WO2011122461A1 - 発光装置の製造方法 - Google Patents

発光装置の製造方法 Download PDF

Info

Publication number
WO2011122461A1
WO2011122461A1 PCT/JP2011/057298 JP2011057298W WO2011122461A1 WO 2011122461 A1 WO2011122461 A1 WO 2011122461A1 JP 2011057298 W JP2011057298 W JP 2011057298W WO 2011122461 A1 WO2011122461 A1 WO 2011122461A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
thin film
ink
layer
support substrate
Prior art date
Application number
PCT/JP2011/057298
Other languages
English (en)
French (fr)
Inventor
合田 匡志
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201180016172.2A priority Critical patent/CN102823324B/zh
Priority to KR1020127025192A priority patent/KR20130018406A/ko
Priority to US13/637,571 priority patent/US20130052766A1/en
Priority to EP11762692A priority patent/EP2555592A1/en
Publication of WO2011122461A1 publication Critical patent/WO2011122461A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/211Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks

Definitions

  • the present invention relates to a method for manufacturing a light emitting device.
  • This display device includes a plurality of organic EL elements arranged on a support substrate.
  • a partition wall is usually provided for defining a partition where the organic EL element is to be provided, and the plurality of organic EL elements are provided in alignment with the partition defined by the partition wall.
  • FIG. 4 is a diagram schematically showing an aspect of supplying ink by the nozzle printing method.
  • the plurality of organic EL elements 3 are separated from the partition wall member 1. It is provided in between, and is arranged at predetermined intervals in the column direction Y between the partition members 1.
  • the organic EL element is composed of a pair of electrodes and an organic EL layer provided between the pair of electrodes, and is manufactured by sequentially laminating each component.
  • the organic EL layer constituting the organic EL element can be formed by a coating method. That is, an organic EL layer can be formed by applying an ink containing a material to be an organic EL layer by a predetermined application method and further solidifying the ink.
  • ink may be applied and formed only in a region where the organic EL element is formed (hereinafter sometimes referred to as a light emitting region), but depending on the application method, only in the light emitting region.
  • the ink is applied to the outside of the light emitting region.
  • the ink is applied to the outside of the light emitting region.
  • the locus of the nozzle 4 on the support substrate is represented by a solid line with an arrow.
  • a nozzle 4 for continuously supplying ink is arranged on a support substrate, and the nozzle 4 is reciprocated in the row direction X while ink is continuously supplied from the nozzle 4.
  • the ink is supplied to each row by moving the support substrate by one row in the column direction Y.
  • the ink is necessarily supplied outside the light emitting region.
  • the ink deposited outside the light emitting area is usually removed after applying the ink. This is because the characteristics of the display device may be deteriorated by the ink applied and formed outside the light emitting region.
  • the support substrate is usually bonded to the sealing substrate by an adhesive member for sealing, but if the ink is applied to the region where the adhesive member is provided, the adhesion and airtightness may be reduced. .
  • the wiring provided outside the light emitting region of the support substrate is covered with ink, the wiring may be undesirably short-circuited. For this reason, in the prior art, the ink is removed by wiping off the ink that has been applied and formed outside the light emitting region (see, for example, Patent Document 1).
  • the ink is removed by scanning the wiping part at the site where the ink is applied and deposited.
  • the ink adheres to the wiping part, and the wiping of the ink in the wiping part Since the ability gradually decreases, there is a problem that the ink cannot be wiped off continuously and cleanly.
  • particles may be generated from the solidified thin film or the solidified thin film. As a result, there is a possibility that particles are mixed into the organic EL layer.
  • unintended particles may be generated from the device that scans the wiping portion, and the particles may be mixed into the organic EL layer.
  • an object of the present invention is to provide a method for manufacturing a light emitting device that can easily manufacture a light emitting device by a novel method for selectively removing a thin film formed by coating outside the light emitting region.
  • the present invention provides the following [1] to [6].
  • [1] A support substrate, a light emitting region set on the support substrate, a first electrode, a second electrode, and an organic electroluminescence provided between the first electrode and the second electrode
  • a method of manufacturing a light emitting device comprising a plurality of organic electroluminescence elements comprising a layer, Preparing a support substrate provided with a first electrode; Supplying an ink containing a material to be an organic EL layer on a support substrate, and forming a thin film made of the ink inside and outside the light emitting region of the support substrate; A process of making the thin film in the light emitting region hardly soluble, Removing the thin film outside the light emitting region by washing; Forming a second electrode.
  • a method for manufacturing a light-emitting device [2] In the step of forming a thin film made of the ink, an ink containing a polymerizable compound is supplied, The method for manufacturing a light emitting device according to [1], wherein in the step of making the thin film hardly soluble, the thin film in the light emitting region is hardly soluble by polymerizing the polymerizable compound. [3] The method for manufacturing a light emitting device according to [1] or [2], wherein, in the step of making the thin film hardly soluble, the thin film in the light emitting region is hardly soluble by irradiating light to the thin film in the light emitting region.
  • a light-emitting device can be easily manufactured by a novel method for selectively removing a thin film formed by coating outside the light-emitting region.
  • FIG. 1 is a plan view schematically showing the light emitting device of this embodiment.
  • FIG. 2 is a sectional view schematically showing the light emitting device in an enlarged manner.
  • FIG. 3A is a diagram for explaining a process of making a thin film insoluble and further cleaning it.
  • FIG. 3B is a diagram for explaining a process of making the thin film insoluble and further cleaning it.
  • FIG. 3C is a view for explaining a process of making the thin film insoluble and further cleaning it.
  • FIG. 4 is a diagram schematically illustrating an aspect in which ink is supplied by a nozzle printing method.
  • the display device manufacturing method of the present invention is provided in a support substrate and a light emitting region set on the support substrate, and includes a first electrode, a second electrode, the first electrode, and a second electrode.
  • a method for manufacturing a light emitting device comprising a plurality of organic EL elements including an organic EL layer provided therebetween, the step of preparing a support substrate provided with a first electrode, and an organic EL layer Supplying the ink containing the material to be formed on the support substrate, forming a thin film made of the ink inside and outside the light emitting region of the support substrate, making the thin film in the light emitting region slightly soluble, and emitting light
  • a step of removing the thin film outside the region by cleaning and a step of forming the second electrode are included.
  • the light emitting device is used as a display device or a lighting device, for example.
  • display devices There are mainly two types of display devices: an active matrix drive type device and a passive matrix drive type device.
  • the present invention can be applied to both drive-type display devices.
  • a light emitting device applied to an active matrix driving display device will be described as an example.
  • an organic EL element that functions as a light source of a pixel in a display device will be described.
  • the light emitting device may include an organic EL element that functions as a backlight.
  • a light-emitting device provided with a plurality of organic EL elements will be described.
  • the present invention can also be applied to a light emitting device including one organic EL element.
  • FIG. 1 is a plan view schematically showing the light emitting device of this embodiment.
  • FIG. 2 is a cross-sectional view schematically showing the light emitting device.
  • the light emitting device 21 mainly includes a support substrate 11 and a plurality of organic EL elements 22 provided in a light emitting region set on the support substrate.
  • the light emitting region is a region where a plurality of organic EL elements are provided.
  • the light emitting region corresponds to an image display region for displaying image information.
  • predetermined sections are set on the support substrate 11, and the plurality of organic EL elements 22 are arranged in sections set on the support substrate 11.
  • a partition wall 17 is provided on the support substrate 11 for defining a section set on the support substrate 11.
  • the plurality of organic EL elements 22 are respectively arranged in a predetermined section set on the support substrate 11.
  • the shape of the partition wall 17 provided to define this partition is determined according to the shape of the partition set on the support substrate 11. For example, when a matrix-like partition is set on the support substrate 11, a lattice-like partition is provided on the support substrate as a partition that defines the matrix-shaped partition. When a stripe-shaped section is set on the support substrate 11, a stripe-shaped partition wall 17 is provided on the support substrate as a partition that defines the stripe-shaped section.
  • the present invention can be applied to any type of light-emitting device regardless of the presence or absence of the partition walls and the shape of the partition walls.
  • the partition wall 17 in the present embodiment is composed of a plurality of partition wall members 20 each extending in a predetermined row direction X on the support substrate 11.
  • the plurality of partition members 20 are arranged at a predetermined interval in the column direction Y, which is different from the row direction X.
  • the row direction X and the column direction Y in the present embodiment mean directions that are orthogonal to each other and that are orthogonal to the thickness direction Z of the support substrate 11.
  • the recess defined by the pair of partition members 20 and the support substrate 11 adjacent to each other in the column direction Y may be referred to as the recess 18.
  • a plurality of recesses 18 corresponding to the plurality of partition members 20 are set on the support substrate 11.
  • the plurality of recesses 18 correspond to a partition defined by a partition wall.
  • an insulating film 15 is further provided between the support substrate 11 and the partition wall 17.
  • This insulating film 15 is provided, for example, to ensure electrical insulation between the organic EL elements 22 adjacent in the row direction X or the column direction Y.
  • the insulating film 15 in this embodiment is formed in a lattice shape.
  • the lattice-like insulating film 15 is configured by integrally forming a plurality of strip-shaped portions extending in the row direction X and a plurality of strip-shaped portions extending in the column direction Y.
  • the insulating film 15 has a shape in which a large number of openings 15a are formed in a matrix in a thin film that exhibits electrical insulation.
  • the opening 15 a of the insulating film 15 is formed at a position overlapping the organic EL element 22 when viewed from one side in the thickness direction of the support substrate (hereinafter, sometimes referred to as “plan view”).
  • the opening 15a of the insulating film 15 is formed so as to substantially coincide with a first electrode 12 described later in a plan view, and is formed in, for example, a substantially rectangular shape, an oval shape, a substantially circular shape, or a substantially elliptical shape.
  • the lattice-like insulating film 15 is formed so as to cover the periphery of the first electrode 12 so as to expose a part of the first electrode 12 in plan view.
  • the plurality of partition members 20 described above are provided on a plurality of strip-shaped portions extending in the row direction X of the insulating film 15.
  • the organic EL element 22 is provided in the recess 18 defined by the partition wall.
  • the plurality of organic EL elements 22 are provided between the partition wall members 20 adjacent to each other in the column direction Y (that is, the recess 18), and a predetermined interval is provided in the row direction X between the partition wall members 20. It is arranged with a gap. That is, in the present embodiment, the plurality of organic EL elements 22 are arranged in a matrix on the support substrate 11, and are arranged at predetermined intervals in the row direction X and at predetermined intervals in the column direction Y.
  • the organic EL elements 22 do not need to be physically separated from each other, and may be electrically insulated from each other so that they can be individually driven. Therefore, some layers (the first electrode 12, the second electrode 16, and the organic EL layer) constituting the organic EL element 22 may be physically connected to other organic EL elements 22.
  • the organic EL element 22 includes the first electrode 12, the hole injection layer 13 and the light emitting layer 14, which are organic EL layers, and the second electrode 16, in this order so that the first electrode 12 is closer to the support substrate 11. Arranged and configured.
  • the first electrode 12 and the second electrode 16 constitute a pair of electrodes composed of an anode and a cathode. That is, one of the first electrode 12 and the second electrode 16 is provided as an anode, and the other is provided as a cathode. Of the first electrode 12 and the second electrode 16, the first electrode 12 is disposed closer to the support substrate 11, and the second electrode 16 is disposed farther from the support substrate 11 than the first electrode 12. Is done.
  • the organic EL element 22 includes one or more organic EL layers.
  • the organic EL layer means all layers sandwiched between the first electrode 12 and the second electrode 16.
  • the organic EL element 22 includes at least one light emitting layer 14 as an organic EL layer. Further, a predetermined layer is provided between the first electrode 12 and the second electrode 16 as needed, not limited to the light emitting layer 14.
  • a hole injection layer, a hole transport layer, an electron blocking layer, and the like are provided as an organic EL layer between the anode and the light emitting layer 14, and an organic EL layer is provided between the light emitting layer 14 and the cathode, A hole blocking layer, an electron transport layer, an electron injection layer, and the like are provided.
  • the organic EL element 22 of this embodiment includes a hole injection layer 13 as an organic EL layer between the first electrode 12 and the light emitting layer 14.
  • the first electrode 12 is supported by the first electrode 12 functioning as an anode, the hole injection layer 13, the light-emitting layer 14, and the second electrode 16 functioning as a cathode.
  • the organic EL element 22 stacked in this order so as to be closer to the substrate 11 will be described.
  • the first electrode 12 is provided for each organic EL element 22 individually. That is, the same number of first electrodes 12 as the number of organic EL elements 22 are provided on the support substrate 11.
  • the first electrode 12 has a thin film shape and is formed in a substantially rectangular shape in plan view.
  • the first electrodes 12 are provided in a matrix on the support substrate 11 corresponding to the positions where each organic EL element is provided.
  • the plurality of first electrodes 12 are arranged at predetermined intervals in the row direction X and at predetermined intervals in the column direction Y.
  • the first electrode 12 is provided between the partition wall members 20 adjacent to each other in the column direction Y in a plan view, and is disposed at a predetermined interval in the row direction X between the partition wall members 20. .
  • the lattice-like insulating film 15 is formed so as to cover the periphery of the first electrode 12 so as to expose a part of the first electrode 12 in plan view. That is, an opening 15 a is formed in the insulating film 15 on the first electrode 12, and a part of the surface of the first electrode 12 is exposed from the insulating film 15 through the opening 15 a.
  • the hole injection layer 13 is disposed so as to extend in the row direction X in a region sandwiched between the partition members 20. That is, the hole injection layer 13 is formed in a strip shape in the recess 18 defined by the partition wall member 20 adjacent in the column direction Y, and is continuous over a plurality of organic EL elements 22 adjacent in the row direction X. Is formed.
  • the light emitting layer 14 is provided so as to extend in the row direction X in a region sandwiched between opposing partition wall members 20. That is, the light emitting layer 14 is formed in a strip shape in the recess 18 defined by the partition member 20 adjacent in the column direction Y, and continuously formed across a plurality of organic EL elements 22 adjacent in the row direction X. Has been.
  • the band-shaped light emitting layer 14 is laminated on the band-shaped hole injection layer 13.
  • a color display device will be described as an example in this embodiment.
  • three types of organic EL elements 22 22R, 22G, 22B) that emit any one of red, green, and blue light are provided on the support substrate 11.
  • the color display device can be realized, for example, by repeatedly arranging the following rows (I), (II), and (III) in the column direction Y in this order.
  • a plurality of organic EL elements 22R that emit red light are arranged at predetermined intervals in the row direction X.
  • a plurality of organic EL elements 22G that emit green light are predetermined in the row direction X. Rows arranged at intervals
  • III Rows in which a plurality of organic EL elements 22B emitting blue light are arranged at predetermined intervals in the row direction X
  • a light emitting layer having a different emission color is usually provided for each type of organic EL element.
  • the following rows (i), (ii), and (iii) are repeatedly arranged in the column direction Y in this order.
  • strip-shaped light emitting layers 14 (14R, 14G, 14B) extending in the row direction X are sequentially stacked on the hole injection layer 13 with two rows in the column direction Y, respectively. .
  • the second electrode 16 is provided on the light emitting layer 14.
  • the second electrode 16 is continuously formed across the plurality of organic EL elements 22 and is provided as a common electrode for the plurality of organic EL elements 22.
  • the second electrode 16 is formed not only on the light emitting layer 14 but also on the partition wall 17, and is formed on one surface so that the electrode on the light emitting layer 14 and the electrode on the partition wall 17 are connected.
  • a support substrate 11 on which the first electrode 12 is provided is prepared.
  • a substrate on which circuits for individually driving a plurality of organic EL elements are formed in advance can be used as the support substrate 11.
  • a substrate on which a TFT (Thin Film Transistor), a capacitor, and the like are formed in advance can be used as the support substrate.
  • the substrate on which the first electrode 12 is previously provided may be prepared as the support substrate 11 by obtaining from the market.
  • the support substrate 11 may be prepared by obtaining from the market a support substrate 11 on which the first electrode 12 and the partition wall 17 are previously provided.
  • the first electrode 12 is formed, for example, by forming a conductive thin film on one surface of the support substrate 11 and applying this to a photolithographic method (in the following description, “photolithographic method” includes a mask pattern forming step). A patterning process such as an etching process is included, and the like is formed by patterning in a matrix.
  • a mask having an opening formed in a predetermined portion is disposed on the support substrate 11, and a conductive material is selectively deposited on the predetermined portion on the support substrate 11 through the mask, thereby the first electrode. 12 may be patterned. The material of the first electrode 12 will be described later.
  • the partition wall 17 is formed on the support substrate 11.
  • the partition wall 17 composed of a plurality of partition wall members 20 is formed.
  • the partition wall 17 is made of an organic material or an inorganic material.
  • the organic material constituting the partition wall 17 include resins such as acrylic resin, phenol resin, and polyimide resin.
  • examples of the inorganic material constituting the partition wall 17 include SiO x and iN x .
  • the partition wall 17 is preferably made of an organic material.
  • the partition 17 preferably exhibits liquid repellency.
  • an organic material is more lyophobic than an inorganic material, so that the ability to hold ink in the recess 18 can be increased by forming a partition wall with the organic material.
  • the partition wall 17 made of an organic material first, for example, a positive or negative photosensitive resin is applied to one surface, and a predetermined portion is exposed and developed. Further, by curing this, a plurality of partition members 20 are formed. Note that a photoresist can be used as the photosensitive resin.
  • a thin film made of an inorganic material is formed on one surface by a plasma CVD method, a sputtering method, etc., and then a plurality of partition wall members 20 are formed by removing predetermined portions of the thin film. To do.
  • the predetermined portion is removed by, for example, a photolithography method.
  • the insulating film 15 is formed before the step of forming the partition wall 17.
  • the insulating film 15 can be formed in a lattice shape in the same manner as the method of forming the partition wall 17 using, for example, the material exemplified as the material of the partition wall 17.
  • the insulating film 15 is preferably made of an inorganic material that is more lyophilic than an organic material.
  • the ink supplied to the recess 18 may be dried while being repelled by the insulating film 15, and the presence of the insulating film 15 affects the flatness of the organic EL layer. This is because a flat organic EL layer may not be obtained.
  • the shape of the partition wall 17 and the arrangement thereof are appropriately set according to the specifications of the display device such as the number of pixels and resolution, the ease of manufacturing, and the like.
  • the width L1 of the partition wall member 20 in the column direction Y is about 5 ⁇ m to 50 ⁇ m
  • the height L2 of the partition wall member 20 is about 0.5 ⁇ m to 5 ⁇ m
  • the interval L3 between the partition wall members 20 adjacent to each other in the column direction Y is about 10 ⁇ m to 200 ⁇ m.
  • the widths of the first electrode 12 in the row direction X and the column direction Y are about 10 ⁇ m to 400 ⁇ m, respectively.
  • an ink containing a material that becomes an organic EL layer (in the present embodiment, a hole injection layer 13) (hereinafter also referred to as a hole injection layer ink) is supplied onto the support substrate 11, and the support substrate is supplied.
  • a thin film made of the hole injection layer ink is formed inside and outside the 11 light emitting regions.
  • the hole injection layer 13 common to all the organic EL elements 22 since the hole injection layer 13 common to all the organic EL elements 22 is formed, it is not necessary to supply ink for the hole injection layer only between the adjacent partition members 20, and the entire surface is positive. You may supply the ink for hole injection layers.
  • the ink for the hole injection layer may be provided in any way for this.
  • the hole injection layer ink can be supplied by spin coating, slit coating, ink jet printing, nozzle printing, letterpress printing, intaglio printing, and the like.
  • a method for supplying the hole injection layer ink a method capable of uniformly supplying the hole injection layer ink in a short time is preferable. From such a viewpoint, a spin coating method, a slit coating method, or a nozzle printing method is preferable.
  • the hole injection layer ink when the hole injection layer ink is applied to the entire surface, the hole injection layer may be formed even on the partition wall 17 depending on the properties of the partition wall surface. It may be preferred to supply layer ink.
  • the hole injection layer ink is supplied by a coating method that can selectively supply the hole injection layer ink only to the recesses 18.
  • the hole injection layer ink is supplied by a nozzle printing method as a coating method capable of selectively supplying the hole injection layer ink.
  • the ink for the hole injection layer is supplied to each row (each concave portion 18) with a single stroke. That is, while the liquid columnar hole injection layer ink is ejected from the nozzle disposed above the support substrate 11, while the nozzle is reciprocated in the row direction X, the support substrate is By moving a predetermined distance in the column direction Y, the hole injection layer ink is supplied to each row. For example, when the nozzle is turned back and forth, the ink for the hole injection layer can be supplied to all the rows by moving the support substrate by one row in the column direction Y.
  • Step (1) Step of moving the nozzle from one end in the row direction X to the other end
  • One end of the nozzle from the other end in the row direction X (4)
  • a thin film made of the hole injection layer ink is formed inside and outside the light emitting region on the support substrate 11.
  • the thin film made of the hole injection layer ink is hardly soluble.
  • the thin film in the light emitting region is hardly soluble.
  • making a thin film hardly soluble means making it difficult to melt
  • the ink contains a polymerizable compound
  • the thin film can be made slightly soluble by polymerizing the polymerizable compound. Even if the ink does not contain a polymerizable compound, the thin film can be made slightly soluble by heating the thin film at a predetermined temperature and evaporating the solvent.
  • PEDOT / PSS poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid)
  • PDOT / PSS poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid)
  • PDOT / PSS poly(styrenesulfonic acid)
  • an aqueous solution of PEDOT / PSS can be used as the ink for the hole injection layer.
  • the thin film made of this aqueous solution of PEDOT / PSS is hardly soluble by heating.
  • the insolubilization of the thin film in the light emitting region can be performed by applying predetermined energy to the thin film.
  • a method of irradiating a thin film with light of a predetermined wavelength there are a method of applying thermal energy.
  • g-line (wavelength 436nm), i-line (wavelength 365nm), KrF excimer laser (wavelength 248nm), ArF excimer laser (wavelength 193nm) of ultra-high pressure mercury lamp are irradiated onto the thin film, and the polymerizable compound is polymerized by light energy. May be.
  • the thin film may be heated by irradiating near infrared rays having a wavelength of 700 nm to 3500 nm, and the polymerizable compound may be polymerized by thermal energy. Furthermore, the solvent may be vaporized by irradiating the above-described near infrared rays to make the thin film hardly soluble. Further, the thin film may be heated by irradiating far infrared rays having a wavelength of 3500 nm to 20000 nm, and the polymerizable compound may be polymerized by thermal energy. Furthermore, the solvent may be vaporized by irradiating the above-mentioned far infrared rays to make the thin film hardly soluble.
  • the thin film may be made slightly soluble by heating the thin film using a hot plate or the like, polymerizing the polymerizable compound by thermal energy, or evaporating the solvent. Even if it is intended to apply energy only to the thin film in the display region, energy is also applied to the thin film on the periphery of the display region, and a part of the thin film outside the display region may be slightly soluble. Therefore, in order to apply energy only to the thin film in the display region, it is preferable to apply energy by a method capable of locally applying energy. From such a viewpoint, the light having the predetermined wavelength described above is applied to the thin film. It is preferable to apply energy to the thin film by irradiating near infrared rays capable of locally heating the thin film.
  • 3A, 3B, and 3C are views for explaining a process of making the thin film insoluble and further cleaning it.
  • the thin film is hatched.
  • the thin film 23 in the light emitting region 11a by irradiating the thin film 23 in the light emitting region 11a with near-infrared rays (nIR), the thin film 23 in the light emitting region 11a is hardly soluble to form the hardly soluble thin film 23a.
  • nIR near-infrared rays
  • FIG. 3A a region surrounded by a two-dot chain line is a light emitting region 11a.
  • a mask 19 having a portion 19a that transmits near infrared rays and a portion 19b that blocks near infrared rays (nIR) is disposed on the support substrate 11 on which the thin film 23 is formed.
  • the irradiated near infrared rays (nIR) are schematically shown by white arrows.
  • Near infrared (nIR) is irradiated to the thin film 23 through this mask 19, and only the near infrared (nIR) is irradiated to the thin film 23 in the light emitting region 11a.
  • FIG. 3B schematically shows the support substrate after the thin film 23 in the light emitting region 11a is hardly soluble.
  • the hardly soluble thin film 23a and the hardly soluble thin film 23 are hatched.
  • the thin film 23 outside the light emitting region 11 a is then removed by cleaning, so that only the hardly soluble thin film 23 a remains on the support substrate 11.
  • a solvent is supplied onto the support substrate 11 and further removed (for example, spin cleaning).
  • the support substrate 11 is immersed in the solvent for a predetermined time, and then the support substrate taken out from the solvent is dried. And how to do it.
  • the solvent used for the cleaning a solvent that dissolves the hardly soluble thin film 23 and does not dissolve the hardly soluble thin film 23a is used.
  • the thin film 23 made of an aqueous solution of PEDOT / PSS is formed, the thin film outside the light emitting region 11a can be cleaned by using, for example, water as a solvent.
  • the solvent of the hardly soluble thin film 23a in the light emitting region 11a is further removed as necessary.
  • the solvent can be removed by natural drying, heat drying, vacuum drying, or the like.
  • the light emitting layer 14 is formed.
  • the material of the light emitting layer 14 for each row.
  • red ink containing a material that emits red light green ink containing a material that emits green light
  • a material that emits blue light It is necessary to apply the blue ink containing the ink in the column direction Y with an interval of two rows.
  • any coating method that can selectively supply ink between adjacent partition members 20 can be used.
  • the ink can be supplied by an inkjet printing method, a nozzle printing method, a relief printing method, an intaglio printing method, or the like.
  • a method for supplying ink a method capable of supplying ink uniformly in a short time is preferable. From such a viewpoint, the nozzle printing method is preferable.
  • ink is supplied by a nozzle printing method as in the method for forming the hole injection layer described above.
  • Steps (1) to (4) are repeated in this order while the liquid columnar red ink is ejected from the nozzle 4, so that they are adjacent to each other in the column direction Y with an interval of two rows.
  • Red ink can be supplied between the partition members 20 (recesses 18).
  • Step of moving the nozzle 4 in the row direction X from one end to the other end of the recess 18 (2) Step of moving the support substrate 11 in one of the column directions Y by three rows (3) Recessing the nozzle 4 Step of moving in the row direction X from the other end of 18 to the end (4) Step of moving the support substrate in one of the column directions Y by three rows
  • green ink and blue ink are respectively supplied between the partition wall members 20 (recesses 18) with an interval of two rows in the column direction Y. Can do.
  • red ink, green ink, and blue ink containing a polymerizable compound that can be polymerized by applying energy are nozzle printed. Supply by law.
  • red ink, green ink, and blue ink containing a light-emitting material having a polymerizable group that can be polymerized by applying energy as a polymerizable compound may be used.
  • a red ink, a green ink, and a blue ink containing a polymerizable compound having a polymerizable polymerizable group may be used.
  • polymerizable groups examples include vinyl, ethynyl, butenyl, acryloyl, acryloylamino, methacryloyl, methacryloylamino, vinyloxy, vinylamino, silanol, cyclopropyl, cyclobutyl, and epoxy groups.
  • polymerizable compound examples include PDA (N, N′-tetraphenyl-1,4-phenylenediamine) derivatives having a polymerizable group and TPD (N, N′-bis (3- Methylphenyl) -N, N'-bis (phenyl) -benzidine) derivatives, NPD with polymerizable groups (N, N'-bis (naphthalen-1-yl) -N, N'-bis (phenyl)- Benzidine) derivatives, triphenylamine acrylate, triphenylenediamine acrylate, phenylene acrylate, bisphenoxyethanol full orange acrylate (trade name BPEF-A, manufactured by Osaka Gas Chemical Company), dipentaerythritol hexaacrylate (KAYARD DPHA, manufactured by Nippon Kayaku), Trispentaerythritol octaacrylate (manufactured by Guangei Chemical Co., Ltd.) 1,4-
  • the thin film 23 in the light emitting region 11a among the thin films 23 made of red ink, green ink, and blue ink, the light emitting region is obtained.
  • the thin film 23 in 11a is hardly soluble.
  • red ink, green ink, and blue ink containing a polymerizable compound are used.
  • a mask 19 having a portion 19a that transmits near infrared rays (nIR) and a portion 19b that blocks near infrared rays (nIR) is disposed on the support substrate 11.
  • Near infrared (nIR) is irradiated to the thin film through the mask 19, and only the thin infrared ray (nIR) is irradiated to the thin film 23 in the light emitting region 11a.
  • the thin film 23 outside the light emitting region 11a is not irradiated with the near infrared ray (nIR).
  • only the thin film 23 in the light emitting region 11a is heated, and only the thin film 23 in the light emitting region 11a is hardly soluble to form a hardly soluble thin film 23a.
  • the thin film 23 outside the light emitting region 11a is removed by cleaning.
  • a solvent is supplied onto the support substrate 11 and further removed (for example, spin cleaning).
  • the support substrate 11 is immersed in the solvent for a predetermined time, and then the support substrate 11 taken out from the solvent is dried.
  • the solvent used for the cleaning a solvent that dissolves the hardly soluble thin film 23 and does not dissolve the hardly soluble thin film 23a is used.
  • a solvent for example, xylene, toluene, THF (tetrahydrofuran), anisole and the like can be used.
  • the thin film 23 is irradiated with near infrared rays (nIR) and heated to make it difficult to dissolve, but the method of making the thin film 23 hardly soluble is not limited to this, and for example, a polymerizable compound is polymerized such as irradiating ultraviolet rays.
  • the thin film may be irradiated with light having a wavelength to make it slightly soluble by light energy.
  • the solvent of the hardly soluble thin film 23a in the light emitting region 11a is further removed as necessary.
  • the solvent can be removed by natural drying, heat drying, vacuum drying, or the like.
  • a predetermined organic layer, an inorganic layer, or the like is formed by a predetermined method as necessary.
  • the layer provided as necessary may be formed by using a predetermined coating method such as a printing method, an ink jet method, a nozzle printing method, or a predetermined dry method.
  • the second electrode 16 is formed. As described above, in the present embodiment, the second electrode 16 is formed on the entire surface of the support substrate 11. Thereby, a plurality of organic EL elements 22 can be formed on the support substrate 11.
  • the thin film 23 in the light emitting region 11a hardly soluble, the thin film 23 outside the light emitting region 11a can be easily removed by washing.
  • a light emitting device can be easily manufactured by such a thin film removing method.
  • the thin film 23 made of the hole injection layer ink is removed by washing before the step of forming the light emitting layer 14, but the thin film 23 made of the hole injection layer ink may emit light depending on circumstances. It may not be removed before the step of forming the layer 14.
  • a monomolecular layer with hole injecting properties for example, a monomolecular layer of tetrafluorotetracyanoquinodimethane (F 4 TCNQ)
  • F 4 TCNQ tetrafluorotetracyanoquinodimethane
  • the thin film 23 made of hole injection layer ink may be removed at the same time. Furthermore, the thin film 23 made of the hole injection layer ink may not be slightly soluble, for example, when the thin film 23 made of the hole injection layer ink is difficult to dissolve in red ink, green ink, and blue ink. sell.
  • the thin film made of the red ink, the green ink, and the blue ink is made slightly soluble and further washed, but the red ink, the green ink, Each time the blue ink is supplied, the thin film made of red ink, green ink or blue ink may be made slightly soluble and further washed.
  • the red ink dissolved at the time of cleaning is mixed into the organic EL element 22 to which only the blue ink is originally supplied, and the problem that the characteristics of the display device deteriorate is less likely to occur.
  • the organic EL element 22 can have various layer configurations.
  • the layer structure of the organic EL element 22, the configuration of each layer, and the method of forming each layer will be described in more detail.
  • the organic EL element 22 includes a pair of electrodes (first electrode 12 and second electrode 16) including an anode and a cathode, and one or more organic EL layers provided between the pair of electrodes. And has at least one light-emitting layer 14 as one or more organic EL layers.
  • the organic EL element 22 may include a layer containing an inorganic substance and an organic substance, an inorganic layer, and the like.
  • the organic substance constituting the organic layer may be a low molecular compound or a high molecular compound, or a mixture of a low molecular compound and a high molecular compound.
  • the organic layer preferably contains a polymer compound.
  • the organic layer preferably contains a polymer compound having a polystyrene-equivalent number average molecular weight of 10 3 to 10 8 .
  • Examples of the organic EL layer provided between the cathode and the light emitting layer 14 include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the layer close to the cathode is called an electron injection layer
  • the layer close to the light emitting layer 14 is called an electron transport layer.
  • Examples of the organic EL layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • a layer close to the anode is referred to as a hole injection layer
  • a layer close to the light emitting layer is referred to as a hole transport layer.
  • anode / light emitting layer / cathode b) anode / hole injection layer / light emitting layer / cathode c) anode / hole injection layer / light emitting layer / electron injection layer / cathode d) anode / hole injection layer / light emitting layer / Electron transport layer / cathode e) anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode f) anode / hole transport layer / light emitting layer / cathode g) anode / hole transport layer / light emitting layer / Electron injection layer / cathode h) anode / hole transport layer / light emitting layer / electron transport layer / cathode i) anode / hole transport layer / light emitting layer / electron transport
  • the organic EL element 22 of the present embodiment may have two or more light emitting layers 14.
  • the organic EL element 22 having two light-emitting layers 14 is formed.
  • the layer structure shown to the following q) can be mentioned. Note that the two (structural unit A) layer structures may be the same or different.
  • Anode / (structural unit A) / charge generating layer / (structural unit A) / cathode If “(structural unit A) / charge generating layer” is “structural unit B”, it has three or more light emitting layers.
  • Examples of the structure of the organic EL element include the layer structure shown in the following r). r) anode / (structural unit B) x / (structural unit A) / cathode
  • x represents an integer of 2 or more
  • (structural unit B) x is a stack in which the structural unit B is stacked in x stages. Represents the body.
  • a plurality of (structural units B) may have the same or different layer structure.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field.
  • Examples of the charge generation layer include a thin film made of vanadium oxide, indium tin oxide (abbreviated as ITO), molybdenum oxide, or the like.
  • the organic EL element 22 may be provided on the support substrate with the anode of the pair of electrodes including the anode and the cathode disposed closer to the support substrate 11 than the cathode, and the cathode is provided on the support substrate 11 than the anode. You may arrange
  • an electrode having optical transparency is used for the anode.
  • the electrode exhibiting light transmittance a thin film of metal oxide, metal sulfide, metal or the like can be used, and an electrode having high electrical conductivity and light transmittance is preferably used.
  • Specific examples of the electrode exhibiting optical transparency include a thin film made of indium oxide, zinc oxide, tin oxide, ITO, indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, and the like. Used. Among these, a thin film made of ITO, IZO, or tin oxide is preferably used.
  • Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Further, as the anode, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
  • the film thickness of the anode is appropriately set in consideration of the required characteristics, the simplicity of the film forming process, and the like.
  • the film thickness of the anode is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • a material for the cathode As a material for the cathode, a material having a small work function, easy electron injection into the light emitting layer 14, and high electrical conductivity is preferable. Further, in the organic EL element configured to extract light from the anode side, the light emitted from the light emitting layer 14 is reflected by the cathode to the anode side, and therefore, a material having a high reflectivity with respect to visible light is preferable as the cathode material.
  • an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like can be used.
  • cathode materials include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, and ytterbium.
  • An alloy, graphite, or a graphite intercalation compound is used.
  • alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, calcium-aluminum alloys, and the like.
  • a transparent conductive electrode made of a conductive metal oxide or a conductive organic material can be used.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO.
  • the conductive organic material include polyaniline or a derivative thereof, polythiophene or a derivative thereof, and the like.
  • the cathode may be composed of a laminate in which two or more layers are laminated.
  • the electron injection layer may be used as a cathode.
  • the film thickness of the cathode is appropriately set in consideration of the required characteristics, the simplicity of the film forming process, and the like.
  • the film thickness of the cathode is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, and a laminating method in which a metal thin film is thermocompression bonded.
  • Examples of the hole injection material constituting the hole injection layer 13 include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst type amine compounds, phthalocyanine compounds, amorphous carbon, Examples thereof include polyaniline and polythiophene derivatives.
  • the film thickness of the hole injection layer 13 is appropriately set in consideration of the required characteristics and the simplicity of the film forming process.
  • the thickness of the hole injection layer 13 is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the hole transport material constituting the hole transport layer examples include polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene Derivative, triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) ) Or a derivative thereof.
  • the film thickness of the hole transport layer is set in consideration of the required characteristics and the simplicity of the film forming process.
  • the thickness of the hole transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm.
  • the light emitting layer 14 is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance.
  • the dopant is added, for example, to improve luminous efficiency and change the emission wavelength.
  • the organic substance which comprises a light emitting layer may be a low molecular compound or a high molecular compound, and when forming a light emitting layer by the apply
  • the number average molecular weight in terms of polystyrene of the polymer compound constituting the light emitting layer is, for example, about 10 3 to 10 8 .
  • Examples of the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • dye material examples include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds, Examples thereof include a pyridine ring compound, a perinone derivative, a perylene derivative, an oligothiophene derivative, an oxadiazole dimer, a pyrazoline dimer, a quinacridone derivative, and a coumarin derivative.
  • Metal complex materials examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Ir, Pt, and the like as a central metal, and an oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and quinoline structure. And the like.
  • metal complexes examples include metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, A porphyrin zinc complex, a phenanthroline europium complex, etc. can be mentioned.
  • Polymer material examples include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and polymers obtained by polymerizing the above dye materials and metal complex materials. Can be mentioned.
  • the thickness of the light emitting layer is usually about 2 nm to 200 nm.
  • electron transport material constituting the electron transport layer
  • known materials can be used.
  • electron transport materials include oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyanoanthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenyl
  • the film thickness of the electron transport layer is appropriately set in consideration of required characteristics, the simplicity of the film forming process, and the like.
  • the thickness of the electron transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm.
  • ⁇ Electron injection layer> As a material constituting the electron injection layer, an optimum material is appropriately selected according to the type of the light emitting layer.
  • the material constituting the electron injection layer include alkali metals, alkaline earth metals, alloys containing one or more of alkali metals and alkaline earth metals, oxides of alkali metals or alkaline earth metals, alkali metals Alternatively, an alkaline earth metal halide, an alkali metal or an alkaline earth metal carbonate, or a mixture of these substances can be given.
  • alkali metals, alkali metal oxides, alkali metal halides, and alkali metal carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, Examples include potassium oxide, potassium fluoride, rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, and lithium carbonate.
  • alkaline earth metals, alkaline earth metal oxides, alkaline earth metal halides, alkaline earth metal carbonates include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, Examples thereof include calcium oxide, calcium fluoride, barium oxide, barium fluoride, strontium oxide, strontium fluoride, and magnesium carbonate.
  • the electron injection layer may be composed of a laminate in which two or more layers are laminated. As an example of a laminated body, the laminated body of a LiF film
  • the thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • the coating method it is preferable to form all the organic EL layers using the coating method.
  • at least one of a plurality of organic EL layers that can be formed by a coating method may be formed by a coating method, and the other organic EL layers may be formed by a method different from the coating method.
  • the plurality of organic EL layers may be formed by a coating method in which a specific method of the coating method is different.
  • the hole injection layer 13 and the light emitting layer 14 are formed by a nozzle printing method, but the hole injection layer 13 may be formed by a spin coating method and the light emitting layer 14 may be formed by a nozzle printing method.
  • an organic EL layer is formed by coating and forming an ink containing an organic EL material to be each organic EL layer.
  • the ink solvent used at that time include chloroform, methylene chloride, Chlorine solvents such as dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate, and water Used.
  • the organic EL layer may be formed by a vacuum deposition method, a sputtering method, a CVD method, a lamination method, or the like.

Abstract

 発光領域外に塗布成膜された薄膜を選択的に除去することによって簡易に発光装置(21)を製造することが可能な発光装置の製造方法を提供する。発光装置の製造方法は、支持基板と、支持基板上に設定される発光領域に設けられ、第1の電極(12)と、第2の電極と、第1の電極および第2の電極間に設けられる有機EL層とを含んで構成される複数の有機EL素子(22)とを備える発光装置の製造方法であって、第1の電極が設けられた支持基板を用意する工程と、有機EL層となる材料を含むインキを支持基板上に供給し、支持基板の発光領域内および発光領域外に、前記インキからなる薄膜を形成する工程と、発光領域内の薄膜を難溶化する工程と、発光領域外の薄膜を、洗浄によって除去する工程と、第2の電極を形成する工程とを含む。

Description

発光装置の製造方法
 本発明は発光装置の製造方法に関する。
 表示装置には、その構成や原理を異にする多様な種類の装置がある。そのひとつとして現在、有機エレクトロルミネッセンス(有機ELという。)素子(Electroluminescent Element)を画素の光源に使用した表示装置が実用化されつつある。
 この表示装置は支持基板上に配列される複数の有機EL素子を備える。支持基板上には通常、有機EL素子が設けられるべき区画を画成するための隔壁が設けられており、複数の有機EL素子は、隔壁によって画成される区画にそれぞれ整列して設けられている。
 図4はノズルプリンティング法によってインキを供給する態様を模式的に示す図である。たとえば図4に示されるように、所定の行方向Xに延在する複数本の隔壁部材1からなる隔壁2が支持基板上に設けられている場合、複数の有機EL素子3は、隔壁部材1間に設けられ、隔壁部材1同士の間それぞれにおいて列方向Yに所定の間隔をあけて配置される。
 有機EL素子は、一対の電極と、一対の電極間に設けられる有機EL層とから構成され、各構成要素を順次積層することによって作製される。
 有機EL素子を構成する有機EL層は塗布法によって形成することが可能である。すなわち有機EL層となる材料を含むインキを所定の塗布法によって塗布成膜し、さらにこれを固化することによって有機EL層を形成することができる。
 有機EL層を形成する工程では、有機EL素子の形成される領域(以下、発光領域ということがある。)内にのみインキを塗布成膜すればよいが、塗布法によっては、発光領域内のみならず、発光領域外にまでインキが塗布成膜されることがある。たとえばスピンコート法、ノズルプリンティング法によってインキを塗布成膜する場合、発光領域外にまでインキが塗布成膜される。
 図4では支持基板上におけるノズル4の軌跡を、矢印付きの実線であらわしている。ノズルプリンティング法では、インキを連続的に供給するノズル4を支持基板上に配置し、このノズル4からインキを連続的に供給しつつノズルを行方向Xに往復移動させ、ノズル4の往復の折り返しの際に支持基板を列方向Yに一行分だけ移動することによって、各行にインキを供給している。このようにノズルプリンティング法では一筆書きでインキを供給するため、必然的に、発光領域外にまでインキが供給される。
 発光領域外に塗布成膜されたインキは通常インキを塗布した後に除去される。発光領域外に塗布成膜されたインキによって、表示装置の特性が低下するおそれがあるからである。たとえば支持基板は通常、封止のために接着部材によって封止基板と貼り合わされるが、接着部材の設けられる領域にまでインキが塗布されている場合、密着性および気密性が低下することがある。また支持基板の発光領域の外に設けられる配線がインキによって覆われた場合、配線が不所望に短絡するおそれがある。このため従来の技術では発光領域外に塗布成膜されたインキを拭き取ることによってインキを除去している(たとえば特許文献1参照)。
特開2006-216253号公報
 従来の技術ではインキが塗布成膜された部位において拭き取り部を走査することでインキを除去しているが、インキの拭き取りを繰り返すことにより、拭き取り部にインキが付着し、拭き取り部のインキの拭き取り能力が次第に低下するため、連続してきれいにインキを拭き取ることができないという問題がある。またインキを拭き取る際に、固化途中の薄膜または固化した薄膜からパーティクルが発生することがある。結果として、パーティクルが有機EL層に混入するおそれがある。また拭き取り部を走査する装置から、意図しないパーティクルが発生することもあり、このパーティクルが有機EL層に混入するおそれもある。
 従って本発明の目的は、発光領域外に塗布成膜された薄膜を選択的に除去する新規な方法によって簡易に発光装置を製造することが可能な発光装置の製造方法を提供することである。
 本発明は、下記[1]~[6]を提供する。
[1] 支持基板と、この支持基板上に設定される発光領域に設けられ、第1の電極と、第2の電極と、該第1の電極および第2の電極間に設けられる有機エレクトロルミネッセンス層とを含んで構成される複数の有機エレクトロルミネッセンス素子とを備える発光装置の製造方法であって、
 第1の電極が設けられた支持基板を用意する工程と、
 有機EL層となる材料を含むインキを支持基板上に供給し、支持基板の発光領域内および発光領域外に、前記インキからなる薄膜を形成する工程と、
 発光領域内の薄膜を難溶化する工程と、
 発光領域外の薄膜を、洗浄によって除去する工程と、
 第2の電極を形成する工程と
を含む、発光装置の製造方法。
[2] 前記インキからなる薄膜を形成する工程では、重合性化合物を含むインキを供給し、
 前記薄膜を難溶化する工程では、前記重合性化合物を重合することによって発光領域内の薄膜を難溶化する、[1]記載の発光装置の製造方法。
[3] 前記薄膜を難溶化する工程では、発光領域内の薄膜に光を照射することによって、発光領域内の薄膜を難溶化させる、[1]または[2]記載の発光装置の製造方法。
[4] 前記薄膜を難溶化する工程では、発光領域内の薄膜を加熱することによって、発光領域内の薄膜を難溶化する、[1]~[3]のいずれか1つに記載の発光装置の製造方法。
[5] 近赤外線を照射することによって、発光領域内の薄膜を加熱する、[4]に記載の発光装置の製造方法。
[6] 前記インキからなる薄膜を形成する工程では、ノズルプリンティング法によってインキを支持基板上に供給する、[1]~[5]のいずれか1つに記載の発光装置の製造方法。
 本発明によれば、発光領域外に塗布成膜された薄膜を選択的に除去する新規な方法によって簡易に発光装置を製造することができる。
図1は、本実施形態の発光装置を模式的に示す平面図である。 図2は、発光装置を模式的に拡大して示す断面図である。 図3Aは、薄膜を難溶化し、さらに洗浄する工程を説明するための図である。 図3Bは、薄膜を難溶化し、さらに洗浄する工程を説明するための図である。 図3Cは、薄膜を難溶化し、さらに洗浄する工程を説明するための図である。 図4は、ノズルプリンティング法によってインキを供給する態様を模式的に示す図である。
 以下、図面を参照して本発明の実施の一形態について説明する。なお以下の説明において、各図は発明が理解できる程度に構成要素の形状、大きさ及び配置が概略的に示されているに過ぎず、これにより本発明が特に限定されるものではない。また各図において、同様の構成要素については同一の符号を付して示し、その重複する説明を省略する場合がある。
 本発明の表示装置の製造方法は、支持基板と、この支持基板上に設定される発光領域に設けられ、第1の電極と、第2の電極と、該第1の電極および第2の電極間に設けられる有機EL層とを含んで構成される複数の有機EL素子とを備える発光装置の製造方法であって、第1の電極が設けられた支持基板を用意する工程と、有機EL層となる材料を含むインキを支持基板上に供給し、支持基板の発光領域内および発光領域外に、前記インキからなる薄膜を形成する工程と、発光領域内の薄膜を難溶化する工程と、発光領域外の薄膜を、洗浄によって除去する工程と、第2の電極を形成する工程とを含む。
 発光装置はたとえば表示装置や照明装置として利用される。表示装置には主にアクティブマトリクス駆動型の装置と、パッシブマトリクス駆動型の装置とがある。本発明は両方の駆動型の表示装置に適用することができる。本実施形態では一例としてアクティブマトリクス駆動型の表示装置に適用される発光装置について説明する。なお本実施形態では表示装置において画素の光源として機能する有機EL素子について説明する。たとえば発光装置はバックライトとして機能する有機EL素子を備えていてもよい。また本実施形態では複数の有機EL素子が設けられる発光装置について説明する。しかしながら、本発明は1つの有機EL素子を備える発光装置にも適用することができる。
 <発光装置の構成>
 まず図1および図2を参照して発光装置の構成について説明する。図1は本実施形態の発光装置を模式的に示す平面図である。図2は発光装置を模式的に拡大して示す断面図である。
 図1および図2に示されるように、発光装置21は主に支持基板11と、この支持基板上に設定される発光領域に設けられる複数の有機EL素子22とを備える。
 本明細書において発光領域とは、複数の有機EL素子が設けられる領域であり、たとえば表示装置においては、画像情報を表示する画像表示領域に相当する。本実施形態では支持基板11上に所定の区画が設定されており、複数の有機EL素子22は、支持基板11上に設定された区画に配列されている。なお本実施形態では支持基板11上に設定される区画を画成するための隔壁17が支持基板11上に設けられている。
 複数の有機EL素子22は支持基板11上に設定される所定の区画にそれぞれ整列して配置されている。そしてこの区画を画成するために設けられる隔壁17の形状は、支持基板11上に設定される区画の形状に応じて定まる。たとえば支持基板11上にマトリクス状の区画が設定される場合、このマトリクス状の区画を画定する隔壁として、支持基板には格子状の隔壁が設けられる。また支持基板11上にストライプ状の区画が設定される場合、このストライプ状の区画を画成する隔壁として、支持基板にはストライプ状の隔壁17が設けられる。本発明は、隔壁の有無および隔壁の形状にかかわりなく、どのような形態の発光装置にも適用可能である。しかしながら、本実施形態ではストライプ状の隔壁17が支持基板11に設けられる形態について説明する。すなわち本実施形態における隔壁17は、支持基板11上において所定の行方向Xにそれぞれ延在する複数本の隔壁部材20から構成されている。複数本の隔壁部材20は、行方向Xとは方向が異なる列方向Yに所定の間隔をあけて配置されている。なお本実施形態おける行方向Xおよび列方向Yは、互いに直交する方向であって、かつそれぞれが支持基板11の厚み方向Zに直交する方向を意味する。以下において、列方向Yに隣り合う一対の隔壁部材20と支持基板11とによって規定される凹みを凹部18ということがある。支持基板11上には複数本の隔壁部材20に対応する複数本の凹部18が設定される。本実施形態ではこの複数本の凹部18が、隔壁によって画定される区画に相当する。
 なお本実施形態では支持基板11と隔壁17との間に絶縁膜15がさらに設けられる。この絶縁膜15はたとえば行方向Xまたは列方向Yに隣り合う有機EL素子22同士間の電気的な絶縁を確保するために設けられる。本実施形態における絶縁膜15は格子状に形成されている。格子状の絶縁膜15は、行方向Xに延在する複数本の帯状の部分と、列方向Yに延在する複数本の帯状の部分とが一体的に形成されて構成されている。換言すると絶縁膜15は電気絶縁性を示す薄膜に多数の開口15aがマトリクス状に形成された形状を有する。
 絶縁膜15の開口15aは、支持基板の厚み方向の一方から見て(以下、「平面視で」ということがある。)有機EL素子22と重なる位置に形成される。絶縁膜15の開口15aは平面視で、後述する第1の電極12とほぼ一致するように形成され、たとえば略矩形、小判形、略円形および略楕円形などに形成される。格子状の絶縁膜15は平面視で、第1の電極12の一部を露出させるように第1の電極12の周縁を覆って形成されている。また前述した複数本の隔壁部材20は、絶縁膜15の行方向Xに延在する複数本の帯状の部分上に設けられる。
 有機EL素子22は隔壁によって画成される凹部18に設けられる。本実施形態では複数の有機EL素子22は、列方向Yに隣り合う隔壁部材20同士の間(すなわち凹部18)に設けられ、隔壁部材20同士の間それぞれにおいて、行方向Xに所定の間隔をあけて配列されている。すなわち本実施形態では複数の有機EL素子22は支持基板11上においてマトリクス状に配列されており、それぞれ行方向Xに所定の間隔をあけるとともに、列方向Yにも所定の間隔をあけて配置される。なお各有機EL素子22は物理的に離間している必要はなく、個別に駆動できるように互いに電気的に絶縁されていればよい。そのため有機EL素子22を構成する一部の層(第1の電極12、第2の電極16、有機EL層)は他の有機EL素子22と物理的につながっていてもよい。
 有機EL素子22は、第1の電極12、有機EL層である正孔注入層13および発光層14、第2の電極16が、第1の電極12が支持基板11寄りとなるようにこの順に配置されて構成される。
 第1の電極12および第2の電極16は、陽極と陰極とからなる一対の電極を構成する。すなわち第1の電極12および第2の電極16のうちの一方が陽極として設けられ、他方が陰極として設けられる。また第1の電極12および第2の電極16のうちの第1の電極12が支持基板11寄りに配置され、第2の電極16が第1の電極12よりも支持基板11から離間して配置される。
 有機EL素子22は1層以上の有機EL層を備える。なお有機EL層は第1の電極12と第2の電極16とに挟持される全ての層を意味する。有機EL素子22は有機EL層として少なくとも1層以上の発光層14を備える。また第1の電極12および第2の電極16の間には発光層14に限らず、必要に応じて所定の層が設けられる。たとえば陽極と発光層14との間には有機EL層として、正孔注入層、正孔輸送層、および電子ブロック層などが設けられ、発光層14と陰極との間には有機EL層として、正孔ブロック層、電子輸送層、および電子注入層などが設けられる。
 本実施形態の有機EL素子22は第1の電極12と発光層14との間に、有機EL層として正孔注入層13を備える。
 以下では実施の一形態として、陽極として機能する第1の電極12と、正孔注入層13と、発光層14と、陰極として機能する第2の電極16とが、第1の電極12が支持基板11寄りとなるようにこの順で積層される有機EL素子22について説明する。
 本実施形態の発光装置21はアクティブマトリクス駆動型の装置なので、第1の電極12は有機EL素子22ごとに個別に設けられる。すなわち有機EL素子22の数と同数の第1の電極12が支持基板11上に設けられる。たとえば第1の電極12は薄膜状であって、平面視で略矩形状に形成される。第1の電極12は支持基板11上において、各有機EL素子が設けられる位置に対応して、マトリクス状に設けられる。複数の第1の電極12は、行方向Xに所定の間隔をあけるとともに、列方向Yに所定の間隔をあけて配置される。
 なお第1の電極12は平面視で、列方向Yに隣り合う隔壁部材20同士の間に設けられ、隔壁部材20同士の間それぞれにおいて、行方向Xに所定の間隔をあけて配置されている。
 前述したように格子状の絶縁膜15は平面視で第1の電極12の一部を露出させるように第1の電極12の周縁を覆って形成される。すなわち絶縁膜15には第1の電極12上に開口15aが形成されており、この開口15aによって第1の電極12の表面の一部が絶縁膜15から露出している。
 正孔注入層13は隔壁部材20に挟まれた領域に行方向Xに延在して配置される。すなわち正孔注入層13は、列方向Yに隣り合う隔壁部材20によって画成される凹部18に、帯状に形成されており、行方向Xに隣り合う複数の有機EL素子22に亘って連続して形成されている。
 発光層14は対向する隔壁部材20同士に挟まれた領域に行方向Xに延在するように設けられる。すなわち発光層14は、列方向Yに隣り合う隔壁部材20によって画成される凹部18に、帯状に形成されており、行方向Xに隣り合う複数の有機EL素子22に亘って連続して形成されている。帯状の発光層14は帯状の正孔注入層13上に積層される。
 本発明はモノクロ表示装置にも適用できるが、本実施形態では一例としてカラー表示装置について説明する。カラー表示装置の場合、赤色、緑色および青色のいずれか1種の光を放つ3種類の有機EL素子22(22R、22G、22B)が支持基板11上に設けられる。カラー表示装置はたとえば以下の(I)、(II)、(III)の行を、この順序で、列方向Yに繰り返して配列することにより実現することができる。
(I)赤色の光を放つ複数の有機EL素子22Rが行方向Xに所定の間隔をあけて配置される行
(II)緑色の光を放つ複数の有機EL素子22Gが行方向Xに所定の間隔をあけて配置される行
(III)青色の光を放つ複数の有機EL素子22Bが行方向Xに所定の間隔をあけて配置される行
 このように発光色の異なる3種類の有機EL素子を形成する場合、通常は有機EL素子の種類ごとに発光色の異なる発光層が設けられる。本実施形態では以下の(i)、(ii)、(iii)の行を、この順序で、列方向Yに繰り返して配列する。
(i)赤色の光を放つ発光層14Rが設けられる行
(ii)緑色の光を放つ発光層14Gが設けられる行
(iii)青色の光を放つ発光層14Bが設けられる行
 この場合、行方向Xに延在する帯状の3種類の発光層14(14R、14G、14B)が、それぞれ列方向Yに2行の間隔をあけて順次正孔注入層13上に積層される。
 第2の電極16は発光層14上に設けられる。なお本実施形態では第2の電極16は複数の有機EL素子22にまたがって連続して形成され、複数の有機EL素子22に共通の電極として設けられる。第2の電極16は、発光層14上だけでなく、隔壁17上にも形成され、発光層14上の電極と隔壁17上の電極とが連なるように一面に形成されている。
 <発光装置の製造方法>
 次に発光装置の製造方法について説明する。
 (支持基板を用意する工程)
 本工程では第1の電極12がその上に設けられた支持基板11を用意する。アクティブマトリクス駆動型の表示装置の場合、複数の有機EL素子を個別に駆動するための回路が予め形成された基板を、支持基板11として用いることができる。たとえばTFT(Thin Film Transistor)およびキャパシタなどが予め形成された基板を支持基板として用いることができる。なお第1の電極12を以下のように本工程で形成することによって、第1の電極12がその上に設けられた支持基板11を用意してもよい。しかしながら、第1の電極12が予めその上に設けられた基板を市場から入手することにより支持基板11として用意してもよい。さらには第1の電極12と隔壁17とが予めその上に設けられた支持基板11を市場から入手することにより支持基板11を用意してもよい。
 次に支持基板11上に複数の第1の電極12をマトリクス状に形成する。第1の電極12は、たとえば支持基板11上の一面に導電性薄膜を形成し、これをフォトリソグラフィ法(以下の説明において、「フォトリソグラフィ法」には、マスクパターンの形成工程に引き続いて行われるエッチング工程などのパターニング工程が含まれる。)によってマトリクス状にパターニングすることによって形成される。またたとえば所定の部位に開口が形成されたマスクを支持基板11上に配置し、このマスクを介して支持基板11上の所定の部位に導電性材料を選択的に堆積することにより第1の電極12をパターン形成してもよい。第1の電極12の材料については後述する。
 次に隔壁17を支持基板11上に形成する。本実施形態では複数本の隔壁部材20からなる隔壁17を形成する。隔壁17は有機物または無機物によって構成される。隔壁17を構成する有機物の例としてはアクリル樹脂、フェノール樹脂、およびポリイミド樹脂などの樹脂を挙げることができる。また隔壁17を構成する無機物の例としてはSiO、iNなどを挙げることができる。
 隔壁17は有機物によって構成することが好ましい。隣り合う隔壁部材20同士が画成する凹部18に供給されるインキを凹部18内に保持するためには、隔壁17は撥液性を示すことが好ましい。一般に無機物よりも有機物の方がインキに対して撥液性を示すので、有機物によって隔壁を構成することにより、凹部18内にインキを保持する能力を高くすることができる。
 有機物からなる隔壁17を形成する場合、まずたとえばポジ型またはネガ型の感光性樹脂を一面に塗布し、所定の部位を露光、現像する。さらにこれを硬化することによって、複数本の隔壁部材20が形成される。なお感光性樹脂としてはフォトレジストを用いることができる。また無機物からなる隔壁17を形成する場合、たとえば無機物からなる薄膜をプラズマCVD法、スパッタ法などによって一面に形成し、次に薄膜の所定の部位を除去することにより複数本の隔壁部材20を形成する。所定の部位の除去はたとえばフォトリソグラフィ法によって行われる。
 なお格子状の絶縁膜15を備える発光装置21を作製する場合には、隔壁17を形成する工程の前に絶縁膜15を形成する。絶縁膜15はたとえば隔壁17の材料として例示した材料を用いて、隔壁17を形成する方法と同様にして格子状に形成することができる。
 隔壁17に加えて絶縁膜15を形成する場合、絶縁膜15は、有機物よりも親液性を示す無機物によって構成することが好ましい。絶縁膜15が撥液性を示す場合、凹部18に供給されるインキが絶縁膜15に弾かれつつ乾燥することがあり、絶縁膜15の存在が有機EL層の平坦性に影響し、その結果として平坦な有機EL層が得られないおそれがあるためである。
 隔壁17の形状、並びにその配置は、画素数および解像度などの表示装置の仕様、製造の容易さなどに応じて適宜設定される。たとえば隔壁部材20の列方向Yの幅L1は、5μm~50μm程度であり、隔壁部材20の高さL2は0.5μm~5μm程度であり、列方向Yに隣り合う隔壁部材20同士の間隔L3、すなわち凹部18の列方向Yの幅L3は、10μm~200μm程度である。また第1の電極12の行方向Xおよび列方向Yの幅はそれぞれ10μm~400μm程度である。
 (インキからなる薄膜を形成する工程)
 本工程では、有機EL層(本実施形態では正孔注入層13)となる材料を含むインキ(以下、正孔注入層用インキということがある。)を支持基板11上に供給し、支持基板11の発光領域内および発光領域外に、正孔注入層用インキからなる薄膜を形成する。
 本実施形態では全ての有機EL素子22に共通する正孔注入層13を形成するため、隣り合う隔壁部材20同士の間に限って正孔注入層用インキを供給する必要はなく、全面に正孔注入層用インキを供給してもよい。そのためどのような方法で正孔注入層用インキを供給してもよい。たとえばスピンコート法、スリットコート法、インクジェットプリント法、ノズルプリンティング法、凸版印刷法、凹版印刷法などによって正孔注入層用インキを供給することができる。正孔注入層用インキの供給方法としては短時間で均一に正孔注入層用インキを供給可能な方法が好ましく、このような観点からはスピンコート法、スリットコート法またはノズルプリンティング法が好ましい。なお全面に正孔注入層用インキを塗布した場合、隔壁表面の性状によっては隔壁17上にまで正孔注入層が形成されることがあり、これを避けるために、凹部18にのみ正孔注入層用インキを供給することが好ましい場合もある。この場合、正孔注入層用インキを凹部18にのみ選択的に供給することが可能な塗布法によって正孔注入層用インキを供給する。本実施形態では正孔注入層用インキを選択的に供給することが可能な塗布法として、ノズルプリンティング法によって正孔注入層用インキを供給する。
 ノズルプリンティング法では一筆書きで各行(各凹部18)に正孔注入層用インキを供給する。すなわち支持基板11の上方に配置されるノズルから液柱状の正孔注入層用インキを吐出したまま、ノズルを行方向Xに往復移動させつつ、ノズルの往復移動の折り返しの際に、支持基板を列方向Yに所定の距離だけ移動させることによって、各行に正孔注入層用インキを供給する。たとえばノズルの往復移動の折り返しの際に、支持基板を列方向Yに1行分だけ移動することによって、全ての行に正孔注入層用インキを供給することができる。
 より具体的にはノズルから液柱状の正孔注入層用インキを吐出したまま、以下の(1)~(4)の工程をこの順序で繰り返すことにより、全ての隣り合う隔壁部材20同士の間(凹部18)に正孔注入層用インキを供給することができる。
(1)ノズルを行方向Xの一端から他端に移動する工程
(2)支持基板11を列方向Yの一方に1行分だけ移動する工程
(3)ノズルを行方向Xの他端から一端に移動する工程
(4)支持基板を列方向Yの一方に1行分だけ移動する工程
 以上のようにノズルプリンティング法によって正孔注入層用インキを供給することにより、支持基板11上の発光領域内および発光領域外に、正孔注入層用インキからなる薄膜が形成される。
 (薄膜を難溶化する工程)
 次に正孔注入層用インキからなる薄膜を難溶化する。本工程では発光領域内の薄膜を難溶化する。なお薄膜を難溶化するとは、後の工程で行われる洗浄に使用される溶液に対して、薄膜が溶解し難くなるようにすることを意味する。たとえばインキが重合性化合物を含む場合、重合性化合物を重合することによって薄膜を難溶化することができる。またインキが重合性化合物を含んでいない場合であっても、薄膜を所定の温度で加熱し、溶媒を気化することによってある程度薄膜を難溶化することができる。
 正孔注入層の材料については後述するが、現在正孔注入層の材料として多用されているポリ(3,4‐エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)は水に溶解するため、正孔注入層用インキとしてたとえばPEDOT/PSSの水溶液を使用することができる。このPEDOT/PSSの水溶液からなる薄膜は加熱することによって難溶化する。
 発光領域内の薄膜の難溶化は薄膜に所定のエネルギーを与えることによって行うことができる。このような方法としては、所定の波長の光を薄膜に照射する方法、熱エネルギーを与える方法がある。たとえば超高圧水銀ランプのg線(波長436nm)、i線(波長365nm)、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)を薄膜に照射し、光エネルギーによって重合性化合物を重合してもよい。波長700nm~3500nmの近赤外線を照射することによって薄膜を加熱し、熱エネルギーによって重合性化合物を重合してもよい。さらには前述の近赤外線を照射することによって溶媒を気化して薄膜を難溶化してもよい。また、波長3500nm~20000nmの遠赤外線を照射することによって薄膜を加熱し、熱エネルギーによって重合性化合物を重合してもよい。さらには前述の遠赤外線を照射することによって溶媒を気化して薄膜を難溶化してもよい。ホットプレートなどを用いて薄膜を加熱し、熱エネルギーによって重合性化合物を重合したり、溶媒を気化したりすることによって薄膜を難溶化してもよい。なお、表示領域内の薄膜のみにエネルギーを加えることを意図したとしても、表示領域の周縁の薄膜にもエネルギーが加えられ、表示領域外の薄膜の一部が難溶化することもある。そこで表示領域内の薄膜のみにエネルギーを加えるためには、局所的にエネルギーを加えることが可能な方法によってエネルギーを加えることが好ましく、このような観点からは、上述の所定の波長の光を薄膜に照射する方法が好ましく、局所的に薄膜を加熱することが可能な近赤外線を照射することによって、薄膜にエネルギーを加えることが好ましい。
 図3A、図3Bおよび図3Cは、薄膜を難溶化し、さらに洗浄する工程を説明するための図である。なお薄膜にハッチングを施してある。
 本実施形態では近赤外線(nIR)を発光領域11a内の薄膜23に照射することによって、発光領域11a内の薄膜23を難溶化して難溶化薄膜23aを形成する。図3Aに示されるように、2点鎖線で囲まれた領域が発光領域11aである。まず、近赤外線を透過する部位19aと、近赤外線(nIR)を遮光する部位19bとを有するマスク19を、薄膜23が形成された支持基板11上に配置する。図3Aでは照射される近赤外線(nIR)を白抜き矢印で模式的に示している。このマスク19を介して薄膜23に近赤外線(nIR)を照射し、発光領域11a内の薄膜23にのみ近赤外線(nIR)を照射する。この際、マスク19の近赤外線(nIR)を遮光する部位19bによって近赤外線の一部が遮光されるため、発光領域11a外の薄膜23には近赤外線(nIR)は照射されない。これによって、発光領域11a内の薄膜23のみが加熱され、発光領域11a内の薄膜23のみが難溶化されて難溶化薄膜23aが形成される。
 図3Bは発光領域11a内の薄膜23を難溶化した後の支持基板を模式的に示している。なお難溶化薄膜23aおよび難溶化していない薄膜23にハッチングを施してある。
 (発光領域外の薄膜を洗浄によって除去する工程)
 図3Cに示されるように、次に発光領域11a外の薄膜23を洗浄によって除去して、支持基板11上に難溶化薄膜23aのみを残存させる。洗浄方法の例としては、溶剤を支持基板11上に供給し、さらにこれを除去する方法(たとえばスピン洗浄)、溶剤に支持基板11を所定の時間浸漬し、その後溶剤から取り出した支持基板を乾燥する方法などがあげられる。洗浄に使用する溶剤には、難溶化していない薄膜23を溶解し、難溶化薄膜23aを溶解しない溶剤が用いられる。PEDOT/PSSの水溶液からなる薄膜23を形成した場合、たとえば水を溶剤として用いることによって、発光領域11a外の薄膜を洗浄することができる。
 発光領域11a外の薄膜23を洗浄によって除去した後、必要に応じて、発光領域11a内の難溶化薄膜23aの溶媒をさらに除去する。たとえば自然乾燥、加熱乾燥および真空乾燥などによって溶媒を除去することができる。
 (発光層を形成する工程)
 次に発光層14を形成する。前述したようにカラー表示装置を作製する場合、3種類の有機EL素子22(22R、22G、22B)を作製する必要がある。そのため発光層14の材料を行ごとに塗りわける必要がある。たとえば3種類の発光層14(14R、14G、14B)を行ごとに形成する場合、赤色の光を放つ材料を含む赤インキ、緑色の光を放つ材料を含む緑インキ、青色の光を放つ材料を含む青インキを、それぞれ列方向Yに2行の間隔をあけて塗布する必要がある。これら赤インキ、緑インキ、青インキを所定の行に順次塗布することによって、各発光層14を塗布成膜することができる。
 赤インキ、緑インキ、青インキを所定の行(凹部18)に順次塗布する方法としては、隣り合う隔壁部材20同士の間にインキを選択的に供給することが可能な塗布法であればどのような方法でもよい。たとえばインクジェットプリント法、ノズルプリンティング法、凸版印刷法、凹版印刷法などによってインキを供給することができる。インキの供給方法としては、短時間で均一にインキを供給可能な方法が好ましい。このような観点からはノズルプリンティング法が好ましい。本実施形態では前述した正孔注入層を形成する方法と同様に、ノズルプリンティング法によってインキを供給する。
 より具体的にはノズル4から液柱状の赤インキを吐出したまま、以下の(1)~(4)の工程をこの順序で繰り返すことにより、列方向Yに2行の間隔をあけて隣り合う隔壁部材20同士の間(凹部18)に赤インキを供給することができる。
(1)ノズル4を凹部18の一端から他端に亘って行方向Xに移動する工程
(2)支持基板11を列方向Yの一方に3行分だけ移動する工程
(3)ノズル4を凹部18の他端から一端に亘って行方向Xに移動する工程
(4)支持基板を列方向Yの一方に3行分だけ移動する工程
 上述の赤インキと同様にして緑インキ、青インキをそれぞれ供給することによって、列方向Yに2行の間隔をあけて隔壁部材20間(凹部18)にそれぞれ緑インキ、青インキを供給することができる。
 なお赤インキ、緑インキ、青インキに使用される発光材料については後述するが、本実施形態では、エネルギーを加えることによって重合可能な重合性化合物を含む赤インキ、緑インキ、青インキをノズルプリンティング法によって供給する。なおインキとしては、エネルギーを加えることによって重合可能な重合性基を有する発光材料を重合性化合物として含む赤インキ、緑インキ、青インキを使用してもよく、また、自身は重合しない発光材料と、この発光材料に加えて、重合可能な重合性基を有する重合性化合物とを含む赤インキ、緑インキ、青インキを使用してもよい。
 重合性基の例としては、ビニル基、エチニル基、ブテニル基、アクリロイル基、アクリロイルアミノ基、メタクリロイル基、メタクリロイルアミノ基、ビニルオキシ基、ビニルアミノ基、シラノール基、シクロプロピル基、シクロブチル基、エポキシ基、オキセタニル基、ジケテニル基、エピチオ基、ラクトニル基、及びラクタムニル基などがあげられる。
 また重合性化合物の例としては、重合性基を有するPDA(N,N'-テトラフェニル-1,4-フェニレンジアミン)の誘導体、重合性基を有するTPD(N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-ベンジジン)の誘導体、重合性基を有するNPD(N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-ベンジジン)の誘導体、トリフェニルアミンアクリレート、トリフェニレンジアミンアクリレート、フェニレンアクリレート、ビスフェノキシエタノールフルオレンジアクリレート(大阪ガスケミカル社製、商品名BPEF-A)、ジペンタエリスリトールヘキサアクリレート(日本化薬製KAYARD DPHA)、トリスペンタエリスリトールオクタアクリレート(広栄化学製)1,4-ブタンジオールジアクリレート(Alfa Aesar社製)、アロンオキセタン(OXT121;東亞合成製架橋剤)などをあげることができ、これらの中でもフェニルフルオレンアクリレートが好ましい。
 次に図3A、図3Bおよび図3Cを参照して説明したように、赤インキ、緑インキ、青インキからなる薄膜23のうち、発光領域11a内の薄膜23にエネルギーを与えることによって、発光領域11a内の薄膜23を難溶化する。本実施形態では重合性化合物を含む赤インキ、緑インキ、青インキを使用した場合について説明する。
 図3Aに示すようにまず、近赤外線(nIR)を透過する部位19aと、近赤外線(nIR)を遮光する部位19bとを有するマスク19を支持基板11上に配置する。このマスク19を介して薄膜に近赤外線(nIR)を照射し、発光領域11a内の薄膜23にのみ近赤外線(nIR)を照射する。この際、マスク19によって近赤外線(nIR)の一部が遮光されるため、発光領域11a外の薄膜23には近赤外線(nIR)は照射されない。これによって、発光領域11a内の薄膜23のみが加熱され、発光領域11a内の薄膜23のみが難溶化されて難溶化薄膜23aが形成される。
 (発光領域外の薄膜を洗浄によって除去する工程)
 次に発光領域11a外の薄膜23を洗浄によって除去する。洗浄方法としては、溶剤を支持基板11上に供給し、さらにこれを除去する方法(たとえばスピン洗浄)、溶剤に支持基板11を所定の時間浸漬し、その後溶剤から取り出した支持基板11を乾燥する方法などがあげられる。洗浄に使用する溶剤には、難溶化していない薄膜23を溶解し、難溶化薄膜23aを溶解しない溶剤が用いられる。このような溶剤として、たとえばキシレンやトルエン、THF(テトラヒドロフラン)、アニソールなどを用いることができる。なお赤インキ、緑インキ、青インキの溶媒に用いた溶剤を用いて、発光領域11a外の薄膜23を洗浄してもよい。
 なお本実施形態では薄膜23に近赤外線(nIR)を照射し、加熱して難溶化するが、薄膜23を難溶化する方法はこれに限らず、たとえば紫外線を照射するなど、重合性化合物が重合する波長の光を薄膜に照射して光エネルギーにより難溶化してもよい。
 発光領域11a外の薄膜23を洗浄によって除去した後、必要に応じて、発光領域11a内の難溶化薄膜23aの溶媒をさらに除去する。たとえば自然乾燥、加熱乾燥および真空乾燥などによって溶媒を除去することができる。
 発光層14を形成した後、必要に応じて所定の有機層、無機層などを所定の方法によって形成する。必要に応じて設けられる層は印刷法、インクジェット法、ノズルプリンティング法などの所定の塗布法、さらには所定の乾式法を用いて形成してもよい。
 (第2の電極を形成する工程)
 次に第2の電極16を形成する。前述したように本実施形態では第2の電極16を支持基板11上の全面に形成する。これによって複数の有機EL素子22を支持基板11上に形成することができる。
 以上説明したように、発光領域11a内の薄膜23を難溶化することによって、発光領域11a外の薄膜23を洗浄によって簡易に除去することができる。このような薄膜の除去方法によって簡易に発光装置を製造することができる。
 なお本実施形態では発光層14を形成する工程の前に、正孔注入層用インキからなる薄膜23を洗浄によって除去したが、正孔注入層用インキからなる薄膜23は、場合によっては、発光層14を形成する工程の前に除去しなくてもよい。たとえば正孔注入層として、正孔注入性を持つ単分子層(たとえばテトラフルオロテトラシアノキノジメタン(F4TCNQ)の単分子層)を用いる場合は、封止の際に大きな気密性や密閉性の低下がおこらず、表示装置の特性が大きく低下するおそれがないため、表示領域11a外に形成された正孔注入層を除去しなくてもよい。また、発光層14を形成する工程において、赤インキ、緑インキ、青インキからなる薄膜を洗浄によって除去する際に、正孔注入層用インキからなる薄膜23を同時に除去してもよい。さらに、正孔注入層用インキからなる薄膜23がたとえば赤インキ、緑インキ、青インキに溶解しにくい場合など、正孔注入層用インキからなる薄膜23を難溶化しなくてもいい場合もありうる。
 また本実施形態では、赤インキ、緑インキ、青インキの全てを供給した後に、赤インキ、緑インキ、青インキからなる薄膜を難溶化し、さらに洗浄を行ったが、赤インキ、緑インキ、青インキをそれぞれ供給するごとに、赤インキ、緑インキまたは青インキからなる薄膜を難溶化し、さらに洗浄を行ってもよい。これにより、たとえば洗浄時に溶解した赤インキが、本来青インキのみが供給される有機EL素子22に混入し、表示装置の特性が低下するといった問題が生じにくくなる。
 <有機EL素子の構成>
 前述したように有機EL素子22は種々の層構成をとりうるが、以下では有機EL素子22の層構造、各層の構成、および各層の形成方法についてさらに詳しく説明する。
 前述したように有機EL素子22は、陽極および陰極からなる一対の電極(第1の電極12および第2の電極16)と、一対の電極間に設けられる1以上の有機EL層とを含んで構成され、1以上の有機EL層として少なくとも1層の発光層14を有する。なお有機EL素子22は、無機物と有機物とを含む層、および無機層などを含んでいてもよい。有機層を構成する有機物としては、低分子化合物でも高分子化合物でもよく、また低分子化合物と高分子化合物との混合物でもよい。有機層は、高分子化合物を含むことが好ましい。有機層は、ポリスチレン換算の数平均分子量が10~10である高分子化合物を含むことが好ましい。
 陰極と発光層14との間に設けられる有機EL層としては、電子注入層、電子輸送層、正孔ブロック層などを挙げることができる。陰極と発光層14との間に電子注入層と電子輸送層との両方の層が設けられる場合、陰極に近い層を電子注入層といい、発光層14に近い層を電子輸送層という。陽極と発光層との間に設けられる有機EL層としては、正孔注入層、正孔輸送層、電子ブロック層などを挙げることができる。正孔注入層と正孔輸送層との両方の層が設けられる場合、陽極に近い層を正孔注入層といい、発光層に近い層を正孔輸送層という。
 本実施の形態の有機EL素子22のとりうる層構成の一例を以下に示す。
a)陽極/発光層/陰極
b)陽極/正孔注入層/発光層/陰極
c)陽極/正孔注入層/発光層/電子注入層/陰極
d)陽極/正孔注入層/発光層/電子輸送層/陰極
e)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
f)陽極/正孔輸送層/発光層/陰極
g)陽極/正孔輸送層/発光層/電子注入層/陰極
h)陽極/正孔輸送層/発光層/電子輸送層/陰極
i)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
j)陽極/正孔注入層/正孔輸送層/発光層/陰極
k)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
l)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
m)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
n)陽極/発光層/電子注入層/陰極
o)陽極/発光層/電子輸送層/陰極
p)陽極/発光層/電子輸送層/電子注入層/陰極
 ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。以下同じ。
 本実施の形態の有機EL素子22は2層以上の発光層14を有していてもよい。上記a)~p)の層構成のうちのいずれか1つにおいて、陽極と陰極とに挟持された積層体を「構造単位A」とすると、2層の発光層14を有する有機EL素子22の構成として、下記q)に示す層構成を挙げることができる。なお2つある(構造単位A)の層構成は互いに同じでも、異なっていてもよい。
q)陽極/(構造単位A)/電荷発生層/(構造単位A)/陰極
 また「(構造単位A)/電荷発生層」を「構造単位B」とすると、3層以上の発光層を有する有機EL素子の構成として、下記r)に示す層構成を挙げることができる。
r)陽極/(構造単位B)x/(構造単位A)/陰極
 なお記号「x」は、2以上の整数を表し、(構造単位B)xは、構造単位Bがx段積層された積層体を表す。また複数ある(構造単位B)の層構成は同じでも、異なっていてもよい。
 ここで、電荷発生層とは電界を印加することにより正孔と電子とを発生する層である。電荷発生層としては、たとえば酸化バナジウム、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、酸化モリブデンなどから成る薄膜を挙げることができる。
 有機EL素子22は、陽極および陰極から構成される一対の電極のうちの陽極を陰極よりも支持基板11寄りに配置して、支持基板に設けてもよく、また陰極を陽極よりも支持基板11寄りに配置して、支持基板11に設けてもよい。たとえば上記a)~r)において、右側から順に各層を支持基板11上に積層して有機EL素子22を構成してもよく、また左側から順に各層を支持基板11上に積層して有機EL素子22を構成してもよい。積層する層の順序、層数、および各層の厚み(膜厚)については、発光効率、素子寿命を勘案して適宜設定することができる。
 次に、有機EL素子22を構成する各層の材料および形成方法についてより具体的に説明する。
 <陽極>
 発光層14から放たれる光が陽極を通って有機EL素子外に出射する構成の場合、陽極には光透過性を示す電極が用いられる。光透過性を示す電極としては、金属酸化物、金属硫化物および金属などの薄膜を用いることができ、電気伝導度および光透過率の高いものが好適に用いられる。光透過性を示す電極としては、具体的には酸化インジウム、酸化亜鉛、酸化スズ、ITO、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、および銅などから成る薄膜が用いられる。これらの中でもITO、IZO、または酸化スズから成る薄膜が好適に用いられる。
 陽極の作製方法の例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などを挙げることができる。また陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
 陽極の膜厚は、求められる特性、成膜工程の簡易さなどを考慮して適宜設定される。陽極の膜厚は、たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 <陰極>
 陰極の材料としては、仕事関数が小さく、発光層14への電子注入が容易で、電気伝導度の高い材料が好ましい。また陽極側から光を取出す構成の有機EL素子では、発光層14から放たれる光を陰極で陽極側に反射するために、陰極の材料としては可視光に対する反射率の高い材料が好ましい。陰極には、たとえばアルカリ金属、アルカリ土類金属、遷移金属および周期表の第13族金属などを用いることができる。陰極の材料としては、たとえばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、前記金属のうちの2種以上の合金、前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、またはグラファイト若しくはグラファイト層間化合物などが用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金などを挙げることができる。また陰極としては導電性金属酸化物および導電性有機物などから成る透明導電性電極を用いることができる。具体的には、導電性金属酸化物の例として酸化インジウム、酸化亜鉛、酸化スズ、ITO、およびIZOを挙げることができる。導電性有機物の例としてポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などを挙げることができる。なお陰極は、2層以上を積層した積層体で構成されていてもよい。なお電子注入層が陰極として用いられることもある。
 陰極の膜厚は、求められる特性、成膜工程の簡易さなどを考慮して適宜設定される。陰極の膜厚は、たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 陰極の作製方法の例としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法などを挙げることができる。
 <正孔注入層>
 正孔注入層13を構成する正孔注入材料の例としては、酸化バナジウム、酸化モリブデン、酸化ルテニウム、および酸化アルミニウムなどの酸化物、フェニルアミン化合物、スターバースト型アミン化合物、フタロシアニン化合物、アモルファスカーボン、ポリアニリン、およびポリチオフェン誘導体などを挙げることができる。
 正孔注入層13の膜厚は、求められる特性および成膜工程の簡易さなどを考慮して適宜設定される。正孔注入層13の膜厚は、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <正孔輸送層>
 正孔輸送層を構成する正孔輸送材料の例としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
 正孔輸送層の膜厚は、求められる特性および成膜工程の簡易さなどを考慮して設定される。正孔輸送層の膜厚は、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <発光層>
 発光層14は、通常、主として蛍光及び/又はりん光を発光する有機物、または該有機物とこれを補助するドーパントとから形成される。ドーパントは、たとえば発光効率を向上させ、発光波長を変化させるために加えられる。なお発光層を構成する有機物は、低分子化合物でも高分子化合物でもよく、塗布法によって発光層を形成する場合には、発光層は高分子化合物を含むことが好ましい。発光層を構成する高分子化合物のポリスチレン換算の数平均分子量はたとえば10~10程度である。発光層を構成する発光材料としては、たとえば以下の色素材料、金属錯体材料、高分子材料、ドーパント材料を挙げることができる。
 (色素材料)
 色素材料としては、たとえば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
 (金属錯体材料)
 金属錯体材料としては、たとえばTb、Eu、Dyなどの希土類金属、またはAl、Zn、Be、Ir、Ptなどを中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体を挙げることができる。金属錯体としては、たとえばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などを挙げることができる。
 (高分子材料)
 高分子材料の例としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素材料や金属錯体材料を高分子化したものなどを挙げることができる。
 発光層の厚みは、通常約2nm~200nmである。
 <電子輸送層>
 電子輸送層を構成する電子輸送材料としては、公知のものを使用できる。電子輸送材料の例としては、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。
 電子輸送層の膜厚は、求められる特性、成膜工程の簡易さなどを考慮して適宜設定される。電子輸送層の膜厚は、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <電子注入層>
 電子注入層を構成する材料としては、発光層の種類に応じて最適な材料が適宜選択される。電子注入層を構成する材料の例としては、アルカリ金属、アルカリ土類金属、アルカリ金属およびアルカリ土類金属のうちの1種類以上を含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、アルカリ金属若しくはアルカリ土類金属のハロゲン化物、アルカリ金属若しくはアルカリ土類金属の炭酸塩、またはこれらの物質の混合物などを挙げることができる。アルカリ金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、およびアルカリ金属の炭酸塩の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどを挙げることができる。また、アルカリ土類金属、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、アルカリ土類金属の炭酸塩の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどを挙げることができる。電子注入層は、2層以上を積層した積層体で構成されてもよい。積層体の例としては、たとえばLiF膜とCa膜との積層体などを挙げることができる。
 電子注入層の膜厚としては、1nm~1μm程度が好ましい。
 有機EL層のうちで塗布法によって形成することが可能な有機EL層が複数ある場合には、全ての有機EL層を塗布方法を用いて形成することが好ましい。しかしながら、たとえば塗布法によって形成することが可能な複数の有機EL層のうちの少なくとも1層を塗布法を用いて形成し、他の有機EL層を塗布法とは異なる方法によって形成してもよい。また複数の有機EL層を塗布法で形成する場合であっても、その塗布法の具体的方法が異なる塗布法によって複数の有機EL層を形成してもよい。たとえば本実施形態では正孔注入層13および発光層14をノズルプリンティング法によって形成したが、正孔注入層13をスピンコート法で形成し、発光層14をノズルプリンティング法によって形成してもよい。
 なお塗布法では、各有機EL層となる有機EL材料を含むインキを塗布成膜することによって有機EL層を形成するが、その際に使用されるインキの溶媒には、たとえばクロロホルム、塩化メチレン、ジクロロエタンなどの塩素溶媒、テトラヒドロフランなどのエーテル溶媒、トルエン、キシレンなどの芳香族炭化水素溶媒、アセトン、メチルエチルケトンなどのケトン溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル溶媒、および水などが用いられる。
 また塗布法とは異なる方法の例として、真空蒸着法、スパッタリング法、CVD法、ラミネート法などによって有機EL層を形成してもよい。
 1、20  隔壁部材
 2、17  隔壁
 3、22  有機EL素子
 4  ノズル
 11  支持基板
 11a 発光領域
 12  第1の電極
 13  正孔注入層
 14  発光層
 15  絶縁膜
 15a 開口
 16  第2の電極
 18  凹部
 19  マスク
 19a 近赤外線を透過する部位
 19b 近赤外線を遮光する部位
 21  発光装置
 23  薄膜
 23a 難溶化薄膜

Claims (6)

  1.  支持基板と、この支持基板上に設定される発光領域に設けられ、第1の電極と、第2の電極と、該第1の電極および第2の電極間に設けられる有機エレクトロルミネッセンス層とを含んで構成される複数の有機エレクトロルミネッセンス素子とを備える発光装置の製造方法であって、
     第1の電極が設けられた支持基板を用意する工程と、
     有機EL層となる材料を含むインキを支持基板上に供給し、支持基板の発光領域内および発光領域外に、前記インキからなる薄膜を形成する工程と、
     発光領域内の薄膜を難溶化する工程と、
     発光領域外の薄膜を、洗浄によって除去する工程と、
     第2の電極を形成する工程と
    を含む、発光装置の製造方法。
  2.  前記インキからなる薄膜を形成する工程では、重合性化合物を含むインキを供給し、
     前記薄膜を難溶化する工程では、前記重合性化合物を重合することによって発光領域内の薄膜を難溶化する、請求項1記載の発光装置の製造方法。
  3.  前記薄膜を難溶化する工程では、発光領域内の薄膜に光を照射することによって、発光領域内の薄膜を難溶化させる、請求項1記載の発光装置の製造方法。
  4.  前記薄膜を難溶化する工程では、発光領域内の薄膜を加熱することによって、発光領域内の薄膜を難溶化する、請求項1記載の発光装置の製造方法。
  5.  近赤外線を照射することによって、発光領域内の薄膜を加熱する、請求項4に記載の発光装置の製造方法。
  6.  前記インキからなる薄膜を形成する工程では、ノズルプリンティング法によってインキを支持基板上に供給する、請求項1記載の発光装置の製造方法。
PCT/JP2011/057298 2010-03-29 2011-03-25 発光装置の製造方法 WO2011122461A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180016172.2A CN102823324B (zh) 2010-03-29 2011-03-25 发光装置的制造方法
KR1020127025192A KR20130018406A (ko) 2010-03-29 2011-03-25 발광 장치의 제조 방법
US13/637,571 US20130052766A1 (en) 2010-03-29 2011-03-25 Method for manufacturing light-emitting device
EP11762692A EP2555592A1 (en) 2010-03-29 2011-03-25 Method of manufacturing light-emitting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010074567A JP4893839B2 (ja) 2010-03-29 2010-03-29 発光装置の製造方法
JP2010-074567 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011122461A1 true WO2011122461A1 (ja) 2011-10-06

Family

ID=44712170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057298 WO2011122461A1 (ja) 2010-03-29 2011-03-25 発光装置の製造方法

Country Status (7)

Country Link
US (1) US20130052766A1 (ja)
EP (1) EP2555592A1 (ja)
JP (1) JP4893839B2 (ja)
KR (1) KR20130018406A (ja)
CN (1) CN102823324B (ja)
TW (1) TW201203653A (ja)
WO (1) WO2011122461A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788828B2 (ja) * 2010-02-09 2011-10-05 住友化学株式会社 発光装置の製造方法
CN104466034A (zh) 2014-12-15 2015-03-25 京东方科技集团股份有限公司 一种激光烧结设备及烧结方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111454A (ja) * 1997-10-08 1999-04-23 Denso Corp ディスプレイパネルの製造方法
JP2004087217A (ja) * 2002-08-26 2004-03-18 Canon Electronics Inc 有機エレクトロルミネセンス表示装置の製造方法
JP2006049847A (ja) * 2004-06-28 2006-02-16 Semiconductor Energy Lab Co Ltd 配線基板、薄膜トランジスタ、表示装置及びテレビジョン装置の作製方法
JP2006216253A (ja) 2005-02-01 2006-08-17 Dainippon Screen Mfg Co Ltd 除去装置
JP2007115465A (ja) * 2005-10-19 2007-05-10 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子
JP2008204792A (ja) * 2007-02-20 2008-09-04 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP2009070583A (ja) * 2007-09-10 2009-04-02 Asahi Kasei Chemicals Corp バンク等の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118069A (ja) * 1997-02-17 1999-01-12 Nippon Steel Corp 有機エレクトロルミネッセンス素子およびその製造方法
GB0204989D0 (en) * 2002-03-04 2002-04-17 Opsys Ltd Phosphorescent compositions and organic light emitting devices containing them
US20050129977A1 (en) * 2003-12-12 2005-06-16 General Electric Company Method and apparatus for forming patterned coated films
JP2006175307A (ja) * 2004-12-21 2006-07-06 Seiko Epson Corp 成膜方法、色要素膜付き基板、電気光学装置、および電子機器
JP2008192311A (ja) * 2005-05-16 2008-08-21 Sharp Corp 有機エレクトロルミネッセンス素子の製造方法
GB0523437D0 (en) * 2005-11-17 2005-12-28 Imp College Innovations Ltd A method of patterning a thin film
JP2007257897A (ja) * 2006-03-20 2007-10-04 Seiko Epson Corp 発光素子の製造方法、発光装置の製造方法および電子機器の製造方法
JP2007257898A (ja) * 2006-03-20 2007-10-04 Seiko Epson Corp 発光装置の製造方法および電子機器の製造方法
JP4812573B2 (ja) * 2006-09-14 2011-11-09 パイオニア株式会社 導電体膜接続構造及びその作製方法
JP4998710B2 (ja) * 2007-03-06 2012-08-15 カシオ計算機株式会社 表示装置の製造方法
JP4725577B2 (ja) * 2007-12-28 2011-07-13 カシオ計算機株式会社 表示装置の製造方法
JP2009170138A (ja) * 2008-01-11 2009-07-30 Sony Corp 表示装置の製造方法、表示装置製造用組成物および表示装置
JP5028402B2 (ja) * 2008-03-12 2012-09-19 カシオ計算機株式会社 El素子の製造方法及びelパネルの製造方法
JP5212474B2 (ja) * 2008-07-08 2013-06-19 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111454A (ja) * 1997-10-08 1999-04-23 Denso Corp ディスプレイパネルの製造方法
JP2004087217A (ja) * 2002-08-26 2004-03-18 Canon Electronics Inc 有機エレクトロルミネセンス表示装置の製造方法
JP2006049847A (ja) * 2004-06-28 2006-02-16 Semiconductor Energy Lab Co Ltd 配線基板、薄膜トランジスタ、表示装置及びテレビジョン装置の作製方法
JP2006216253A (ja) 2005-02-01 2006-08-17 Dainippon Screen Mfg Co Ltd 除去装置
JP2007115465A (ja) * 2005-10-19 2007-05-10 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子
JP2008204792A (ja) * 2007-02-20 2008-09-04 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP2009070583A (ja) * 2007-09-10 2009-04-02 Asahi Kasei Chemicals Corp バンク等の製造方法

Also Published As

Publication number Publication date
EP2555592A1 (en) 2013-02-06
JP4893839B2 (ja) 2012-03-07
US20130052766A1 (en) 2013-02-28
CN102823324A (zh) 2012-12-12
KR20130018406A (ko) 2013-02-21
JP2011210408A (ja) 2011-10-20
TW201203653A (en) 2012-01-16
CN102823324B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5417732B2 (ja) 親液撥液パターンの形成方法および有機エレクトロルミネッセンス素子の製造方法
JP5192828B2 (ja) 有機エレクトロルミネッセンス表示素子及びその製造方法
WO2011125950A1 (ja) 発光装置およびその製造方法
WO2011105330A1 (ja) 発光装置およびその製造方法
JP5199772B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2011099391A1 (ja) 発光装置の製造方法
TWI544572B (zh) 顯示裝置
JP2012014856A (ja) 表示装置
WO2011122445A1 (ja) 発光装置
WO2011105329A1 (ja) 発光装置の製造方法
JP2013235690A (ja) 表示装置の製造方法
WO2011118654A1 (ja) 発光装置の製造方法
JP4893839B2 (ja) 発光装置の製造方法
JP5185007B2 (ja) 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
JP6102064B2 (ja) 表示装置
JP2010160945A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP2010160946A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP6155856B2 (ja) 表示装置
JP5796422B2 (ja) 発光装置
JP5184938B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2012070587A1 (ja) 発光装置およびその製造方法
WO2011065288A1 (ja) 発光装置の製造方法
WO2013035570A1 (ja) 表示装置の製造方法
JP2013098149A (ja) 表示装置に用いられる基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016172.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127025192

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011762692

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13637571

Country of ref document: US