WO2011125950A1 - 発光装置およびその製造方法 - Google Patents

発光装置およびその製造方法 Download PDF

Info

Publication number
WO2011125950A1
WO2011125950A1 PCT/JP2011/058450 JP2011058450W WO2011125950A1 WO 2011125950 A1 WO2011125950 A1 WO 2011125950A1 JP 2011058450 W JP2011058450 W JP 2011058450W WO 2011125950 A1 WO2011125950 A1 WO 2011125950A1
Authority
WO
WIPO (PCT)
Prior art keywords
support substrate
organic
layer
electrode
light emitting
Prior art date
Application number
PCT/JP2011/058450
Other languages
English (en)
French (fr)
Inventor
優 梶谷
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011125950A1 publication Critical patent/WO2011125950A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • the present invention relates to a light emitting device and a manufacturing method thereof.
  • organic EL organic electroluminescence
  • Electric Element Electrode Element
  • the display device has a display area for displaying image information.
  • a plurality of organic EL elements are arranged in this display area.
  • Each organic EL element is supplied with power from a power supply source.
  • the voltage applied to each organic EL element decreases due to the voltage drop that occurs in the wiring connected to each organic EL element.
  • the voltage drop increases as the distance between the power supply source and the organic EL element increases. Therefore, the size differs depending on the arrangement of the organic EL elements. For example, the magnitude of the voltage drop that occurs when power is supplied differs between the organic EL element arranged at the center of the display area and the organic EL element arranged at the peripheral edge of the display area.
  • the electrical resistance of the wiring connected to each organic EL element may be reduced.
  • the thickness of the wiring may be increased.
  • the time required for forming the wiring becomes longer.
  • wiring is usually formed by a vacuum deposition method with a slow film formation rate. Therefore, the time required for forming the wiring becomes longer.
  • the unevenness in emission intensity due to the voltage drop becomes more prominent as the display area becomes larger. Therefore, it is necessary to increase the thickness of the wiring with an increase in the size of the display device. As a result, there is a problem that the time required for forming the wiring becomes longer.
  • an object of the present invention is to provide a light emitting device capable of suppressing a voltage drop without increasing the thickness of a wiring on a support substrate.
  • the present invention provides the following [1] to [7].
  • a counter substrate provided with a conductive member disposed on the side of the support substrate, disposed opposite the support substrate; A protrusion that protrudes from the support substrate toward the counter substrate;
  • a light emitting device comprising: a connection electrode extending from the second electrode to the protrusion and contacting the conductive member.
  • the counter substrate is made of a conductive material.
  • Light-emitting device. [5] The light emitting device according to [4], wherein the conductive thin film is formed on an insulating substrate by a sputtering method.
  • the conductive thin film is composed of one or more metal thin films selected from the group consisting of Ag, Al, Au, Cr, Cu, In, Mg, Mo, Pt, Sn, Ta, W, and Zn.
  • [7] A method for manufacturing a light-emitting device according to any one of [1] to [6], Preparing a support substrate provided with the protrusion, the organic EL element, and the connection electrode; Preparing a counter substrate provided with a conductive member; The manufacturing method of the light-emitting device including the process of contacting the said connection electrode and the said member which has the said electroconductivity, and bonding the said support substrate and a counter substrate.
  • the present invention it is possible to realize a light emitting device in which the voltage drop is suppressed without increasing the thickness of the wiring on the support substrate.
  • FIG. 1 is a plan view schematically showing an enlarged part of the light emitting device.
  • FIG. 2 is a cross-sectional view schematically showing an enlarged region where one organic EL element is provided in the light emitting device.
  • FIG. 3A is a plan view schematically showing the light emitting device.
  • FIG. 3B is a plan view schematically showing the light emitting device.
  • FIG. 4A is a plan view schematically showing the light emitting device.
  • FIG. 4B is a plan view schematically showing the light emitting device.
  • FIG. 5 is a plan view schematically showing the light emitting device.
  • the light-emitting device of the present invention is configured by stacking a support substrate, a first electrode, an organic EL layer, and a second electrode on the support substrate in this order so that the first electrode is closer to the support substrate.
  • a plurality of organic EL elements a counter substrate that is disposed to face the support substrate and includes a conductive member provided on the support substrate side, and a protrusion that protrudes from the support substrate toward the counter substrate And a connection electrode that extends from the second electrode to the protrusion and contacts the conductive member.
  • the light emitting device of the present invention is used as a display device, for example.
  • the present invention is applicable to both drive type display devices.
  • a light emitting device applied to an active matrix driving display device will be described as an example.
  • FIG. 1 is a plan view schematically showing an enlarged part of the light emitting device.
  • FIG. 2 is a cross-sectional view schematically showing an enlarged region where one organic EL element is provided in the light emitting device.
  • the light emitting device of the present embodiment mainly includes a support substrate 11, a plurality of organic EL elements 15 arranged on the support substrate 11, and a counter substrate 31 disposed to face the support substrate 11. Is done.
  • the partition wall 12 is provided on the support substrate 11.
  • the partition wall 12 is provided to define a predetermined section on the support substrate 11.
  • the plurality of organic EL elements 15 are respectively provided in the sections defined by the partition walls 12.
  • the partition wall 12 in this embodiment is configured by laminating a first partition member 13 and a second partition member 14 in this order so that the first partition member 13 is closer to the support substrate 11.
  • the partition 12 is collectively referred to as the partition 12.
  • the partition walls 12 in the present embodiment are provided in a lattice shape when viewed from one side in the thickness direction Z of the support substrate 11 (hereinafter sometimes referred to as “in plan view”). That is, the partition wall 12 includes a plurality of portions extending in the row direction X and a plurality of portions extending in the column direction Y. The plurality of portions extending in the row direction X are arranged at a predetermined interval in the column direction Y, and the plurality of portions extending in the column direction Y are arranged at a predetermined interval in the row direction X. Is done. The plurality of portions extending in the row direction X and the portion extending in the column direction Y are orthogonal to each other and are integrally formed.
  • the partition wall 12 has a shape in which a plurality of openings 19 are formed in a flat insulating member. That is, the partition wall is formed with a plurality of openings 19 that are spaced apart in the row direction X and spaced apart in the column direction Y.
  • the row direction X and the column direction Y mean directions perpendicular to each other and perpendicular to the thickness direction Z of the support substrate 11.
  • the widths of the plurality of portions constituting the partition wall 12 are determined by the specifications of the light emitting device, the simplicity of the manufacturing process, and the like.
  • the width of the plurality of portions constituting the partition wall 12 is usually about 10 ⁇ m to 100 ⁇ m.
  • the first partition member 13 and the second partition member 14 are each provided in a lattice shape as described above in plan view.
  • the first partition member 13 and the second partition member 14 are located at positions where their outer edges are different from each other in plan view.
  • the outer edge of the second partition member 14 is formed by retracting from the outer edge of the first partition member 13 to the inside on the first partition member 13.
  • the first partition member 13 is formed to have a larger width in the row direction X so that the outer edge of the first partition member 13 protrudes from the outer edge of the second partition member 14 in plan view.
  • the thickness of the first partition member 13 in the thickness direction Z is determined by the specifications of the light emitting device, the simplicity of the manufacturing process, and the like.
  • the thickness of the first partition member 13 is usually about 30 nm to 500 nm.
  • the thickness of the second partition member 14 in the thickness direction Z is determined by the specifications of the light emitting device, the simplicity of the manufacturing process, and the like.
  • the thickness of the second partition member 14 is usually about 0.5 ⁇ m to 5 ⁇ m.
  • a plurality of organic EL elements 15 are provided on the support substrate 11. Each organic EL element 15 is provided in a region surrounded by the partition wall 12. That is, each organic EL element 15 is provided so as to correspond to a plurality of openings 19 formed in the partition wall 12.
  • the some organic EL element 15 is arranged in a matrix form, respectively. That is, the plurality of organic EL elements 15 are arranged at predetermined intervals in the row direction X and at predetermined intervals in the column direction Y, respectively.
  • the size of the organic EL element 15 or the opening 19 is determined by the specifications of the light emitting device, the simplicity of the manufacturing process, and the like. For example, in the display device, the width in the row direction X and the column direction Y of the organic EL element 15 or the opening 19 is about 30 ⁇ m to 300 ⁇ m, respectively.
  • the light emitting device further includes a protrusion 34 protruding in the thickness direction Z from the support substrate 11 toward the counter substrate 31.
  • the protruding portion 34 is provided separately from the partition wall 12.
  • the protrusions 34 are not provided separately from the partition walls 12, but the partition walls 12 that function also as the protrusions 34 may be provided.
  • the protrusion 34 is provided on the partition wall 12.
  • the protrusion 34 may be formed on the partition wall 12 so as to be continuous in a predetermined direction.
  • the protrusions 34 may be formed discretely with a predetermined interval.
  • FIG. 3A and FIG. 3B are plan views schematically showing a light emitting device having continuous protrusions.
  • FIG. 4A and FIG. 4B are plan views schematically showing a light emitting device including protrusions arranged with a predetermined interval.
  • the protrusions 34 are formed so that the side surfaces thereof are tapered with a distance from the support substrate 11 toward the counter substrate 31 side. Thus, by forming the protrusion 34 in a tapered shape, the connection electrode 35 and the second electrode 18 that are continuous with each other can be easily formed.
  • the continuous projection part 34 When providing the continuous projection part 34, you may form the grid
  • a protrusion 34 may be formed between the organic EL elements 15 adjacent in the row direction X or the column direction Y.
  • Such discretely arranged protrusions 34 are formed in a truncated cone shape such as a truncated cone shape and a truncated pyramid shape, for example.
  • the protrusions 34 are formed in a frustum shape as described above and are discrete.
  • the particles are usually accommodated in a recess defined by the partition wall 17. Therefore, it is possible to prevent the counter substrate 31 and the protrusion 34 from being connected so as to sandwich the particles. From such a viewpoint, it is preferable to dispose the protrusions 34 discretely.
  • the size of the protrusion 34 is determined by the specifications of the light emitting device, the simplicity of the manufacturing process, and the like. For example, in the display device, the height of the protrusion 34 is about 1 ⁇ m to 10 ⁇ m.
  • the organic EL element 15 includes a pair of electrodes composed of an anode and a cathode, and an organic EL layer 17 provided between the pair of electrodes.
  • the organic EL layer 17 may be composed of only one layer.
  • the organic EL layer 17 may be configured by laminating a plurality of layers.
  • the organic EL element 15 includes at least one light emitting layer as the organic EL layer 17.
  • one electrode disposed near the support substrate 11 is referred to as the first electrode 16, and is disposed farther from the support substrate 11 than the first electrode 16.
  • the other electrode is referred to as a second electrode 18.
  • an active matrix drive type substrate is used as the support substrate 11. Therefore, the same number of first electrodes 16 as the organic EL elements 15 are provided on the support substrate 11.
  • the plurality of first electrodes 16 are arranged in a matrix like the plurality of organic EL elements 15. That is, the plurality of first electrodes 16 are arranged at predetermined intervals in the row direction X and at predetermined intervals in the column direction Y, respectively.
  • the first electrode 16 is formed in a thin film shape, and is formed in, for example, a substantially rectangular shape or a substantially elliptical shape in plan view.
  • the first electrode 16 is mainly formed in a region excluding a region where the first partition member 13 is provided in plan view.
  • the peripheral edge of the first electrode 16 is covered with the first partition member 13.
  • the first partition member 13 in the present embodiment is formed so as to cover the peripheral portion of the first electrode 16 and expose a part of the first electrode.
  • the organic EL layer 17 means all layers of the organic EL element 15 that are sandwiched between the first electrode 16 and the second electrode 18. As the organic EL layer 17, at least one light emitting layer is provided as described above. In addition, a hole injection layer, a hole transport layer, an electron block layer, a hole block layer, an electron transport layer, an electron injection layer, and the like are provided as necessary.
  • the organic EL layer 17 is provided on the first electrode 16 and in a region defined by the partition wall 12. That is, the organic EL layer 17 is provided on the first electrode 16, that is, on the opening 19.
  • the second electrode 18 is provided as a common electrode for the plurality of organic EL elements 15 in the present embodiment. That is, the second electrode 18 is provided so as to extend not only on the organic EL layer 17 but also on the partition walls 12 and the protrusions 34, and is continuously formed across the plurality of organic EL elements 15.
  • the second electrode 18 is formed so that a film made of a conductive material extends to the partition wall 12 and the protrusion 34.
  • a part of the second electrode 18 formed on the protrusion 34 is referred to as a connection electrode 35 in this specification.
  • the counter substrate 31 is disposed to face the support substrate 11.
  • the counter substrate 31 is provided with a conductive member on the surface portion facing the support substrate 11. Since the counter substrate 31 only needs to be provided with a conductive member on at least the surface thereof, all of the counter substrate 31 may be formed of a conductive member.
  • the counter substrate 31 includes an insulating substrate 32 having electrical insulation and a conductive thin film 33 provided on the insulating substrate 32.
  • the counter substrate 31 is bonded to the support substrate 11 with the conductive thin film 33 facing the connection electrode 35 provided on the protruding portion 34 of the support substrate 11.
  • the connection electrode 35 formed on the protrusion 34 abuts the counter substrate 31.
  • the connection electrode 35 is in contact with the conductive thin film 33.
  • a support substrate on which the protrusion 34, the organic EL element 15, and the connection electrode 35 are provided is prepared.
  • a substrate on which circuits for individually driving the plurality of organic EL elements 15 are formed in advance can be used as the support substrate 11 in order to realize an active matrix display device.
  • a substrate on which a TFT (Thin Film Transistor), a capacitor, and the like are formed in advance can be used as the support substrate 11.
  • first electrodes 16 are formed in a matrix on the support substrate 11.
  • the first electrode 16 is formed, for example, by forming a transparent conductive thin film on one surface of the support substrate 11 and removing unnecessary portions by etching using a mask pattern obtained by patterning the thin film in a matrix by photolithography. Is done.
  • a mask having an opening formed at a predetermined portion is disposed on the support substrate 11, and a transparent conductive material is selectively deposited on the predetermined portion on the support substrate 11 through the mask to thereby form the first electrode. 16 may be patterned. The material of the first electrode 16 will be described later.
  • the partition wall 12 is formed on the support substrate 11.
  • the first partition member 13 is formed.
  • the first partition member 13 is made of an organic material or an inorganic material.
  • the organic material constituting the first partition member 13 include resins such as acrylic resin, phenol resin, and polyimide resin.
  • the first partition member 13 made of an organic material When forming the first partition member 13 made of an organic material, first, for example, a positive or negative photosensitive resin is applied to one surface, and a predetermined portion is exposed and developed. Further, by curing this, a lattice-shaped first partition wall member 13 is formed.
  • a thin film made of an inorganic material is formed on one surface by a plasma CVD method, a sputtering method or the like, and then a predetermined portion is removed to thereby form a lattice-shaped first partition member 13. Is formed.
  • the predetermined portion is removed by, for example, a photolithography method and an etching method.
  • the second partition member 14 can be formed in a lattice shape in the same manner as the method for forming the first partition member 13 using, for example, the material exemplified as the material of the first partition member 13.
  • the protrusion 34 is formed.
  • the protrusions 34 can be patterned on the barrier ribs 12 in the same manner as the method of forming the first barrier rib members 13 using, for example, the material exemplified as the material of the first barrier rib members 13.
  • the partition wall 12 is made liquid repellent as necessary before the organic EL layer 17 is formed.
  • liquid repellency can be provided to the surface of the 2nd partition member 14 by performing a plasma process in the atmosphere containing a fluoride. In this treatment, CF 4 , CHF 3 , CH 2 F 2 , C 3 F 8 , C 4 F 6 , C 4 F 8 or the like can be used as the fluoride.
  • the ink supplied to the region (opening 19) surrounded by the partition 12 can be held in the opening 19.
  • the organic EL element 15 is formed.
  • the organic EL element 15 is fabricated by further forming the organic EL layer 17 and the second electrode 18.
  • the organic EL layer 17 is formed by, for example, a coating method.
  • ink containing an organic EL material to be the organic EL layer 17 is selectively supplied to a region (opening 19) surrounded by the partition wall 12.
  • methods for selectively supplying ink include printing methods such as inkjet printing, letterpress printing, and intaglio printing, and coating methods such as nozzle coating.
  • the organic EL layer 17 is formed by solidifying the supplied ink.
  • the layer common to all the organic EL elements 15 may be formed by selectively supplying ink in the same manner as described above. For example, by spin coating, capillary coating, dip coating, etc. You may form by apply
  • the second electrode 18 is formed.
  • the second electrode 18 is formed on the entire surface. That is, a thin film made of a conductive material is formed on the entire surface of the organic EL layer 17, the partition wall 12, and the protrusion 34. As a result, the second electrode 18 continuously provided on all the organic EL elements 15 is formed, and as a result, the connection electrode 35 is formed on the protrusion 34.
  • the material of the second electrode 18 will be described later.
  • the counter substrate 31 is prepared.
  • a counter substrate 31 composed of an insulating substrate 32 and a conductive thin film 33 provided on the insulating substrate 32 is prepared.
  • the insulating substrate 32 is constituted by, for example, a glass substrate or a quartz glass substrate.
  • the conductive thin film 33 is formed on the insulating substrate 32 by, for example, a sputtering method or an ion plating method. Since the second electrode 18 may damage the organic EL element 15 during film formation, the second electrode 18 is preferably formed by a method that causes little damage to the organic EL element 15, and the film formation method may be limited. . On the other hand, since the method for forming the conductive thin film 33 is not particularly limited, the conductive thin film 33 is preferably formed by a method having a film formation rate faster than that of the second electrode 18, for example, by sputtering. .
  • the conductive thin film 33 is preferably made of, for example, a material having low electric resistance, and is selected from the group consisting of Ag, Al, Au, Cr, Cu, In, Mg, Mo, Pt, Sn, Ta, W, and Zn. It is preferable that the thin film is formed of one or more kinds of metals.
  • the counter substrate 31 is bonded to the support substrate 11 by a predetermined adhesive member, for example.
  • a predetermined adhesive member for example, an adhesive member is first disposed on the peripheral edge of the counter substrate 31, and then the counter substrate 31 is bonded to the support substrate 11. Thereafter, the counter substrate 31 and the support substrate 11 can be bonded by curing the adhesive member.
  • the step of bonding the counter substrate 31 to the support substrate 11 is preferably performed in, for example, an inert gas atmosphere or a vacuum atmosphere.
  • the adhesive member for example, a thermosetting resin, a photocurable resin, or frit glass is used.
  • the conductive thin film 33 that is electrically connected to the second electrode 18 via the connection electrode 35 is provided on the counter substrate 31. Since the current supplied from the power supply source flows not only through the second electrode 18 but also through the conductive thin film 33, by providing the conductive thin film 33, power is supplied from the power supply source to each organic EL element 15. The voltage drop that occurs during supply can be reduced. As a result, a light emitting device in which the voltage drop is suppressed can be realized without increasing the thickness of the second electrode 18 on the support substrate.
  • the conductive thin film 33 can be formed by a method having a high film forming speed, and the time required for manufacturing the light emitting device can be shortened. it can.
  • the thickness of the second electrode 18 can be suppressed by providing the conductive thin film 33, the damage given to the organic EL element 15 when the second electrode 18 is formed can be suppressed.
  • protrusion 34 on the counter substrate 31.
  • bonding can be performed without highly accurate alignment. As a result, the manufacturing process of the light emitting device can be simplified.
  • the protrusion 34 also functions as a spacer, it is possible to disperse the stress applied to the counter substrate 31 and prevent the counter substrate 31 from being bent.
  • the projection 34 as a spacer, it is not necessary to form a spacer separately. As a result, the manufacturing process of the light emitting device can be simplified.
  • the counter substrate 31 is configured by the electrically insulating substrate 32 and the conductive thin film 33 provided on the insulating substrate 32.
  • the counter substrate 31 may be made of a conductive member.
  • the counter substrate 31 may be composed of one or more metal thin plates selected from the group consisting of Ag, Al, Au, Cr, Cu, In, Mg, Mo, Pt, Sn, Ta, W, and Zn. Good.
  • the protrusion 34 is provided separately from the partition wall 12.
  • a protrusion 34 that exhibits both functions of the protrusion 34 and the partition wall 12 may be provided.
  • FIG. 5 is a plan view schematically showing a light emitting device including a protrusion that exhibits both functions of the protrusion and the partition. As shown in FIG. 5, in the case where the protrusion 34 that functions as both the protrusion 34 and the partition wall 12 is provided, it is not necessary to form the protrusion 34 separately from the partition wall 12. Therefore, the manufacturing process of the light emitting device can be simplified.
  • the partition wall 12 in the present embodiment is configured by laminating the first partition member 13 and the second partition member 14 in this order so that the partition member 13 is closer to the support substrate 11.
  • the partition wall 12 may have a single layer structure.
  • the first partition member 13 and the second partition member 14 both have a lattice shape, but the shape of the partition wall 12 is not limited to the lattice shape.
  • the stripe-shaped second partition wall member 14 may be provided on the lattice-shaped first partition wall member 13, and both the first partition wall member 13 and the second partition wall member 14 may be formed in a stripe shape.
  • the organic EL element 15 can have various layer configurations.
  • the layer structure of the organic EL element, the configuration of each layer, and the method for forming each layer will be described in more detail.
  • the organic EL element 15 includes a pair of electrodes including an anode and a cathode, and one or more organic EL layers 17 provided between the pair of electrodes, and includes one or more organic EL layers 17. As at least one light emitting layer.
  • the organic EL element 15 may include a layer containing an inorganic material and an organic material, an inorganic layer, and the like.
  • the organic substance constituting the organic layer may be a low molecular compound or a high molecular compound, or a mixture of a low molecular compound and a high molecular compound.
  • the organic layer preferably contains a polymer compound, and preferably contains a polymer compound having a polystyrene-equivalent number average molecular weight of 10 3 to 10 8 .
  • Examples of the organic EL layer 17 provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the layer close to the cathode is called an electron injection layer
  • the layer close to the light emitting layer is called an electron transport layer.
  • Examples of the organic EL layer 17 provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • a layer close to the anode is referred to as a hole injection layer
  • a layer close to the light emitting layer is referred to as a hole transport layer.
  • anode / light emitting layer / cathode b) anode / hole injection layer / light emitting layer / cathode c) anode / hole injection layer / light emitting layer / electron injection layer / cathode d) anode / hole injection layer / light emitting layer / Electron transport layer / cathode e) anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode f) anode / hole transport layer / light emitting layer / cathode g) anode / hole transport layer / light emitting layer / Electron injection layer / cathode h) anode / hole transport layer / light emitting layer / electron transport layer / cathode i) anode / hole transport layer / light emitting layer
  • the organic EL element of the present embodiment may have two or more light emitting layers.
  • the configuration of the organic EL device having two light emitting layers is as follows. And the layer structure shown in the following q). Note that the two (structural unit A) layer structures may be the same or different. q) Anode / (structural unit A) / charge generating layer / (structural unit A) / cathode If “(structural unit A) / charge generating layer” is “structural unit B”, it has three or more light emitting layers.
  • Examples of the structure of the organic EL element include the layer structure shown in the following r). r) anode / (structural unit B) x / (structural unit A) / cathode
  • x represents an integer of 2 or more
  • (structural unit B) x is a stack in which the structural unit B is stacked in x stages. Represents the body.
  • a plurality of (structural units B) may have the same or different layer structure.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field.
  • the charge generation layer include a thin film made of vanadium oxide, indium tin oxide (Indium Tin Oxide: abbreviation ITO), molybdenum oxide, and the like.
  • the organic EL element 15 may be provided on the support substrate 11 such that the anode of the pair of electrodes composed of the anode and the cathode is disposed closer to the support substrate 11 than the cathode, and the cathode is provided on the support substrate rather than the anode. You may arrange
  • the organic EL element 15 may be configured by being laminated on the substrate 11.
  • the order of the layers to be laminated, the number of layers, and the thickness of each layer can be appropriately set in consideration of light emission efficiency and element lifetime.
  • an electrode having optical transparency is used for the anode.
  • the electrode exhibiting light transmittance a thin film of metal oxide, metal sulfide, metal or the like can be used, and an electrode having high electrical conductivity and light transmittance is preferably used.
  • a thin film made of indium oxide, zinc oxide, tin oxide, ITO, indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, or the like is used.
  • ITO, IZO Or a thin film made of tin oxide is preferably used.
  • Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Further, as the anode, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
  • the thickness of the anode is appropriately set in consideration of the required characteristics, the simplicity of the film forming process, and the like.
  • the thickness of the anode is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • a material for the cathode is preferably a material having a low work function, easy electron injection into the light emitting layer, and high electrical conductivity. Further, in the organic EL element configured to extract light from the anode side, a material having a high reflectivity with respect to visible light is preferable as the cathode material in order to reflect light emitted from the light emitting layer to the anode side by the cathode.
  • a material having a high reflectivity with respect to visible light is preferable as the cathode material in order to reflect light emitted from the light emitting layer to the anode side by the cathode.
  • an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like can be used.
  • cathode materials include, for example, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium
  • a metal such as two or more alloys of the metals, one or more of the metals, and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin Or an alloy thereof, graphite, or a graphite intercalation compound.
  • alloys include magnesium and silver alloys, magnesium and indium alloys, magnesium and aluminum alloys, indium and silver alloys, lithium and aluminum alloys, lithium and magnesium alloys, lithium and An alloy of indium, an alloy of calcium and aluminum, and the like can be given.
  • a transparent conductive electrode made of a conductive metal oxide or a conductive organic material can be used as the cathode.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO
  • examples of the conductive organic substance include polyaniline or a derivative thereof, polythiophene or a derivative thereof, and the like.
  • the cathode may be composed of a laminate in which two or more layers are laminated.
  • the electron injection layer may be used as a cathode.
  • the thickness of the cathode is appropriately set in consideration of the required characteristics, the simplicity of the film forming process, and the like.
  • the thickness of the cathode is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • Examples of the method for producing the cathode include a vacuum deposition method and an ion plating method.
  • the hole injection material constituting the hole injection layer examples include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst type amine compounds, phthalocyanine compounds, amorphous carbon, polyaniline And polythiophene derivatives.
  • the thickness of the hole injection layer is appropriately set in consideration of the required characteristics and the simplicity of the film forming process.
  • the thickness of the hole injection layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the hole transport material constituting the hole transport layer examples include polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene Derivative, triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) ) Or a derivative thereof.
  • the film thickness of the hole transport layer is set in consideration of the required characteristics and the simplicity of the film forming process.
  • the thickness of the hole transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm.
  • the light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance.
  • the dopant is added, for example, to improve luminous efficiency and change the emission wavelength.
  • the organic substance which comprises a light emitting layer may be a low molecular compound or a high molecular compound, and when forming a light emitting layer by the apply
  • the number average molecular weight in terms of polystyrene of the polymer compound constituting the light emitting layer is, for example, about 10 3 to 10 8 .
  • the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • dye material examples include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds, Examples thereof include a pyridine ring compound, a perinone derivative, a perylene derivative, an oligothiophene derivative, an oxadiazole dimer, a pyrazoline dimer, a quinacridone derivative, and a coumarin derivative.
  • Metal complex materials examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Ir, Pt, and the like as a central metal, and an oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and quinoline structure.
  • a metal complex having light emission from a triplet excited state such as an iridium complex or a platinum complex, an aluminum quinolinol complex, a benzoquinolinol beryllium complex, or a benzoxazolyl zinc complex.
  • Benzothiazole zinc complex azomethyl zinc complex, porphyrin zinc complex, phenanthroline europium complex, and the like.
  • Polymer material examples include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, those obtained by polymerizing the above dye materials and metal complex materials, etc. Can be mentioned.
  • the thickness of the light emitting layer is usually about 2 nm to 200 nm.
  • electron transport material constituting the electron transport layer
  • known materials can be used.
  • electron transport materials include oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyanoanthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenyl
  • the thickness of the electron transport layer is appropriately set in consideration of the required characteristics, the simplicity of the film forming process, and the like.
  • the thickness of the electron transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • ⁇ Electron injection layer> As a material constituting the electron injection layer, an optimum material is appropriately selected according to the type of the light emitting layer.
  • the material constituting the electron injection layer include alkali metals, alkaline earth metals, alloys containing one or more of alkali metals and alkaline earth metals, oxides of alkali metals or alkaline earth metals, alkali metals Alternatively, an alkaline earth metal halide, an alkali metal or an alkaline earth metal carbonate, or a mixture of these substances can be given.
  • alkali metals, alkali metal oxides, alkali metal halides, and alkali metal carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, Examples include potassium oxide, potassium fluoride, rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, and lithium carbonate.
  • alkaline earth metals, alkaline earth metal oxides, alkaline earth metal halides, alkaline earth metal carbonates include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, Examples thereof include calcium oxide, calcium fluoride, barium oxide, barium fluoride, strontium oxide, strontium fluoride, and magnesium carbonate.
  • the electron injection layer may be composed of a laminate in which two or more layers are laminated. Examples of the electron injection layer include a laminate of a LiF film and a Ca film.
  • the thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • Each organic EL layer described above can be formed by the above-described coating method, vacuum deposition method, laminating method, or the like.
  • an organic EL layer is formed by coating and forming an ink containing an organic EL material to be each organic EL layer.
  • the ink solvent used include chlorine solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate and acetic acid. Ester solvents such as butyl and ethyl cellosolve acetate, and water are used.

Abstract

 支持基板上の配線の厚みを大きくすることなく、電圧降下が抑制された発光装置を提供する。発光装置は、支持基板(11)と、第1電極(16)、有機EL層(17)、および第2電極(18)が、第1電極が前記支持基板寄りとなるようにこの順で前記支持基板上に積層されて構成される複数の有機EL素子(15)と、前記支持基板と対向して配置され、前記支持基板側には導電性を示す部材(33)が設けられる対向基板(31)と、前記支持基板から前記対向基板に向けて突起する突起部(34)と、前記第2電極から前記突起部上にまで延在して、前記導電性を有する部材に当接する接続電極(35)とを備える。

Description

発光装置およびその製造方法
 本発明は発光装置およびその製造方法に関する。
 表示装置には、その構成や原理を異にする様々な種類の装置がある。そのひとつとして現在、画素の光源に有機エレクトロルミネッセンス(以下、有機ELという。)素子(Electroluminescent Element)を使用した表示装置が実用化されつつある。
 表示装置は画像情報を表示する表示領域を有している。この表示領域に複数の有機EL素子が配列されている。各有機EL素子には電力供給源から電力が供給される。しかしながら各有機EL素子に接続される配線で生じる電圧降下のために、各有機EL素子に印加される電圧は低下する。
 電圧降下は電力供給源と有機EL素子との距離が離れるほど大きくなる。よってその大きさは有機EL素子の配置によって異なる。たとえば表示領域の中央部に配置される有機EL素子と、表示領域の周縁部に配置される有機EL素子とでは、電力を供給する際に生じる電圧降下の大きさが異なる。このように電圧降下の大きさは有機EL素子の配置によって異なるため、各有機EL素子に印加される電圧もその配置によって異なる。結果として表示領域内の発光強度にむらが生じる(たとえば特許文献1参照)。
 電圧降下を小さくするためには各有機EL素子に接続される配線の電気抵抗を小さくすればよい。そして配線の電気抵抗を小さくするためには配線の厚みを大きくすればよい。しかしながら配線の厚みを大きくしようとすると、配線の形成に要する時間が長くなる。特に有機EL素子が搭載される表示装置では、有機EL素子へ与えるダメージを抑制するために通常は成膜速度の遅い真空蒸着法によって配線を形成する。よって配線の形成に要する時間がより長くなる。電圧降下に起因する発光強度のむらは表示領域が大きくなるほど顕著になる。よって表示装置の大型化にともなって、配線の厚みをより大きくする必要がある。結果として配線の形成に要する時間がより長くなるという問題がある。
特開2005-70295号公報
 従って本発明の目的は、支持基板上の配線の厚みを大きくすることなく、電圧降下を抑制できる発光装置を提供することにある。
 本発明は、下記[1]~[7]を提供する。
[1] 支持基板と、
 第1電極、有機エレクトロルミネッセンス層、および第2電極が、第1電極が前記支持基板寄りとなるようにこの順で前記支持基板上に積層されて構成される複数の有機エレクトロルミネッセンス素子と、
 前記支持基板と対向して配置され、前記支持基板側に設けられた導電性を有する部材を備える対向基板と、
 前記支持基板から前記対向基板に向けて突起する突起部と、
 前記第2電極から前記突起部上にまで延在して、前記導電性を有する部材に当接する接続電極とを備える、発光装置。
[2] 前記支持基板上に設けられ、前記複数の有機エレクトロルミネッセンス素子を区分けする隔壁をさらに有し、前記突起部は前記隔壁上に設けられる、[1]記載の発光装置。
[3] 前記対向基板が導電性を有する材料から構成されている、[1]または[2]記載の発光装置。
[4] 前記対向基板は、電気絶縁性を示す絶縁性基板と、この絶縁性基板上に設けられる導電性薄膜とから構成されている、[1]~[3]のいずれか1つに記載の発光装置。
[5] 前記導電性薄膜はスパッタリング法によって絶縁性基板上に形成されている、[4]記載の発光装置。
[6] 前記導電性薄膜は、Ag、Al、Au、Cr、Cu、In、Mg、Mo、Pt、Sn、Ta、W、およびZnからなる群から選ばれる1種以上の金属の薄膜によって構成される、[4]または[5]記載の発光装置。
[7] [1]~[6]のいずれか1つに記載の発光装置の製造方法であって、
 前記突起部、前記有機EL素子および前記接続電極が設けられた支持基板を用意する工程と、
 導電性を有する部材が設けられた対向基板を用意する工程と、
 前記接続電極と前記導電性を有する部材とを当接させて前記支持基板と対向基板とを貼り合わせる工程と
を含む発光装置の製造方法。
 本発明によれば、支持基板上の配線の厚みを大きくすることなく、電圧降下が抑制された発光装置を実現することができる。
図1は、発光装置の一部を拡大して模式的に示す平面図である。 図2は、発光装置において、1つの有機EL素子が設けられた領域を拡大して模式的に示す断面図である。 図3Aは、発光装置を模式的に示す平面図である。 図3Bは、発光装置を模式的に示す平面図である。 図4Aは、発光装置を模式的に示す平面図である。 図4Bは、発光装置を模式的に示す平面図である。 図5は、発光装置を模式的に示す平面図である。
 以下、図面を参照して本発明の実施の一形態について説明する。なお以下の説明において、各図は発明が理解できる程度に構成要素の形状、大きさ及び配置が概略的に示されているに過ぎず、これにより本発明が特に限定されるものではない。また各図において、同様の構成要素については同一の符号を付して示し、その重複する説明を省略する場合がある。
 本発明の発光装置は、支持基板と、第1電極、有機EL層、および第2電極が、第1電極が支持基板寄りとなるようにこの順で前記支持基板上に積層されて構成される複数の有機EL素子と、前記支持基板と対向して配置され、前記支持基板側に設けられた導電性を示す部材を備える対向基板と、前記支持基板から前記対向基板に向けて突起する突起部と、前記第2電極から前記突起部上にまで延在して、前記導電性を示す部材に当接する接続電極とを備える。
 本発明の発光装置はたとえば表示装置として利用される。表示装置は主にアクティブマトリクス駆動型の装置と、パッシブマトリクス駆動型の装置とがある。本発明は両方の駆動型の表示装置に適用可能である。本実施形態では一例としてアクティブマトリクス駆動型の表示装置に適用される発光装置について説明する。
 <発光装置の構成>
 まず発光装置の構成について図1および図2を参照して説明する。図1は発光装置の一部を拡大して模式的に示す平面図である。また図2は発光装置において、1つの有機EL素子が設けられた領域を拡大して模式的に示す断面図である。
 本実施形態の発光装置は主に、支持基板11と、この支持基板11上に配列される複数の有機EL素子15と、支持基板11に対向して配置される対向基板31とを含んで構成される。
 本実施形態では支持基板11上に隔壁12が設けられる。この隔壁12は支持基板11上に予め設定される区画を画成するために設けられる。なお複数の有機EL素子15は、この隔壁12によって画成される区画にそれぞれ設けられる。本実施形態における隔壁12は、第1隔壁部材13と第2隔壁部材14とが第1隔壁部材13が支持基板11寄りとなるようにこの順で積層されて構成される。以下において第1隔壁部材13および第2隔壁部材14を特に区別せずに説明する場合、第1隔壁部材13および第2隔壁部材14を総称して隔壁12という。
 本実施形態における隔壁12は、支持基板11の厚み方向Zの一方から見て(以下、「平面視で」ということがある。)格子状に設けられる。すなわち隔壁12は、行方向Xに延在する複数本の部分と、列方向Yに延在する複数本の部分とから構成される。行方向Xに延在する複数本の部分は、列方向Yに所定の間隔をあけて配置され、列方向Yに延在する複数本の部分は、行方向Xに所定の間隔をあけて配置される。そして行方向Xに延在する複数本の部分と、列方向Yに延在する部分とは、互いに直交し、一体的に形成されている。換言すると隔壁12は、平板状の絶縁性部材に複数の開口部19が形成された形状を有する。すなわち隔壁には行方向Xに所定の間隔をあけるとともに、列方向Yに所定の間隔をあけて配置される複数の開口部19が形成されている。なお本明細書において行方向Xと列方向Yとは、互いに直交し、かつそれぞれが支持基板11の厚み方向Zに直交する方向を意味する。隔壁12を構成する上述の複数本の部分の幅は、発光装置の仕様、製造工程の簡易さなどによって決まる。隔壁12を構成する上述の複数本の部分の幅は、通常10μm~100μm程度である。
 第1隔壁部材13および第2隔壁部材14は、平面視で、それぞれ上述のように格子状に設けられる。第1隔壁部材13および第2隔壁部材14は、平面視におけるその外縁が互いに異なる位置に来る。第2隔壁部材14はその外縁が、第1隔壁部材13の外縁から、第1隔壁部材13上の内側に退避して形成されている。換言すると平面視で第1隔壁部材13はその外縁が第2隔壁部材14の外縁からはみ出すように、行方向Xの幅がより大きくなるように形成されている。
 第1隔壁部材13の厚み方向Zの厚みは、発光装置の仕様、製造工程の簡易さなどによって決まる。第1隔壁部材13の厚みは、通常30nm~500nm程度である。また第2隔壁部材14の厚み方向Zの厚みは、発光装置の仕様や製造工程の簡易さなどによって決まる。第2隔壁部材14の厚みは、通常0.5μm~5μm程度である。
 支持基板11上には複数の有機EL素子15が設けられる。各有機EL素子15は、それぞれ隔壁12に囲まれる領域に設けられる。すなわち各有機EL素子15は、隔壁12に形成された複数の開口部19に対応するようにそれぞれ設けられる。本実施形態では格子状の隔壁12が設けられるので、複数の有機EL素子15はそれぞれマトリクス状に配列される。すなわち複数の有機EL素子15は、それぞれ行方向Xに所定の間隔をあけるとともに、列方向Yに所定の間隔をあけて配列される。有機EL素子15または開口部19のサイズは、発光装置の仕様、製造工程の簡易さなどによって決まる。たとえば表示装置では、有機EL素子15または開口部19の行方向Xおよび列方向Yの幅は、それぞれ30μm~300μm程度である。
 発光装置は支持基板11から対向基板31に向けて厚み方向Zに突起する突起部34をさらに備える。本実施形態では突起部34は隔壁12とは別に設けられる。なお後述するように隔壁12とは別に突起部34を設けるのではなく、突起部34としても機能する隔壁12を設けてもよい。
 本実施形態では突起部34は隔壁12上に設けられる。突起部34は、隔壁12上において所定の方向に連続するように形成されていてもよい。また突起部34は、所定の間隔をあけて離散的に形成されていてもよい。図3Aおよび図3Bは、連続する突起部を備える発光装置を模式的に示す平面図である。図4Aおよび図4Bは、所定の間隔をあけて配置される突起部を備える発光装置を模式的に示す平面図である。
 突起部34は支持基板11から離間して対向基板31側に向かうにつれて側面が傾斜を有する先細状になるように形成される。このように突起部34を先細状に形成することによって、互いに連続する接続電極35と第2電極18とを容易に形成することができる。
 連続する突起部34を設ける場合、たとえば図3Aに示されるように隔壁12と同様に格子状の突起部34を形成してもよい。また図3Bに示されるように行方向Xまたは列方向Yに延在する複数本のストライプ状の突起部34を形成してもよい。このような連続する突起部34は、たとえば断面形状が台形状に形成される。また図4Aに示されるように離散的に突起部34を配置する場合、たとえば格子状の隔壁12の交差する部位に突起部34を形成してもよい。また図4Bに示されるように行方向Xまたは列方向Yに隣り合う有機EL素子15の間に突起部34を形成してもよい。このような離散的に配置される突起部34はたとえば、円錐台形状および角錐台形状などの錐台形状、などに形成される。
 なお支持基板11と対向基板31とを貼り合わせる際に、たとえ意図しないパーティクルが支持基板11上に存在していたとしても、突起部34は上記のように錐台形状に形成し、かつ離散的に配置すれば、パーティクルは通常、隔壁17によって画成される凹部に収容される。よって、対向基板31と突起部34とがパーティクルを挟むようにして接続されることを防ぐことができる。このような観点からは突起部34を離散的に配置することが好ましい。
 突起部34のサイズは、発光装置の仕様、製造工程の簡易さなどによって決まる。たとえば表示装置では突起部34の高さは1μm~10μm程度である。
 有機EL素子15は、陽極および陰極から構成される一対の電極と、一対の電極間に設けられる有機EL層17とから構成される。有機EL層17は1層のみから構成されていてもよい。また有機EL層17は、複数の層が積層されて構成されていてもよい。なお有機EL素子15は有機EL層17として少なくとも1層の発光層を備える。
 以下では陽極および陰極から構成される一対の電極のうちの、支持基板11寄りに配置される一方の電極を第1電極16といい、この第1電極16よりも支持基板11から離間して配置される他方の電極を第2電極18という。
 本実施形態では支持基板11としてアクティブマトリクス駆動型の基板が用いられる。そのため支持基板11には有機EL素子15と同数の第1電極16が設けられる。複数の第1電極16は、複数の有機EL素子15と同様にマトリクス状に配置される。すなわち複数の第1電極16は、それぞれ行方向Xに所定の間隔をあけるとともに、列方向Yに所定の間隔をあけて配置される。第1電極16は、薄膜状に形成され、平面視でたとえば略矩形状や略楕円形状などに形成される。第1電極16は平面視で主に第1隔壁部材13の設けられる領域を除く領域に形成される。本実施形態では第1電極16の周縁部が第1隔壁部材13に覆われている。
 換言すると本実施形態における第1隔壁部材13は第1電極16の周縁部を覆って第1電極の一部を露出させるように形成されている。
 有機EL層17は、有機EL素子15のうちで、第1電極16および第2電極18に挟持される全ての層を意味する。有機EL層17としては、前述したように少なくとも1層の発光層が設けられる。この他に、正孔注入層、正孔輸送層、電子ブロック層、正孔ブロック層、電子輸送層および電子注入層などが必要に応じて設けられる。有機EL層17は、第1電極16上であって、かつ隔壁12によって画成された領域に設けられる。すなわち有機EL層17は、第1電極16上、すなわち開口部19上に設けられる。
 第2電極18は、本実施形態では複数の有機EL素子15に共通の電極として設けられる。すなわち第2電極18は、有機EL層17上のみならず、隔壁12および突起部34上に延在するように設けられ、複数の有機EL素子15にまたがって、連続して形成されている。
 このように本実施形態では第2電極18は、隔壁12および前記突起部34上にまで導電性を有する材料により構成される膜が延在するように形成される。この突起部34上に形成される第2電極18のうちの一部を本明細書では接続電極35という。
 対向基板31は支持基板11と対向して配置される。対向基板31は、前記支持基板11に臨む側の表面部に導電性を有する部材が設けられている。対向基板31は少なくともその表面部に導電性を有する部材が設けられていればよいため、その全てが導電性を有する部材によって構成されていてもよい。本実施形態では対向基板31は、電気的な絶縁性を有する絶縁性基板32と、この絶縁性基板32上に設けられる導電性薄膜33とから構成されている。
 対向基板31は、導電性薄膜33を支持基板11の突起部34上に設けられた接続電極35に対向させて、支持基板11と貼り合わされる。このように対向基板31を配置して貼り合わせることで、前記突起部34上に形成された接続電極35が、対向基板31に当接する。なお本実施形態では導電性薄膜33に接続電極35が当接している。
 <発光装置の製造方法>
 次に発光装置の製造方法について説明する。
 (支持基板を用意する工程)
 本工程では前記突起部34、前記有機EL素子15および前記接続電極35がその上に設けられた支持基板を用意する。
 本実施形態ではアクティブマトリクス型の表示装置を実現するために、複数の有機EL素子15を個別に駆動するための回路が予め形成された基板を支持基板11として使用することができる。たとえばTFT(Thin Film Transistor)およびキャパシタなどが予め形成された基板を支持基板11として使用することができる。
 次に支持基板11上に複数の第1電極16をマトリクス状に形成する。第1電極16は、たとえば支持基板11上の一面に透明導電性薄膜を形成し、これをフォトリソグラフィ法によってマトリクス状にパターニングしたマスクパターンを用いて、不要な部分をエッチングにより除去することによって形成される。またたとえば所定の部位に開口が形成されたマスクを支持基板11上に配置し、このマスクを介して支持基板11上の所定の部位に透明導電性材料を選択的に堆積することにより第1電極16をパターン形成してもよい。第1電極16の材料については後述する。
 次に隔壁12を支持基板11上に形成する。本実施形態ではまず第1隔壁部材13を形成する。第1隔壁部材13は有機物または無機物によって構成される。第1隔壁部材13を構成する有機物としてはアクリル樹脂、フェノール樹脂、およびポリイミド樹脂などの樹脂を挙げることができる。また第1隔壁部材13を構成する無機物としてはSiO、SiNなどを挙げることができる。
 有機物からなる第1隔壁部材13を形成する場合、まずたとえばポジ型またはネガ型の感光性樹脂を一面に塗布し、所定の部位を露光、現像する。さらにこれを硬化することによって、格子状の第1隔壁部材13が形成される。また無機物からなる第1隔壁部材13を形成する場合、無機物からなる薄膜をプラズマCVD法、スパッタ法などによって一面に形成し、次に所定の部位を除去することにより格子状の第1隔壁部材13が形成される。所定の部位の除去はたとえばフォトリソグラフィ法とエッチング法とによって行われる。
 次に格子状の第2隔壁部材14を形成する。第2隔壁部材14はたとえば第1隔壁部材13の材料として例示した材料を用いて、第1隔壁部材13を形成する方法と同様にして格子状に形成することができる。
 次に突起部34を形成する。突起部34は、たとえば第1隔壁部材13の材料として例示した材料を用いて、第1隔壁部材13を形成する方法と同様にして隔壁12上にパターン形成することができる。
 隔壁12は有機EL層17を形成する前に必要に応じて撥液化される。たとえば第2隔壁部材14が有機物から構成される場合、フッ化物を含有する雰囲気中でプラズマ処理を行うことにより、第2隔壁部材14の表面に撥液性を付与することができる。本処理ではフッ化物として、CF、CHF、CH、C、C、Cなどを用いることができる。このように第2隔壁部材14の表面に撥液性を付与することによって、隔壁12に囲まれる領域(開口部19)に供給されるインキを、開口部19内で保持することができる。
 次に有機EL素子15を形成する。なお本実施形態では支持基板11に第1電極16が予め形成されているため、さらに有機EL層17、第2電極18を形成することによって有機EL素子15を作製する。
 有機EL層17はたとえば塗布法によって形成される。まず有機EL層17となる有機EL材料を含むインキを、隔壁12に囲まれる領域(開口部19)に選択的に供給する。
インキを選択的に供給する方法としては、インクジェットプリント法、凸版印刷法、凹版印刷法などの印刷法およびノズルコート法などの塗布法が挙げられる。次に供給されたインキを固化することによって有機EL層17を形成する。
 なお全ての有機EL素子15に共通する層を形成する場合、有機EL材料を含むインキを、隔壁12に囲まれる領域に選択的に供給する必要がないこともある。全ての有機EL素子15に共通する層は、上述の方法と同様に、インキを選択的に供給することによって形成してもよいが、たとえばスピンコート法、キャピラリーコート法、ディップコート法などによって、全面にインキを塗布し、これを固化することによって形成してもよい。
 次に第2電極18を形成する。第2電極18は本実施形態では全面に形成する。すなわち有機EL層17上、隔壁12上および突起部34上に、全面に導電性を有する材料により構成される薄膜を形成する。
これによって全ての有機EL素子15に連続して設けられる第2電極18が形成され、結果として接続電極35が突起部34上に形成される。第2電極18の材料については後述する。
 次に対向基板31を用意する。本実施形態では絶縁性基板32と、この絶縁性基板32上に設けられる導電性薄膜33とから構成される対向基板31を用意する。
 絶縁性基板32はたとえばガラス基板、石英ガラス基板によって構成される。
 導電性薄膜33はたとえばスパッタリング法、イオンプレーティング法によって絶縁性基板32上に形成される。第2電極18は成膜する際に有機EL素子15に損傷を与えることがあるため、有機EL素子15に与える損傷の少ない方法によって形成することが好ましく、成膜方法が限定されることがある。他方、導電性薄膜33を形成する方法は特に限定されないため、導電性薄膜33は、第2電極18よりも成膜速度の速い方法によって形成することが好ましく、たとえばスパッタリング法によって形成することが好ましい。
 導電性薄膜33はたとえば電気抵抗の低い材料によって構成することが好ましく、Ag、Al、Au、Cr、Cu、In、Mg、Mo、Pt、Sn、Ta、W、およびZnからなる群から選ばれる1種以上の金属の薄膜によって構成されることが好ましい。
 対向基板31はたとえば所定の接着部材によって支持基板11に貼り合わされる。たとえばまず対向基板31の周縁部に接着部材を配置し、次に支持基板11に対向基板31を貼り合わせる。その後、接着部材を硬化することによって、対向基板31と支持基板11とを接着することができる。対向基板31を支持基板11に貼り合わせる工程はたとえば不活性ガス雰囲気、または真空雰囲気において行うことが好ましい。接着部材にはたとえば熱硬化性樹脂、光硬化性樹脂、フリットガラスが用いられる。
 以上説明したように本実施形態の発光装置には、接続電極35を介して第2電極18に電気的に接続される導電性薄膜33が対向基板31に設けられる。電力供給源から供給される電流は、第2電極18だけでなく、導電性薄膜33も通って流れるため、この導電性薄膜33を設けることによって、電力供給源から各有機EL素子15に電力を供給する際に生じる電圧降下を小さくすることができる。これによって支持基板上の第2電極18の厚みを大きくすることなく、電圧降下の抑制された発光装置を実現することができる。
 また上述したように導電性薄膜33の成膜方法には制限がないため、成膜速度の速い方法で導電性薄膜33を形成することができ、発光装置の製造に要する時間を短くすることができる。
 また導電性薄膜33を設けることによって、第2電極18の厚みを抑えることができるため、第2電極18を形成する際に有機EL素子15に与えられるダメージを抑制することができる。
 なお突起部34を対向基板31に形成することも考えられる。しかしながらこの場合、対向基板31と支持基板11とを貼り合わせる際に、両者の位置合わせを高精度に行う必要がある。本実施形態のように突起部34を支持基板11に形成することによって、位置合わせを高精度に行うことなく貼り合わせを行うことができる。結果として、発光装置の製造工程を簡易化することができる。
 また突起部34はスペーサとしても機能するため、対向基板31にかかる応力を分散し、対向基板31が撓むことを防ぐことができる。このように突起部34をスペーサとしても用いることによって、スペーサを別に形成する必要がなくなる。結果として、発光装置の製造工程を簡略化することができる。
 上述の実施形態の発光装置では、対向基板31は、電気的に絶縁性である絶縁性基板32と、この絶縁性基板32上に設けられる導電性薄膜33とから構成されている。対向基板31は導電性部材から構成されていてもよい。たとえば対向基板31はAg、Al、Au、Cr、Cu、In、Mg、Mo、Pt、Sn、Ta、W、およびZnからなる群から選ばれる1種以上の金属の薄板によって構成されていてもよい。
 前述の実施形態の発光装置では突起部34が隔壁12とは別に設けられている。しかしながら、たとえば突起部34と隔壁12との両方の機能を発揮する突起部34を設けてもよい。図5は突起部と隔壁との両方の機能を発揮する突起部を備える発光装置を模式的に示す平面図である。
 図5に示されるように、突起部34と隔壁12との両方の機能を発揮する突起部34を設ける場合、隔壁12と別に突起部34を形成する必要がなくなる。よって発光装置の製造工程を簡略化することができる。
 また本実施形態における隔壁12は第1隔壁部材13と第2隔壁部材14とが、隔壁部材13が支持基板11寄りとなるようにこの順で積層されて構成されている。しかしながら、隔壁12は、単層構造のものであってもよい。
 また本実施形態における隔壁12は、第1隔壁部材13と第2隔壁部材14とがともに格子形状を有するとしたが、隔壁12の形状は格子形状に限られない。たとえば格子形状の第1隔壁部材13上に、ストライプ状の第2隔壁部材14を設けてもよく、また第1隔壁部材13と第2隔壁部材14とをともにストライプ形状に形成してもよい。
 <有機EL素子の構成>
 前述したように有機EL素子15は種々の層構成をとりうる。以下では有機EL素子の層構造、各層の構成、および各層の形成方法についてさらに詳しく説明する。
 前述したように有機EL素子15は、陽極および陰極からなる一対の電極と、一対の電極間に設けられる1層以上の有機EL層17とを含んで構成され、1層以上の有機EL層17として少なくとも1層の発光層を有する。なお有機EL素子15は、無機物と有機物とを含む層、および無機層などを含んでいてもよい。有機層を構成する有機物としては、低分子化合物でも高分子化合物でもよく、また低分子化合物と高分子化合物との混合物でもよい。有機層は、高分子化合物を含むことが好ましく、ポリスチレン換算の数平均分子量が10~10である高分子化合物を含むことが好ましい。
 陰極と発光層との間に設けられる有機EL層17としては、電子注入層、電子輸送層、正孔ブロック層などを挙げることができる。陰極と発光層との間に電子注入層と電子輸送層との両方の層が設けられる場合、陰極に近い層を電子注入層といい、発光層に近い層を電子輸送層という。陽極と発光層との間に設けられる有機EL層17としては、正孔注入層、正孔輸送層、電子ブロック層などを挙げることができる。正孔注入層と正孔輸送層との両方の層が設けられる場合、陽極に近い層を正孔注入層といい、発光層に近い層を正孔輸送層という。
 本実施の形態の有機EL素子15のとりうる層構成の一例を以下に示す。
a)陽極/発光層/陰極
b)陽極/正孔注入層/発光層/陰極
c)陽極/正孔注入層/発光層/電子注入層/陰極
d)陽極/正孔注入層/発光層/電子輸送層/陰極
e)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
f)陽極/正孔輸送層/発光層/陰極
g)陽極/正孔輸送層/発光層/電子注入層/陰極
h)陽極/正孔輸送層/発光層/電子輸送層/陰極
i)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
j)陽極/正孔注入層/正孔輸送層/発光層/陰極
k)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
l)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
m)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
n)陽極/発光層/電子注入層/陰極
o)陽極/発光層/電子輸送層/陰極
p)陽極/発光層/電子輸送層/電子注入層/陰極
 ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。
以下同じ。
 本実施の形態の有機EL素子は2層以上の発光層を有していてもよい。上記a)~p)の層構成のうちのいずれか1つにおいて、陽極と陰極とに挟持された積層体を「構造単位A」とすると、2層の発光層を有する有機EL素子の構成として、下記q)に示す層構成を挙げることができる。なお2つある(構造単位A)の層構成は互いに同じでも、異なっていてもよい。
q)陽極/(構造単位A)/電荷発生層/(構造単位A)/陰極
 また「(構造単位A)/電荷発生層」を「構造単位B」とすると、3層以上の発光層を有する有機EL素子の構成として、下記r)に示す層構成を挙げることができる。
r)陽極/(構造単位B)x/(構造単位A)/陰極
 なお記号「x」は、2以上の整数を表し、(構造単位B)xは、構造単位Bがx段積層された積層体を表す。また複数ある(構造単位B)の層構成は同じでも、異なっていてもよい。
 ここで、電荷発生層とは電界を印加することにより正孔と電子を発生する層である。電荷発生層としては、たとえば酸化バナジウム、インジウムスズ酸化物(Indium  Tin  Oxide:略称ITO)、酸化モリブデンなどから成る薄膜を挙げることができる。
 有機EL素子15は、陽極および陰極から構成される一対の電極のうちの陽極を陰極よりも支持基板11寄りに配置して、支持基板11に設けてもよく、また陰極を陽極よりも支持基板11寄りに配置して、支持基板11に設けてもよい。たとえば上記a)~r)において、右側に記載された層から順に各層を支持基板11上に積層して有機EL素子15を構成してもよく、また左側に記載された層から順に各層を支持基板11上に積層して有機EL素子15を構成してもよい。
 積層する層の順序、層数、および各層の厚さについては、発光効率、素子寿命を勘案して適宜設定することができる。
 次に、有機EL素子15を構成する各層の材料および形成方法についてより具体的に説明する。
 <陽極>
 発光層から放たれる光が陽極を通って有機EL素子外に出射する構成の場合、陽極には光透過性を示す電極が用いられる。光透過性を示す電極としては、金属酸化物、金属硫化物および金属などの薄膜を用いることができ、電気伝導度および光透過率の高いものが好適に用いられる。具体的には酸化インジウム、酸化亜鉛、酸化スズ、ITO、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、および銅などから成る薄膜が用いられ、これらの中でもITO、IZO、または酸化スズから成る薄膜が好適に用いられる。
 陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などを挙げることができる。また陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
 陽極の厚みは、求められる特性、成膜工程の簡易さなどを考慮して適宜設定される。陽極の厚みは、たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 <陰極>
 陰極の材料としては、仕事関数が小さく、発光層への電子注入が容易で、電気伝導度の高い材料が好ましい。また陽極側から光を取出す構成の有機EL素子では、発光層から放たれる光を陰極で陽極側に反射するために、陰極の材料としては可視光に対する反射率の高い材料が好ましい。陰極には、たとえばアルカリ金属、アルカリ土類金属、遷移金属および周期表の第13族金属などを用いることができる。陰極の材料の例としては、たとえばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、前記金属のうちの2種以上の合金、前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、またはグラファイト若しくはグラファイト層間化合物などが用いられる。合金の例としては、マグネシウムと銀との合金、マグネシウムとインジウムとの合金、マグネシウムとアルミニウムとの合金、インジウムと銀との合金、リチウムとアルミニウムとの合金、リチウムとマグネシウムとの合金、リチウムとインジウムとの合金、カルシウムとアルミニウムとの合金などを挙げることができる。また陰極としては導電性金属酸化物および導電性有機物などから成る透明導電性電極を用いることができる。具体的には、導電性金属酸化物として酸化インジウム、酸化亜鉛、酸化スズ、ITO、およびIZOを挙げることができ、導電性有機物としてポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などを挙げることができる。なお陰極は、2層以上を積層した積層体で構成されていてもよい。なお電子注入層が陰極として用いられることもある。
 陰極の厚みは、求められる特性、成膜工程の簡易さなどを考慮して適宜設定される。陰極の厚みは、たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 陰極の作製方法としては、真空蒸着法、イオンプレーティング法などを挙げることができる。
 <正孔注入層>
 正孔注入層を構成する正孔注入材料の例としては、酸化バナジウム、酸化モリブデン、酸化ルテニウム、および酸化アルミニウムなどの酸化物、フェニルアミン化合物、スターバースト型アミン化合物、フタロシアニン化合物、アモルファスカーボン、ポリアニリン、およびポリチオフェン誘導体などを挙げることができる。
 正孔注入層の厚みは、求められる特性および成膜工程の簡易さなどを考慮して適宜設定される。正孔注入層の厚みは、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <正孔輸送層>
 正孔輸送層を構成する正孔輸送材料の例としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
 正孔輸送層の膜厚は、求められる特性および成膜工程の簡易さなどを考慮して設定される。正孔輸送層の膜厚は、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <発光層>
 発光層は、通常、主として蛍光及び/又はりん光を発光する有機物、または該有機物とこれを補助するドーパントとから形成される。ドーパントは、たとえば発光効率の向上、発光波長を変化させるために加えられる。なお発光層を構成する有機物は、低分子化合物でも高分子化合物でもよく、塗布法によって発光層を形成する場合には、発光層は高分子化合物を含むことが好ましい。発光層を構成する高分子化合物のポリスチレン換算の数平均分子量はたとえば10~10程度である。発光層を構成する発光材料としては、たとえば以下の色素材料、金属錯体材料、高分子材料、ドーパント材料を挙げることができる。
 (色素材料)
 色素材料としては、たとえば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
 (金属錯体材料)
 金属錯体材料としては、たとえばTb、Eu、Dyなどの希土類金属、またはAl、Zn、Be、Ir、Ptなどを中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体を挙げることができ、たとえばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などを挙げることができる。
 (高分子材料)
 高分子材料の例としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素材料、金属錯体材料を高分子化したものなどを挙げることができる。
 発光層の厚みは、通常約2nm~200nmである。
 <電子輸送層>
 電子輸送層を構成する電子輸送材料としては、公知のものを使用できる。電子輸送材料の例としては、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。
 電子輸送層の厚みは、求められる特性、成膜工程の簡易さなどを考慮して適宜設定される。電子輸送層の厚みは、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <電子注入層>
 電子注入層を構成する材料としては、発光層の種類に応じて最適な材料が適宜選択される。電子注入層を構成する材料の例としては、アルカリ金属、アルカリ土類金属、アルカリ金属およびアルカリ土類金属のうちの1種類以上を含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、アルカリ金属若しくはアルカリ土類金属のハロゲン化物、アルカリ金属若しくはアルカリ土類金属の炭酸塩、またはこれらの物質の混合物などを挙げることができる。アルカリ金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、およびアルカリ金属の炭酸塩の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどを挙げることができる。また、アルカリ土類金属、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、アルカリ土類金属の炭酸塩の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどを挙げることができる。電子注入層は、2層以上を積層した積層体で構成されてもよい。電子注入層は、たとえばLiF膜とCa膜との積層体などを挙げることができる。
 電子注入層の厚みとしては、1nm~1μm程度が好ましい。
 上述の各有機EL層は、上述した塗布法、真空蒸着法、およびラミネート法などによって形成することができる。
 なお塗布法では、各有機EL層となる有機EL材料を含むインキを塗布成膜することによって有機EL層を形成する。使用されるインキの溶媒には、たとえばクロロホルム、塩化メチレン、ジクロロエタンなどの塩素溶媒、テトラヒドロフランなどのエーテル溶媒、トルエン、キシレンなどの芳香族炭化水素溶媒、アセトン、メチルエチルケトンなどのケトン溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル溶媒、および水などが用いられる。
 11  支持基板
 12  隔壁
 13  第1隔壁部材
 14  第2隔壁部材
 15  有機EL素子
 16  第1電極
 17  有機EL層
 18  第2電極
 19  開口部
 31  対向基板
 32  絶縁性基板
 33  導電性薄膜
 34  突起部
 35  接続電極

Claims (7)

  1.  支持基板と、
     第1電極、有機エレクトロルミネッセンス層、および第2電極が、第1電極が前記支持基板寄りとなるようにこの順で前記支持基板上に積層されて構成される複数の有機エレクトロルミネッセンス素子と、
     前記支持基板と対向して配置され、前記支持基板側に設けられた導電性を有する部材を備える対向基板と、
     前記支持基板から前記対向基板に向けて突起する突起部と、
     前記第2電極から前記突起部上にまで延在して、前記導電性を有する部材に当接する接続電極とを備える、発光装置。
  2.  前記支持基板上に設けられ、前記複数の有機エレクトロルミネッセンス素子を区分けする隔壁をさらに有し、前記突起部は前記隔壁上に設けられる、請求項1記載の発光装置。
  3.  前記対向基板が導電性を有する材料から構成されている、請求項1記載の発光装置。
  4.  前記対向基板は、電気絶縁性を示す絶縁性基板と、この絶縁性基板上に設けられる導電性薄膜とから構成されている、請求項1に記載の発光装置。
  5.  前記導電性薄膜はスパッタリング法によって絶縁性基板上に形成されている、請求項4記載の発光装置。
  6.  前記導電性薄膜は、Ag、Al、Au、Cr、Cu、In、Mg、Mo、Pt、Sn、Ta、W、およびZnからなる群から選ばれる1種以上の金属の薄膜によって構成される、請求項4記載の発光装置。
  7.  請求項1に記載の発光装置の製造方法であって、
     前記突起部、前記有機EL素子および前記接続電極が設けられた支持基板を用意する工程と、
     導電性を有する部材が設けられた対向基板を用意する工程と、
     前記接続電極と前記導電性を有する部材とを当接させて前記支持基板と対向基板とを貼り合わせる工程と
    を含む発光装置の製造方法。
PCT/JP2011/058450 2010-04-07 2011-04-01 発光装置およびその製造方法 WO2011125950A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-088396 2010-04-07
JP2010088396 2010-04-07

Publications (1)

Publication Number Publication Date
WO2011125950A1 true WO2011125950A1 (ja) 2011-10-13

Family

ID=44762888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058450 WO2011125950A1 (ja) 2010-04-07 2011-04-01 発光装置およびその製造方法

Country Status (3)

Country Link
JP (1) JP2011233512A (ja)
TW (1) TW201203648A (ja)
WO (1) WO2011125950A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587555B (zh) * 2013-03-29 2017-06-11 Dainippon Printing Co Ltd Component manufacturing method and component manufacturing apparatus
JP6282832B2 (ja) 2013-10-01 2018-02-21 株式会社ジャパンディスプレイ 有機el表示装置
KR102132443B1 (ko) * 2013-10-16 2020-07-10 엘지디스플레이 주식회사 유기전계 발광소자 및 이의 제조 방법
KR102151639B1 (ko) 2013-10-16 2020-09-07 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102356596B1 (ko) * 2013-12-10 2022-02-09 삼성디스플레이 주식회사 유기발광표시장치
CN109558025B (zh) * 2017-09-27 2024-04-02 京东方科技集团股份有限公司 一种触控面板、其制作方法及显示装置
CN109728031B (zh) 2017-10-31 2020-03-24 昆山国显光电有限公司 有机电致发光器件、显示器及移动通信设备
KR102639567B1 (ko) * 2018-05-14 2024-02-23 삼성디스플레이 주식회사 디스플레이 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036391A (ja) * 1998-07-16 2000-02-02 Toray Ind Inc 有機電界発光素子およびその製造方法
JP2002033198A (ja) * 2000-05-08 2002-01-31 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法
JP2004200167A (ja) * 2002-12-13 2004-07-15 Lg Phillips Lcd Co Ltd 有機電界発光素子及びその製造方法
JP2006156403A (ja) * 2004-11-30 2006-06-15 Lg Phillips Lcd Co Ltd 有機電界発光素子及びその製造方法
JP2006164972A (ja) * 2004-12-02 2006-06-22 Lg Electronics Inc 有機elディスプレイ及びその製造方法
JP2008210770A (ja) * 2007-02-26 2008-09-11 Lg Display Co Ltd 有機電界発光表示装置及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036391A (ja) * 1998-07-16 2000-02-02 Toray Ind Inc 有機電界発光素子およびその製造方法
JP2002033198A (ja) * 2000-05-08 2002-01-31 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法
JP2004200167A (ja) * 2002-12-13 2004-07-15 Lg Phillips Lcd Co Ltd 有機電界発光素子及びその製造方法
JP2006156403A (ja) * 2004-11-30 2006-06-15 Lg Phillips Lcd Co Ltd 有機電界発光素子及びその製造方法
JP2006164972A (ja) * 2004-12-02 2006-06-22 Lg Electronics Inc 有機elディスプレイ及びその製造方法
JP2008210770A (ja) * 2007-02-26 2008-09-11 Lg Display Co Ltd 有機電界発光表示装置及びその製造方法

Also Published As

Publication number Publication date
JP2011233512A (ja) 2011-11-17
TW201203648A (en) 2012-01-16

Similar Documents

Publication Publication Date Title
WO2011125950A1 (ja) 発光装置およびその製造方法
WO2011122481A1 (ja) 発光装置用基板の製造方法
JP4849175B2 (ja) 発光装置およびその製造方法
WO2011099391A1 (ja) 発光装置の製造方法
WO2011024753A1 (ja) 有機エレクトロルミネッセンス素子
WO2011122445A1 (ja) 発光装置
WO2011105329A1 (ja) 発光装置の製造方法
WO2011118654A1 (ja) 発光装置の製造方法
JP6102064B2 (ja) 表示装置
JP4893839B2 (ja) 発光装置の製造方法
JP5672789B2 (ja) 発光装置の製造方法
JP5732735B2 (ja) 発光装置
WO2012070586A1 (ja) 発光装置及びその製造方法
JP5796422B2 (ja) 発光装置
JP6155856B2 (ja) 表示装置
WO2012070587A1 (ja) 発光装置およびその製造方法
WO2011065288A1 (ja) 発光装置の製造方法
WO2013035570A1 (ja) 表示装置の製造方法
JP4946841B2 (ja) 装置の製造方法および装置
JP2013098149A (ja) 表示装置に用いられる基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765850

Country of ref document: EP

Kind code of ref document: A1