WO2011122134A1 - 高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品 - Google Patents

高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品 Download PDF

Info

Publication number
WO2011122134A1
WO2011122134A1 PCT/JP2011/053109 JP2011053109W WO2011122134A1 WO 2011122134 A1 WO2011122134 A1 WO 2011122134A1 JP 2011053109 W JP2011053109 W JP 2011053109W WO 2011122134 A1 WO2011122134 A1 WO 2011122134A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
induction hardening
hardness
less
induction
Prior art date
Application number
PCT/JP2011/053109
Other languages
English (en)
French (fr)
Inventor
久保田 学
利治 間曽
慶 宮西
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US13/637,414 priority Critical patent/US9039962B2/en
Priority to KR1020127025509A priority patent/KR101474627B1/ko
Priority to CN201180016607.3A priority patent/CN102859023B/zh
Priority to JP2012508132A priority patent/JP5135558B2/ja
Publication of WO2011122134A1 publication Critical patent/WO2011122134A1/ja
Priority to US14/707,429 priority patent/US9890446B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a steel for induction hardening, a rough shape material for induction hardening, a manufacturing method thereof, and a induction hardening steel component.
  • Power transmission parts for example, gears, bearings, CVT sheaves, shafts, etc.
  • a surface hardening treatment for the purpose of improving the quality.
  • the carburizing treatment is superior to other surface hardening treatments in terms of surface hardness, hardened layer depth, productivity, and the like, and therefore, there are a large number of applied parts.
  • a predetermined shape is usually obtained by hot forging, cold forging, cutting, or a combination thereof using medium carbon alloy steel such as JIS SCM420, SCR420, SNCM220. Is subjected to machining, followed by carburizing or carbonitriding. Fatigue fracture of gears is broadly divided into bending fatigue (tooth root fatigue) and tooth surface fatigue (pitting etc.). In order to increase the strength of gear parts, it is necessary to improve both of these two types of fatigue strength. A gear manufactured by carburizing has a feature that both the bending fatigue strength and the fatigue strength are excellent because the hardness of the hardened layer is extremely high.
  • the carburizing process is a batch process in a gas atmosphere, and requires heating and holding for several hours or more near, for example, 930 ° C., so that a great amount of equipment costs and processing energy and costs are consumed.
  • the carburizing process has a large amount of CO 2 emission, which is problematic in terms of environment.
  • since it is a batch process there is a large room for variation in part accuracy due to heat treatment deformation due to the difference in the parts loading position during carburizing, and it is difficult to manage the part accuracy.
  • great efforts have been made in terms of materials and operation, and a certain improvement effect has been obtained.
  • no drastic solution has yet been found, and it cannot be said that it has reached a sufficient level.
  • induction hardening electromagnettic induction hardening
  • induction hardening is advantageous in terms of productivity and cost reduction because it can significantly reduce processing time and reduce energy required for carburizing. Furthermore less emission of CO 2, and because there is no discharge into the quenching oil environment, it is advantageous in environmental.
  • the induction hardening treatment is limited in the vicinity of the surface because the part affected by the heat treatment is essentially not deformed by the heat treatment. Furthermore, since the processing time is short, continuous processing is easy, and there is an advantage that it is easy to manage variation in part accuracy due to heat treatment deformation.
  • the 300 ° C. tempering hardness of the martensite structure obtained by carburizing and induction hardening increases as the carbon content of the surface layer increases.
  • the tempering hardness at 300 ° C. is affected by the addition of alloy elements, but the effect of carbon content is greater.
  • the effect of improving the tempering hardness at 300 ° C. by adding the alloy element increases as the amount of carbon increases. Therefore, in order to obtain surface fatigue strength equivalent to that of the carburized component, it is necessary to make the carbon amount (near 0.80%) equivalent to the surface layer portion of the carburized component.
  • Patent Documents 1 to 6 describe techniques for producing parts by subjecting medium carbon steel (C: to 0.65%) to induction hardening.
  • C medium carbon steel
  • Patent Documents 7 to 13 describe a technique for obtaining a part having improved tooth surface fatigue strength by subjecting relatively high carbon steel (C: to 0.75%) to induction hardening.
  • relatively high carbon steel C: to 0.75%
  • the tooth surface fatigue strength comparable to the carburized part is not reached.
  • these steels have a marked decrease in workability as the carbon content increases, but due to insufficient improvement technology, the tooth surface fatigue strength and workability are insufficient, eventually replacing carburization. I can't do it.
  • Patent Documents 14 to 17 improve workability and the like by defining appropriate rolling conditions, forging conditions, and cooling conditions for relatively high carbon steel (C: ⁇ 0.75%). The technology intended for is described. However, as described above, since the carbon content is still smaller than that of the carburized component, the tooth surface fatigue strength comparable to that of the carburized component is not reached, and carburization cannot be substituted.
  • Patent Documents 24 to 26 a steel containing a high carbon component comparable to the surface layer portion of a carburized part is subjected to heat treatment as necessary, and then induction hardening is performed to increase tooth surface fatigue strength. Techniques for obtaining improved parts are described. However, carburization cannot be substituted because the improvement technology for workability is insufficient.
  • Patent Document 27 describes a technique intended to improve machinability by precipitating a certain amount of graphite using high carbon steel (C: 0.80 to 1.50%). Has been. Patent Document 27 also shows an example of application to induction-hardened steel parts. However, in such a steel material in which a large amount of graphite is dispersed, the graphite is hardly dissolved in the matrix and the graphite is present. There is a problem that voids are generated in places. For this reason, this method impairs various characteristics as a power transmission component requiring reliability. In order to dissolve graphite and eliminate voids, induction hardening must be performed under special conditions of high temperature and long time.
  • the present invention ensures that the fatigue strength (tooth surface fatigue strength, root fatigue strength, etc.) of steel parts when induction-hardened is equal to or higher than that of carburized material, and ensures the fatigue strength of steel parts.
  • An object of the present invention is to provide a steel for induction hardening, a rough shaped material for induction hardening, a method for producing the same, and a component for induction hardening steel that can achieve both the workability at the time of component molding.
  • induction hardening steel steel that has been cast for the purpose of producing induction-hardened steel parts and that has been subjected to treatments such as soaking diffusion and ingot rolling as necessary is described as induction hardening steel.
  • an intermediate material roughly formed by performing any one or more of processes such as warm forging, hot forging, hot rolling, cooling removal, annealing, etc. is for induction hardening. It is described as a rough shape material (also called a steel material; hereinafter simply referred to as a rough shape material).
  • induction hardening steel parts are manufactured by subjecting this rough shaped material to processing such as cutting and / or cold forging and subjecting to induction hardening and other steps as required.
  • the present inventors have studied to solve the above problems and found the following results.
  • A The controlling factor of the strength of the high carbon steel material having a carbon content exceeding 0.75% is the strength of pearlite. Therefore, when manufacturing rough shapes before cutting and cold forging, the pearlite strength can be lowered and softened by annealing under appropriate conditions, machinability and cold forgeability. Can be improved.
  • B Alternatively, in the case of producing a rough shaped material by hot working, the pearlite strength is lowered and softening can be realized by performing appropriate cooling in the cooling process after hot working.
  • the steel for induction hardening according to one embodiment of the present invention is, in mass%, C: more than 0.75% to 1.20%, Si: 0.002 to 3.00%, Mn: 0.20 to 2.00%, S: 0.002 to 0.100%, Al: more than 0.050% to 3.00%, P: 0.050% or less, N: 0.0200% or less, O: The content is limited to 0.0030% or less, the balance is made of Fe and inevitable impurities, and the content by mass of Al and N satisfies Al- (27/14) ⁇ N> 0.050%.
  • the induction hardening steel described in (1) above may further contain B: 0.0005 to 0.0050% by mass%.
  • the induction-quenched steel according to (1) or (2) is in mass%, Cr: 0.05 to less than 0.30%, Mo: 0.01 to 1.00%, Cu: 0 One or more of 0.05 to 1.00% and Ni: 0.05 to 2.00% may be further contained.
  • the induction-quenched steel according to any one of (1) to (3) above is, in mass%, V: 0.005 to less than 0.20%, Nb: 0.005 to 0.10%, One or more of Ti: 0.005 to 0.10% may be further contained.
  • the induction-quenched steel according to any one of (1) to (4) described above is in mass%, Ca: 0.0005 to 0.0030%, Zr: 0.0005 to 0.0030%, Mg : It may further contain one or more of 0.0005 to 0.0030%.
  • a rough shaped material for induction hardening according to one aspect of the present invention has the composition of the steel for induction hardening according to any one of (1) to (5), and is included in the rough shaped material for induction hardening.
  • the number of graphite particles having an average particle size of 0.5 ⁇ m or more is 40 pieces / mm 2 or less.
  • a method for producing a rough shaped material for induction hardening according to an aspect of the present invention uses a steel for induction hardening according to any one of (1) to (5) above, warm processing or hot processing, The cooling and annealing steps are sequentially performed, and the annealing is performed under the conditions of an annealing temperature of 680 to 800 ° C. and an annealing time of 10 to 360 minutes.
  • an average cooling rate in a temperature range of 750 to 650 ° C. during the cooling may be 300 ° C./hour or less.
  • the method of manufacturing a rough shaped material for induction hardening includes the steps of hot working and cooling using the induction hardening steel according to any one of (1) to (5) above.
  • the average cooling rate in the temperature range of 750 to 650 ° C. during the cooling is 300 ° C./hour or less.
  • An induction-hardened steel part according to an aspect of the present invention is manufactured using the steel for induction hardening according to any one of (1) to (5) above, and is 50 ⁇ m deep from the outermost surface of the induction-hardened steel part.
  • the hardness of the surface hardened portion is HV650 or more
  • the hardness of the non-inductively hardened portion is HV180 or more
  • the number of graphite grains having an average particle size of 0.5 ⁇ m or more present in the non-inductively hardened portion is 40 pieces / mm 2 or less.
  • the fatigue strength (tooth surface fatigue strength, tooth root fatigue) of the steel component subjected to induction hardening treatment Strength, etc.) is equal to or better than carburized material, and at the same time, the workability when molding parts is high. For this reason, it becomes possible to substitute the carburizing process by a high frequency process. Thereby, the surface hardening process can be continued, the burden on the environment can be reduced, and the component accuracy can be improved. For this reason, it is possible to greatly contribute to cost reduction, environmental load reduction, and performance enhancement of automobiles and the like through improvement of production methods of power transmission parts such as automobiles (for example, gears, bearings, shafts, CVT sheaves, etc.).
  • the present inventors diligently studied various factors affecting the dispersion form of the carbide in the carburized layer in the high carbon carburizing process, and as a result of considering a method for realizing fatigue strength comparable to the carburized steel by induction hardening steel, the following knowledge was obtained.
  • Got. (A) The tempering hardness at 300 ° C. increases as the carbon content of the rough material subjected to induction hardening increases, and when C exceeds 0.75%, a tempering hardness of 300 ° C. comparable to carburized parts is obtained. It is done. As a result, the tooth surface fatigue strength comparable to that of the carburized component can be secured even in the induction-hardened component.
  • the rough shape material can be further softened, and the workability can be further improved or the annealing time can be shortened.
  • the amount of Al added is significantly increased compared to conventional steel, and at the same time, the amount of N is suppressed and the amount of solute Al is secured, so that the tool life during cutting is greatly increased. Machinability can be improved.
  • the carbon content of steel is increased, the hardness of the rough shape is increased and cutting cannot be performed.
  • the present invention by securing a sufficient amount of solute Al, cutting can be performed even when the hardness of the rough shaped material is increased, and the carbon content of the steel can be increased.
  • (G) Cr concentrates in the ⁇ carbide (cementite) to stabilize the ⁇ carbide, thereby inhibiting the carbide from dissolving into austenite during induction hardening, and causes hardness unevenness in the hardened layer. For this reason, when adding Cr, the addition amount is restrict
  • content% of a component means the mass%.
  • C Over 0.75% to 1.20% C is added to secure the surface hardness after induction hardening and the hardness of the core of the component.
  • the surface carbon content of the carburized component is about 0.80%.
  • tooth surface fatigue strength 300 ° C. tempering hardness
  • C is added in excess of 1.20%, the workability when processing such as cutting and forging of parts through the increase in the hardness of the rough profile is significantly deteriorated. Therefore, it is necessary to set the content in the range of more than 0.75% to 1.20%.
  • a preferred range for the amount of C is 0.76 to 0.90%.
  • Si 0.002 to 3.00%
  • Si When Si is added to high-carbon steel, it suppresses the transition from ⁇ carbide that precipitates during tempering to relatively coarse ⁇ carbide, and remarkably increases the temper softening resistance of low-temperature tempered martensitic steel. This improves the tooth surface fatigue strength of the steel.
  • it is necessary to add 0.002% or more of Si to the induction hardening steel of the present invention. This effect increases as the amount of Si added increases, but if added over 3.00%, the workability when machining parts such as cutting and forging through a rise in the hardness of the rough profile is significantly deteriorated. .
  • the Si amount needs to be in the range of 0.002 to 3.00%.
  • a preferable range of the amount of Si is 0.20 to 1.50%.
  • the amount of Si may be less than 0.50%.
  • Mn 0.20 to 2.00% Since Mn has the effect of enhancing the hardenability of steel, it is effective for obtaining a martensite structure during carburizing and quenching. In order to obtain this effect, it is necessary to add 0.20% or more of Mn to the induction hardening steel of the present invention. On the other hand, when it exceeds 2.00%, the workability at the time of processing such as cutting and forging of parts through the increase in the hardness of the rough profile is remarkably deteriorated. Therefore, the amount of Mn needs to be in the range of 0.20 to 2.00%. A preferable range of the amount of Mn is 0.30 to 1.00%.
  • S 0.002 to 0.100% S combines with Mn to form MnS, and has an effect of improving machinability as the addition amount increases. In order to obtain this effect, it is necessary to add 0.002% or more of S to the steel for induction hardening of the present invention. On the other hand, if added over 0.100%, MnS becomes a propagation path of fatigue cracks, so that the bending fatigue strength of products such as gears is lowered. Therefore, the S amount needs to be in the range of 0.002 to 0.100%. A preferable range of the amount of S is 0.010 to 0.050%.
  • Al more than 0.050% to 3.00%
  • Al has the effect of significantly improving the tool life in the cutting of the rough profile. This is because the solute Al of the rough profile reacts with oxygen during cutting to form a hard Al 2 O 3 coating, which suppresses tool wear.
  • the Al 2 O 3 coating that protects the tool is formed by the solid solution Al of oxygen in the atmosphere, oxygen in the cutting oil, or oxygen in the homo-treated film (Fe 3 O 4 ) on the tool surface. Formed in reaction.
  • Homo-treated film is also called steam treatment, and is an iron oxide film with a thickness of several ⁇ m produced by heat treatment in steam to give corrosion resistance to the tool (Reference: Japan Heat Treatment Technology Association) Edited by: “Handbook of Heat Treatment Technology”, Nikkan Kogyo Shimbun, Tokyo, 2000, P569).
  • the presence of this coating that protects the tool prevents direct contact between the workpiece (rough profile) and the tool, and suppresses the adhesive wear of the tool.
  • the tool wear increases remarkably as the hardness of the rough profile increases, so it is practically impossible to increase the carbon content of the rough profile.
  • the present invention by adding a large amount of Al, the amount of increase in tool wear with respect to the increase in hardness of the rough shape material is suppressed, so even if the carbon content of induction hardening steel is increased compared to the prior art, Industrial production becomes possible.
  • Al has the same effect as Si on the tempering behavior of low-temperature tempered martensitic steel, and is effective in improving the tooth surface fatigue strength by significantly increasing the temper softening resistance. In order to obtain this effect, it is necessary to add more than 0.050% of Al to the induction hardening steel of the present invention.
  • Al stabilizes ferrite, so if added over 3.00%, ferrite remains during induction hardening and a uniform austenite phase cannot be obtained. As a result, a uniform martensite structure cannot be obtained after quenching. Therefore, the Al amount needs to be in the range of more than 0.050% to 3.00%. A preferable range of the Al content is 0.100 to 1.00%.
  • P 0.050% or less
  • P is an unavoidable impurity, and segregates at austenite grain boundaries to cause embrittlement of the prior austenite grain boundaries. For this reason, in this invention, it is necessary to make P amount of the steel for induction hardening into the range of 0.050% or less. Although there is no particular lower limit of the amount of P regarding the subject of the present invention, excessive cost is required to limit the amount of P to 0.001% or less. Therefore, a preferable range of the P content is 0.001 to 0.015%.
  • N 0.0200% or less N combines with Al in steel to form AlN, and AlN functions to suppress grain growth by pinning austenite grain boundaries and prevent coarsening of the structure. .
  • N may be added positively if it is desired to make the crystal grains finer.
  • the ductility at a high temperature range of 1000 ° C. or higher is lowered, which causes a decrease in yield during continuous casting and rolling. For this reason, in this invention, it is necessary to restrict
  • a preferable range of the N amount is 0.0050 to 0.0120%.
  • O 0.0030% or less
  • O forms oxide inclusions, and when the content is large, large inclusions that become the starting point of fatigue fracture increase, which causes deterioration of fatigue characteristics. It is desirable. For this reason, in this invention, it is necessary to restrict
  • B is an optional component that can be added to the induction hardening steel of the present invention as required.
  • B is an effective element for obtaining a martensitic structure at the time of carburizing and quenching because it has the effect of greatly increasing the hardenability of the steel in a small amount in a state in which it is dissolved in austenite.
  • 0.0005% or more of B may be added to the induction hardening steel in the present invention.
  • the effect is saturated even if added over 0.0050%. Therefore, when B is added, the B content is in the range of 0.0005 to 0.0050%.
  • a preferable range of the B amount is 0.0010 to 0.0025%.
  • Cr 0.05% to less than 0.30%
  • Cr is an optional component that can be added to the induction hardening steel of the present invention as required.
  • Cr has the effect of remarkably miniaturizing the lamella spacing during the pearlite transformation, so that the hardness of the coarse shaped material is greatly increased and the workability is deteriorated. Further, by concentrating and stabilizing in the ⁇ carbide, the penetration of the carbide into the austenite at the time of induction hardening is hindered, resulting in uneven hardness of the hardened layer. Therefore, when adding Cr, the Cr addition amount is limited to less than 0.30%.
  • the ⁇ carbide may be graphitized and the induction hardenability may be reduced.
  • a small amount of Cr may be added to the induction hardening steel.
  • the lower limit of the amount of Cr necessary for preventing graphitization is 0.05%. Therefore, when adding Cr, the Cr addition amount is set to a range of 0.05% to less than 0.30%. A preferable range of the Cr content is 0.10 to 0.20%.
  • Mo 0.01 to 1.00%
  • Mo is an optional component that can be added to the induction hardening steel of the present invention as necessary. Since Mo has an effect of improving the hardenability of steel, it is an effective element for obtaining a martensite structure during carburizing and quenching. In order to acquire this effect, you may add 0.01% or more of Mo. On the other hand, if added over 1.00%, the addition cost becomes excessive, and the workability when machining parts such as cutting and forging through the increase in the hardness of the rough shape material is significantly deteriorated. Not desirable for production. Therefore, when Mo is added, the amount of Mo is set in the range of 0.01 to 1.00%. A preferable range of the Mo amount is 0.10 to 0.60%.
  • Mo is an element that exhibits a relatively large hardenability improving effect even when added in a small amount.
  • B is added in a composite manner, a large composite addition effect can be obtained with respect to the effect of improving the hardenability even with a small amount.
  • Cu 0.05 to 1.00%
  • Cu is an optional component that can be added to the induction hardening steel of the present invention as required. Since Cu has the effect of enhancing the hardenability of the steel, it is effective for obtaining a martensite structure during carburizing and quenching. In order to obtain this effect, 0.05% or more of Cu may be added. However, if it is added in excess of 1.00%, the ductility at a high temperature range of 1000 ° C. or higher is lowered, which causes a decrease in yield during continuous casting and rolling. Therefore, when Cu is added, the addition amount is made 0.05 to 1.00%. A preferable range of the amount of added Cu is 0.010 to 0.50%. In addition, in order to improve the ductility of a high temperature range, when adding Cu, it is desirable to add Ni more than 1/2 of Cu addition amount simultaneously.
  • Ni is an optional component that can be added to the induction hardening steel of the present invention as required.
  • Ni is an effective element for obtaining a martensite structure at the time of carburizing and quenching because it has the effect of enhancing the hardenability of the steel. In order to obtain this effect, 0.05% or more of Ni may be added.
  • the addition amount is set in the range of 0.05 to 2.00%.
  • a preferable range of the Ni content is 0.40 to 1.60%.
  • V 0.005 to less than 0.20%
  • V is an optional component that can be added to the steel for induction hardening according to the present invention as necessary.
  • V combines with N and C in steel to form V (C, N), and V (C, N) coarsens the structure by suppressing grain growth by pinning the austenite grain boundaries. There is a function to prevent. In order to obtain this effect, 0.005% or more of V may be added.
  • V (C, N) generated becomes excessive, causing unevenness in the hardness of the cured layer during induction hardening. Therefore, when V is added, the amount added is in the range of 0.005 to less than 0.20%.
  • a preferable range of the V amount is 0.05 to 0.10%.
  • Nb 0.005 to 0.10%
  • Nb is an optional component that can be added to the induction hardening steel of the present invention as necessary.
  • Nb combines with N and C in steel to form Nb (C, N), and Nb (C, N) suppresses grain growth by pinning austenite grain boundaries, thereby coarsening the structure There is a function to prevent.
  • Nb may be added in an amount of 0.005% or more.
  • the workability when processing such as cutting and forging of parts through the increase in the hardness of the rough profile is significantly deteriorated.
  • the amount of Nb (C, N) generated becomes excessive, which causes uneven hardness of the hardened layer during induction hardening. Therefore, when Nb is added, the amount added is in the range of 0.005 to 0.10%.
  • a preferable range of the Nb amount is 0.010 to 0.050%.
  • Ti is an optional component that can be added to the induction hardening steel of the present invention as necessary. Ti combines with N and C in steel to form Ti (C, N), and Ti (C, N) suppresses grain growth by pinning austenite grain boundaries, thereby coarsening the structure There is a function to prevent. In order to obtain this effect, 0.005% or more of Ti may be added. On the other hand, if added over 0.10%, the workability when processing such as cutting and forging of parts through the increase in the hardness of the rough profile is significantly deteriorated. In addition, the amount of Ti (C, N) generated becomes excessive, causing unevenness in the hardness of the hardened layer during induction hardening. Therefore, when adding Ti, the addition amount is set in the range of 0.005 to 0.50%. A preferable range of the Ti content is 0.015 to 0.050%.
  • Ca, Zr, Mg are optional components that can be added to the induction hardening steel of the present invention as necessary.
  • Ca, Zr, and Mg all have a function of improving the machinability of steel through the form control of MnS and the formation of a protective film on the cutting tool surface during cutting. In order to obtain this effect, 0.0005% or more of Ca, Zr, or Mg may be added.
  • the amount added is in the range of 0.0005 to 0.0030%.
  • a preferable range of the total addition amount of Ca, Zr and Mg is 0.0008 to 0.0020%.
  • Pb, Te, Zn, Sn and the like can be added within a range not impairing the effects of the present invention.
  • Pb, Te, Zn, and Sn are optional components that can be added to the induction hardening steel of the present invention as necessary.
  • the upper limit of the addition amount of these additive components is Pb: 0.50% or less, Te: 0.0030% or less, Zn: 0.50% or less, Sn: 0 .. 50% or less.
  • Al when Al is in a solid solution state in steel, it has an effect of remarkably improving the tool life in cutting of steel parts, so it is added in the range of more than 0.050% to 3.00%.
  • Al combines with N in the steel to form AlN, and may take the form of precipitates.
  • Al present as a precipitate is not effective in improving the tool life.
  • AlN is likely to precipitate as compared with a process of allowing to cool after hot forging.
  • Al ⁇ (27/14) ⁇ N which is an index formula for the amount of solid solution Al
  • the theoretical upper limit of “Al- (27/14) ⁇ N” for the induction hardening steel of the present invention is 3.00%, and the preferred range is 0.100 to 1.00%.
  • the rough shaped material for induction hardening achieves both sufficient tooth surface fatigue strength and workability by adjusting the steel components and annealing conditions. Moreover, generation
  • the number of graphite grains having an average grain size of 0.5 ⁇ m or more is set to 0 / mm 2 if annealing is performed under appropriate conditions.
  • annealing is performed under appropriate conditions.
  • CE C + Si / 3-Mn / 12 + Al / 6 + Cu / 9 + Ni / 9-Cr / 9-Mo / 9 + B (1)
  • C, Si, Mn, Al, Cu, Ni, Cr, Mo, and B indicate mass% of each element included in the steel for induction hardening.
  • the steps of warm working or hot working, cooling, and annealing are sequentially performed on the induction hardening steel having the above composition.
  • the annealing temperature is 680 to 800 ° C. and the heating time is 10 to 360 minutes. The reason for using these conditions will be described below.
  • Examples of warm working include warm forging, and examples of hot working include hot forging or hot rolling.
  • warm working include warm forging
  • hot working include hot forging or hot rolling.
  • the structure of the rough shaped material mainly becomes a ferrite or pearlite structure (95% or more).
  • the hardness of the rough shape is greatly affected by the amount of soft ferrite and the hardness of the ferrite itself.
  • countermeasures for softening such a rough shape material there are a method of increasing the ferrite fraction by combining processing and heat treatment, a method of suppressing the addition amount of elements that solidify and strengthen ferrite.
  • the induction hardening steel of the present invention has a carbon content exceeding 0.75%. For this reason, even if this steel is used to produce a rough profile by either warm forging, hot forging, or hot rolling, the coarse profile is mostly pearlite with a very small amount of ferrite. Including or substantially all (95% or more) becomes a pearlite structure. Therefore, the strength of the pearlite structure has a dominant influence on the strength of such a rough shape. The intensity of the pearlite structure is related to the lamella spacing of the pearlite.
  • the higher the heating temperature the more fine pearlite lamella is broken and the coarser dispersion of the ⁇ carbide.
  • the annealing temperature needs to be in the range of 680 to 800 ° C.
  • the preferred annealing temperature range is 700-770 ° C. If the annealing heating time is too short, the shape of the pearlite lamella hardly changes and a sufficient softening effect cannot be obtained.
  • the heating time for annealing needs to be in the range of 10 to 360 minutes.
  • a preferable range of the heating time for annealing is 30 to 300 minutes.
  • a preferable range of the average cooling rate in the temperature range of 750 to 650 ° C. is 300 ° C./hour or less.
  • the steps of hot working and cooling are sequentially performed on the induction hardening steel having the above composition.
  • the average cooling rate in the temperature range of 750 to 650 ° C. is set to 300 ° C./hour or less.
  • annealing is not necessarily performed. The reason for using this cooling condition will be described below.
  • the influence of the strength of the pearlite structure is dominant in the hardness of the coarse shaped material, and annealing is extremely effective for its softening.
  • by performing such slow cooling after the pearlite transformation is completed, it stays in the high temperature region, so that the same effect as annealing can be obtained.
  • the temperature range for performing slow cooling exceeds 750 ° C.
  • the temperature range where pearlite transformation cannot occur is gradually cooled, so that the effect of softening cannot be obtained.
  • the temperature range for slow cooling is less than 650 ° C.
  • the pearlite transformation starts at a low temperature. For this reason, the increase in the pearlite lamella spacing becomes insufficient and the softening becomes insufficient, and the annealing effect after pearlite transformation by slow cooling is also reduced. Therefore, it is necessary to set the temperature range for slow cooling to a range of 750 to 650 ° C.
  • a preferable range of the temperature range at which the slow cooling is performed is a range of 740 to 680 ° C.
  • the average cooling rate in the temperature range where the slow cooling is performed is 300 ° C./hour or less.
  • a preferable range of the average cooling rate in the temperature range in which the slow cooling is performed is 200 ° C./hour or less.
  • the cooling rate limited above is an average cooling rate between 750 ° C. and 650 ° C., and it is not always necessary to perform continuous cooling. If the above conditions are satisfied, the cooling rate is kept constant during the cooling process. There may be a holding period.
  • the lower limit of the average cooling rate is preferably 80 ° C./hour or more.
  • annealing after cooling may not be performed, but annealing may be performed in combination with annealing under the above-described conditions. In this case, a greater softening effect can be obtained than when annealing and annealing are performed alone.
  • the induction-hardened steel component according to one aspect of the present invention is subjected to cutting and / or cold working and induction hardening on a rough shaped material for induction hardening manufactured by any one of the above-described manufacturing methods. And then subjected to a low-temperature tempering treatment.
  • This steel part is manufactured such that the hardness of the surface layer hardened portion having a depth of 50 ⁇ m from the outermost surface is HV650 or higher, and the hardness of the non-high frequency quenched portion is HV180 or higher.
  • Examples of the steel parts of the present invention include power transmission parts (for example, gears, bearings, CVT sheaves, shafts) used in automobiles, construction machinery / agricultural machinery, wind turbines for power generation, and other industrial machines. .
  • the induction hardening process corresponds to this surface hardening process.
  • a hardness having a depth of 50 ⁇ m from the outermost surface was selected. If the hardness of this part is HV650 or more, it can be determined that the hardness is comparable to that of a normal carburized part. In this case, fatigue characteristics and wear resistance comparable to the carburized part can be obtained.
  • the suitable upper limit of the hardness of the induction-hardened part of the part obtained by the steel composition and manufacturing method according to the present invention is about HV950.
  • part is HV700 or more.
  • induction hardening electromagnetic induction hardening
  • a ring-shaped coil is used to perform quenching by electromagnetic induction under conditions of a frequency of 10 to 500 kHz and a processing time of 0.1 to 20 seconds, and then quenching by water cooling, Conditions for setting the curing depth to 0.2 to 2.5 mm can be used.
  • the part to be processed may be rotated at 100 to 2000 rpm in order to homogenize the hardened layer depth and quench the contour of the gear.
  • preheating may be performed in advance in the temperature range below the A1 point by low-frequency electromagnetic induction.
  • Hardening by induction hardening can affect the depth of 0.1 to 3 mm from the surface of induction-hardened steel parts depending on processing conditions. Does not happen. Such a non-hardened part is set as a non-induction hardening part. Therefore, the hardness of the non-induction hardened portion is substantially equal to the hardness of the rough shaped material before induction hardening. Since the hardness of the non-induction hardened portion is related to the fatigue strength of the internal origin and the low cycle fatigue strength of the gear, it is not desirable that the hardness is too low.
  • the internal hardness may be somewhat lower than that of a normal carburized part.
  • the hardness of the non-high frequency quenched portion needs to be HV180 or more, and the preferred range is HV200 or more.
  • the preferred upper limit of the hardness of the non-high frequency quenching part of the steel part according to the present invention is HV240.
  • the shot peening treatment may be performed on the induction hardened steel part according to the above aspect of the present invention after the induction hardening treatment or after the induction hardening and the low temperature tempering (300 ° C. or less).
  • the increase in compressive residual stress on the part surface layer introduced by shot peening treatment suppresses the occurrence and development of fatigue cracks, and therefore further improves the tooth root and tooth surface fatigue strength of parts manufactured with the steel of the present invention.
  • the shot peening treatment is desirably performed using shot grains having a diameter of 0.7 mm or less and an arc height of 0.4 mm or more.
  • a converter molten steel having the composition shown in Table 1 was manufactured by continuous casting, and if necessary, a rolling raw material of 162 mm square was obtained through a soaking diffusion treatment and a block rolling process. Next, steel for induction hardening in the form of a steel bar having a diameter of 45 mm was obtained by hot rolling.
  • the shaded and underlined portions of the comparative steels in Table 1 indicate that they are outside the scope of the present invention.
  • hot working or warm working simulation was performed on hot rolled steel (steel for induction hardening) under the conditions shown in Table 2.
  • the heating temperature in the hot working simulation was 1250 ° C.
  • the heating temperature in the warm working simulation was 750 ° C.
  • annealing treatment was performed under the conditions shown in Table 2 as necessary. From the sample of the rough material thus prepared, a 45 ⁇ ⁇ 15 mm disk-shaped test piece for machinability evaluation and a roller pitching test piece having a large diameter portion (test portion) 26 ⁇ were prepared.
  • Vickers hardness at a position of 1/4 part of the diameter in the cross section in the diameter direction was measured for each disk test piece at each test level. It was judged that the hardness of the rough shape material was over HV240, which was inferior in workability (cold forgeability, machinability).
  • “Cooling rate after hot working or warm working” in Table 2 indicates an average cooling rate in a temperature range of 750 to 650 ° C.
  • the underline of the cooling rate after thermal forging, the end temperature of annealing after thermal forging, the annealing conditions, the hardness of the hardened layer, and the hardness of the non-high frequency quenched portion is outside the scope of the present invention.
  • Hardness of rough profile, tool life when cutting and processing rough profile, 300 ° C tempering hardness of hardened layer of induction-hardened steel parts, underline of roller pitting fatigue strength means that the target is not achieved. .
  • the machinability evaluation test (measurement of tool life) was performed on the above disk specimen under the conditions shown in Table 3.
  • the condition of the machinability evaluation test was used as an index of the tool life by obtaining the maximum cutting speed (m / min) at which the total depth of the hole by the drill reached 1000 mm. When this index did not reach 70 m / min, it was determined that the machinability was poor.
  • roller pitching test piece is subjected to induction hardening treatment on the large diameter portion (test portion) under the condition that the hardened layer depth is 2 mm, and subsequently subjected to tempering treatment at 150 ° C. for 90 minutes.
  • the grip was finished.
  • the roller pitching test was conducted under the conditions of a large roller: SCM420 carburized product, crowning 150R, rotation speed: 2000 rpm, lubricating oil: transmission oil, oil temperature 80 ° C, slip rate: 40%, maximum 10 million cycles, SN line
  • a diagram was created to determine the fatigue limit, which was defined as the roller pitting fatigue strength.
  • the roller pitting fatigue strength that did not reach 2600 MPa was determined to be inferior in tooth surface fatigue strength.
  • Each production No. First, one large diameter part of the roller pitching test piece of each test level subjected to the induction hardening and tempering treatment was cut, and a Vickers hardness measurement was performed on a section of 50 ⁇ m from the surface layer in the cross section. The measurement result was taken as the hardness of the hardened hardening layer.
  • tempering is performed for another test piece one by one at 300 ° C. for 90 minutes, the large diameter portion is cut, and the Vickers hardness measurement is performed at 50 ⁇ m from the surface layer in the cross section. The hardness was determined. Those whose 300 ° C. tempering hardness did not reach HV630 were judged to be inferior to 300 ° C. tempering hardness, and thus inferior to tooth surface fatigue strength.
  • Production No. The inventive examples 1 to 25 all achieved the target, had excellent workability, and had sufficient tooth surface fatigue strength.
  • production No. No. 26 was within the scope of the present invention with respect to the steel component, but since neither slow cooling nor annealing after heat forging was performed, the hardness of the rough shape was high and the workability was inferior.
  • Production No. No. 27 has an annealing temperature that is too low. In No. 28, since the annealing temperature was too high, the hardness of the rough shape was high and the workability was poor. Production No. In No. 29, the cooling rate after heat forging was too high, and the annealing temperature was too low, so the hardness of the rough shape was high and the workability was poor. Production No.
  • the hardness of the induction hardening after-hardening layer and the 300 degreeC hardness of the hardening layer were insufficient.
  • the hardness of the rough shape material decreased due to the precipitation of graphite, the hardness of the non-induction-hardened part after induction hardening was inevitably low, and the presence of voids in the hardened layer resulted in roller pitting fatigue. The strength was also low.
  • Induction hardening steel, induction hardening rough shape material, manufacturing method thereof, and induction hardening steel parts according to each aspect of the present invention are used in automobiles, construction machinery / agricultural machinery, power generation wind turbines, other industrial machines, etc. It can be applied to existing power transmission parts (for example, gears, bearings, CVT sheaves, shafts) and the like, and it is possible to realize both the workability at the time of part molding and the fatigue strength of steel parts subjected to induction hardening. For this reason, it becomes possible to substitute the carburizing process by a high frequency process. Thereby, the surface hardening process can be continued, the burden on the environment can be reduced, and the component accuracy can be improved.
  • existing power transmission parts for example, gears, bearings, CVT sheaves, shafts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 この高周波焼入れ用鋼は、質量%で、C:0.75%超~1.20%、Si:0.002~3.00%、Mn:0.20~2.00%、S:0.002~0.100%、Al:0.050%超~3.00%を含有し、P:0.050%以下、N:0.0200%以下、O:0.0030%以下に制限し、残部がFe及び不可避的不純物を含み、鋼中のAlおよびNの質量%の含有量が、Al-(27/14)×N>0.050%を満足する。

Description

高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品
 本発明は、高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品に関する。
 本願は、2010年3月30日に、日本に出願された特願2010-078232号に基づき優先権を主張し、その内容をここに援用する。
 自動車、建機・農機、発電用風車、その他の産業機械等に使用されている動力伝達部品(たとえば、歯車、軸受、CVTシーブ、シャフト等)は、部品の疲労特性の向上、耐磨耗性の向上等の目的から表面硬化処理を施されて使用されることがほとんどである。複数の表面硬化処理が知られている中でも、浸炭処理は表面の硬さ、硬化層の深さ、生産性等の点で他の表面硬化処理よりも優れるため、適用部品が非常に多い。例えば、歯車、軸受部品の製造工程では、通常はJISのSCM420、SCR420、SNCM220等の中炭素合金鋼を用いて熱間鍛造、冷間鍛造、切削、又はこれらの組み合わせによって所定の形状を得るように機械加工を施し、その後浸炭処理や浸炭窒化処理を行う。歯車の疲労破壊は曲げ疲労(歯元疲労)と、歯面疲労(ピッチング等)とに大別される。歯車部品の高強度化を図るためには、この2種の疲労強度を両方とも向上させることが必要である。浸炭処理によって製造される歯車は硬化層の硬さが極めて高いため、曲げ疲労強度、疲労強度ともに優れた性能を有するという特徴がある。
 しかしながら、浸炭処理はガス雰囲気中でのバッチ処理であり、例えば930℃近傍で数時間以上の加熱保持を要するため、多大な設備費及び処理エネルギーとコストが費やされる。また、浸炭処理はCOの排出量が多く、環境面でも問題がある。また、バッチ処理であるので、浸炭処理時における部品の積載位置の差によって熱処理変形による部品精度のばらつきを生じる余地が大きく、部品精度の管理が難しいという欠点がある。この熱処理変形に関する欠点を克服するため、材料面、操業面から多大な努力が払われおり、一定の改善効果が得られてきた。しかし、未だ抜本的な解決方法は見出されておらず、十分なレベルには達しているとは言えない。
 これらの問題を解決するため、浸炭処理の代替を目的とした高周波焼入れ(電磁誘導焼入れ)処理の適用に関する研究がなされてきた。高周波焼入れ処理は浸炭処理に比べて処理時間の大幅な短縮や処理に要するエネルギーを低減できるため、生産性や低コスト化の面で有利である。更にはCOの排出も少なく、また焼入れ油の環境への排出もないため、環境面でも有利である。また、高周波焼入れ処理は浸炭処理と異なり、熱処理の影響を受ける部位が表面付近に限られるため、本質的に熱処理変形が小さい。更に処理時間が短いため連続処理化が容易であり、熱処理変形による部品精度のばらつきの管理が容易になるという長所もある。
 一方、上記のような長所があるにも関わらず、浸炭処理の代替として高周波焼入れ処理が普及していない最大の理由は、部品の歯面疲労強度(ピッチング強度等)の確保と、部品成型時の加工性(被削性、冷鍛性)との両立が極めて困難であるためである。歯車のみならず、CVTシーブ、軸受類は歯面疲労や転動疲労といった面疲労を確保する必要がある。このような部品は、部品の使用中に部品の接触面の表面温度が300℃程度まで上昇するため、300℃での硬さ(又は300℃焼戻し後の硬さ、以下300℃焼戻し硬さという)が面疲労強度と強く相関していることが報告されている。浸炭焼入れ処理や高周波焼入れ処理で得られるマルテンサイト組織の300℃焼戻し硬さは、表層の炭素量が多いほど向上する。300℃焼戻し硬さは合金元素の添加によっても影響を受けるが、炭素量の影響の方が大きい。また合金元素の添加による300℃焼戻し硬さの改善の効果は、炭素量が多いほど大きくなる。従って、浸炭処理部品と同等の面疲労強度を得ようとする場合、浸炭処理された部品の表層部と同等程度の炭素量(0.80%近傍)にする必要がある。しかしながら部品の炭素量の増加は鋼素材硬さの上昇を招くため、部品の加工性(被削性、冷鍛性)が著しく低下し、工業生産には適さない。すなわち、鋼素材の高炭素化と加工性の確保の両立が不可欠である。
 例えば、特許文献1~6には、中炭素鋼(C:~0.65%)に対して高周波焼入れを施すことによって部品を製造する技術が記載されている。しかしながら、炭素量が浸炭処理された部品の表層部よりも大幅に少ないため、加工性はそれほど劣化しないものの、浸炭部品と比べて歯面疲労強度が低下する。このため、この技術で浸炭を代替することはできない。例えば、特許文献7~13には、比較的高炭素の鋼(C:~0.75%)に対して高周波焼入れを施すことによって歯面疲労強度を改善した部品を得る技術が記載されている。しかしながら、依然として炭素量が浸炭処理された部品の表層部よりも少ないため、浸炭部品に匹敵する歯面疲労強度には達しない。また、これらの鋼では炭素量の増加に伴って加工性が顕著に低下するが、これに対する改善技術が不十分であるため、結局歯面疲労強度、加工性ともに不十分であり、浸炭を代替することはできない。
 例えば、特許文献14~17には、比較的高炭素の鋼(C:~0.75%)に対して適切な圧延条件、鍛造条件、冷却条件を規定することにより加工性等を改善することを意図した技術が記載されている。しかしながら、上記と同様、依然として炭素量が浸炭処理部品よりも少ないため、浸炭部品に匹敵する歯面疲労強度には達せず、浸炭を代替することはできない。
 例えば、特許文献18~23に記載された技術では、浸炭処理された部品の表層部に匹敵する高炭素成分を含む鋼に対して必要に応じて熱処理を施し、その後高周波焼入れを施す。これによってマルテンサイト組織中に合金炭化物が分散した組織を持つ硬化層を形成し、これにより高い歯面疲労強度を持つ部品を得る。しかしながらこれらの技術では、合金炭化物を分散させるため、CrやV、Ti、Nb等の合金添加量が多い。従って歯面疲労強度は浸炭部品以上の性能が得られるものの、炭素量の増加と合金添加量の増加が相俟って加工性が顕著に低下する。従って、一部の特殊な部品への適用を除いて、コスト・生産性等の観点から大量生産品への適用・実用化は難しいため、浸炭を代替する実用的な技術とは言えない。
 例えば、特許文献24~26には、浸炭処理された部品の表層部に匹敵する高炭素成分を含む鋼に対して必要に応じて熱処理を施し、その後高周波焼入れを施すことによって歯面疲労強度を改善した部品を得る技術が記載されている。しかしながら加工性に対する改善技術が不十分であるため、やはり浸炭を代替することはできない。
 例えば、特許文献27には、高炭素の鋼(C:0.80~1.50%)を用いて、一定量以上の黒鉛を析出させ、被削性を改善することを意図した技術が記載されている。特許文献27には高周波焼入れ鋼部品への適用例も示されているが、このような黒鉛が多く分散している鋼素材は、黒鉛がマトリックスに固溶し難く、また黒鉛が存在していた場所にボイドが生成するという問題がある。このため、この方法では、信頼性を要する動力伝達部品としての諸特性を損なう。黒鉛の溶け込みやボイドの解消を行う場合は高周波焼入れ条件を高温・長時間の特殊な条件で行わなくてはならない。このため、硬化層深さの制御が不可能、あるいは生産性の阻害という問題を生じる。この場合、上記のような高周波焼入れの有利な特徴を全く享受することができない。従って多くの黒鉛を分散させる技術は、動力伝達部品の高周波焼入れ処理に適用する場合は実用的な技術とは言えない。
特開昭62-112727号 特許第3239432号 特開平9-291337号 特開2000-319725号 特開平11-269601号 特開2000-144307号 特開平7-118791号 特開平11-1749号 特許第3208960号 特許第3503289号 特許第3428282号 特許第3562192号 特許第3823413号 特許第3458604号 特許第3550886号 特許第3644217号 特許第3606024号 特許第3607583号 特開2002-53930号 特開2005-163173号 特許第4390526号 特許第4390576号 特開2009-102733号 特開平8-73929号 特開2004-300551号 特開2008-248282号 特開平11-350066号
 本発明は上記の実状を鑑み、高周波焼入れ処理した時の鋼部品の疲労強度(歯面疲労強度、歯元疲労強度等)が浸炭処理材と同等以上であり、かつ鋼部品の疲労強度の確保と、部品成型時の加工性とを両立することができる高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品を提供することを目的とする。
 以下の記載中、高周波焼入れ鋼部品を製造する目的で鋳造され、必要に応じて均熱拡散、分塊圧延等の処理を施された鋼を高周波焼入れ用鋼と記載する。この高周波焼入れ用鋼に対して、例えば温間鍛造、熱間鍛造、熱間圧延、除冷、焼鈍等の工程のいずれか一つ又は複数を施すことによって粗成型された中間素材を高周波焼入れ用粗形材(鋼素材とも呼ばれる;以下単に粗形材とも記載する)と記載する。更に、この粗形材に切削加工および/または冷間鍛造等の加工を施し、高周波焼入れと必要に応じてその他の工程を施すことによって高周波焼入れ鋼部品が製造される。
 本発明者らは、上記のような課題を解決するため検討を行い、以下の結果を見出した。(a)炭素量が0.75%を超える高炭素鋼素材の強度の支配因子はパーライトの強度である。従って、切削加工や冷間鍛造前の粗形材を製造する際に、適正な条件で焼鈍を行うことによってパーライトの強度が低下して軟質化を図ることができ、被削性及び冷鍛性を向上することができる。(b)あるいは、粗形材を熱間加工によって製造する場合、熱間加工後の冷却過程において適切な冷却を行うことによってパーライトの強度が低下して軟質化が実現できる。(c)また、鋼成分としては、合金元素を過剰に添加せず、なおかつ従来鋼に比べてAl量を大幅に増加することにより、炭素量を増加して切削加工前の粗形材強度が増加しても被削性の低下が抑制できる。
 本発明者らは、上記の技術を適切に活用することによって本発明を完成したものであり、その要旨は下記の通りである。
(1)本発明の一態様に係る高周波焼入れ用鋼は、質量%で、C:0.75%超~1.20%、Si:0.002~3.00%、Mn:0.20~2.00%、S:0.002~0.100%、Al:0.050%超~3.00%を含有し、P:0.050%以下、N:0.0200%以下、O:0.0030%以下に制限し、残部がFe及び不可避的不純物からなり、AlおよびNの質量%の含有量が、Al-(27/14)×N>0.050%を満足する。
(2)上記(1)に記載の高周波焼入れ用鋼は、質量%で、B:0.0005~0.0050%を更に含有してもよい。
(3)上記(1)または(2)に記載の高周波焼入れ用鋼は、質量%で、Cr:0.05~0.30%未満、Mo:0.01~1.00%、Cu:0.05~1.00%、Ni:0.05~2.00%の内の1種または2種以上を更に含有してもよい。
(4)上記(1)から(3)のいずれかに記載の高周波焼入れ用鋼は、質量%で、V:0.005~0.20%未満、Nb:0.005~0.10%、Ti:0.005~0.10%の内の1種または2種以上を更に含有してもよい。
(5)上記(1)から(4)のいずれかに記載の高周波焼入れ用鋼は、質量%で、Ca:0.0005~0.0030%、Zr:0.0005~0.0030%、Mg:0.0005~0.0030%の内の1種または2種以上を更に含有してもよい。
(6)本発明の一態様に係る高周波焼入れ用粗形材は、上記(1)から(5)のいずれかに記載の高周波焼入れ用鋼の組成を持ち、前記高周波焼入れ用粗形材に含まれる平均粒径0.5μm以上の黒鉛粒の個数が40個/mm以下である。
(7)本発明の一態様に係る高周波焼入れ用粗形材の製造方法は、上記(1)から(5)いずれかに記載の高周波焼入れ用鋼を用いて、温間加工または熱間加工、冷却、焼鈍の工程を順次行い、前記焼鈍で焼鈍温度を680~800℃、焼鈍時間を10~360分の条件で行う。
(8)上記(7)に記載の高周波焼入れ鋼部品の製造方法で、前記冷却中の、750~650℃の温度範囲の平均冷却速度が300℃/時以下であってもよい。
(9)本発明の一態様に係る高周波焼入れ用粗形材の製造方法は、上記(1)から(5)いずれかに記載の高周波焼入れ用鋼を用いて、熱間加工、冷却の工程を順次行い、前記冷却中の、750~650℃の温度範囲の平均冷却速度が300℃/時以下である。
(10)本発明の一態様に係る高周波焼入れ鋼部品は、上記(1)から(5)いずれかに記載の高周波焼入れ用鋼を用いて製造され、前記高周波焼入れ鋼部品の最表面から50μm深さの表層硬化部の硬さがHV650以上であり、非高周波焼入れ部の硬さがHV180以上であり、前記非高周波焼入れ部に存在している平均粒径0.5μm以上の黒鉛粒の個数が40個/mm以下である。
 本発明の各態様に係る高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品によれば、高周波焼入れ処理した鋼部品の疲労強度(歯面疲労強度、歯元疲労強度等)が浸炭処理材と同等以上であり、同時に部品成型時の加工性も高い。このため、浸炭処理を高周波処理によって代替することが可能となる。これにより、表面硬化処理を連続化でき、環境への負担を低化でき、部品精度を向上できる。このため、自動車等の動力伝達部品(たとえば、歯車、軸受、シャフト、CVTシーブ等)の生産方法の改良を介して、自動車等の低コスト化、環境負荷低減、高性能化に大きく貢献できる。
 本発明者らは、高炭素浸炭処理における浸炭層の炭化物の分散形態に及ぼす各種因子について鋭意検討し、高周波焼入れ鋼で浸炭鋼に匹敵する疲労強度を実現する方法を考察した結果、以下の知見を得た。
(a) 高周波焼入れ処理を行う粗形材の炭素量を増加するほど300℃焼戻し硬さが上昇し、0.75%を超えてCを添加すると浸炭部品に匹敵する300℃焼戻し硬さが得られる。これによって、高周波焼入れ処理された部品においても浸炭処理部品に匹敵する歯面疲労強度を確保することができる。
(b) 鋼の炭素量が0.75%を超える場合、部品成型加工(切削、冷鍛)前の粗形材の組織はほとんどがパーライト組織となる。このため、粗形材の硬さに対して、パーライト組織の強度(パーライトラメラ間隔に関係する)が支配的な影響を持つ。
(c) 部品成型加工前の粗形材の製造過程で適切な焼鈍を施すことによって、微細なパーライトラメラを崩して軟質化することができ、加工性を改善することができる。
(d) 一方、部品成型加工前の粗形材を熱間加工によって製造する場合、熱間加工後の冷却を適切に行うことによって、パーライトラメラ間隔を大きくし、軟質化することができ、加工性を改善することができる。
(e) 上記(c),(d)の組み合わせにより、粗形材を更に軟質化することができ、さらなる加工性の改善、あるいは焼鈍時間の短縮が可能となる。
(f) 従来鋼よりもAl添加量を大幅に増加し、同時にN量を抑制して、固溶Al量を確保することによって、切削加工時の工具寿命を大幅に増加し、粗形材の被削性を改善することができる。従来の技術では鋼の炭素量を増加すると粗形材の硬さが上昇して切削加工ができなくなっていた。一方、本発明によると、十分な固溶Al量を確保することによって、粗形材の硬さが上昇しても切削加工が可能となり、鋼の炭素量を増加することが可能となる。
(g) Crはθ炭化物(セメンタイト)中に濃化してθ炭化物を安定化することによって、高周波焼入れ時に炭化物のオーステナイトへの溶け込みを阻害し、硬化層の硬さムラの原因となる。このため、Crを添加する場合は、その添加量を制限する。V、Nb、Tiを添加する場合、過剰の添加はCrと同様に硬化層の硬さムラの原因となるのみならず、粗形材硬さも上昇し、加工性が低下するので添加量を制限する。
(h) 高周波焼入れ用鋼から粗形材を製造する際の焼鈍の条件によっては、粗形材内に黒鉛粒が発生する場合がある。上記粗形材に対して切削加工及び/または冷間加工を行う際に、粗形材内に一定以上のサイズの黒鉛粒が一定量以上存在していると、高周波焼入れの短時間加熱では黒鉛粒がオーステナイト中に十分に溶け込まないため、硬化層の硬さムラの原因となる。更に、黒鉛粒がオーステナイトに溶け込んだ場合でも、黒鉛粒の存在していた位置にボイドが残り、部品の特性を低下させる場合がある。これらの理由により、粗形材内の黒鉛の析出量を制限する必要がある。
 以下、本発明について詳細に説明する。まず、本発明の一態様に係る高周波焼入れ用鋼の各成分の限定理由について説明する。なお、成分の含有量%は質量%を意味する。
 C:0.75%超~1.20%
 Cは高周波焼入れ後の表面硬さを確保する作用と、部品の心部の硬さを確保するために添加する。通常、浸炭処理された部品の表面炭素量は0.80%程度である。高周波焼入れ鋼部品において浸炭部品と同等の歯面疲労強度(300℃焼戻し硬さ)を得るためには、高周波焼入れ用鋼の炭素量を従来の場合よりも増加する必要がある。添加量が少ないと浸炭部品に匹敵する歯面疲労強度が得られないので、炭素量は0.75%を超えて添加する必要がある。Cを1.20%を超えて添加すると粗形材の硬さの上昇を通じて部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。従って、0.75%超~1.20%の範囲にする必要がある。C量の好適な範囲は0.76~0.90%である。
 Si:0.002~3.00%
 Siは高炭素鋼に添加された場合、焼戻し時に析出するε炭化物から比較的粗大なθ炭化物への遷移を抑制し、低温焼戻しマルテンサイト鋼の焼戻し軟化抵抗を顕著に増加する。これによって鋼の歯面疲労強度が向上する。この効果を得るために、本発明の高周波焼入れ用鋼には、Siを0.002%以上添加する必要がある。この効果はSiの添加量が多いほど大きいが、3.00%を超えて添加すると粗形材の硬さの上昇を通じて部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。また、Siはフェライトを安定化するため、3.00%を超えて添加すると高周波焼入れ時にフェライトが残留し、均一なオーステナイト相が得られなくなり、この結果として、焼入れ後に均一なマルテンサイト組織が得られなくなる。従って、Si量を0.002~3.00%の範囲にする必要がある。Si量の好適な範囲は0.20~1.50%である。特に黒鉛量を規制する必要がある場合は、Si量を0.50%未満にしてもよい。
 Mn:0.20~2.00%
 Mnは鋼の焼入性を高める効果があるので浸炭焼入れ時にマルテンサイト組織を得るために有効である。この効果を得るために、本発明の高周波焼入れ用鋼にはMnを0.20%以上添加する必要がある。一方、2.00%を超えて添加すると粗形材の硬さの上昇を通じて部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。従って、Mn量を0.20~2.00%の範囲にする必要がある。Mn量の好適な範囲は0.30~1.00%である。
 S:0.002~0.100%
 SはMnと結合してMnSを形成し、添加量を増加するほど被削性を向上させる効果を持つ。この効果を得るために、本発明の高周波焼入れ用鋼にはSを0.002%以上添加する必要がある。一方、0.100%を超えて添加するとMnSが疲労亀裂の伝播経路となることによって歯車等の製品の曲げ疲労強度が低下する。従って、S量を0.002~0.100%の範囲にする必要がある。S量の好適な範囲は0.010~0.050%である。
 Al:0.050%超~3.00%
 Alが粗形材中において固溶状態にある場合、粗形材の切削加工において工具寿命を顕著に改善する効果を持つ。これは、粗形材の固溶Alが切削中に酸素と反応して硬質のAlの被膜を形成し、この被膜が工具の摩耗を抑制するためである。この工具を保護するAlの被膜は、粗形材の固溶Alが大気中の酸素、又は切削油中の酸素、又は工具表面のホモ処理膜(Fe)中の酸素と反応して形成される。ホモ処理膜とは水蒸気処理とも言われ、工具に耐食性などを付与するために、水蒸気中で熱処理を行うことによって生成された、厚さ数μmの鉄酸化膜である(参考:日本熱処理技術協会編著:「熱処理技術便覧」日刊工業新聞社、東京、2000年発行、P569記載)。工具を保護するこの被膜が存在することにより、被切削物(粗形材)と工具との直接接触が妨げられ、工具の凝着摩耗が抑制される。従来技術においては、粗形材の硬さが上昇すると工具摩耗が顕著に増加するため、粗形材の炭素量の増加は実用上不可能であった。一方、本発明では、Alを多量に添加することによって粗形材の硬さの上昇に対する工具摩耗の増加量が抑制されるため、従来技術よりも高周波焼入れ用鋼の炭素量を増加しても工業生産が可能となる。また、Alは低温焼戻しマルテンサイト鋼の焼戻し挙動に対してSiと同様の効果を持ち、焼戻し軟化抵抗を顕著に増加することによって歯面疲労強度を向上するのに有効である。この効果を得るために、本発明の高周波焼入れ用鋼には、Alを0.050%超、添加する必要がある。一方、Alはフェライトを安定化するため、3.00%を超えて添加すると高周波焼入れ時にフェライトが残留し、均一なオーステナイト相が得られなくなる。この結果として、焼入れ後に均一なマルテンサイト組織が得られなくなる。従って、Al量を0.050%超~3.00%の範囲にする必要がある。Al量の好適な範囲は0.100~1.00%である。
 P:0.050%以下
 Pは、不可避的不純物であり、オーステナイト粒界に偏析して、旧オーステナイト粒界を脆化させることによって粒界割れの原因となるので、できるだけ低減することが望ましい。このため、本発明では、高周波焼入れ用鋼のP量を0.050%以下の範囲にする必要がある。本発明の課題に関して特にP量の下限は無いが、P量を0.001%以下に制限するには過剰なコストがかかる。したがって、P量の好適な範囲は0.001~0.015%である。
 N:0.0200%以下
 Nは鋼中でAlと結合してAlNを形成し、AlNがオーステナイト結晶粒界をピン止めすることによって粒成長を抑制し、組織の粗大化を防止する働きがある。一般に、高周波加熱は加熱時間が極めて短時間であるため、積極的にAlNを利用しない場合でも結晶粒は粗大化しにくい。しかしながら結晶粒の微細化を積極的に図りたい場合はNを積極的に添加しても良い。一方、過剰に添加すると1000℃以上の高温域における延性が低下し、連続鋳造、圧延時の歩留まり低下の原因になる。このため、本発明では、高周波焼入れ用鋼のN量を0.0200%以下に制限する必要がある。N量の好適な範囲は0.0050~0.0120%である。
 O:0.0030%以下
 Oは酸化物系介在物を形成し、含有量が多い場合は疲労破壊の起点となる大きな介在物が増加し、疲労特性の低下の原因となるので、できるだけ低減することが望ましい。このため本発明では、高周波焼入れ用鋼のO量を0.0030%以下に制限する必要がある。本発明の課題に関して特にO量の下限は無いが、O量を0.0001%以下に制限するには過剰なコストがかかる。従って、O量の好適な範囲は0.0001~0.0015%以下である。
 B:0.0005~0.0050%
 Bは必要に応じて本発明の高周波焼入れ用鋼に添加可能な任意成分である。Bはオーステナイト中に固溶している状態において、微量で鋼の焼入性を大きく高める効果があるため、浸炭焼入れ時にマルテンサイト組織を得るために有効な元素である。この効果を得るために、本発明では、高周波焼入れ用鋼に0.0005%以上のBを添加してもよい。一方、0.0050%を超えて添加しても効果が飽和する。従ってBを添加する場合、B量を0.0005~0.0050%の範囲にする。B量の好適な範囲は0.0010~0.0025%である。なお、鋼中に一定量以上のNが存在している場合、BがNと結合してBNを形成し、固溶B量が減少することによって焼入性を高める効果が得られない場合があるため、Bを添加する場合にはNを固定するTiやAlを同時に適量添加することが望ましい。
 Cr:0.05%~0.30%未満
 Crは必要に応じて本発明の高周波焼入れ用鋼に添加可能な任意成分である。Crはパーライト変態にあたって、ラメラ間隔を顕著に微細化させる効果があるので、粗形材の硬さが大きく増加し、加工性を劣化させる。また、θ炭化物中に濃化して安定化することによって、高周波焼入れ時の炭化物のオーステナイトへの溶け込みを阻害し、硬化層の硬さムラの原因となる。従って、Crを添加する場合は、Cr添加量を0.30%未満に制限する。一方、Si、Al添加量が多く、かつ焼鈍時間が長い場合にはθ炭化物が黒鉛化し、高周波焼入れ性が低下する場合がある。このため、これを防ぐ目的で、本発明では、高周波焼入れ用鋼にCrを少量添加しても良い。黒鉛化の防止に必要なCr量の下限値は0.05%である。従って、Crを添加する場合は、Cr添加量を0.05%~0.30%未満の範囲にする。Cr量の好適な範囲は0.10~0.20%である。
 Mo:0.01~1.00%
 Moは必要に応じて本発明の高周波焼入れ用鋼に添加可能な任意成分である。Moは鋼の焼入性を高める効果があるので、浸炭焼入れ時にマルテンサイト組織を得るために有効な元素である。この効果を得るために、Moを0.01%以上添加してもよい。一方、1.00%を超えて添加すると添加コストが過大となるとともに、粗形材の硬さの上昇を通じて部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化するため、工業生産上望ましくない。従ってMoを添加する場合、Mo量を0.01~1.00%の範囲にする。Mo量の好適な範囲は0.10~0.60%である。また、特に切削・鍛造時の加工性を少しでも劣化させずに、できるだけ焼入れ性を高めたいという場合は、Moを微量に添加することが好ましい。すなわち、添加量を0.01~0.05%未満の範囲にすれば、粗形材の硬さの上昇による加工性の低下は実質上無視できるほど小さなものとなり、なおかつ明確な焼入れ性向上効果も得られる。この理由は、Moは少量の添加でも比較的大きな焼入れ性向上効果を示す元素であるからである。特にBを複合添加すれば、微量の添加でも焼入れ性向上効果に対して大きな複合添加効果が得られる。
 Cu:0.05~1.00%
 Cuは必要に応じて本発明の高周波焼入れ用鋼に添加可能な任意成分である。Cuは鋼の焼入性を高める効果があるので、浸炭焼入れ時にマルテンサイト組織を得るために有効である。この効果を得るために、Cuを0.05%以上添加してもよい。しかしながら1.00%を超えて添加すると1000℃以上の高温域における延性が低下し、連続鋳造、圧延時の歩留まり低下の原因になる。従って、Cuを添加する場合、添加量を0.05~1.00%の範囲にする。添加Cu量の好適な範囲は0.010~0.50%である。なお、高温域の延性を改善するために、Cuを添加する場合にはCu添加量の1/2以上の量のNiを同時に添加することが望ましい。
 Ni:0.05~2.00%
 Niは必要に応じて本発明の高周波焼入れ用鋼に添加可能な任意成分である。Niは鋼の焼入性を高める効果があるので浸炭焼入れ時にマルテンサイト組織を得るために有効な元素である。この効果を得るために、Niを0.05%以上添加してもよい。一方、2.00%を超えて添加すると添加コストが過大となり、工業生産上望ましくない。従って、Niを添加する場合、添加量を0.05~2.00%の範囲にする。Ni量の好適な範囲は0.40~1.60%である。
 V:0.005~0.20%未満
 Vは必要に応じて本発明の高周波焼入れ用鋼に添加可能な任意成分である。Vは鋼中でN、Cと結合してV(C、N)を形成し、V(C、N)がオーステナイト結晶粒界をピン止めすることによって粒成長を抑制することによって組織の粗大化を防止する働きがある。この効果を得るために、Vを0.005%以上添加してもよい。一方、0.20%以上添加すると粗形材の硬さの上昇を通じて部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。また、V(C、N)の生成量が過大となり、高周波焼入れ時に硬化層の硬さムラの原因となる。従って、Vを添加する場合、添加量を0.005~0.20%未満の範囲にする。V量の好適な範囲は0.05~0.10%である。
 Nb:0.005~0.10%
 Nbは必要に応じて本発明の高周波焼入れ用鋼に添加可能な任意成分である。Nbは鋼中でN、Cと結合してNb(C、N)を形成し、Nb(C、N)がオーステナイト結晶粒界をピン止めすることによって粒成長を抑制することによって組織の粗大化を防止する働きがある。この効果を得るために、Nbを0.005%以上添加してもよい。一方、0.10%を超えて添加すると粗形材の硬さの上昇を通じて部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。また、Nb(C、N)の生成量が過大となり、高周波焼入れ時に硬化層の硬さムラの原因となる。従って、Nbを添加する場合、添加量を0.005~0.10%の範囲にする。Nb量の好適な範囲は0.010~0.050%である。
 Ti:0.005~0.10%
 Tiは必要に応じて本発明の高周波焼入れ用鋼に添加可能な任意成分である。Tiは鋼中でN、Cと結合してTi(C、N)を形成し、Ti(C、N)がオーステナイト結晶粒界をピン止めすることによって粒成長を抑制することによって組織の粗大化を防止する働きがある。この効果を得るために、Tiを0.005%以上添加してもよい。一方、0.10%を超えて添加すると粗形材の硬さの上昇を通じて部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。また、Ti(C、N)の生成量が過大となり、高周波焼入れ時に硬化層の硬さムラの原因となる。従って、Tiを添加する場合、添加量を0.005~0.50%の範囲にする。Ti量の好適な範囲は0.015~0.050%である。
 Ca、Zr、Mg:0.0005~0.0030%
 Ca、Zr、Mgは必要に応じて本発明の高周波焼入れ用鋼に添加可能な任意成分である。Ca、Zr、Mgは、共に、MnSの形態制御、及び切削時の切削工具表面における保護被膜形成を通じて鋼の被削性を向上する働きがある。この効果を得るために、Ca、Zr、Mgのいずれか1種又は2種以上をそれぞれ0.0005%以上添加してもよい。一方、0.0030%を超えて添加すると、粗大な酸化物や硫化物を形成して部品の疲労強度に悪影響を与える場合がある。従って、Ca、Zr、Mgを添加する場合、添加量は0.0005~0.0030%の範囲にする。Ca、Zr、Mg合計添加量の好適な範囲は0.0008~0.0020%である。
 本発明では、上記成分の他、本発明の効果を損なわない範囲で、Pb、Te、Zn、Sn等を添加することができる。Pb、Te、Zn、Snは必要に応じて本発明の高周波焼入れ用鋼に添加可能な任意成分である。本発明の効果を損なわないためには、これらの添加成分の添加量の上限をそれぞれ、Pb:0.50%以下、Te:0.0030%以下、Zn:0.50%以下、Sn:0.50%以下、とすればよい。
 Al-(27/14)×N>0.050%
 前述のように、Alは鋼中において固溶状態にある場合、鋼部品の切削加工において工具寿命を顕著に改善する効果を持つので、0.050%超~3.00%の範囲で添加する。一方、Alは鋼中のNと結びついてAlNを形成し、析出物の形態を取る場合がある。しかしながら析出物として存在しているAlは工具寿命の改善に有効ではない。特に本発明のように、熱間鍛造後に徐冷を行う場合や、切削加工前に焼鈍を施す場合は、熱間鍛造後に放冷する工程に比べてAlNが析出しやすい。従って、固溶状態のAl量を確実に確保するためには、AlをAlNを形成すると予測される量よりも過剰に添加する必要があり、そのためにはAlとNとの関係式を規定する必要がある。すなわち、固溶Al量の指標の式である「Al-(27/14)×N」の値が0.050%を超えていれば、確実に工具寿命の改善効果を得ることができる。本発明の高周波焼入れ用鋼について「Al-(27/14)×N」の理論的な上限値は3.00%であり、好適範囲は0.100~1.00%である。
 本発明の一態様に係る高周波焼入れ用粗形材では、鋼成分および焼鈍条件の調整によって、十分な歯面疲労強度と加工性を両立する。また、粗大な黒鉛粒の発生を抑制し、平均粒径0.5μm以上の黒鉛粒の個数を40個/mm以下とする。粗形材中の黒鉛粒の量がこの範囲であれば、この粗形材に高周波焼入れを行った後、硬化層の硬度が均一になり、黒鉛粒に起因するボイドの発生を抑制できる。本発明に係る高周波焼入れ用鋼を用いて粗形材を製造する際に、適切な条件で焼鈍を行えば、平均粒径0.5μm以上の黒鉛粒の個数を0個/mmとすることも可能である。つまり、鋼組成によっては、鋳造後、過度の除冷を行ったり、焼鈍温度600℃~720℃の温度域で、300分以上の焼鈍を行うと黒鉛が生成する可能性があるので、このような温度域で過度に長時間の焼鈍を行うことを避ければ、黒鉛の生成を抑制することができる。
 高温、長時間の焼鈍を行う場合、高周波焼入れ用鋼の組成を調整し、下の(1)式で規定される黒鉛化定数CEを1.8以下にすることが好ましい。特に高温の焼鈍を行う場合は、CEを1.28以下にすることが更に好ましい。
 CE=C+Si/3-Mn/12+Al/6+Cu/9+Ni/9-Cr/9-Mo/9+B … (1)
 なお、式(1)で、C、Si、Mn、Al、Cu、Ni、Cr、Mo、Bは、高周波焼入れ用鋼に含まれる各元素の質量%を示す。
 本発明の一態様に係る高周波焼入れ粗形材の製造方法では、上記の組成を持つ高周波焼入れ用鋼に対して、温間加工または熱間加工、冷却、焼鈍、の工程を順次行う。上記焼鈍の加熱温度は680~800℃、加熱時間は10~360分の条件で行う。これらの条件を用いる理由を以下に説明する。
 温間加工の例としては温間鍛造、熱間加工の例としては熱間鍛造、或いは熱間圧延が挙げられる。従来技術に係る炭素量が比較的少ない鋼に温間加工または熱間加工を施して粗形材を製造すると、この粗形材の組織は主に(95%以上)フェライト又はパーライト組織となる。この場合、粗形材の硬さは軟質なフェライトの量や、フェライト自体の硬さに大きく影響を受ける。このような粗形材を軟質化させる対策としては、加工と熱処理を組み合わせてフェライト分率を大きくする方法や、フェライトを固溶強化する元素の添加量を抑制する方法等がある。
 これに対して、本発明の高周波焼入れ用鋼では炭素量が0.75%を超える。このため、この鋼を用いて、粗形材を温間鍛造、熱間鍛造、または熱間圧延のいずれによって製造しても、粗形材の組織は大部分がパーライトでごく少量のフェライト組織を含むか、又は実質的に全て(95%以上)がパーライト組織となる。従って、このような粗形材の強度にはパーライト組織の強度が支配的な影響を持つ。パーライト組織の強度はパーライトのラメラ間隔に関係する。パーライトを主に含む鋼の軟質化のためには焼鈍によって微細なパーライトラメラの形態を変化させ、θ炭化物が粗分散した組織にすることが極めて有効である。すなわち、焼鈍による軟質化の効果は、低・中炭素鋼のフェライト及びパーライト組織の場合よりも、高炭素鋼のパーライト組織の場合の方が大きい。また、焼鈍の加熱温度が低いとパーライトラメラの形態がほとんど変化しないために十分な軟質化効果が得られない。このため、680℃以上の温度で焼鈍を行う必要がある。一般に、加熱温度が高いほど微細なパーライトラメラが崩れるとともにθ炭化物が粗分散する。しかし焼鈍温度が800℃を超える場合は、オーステナイトの生成量が多くなり、焼鈍温度から冷却されるときに再び微細なラメラを持つパーライトに変態するため、軟質化効果が得られなくなる。従って、焼鈍温度を680~800℃の範囲にする必要がある。好適な焼鈍温度の範囲は700~770℃である。焼鈍の加熱時間が短すぎるとパーライトラメラの形態がほとんど変化しないために十分な軟質化効果が得られないため、焼鈍の加熱を10分以上行う必要がある。他方、焼鈍の加熱を360分を超えて行う場合は生産性が低下するため、工業生産上望ましくない。従って、焼鈍の加熱時間は10~360分の範囲にする必要がある。焼鈍の加熱時間の好適な範囲は30~300分である。なお、焼鈍後の冷却条件については特に規定しないが、小さい冷却速度で冷却(徐冷)した方が鋼がより軟質化されるため、必要に応じて徐冷を行うことが望ましい。750~650℃の温度範囲の平均冷却速度の好適な範囲は300℃/時以下である。
 本発明の別の一態様に係る高周波焼入れ用粗形材の製造方法では、上記の組成を持つ高周波焼入れ用鋼に対して、熱間加工、冷却、の工程を順次行う。上記熱間加工に引き続く冷却工程において、750~650℃の温度範囲の平均冷却速度が300℃/時以下とする。この態様では、必ずしも焼鈍は行わない。この冷却条件を用いる理由を、以下に述べる。
 上述のように、粗形材の硬さはパーライト組織の強度の影響(パーライトラメラ間隔)が支配的であり、その軟質化のためには焼鈍が極めて有効である。しかしながら、部品の製造コストや生産性の改善のためには、焼鈍を省略した方が有利である。このため、熱間鍛造、或いは熱間圧延の熱間加工に引き続く冷却速度を調整し、パーライト変態温度域を徐冷し、高温でパーライト変態をさせることによってパーライトラメラ間隔を増加させ、鋼組織を軟質化することもできる。また、このような徐冷を行うことによって、パーライト変態が完了した後にも引き続いて高温域に滞留することになるため、焼鈍と同様の効果も得ることができる。徐冷を行う温度範囲が750℃を超える場合はパーライト変態が起こり得ない温度域を徐冷することになるので軟質化の効果が得られない。また徐冷を行う温度範囲が650℃未満の場合は、パーライト変態が低温で開始することになる。このため、パーライトラメラ間隔の増加が不十分となり、軟質化も不十分となるだけでなく、徐冷によるパーライト変態後の焼鈍効果も小さくなる。従って、徐冷を行う温度範囲を750~650℃の範囲にする必要がある。徐冷を行う温度範囲の好適な範囲は740~680℃の範囲である。また、平均冷却速度が300℃/時を超える場合はパーライト変態が完了した後に引き続いて高温域に滞留させる時間が不足して焼鈍効果が小さくなる。従って、徐冷を行う温度範囲での平均冷却速度を300℃/時以下にする必要がある。徐冷を行う温度範囲での平均冷却速度の好適な範囲は200℃/時以下である。上記で限定した冷却速度は750~650℃の間の平均冷却速度であって、必ずしも連続的に冷却を行う必要はなく、上記の諸条件を満足する条件であれば冷却の過程で一定温度に保定期間があっても良い。生産性を確保するため、平均冷却速度の下限は80℃/時以上が好ましい。
 上記のように徐冷を行う場合、冷却後の焼鈍を行わなくても良いが、徐冷に前述の条件の焼鈍を組み合わせて行っても良い。この場合、徐冷や焼鈍を単独で行う場合よりもさらに大きな軟質化の効果が得られる。
 本発明の一態様に係る高周波焼入れ鋼部品は、上記のいずれかの製造方法で製造した高周波焼入れ用粗形材に対して、切削加工および/または冷間加工、高周波焼入れを施し、必要に応じて更に低温焼戻し処理を施して製造する。この鋼部品は、最表面から50μm深さの表層硬化部の硬さがHV650以上、かつ非高周波焼入れ部の硬さがHV180以上となるように製造する。これらの限定の理由を以下に説明する。本発明の鋼部品の例としては、自動車、建機・農機、発電用風車、その他の産業機械等に使用されている動力伝達部品(たとえば、歯車、軸受、CVTシーブ、シャフト)等が挙げられる。
 CVTシーブ、軸受類といった部品には、疲労特性や耐摩耗性を与えるために、表面硬化処理が施される。本発明に係る鋼部品では、高周波焼入れ処理がこの表面硬化処理に相当する。この処理によって浸炭部品に匹敵する疲労特性や耐摩耗性を確保するためには、表層の硬さを浸炭部品の程度に高める必要がある。表層の硬さの代表値として最表面から50μmの深さの硬さを選んだ。この部位の硬さがHV650以上であれば通常の浸炭部品に匹敵する硬さと判断でき、この場合、浸炭部品に匹敵する疲労特性や耐摩耗性を得ることができる。本発明に係る鋼組成及び製造方法で得られる部品の高周波焼入れ部の硬さの好適な上限はHV950程度である。上記部位の硬さの好適な範囲はHV700以上である。
 高周波焼入れ(電磁誘導焼入れ)の処理条件の詳細は部品形状等によって異り、公知の一般的方法を用いることが出来る。本発明に適合する高周波焼入れの例として、例えば、リング状のコイルを用いて周波数10~500kHz、処理時間0.1~20秒の条件で電磁誘導による焼入れを行い、その後水冷による焼入れを行い、硬化深さを0.2~2.5mmとする条件を用いることができる。電磁誘導による加熱を行う際には、硬化層深さの均質化や歯車の輪郭焼入れのために被処理部品を100~2000rpmで回転させても良い。また、急速・短時間の加熱を行うため、予め低周波電磁誘導によってA1点以下温度域に予熱を行っても良い。
 高周波焼入れによる硬化は、処理条件によって、高周波焼入れ鋼部品の表面から深さ0.1mm~3mm程度の範囲まで及ぼすことができ、これ以上の深さの鋼内部(芯部)では有意な硬化は起こらない。このような非硬化部分を非高周波焼入れ部とする。従って、非高周波焼入れ部の硬さは、高周波焼入れ前の粗形材の硬さと実質的に同等である。この非高周波焼入れ部の硬さは、内部起点の疲労強度や、歯車の低サイクル疲労強度に関係するため、過度に低すぎるのは望ましくない。一方、高周波焼入れ鋼部品全体の強度は、高周波焼入れ深さを調整することによっても向上できるため、通常浸炭部品と比較すれば、内部の硬度がある程度低くても良い。特に低サイクル疲労強度を担保するために、非高周波焼入れ部の硬さをHV180以上にする必要があり、その好適範囲はHV200以上である。本発明に係る粗形材は、硬度が高くても、固溶Alの効果によって十分な加工性が維持できるため、非高周波焼入れ部の硬さを十分に確保することが可能となる。焼入れ前の加工性を担保するために、本発明に係る鋼部品の非高周波焼入れ部の硬さの好適な上限はHV240である。
 本発明の上記態様に係る高周波焼入れ鋼部品に対して、高周波焼入れ処理後、又は高周波焼入れ及び低温焼戻し(300℃以下)後に、ショットピーニング処理を行っても良い。ショットピーニング処理によって導入される部品表層の圧縮残留応力の増加は疲労亀裂の発生、進展を抑制するため、本発明の鋼によって製造された部品の歯元、及び歯面疲労強度を更に向上させることができる。ショットピーニング処理は、直径が0.7mm以下のショット粒を用い、アークハイトが0.4mm以上の条件で行うことが望ましい。
 以下に、実施例により本発明を更に説明する。
 表1に示す組成を有する転炉溶製鋼を連続鋳造により製造し、必要に応じて、均熱拡散処理、分塊圧延工程を経て162mm角の圧延素材とした。次に熱間圧延によって直径が45mmの棒鋼形状の高周波焼入れ用鋼とした。表1の比較鋼の網掛け、下線部分は本発明の範囲外であることを示す。
Figure JPOXMLDOC01-appb-T000001
 表1で、各元素の「-」は無添加を意味する。表中の下線は、数値が本発明の範囲外であることを示す。
 次に、歯車の製造工程(熱履歴)をシミュレートするため、熱間圧延鋼(高周波焼入れ用鋼)に対して表2の条件で熱間加工又は温間加工シミュレートを行った。熱間加工シミュレートにおける加熱温度は1250℃、温間加工シミュレートにおける加熱温度は750℃とした。また、熱間加工又は温間加工シミュレートの後、必要に応じて表2の条件で焼鈍処理を行った。こうして作成した粗形材のサンプルから、45φ×15mmの円盤形状の被削性評価用試験片、大径部(試験部)26φのローラーピッチング試験片を作成した。
 各試験水準の円盤試験片のうち、1本ずつについて、直径方向断面における直径の1/4部の位置のビッカース硬さ測定した。粗形材の硬さがHV240超のものは加工性(冷鍛性、被削性)に劣ると判定した。
Figure JPOXMLDOC01-appb-T000002
 表2の「熱間加工又は温間加工後の冷却速度」は、750~650℃の温度範囲での平均冷却速度を示す。表2の、鋼No.、熱鍛後の冷却速度、熱鍛後徐冷の終了温度、焼鈍条件、硬化層の硬さ、非高周波焼入れ部の硬さの下線は本発明の範囲外であることを意味する。粗形材の硬さ、粗形材を切削、加工する時の工具寿命、高周波焼入れ鋼部品の硬化層の300℃焼戻し硬さ、ローラーピッチング疲労強度の下線は目標未達成であることを意味する。
 上記の円盤試験片に対して、表3に示す条件で被削性の評価試験(工具寿命の測定)を行った。被削性評価試験の条件は、ドリルによる穴の総深さが1000mmに達する最大の切削速度(m/min)を求めることにより、工具寿命の指標とした。この指標が70m/minに達しないものは被削性に劣ると判定した。
Figure JPOXMLDOC01-appb-T000003
 上記のローラーピッチング試験片に対して、大径部(試験部)に硬化層深さが2mmとなる条件で高周波焼入れ処理を行い、引き続いて150℃×90分の条件で焼戻し処理を行った後、疲労試験の試験精度を向上するため、つかみ部に仕上げ加工を施した。ローラーピッチング試験は、大ローラー:SCM420浸炭品・クラウニング150R、回転数:2000rpm、潤滑油:トランスミッション油、油温80℃、すべり率:40%、最大1000万回の条件で行い、S-N線図を作成して疲労限を求め、ローラーピッチング疲労強度とした。ローラーピッチング疲労強度が2600MPaに達しないものは歯面疲労強度が劣ると判定した。
 各製造No.につき、上記の高周波焼入れ・焼戻し処理を行った各試験水準のローラーピッチング試験片の1本の大径部を切断し、断面において表層から50μmの部位のビッカース硬さ測定を行った。この測定結果を焼入れ硬化層の硬さとした。各製造No.につき、別の1本づつの試験片について更に300℃×90分の条件で焼戻しを行い、大径部を切断し、断面において表層から50μmの部位のビッカース硬さ測定を行うことによって300℃焼戻し硬さを求めた。300℃焼戻し硬さがHV630に達しないものは300℃焼戻し硬さに劣り、ひいては歯面疲労強度に劣ると判定した。
 これらの評価結果を表2に示す。製造No.1~25の本発明例はいずれも目標を達成しており、優れた加工性を持ち、かつ歯面疲労強度も十分であった。一方、製造No.26は、鋼成分に関しては本発明の範囲内だったが、熱鍛後の徐冷も焼鈍も行っていないため粗形材の硬さが高く、加工性が劣っていた。製造No.27は焼鈍温度が低すぎ、製造No.28は焼鈍温度が高すぎるので粗形材の硬さが高く、加工性が劣っていた。製造No.29は熱鍛後の冷却速度が大きすぎ、また焼鈍温度も低すぎるため粗形材の硬さが高く、加工性に劣っていた。製造No.30、31は炭素量が少ないため粗形材の硬さが低く、加工性は優れているが、300℃焼戻し硬さが低く、ローラーピッチング疲労強度も低かった。製造No.32はCrの添加量が多すぎるため徐冷や焼鈍による軟質化効果が十分に得られず、加工性が劣る。さらに、高周波焼入れ時の炭化物のオーステナイトへの溶け込みが不十分であるため、十分な硬化層の硬さが得られず、その影響で300℃焼戻し硬さも低く、ローラーピッチング疲労強度も低かった。製造No.33はVの添加量が多すぎるため徐冷や焼鈍による軟質化効果が十分に得られず、加工性が劣る。さらに、高周波焼入れ時の炭化物のオーステナイトへの溶け込みが不十分であるため、十分な硬化層の硬さが得られず、その影響で300℃焼戻し硬さも低く、ローラーピッチング疲労強度も低かった。製造No.34、35、36はAlの添加量が少なすぎるため、固溶Alによる工具寿命の改善効果を得ることができなかった。このため、粗形材の硬さが低かったのにも関わらず切削加工時の工具寿命が劣っていた。製造No.37はCの添加量が多すぎたため徐冷や焼鈍を施しても目標の値まで軟質化させることができず、加工性が劣っていた。製造No.38について、鋼Vの個々の鋼成分に関しては本発明の範囲だったが、CE値が本発明の推奨値を超えていた。このため、粗形材の段階で本発明の範囲を超える数の黒鉛が析出していた。これにより、高周波焼入れ後の硬化層の硬さ、及び硬化層の300℃硬さが不足していた。さらに、硬化層において、元々黒鉛粒のあった位置にボイドが生成するため、ローラーピッチング疲労強度も低かった。製造No.39は鋼成分系に関しては本発明の範囲だったが、粗形材を作成する際の焼鈍時間が非常に長かったため、本発明の範囲を超える数の黒鉛が析出していた。これにより、高周波焼入れご後硬化層の硬さ、及び硬化層の300℃硬さが不足していた。また、黒鉛の析出によって粗形材の硬さが低下したことにより、高周波焼入れ後の非高周波焼入れ部の硬さも必然的に低く、かつ硬化層にボイドが存在していたことにより、ローラーピッチング疲労強度も低かった。
 本発明の各態様に係る高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品は、自動車、建機・農機、発電用風車、その他の産業機械等に使用されている動力伝達部品(たとえば、歯車、軸受、CVTシーブ、シャフト)等に適用でき、部品成型時の加工性と高周波焼入れ処理した鋼部品の疲労強度の両立を実現できる。このため、浸炭処理を高周波処理によって代替することが可能となる。これにより、表面硬化処理を連続化でき、環境への負担を低化でき、部品精度を向上できる。

Claims (10)

  1.  質量%で、
     C:0.75%超~1.20%、
     Si:0.002~3.00%、
     Mn:0.20~2.00%、
     S:0.002~0.100%、
     Al:0.050%超~3.00%を含有し、
     P:0.050%以下、
     N:0.0200%以下、
     O:0.0030%以下に制限し、残部がFe及び不可避的不純物からなり、
     AlおよびNの質量%の含有量が、Al-(27/14)×N>0.050%を満足することを特徴とする高周波焼入れ用鋼。
  2.  質量%で、B:0.0005~0.0050%を更に含有することを特徴とする請求項1に記載の高周波焼入れ用鋼。
  3.  質量%で、Cr:0.05~0.30%未満、Mo:0.01~1.00%、Cu:0.05~1.00%、Ni:0.05~2.00%の内の1種または2種以上を更に含有することを特徴とする請求項1または2に記載の高周波焼入れ用鋼。
  4.  質量%で、V:0.005~0.20%未満、Nb:0.005~0.10%、Ti:0.005~0.10%の内の1種または2種以上を更に含有することを特徴とする請求項1または2に記載の高周波焼入れ用鋼。
  5.  質量%で、Ca:0.0005~0.0030%、Zr:0.0005~0.0030%、Mg:0.0005~0.0030%の内の1種または2種以上を更に含有することを特徴とする請求項1または2に記載の高周波焼入れ用鋼。
  6.  請求項1または2に記載の高周波焼入れ用鋼の組成を持つ高周波焼入れ用粗形材であって、
     前記高周波焼入れ用粗形材に含まれる平均粒径0.5μm以上の黒鉛粒の個数が40個/mm以下であることを特徴とする高周波焼入れ用粗形材。
  7.  請求項1または2に記載の高周波焼入れ用鋼を用いて、温間加工または熱間加工、冷却、焼鈍の工程を順次行い、
     前記焼鈍で焼鈍温度を680~800℃、焼鈍時間を10~360分の条件で行う、
     ことを特徴とする高周波焼入れ用粗形材の製造方法。
  8.  請求項7に記載の高周波焼入れ用粗形材の製造方法であって、前記冷却中の、750~650℃の温度範囲の平均冷却速度が300℃/時以下であることを特徴とする高周波焼入れ用粗形材の製造方法。
  9.  請求項1または2に記載の高周波焼入れ用鋼を用いて、熱間加工、冷却の工程を順次行い、
     前記冷却中の、750~650℃の温度範囲の平均冷却速度が300℃/時以下であることを特徴とする高周波焼入れ用粗形材の製造方法。
  10.  請求項1または2に記載の高周波焼入れ用鋼を用いて製造した高周波焼入れ鋼部品であって、
     前記高周波焼入れ鋼部品の最表面から50μm深さの表層硬化部の硬さがHV650以上であり、
     非高周波焼入れ部の硬さがHV180以上であり、
     前記非高周波焼入れ部に存在している平均粒径0.5μm以上の黒鉛粒の個数が40個/mm以下であることを特徴とする高周波焼入れ鋼部品。
PCT/JP2011/053109 2010-03-30 2011-02-15 高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品 WO2011122134A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/637,414 US9039962B2 (en) 2010-03-30 2011-02-15 Steel for induction hardening, roughly shaped material for induction hardening, producing method thereof, and induction hardening steel part
KR1020127025509A KR101474627B1 (ko) 2010-03-30 2011-02-15 고주파 켄칭용 강, 고주파 켄칭용 조형재, 그 제조 방법 및 고주파 켄칭 강 부품
CN201180016607.3A CN102859023B (zh) 2010-03-30 2011-02-15 高频淬火用钢、高频淬火用粗型材、其制造方法及高频淬火钢部件
JP2012508132A JP5135558B2 (ja) 2010-03-30 2011-02-15 高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品
US14/707,429 US9890446B2 (en) 2010-03-30 2015-05-08 Steel for induction hardening roughly shaped material for induction hardening

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-078232 2010-03-20
JP2010078232 2010-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/637,414 A-371-Of-International US9039962B2 (en) 2010-03-30 2011-02-15 Steel for induction hardening, roughly shaped material for induction hardening, producing method thereof, and induction hardening steel part
US14/707,429 Continuation US9890446B2 (en) 2010-03-30 2015-05-08 Steel for induction hardening roughly shaped material for induction hardening

Publications (1)

Publication Number Publication Date
WO2011122134A1 true WO2011122134A1 (ja) 2011-10-06

Family

ID=44711872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053109 WO2011122134A1 (ja) 2010-03-30 2011-02-15 高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品

Country Status (5)

Country Link
US (2) US9039962B2 (ja)
JP (1) JP5135558B2 (ja)
KR (1) KR101474627B1 (ja)
CN (1) CN102859023B (ja)
WO (1) WO2011122134A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978522A (zh) * 2012-11-22 2013-03-20 宁波得利时泵业有限公司 一种凸轮转子泵转子材料及制备方法
CN102978520A (zh) * 2012-11-22 2013-03-20 宁波得利时泵业有限公司 一种凸轮转子泵转子及其制备方法
CN102978523A (zh) * 2012-11-22 2013-03-20 宁波得利时泵业有限公司 一种凸轮转子泵转子材料
CN103667993A (zh) * 2013-11-08 2014-03-26 张超 一种用于凸轮转子泵转子耐磨合金钢材料及其制备方法
WO2016009515A1 (ja) * 2014-07-16 2016-01-21 株式会社Nippo 舗装材の敷き均し装置及び舗装材の敷き均し方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3366800B1 (en) * 2015-10-19 2020-03-25 Nippon Steel Corporation Steel for machine structural use and induction-hardened steel component
RU2615932C1 (ru) * 2016-06-16 2017-04-11 Юлия Алексеевна Щепочкина Сталь
JP6881613B2 (ja) * 2018-01-22 2021-06-02 日本製鉄株式会社 浸炭軸受鋼部品、および浸炭軸受鋼部品用棒鋼
CN111511947B (zh) * 2018-01-22 2022-04-26 日本制铁株式会社 轴承钢部件及轴承钢部件用棒钢
JP6969683B2 (ja) * 2018-06-28 2021-11-24 日本製鉄株式会社 高周波焼入れクランクシャフト及び高周波焼入れクランクシャフト用素形材の製造方法
EP4053301A1 (en) * 2021-03-01 2022-09-07 Villares Metals S.A. Martensitic steel and method of manufacturing a martensitic steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183296A (ja) * 1996-12-26 1998-07-14 Sumitomo Metal Ind Ltd 高周波焼入れ用鋼材及びその製造方法
JP2005002366A (ja) * 2003-06-09 2005-01-06 Sanyo Special Steel Co Ltd 冷間加工性に優れた高硬度高周波焼入れ用鋼
JP2006028599A (ja) * 2004-07-16 2006-02-02 Jfe Steel Kk 機械構造用部品
JP2007204796A (ja) * 2006-01-31 2007-08-16 Jfe Steel Kk 機械構造用部品の製造方法
WO2010082454A1 (ja) * 2009-01-16 2010-07-22 新日本製鐵株式会社 高周波焼入れ用鋼

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112727A (ja) 1985-11-09 1987-05-23 Daido Steel Co Ltd 高強度高面圧用部品の製造方法
GB8900812D0 (en) 1989-01-14 1989-03-08 Univ Manchester Pharmaceutical method and compositions
JPH03208960A (ja) 1990-01-11 1991-09-12 Natl House Ind Co Ltd 入玄関の入隅部構造
JPH03239432A (ja) 1990-02-14 1991-10-25 Daihatsu Motor Co Ltd ナットランナ
JP3239432B2 (ja) 1992-03-25 2001-12-17 大同特殊鋼株式会社 高強度の被削性に優れた高周波焼入歯車用鋼
US5476556A (en) * 1993-08-02 1995-12-19 Kawasaki Steel Corporation Method of manufacturing steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
JP3208960B2 (ja) 1993-10-20 2001-09-17 株式会社神戸製鋼所 高面疲労強度機械構造用部品及びその製法
US5478523A (en) * 1994-01-24 1995-12-26 The Timken Company Graphitic steel compositions
JPH0873929A (ja) 1994-08-31 1996-03-19 Komatsu Ltd 機械要素部品及びその製造方法
JP3503289B2 (ja) 1995-05-24 2004-03-02 Jfeスチール株式会社 高周波焼入用鋼材
JP3428282B2 (ja) 1996-03-08 2003-07-22 Jfeスチール株式会社 高周波焼入用の歯車用鋼材およびその製造方法
JPH09291337A (ja) 1996-04-24 1997-11-11 Aichi Steel Works Ltd 高周波焼入用軸受鋼
JP3458604B2 (ja) 1996-06-28 2003-10-20 Jfeスチール株式会社 高周波焼入れ部品の製造方法
JP3550886B2 (ja) 1996-06-28 2004-08-04 Jfeスチール株式会社 被削性および疲労強度に優れた高周波焼入用の歯車用鋼材の製造方法
JPH10183297A (ja) 1996-12-26 1998-07-14 Sumitomo Metal Ind Ltd 高周波焼入れ用鋼材及びその製造方法
JP3823413B2 (ja) 1997-01-31 2006-09-20 Jfeスチール株式会社 高周波焼入用部品およびその製造方法
JP3562192B2 (ja) 1997-01-31 2004-09-08 Jfeスチール株式会社 高周波焼入用部品およびその製造方法
JPH111749A (ja) 1997-06-10 1999-01-06 Kobe Steel Ltd 曲げ疲労強度および転動疲労強度に優れた高周波焼入用鋼
JP3644217B2 (ja) 1997-10-28 2005-04-27 Jfeスチール株式会社 高周波焼入部品およびその製造方法
JP3606024B2 (ja) 1997-10-28 2005-01-05 Jfeスチール株式会社 高周波焼入部品およびその製造方法
JP3419333B2 (ja) 1998-01-19 2003-06-23 住友金属工業株式会社 高周波焼入れ性に優れた冷間加工用鋼並びに機械構造用部品及びその製造方法
JP3764273B2 (ja) 1998-06-04 2006-04-05 Jfe条鋼株式会社 被削性に優れた熱間鍛造鋼部品の製造方法、その部品、それに用いる熱間圧延鋼材及び鋼材の製造方法
JP4006857B2 (ja) 1998-11-09 2007-11-14 住友金属工業株式会社 冷間鍛造−高周波焼入れ用鋼及び機械構造用部品並びにその製造方法
JP2000319725A (ja) 1999-04-30 2000-11-21 Sanyo Special Steel Co Ltd 加工性および高周波焼入性に優れた鋼の製造方法
JP3607583B2 (ja) 2000-08-02 2005-01-05 愛知製鋼株式会社 動力伝達部品用鋼および動力伝達部品
JP4390576B2 (ja) 2003-03-04 2009-12-24 株式会社小松製作所 転動部材
JP4912385B2 (ja) 2003-03-04 2012-04-11 株式会社小松製作所 転動部材の製造方法
JP4390526B2 (ja) 2003-03-11 2009-12-24 株式会社小松製作所 転動部材およびその製造方法
JP2004300551A (ja) 2003-03-31 2004-10-28 Sanyo Special Steel Co Ltd 高強度中炭素鋼
JP2005163173A (ja) 2003-11-14 2005-06-23 Komatsu Ltd 歯車部材およびその製造方法
JP4757831B2 (ja) 2007-03-29 2011-08-24 新日本製鐵株式会社 高周波焼入れ部品およびその製造方法
KR101239416B1 (ko) * 2007-04-18 2013-03-05 신닛테츠스미킨 카부시키카이샤 피삭성과 충격 값이 우수한 열간 가공 강재
BRPI0807878B1 (pt) 2007-10-24 2017-12-05 Nippon Steel & Sumitomo Metal Corporation Induction tempered carbonitretated steel part
JP5260032B2 (ja) 2007-11-26 2013-08-14 山陽特殊製鋼株式会社 冷間加工性に優れた高周波焼入用鋼、該鋼からなる転動部材および転動部材を用いた直線運動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183296A (ja) * 1996-12-26 1998-07-14 Sumitomo Metal Ind Ltd 高周波焼入れ用鋼材及びその製造方法
JP2005002366A (ja) * 2003-06-09 2005-01-06 Sanyo Special Steel Co Ltd 冷間加工性に優れた高硬度高周波焼入れ用鋼
JP2006028599A (ja) * 2004-07-16 2006-02-02 Jfe Steel Kk 機械構造用部品
JP2007204796A (ja) * 2006-01-31 2007-08-16 Jfe Steel Kk 機械構造用部品の製造方法
WO2010082454A1 (ja) * 2009-01-16 2010-07-22 新日本製鐵株式会社 高周波焼入れ用鋼

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978522A (zh) * 2012-11-22 2013-03-20 宁波得利时泵业有限公司 一种凸轮转子泵转子材料及制备方法
CN102978520A (zh) * 2012-11-22 2013-03-20 宁波得利时泵业有限公司 一种凸轮转子泵转子及其制备方法
CN102978523A (zh) * 2012-11-22 2013-03-20 宁波得利时泵业有限公司 一种凸轮转子泵转子材料
CN103667993A (zh) * 2013-11-08 2014-03-26 张超 一种用于凸轮转子泵转子耐磨合金钢材料及其制备方法
WO2016009515A1 (ja) * 2014-07-16 2016-01-21 株式会社Nippo 舗装材の敷き均し装置及び舗装材の敷き均し方法
JPWO2016009515A1 (ja) * 2014-07-16 2017-05-25 株式会社Nippo 舗装材の敷き均し装置及び舗装材の敷き均し方法

Also Published As

Publication number Publication date
US20150240335A1 (en) 2015-08-27
CN102859023A (zh) 2013-01-02
CN102859023B (zh) 2015-05-20
JPWO2011122134A1 (ja) 2013-07-08
US9890446B2 (en) 2018-02-13
US9039962B2 (en) 2015-05-26
KR101474627B1 (ko) 2014-12-18
KR20120123589A (ko) 2012-11-08
US20130025747A1 (en) 2013-01-31
JP5135558B2 (ja) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5135558B2 (ja) 高周波焼入れ用鋼、高周波焼入れ用粗形材、その製造方法、及び高周波焼入れ鋼部品
JP5614426B2 (ja) 機械部品の製造方法
WO2010137607A1 (ja) 浸炭部品およびその製造方法
KR101294900B1 (ko) 연질화용 강 및 연질화 강 부품 및 그 제조 방법
WO2012073485A1 (ja) 冷間鍛造性に優れた浸炭用鋼およびその製造方法
JP6432932B2 (ja) 耐ピッチング性および耐摩耗性に優れる高強度高靱性機械構造用鋼製部品およびその製造方法
KR20130004307A (ko) 템퍼링 연화 저항성이 우수한 강 부품
JP7152832B2 (ja) 機械部品
JP2007131871A (ja) 高周波焼入れ用鋼材
JP4102866B2 (ja) 歯車の製造方法
JP2006348321A (ja) 窒化処理用鋼
JP2011219846A (ja) 機械構造部品の製造方法
JP7270343B2 (ja) 機械部品の製造方法
JP5292896B2 (ja) 転動疲労特性に優れた機械構造用部品およびその製造方法
JP4488228B2 (ja) 高周波焼入れ用鋼材
KR20150074645A (ko) 고탄소침탄강 소재 및 이를 이용한 기어 제조방법
JP4757831B2 (ja) 高周波焼入れ部品およびその製造方法
JP6447064B2 (ja) 鋼部品
JP4640101B2 (ja) 熱間鍛造部品
JP4821582B2 (ja) 真空浸炭歯車用鋼
JP2007332440A (ja) 低サイクル疲労特性に優れた高周波焼入れ鋼材及び高周波焼入れ部品
JP6551225B2 (ja) 高周波焼入れ歯車
JP6394844B1 (ja) シャフト部材
JP4515329B2 (ja) 耐ケースクラッシング性に優れた熱処理歪の少ない鋼製歯車とその製法
TWI609090B (zh) 滲碳用鋼材及滲碳元件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016607.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508132

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 8050/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13637414

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127025509

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201005080

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762375

Country of ref document: EP

Kind code of ref document: A1