的に受け、ミクロクラックの発生源となり剪断加工性を著しく向上させることが記載されている。そして、特許文献1に記載の銅合金は電気電子部品用銅合金として要求される強度や耐熱性などの特性を有するとともに、剪断加工性に優れた銅合金であることが述べられている。
 特許文献1に記載の銅合金を製造する方法として、以下が開示されている。
1)Niの含有量が4wt%、Siの含有量が1wt%以上になると、晶出粒子の粗大化が特に発生しやすくなるので、晶出粒子の寸法を目的の範囲内とするには、Ni及びSi添加後溶湯を1300℃以上の温度に5分以上保持し、両者を完全に溶解させ、鋳造温度~凝固温度まで鋳型内での冷却速度を0.3℃/秒以上とする。
2)熱間圧延後の熱延材を水中急冷し、さらに冷間圧延した材料を500~700℃で1分~2時間の加熱を行って大粒子を析出させる。その後、さらに冷間圧延を加え、今度は300~600℃で30分以上の加熱を行い小粒子を析出させる。
3)熱間圧延終了時に冷却する際に急冷せず、500~700℃で1分~2時間保持して大粒子を析出させた後急冷する。さらに冷間圧延を加えた後、今度は300~600℃で30分以上の加熱を行って小粒子を析出させる。
 特許第3977376号公報(特許文献2)では、銅合金の組織中のNi-Si析出物、それ以外の析出物の粒径、さらにその分布密度の割合と、結晶粒の粗大化抑制との関連に着目して、Ni及びSiからなる析出物Xと、NiとSiの一方若しくは両方を含有しない析出物Yを有し、前記析出物Xの粒径が0.001~0.1μmで、前記析出物Yの粒径を0.01~1μmとすることが記載されている。また、強度と曲げ加工性の両立を図るためには、析出物Xの数を析出物Yの20~2000倍とすることや、析出物Xの数を1mm2あたり108~1012個、析出物Yの数を1mm2あたり104~108個とすることが記載されている。
 特許文献2に記載の銅合金を製造する方法として、以下が開示されている。
 鋳塊を熱間圧延する際、鋳塊を昇温速度20~200℃/時間で加熱し、850~1050℃×0.5~5時間の間に熱間圧延し、熱間圧延の終了温度は300~700℃として急冷する。これにより析出物X及びYが生成する。熱間圧延後は、例えば、溶体化熱処理、焼鈍、冷間圧延を組み合わせ、所望の板厚にする。
 前記溶体化熱処理の目的は鋳造や熱間加工時に析出したNiとSiを再固溶させると同時に再結晶させる熱処理である。前記溶体化熱処理の温度は添加したNi量によって調整を行い、例えば、Ni量が2.0~2.5質量%未満は650℃、2.5~3.0質量%未満は800℃、3.0~3.5質量%未満は850℃、3.5~4.0質量%未満は900℃、4.0~4.5質量%未満は950℃、4.5~5.0質量%は980℃とする。
 国際公開第2008/032738号(特許文献3)では、Niを2.0~5.0mass%、Siを0.43~1.5mass%含有し、残部がCuと不可避不純物からなる銅合金で形成される銅合金板材であって、NiとSiを合計で50mass%以上含む3種類の金属間化合物A、B、Cを含有し、前記金属間化合物Aの化合物径は0.3μm以上2μm以下であり、前記金属間化合物Bの化合物径は0.05μm以上0.3μm未満であり、前記金属間化合物Cの化合物径は0.001μmを越え0.05μm未満であることを特徴とする電気・電子機器用銅合金板材が開示されている。
 また、Niを2.0~5.0mass%、Siを0.43~1.5mass%含有し、残部がCuと不可避不純物からなる銅合金鋳塊を850~950℃で2~10時間再熱するステップと、前記再熱された銅合金鋳塊を100~500秒間熱間圧延して銅合金板材とするステップと、前記熱間圧延された銅合金板材を600~800℃となるまで急冷するステップと、前記急冷された銅合金板材を400~550℃で1~4時間時効熱処理をするステップとを有することを特徴とする電気・電子機器用銅合金板材の製造方法が開示されている。
特許第3797736号公報 特許第3977376号公報 国際公開第2008/032738号パンフレット
 特許文献1に記載の銅合金では、小粒子と大粒子の個数について比率しか検討されておらず、粒子の個数密度については言及されていない。また、特許文献1では二回時効することで大粒子と小粒子をそれぞれ析出させるとしているが、二回目に析出させる小粒子は、一回目に比較して固溶しているNi、Si濃度が低いため析出しにくく、数密度、粒子径ともに小さいため、強度に与える好影響が不十分である(後述する比較例5参照)。二回時効するという手法は、また一回目の時効によっては固溶するNi、Si量が変化してしまうため、粒子径、密度の制御が困難であるという問題もある。
 特許文献2に記載の銅合金では、Ni-Si化合物粒子を粒径が0.001~0.1μmの範囲においてしか制御しておらず、より粒径の大きなNi-Si化合物粒子が合金特性に与える影響について検討がされていない。特許文献2に記載の大粒子はNiとSiの一方若しくは両方を含有しない析出物である。このような大粒子は添加元素の量や温度条件によっては粗大化して、曲げ加工性に悪影響を与えやすくなる。
 特許文献3に記載の銅合金では、その製造工程において大粒子が析出する条件が極めて不明瞭である。また、特許文献3に記載の銅合金の製造方法では、溶体化処理を950℃で20秒間の加熱により行っているが、該文献で例示されたNi濃度が3.3質量%である結晶粒では、そのような溶体化処理を行えば粒径が30μm超となり粗大化しているものと考えられる。
 そこで、本発明ではNi-Si化合物粒子の分布状態をより厳密に制御することでコルソン系合金の特性向上を図ることを課題とする。
 本発明者は上記課題を解決するために鋭意研究を重ねたところ、銅マトリックス中に析出するNi-Si化合物粒子を、主として結晶粒内に析出しやすい粒径が0.01μm以上で0.3μm未満であるNi-Si化合物粒子(小粒子)と、主として結晶粒界に析出しやすい粒径が0.3μm以上で1.5μm未満であるNi-Si化合物粒子(大粒子)に分けてそれぞれの大きさと個数密度を制御することで強度及び導電率のバランスに優れ、曲げ加工性も良好なコルソン系合金を得ることができることが分かった。具体的には、小粒子を0.01μm以上で0.3μm未満の範囲の大きさに制御してその個数密度を1~2000個/μm2に制御するとともに、大粒子を0.3μm以上で1.5μm未満の範囲の大きさに制御してその個数密度を0.05~2個/μm2に制御することが有効であることを見いだした。
 かかる知見を基礎として完成した本発明は一側面において、Ni:0.4~6.0質量%、Si:0.1~1.4質量%を含有し、残部Cuおよび不可避的不純物から構成される電子材料用銅合金であって、粒径が0.01μm以上で0.3μm未満であるNi-Si化合物小粒子と、粒径が0.3μm以上で1.5μm未満であるNi-Si化合物大粒子が存在しており、前記小粒子の個数密度が1~2000個/μm2であり、前記大粒子の個数密度が0.05~2個/μm2である電子材料用銅合金である。
 本発明に係る電子材料用銅合金は一実施形態において、単位面積0.5μm×0.5μmを1視野として、銅合金の表面積100mm2において選択した10視野を観察したときに小粒子に係る視野間の密度比の最大値が10以下であり、単位面積20μm×20μmを1視野として、銅合金の表面積100mm2において選択した10視野を観察したときに、大粒子に係る視野間の密度比の最大値が5以下である。
 本発明に係る電子材料用銅合金は更に別の一実施形態において、前記小粒子の平均粒径に対する前記大粒子の平均粒径の比が2~50である。
 本発明に係る電子材料用銅合金は更に別の一実施形態において、平均結晶粒径が圧延方向に平行な厚み方向の断面から観察した時に円相当径で表して1~30μmである。
 本発明に係る電子材料用銅合金は更に別の一実施形態において、隣接する結晶粒径の圧延方向に平行な厚み方向の長さの比の最大値が3以下である。
 本発明に係る電子材料用銅合金は更に別の一実施形態において、Cr、Co、Mg、Mn、Fe、Sn、Zn、Al及びPから選択される1種又は2種以上を合計で1.0質量%まで含有する。
 本発明は別の一側面において、本発明に係る電子材料用銅合金からなる伸銅品である。
 本発明は更に別の一側面において、本発明に係る電子材料用銅合金を備えた電子部品である。
 本発明は更に別の一側面において、Ni及びSiを含む原料を溶解して得た溶湯を、Ni濃度が0.4~3.0質量%のときは1130~1300℃で保持し、3.0~6.0質量%のときは1250~1350℃で保持した後、所望の組成をもつインゴットを溶解鋳造する工程と、前記インゴット中のNiが2.0質量%未満のときは800~900℃で、2.0質量%以上3.0質量%未満のときは850~950℃で、3.0質量%以上4.0質量%未満のときは900~1000℃で、4.0質量%以上のときは950℃以上で加熱した後に熱間圧延を行う工程と、冷間圧延を行う工程と、xを前記インゴット中のNi濃度(質量%)としたとき、y=125x+(475~525)で示される溶体化温度y(℃)で溶体化処理を行う工程と、時効処理を行う工程と、を順に行うことを含む本発明に係る銅合金の製造方法である。
 本発明によれば、銅マトリクス中に析出したNi-Si化合物粒子による合金特性への恩恵をより効果的に享受できるので、コルソン系合金の特性向上を図ることができる。
図1は、本発明に係る銅合金(加工度0%)についてSEMで観察した圧延方向に平行な厚み方向の断面における大粒子を示す。 図2は、本発明に係る銅合金(加工度66%)についてTEMで観察した圧延方向に平行な厚み方向の断面における大粒子を示す。 図3は、本発明に係る銅合金(加工度0%)についてTEMで観察した圧延方向に平行な厚み方向の断面における小粒子を示す。 図4は、本発明に係る銅合金(加工度99%)についてTEMで観察した圧延方向に平行な厚み方向の断面における小粒子を示す。
(Ni及びSiの添加量)
 Ni及びSiは、適当な熱処理を施すことにより金属間化合物としてNi-Si化合物粒子(Ni2Si等)を形成し、導電率を劣化させずに高強度化が図れる。
 SiやNi添加量は少なすぎると所望の強度が得られず、多すぎると高強度化は図れるが導電率が著しく低下し、熱間加工性が低下する。また、Ni中には水素が固溶することがあり、溶解鋳造時のブローホールの原因となったりするため、Ni添加量を多くすると中間の加工において破断の原因となる可能性がある。SiはCと反応したり、Oと反応したりするため、添加量が多いと極めて多くの介在物を形成し、曲げの際に破断の原因になる。
 そこで、適切なSi添加量は0.1~1.4質量%であり、好ましくは0.2~1.0%である。適切なNi添加量は0.4~6.0質量%であり、好ましくは1.0~5.0%質量%である。
 Ni-Si化合物粒子の析出物は化学量論組成で一般に構成されており、NiとSiの質量比を金属間化合物であるNi2Siの質量組成比(Niの原子量×2:Siの原子量×1)に近づけることにより、すなわちNiとSiの質量比をNi/Si=3~7、好ましくは3.5~5とすることにより良好な電気伝導性が得られる。Niの比率が上記質量組成比よりも高いと導電率が低下しやすく、Siの比率が上記質量組成比よりも高いと粗大なNi-Si晶出物により熱間加工性が劣化しやすい。
(その他の元素の添加量)
(1)Cr、Co
 Cr、CoはCu中に固溶し、溶体化処理時の結晶粒の粗大化を抑制する。また合金強度が底上げされる。時効処理時にはシリサイドを形成して析出し、強度及び導電率の改善に寄与することもできる。これらの添加元素は導電率をほとんど低下しないことから積極的に添加しても良いが、添加量が多い場合は逆に特性を損なう恐れがある。そこで、Cr及びCoは一方又は両方を合計で1.0質量%まで添加するのがよく、0.005~1.0質量%添加するのが好ましい。
(2)Mg、Mn
 MgやMnはOと反応するため溶湯の脱酸効果が得られる。また、一般的に合金強度を向上させる元素として添加される元素である。最も有名な効果としては応力緩和特性の向上であり、いわゆる耐クリープ特性である。近年、電子機器の高集積化にともない、高電流が流れ、またBGAタイプのような熱放散性が低い半導体パッケージにおいては、熱により素材が劣化する恐れがあり、故障の原因となる。特に、車載する場合はエンジンまわりの熱による劣化が懸念され、耐熱性は重要な課題である。これらの理由で積極的に添加しても良い元素である。ただし、添加量が多すぎると曲げ加工性への悪影響が無視できなくなる。そこで、Mg及びMnは一方又は両方を合計で0.5質量%まで添加するのがよく、0.005~0.4質量%添加するのが好ましい。
(3)Sn
 SnはMgと同様の効果がある。しかしMgと異なり、Cu中に固溶する量が多いため、より耐熱性が必要な場合に添加される。しかしながら、量が増えれば導電率は著しく低下する。よって、Snは0.5質量%まで添加するのがよく、0.1~0.4質量%質量%添加するのが好ましい。ただし、MgとSnを共に添加するときは導電率への悪影響を抑えるために両者の合計濃度を1.0質量%までとし、好ましくは0.8質量%までとするのが望ましい。
(4)Zn
 Znははんだ脆化を抑制する効果がある。ただし、添加量が多いと導電率が低下するので、0.5質量%まで添加するのがよく、0.1~0.4質量%添加するのが好ましい。
(5)Fe、Al、P
 これらの元素も合金強度を向上させることのできる元素である。必要に応じて添加すればよい。ただし、添加量が多いと添加元素に応じて特性が悪化するので、0.5質量%まで添加するのがよく、0.005~0.4質量%添加するのが好ましい。
 上記のCr、Co、Mg、Mn、Sn、Fe、Al及びPは合計で1.0質量%を超えると製造性を損ないやすいので、好ましくはこれらの合計は1.0質量%以下とし、より好ましくは0.5質量%以下とする。
(Ni-Si化合物粒子)
 本発明においては、銅マトリックス中に析出するNi-Si化合物粒子を小粒子と大粒子の二種類に分け、それぞれの個数密度及び粒径、さらにはそれらの相互関係も制御する。本発明において、小粒子とは粒径が0.01μm以上で0.3μm未満であるNi-Si化合物粒子を指し、大粒子とは粒径が0.3μm以上で1.5μm未満であるNi-Si化合物粒子を指す。小粒子は主として結晶粒内に析出した粒子であり、大粒子は主として結晶粒界に析出した粒子である。また、Ni-Si化合物粒子とは、元素分析によってNi及びSiの両者が検出される粒子のことを指す。小粒子は主に合金の強度及び耐熱性に寄与し、大粒子は主に導電率の維持及び結晶粒の微細化に寄与する。ここで、図1に、本発明に係る銅合金(加工度0%)についてSEMで観察した圧延方向に平行な厚み方向の断面における大粒子を示す。図2に、本発明に係る銅合金(加工度66%)についてTEMで観察した圧延方向に平行な厚み方向の断面における大粒子を示す。図3に、本発明に係る銅合金(加工度0%)についてTEMで観察した圧延方向に平行な厚み方向の断面における小粒子を示す。図4に、本発明に係る銅合金(加工度99%)についてTEMで観察した圧延方向に平行な厚み方向の断面における小粒子を示す。
 結晶粒内に析出するNi-Si化合物粒子は一般に数十nm程度の微細な析出物となることができる。そのうち、0.3μm未満であるNi-Si化合物粒子は転位のピン止め効果を有するため、転位密度が高くなり、合金全体の強度が向上しやすい。この程度の粒径のNi-Si化合物粒子は粒子間距離が小さく、数も多いために強度に寄与する率が高い。また、加熱時による転移の移動を妨げる作用があることから、耐熱性を向上させる。
 しかしながら、この程度の大きさの粒子、とりわけ0.01μm未満のNi-Si化合物粒子は大きなひずみが加えられると剪断されて粒子の表面積が減少するために、剪断に必要な力が減少する。従って転位ループが残されずに転位密度が高くならない。従って0.01μm未満のNi-Si化合物粒子は強度に寄与しにくい。剪断された粒子は銅母相中に再度固溶し、導電率の低下を招くおそれもある。また、剪断された粒子は再結晶の核生成サイトとして働かないので、再結晶粒も粗大になる可能性が高くなる。粗大な結晶粒は強度や曲げ性に悪影響を与える。
 従って、粒径が0.01μm以上で0.3μm未満の小粒子の個数密度を制御することが有利となる。小粒子は強度向上に大きく寄与する一方で多くなると導電率を低下させやすいことから、強度及び導電率のバランスを図る上では、小粒子の個数密度を1~2000個/μm2とすることが必要である。小粒子の個数密度は、透過型電子顕微鏡で組織観察して測定することができる。
 一方、結晶粒界に析出するNi-Si化合物粒子は一般に数百nm~数μm程度の大きさの析出物となることができる。そのうち、0.3μm以上で1.5μm未満であるNi-Si化合物粒子は剪断されない強い粒子として作用することができる。小粒子と同様に合金の強度と耐熱性を向上させることができるが、粒径が大きいために粒子の数が少なく、粒子間距離が大きいために強度、耐熱性への寄与は小粒子より小さい。しかしながら大きなひずみが加えられても剪断されないために、導電率の低下がほとんど無い。また、剪断されない粒子は再結晶の際の核生成サイトとして働くことができる。従って、大粒子によって微細な結晶粒が形成しやすくなる。微細な結晶粒は特に強度及び曲げ性に寄与する。大きさが1.5μmを超える粒子が増加していくと、小粒子の形成に利用されるべきNi及びSiが不足して強度が低下しやすくなる。材料にAgめっきなどを行った場合に局所的にめっき厚が厚くなり、突起状の欠陥を招くおそれもある。
 従って、0.3μm以上で1.5μm未満の大粒子の個数密度を制御することが有利となる。大粒子は結晶粒の微細化や導電率の向上に寄与する一方で多くなると小粒子の個数密度を低下させやすいことから、大粒子と小粒子の数の比が適切な範囲に無い場合、強度-導電率の両立はバランスが崩れる。具体的には、大粒子が多くなれば強度が低下し、小粒子が多くなれば導電率が低下する。そこで、強度及び導電率のバランスを図る上では、0.3μm以上で1.5μm未満の粒径範囲における個数密度を0.05~2個/μm2とすることが必要である。大粒子の個数密度は、走査電子顕微鏡で組織観察して測定することができる。
 また、時効処理を最終工程とする場合、析出した粒子はそれぞれのマトリックスを歪ませる。このとき、不均一な密度で分散すると歪の不均一により応力が発生し、残留する。この残留応力が大きい場合には歪取り焼鈍でも応力を緩和できない。また、大粒子がクラスター状に集中すると、めっきやエッチングの際に周囲との差異からムラとなり、突起状の欠陥となることが多い。さらに、時効処理後に冷間圧延を実施する場合は、不均一な密度で分散した粒子は加工硬化能が場所毎に異なるため不均一変形を起こす。これは、上述の残留応力を増すだけでなく、ときには破断の原因となることもある。特に大粒子がクラスター状に集積した場合は、そこを起点として破断することがある。このため、小粒子及び大粒子は、それぞれ銅合金において均一な密度で存在しているのが好ましい。
 従って、単位面積0.5μm×0.5μmを1視野として、銅合金の表面積100mm2においてランダムに選択した10視野を観察したときに小粒子に係る視野間の密度比の最大値が10以下であり、単位面積20μm×20μmを1視野として、銅合金の表面積100mm2においてランダムに選択した10視野を観察したときに、大粒子に係る視野間の密度比の最大値が5以下であるのが好ましい。
 小粒子及び大粒子の平均粒径の差を適切な範囲に制御することで、小粒子と大粒子の両者の利点が生かしながら、両者の欠点を補完する効果が大きくなる。小粒子の平均粒径に対する大粒子の平均粒径の比を2~50とするのが好ましい。
 結晶粒は微細であることが強度及び曲げ性の観点から有利であるが、小さすぎると粒界に析出する大粒子と粒内に析出する小粒子のバランスが崩れる。そこで、本発明に係る銅合金では、圧延方向に平行な厚み方向の断面から観察した時に円相当径で表して平均結晶粒径を1~30μmとするのが好ましい。
 また、析出物は、結晶粒の粒界、粒内で異なる大きさになりやすいことが分かっている。こういった理由から、結晶粒の大きさが不均一であることは、析出する粒子が不均一になることを意味し、上記の点から好ましくない。特に、厚さ方向の結晶粒の長さを揃えるのは、圧延が厚さ方向の変形と考えると、この方向の塑性変形能を大きく左右するからである。近年、板厚が薄くなる傾向があり、板厚に対して結晶粒の数密度が不均一であると、そこを起点として破断することが予想される。このため、結晶粒径は、圧延方向に平行な厚み方向の長さが均一であるのが好ましい。従って、隣接する結晶粒径の圧延方向に平行な厚み方向の長さの比の最大値は3以下であるのが好ましい。
(製造方法)
 次に本発明に係る銅合金の製造方法に関して説明する。本発明に係る銅合金はCu-Ni-Si系合金の慣例の製造工程を基本としながら、一部の特徴的な工程を経て製造することができる。
 まず大気溶解炉を用い、電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。このとき、晶出粒子の粗大化を抑制するために、Ni及びSi添加後溶湯をNi濃度が0.4~3.0質量%のときは1130~1300℃で保持し、3.0~6.0質量%のときは1250~1350℃で保持することが重要となる。このようにNi濃度に応じて溶解保持温度を変化させることで、大粒子の生成を良好に抑制することができる。
 続いて、この溶湯をインゴットに鋳造する。次に、インゴット中のNiが2.0質量%未満のときは800~900℃で、2.0質量%以上3.0質量%未満のときは850~950℃で、3.0質量%以上4.0質量%未満のときは900~1000℃で、4.0質量%以上のときは950℃以上で加熱した後に熱間圧延を行う。この熱間圧延前の熱処理で大粒子が十分に消失もしくは小径化しないと、溶体化処理が困難となり、大粒子が残存してしまう。Cu-Ni2Si系状態図上では、Ni濃度が高いほど固溶温度が高くなる。そのため、Ni濃度が高くなるにつれて熱処理温度を高くする。上述の温度より低ければ、Ni及びSiが十分に固溶しない。上述の温度より高いと、固溶は促進される一方、高温での再結晶粒粗大化と高温生成物との相互作用により割れが進行する場合があり、好ましくない。熱間圧延終了時の板厚は20mmより薄くすることで冷却が早くなり、特性に寄与しない析出物の析出を抑制することができる。この際の温度は600℃以上の高い温度で終了してもよいが、後の工程において溶体化が困難となる場合は、より低い温度で終了する方が有効である。
 次に、冷間圧延を行う。この冷間圧延を行うことで、後述の溶体化処理時の冷却速度が速くなり、固溶したNi及びSiの析出を良好に抑制することができる。冷間圧延後の板厚は、1mm以下が望ましく、0.5mm以下が更に望ましく、0.3mm以下が最も望ましい。
 次に、溶体化処理を行う。溶体化処理では、Ni-Si系化合物をCu母地中に固溶させ、同時にCu母地を再結晶させる。Cu-Ni2Si系状態図に従えば、Ni及びSiの固溶は高温であるほど促進される。そのため、従来、Cu-Ni2Si系状態図の固溶温度よりも高い条件で実施するのが通常であった。これは、溶体化不足で残存してしまった粗大な粒子が欠陥となるのを防ぐためで、このような粒子はめっきでの電着不良を引き起こすからである。このような粒子を検討した結果、原因は鋳造及び再熱処理後の熱間圧延工程での冷却過程にあることが分かった。ところが、いずれの工程でも冷却の制御は困難であり、溶体化処理で一括してNi及びSiを固溶できるという理由で、従来それほど注目されることが無かった。一方、近年のコネクタに求められる性能には、設計段階で素材の特性が不足し、かなりの負担を要する曲げ加工が必要となっている。そのような中で、従来の合金の特性を向上させるべく検討した結果、溶体化処理で粗大な析出物を残存させず、かつ結晶粒を5~30μmに制御することでこのような問題が解決されることが分かった。従来の製造法ではいずれか一方が達成できず、めっき不良を出すよりは特性を他の代替手段でカバーすることを選択してきた。すなわち、結晶粒を粗大にする代わりに、その後の冷間圧延の加工度を高くすることで強度を高くしたのである。ところが、この加工度を高くすると曲げ性が劣化し、近年のコネクタでは塑性加工ができなくなってしまう。結晶粒を制御することで、大粒子と小粒子との密度差の適正化及び冷間圧延の低加工度化による曲げ性の向上が得られる。
 このため、本発明では溶体化処理の条件を厳密に制御する。具体的には添加元素、特にNiを十分に固溶させるために、Ni濃度に応じて一定程度以上の溶体化温度を選定する。但し、あまり高すぎると結晶粒径が大きくなり過ぎるので高ければよいというものでもない。具体的には、Ni濃度が高ければ高い温度とし、おおまかな目安として1.5質量%では650-700℃、2.5質量%では800-850℃、3.5質量%では900-950℃程度とする。より一般化すれば、xを前記インゴット中のNi濃度(質量%)としたとき、y=125x+(475~525)で示される溶体化温度y(℃)で溶体化処理を行う。そして、大粒子及び小粒子の析出状態を本発明で規定する範囲に収める上では溶体化処理後の結晶粒径が圧延方向に直角な断面で観察したときに5~30μmの範囲になるように溶体化処理の温度及び時間を調節することが重要である。また、溶体化処理時の材料の板厚が大きいと、溶体化処理後に水冷しても冷却速度が十分に得られず、固溶させた添加元素が冷却中に析出してしまうおそれがある。従って、溶体化処理を実施する際の板厚は0.3mm以下とするのが望ましい。また、添加元素の析出を抑制する上では溶体化温度から400℃までの平均冷却速度を10℃/秒以上とするのが望ましく、15℃/秒以上とするのがより望ましい。このような冷却速度は板厚が0.3mm以下程度であれば空冷で達成できるが、水冷するのがなお良い。ただし、あまり冷却速度を高くしても製品の形状が悪くなるので30℃/秒以下とするのが好ましく、20℃/秒以下とするのがより好ましい。
 溶体化処理の後は、冷間圧延を実施せずに、時効処理を行う。冷間圧延を実施すると、析出サイトとして、主に結晶粒界や空孔、転位等の母相中の欠陥が優先的になるため、転位密度が上昇し、析出物の析出が促進される。従って、冷間圧延の実施は析出を促進するが、上述したように結晶粒界に析出する粒子は大粒子であって、本発明の意図する析出物の比率が崩れてしまう。さらに近年になって、冷間圧延によって形成された結晶粒界は、熱処理後(溶体化後)の結晶粒界とは性質が異なることが分かってきた。冷間圧延によって形成された結晶粒界は、主に転位によって構成され、粒界のエネルギーは冷間圧延による粒界の方が高いと考えられる。従って、溶体化後の結晶粒と、溶体化-冷間圧延後の結晶粒とがほぼ同じ大きさであったとしても、その後の時効で析出する粒子は全く異なってしまう。これらの現象を利用して、意図的に大粒子を増し、特性を変えることは可能であるが(強度-導電率のバランスを変える)、本発明の意図する総合的な特性(曲げ性やエッチング特性)は達成できない。溶体化の条件(溶体化不十分による時効での析出不足)によっては曲げ加工性の劣化を抑制できることもあるが、溶体化不十分のために材料の機能を十分引き出したものとはいえない。溶体化処理と時効処理との間に冷間圧延を実施した場合は、強度、導電率がやや高いが、曲げ加工性が劣化することに加え、析出物の分布が本発明において意図したものから外れてしまう。従って、本発明では、溶体化処理で目的の結晶粒及び固溶状態を達成した後は、冷間圧延を実施しない。
 また、本発明では時効処理の条件も重要となる。本発明に係る銅合金を製造するにあたっては、一回の時効処理で大粒子及び小粒子の分布状態を制御することが望ましい。特許文献1では時効処理を二回することで大粒子と小粒子を析出させる方法を採用しているが、一般的に知られたこととして、一端析出物が析出した状態では、銅中に固溶したNi、Si濃度が低くなるために、Ni、Siが拡散しにくく、従って析出しにくくなる。そのため、本発明が意図するような個数密度の小粒子が得られない。また、2回目の時効処理時に、1回目の時効処理で既に生成している析出粒子の大きさが影響を受けるため、粒子径や密度の制御が困難である。
 一回の時効処理で大粒子と小粒子を所望の範囲にするためには前工程で溶体化処理を適切に行っていることが前提であるが、温度と時間を適切な範囲にすることが重要である。この時効処理で強度と導電率が上昇する。時効処理は300~600℃の温度で0.5~50hとすることができるが、加熱温度が高いほど短時間、加熱温度が低いほど長時間とする。高温で長時間加熱するとNi-Si化合物粒子が粗大化しやすく、低温で短時間加熱するとNi-Si化合物粒子が十分に析出しないからである。好ましい例としては、加熱温度t(℃)が300℃以上500℃未満ではz=-0.115t+61で示される時効時間z(h)で、500℃以上600℃未満ではz=-0.0275t+17.25で示される時効時間z(h)程度で行うことができる。例えば400℃では15h程度、500℃では2h-5h程度、600℃では0.5h-1h程度とすればよい。より高い強度を得るために、時効後に冷間圧延を行うこともできる。時効後に冷間圧延を行なう場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行ってもよい。
 本発明に係る銅合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、本発明による銅合金は、高い強度及び高い電気伝導性(又は熱伝導性)を両立させることが要求されるリードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子機器部品に使用することができる。
 以下に本発明の具体例を示すが、これら実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
 表1~4に記載の各種成分組成の銅合金を、高周波溶解炉で溶製して各溶解保持温度で保持し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを各再熱処理温度で加熱後、板厚10mmまで850~1050℃×0.5~5時間の熱間圧延(熱間圧延終了時の材料温度は500℃)した後、表面のスケール除去のため厚さ8mmまで面削を施した。続いて、冷間圧延により、板厚を0.15mm又は0.10mmにした後、溶体化処理を表1~4に記載の条件で行った。その後表1~4に記載の各条件で不活性雰囲気中で時効処理を施した。また、板厚0.15mmのものは更に冷間圧延により板厚0.10mmとした。このようにして作製した板厚0.10mmの各試験片について評価を行った。表1、表3及び表4はCu-Ni-Si系銅合金の製造例を示し、表2は更にMg、Cr、Sn、Zn、Mn、Co、Fe及びPを適宜添加したCu-Ni-Si系銅合金の製造例を示す。また、比較例9~11は、それぞれ溶体化処理と時効処理との間に、表3に記載された条件の冷間圧延を行っている。
 このようにして得られた各合金につき各特性評価を行い、結果を表1~4に記載した。
 強度については圧延平行方向での引っ張り試験を行い、引張り強さ及び0.2%耐力(Mpa)を測定した。
 導電率(%IACS)についてはダブルブリッジによる体積抵抗率測定により求めた。
 曲げ性の評価は、JIS H 3130に従って、Goodway(曲げ軸が圧延方向と直角方向)及びBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値を測定した。
 溶体化処理後、圧延方向に平行な厚み方向の断面をファインカッターで切断し、その後冷間樹脂埋めを行い、続いて鏡面研磨(1ミクロンバフ)処理を行った。次に、電解研磨を実施して、走査電子顕微鏡(SEM):HITACHI-S-4700を用いて結晶粒を観察した。結晶粒径は加工方向の幅について、10個の結晶粒の平均値を求めた。
 最終製品からは以下の方法で結晶粒径を測定することが可能である。まず、圧延方向に平行な厚み方向の断面を電解研磨し、SEMにより断面組織を観察し、単位面積当たりの結晶粒の数をカウントする。そして、全観察視野の面積を合計し、それをカウントした結晶粒の合計で除し、結晶粒一個あたりの面積を計算する。その面積より、その面積と同じ面積を有する真円の直径(円相当径)を計算し、これを平均結晶粒径とすることができる。
 大粒子及び小粒子の粒径は任意の断面から観察して良い。実施例は製品の圧延方向の平行断面に対して、大粒子を走査型電子顕微鏡(HITACHI-S-4700)により、小粒子を透過型電子顕微鏡(HITACHI-H-9000)によりそれぞれ観察した。また、小粒子は、単位面積0.5μm×0.5μmを1視野として、銅合金の表面積100mm2においてランダムに選択した10視野を観察した。大粒子は、単位面積20μm×20μmを1視野として、銅合金の表面積100mm2においてランダムに選択した10視野を観察した。このように10視野観察することで、それぞれの粒子が100個程度観察できるように実施した。析出物の大きさが5~100nmの場合は50万倍~70万倍の倍率、100~5000nmの場合は5~10万倍で撮影を行った。なお析出物の大きさが5nmより小さいものは観察が困難である。5000nmより大きいものは走査型電子顕微鏡で観察可能である。
 このように観察された粒子について、個々の粒子の長径と短径から面積を計算し、その面積より、その面積と同じ面積を有する真円の直径(円相当径)を計算し、これを粒径とすることができる。粒径から小粒子と大粒子に分け、それぞれ粒子径と粒子の数を集計し、粒子径の和を粒子数で除して平均粒子径とし、粒子数の和を観察視野の合計面積で除して個数密度を求めた。ここで、長径とは、粒子の重心を通り、粒子の境界線との交点を両端にもつ線分のうち、もっとも長い線分の長さを指し、短径とは粒子の重心を通り、粒子の境界線との交点を両端にもつ線分のうち、もっとも短い線分の長さを指す。
 観察した粒子がNi-Si化合物粒子であることは、EDSを搭載した走査型電子顕微鏡、特に元素分析の精度が高い電界放射型電子顕微鏡による元素マッピング、小さい析出物についてはEELSを搭載した透過型電子顕微鏡による元素マッピングの方法により確認した。
 なお、最終製品においては、転位が非常に多く析出物が観察しにくい場合があり、その場合、観察を容易にするために析出しない200℃程度の温度で歪取り焼鈍を実施しても良い。また、一般的な透過型電子顕微鏡の試料作成において、電解研磨法が用いられるが、FIB(Focused Ion Beam:集束イオンビーム)による薄膜作成を行って測定しても良い。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び表2に記載の本発明の実施例に相当する銅合金については、強度、導電率及び曲げ加工性がバランス良く保たれていることが分かる。
 比較例1はSiが組成の範囲を外れたため、Ni/Si比も適切な比ではなくなり、粗大な晶出物により熱間圧延中に割れが生じた。
 比較例2はNiが組成の範囲を外れたため、Niが過剰状態となった。これにより熱間加工性が劣化し、熱間圧延中に割れた。
 比較例3は溶体化温度が低いため、粗大な粒子が残留した。その結果、導電率は高くなったが、小粒子の数密度が減少したため強度が低くなった。また、曲げの際、粗大な粒子を起点として破断した。
 比較例4は溶体化温度が高いため、結晶粒径が大きくなり、大粒子が減少する一方で、小粒子の数が増えた。そのため、強度が高くなったが、導電率は低下した。溶体化時の結晶粒が大きいため、曲げの際、粒界破壊により曲げ性が劣化した。
 比較例5は特許文献1に記載の銅合金に相当する。2回時効したため、2回目の時効で析出した小粒子の大きさが小さく、かつ数密度が著しく減少した。大粒子と小粒子の比は適切だが、小粒子の数密度が低くなり、強度が低下した。
 比較例6は時効温度が高いため、粗大な析出物が増えた。その結果、小粒子の密度が減少し、強度が低下した。また導電率は高くなると思われたが、時効温度が高いため、再固溶現象により導電率も低下した。曲げは粗大な粒子を起点として破断した。
 比較例7は時効時間が長すぎたため、小粒子の大きさが大きくなってしまい、小粒子の数密度もそれに伴い小さくなり、強度が低下した。
 比較例8は時効時間が短すぎたため、析出粒子が無く、強度が低下した。
 比較例9~11は溶体化処理と時効との間に冷間圧延を行っており、その加工度が60、30、及び、90%であった。このため、大粒子の析出が促進されて大粒子の数が増加し、それに従い小粒子の数が減少した。導電率は高かったが、曲げ加工性が不良となった。また、めっき不良等の欠陥が生じた。
 比較例12は時効後の冷間圧延の加工度が高かった。また、強度は高かったが導電率が低く、最大の特徴としてBadwayの曲げ加工性が悪かった。
 比較例13は溶解保持温度が低すぎるため、大粒子の大きさが大きくなり、小粒子に対する大粒子の平均粒径の比が大きくなり、強度が低下した。
 比較例14は溶解保持温度が高すぎるため、大粒子の大きさが大きくなり、小粒子に対する大粒子の平均粒径の比が大きくなり、強度が低下した。
 比較例15は再熱処理の温度が高すぎたために、結晶粒が大きくなってしまった。これにより大粒子と小粒子のバランスが崩れた。結晶粒が粗大となったため、大粒子の数が減少した。結晶粒が粗大なため、強度が低く、また導電率の低下も大きかった。
 比較例16は再熱処理温度が低すぎるため、大粒子の大きさが大きくなり、小粒子に対する大粒子の平均粒径の比が大きくなり、強度が低下した。
 比較例17は溶体化処理温度が低すぎるため、大粒子の大きさが大きくなり、小粒子に対する大粒子の平均粒径の比が大きくなり、強度が低下した。
 比較例18は溶体化処理の温度が高く、結晶粒が粗大になった。溶体化により、Ni及びSiの固溶は十分であったが、結晶粒の粗大化により大粒子と小粒子の析出物のバランスが崩れた。
 比較例19は特許文献3に記載の銅合金に相当する。溶解保持温度及び再熱処理温度を、Ni濃度に応じて適切に変えておらず一定の値で実施しており、さらに熱間圧延後の溶体化処理を行っていないため、大粒子の大きさが大きくなり、曲げ加工性が不良であった。
 比較例20は溶体化処理後の冷却速度が遅く、冷却中に析出してしまい、かつ結晶粒も粗大となった。このため、時効処理で既に析出した粒子が粗大な粒子となってしまった。これにより、大粒子による曲げ破断が起きた。
 比較例21は溶体化処理後の冷却速度が遅く、冷却中に析出が起きた。特にNi濃度が高く、析出物のピン止め効果も同時に起きたため、結晶粒が不均一となった。

Claims (9)

  1.  Ni:0.4~6.0質量%、Si:0.1~1.4質量%を含有し、残部Cuおよび不可避的不純物から構成される電子材料用銅合金であって、粒径が0.01μm以上で0.3μm未満であるNi-Si化合物小粒子と、粒径が0.3μm以上で1.5μm未満であるNi-Si化合物大粒子が存在しており、前記小粒子の個数密度が1~2000個/μm2であり、前記大粒子の個数密度が0.05~2個/μm2である電子材料用銅合金。
  2.  単位面積0.5μm×0.5μmを1視野として、銅合金の表面積100mm2において選択した10視野を観察したときに小粒子に係る視野間の密度比の最大値が10以下であり、単位面積20μm×20μmを1視野として、銅合金の表面積100mm2において選択した10視野を観察したときに、大粒子に係る視野間の密度比の最大値が5以下である請求項1に記載の電子材料用銅合金。
  3.  前記小粒子の平均粒径に対する前記大粒子の平均粒径の比が2~50である請求項1又は2に記載の電子材料用銅合金。
  4.  平均結晶粒径が圧延方向に平行な厚み方向の断面から観察した時に円相当径で表して1~30μmである請求項1~3のいずれかに記載の電子材料用銅合金。
  5.  隣接する結晶粒径の圧延方向に平行な厚み方向の長さの比の最大値が3以下である請求項1~4のいずれかに記載の電子材料用銅合金。
  6.  更にCr、Co、Mg、Mn、Fe、Sn、Zn、Al及びPから選択される1種又は2種以上を合計で1.0質量%まで含有する請求項1~5のいずれかに記載の電子材料用銅合金。
  7.  請求項1~6のいずれかに記載の銅合金からなる伸銅品。
  8.  請求項1~6のいずれかに記載の銅合金を備えた電子部品。
  9.  - Ni及びSiを含む原料を溶解して得た溶湯を、Ni濃度が0.4~3.0質量%のときは1130~1300℃で保持し、3.0~6.0質量%のときは1250~1350℃で保持した後、所望の組成をもつインゴットを溶解鋳造する工程と、
     - 前記インゴット中のNiが2.0質量%未満のときは800~900℃で、2.0質量%以上3.0質量%未満のときは850~950℃で、3.0質量%以上4.0質量%未満のときは900~1000℃で、4.0質量%以上のときは950℃以上で加熱した後に熱間圧延を行う工程と、
     - 冷間圧延を行う工程と、
     - xを前記インゴット中のNi濃度(質量%)としたとき、y=125x+(475~525)で示される溶体化温度y(℃)で溶体化処理を行う工程と、
     - 時効処理を行う工程と、
    を順に行うことを含む請求項1~6のいずれかに記載の銅合金の製造方法。
PCT/JP2010/056075 2010-04-02 2010-04-02 電子材料用Cu-Ni-Si系合金 WO2011125153A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012509204A JP5654571B2 (ja) 2010-04-02 2010-04-02 電子材料用Cu−Ni−Si系合金
US13/638,806 US9005521B2 (en) 2010-04-02 2010-04-02 Cu—Ni—Si alloy for electronic material
PCT/JP2010/056075 WO2011125153A1 (ja) 2010-04-02 2010-04-02 電子材料用Cu-Ni-Si系合金
EP10849397.4A EP2554691A4 (en) 2010-04-02 2010-04-02 CU-NI-SI ALLOY FOR ELECTRONIC MATERIAL
CN2010800660459A CN102822364A (zh) 2010-04-02 2010-04-02 电子材料用Cu-Ni-Si系合金
KR1020127027855A KR20120130342A (ko) 2010-04-02 2010-04-02 전자 재료용 Cu-Ni-Si 계 합금

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056075 WO2011125153A1 (ja) 2010-04-02 2010-04-02 電子材料用Cu-Ni-Si系合金

Publications (1)

Publication Number Publication Date
WO2011125153A1 true WO2011125153A1 (ja) 2011-10-13

Family

ID=44762140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056075 WO2011125153A1 (ja) 2010-04-02 2010-04-02 電子材料用Cu-Ni-Si系合金

Country Status (6)

Country Link
US (1) US9005521B2 (ja)
EP (1) EP2554691A4 (ja)
JP (1) JP5654571B2 (ja)
KR (1) KR20120130342A (ja)
CN (1) CN102822364A (ja)
WO (1) WO2011125153A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041562A (ja) * 2010-08-12 2012-03-01 Jx Nippon Mining & Metals Corp 強度、導電率及び曲げ加工性に優れたCu−Co−Si系銅合金及びその製造方法
US20130237105A1 (en) * 2012-03-07 2013-09-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal
JP2014019910A (ja) * 2012-07-18 2014-02-03 Mitsubishi Shindoh Co Ltd 優れたばね限界値及び耐応力緩和性を有するSnめっき後の耐熱剥離性が良好なCu−Ni−Si系銅合金板
CN104583430A (zh) * 2012-07-26 2015-04-29 三菱电机株式会社 铜合金及其制造方法
JP2016509132A (ja) * 2013-01-22 2016-03-24 韓国機械材料技術院Korea Institute Of Machinery & Materials 配向された析出物を有する金属複合材料及びその製造方法
WO2016059707A1 (ja) * 2014-10-16 2016-04-21 三菱電機株式会社 Cu-Ni-Si合金及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015116314A1 (de) 2015-09-25 2017-03-30 Berkenhoff Gmbh Verwendung eines aus einer Kupfer-Zink-Mangan-Legierung ausgebildeten metallischen Elements als elektrisches Heizelement
JP6512309B2 (ja) * 2016-01-07 2019-05-15 株式会社村田製作所 金属組成物、金属間化合物部材、接合体
CN111074092B (zh) * 2019-12-26 2021-08-17 浙江杭机新型合金材料有限公司 一种高强高导铜镍硅合金材料及其制备方法
CN112813368B (zh) * 2020-12-25 2022-05-13 大连交通大学 一种高性能Cu-Ni-Si合金板带材及其生产工艺
CN113234958A (zh) * 2021-04-25 2021-08-10 江苏青益金属科技股份有限公司 适用于石油输送管道恒温包套的合金线材及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219374A (ja) * 1997-02-10 1998-08-18 Kobe Steel Ltd 剪断加工性に優れる高強度銅合金
JP2006265731A (ja) * 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The 銅合金
JP3977376B2 (ja) 2004-02-27 2007-09-19 古河電気工業株式会社 銅合金
JP2008024999A (ja) * 2006-07-24 2008-02-07 Dowa Holdings Co Ltd 耐力および曲げ加工性に優れたCu−Ni−Si系銅合金板材
WO2008032738A1 (fr) 2006-09-12 2008-03-20 The Furukawa Electric Co., Ltd. Matériau de plaque en alliage de cuivre pour un équipement électrique/électronique et procédé pour produire celui-ci
JP2008127668A (ja) * 2006-11-24 2008-06-05 Mitsubishi Shindoh Co Ltd 電子機器用銅合金およびリードフレーム材
JP2009242926A (ja) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd 電子材料用Cu−Ni−Si系合金
JP2009242890A (ja) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739214B2 (ja) * 1998-03-26 2006-01-25 株式会社神戸製鋼所 電子部品用銅合金板
JP3520034B2 (ja) * 2000-07-25 2004-04-19 古河電気工業株式会社 電子電気機器部品用銅合金材
JP3520046B2 (ja) * 2000-12-15 2004-04-19 古河電気工業株式会社 高強度銅合金
WO2005083137A1 (en) * 2004-02-27 2005-09-09 The Furukawa Electric Co., Ltd. Copper alloy
JP4020881B2 (ja) * 2004-04-13 2007-12-12 日鉱金属株式会社 Cu−Ni−Si−Mg系銅合金条
JP5306591B2 (ja) * 2005-12-07 2013-10-02 古河電気工業株式会社 配線用電線導体、配線用電線、及びそれらの製造方法
US8268098B2 (en) 2006-05-26 2012-09-18 Kobe Steel, Ltd. Copper alloy having high strength, high electric conductivity and excellent bending workability
JP4143662B2 (ja) * 2006-09-25 2008-09-03 日鉱金属株式会社 Cu−Ni−Si系合金
JP2008166141A (ja) * 2006-12-28 2008-07-17 Auto Network Gijutsu Kenkyusho:Kk 電線導体および絶縁電線
JP5170881B2 (ja) * 2007-03-26 2013-03-27 古河電気工業株式会社 電気・電子機器用銅合金材およびその製造方法
TWI395824B (zh) * 2007-03-30 2013-05-11 Jx Nippon Mining & Metals Corp Cu-Ni-Si alloy for electronic materials
CN101809177B (zh) * 2007-10-03 2011-09-07 古河电气工业株式会社 电气电子部件用铜合金板材
JPWO2009104615A1 (ja) * 2008-02-18 2011-06-23 古河電気工業株式会社 銅合金材
JP5225787B2 (ja) 2008-05-29 2013-07-03 Jx日鉱日石金属株式会社 電子材料用Cu−Ni−Si系合金板又は条
JP5261161B2 (ja) * 2008-12-12 2013-08-14 Jx日鉱日石金属株式会社 Ni−Si−Co系銅合金及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219374A (ja) * 1997-02-10 1998-08-18 Kobe Steel Ltd 剪断加工性に優れる高強度銅合金
JP3797736B2 (ja) 1997-02-10 2006-07-19 株式会社神戸製鋼所 剪断加工性に優れる高強度銅合金
JP3977376B2 (ja) 2004-02-27 2007-09-19 古河電気工業株式会社 銅合金
JP2006265731A (ja) * 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The 銅合金
JP2008024999A (ja) * 2006-07-24 2008-02-07 Dowa Holdings Co Ltd 耐力および曲げ加工性に優れたCu−Ni−Si系銅合金板材
WO2008032738A1 (fr) 2006-09-12 2008-03-20 The Furukawa Electric Co., Ltd. Matériau de plaque en alliage de cuivre pour un équipement électrique/électronique et procédé pour produire celui-ci
JP2008127668A (ja) * 2006-11-24 2008-06-05 Mitsubishi Shindoh Co Ltd 電子機器用銅合金およびリードフレーム材
JP2009242926A (ja) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd 電子材料用Cu−Ni−Si系合金
JP2009242890A (ja) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554691A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041562A (ja) * 2010-08-12 2012-03-01 Jx Nippon Mining & Metals Corp 強度、導電率及び曲げ加工性に優れたCu−Co−Si系銅合金及びその製造方法
US20130237105A1 (en) * 2012-03-07 2013-09-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal
JP2014019910A (ja) * 2012-07-18 2014-02-03 Mitsubishi Shindoh Co Ltd 優れたばね限界値及び耐応力緩和性を有するSnめっき後の耐熱剥離性が良好なCu−Ni−Si系銅合金板
CN104583430A (zh) * 2012-07-26 2015-04-29 三菱电机株式会社 铜合金及其制造方法
US20150170781A1 (en) * 2012-07-26 2015-06-18 Mitsubishi Electric Corporation Copper alloy and method for manufacturing the same
US10002684B2 (en) * 2012-07-26 2018-06-19 Ngk Insulators, Ltd. Copper alloy and method for manufacturing the same
JP2016509132A (ja) * 2013-01-22 2016-03-24 韓国機械材料技術院Korea Institute Of Machinery & Materials 配向された析出物を有する金属複合材料及びその製造方法
WO2016059707A1 (ja) * 2014-10-16 2016-04-21 三菱電機株式会社 Cu-Ni-Si合金及びその製造方法

Also Published As

Publication number Publication date
JPWO2011125153A1 (ja) 2013-07-08
EP2554691A4 (en) 2014-03-12
EP2554691A1 (en) 2013-02-06
US9005521B2 (en) 2015-04-14
CN102822364A (zh) 2012-12-12
US20130014861A1 (en) 2013-01-17
KR20120130342A (ko) 2012-11-30
JP5654571B2 (ja) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5367999B2 (ja) 電子材料用Cu−Ni−Si系合金
JP5654571B2 (ja) 電子材料用Cu−Ni−Si系合金
JP4596493B2 (ja) 導電性ばね材に用いられるCu−Ni−Si系合金
US8444779B2 (en) Cu—Ni—Si—Co copper alloy for electronic materials and method for manufacturing same
JP4837697B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP4440313B2 (ja) 電子材料用Cu−Ni−Si−Co−Cr系合金
JP5506806B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
WO2009122869A1 (ja) 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法
JP2011214088A (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
WO2012169405A1 (ja) 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材、及び電子機器用部品
JP6306632B2 (ja) 電子材料用銅合金
JP2010236071A (ja) 電子材料用Cu−Co−Si系銅合金及びその製造方法
TWI429764B (zh) Cu-Co-Si alloy for electronic materials
JP6222885B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP5524901B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP2012229467A (ja) 電子材料用Cu−Ni−Si系銅合金
TWI411693B (zh) Cu-Ni-Si alloy for electronic materials
JP7311651B1 (ja) 電子材料用銅合金及び電子部品
JP2016183418A (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP2013117060A (ja) 電子材料用Cu−Co−Si系合金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066045.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509204

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13638806

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010849397

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127027855

Country of ref document: KR

Kind code of ref document: A