WO2011122100A1 - 六ホウ化ランタン焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び該焼結体の製造方法 - Google Patents

六ホウ化ランタン焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び該焼結体の製造方法 Download PDF

Info

Publication number
WO2011122100A1
WO2011122100A1 PCT/JP2011/052178 JP2011052178W WO2011122100A1 WO 2011122100 A1 WO2011122100 A1 WO 2011122100A1 JP 2011052178 W JP2011052178 W JP 2011052178W WO 2011122100 A1 WO2011122100 A1 WO 2011122100A1
Authority
WO
WIPO (PCT)
Prior art keywords
lab
sintered body
powder
lanthanum hexaboride
mass
Prior art date
Application number
PCT/JP2011/052178
Other languages
English (en)
French (fr)
Inventor
高橋 健太郎
和人 安藤
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US13/637,812 priority Critical patent/US9346715B2/en
Priority to KR1020127024940A priority patent/KR20130018247A/ko
Priority to JP2012508125A priority patent/JP5761178B2/ja
Publication of WO2011122100A1 publication Critical patent/WO2011122100A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/722Nitrogen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to a lanthanum hexaboride (LaB 6 ) sintered body, a target using the same, a lanthanum hexaboride film, and a method for producing the LaB 6 sintered body. More specifically, the present invention is a LaB 6 sintered body suitable for use as a sputtering target for producing a LaB 6 thin film having high purity and density, excellent crystallinity, and good work function, and using the LaB 6 sintered body. The present invention relates to an effective manufacturing method of a target, a lanthanum hexaboride film formed using the target, and the LaB 6 sintered body.
  • Metal borides are chemically stable and exhibit various electrical characteristics depending on the boron content, and thus are expected to be used in various applications.
  • lanthanum hexaboride (LaB 6 ) has a small work function, and therefore, application development as an electrode material for an electron-emitting device or illumination is being promoted.
  • the work function is the minimum energy necessary for extracting electrons from the material surface.
  • the work function of the electron-emitting device is preferably as small as possible.
  • LaB 6 is often used as a thin film.
  • Various methods have been studied for forming the LaB 6 thin film. Among these methods, a sputtering method using a LaB 6 target capable of forming a dense film is preferably used.
  • the LaB 6 thin film is required to have a small work function, and for that purpose, it is required to be a film having high purity and high crystallinity.
  • the target is required to be dense and highly pure.
  • Conventional LaB 6 targets have been produced by sintering commercially available LaB 6 powder.
  • lanthanum oxide, boron oxide, lanthanum-boron composite oxide as impurities are 1.5 mass% or more in terms of oxygen, and lanthanum carbide and boron carbide are 0.2 mass in terms of carbon. More than% is included.
  • the lanthanum oxide and boron oxide contained in the LaB 6 commercial powder are those in which LaB 6 is oxidized mainly by oxygen in the atmosphere.
  • the industrial production process of LaB 6 commercial powder requires a process of grinding the synthesized powder into a particle size suitable as a raw material for the sintered body, so it is practically impossible to handle it completely shut off from the atmosphere. It is.
  • the fracture surface newly generated by this pulverization reacts with oxygen in the atmosphere to become lanthanum oxide and boron oxide.
  • lanthanum is contained in the LaB 6 commercial powder - boron composite oxide, LaB 6 in the synthesis of commercially available powders, lanthanum oxide contained in various La material and boron oxide contained in the B material Is produced by the reaction.
  • lanthanum carbide and boron carbide are generated due to carbon added during synthesis.
  • the carbon is added to reduce various La raw materials to a metal La state capable of reacting with B during synthesis. Normally, excessive carbon is added to completely react La, so that the remaining carbon reacts with La and B to become lanthanum carbide and boron carbide. It is practically impossible to avoid the formation of these carbides. Therefore, avoiding the inclusion of lanthanum oxide, boron oxide, lanthanum-boron composite oxide, lanthanum carbide, boron carbide, and residual carbon in LaB 6 commercial powder produced by an industrial production method is very It is difficult to.
  • the current LaB 6 sintered body produced using commercially available LaB 6 powder contains at least 3% by volume of impurities derived from the raw material powder. Further, the impurities contained in the target are directly taken into the sputtered film. Since the impurity has a work function larger than that of LaB 6, the LaB 6 film containing such an impurity has a higher work function. Therefore, when a conventional LaB 6 target prepared by sintering LaB 6 commercial powder is used, the resulting LaB 6 film has a high impurity content, resulting in a problem that the work function of the film increases. there were.
  • the LaB 6 sputtered film contains impurities that can relax the coefficient of thermal expansion and the difference in lattice constant between LaB 6 and the substrate, the internal stress of the film can be reduced.
  • impurities have a larger work function than LaB 6 . Therefore, if the LaB 6 film contains impurities, the internal stress of the film is relaxed, but it is inevitable that the work function becomes high. Therefore, a target that does not contain impurities that increase the work function and that can produce a LaB 6 sputtered film with high adhesion and crystallinity that has a reduced thermal expansion difference between LaB 6 and the substrate. Material is desired.
  • LaB 6 is difficult to sinter
  • a conventional LaB 6 target produced by sintering a commercially available powder has only a relative density of about 80% and contains a large amount of pores.
  • organic components, moisture and the like are adsorbed in the pores. This organic component and moisture are released into the vacuum chamber at the time of sputtering, and there is a problem that the chamber is contaminated or taken into the sputtered film to cause deterioration of the film performance.
  • the relative density of the LaB 6 sputter target is 88% or more.
  • a method for densifying the sintered body there is a method in which a sintering aid is added to lanthanum boride powder and sintering is performed (for example, see Patent Documents 1 and 2).
  • a metal oxide is usually used as a sintering aid, the metal oxide remains as an impurity in the sintered body even after sintering.
  • this sintered body is used as a target material, there is a problem that impurities in the sintered body are taken into the sputtered film and the performance of the film is reduced.
  • a sputtering target using a metal boride a sputtering target mainly comprising at least one selected from hafnium boride, titanium boride, tungsten boride, and lanthanum boride
  • a sputtering target having a sintered body density ratio of 80% or more and a crystal grain size of 50 ⁇ m or less and a method for producing the same are disclosed (for example, see Patent Document 3).
  • voids between target particles are greatly reduced, and the relative density of the target is improved, thereby obtaining a high-density boride target.
  • this technique is a technique for improving the mass productivity of a product produced using this target, and no mention is made of high purity of the target.
  • the present inventors have obtained a high-purity and high-density (high-density) metal boride sintered body suitable as a constituent material for a sputtering target, particularly a lanthanum boride film capable of obtaining a lanthanum boride thin film having a small work function.
  • the research on the effective manufacturing method of the sintered compact was repeated.
  • the present inventors have found that a method of sintering lanthanum boride powder washed in an inorganic acid is effective for obtaining a highly pure lanthanum boride sintered body.
  • the metal oxide, boron oxide, and metal-boron composite oxide contained as impurity oxides dissolve in the inorganic acid, but as impurity carbides.
  • the contained metal carbide and boron carbide do not dissolve in inorganic acids.
  • the present inventors heated the metal boride powder in the atmosphere at a specific temperature to oxidize the impurity carbides into oxides, and the oxidized powder was oxidized to be oxidized. It has been found that the impurities can be removed.
  • the present invention has been made under such circumstances, a dense high purity, excellent crystallinity, and suitable as a sputtering target for the production of good LaB 6 film having a work function LaB 6
  • An object of the present invention is to provide a sintered body, a target using the same, a lanthanum hexaboride film formed using the target, and an effective method for producing the LaB 6 sintered body. .
  • the impurity which would increase the work function of LaB 6 is different from the present as a mixture with LaB 6, the nitrogen is dissolved in the lattice of the LaB 6 sintered body.
  • a LaB 6 sintered body with solid solution of nitrogen as a target, a LaB 6 sputtered film with solid solution of nitrogen is formed.
  • Nitrogen solid solution amount within the sputtering film is not always coincide with the nitrogen solid solution amount of LaB 6 in the sintered body for a target, the nitrogen content of the LaB 6 in the sintered body for a target 0.1 wt% It was found that the crystallinity of the LaB 6 sputtered film is increased by setting it to 3.0% by mass or less.
  • the nitrogen content is within the above range, and the content of impurities composed of carbon alone and / or at least two elements selected from La, C, O and B is 0.3 vol%.
  • the LaB 6 sintered body described below is a sputtering target for producing a LaB 6 thin film having high purity, a relative density of 88% or more, excellent crystallinity, and good work function. And so on.
  • the LaB 6 sintered body can be effectively manufactured by using LaB 6 powder as a raw material and applying a specific process. The present invention has been completed based on such findings.
  • the present invention [1] A nitrogen element content of 0.1% by mass or more and 3% by mass or less, and an impurity composed of carbon alone and / or at least two elements selected from La, C, O, and B A lanthanum hexaboride sintered body, wherein the content is 0.3% by volume or less and the relative density of the sintered body is 88% or more; [2] The lanthanum hexaboride sintered body according to [1], wherein the carbon content is less than 0.1% by mass and the oxygen content is less than 1.0% by mass, [3] The lanthanum hexaboride sintered body according to [1] or [2], wherein the lattice constant is 4.1570 to 4.1750 [4] A target using the lanthanum hexaboride sintered body according to any one of [1] to [3], [5] A lanthanum hexaboride film formed by sputtering the target according to [4] and having a work function of 3.1
  • step (b) Heating of lanthanum hexaboride powder obtained in step (a) A step of acid-treating the treated product, and (c) firing the acid-treated product of lanthanum hexaboride powder obtained in the step (b) in a nitrogen gas atmosphere at a temperature of 1800 ° C. or higher and a pressure of 30 MPa or higher.
  • the oxygen content in the acid-treated product of the obtained lanthanum hexaboride powder in the step (b) is less than 1.0% by mass and the carbon content is less than 0.1% by mass.
  • the method for producing a lanthanum hexaboride sintered body according to any one of [1] to [3], wherein [7]
  • the acid-treated product of the lanthanum hexaboride powder after the step (b) has an average particle diameter of 1 ⁇ m or more and 5 ⁇ m or less, and further between the step (b) and the step (c) (b ′)
  • the step includes mixing the acid-treated product with fine lanthanum hexaboride powder having an average particle size of 50 nm or more and 500 nm or less to obtain a mixed powder.
  • the mixed powder is The method for producing a lanthanum hexaboride sintered body according to [6], which is sintered under the above conditions, [8]
  • the mass ratio (M N / M S ) of the mass M N of the acid-treated product and the mass M S of the fine lanthanum hexaboride powder is 97/3 to 70 /.
  • the fine lanthanum hexaboride powder was obtained after a thermal reduction treatment of a lanthanum-containing compound and a boron-containing compound in a vacuum or in an inert gas atmosphere at a temperature of 1200 ° C. or higher and 1500 ° C. or lower.
  • the method for producing a lanthanum hexaboride sintered body according to [7] or [8], which is subjected to a treatment for reducing impurities in the product [10]
  • a LaB 6 sintered body suitable as a sputtering target for producing a LaB 6 thin film having high purity and denseness, excellent crystallinity and good work function, and the like are used.
  • An effective method for producing a target, a lanthanum hexaboride film formed using the target, and the LaB 6 sintered body can be provided.
  • Example 2 is a SEM photograph of the LaB 6 sintered body of Example 1.
  • 4 is a SEM photograph of a LaB 6 sintered body of Comparative Example 3.
  • the LaB 6 sintered body of the present invention has a nitrogen element content of 0.1% by mass or more and 3% by mass or less, and is composed of carbon alone and / or at least two selected from La, C, O and B.
  • the content of impurities composed of elements is 0.3% by volume or less, and the relative density of the sintered body is 88% or more.
  • Solid solution of elemental nitrogen into LaB 6 sintered lattice In general, when a film having a composition or crystal structure different from that of the film-forming substrate is formed by sputtering, internal stress is generated in the sputtered film due to a difference in physical properties between the substrate and the film, and the crystallinity of the film is reduced. It becomes worse and causes problems such as film peeling. In order to cope with such problems, the LaB 6 sintered body of the present invention relaxes internal stress in the sputtered film by dissolving nitrogen element in the LaB 6 crystal lattice of the sintered body, and crystal Improved.
  • the content of nitrogen element in LaB 6 sintered body of the present invention must be at 3.0 wt% or less than 0.1 wt%.
  • the nitrogen content of less distortion of the LaB 6 crystal lattice is less than 0.1 wt%, the crystallinity of the LaB 6 sputtered film can not sufficiently relax the film internal stress caused by the difference in physical properties between the film substrate and the LaB 6 film Not improved.
  • the nitrogen content exceeds 3 mass%, the strain of the LaB 6 crystal lattice becomes larger than the internal stress that can be relaxed, and the crystallinity of the LaB 6 sputtered film is deteriorated.
  • the content of the nitrogen element is preferably 0.1% by mass or more and 2.0% by mass or less, and more preferably 0.2% by mass or more and 1.0% by mass or less. .
  • the nitrogen element is an element belonging to Group 15 of the periodic table (long period type). Even if other group 15 elements (P, As, Sb, Bi) other than nitrogen element are not dissolved in LaB 6 or can be dissolved, the same result as that obtained by dissolving nitrogen is not obtained. The reason for this is that other group 15 elements other than nitrogen elements have a remarkably large van der waals radius. Therefore, if a group 15 element other than nitrogen elements is present, the distortion of the LaB 6 crystal lattice becomes too large, and the film forming substrate and LaB This is thought to be because the in-film stress generated by the difference in the characteristics of the six films cannot be relaxed. On the other hand, nitrogen having a small van der waals radius dissolves relatively easily in the crystal lattice of LaB 6 .
  • Group 15 elements has a large work function compared with LaB 6, a work function as large as Group 15 elements that can not be dissolved is present LaB 6 in the film.
  • the solid solution amount of nitrogen element is small, the crystal structure does not change greatly, and therefore the work function of LaB 6 is hardly affected. Therefore, by dissolving nitrogen, the internal stress of the sputtered film can be relaxed without affecting the work function.
  • the sintered body has a lattice constant of 4.1570 to 4.1750 to obtain a sputtered film having excellent crystallinity.
  • a lattice constant of 4.1590% or less is more preferable because a LaB 6 sputtered film with better crystallinity can be obtained.
  • the nitrogen element content in the LaB 6 sintered body is determined by placing the pulverized sintered body in a graphite crucible and heating and melting it in He gas in a combustion tube.
  • the nitrogen in the generated gas is obtained by a thermal conductivity method. This can be confirmed by measuring. How to solid solution nitrogen element into the lattice of the LaB 6 sintered body will be described in the manufacturing method of the LaB 6 sintered body of the present invention to be described later.
  • the content of impurities composed of carbon alone and / or at least two elements selected from La, C, O and B is 0.3% by volume or less. It takes a thing.
  • the impurity content in the LaB 6 sintered body is a value obtained from the area ratio of the impurity phase in the field of view by SEM observation.
  • the size of one visual field is 720 ⁇ m ⁇ 940 ⁇ m, and the observation values of the 20 visual fields are totaled to determine the area ratio.
  • the impurity content in the LaB 6 sintered body can be shown as the oxygen content and carbon content of LaB 6 in the sintered body, the oxygen content is preferably less than 1.0 wt%, more preferably Is 0.5 mass% or less, and the carbon content is preferably less than 0.1 mass%, more preferably 0.05 mass% or less.
  • the oxygen content and carbon content based on the said impurity are the values measured by the method shown below.
  • the oxygen content is a method in which a measurement sample in a graphite crucible is heated in an inert gas atmosphere, oxygen decomposed or dissociated from the measurement sample is reacted with carbon, and the produced carbon monoxide or carbon dioxide is quantified by infrared absorbance. That is, it is usually measured by a method called an inert gas melting method.
  • the carbon content is measured by heating a measurement sample in a quartz tube furnace and measuring a carbon component generated by volatilization, decomposition, combustion, etc. from the measurement sample using an infrared absorption method.
  • Examples of the impurity include one or more selected from carbon simple substance, lanthanum carbide, boron carbide, lanthanum oxide, boron oxide, and lanthanum-boron composite oxide.
  • the LaB 6 sintered body has a nitrogen element content of 0.1% by mass to 3% by mass and an impurity content other than nitrogen element of 0.3% by volume or less, and a sintered body.
  • the relative density is required to be 88% or more. If the relative density is less than 88%, a large amount of vacancies are contained in the target obtained using the LaB 6 sintered body, so that organic components and moisture adsorbed in the vacancies are present. During the sputtering, it is discharged into the vacuum chamber, contaminates the inside of the chamber, or is taken into the sputtered film, thereby causing the performance of the sputtered film to deteriorate.
  • the said relative density refers to the density ratio of the actual sintered compact with respect to theoretical density.
  • Method of manufacturing a LaB 6 sintered body of the present invention is obtained by (a) LaB 6 powder, a step of heat treatment at a temperature below 800 ° C. 600 ° C. or higher in the atmosphere, (b) the step (a) A step of acid-treating the heat-treated product of LaB 6 powder, and (c) the acid-treated product of LaB 6 powder obtained in the step (b) in a nitrogen gas atmosphere at a temperature of 1800 ° C. or higher and a pressure of 30 MPa or higher. And in the step (b), the oxygen content in the acid-treated product of the LaB 6 powder obtained is less than 1.0% by mass, and the carbon content is less than 0.1% by mass. It is characterized by adjusting to.
  • the LaB 6 powder used as a raw material has a content of impurities other than nitrogen in the LaB 6 sintered body to be 0.3% by volume or less.
  • High purity treatment is performed. (High purity treatment of raw material LaB 6 powder)
  • the said (a) process and (b) process are given as a highly purified process. The details of these steps (a) and (b) are as follows.
  • Step (a) in the high-purification treatment is a step of heat-treating the raw material LaB 6 powder at a temperature of 600 ° C. or higher and 800 ° C. or lower in the atmosphere.
  • the raw material LaB 6 powder a synthesized product or a commercially available product may be used.
  • these LaB 6 powders one or more selected from simple carbon, lanthanum oxide, lanthanum carbide, boron oxide, lanthanum boron composite oxide and boron carbide inevitably mixed in the production. Contains impurities.
  • the raw material LaB 6 powder is heat-treated in the air to convert lanthanum carbide and boron carbide into oxides.
  • Lanthanum oxide, boron oxide and lanthanum boron composite oxide can be easily removed by the acid treatment step (b) in the next step. Carbon simple substance is removed as carbon dioxide by this process.
  • the atmospheric oxidation treatment temperature is 600 ° C. or higher and 800 ° C. or lower. The reason is that when the temperature is lower than 600 ° C., the simple carbon, lanthanum carbide and boron carbide are not sufficiently oxidized, and when the temperature exceeds 800 ° C., LaB 6 itself is oxidized and the yield is lowered.
  • the average particle size of the used LaB 6 powder is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and even more preferably 1 ⁇ m or more, from the viewpoint of sinterability in the later-described (c) sintering step. 5 ⁇ m or less.
  • the average particle size is 0.1 ⁇ m or more, it is easy to remove oxygen and carbon, and the production cost is low.
  • the average particle size is 20 ⁇ m or less, the surface energy that becomes the driving force for sintering becomes large, and it is easy to obtain a high-density sintered body.
  • Step (b) in the high-purity treatment is a step of subjecting the heat-treated product of LaB 6 powder obtained in step (a) to an acid treatment.
  • the inorganic acid for eluting the oxidized impurities in the step (b) can be selected from hydrochloric acid, sulfuric acid, and nitric acid.
  • the kind, concentration, treatment temperature and treatment time of the inorganic acid to be used are preferably selected according to the component and content of the oxide to be dissolved. The reason for this is that when the oxidizing power of the inorganic acid is too high, not only the oxide but also LaB 6 itself is oxidized and dissolved, and the yield of LaB 6 itself is reduced.
  • the concentration is preferably 1 mol / dm 3 or more and 6 mol / dm 3 or less.
  • a more preferable concentration is 2 mol / dm 3 or more and 6 mol / dm 3 or less, and a particularly preferable concentration is 4 mol / dm 3 or more and 6 mol / dm 3 or less.
  • This treatment may be performed at room temperature, but is preferably performed by heating.
  • the heat treatment temperature is desirably 40 ° C. or higher and 80 ° C. or lower. This is because it takes time to elute impurities when the temperature is lower than 40 ° C., and LaB 6 itself is easily oxidized when the temperature exceeds 80 ° C.
  • the powder after the acid treatment is preferably subjected to a drying treatment, in particular a vacuum drying treatment, in order to remove moisture after removing the acid component with pure water or ion exchange water. The reason for vacuum drying is to avoid reacting with LaB 6 to produce oxidized impurities when the water evaporates.
  • the oxygen content in the acid-treated product of the LaB 6 powder obtained by subjecting the raw material LaB 6 powder to the purification treatment is preferably 1
  • the carbon content is adjusted to less than 0.0% by mass, more preferably less than 0.5% by mass, and the carbon content is preferably less than 0.1% by mass, more preferably less than 0.05% by mass.
  • a LaB 6 powder subjected to a purification treatment comprising the steps (a) and (b) (the LaB 6) 6 acid-treated product of a powder)
  • step may be provided to obtain a mixed powder is mixed with small fine LaB 6 powder average particle diameter than the LaB 6 powder.
  • the LaB 6 powder having been subjected to the high purification treatment called LaB 6 powder N
  • the fine LaB 6 powder may be referred to as fine LaB 6 powder S.
  • the average particle size of the LaB 6 powder N is preferably 1 ⁇ m or more and 5 ⁇ m or less from the viewpoint of making it larger than the fine LaB 6 powder S.
  • the average particle size of the LaB 6 powder N is more preferably 1 ⁇ m to 4 ⁇ m, and still more preferably 1 ⁇ m to 3 ⁇ m. Since the particle size reduction rate when the raw material LaB 6 powder is made LaB 6 powder N by the above-described purification process is at most several percent, instead of defining the average particle size of LaB 6 powder N, the raw material Even if the average particle size of the LaB 6 powder is defined within the above range, there is no substantial difference.
  • the present inventors have found that if the fine LaB 6 powder S with an appropriate amount of fine LaB 6 powder S into LaB 6 powder N having an average particle diameter superior greater filling characteristics so that the contact of the particles can take enough than, It has been found that excellent sinterability is exhibited by the large surface energy of the fine LaB 6 powder S.
  • the fine LaB 6 powder S preferably has an average particle size of 50 nm to 500 nm. If this average particle size is less than 50 nm, it is difficult to produce in large quantities, which is not economical. If the average particle size is larger than 500 nm, the effect of improving the relative density of the lanthanum boride sintered body is not observed.
  • the average particle size is more preferably 50 nm to 300 nm, and still more preferably 60 nm to 200 nm.
  • the method of manufacturing a fine LaB 6 powder S is not limited to, a jet mill commercial LaB 6 powder may be ground in a bead mill or the like is adjusted to a predetermined particle size.
  • thermal reduction synthesis of lanthanum compound and boron carbide in a reducing atmosphere synthesis by thermal plasma, or synthesis by a hydrothermal synthesis method with a reducing agent added.
  • these obtained powders may be pulverized with a jet mill, a bead mill or the like to adjust to a predetermined particle size.
  • a lanthanum-containing compound and a boron-containing compound are obtained after thermal reduction treatment at a temperature of about 1200 ° C. to 1500 ° C. in a vacuum or in an inert gas atmosphere. And a method of performing a treatment for reducing impurities in the product containing lanthanum boride.
  • the treatment for reducing the impurities can be performed by various methods, and the method is not limited, and examples thereof include a method of acid cleaning with a mixture of an inorganic acid and water.
  • the inorganic acid used for the acid cleaning hydrochloric acid is preferable in order to suppress oxidation of the obtained lanthanum boride.
  • the product obtained by the thermal reduction treatment contains a large amount of impurities derived from raw materials.
  • the same high purity treatment as the method for obtaining LaB 6 powder N described above, that is, the heat treatment in the step (a) and the acid treatment in the step (b) are performed, so that the impurity content is a commercial product. More preferably, for example, the carbon content is 0.5% by mass or less and the oxygen content is 1.0% by mass or less, and if the impurity content is the same as that of the LaB 6 powder N described above, preferable.
  • the average particle diameter of the LaB 6 powder N and the fine LaB 6 powder S is a value measured by a scanning electron microscope (SEM). These carbon content and oxygen content are values measured by the infrared absorption method and the inert gas melting method described above.
  • LaB 6 powder N and the mass M S of the mass M N and fine LaB 6 powder S preferably the mass ratio (mass M N / mass M S) 97/3 to 70/30, More preferably, mixing is performed at a ratio of 96/4 to 90/10. If the content of the fine LaB 6 powder S is less than 3% by mass with respect to the total amount of the LaB 6 powder N and the fine LaB 6 powder S, it is added to contribute to the large surface energy of the fine LaB 6 powder S Since the amount is insufficient, the effect of improving the relative density may not be obtained.
  • the filling property may be lowered due to the influence of the aggregation of the fine LaB 6 powder S, and the sintering reaction may not easily occur.
  • it is more than 30% by mass it is not practical in terms of production cost of the fine LaB 6 powder S even if aggregation is avoided by any method.
  • the fine LaB 6 powder S has a large surface area and a large amount of oxygen content derived from the surface oxide layer, if the addition amount of the fine LaB 6 powder S is too large, the oxygen content contained in the sintered body increases. When used as a target material, the performance of the sputtered film may be degraded.
  • the mixing method can be used as the mixing method, and the method is not limited, and examples thereof include a method of slurrying in an organic solvent and performing ball mill mixing.
  • an arbitrary binder may be added and slurried in an organic solvent to perform ball mill mixing.
  • the mixed powder is desirably dried under reduced pressure or in an inert atmosphere. Further, it may be dried and granulated by spray drying or the like to form granules.
  • the step (c) is an acid-treated product of the LaB 6 powder obtained in the step (b), or a mixed powder of the LaB 6 powder N and the fine LaB 6 powder S obtained in the step (b ′). Is sintered in a nitrogen gas atmosphere under conditions of a temperature of 1800 ° C. or higher and a pressure of 30 MPa or higher to obtain a dense LaB 6 sintered body, and in the lattice of the obtained LaB 6 sintered body, a nitrogen element Is a step of dissolving the solid solution.
  • the LaB 6 powder obtained by the high-purification treatment may be molded and sintered as it is, or added to a solvent together with an optional binder to form a slurry, granulated, and molded. You may degrease.
  • LaB 6 powder is difficult to sinter, but LaB 6 powder subjected to high-purity treatment is pressure-sintered in nitrogen gas at 1800 ° C. or higher and a press pressure of 30 MPa or higher, so that the nitrogen content is reduced.
  • a LaB 6 sintered body having an amount of impurities other than nitrogen of 0.1% by mass to 3% by mass and a relative density of 88% or more can be obtained.
  • the pressure sintering is suitably performed using a hot press apparatus.
  • a graphite mold in a hot press apparatus is filled with the obtained LaB 6 powder, and pressure-sintered at about 1800 ° C. to 1950 ° C. and a press pressure of about 30 MPa to 40 MPa in nitrogen gas.
  • a sintered body having an impurity content of 0.3% by volume or less, a nitrogen content of 0.1% by mass to 3% by mass, and a relative density of 88% or more can be obtained.
  • the temperature is lower than 1800 ° C., the temperature necessary for densification is insufficient, so that a sintered body having a relative density of 88% or more cannot be obtained even if the amount of pressurization is increased. For this reason, the relative density may be reduced.
  • the pressure is less than 30 MPa, sufficient densification is not performed, and a sintered body having a relative density of 88% or more cannot be obtained.
  • the pressure resistance of a sintering jig usually used for hot press sintering is 40 MPa, and since there is almost no high pressure jig beyond that, the upper limit is 40 MPa.
  • the method of manufacturing a LaB 6 sintered body of the present invention there is provided a dense with high purity, excellent crystallinity, and suitable as a sputtering target for the production of good LaB 6 film having a work function LaB 6 A sintered compact can be manufactured effectively.
  • the present invention also provides a target using the LaB 6 sintered body of the present invention having the properties described above, and a LaB 6 sputtered film formed by sputtering this target.
  • Sputtering using a target using LaB 6 with a low impurity content and appropriately controlled nitrogen content provides higher purity and excellent crystallinity than when using a conventional LaB 6 target.
  • a LaB 6 sputtered film can be obtained. That is, in order to form a LaB 6 sputtered film having excellent crystallinity and high purity, the LaB 6 sintered body used for the target has a relative density of 88% or more and a nitrogen content of 0.1 mass.
  • the LaB 6 sintered body has an oxygen content based on impurities of preferably less than 1.0% by mass, more preferably 0.5% by mass or less, and a carbon content of preferably less than 0.1% by mass. More preferably, it is 0.05 mass% or less.
  • the LaB 6 sputtered film thus obtained and having high purity and excellent crystallinity has a small work function.
  • the work function of this LaB 6 sputtered film is preferably 3.1 eV or less, more preferably 2.8 eV or less, and even more preferably 2.7 eV or less.
  • work function measurement methods include photoelectron spectroscopy such as ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS), as well as the Kelvin probe method.
  • Photoelectron spectroscopy has high measurement accuracy, but the apparatus is expensive and the measurement cost is high.
  • the Kelvin probe method is inexpensive, and the measurement cost is low, but the measurement accuracy is slightly inferior. Therefore, in the present invention, a measurement value obtained by ultraviolet photoelectron spectroscopy (UPS) in photoelectron spectroscopy is employed as a work function value, and the work function value measured by the Kelvin probe method is used as a reference.
  • UPS ultraviolet
  • Sputtering equipment generally includes bipolar DC glow discharge sputtering equipment, magnetron sputtering equipment, ion beam sputtering equipment, etc.
  • the target using the LaB 6 sintered body of the present invention is applicable to any sputtering equipment. it can.
  • the atmosphere during sputtering is preferably an inert gas atmosphere such as Ar gas.
  • the material of the object (substrate or the like) on which the LaB 6 sputtered film is formed and examples thereof include metals such as tungsten and copper, glass, Si wafers, and synthetic resins such as polyamide resins.
  • the temperature during sputtering is preferably 0 ° C. or higher and 300 ° C. or lower.
  • a LaB 6 sputtered film having excellent crystallinity can be obtained when the temperature at the time of sputtering is higher, but if it is 300 ° C. or higher, there is a possibility that thermal stress will be excessive when cooled to room temperature after film formation, In addition, when the substrate is introduced into the sputtering chamber, it takes time until the substrate temperature becomes uniform, resulting in poor productivity. Moreover, the upper limit of sputtering temperature is determined by the film forming substrate. For example, there is no problem when sputtering is performed on a heat-resistant substrate such as a metal or Si wafer.
  • the temperature during sputtering is preferably 0 ° C. or higher and 300 ° C. or lower, more preferably 0 ° C. or higher and 100 ° C. or lower.
  • Oxygen content was measured by the above inert gas melting method using 50 mg of sample powder and using an oxygen / nitrogen simultaneous analyzer [LECO, TC-436]. It was measured.
  • the carbon content was measured by a method using infrared absorption using 100 mg of the sample powder and using a carbon analyzer [LE-CO, WC-200].
  • Example 1 LaB 6 high purity treatment LaB 6 commercially available powder of a commercially available powder subjected to oxidation treatment in the atmosphere 700 ° C., and then subjected to acid treatment at 60 ° C. with 6 mol / dm 3 hydrochloric acid.
  • the acid-treated powder was washed with ion-exchanged water until the filtrate had a pH of 6 or more and a chlorine ion concentration of 1 mg / dm 3 or less, and vacuum dried at 110 ° C.
  • the obtained LaB 6 powder had an oxygen content based on impurities of 0.38% by mass and a carbon content of 0.006% by mass.
  • the average particle diameter of the obtained LaB 6 powder was 1.5 ⁇ m.
  • LaB 6 powder purified in the above (1) was sintered in a nitrogen gas at 1950 ° C. and a press pressure of 40 MPa for 2 hours in a hot press apparatus.
  • the obtained sintered body has a relative density of 92.4%, a nitrogen element content of 0.44% by mass, nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide.
  • the impurity content other than was 0.006% by volume.
  • the impurity content was 0.011% by mass in terms of carbon content and 0.21% by mass in terms of oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1578 mm, which was larger than the theoretical value.
  • Example 2 (1) High purity treatment of LaB 6 commercial powder The same as Example 1 (1).
  • (2) Production of LaB 6 sintered body The powder subjected to the purification treatment in (1) was sintered in a nitrogen gas in nitrogen gas at 1950 ° C. and a press pressure of 30 MPa for 2 hours.
  • the obtained sintered body has a relative density of 91.5%, a nitrogen element content of 0.42% by mass, and nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide.
  • the impurity content other than the above was 0.008% by volume, and the impurity content was 0.015% by mass in terms of carbon content and 0.25% by mass in terms of oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1576 ⁇ , which was larger than the theoretical value. Thereby, it was confirmed that the nitrogen element was dissolved in the lattice of the LaB 6 sintered body.
  • (3) Sputtering film formation using LaB 6 sintered body as a target Using the LaB 6 sintered body obtained in (2) above as a target, a magnetron sputtering apparatus is used, and pressure is 0.5 Pa and temperature is 20 ° C. in Ar gas. Sputtering film formation was performed.
  • the obtained LaB 6 film contains almost no impurities other than nitrogen, and is a thin film as compared with the case where a LaB 6 sintered body in which the nitrogen element of Comparative Example 1 described later is not dissolved is used as a target.
  • the peak intensity measured by XRD was about 2.0 times, and the crystallinity was high.
  • the work function was 3.6 eV in the Kelvin probe method and 2.6 eV in the vacuum UPS method, and had a smaller value than that in Comparative Example 1.
  • Table 1 The processing conditions and results are shown in Table 1.
  • Example 3 High purity treatment of LaB 6 commercial powder The same as Example 1 (1).
  • (2) Production of LaB 6 sintered body LaB 6 powder purified in the above (1) was sintered in a nitrogen gas in nitrogen gas at 1950 ° C. and a press pressure of 40 MPa for 3 hours.
  • the obtained sintered body has a relative density of 91.7%, a nitrogen element content of 0.99% by mass, nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide
  • the content of impurities other than elements was 0.005% by volume.
  • the impurity content was 0.018% by mass in terms of carbon content and 0.18% by mass in terms of oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.11581, which was larger than the theoretical value. Thereby, it was confirmed that the nitrogen element was dissolved in the lattice of the LaB 6 sintered body.
  • (3) Sputtering film formation using LaB 6 sintered body as a target Using the LaB 6 sintered body obtained in (2) above as a target, a magnetron sputtering apparatus is used, and pressure is 0.5 Pa and temperature is 20 ° C. in Ar gas. Sputtering film formation was performed.
  • the obtained LaB 6 film contains almost no impurities other than nitrogen, and is a thin film as compared with the case where a LaB 6 sintered body in which the nitrogen element of Comparative Example 1 described later is not dissolved is used as a target.
  • the peak intensity by XRD measurement was about 1.7 times, and the crystallinity was high.
  • the work function was 3.7 eV in the Kelvin probe method. The processing conditions and results are shown in Table 1.
  • Example 4 High purity treatment of LaB 6 commercial powder The same as Example 1 (1).
  • (2) Production of LaB 6 Sintered Body The powder purified in (1) above was sintered in a nitrogen gas gas at 1950 ° C. and a press pressure of 40 MPa for 6 hours by a hot press apparatus.
  • the obtained sintered body has a relative density of 89.5%, a nitrogen element content of 2.9% by mass, nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide.
  • the impurity content other than was 0.01% by volume.
  • the impurity content was 0.038 mass% in terms of carbon content and 0.17 mass% in terms of oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1736 mm, which was larger than the theoretical value. Thereby, it was confirmed that the nitrogen element was dissolved in the lattice of the LaB 6 sintered body.
  • (3) Sputtering film formation using LaB 6 sintered body as a target Using the LaB 6 sintered body obtained in (2) above as a target, a magnetron sputtering apparatus is used, and pressure is 0.5 Pa and temperature is 20 ° C. in Ar gas. Sputtering film formation was performed.
  • the obtained LaB 6 film contains almost no impurities other than nitrogen, and is a thin film as compared with the case where a LaB 6 sintered body in which the nitrogen element of Comparative Example 1 described later is not dissolved is used as a target.
  • the peak intensity by XRD measurement was about 1.5 times, and the crystallinity was high.
  • the work function was 3.7 eV in the Kelvin probe method. The processing conditions and results are shown in Table 1.
  • Example 5 High purity treatment of LaB 6 commercial powder The same as Example 1 (1).
  • (2) Production of LaB 6 sintered body The LaB 6 powder purified in the above (1) was sintered in a nitrogen gas in nitrogen gas at 1800 ° C. and a pressing pressure of 40 MPa for 2 hours.
  • the obtained sintered body has a relative density of 90.8%, a nitrogen element content of 0.28% by mass, and nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide.
  • the impurity content other than was 0.005% by volume.
  • the impurity content was 0.013 mass% in terms of carbon content and 0.27 mass% in terms of oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1574, which was larger than the theoretical value. Thereby, it was confirmed that the nitrogen element was dissolved in the lattice of the LaB 6 sintered body.
  • (3) Sputtering film formation using LaB 6 sintered body as a target Using the LaB 6 sintered body obtained in (2) above as a target, using a magnetron sputtering apparatus, sputtering is performed in Ar gas at a pressure of 6.7 Pa. Membrane was performed.
  • the obtained LaB 6 film contains almost no impurities other than the nitrogen element, and compared with the case where the LaB 6 sintered body in which the nitrogen element of Comparative Example 1 described later is not dissolved is used as a target,
  • the peak intensity measured by thin film XRD was about 2.0 times, and the crystallinity was high.
  • the work function was 3.6 eV in the Kelvin probe method. The processing conditions and results are shown in Table 1.
  • Example 6 (1) High purity treatment of LaB 6 commercial powder The same as Example 1 (1).
  • (2) Production of LaB 6 sintered body The LaB 6 powder purified in the above (1) was sintered in nitrogen gas at 1800 ° C. under a press pressure of 30 MPa for 2 hours by a hot press apparatus.
  • the obtained sintered body has a relative density of 89.6%, a nitrogen element content of 0.15% by mass, nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide
  • the content of impurities other than elements was 0.009% by volume.
  • the impurity content was 0.015 mass% in terms of carbon content and 0.28 mass% in terms of oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1573 mm, which was larger than the theoretical value. Thereby, it was confirmed that the nitrogen element was dissolved in the lattice of the LaB 6 sintered body.
  • (3) Sputtering film formation using LaB 6 sintered body as a target Using the LaB 6 sintered body obtained in (2) above as a target, using a magnetron sputtering apparatus, sputtering is performed in Ar gas at a pressure of 6.7 Pa. Membrane was performed.
  • the obtained LaB 6 film contains almost no impurities other than the nitrogen element, and compared with the case where the LaB 6 sintered body in which the nitrogen element of Comparative Example 1 described later is not dissolved is used as a target,
  • the peak intensity measured by thin film XRD was about 1.5 times, and the crystallinity was high.
  • the work function was 3.7 eV in the Kelvin probe method and 3.0 eV in the vacuum UPS method, which was smaller than that in Comparative Example 1.
  • Table 1 The processing conditions and results are shown in Table 1.
  • Example 7 High purity treatment of LaB 6 commercial powder The same as Example 1 (1).
  • (2) Production of LaB 6 sintered body LaB 6 fine particles (average particle size: 100 nm, oxygen content 0) were added to LaB 6 powder having an average particle size of 1.5 ⁇ m obtained by the purification treatment in (1) above. 7 mass%, carbon content 0.1 mass%) was added, and the mixture was sintered in a nitrogen gas at 1800 ° C. under a press pressure of 30 MPa for 2 hours in a hot press apparatus.
  • the obtained sintered body has a relative density of 94.3%, a nitrogen element content of 0.33% by mass, and nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide.
  • the content of impurities other than elements was 0.007% by volume.
  • the impurity content was 0.024 mass% in terms of carbon content and 0.20 mass% in terms of oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1576 ⁇ , which was larger than the theoretical value. Thereby, it was confirmed that the nitrogen element was dissolved in the lattice of the LaB 6 sintered body.
  • the obtained LaB 6 film contains almost no impurities other than the nitrogen element, and compared with the case where the LaB 6 sintered body in which the nitrogen element of Comparative Example 1 described later is not dissolved is used as a target,
  • the peak intensity by thin film XRD measurement was about 2.6 times, and the crystallinity was high.
  • the work function was 3.5 eV as evaluated by the Kelvin probe method. The processing conditions and results are shown in Table 1.
  • Example 8 (1) High purity treatment of LaB 6 commercial powder The same as Example 1 (1). (2) Production of LaB 6 sintered body 5% by mass of LaB 6 fine particles as in Example 7 was added to LaB 6 powder having an average particle size of 1.5 ⁇ m obtained by the purification treatment in (1) above. Then, it was sintered in nitrogen gas at 1950 ° C. and a press pressure of 30 MPa for 2 hours by a hot press apparatus. The obtained sintered body has a relative density of 96.1%, a nitrogen element content of 0.40% by mass, nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide. The content of impurities other than elements was 0.011% by volume.
  • the impurity content was 0.031% by mass in terms of carbon content and 0.15% by mass in terms of oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1579, which was larger than the theoretical value. Thereby, it was confirmed that the nitrogen element was dissolved in the lattice of the LaB 6 sintered body.
  • (3) Sputtering film formation using LaB 6 sintered body as a target Using the LaB 6 sintered body obtained in (2) above as a target, a magnetron sputtering apparatus is used, and pressure is 0.5 Pa and temperature is 20 ° C. in Ar gas. Sputtering film formation was performed.
  • the obtained LaB 6 film contains almost no impurities other than the nitrogen element, and compared with the case where the LaB 6 sintered body in which the nitrogen element of Comparative Example 1 described later is not dissolved is used as a target,
  • the peak intensity of the thin film XRD measurement was about 2.8 times, and the crystallinity was high.
  • the work function was 3.45 eV in the Kelvin probe method and 2.4 eV in the vacuum UPS method, which was smaller than that in Comparative Example 1.
  • Table 1 The processing conditions and results are shown in Table 1.
  • Comparative Example 1 High purity treatment of LaB 6 commercial powder The same as Example 1 (1).
  • (2) Production of LaB 6 sintered body The LaB 6 powder purified in the above (1) was sintered in an argon gas in an argon gas at 1950 ° C. and a pressing pressure of 40 MPa for 2 hours.
  • the obtained sintered body has a relative density of 89.5%, a nitrogen element content of 0.006% by mass, and nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide.
  • the content of impurities other than elements was 0.005% by volume.
  • the impurity content was 0.015% by mass for carbon content and 0.31% by mass for oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1567 K, which was almost the same as the theoretical value. Thereby, it was confirmed that the nitrogen element was hardly dissolved in the lattice of the LaB 6 sintered body.
  • (3) Sputtering film formation using LaB 6 sintered body as a target Using the LaB 6 sintered body obtained in (2) above as a target, a magnetron sputtering apparatus is used, and pressure is 0.5 Pa and temperature is 20 ° C. in Ar gas. Sputtering film formation was performed.
  • the obtained LaB 6 film contained almost no impurities other than nitrogen element, and compared with the case where the LaB 6 sintered body in which the nitrogen element of Example 1 was dissolved was used as a target, the thin film XRD measurement was performed.
  • the peak intensity of LaB 6 was about 40% and the crystallinity was low.
  • the work function was 3.9 eV in the Kelvin probe method and 3.7 eV in the vacuum UPS method. The processing conditions and results are shown in Table 1.
  • Comparative Example 2 (1) nitrogen gas produced LaB 6 commercially available powder of LaB 6 commercially available powders LaB 6 sintered body used in the hot press device, 1950 ° C., sintered for 2 hours at a press pressure of 40 MPa.
  • the obtained sintered body has a relative density of 91.5%, a nitrogen element content of 0.45% by mass, and nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide.
  • the content of impurities other than elements was 0.9% by volume.
  • the impurity content was 0.3% by mass for carbon content and 1.8% by mass for oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1576 ⁇ , which was larger than the theoretical value.
  • the obtained LaB 6 film, a LaB 6 sintered body of Example 1 after the high purification process is obtained by sintering in nitrogen gas as compared with the case of using the target, the LaB 6 by a thin film XRD measurement Although the peak intensity had an equivalent value, a large amount of impurities having a crystal structure other than the crystal structure of LaB6 was contained.
  • the work function was 3.8 eV for the Kelvin probe method and 3.2 eV for the vacuum UPS method. The processing conditions and results are shown in Table 1.
  • Example 3 High purity treatment of LaB 6 commercial powder The same as Example 1 (1).
  • (2) Production of LaB 6 Sintered Body LaB 6 powder purified in the above (1) was sintered in a nitrogen gas at 1800 ° C. and a press pressure of 20 MPa for 2 hours in a hot press apparatus.
  • the obtained sintered body has a relative density of 86.5%, a nitrogen element content of 0.10% by mass, nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide.
  • the content of impurities other than elements was 0.08% by volume.
  • the impurity content was 0.020% by mass for carbon content and 0.33% by mass for oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1571, which was larger than the theoretical value. Thus, it was confirmed that the nitrogen element was dissolved in a small amount in the lattice of the LaB 6 sintered body.
  • (3) Sputtering film formation using LaB 6 sintered body as a target Using the LaB 6 sintered body obtained in (2) above as a target, a magnetron sputtering apparatus is used, and pressure is 0.5 Pa and temperature is 20 ° C. in Ar gas. Sputtering film formation was performed.
  • the obtained LaB 6 film contains almost no impurities other than nitrogen element. Compared with the case where the LaB 6 sintered body in which the nitrogen element of Example 1 is solid-solved within an appropriate range is used as a target.
  • the peak intensity of LaB 6 as measured by thin film XRD was about 20% and was a film with low crystallinity.
  • the work function was 4.8 eV in the Kelvin probe method and 4.2 eV in the vacuum UPS method. The processing conditions and results are shown in Table 1.
  • Example 4 High purity treatment of LaB 6 commercial powder The same as Example 1 (1).
  • (2) Production of LaB 6 Sintered Body LaB 6 powder purified in the above (1) was sintered in a nitrogen gas in nitrogen gas at 1950 ° C. and a press pressure of 20 MPa for 6 hours.
  • the obtained sintered body has a relative density of 87.5%, a nitrogen element content of 3.5% by mass, and nitrogen composed of amorphous boron carbide and amorphous lanthanum-boron composite oxide.
  • the content of impurities other than elements was 0.2% by volume.
  • the impurity content was 0.042 mass% in terms of carbon content and 0.11 mass% in terms of oxygen content.
  • the obtained LaB 6 sintered body had a lattice constant of 4.1759 mm, which was larger than the theoretical value. Thereby, it was confirmed that the nitrogen element was dissolved in the lattice of the LaB 6 sintered body.
  • (3) Sputtering film formation using LaB 6 sintered body as a target Using the LaB 6 sintered body obtained in (2) above as a target, a magnetron sputtering apparatus is used, and pressure is 0.5 Pa and temperature is 20 ° C. in Ar gas. Sputtering film formation was performed.
  • the obtained LaB 6 film contains almost no impurities other than nitrogen element.
  • the peak intensity of LaB 6 in the thin film XRD measurement is The film had a low crystallinity of about 90%.
  • the work function was 4.0 eV in the Kelvin probe method. The processing conditions and results are shown in Table 1.
  • the LaB 6 sintered bodies of Examples 1 to 8 have a nitrogen element content in the range of 0.1% by mass to 3% by mass and other than nitrogen element.
  • the impurity content is less than 0.3% by volume and the relative density is higher than 88%.
  • the sputtered films of Examples 1 to 8 have a peak intensity ratio in the thin film XRD measurement of about 1 as compared with the sputtered film of Comparative Example 1 that targets a LaB 6 sintered body in which the nitrogen element is not dissolved.
  • the crystallinity is high at 5 times or more and about 2.5 times or less, and the work function by the Kelvin probe method is as low as 0.2 to 0.45 eV.
  • the LaB 6 sintered body of Comparative Example 1 is sintered in argon gas, the nitrogen element is not dissolved. Further, the sputtered film of Comparative Example 1 has a peak intensity ratio of about 40% that of the sputtered film of Example 1 and low crystallinity, and has a high work function by the Kelvin probe method and the vacuum UPS method. Since Comparative Example 2 uses LaB 6 commercially available powder as it is, the obtained LaB 6 sintered body has a high content of impurities other than nitrogen elements as 0.9% by volume, and the LaB 6 sintered body is targeted. The sputtered film contains a large amount of impurities other than LaB 6 and has a high work function by the Kelvin probe method and the vacuum UPS method.
  • the obtained LaB 6 sintered body has a low relative density of 86.5% and a high work function by the Kelvin probe method and the vacuum UPS method. Since the comparative example 4 has a high nitrogen element content of 3.5% by mass, the sputtered film targeting the LaB 6 sintered body has a peak intensity ratio of about 90% of the sputtered film of the comparative example 1 and crystallinity. And the work function by the Kelvin probe method is high.
  • Examples 7 and 8 two kinds of particles (LaB 6 particles and LaB 6 particles) having different average particle diameters are used. Therefore, in Examples 7 and 8, the relative density (94.3% and 96.1%) of the LaB 6 sintered body is higher than those in Examples 1 to 6 and Comparative Examples 1 to 4.
  • the LaB 6 sputtered film has a higher peak intensity ratio (2.6 times and 2.8 times) and higher crystallinity than Examples 1 to 6 and Comparative Examples 1 to 4.
  • the work function (3.5 and 3.45 eV) by the Kelvin probe method is low.
  • the work function according to the vacuum UPS method of Example 8 is 2.4 eV, which is the lowest among Examples 1 to 8 and Comparative Examples 1 to 4. Note that the SEM photograph of LaB 6 sintered body of Example 1 shown in FIG. 1 shows a SEM photograph of LaB 6 sintered relative density is the lowest in Comparative Example 3 in Figure 2.
  • Table 2 shows the elemental analysis results of the LaB 6 sintered bodies of Examples 1 to 8 and Comparative Examples 1 to 4.
  • La, C, O, and B show the value by the said EPMA analysis, but N is a value by the result measured by the said thermal conductivity method.
  • the impurities were composed of simple carbon and / or at least two elements selected from La, C, O and B.
  • the LaB 6 sintered body of the present invention is suitable as a sputtering target for producing a LaB 6 thin film having high purity and denseness, excellent crystallinity and good work function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Ceramic Products (AREA)

Abstract

 六ホウ化ランタンを主成分とし、窒素元素含有量が0.1質量%以上3質量%以下であり、炭素単体、並びに/あるいはLa、C、O及びBの中から選ばれる少なくとも2種の元素から構成された不純物の含有量が0.3体積%以下であって、焼結体の相対密度が88%以上である六ホウ化ランタン焼結体、及び該六ホウ化ランタン焼結体を用いてなるターゲットを用いることにより、高純度で緻密であって、結晶性に優れかつ仕事関数の良好なLaB6薄膜を与えるスパッタリングターゲット用などとして好適なLaB6焼結体を提供することができる。

Description

六ホウ化ランタン焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び該焼結体の製造方法
 本発明は、六ホウ化ランタン(LaB6)焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び前記LaB6焼結体の製造方法に関する。さらに詳しくは、本発明は、高純度で緻密であって、結晶性に優れ、かつ仕事関数の良好なLaB6薄膜製造用のスパッタリングターゲットなどとして好適なLaB6焼結体、それを用いてなるターゲット、前記ターゲットを用いて製膜された六ホウ化ランタン膜、及び前記LaB6焼結体の効果的な製造方法に関するものである。
 金属ホウ化物は化学的に安定であり、ホウ素の含有量によって種々の電気的特性を示すことから様々な用途展開が期待されている。その中で特に六ホウ化ランタン(LaB6)は仕事関数が小さいことから、電子放出素子や照明等で電極材料としての用途開発が進められている。なお、上記仕事関数とは、物質表面から電子を取り出すのに必要な最小エネルギーのことである。電子放出素子の仕事関数は小さいほど好ましい。
 前記LaB6は薄膜として用いられることが多い。そのLaB6薄膜の製膜方法には種々の手法が検討されている。これらの方法の中で、緻密な膜が製膜できるLaB6ターゲットを用いたスパッタリング法が好適に用いられている。LaB6薄膜は、仕事関数が小さいことが必要とされ、そのためには高純度で結晶性が高い膜であることが必要とされる。
 一般的にターゲットは緻密で高純度であることが必要とされている。従来のLaB6ターゲットは市販のLaB6粉末を焼結して作製されてきた。
 しかしながら、市販のLaB6粉末には、不純物としてランタン酸化物、ホウ素酸化物、ランタン-ホウ素複合酸化物が酸素換算で1.5質量%以上、ランタン炭化物、ホウ素炭化物が炭素換算で0.2質量%以上含まれている。
 LaB6市販粉末中に含まれるランタン酸化物及びホウ素酸化物は、主に大気中の酸素によってLaB6が酸化したものである。LaB6市販粉末の工業的な製造プロセスでは、合成した粉末を焼結体原料として適する粒子径に粉砕するプロセスが必要であるため、完全に大気を遮断して取り扱うことは、現実的に不可能である。この粉砕により新しく生成する破断面部分が大気中の酸素と反応して、ランタン酸化物及びホウ素酸化物となる。
 また、LaB6市販粉末中に含まれるランタン-ホウ素複合酸化物は、LaB6市販粉末の合成の際に、各種La原料に含まれているランタン酸化物とB原料に含まれているホウ素酸化物が反応して生成したものである。
 一方、ランタン炭化物及びホウ素炭化物は、合成時に添加された炭素に起因して生成する。該炭素は、合成の際に各種のLa原料からBと反応可能な金属La状態に還元するために添加されている。通常は完全にLaを反応させるために過剰に炭素が添加されているため、残留した炭素がLa、Bと反応してランタン炭化物及びホウ素炭化物となる。これらの炭化物の生成も避けることは現実的には不可能である。したがって、工業的製造方法により製造されたLaB6市販粉末中に、ランタン酸化物、ホウ素酸化物、ランタン-ホウ素複合酸化物、ランタン炭化物、ホウ素炭化物や、残留炭素が含有することを避けることは非常に困難である。
 これらLaB6粉末中に含まれる不純物は焼結温度で加熱しても除去できず、LaB6焼結体の粒界に残存してしまう。そのため市販LaB6粉末を用いて作製した現状のLaB6焼結体には、原料粉末由来の不純物が少なくとも3体積%含まれてしまう。また、ターゲット中に含まれる不純物はそのままスパッタ膜に取り込まれてしまう。上記の不純物はLaB6よりも仕事関数が大きいため、このような不純物が含まれているLaB6膜では、仕事関数が大きくなってしまう。
 従って、LaB6市販粉末を焼結して作製した従来のLaB6ターゲットを用いると、得られるLaB6膜は不純物含有量が多くなってしまい、その結果、膜の仕事関数が大きくなるという問題があった。
 ターゲット中の不純物含有量を低減させるためには、純度の高いLaB6粉末を焼結する手法が有効である。LaB6粉末中の含有不純物は、無機酸中で加熱洗浄することにより効果的に除去することができる。上記酸洗浄により高純度化したターゲットを用いることで、不純物含有量が少ないLaB6膜を製膜できるようになる。
 一方、LaB6薄膜は電子放出素子、電極材料等への適用が検討されている。このLaB6薄膜の製膜基板には主として、金属基板、ガラス基板、Siウェハ等が用いられている。これらの基板に、高純度化したLaB6焼結体をターゲットに適用して製膜した場合、得られた膜は純度が高くなるものの結晶性が悪く、膜が剥れやすくなり、仕事関数が高いという問題があった。
 一般的にスパッタリングにより製膜基板と異なる組成や結晶構造を有する膜を製膜した場合、基板と膜との物性の違いによりスパッタ膜内に内部応力が発生し、膜の結晶性が悪くなってしまう。
 この現象はLaB6スパッタ膜でも発生し、基板の材質に依存するものであり、LaB6と比較して熱膨張率や格子定数が大きく異なる基板を用いる場合にはこの傾向が顕著である。膜の内部応力が大きいとLaB6膜の結晶性が悪くなる。膜の結晶性と仕事関数には関連があることが知られており、結晶性の低下は仕事関数の増大につながる。更には膜の内部応力が大きいと基板から膜が剥れやすくなるため、製膜ができなくなってしまう。
 LaB6スパッタ膜内にLaB6と基板との熱膨張率や格子定数差を緩和できるような不純物が含まれていると、膜内部応力を低減することができる。
 しかし、このような不純物はLaB6よりも仕事関数が大きい。そのため、LaB6膜に不純物が含まれていると、膜の内部応力は緩和されるが、仕事関数が高くなるのを避けられない。
 したがって、仕事関数を大きくするような不純物が含まれておらず、かつLaB6と基板との熱膨張差が緩和された、密着性や結晶性の高いLaB6スパッタ膜を作製することができるターゲット材料が望まれている。
 一方、LaB6は難焼結性であるため、市販粉末を焼結して作製した従来のLaB6ターゲットは80%程度の相対密度しかなく、多量の空孔を含んでいる。この空孔内には、通常有機成分、水分等が吸着されている。この有機成分や水分はスパッタリングの際に真空チャンバー内に放出されて、チャンバーを汚染したり、スパッタ膜に取り込まれて膜の性能低下を引き起こすという問題がある。この空孔の影響を抑えるためには、LaB6スパッタターゲットの場合、相対密度が88%以上あることが好ましい。
 焼結体の緻密化を行う方法として、焼結助剤をホウ化ランタン粉末に添加して、焼結を行う方法がある(例えば、特許文献1及び2参照)。この場合、通常焼結助剤として金属酸化物が使用されるため、金属酸化物が焼結後も焼結体中に不純物として残存する。この焼結体をターゲット材として使用した際に、焼結体内の不純物が、スパッタ膜に取り込まれて膜の性能低下を引き起こすという問題がある。
 他方、金属ホウ化物を用いたスパッタリング用ターゲットとして、ホウ化ハフニウム、ホウ化チタン、ホウ化タングステン、ホウ化ランタンから選択された1種以上を主成分とするスパッタリング用ターゲットであって、該ターゲットの焼結体密度比が80%以上であり、かつ、その結晶粒径が50μm以下であるスパッタリング用ターゲット、及びその製造方法が開示されている(例えば、特許文献3参照)。
 この技術は、ターゲットの粒子間の空隙を大幅に減少させて、該ターゲットの相対密度を向上させることにより、高密度のホウ化物ターゲットとするものである。しかし、この技術は、このターゲットを用いて生産された製品の量産性を向上させるための技術であって、ターゲットの高純度化については、なんら言及されていない。
特開昭61-261272号公報 特開平4-228474号公報 特開平6-248446号公報
 本発明者らは、スパッタリング用ターゲットの構成材料として好適な高純度かつ高密度(高緻密性)の金属ホウ化物焼結体、特に仕事関数の小さなホウ化ランタン薄膜を得ることのできるホウ化ランタン焼結体の効果的な製造方法について研究を重ねた。その結果、本発明者らは、純度が高いホウ化ランタン焼結体を得るには無機酸中で洗浄したホウ化ランタン粉末を焼結する手法が有効であるという知見を得た。
 具体的には、金属ホウ化物粉末を無機酸で洗浄する場合、不純物酸化物として含まれている金属酸化物、ホウ素酸化物、金属-ホウ素複合酸化物は無機酸に溶解するが、不純物炭化物として含まれている金属炭化物、ホウ素炭化物は無機酸には溶解しない。本発明者らは、金属ホウ化物粉末を大気中にて、特定の温度で加熱することにより、不純物炭化物を酸化して酸化物とし、この酸化処理を行った粉末を酸洗浄することで酸化物化した不純物を除去し得ることを見出した。
 しかしながら、上記技術で得た高純度化したLaB6焼結体からなるターゲットを用いて形成されたLaB6スパッタ膜は、適用可能な基板が限られてしまい、上述の通り製膜基板とLaB6の物性が大きく異なる場合、得られるスパッタ膜の特性が充分ではなかった。
 本発明は、このような状況下になされたものであり、高純度で緻密であって、結晶性に優れ、かつ仕事関数の良好なLaB6薄膜の製造用のスパッタリングターゲットなどとして好適なLaB6焼結体、それを用いてなるターゲット、前記ターゲットを用いて製膜された六ホウ化ランタン膜、及び前記LaB6焼結体の効果的な製造方法を提供することを目的とするものである。
 前述したように一般的にスパッタリングにより製膜基板と異なる組成や結晶構造を有する膜を製膜した場合には、基板と膜との物性の違いによりスパッタ膜内に内部応力が発生し、膜の結晶性が悪くなってしまい、膜の剥離が発生してしまう。
 本発明者らは、ターゲット用の焼結体中に他元素を固溶させることで、LaB6結晶格子内に歪みが発生し、この歪みがスパッタ製膜時の内部応力を緩和させることに着目し、鋭意研究を重ねた結果、LaB6焼結体に窒素を固溶させることでスパッタ膜の内部応力を緩和できることを見出した。
 また、LaB6の仕事関数を大きくしてしまう不純物がLaB6との混合物として存在するのと異なり、上記窒素はLaB6焼結体の格子内に固溶する。このような窒素の固溶したLaB6焼結体をターゲットに用いることにより、窒素が固溶したLaB6スパッタ膜が製膜される。スパッタ膜内の窒素固溶量は、ターゲット用のLaB6焼結体中の窒素固溶量と必ずしも一致しないが、ターゲット用のLaB6焼結体中の窒素含有量を0.1質量%以上3.0質量%以下とすることでLaB6スパッタ膜の結晶性が高くなることが見出された。
 さらに、窒素の含有量を上記範囲にすると共に、炭素単体、並びに/あるいはLa、C、O及びBの中から選ばれる少なくとも2種の元素から構成された不純物の含有量を0.3体積%以下としたLaB6焼結体は、高純度であって、相対密度が88%以上の緻密性を有し、結晶性に優れ、かつ仕事関数の良好なLaB6薄膜を製造するためのスパッタリングターゲットなどとして好適であることが見出された。
 このLaB6焼結体は、LaB6粉末を原料として用い、特定の工程を施すことにより効果的に製造することができる。
 本発明は、かかる知見に基づいて完成されたものである。
 すなわち、本発明は、
[1]窒素元素含有量が0.1質量%以上3質量%以下であり、炭素単体、並びに/あるいはLa、C、O及びBの中から選ばれる少なくとも2種の元素から構成された不純物の含有量が0.3体積%以下であって、焼結体の相対密度が88%以上であることを特徴とする六ホウ化ランタン焼結体、
[2]炭素含有量が0.1質量%未満であり、かつ酸素含有量が1.0質量%未満である[1]に記載の六ホウ化ランタン焼結体、
[3]格子定数が4.1570Å以上4.1750Å以下である[1]又は[2]に記載の六ホウ化ランタン焼結体、
[4][1]乃至[3]のいずれか1に記載の六ホウ化ランタン焼結体を用いたことを特徴とするターゲット、
[5][4]に記載のターゲットをスパッタリングすることにより製膜された、紫外線光電子分光法による仕事関数が3.1eV以下である六ホウ化ランタン膜、
[6](a)六ホウ化ランタン粉末を、大気中にて600℃以上800℃以下の温度で加熱処理する工程、(b)前記(a)工程で得られた六ホウ化ランタン粉末の加熱処理物を酸処理する工程、及び(c)前記(b)工程で得られた六ホウ化ランタン粉末の酸処理物を、窒素ガス雰囲気下において、温度1800℃以上、圧力30MPa以上の条件で焼結する工程を含み、かつ前記(b)工程において、得られる六ホウ化ランタン粉末の酸処理物中の酸素含有量を1.0質量%未満に、かつ炭素含有量を0.1質量%未満に調整することを特徴とする[1]乃至[3]のいずれか1に記載の六ホウ化ランタン焼結体の製造方法、
[7]前記(b)工程後の六ホウ化ランタン粉末の酸処理物は、平均粒径が1μm以上5μm以下であり、前記(b)工程と(c)工程間に、さらに(b’)工程として、前記酸処理物を、平均粒径が50nm以上500nm以下の微細六ホウ化ランタン粉末と混合して混合粉末を得る工程を有しており、前記(c)工程において、前記混合粉末を前記条件で焼結する[6]に記載の六ホウ化ランタン焼結体の製造方法、
[8]前記(b’)工程において、前記酸処理物の質量MNと前記微細六ホウ化ランタン粉末の質量MSとを、質量比(MN/MS)が97/3乃至70/30の割合で混合する[7]に記載の六ホウ化ランタン焼結体の製造方法、
[9]前記微細六ホウ化ランタン粉末が、ランタン含有化合物とホウ素含有化合物とを、真空中又は不活性ガス雰囲気下、1200℃以上1500℃以下の温度にて熱還元処理した後、得られた生成物中の不純物を低減させる処理を施したものである[7]又は[8]に記載の六ホウ化ランタン焼結体の製造方法、
[10]六ホウ化ランタン焼結体がターゲット用の焼結体である[7]乃至[9]のいずれか1に記載の六ホウ化ランタン焼結体の製造方法、
を提供するものである。
 本発明によれば、高純度で緻密であって、結晶性に優れ、かつ仕事関数の良好なLaB6薄膜を製造するためのスパッタリングターゲットなどとして好適なLaB6焼結体、それを用いてなるターゲット、前記ターゲットを用いて製膜された六ホウ化ランタン膜及び前記LaB6焼結体の効果的な製造方法を提供することができる。
実施例1のLaB6焼結体のSEM写真である。 比較例3のLaB6焼結体のSEM写真である。
 まず、本発明のLaB6焼結体について説明する。
[LaB6焼結体]
 本発明のLaB6焼結体は、窒素元素含有量が0.1質量%以上3質量%以下であり、炭素単体、並びに/あるいはLa、C、O及びBの中から選ばれる少なくとも2種の元素から構成された不純物の含有量が0.3体積%以下であって、焼結体の相対密度が88%以上であることを特徴とする。
(窒素元素のLaB6焼結体格子内への固溶)
 一般的に、スパッタリングにより製膜基板と異なる組成や結晶構造を有する膜を製膜した場合には、基板と膜との物性の違いによりスパッタ膜内に内部応力が発生し、膜の結晶性が悪くなってしまい、膜の剥離が発生したりするなどの問題が生じる。
 本発明のLaB6焼結体は、このような問題に対処するために、該焼結体のLaB6結晶格子内に窒素元素を固溶させて、スパッタ膜内の内部応力を緩和させ、結晶性を改善させたものである。本発明のLaB6焼結体における窒素元素の含有量は、0.1質量%以上3.0質量%以下であることを要する。この窒素含有量が0.1質量%未満ではLaB6結晶格子の歪みが小さく、製膜基板とLaB6膜の物性差により生じる膜内部応力を十分に緩和できないためLaB6スパッタ膜の結晶性が改善されない。また、窒素含有量が3質量%を超えると、LaB6結晶格子の歪が緩和し得る膜内部応力以上に大きくなり、LaB6スパッタ膜の結晶性が悪くなる。このような観点から、該窒素元素の含有量は、0.1質量%以上2.0質量%以下であることが好ましく、0.2質量%以上1.0質量%以下であることがより好ましい。
 窒素元素は、周期表(長周期型)15族に属する元素である。窒素元素以外の他の15族元素(P、As、Sb、Bi)はLaB6に固溶しないか、固溶できたとしても、窒素を固溶させたものと同様の結果は得られない。この理由は、窒素元素以外の他の15族元素はvan der waals半径が著しく大きいため、窒素元素以外の15族元素が存在すると、LaB6結晶格子の歪みが大きくなりすぎ、製膜基板とLaB6膜の特性差により発生する膜内応力を緩和できなくなるためと考えられる。一方、Van der waals半径が小さい窒素はLaB6の結晶格子内に比較的簡単に固溶する。
 また、15族元素はLaB6と比較して仕事関数が大きいため、固溶できない15族元素がLaB6膜内に存在していると仕事関数が大きくなる。しかし、窒素元素の固溶量が少量であれば、結晶構造が大きく変化しないため、LaB6の仕事関数に影響を殆ど与えないことがわかった。
 したがって、窒素を固溶させることで仕事関数に影響を与えることなく、スパッタ膜の内部応力を緩和することができる。
 なお、LaB6焼結体に窒素が固溶する場合、基本的にはLaB6結晶格子の原子間隙に窒素が侵入する侵入型固溶体となる。侵入型固溶体を形成する場合、無固溶体と比較して格子定数が大きくなる。そこで、LaB6焼結体の格子定数をXRD(X線回折法)により評価することにより、窒素元素がLaB6焼結体の格子内に固溶していることを確認することができる。
 窒素元素含有量とLaB6焼結体の格子定数との間には必ずしも一定の関係は成立しないが、該窒素元素の含有量が0.1質量%以上3質量%以下である場合、LaB6焼結体の格子定数を4.1570Å以上4.1750Å以下に収めることが、結晶性に優れたスパッタ膜を得ることができる点で好ましい。前記窒素元素の含有量が1質量%以下である場合には、格子定数が4.1590Å以下であれば、より結晶性の良いLaB6スパッタ膜を得ることができるので、より好ましい。
 また、LaB6焼結体中の窒素元素含有量は、粉砕した焼結体をグラファイト坩堝内に入れ、燃焼管内でHeガス中で加熱融解させ、発生したガス中の窒素を熱伝導度法により測定することで確認することができる。
 LaB6焼結体の格子内に窒素元素を固溶させる方法については、後述する本発明のLaB6焼結体の製造方法において詳述する。
(不純物)
 本発明のLaB6焼結体は、炭素単体、並びに/あるいはLa、C、O及びBの中から選ばれる少なくとも2種の元素から構成された不純物の含有量が0.3体積%以下であることを要する。
 上記不純物含有量が0.3体積%を超えると、当該LaB6焼結体を用いて得られたターゲット中の不純物含有量が多くなる。その結果スパッタ膜にも不純物が取り込まれてしまい、純度が高く、結晶性に優れるLaB6膜が得られない。好ましい不純物含有量は0.2体積%以下であり、より好ましくは0.1体積%以下である。
 なお、当該LaB6焼結体における不純物含有量は、SEM観察により、視野内の不純物相の面積比より求めた値である。1視野の大きさは、720μm×940μmであり、20視野の観察値を合計して、該面積比を求めた。
 当該LaB6焼結体における前記不純物含有量は、LaB6焼結体中の酸素含有量及び炭素含有量として示すことができ、酸素含有量は好ましくは1.0質量%未満であり、より好ましくは0.5質量%以下であり、かつ炭素含有量は好ましくは0.1質量%未満であり、より好ましくは0.05質量%以下である。
 なお、前記の不純物に基く酸素含有量及び炭素含有量は、以下に示す方法で測定した値である。
 まず、LaB6焼結体試料を破砕粉にし、測定試料とする。酸素含有量は、グラファイト坩堝中の測定試料を不活性ガス雰囲気で加熱し、測定試料から分解あるいは解離した酸素を炭素と反応させ、生成した一酸化炭素あるいは二酸化炭素を赤外線吸光度で定量する方法、すなわち通常不活性ガス溶融法と呼ばれる方法により測定する。
 また、炭素含有量は、石英管状炉内で測定試料を加熱し、測定試料から揮発、分解、燃焼等により発生した炭素成分を赤外線吸収法を用いて測定する。
 当該不純物としては、例えば炭素単体、ランタン炭化物、ホウ素炭化物、ランタン酸化物、ホウ素酸化物及びランタン-ホウ素複合酸化物の中から選ばれる1種ないしは2種以上を挙げることができる。
 当該LaB6焼結体中の窒素元素以外の不純物含有量を0.3体積%以下にするためには、原料のLaB6粉末中に含まれる不純物を除去する高純度化処理を施すことが好ましい。この高純度化処理については、後述する本発明のLaB6焼結体の製造方法において詳述する。
 なおここで、LaB6焼結体に窒素が固溶する場合、前記LaB6結晶格子の原子間隙に窒素が侵入した侵入型固溶体のほかに、ランタンと窒素がアモルファス状態で固溶したランタン窒化物の存在が考えられる。しかしながら、このランタン窒化物は、LaB6スパッタ膜の内部応力を緩和できる可能性があることから、窒素及びその化合物は、前記不純物の範囲とはしていない。
 当該LaB6焼結体は、前述したように、窒素元素含有量が0.1質量%以上3質量%以下及び窒素元素以外の不純物含有量が0.3体積%以下であると共に、焼結体相対密度が88%以上であることを要する。この相対密度が88%未満であると、当該LaB6焼結体を用いて得られたターゲット中に多量の空孔が含まれるため、該空孔内に吸着されている有機成分や水分などが、スパッタリングの際に真空チャンバー内に放出されて、チャンバー内を汚染したり、スパッタ膜に取り込まれて、該スパッタ膜の性能低下を引き起こす。
 なお、前記相対密度とは、理論密度に対する実際の焼結体の密度比を指す。
 次に、本発明のLaB6焼結体の製造方法について説明する。
[LaB6焼結体の製造方法]
 本発明のLaB6焼結体の製造方法は、(a)LaB6粉末を、大気中にて600℃以上800℃以下の温度で加熱処理する工程、(b)前記(a)工程で得られたLaB6粉末の加熱処理物を酸処理する工程、及び(c)前記(b)工程で得られたLaB6粉末の酸処理物を、窒素ガス雰囲気下において、温度1800℃以上、圧力30MPa以上で焼結する工程を含み、かつ前記(b)工程において、得られるLaB6粉末の酸処理物中の酸素含有量を1.0質量%未満に、かつ炭素含有量を0.1質量%未満に調整することを特徴とする。
 本発明のLaB6焼結体の製造方法においては、得られるLaB6焼結体における、窒素元素以外の不純物含有量を0.3体積%以下にするために、原料として用いられるLaB6粉末の高純度化処理が行われる。
(原料LaB6粉末の高純度化処理)
 本発明の製造方法においては、高純度化処理として、上記(a)工程及び(b)工程が施される。これら(a)工程及び(b)工程の詳細は、以下の通りである。
<(a)工程>
 当該高純度化処理における(a)工程は、原料のLaB6粉末を大気中にて、600℃以上800℃以下の温度で加熱処理する工程である。
 原料のLaB6粉末は、合成したものを用いてもよいし、市販品を用いてもよい。これら該LaB6粉末中には、製造時に不可避的に混入される炭素単体、ランタン酸化物、ランタン炭化物、ホウ素酸化物、ランタンホウ素複合酸化物及びホウ素炭化物の中から選ばれる1種ないしは2種以上の不純物が含まれている。本発明の製造方法においては、まず、原料のLaB6粉末を大気中で加熱処理して、ランタン炭化物やホウ素炭化物を、それぞれ酸化物に変換する。ランタン酸化物、ホウ素酸化物及びランタンホウ素複合酸化物は、次工程の(b)酸処理工程によって、容易に除去することができる。なお、炭素単体は、本工程により二酸化炭素として除去される。
 本発明の製造方法においては、大気中酸化処理温度は、600℃以上800℃以下である。その理由は、600℃未満では炭素単体やランタン炭化物及びホウ素炭化物が十分に酸化されないためであり、800℃を超えるとLaB6自体が酸化されて収率が低下するためである。
 使用LaB6粉末の平均粒径は、後述の(c)焼結工程における焼結性の観点から、好ましくは0.1μm以上20μm以下、より好ましくは0.5μm以上10μm以下、更に好ましくは1μm以上5μm以下である。平均粒径が0.1μm以上であると、酸素、炭素の除去が容易であり、また、製造コストも低い。平均粒径が20μm以下であると、焼結の駆動力となる表面エネルギーが大きくなり高密度の焼結体を得ることが容易である。
<(b)工程>
 当該高純度処理における(b)工程は、前記(a)工程で得られたLaB6粉末の加熱処理物を酸処理する工程である。
 当該(b)工程における酸化した不純物を溶出させるための無機酸は、塩酸、硫酸、硝酸から選択することができる。ここで、使用する無機酸の種類、濃度、処理温度及び処理時間は、溶解させる酸化物の成分や含有量により、選択することが好ましい。この理由は、無機酸の酸化力が高すぎる場合は、酸化物のみならずLaB6自体を酸化溶解させてしまい、LaB6自体の収率が低下してしまうためであり、一方、無機酸の酸化物溶解力が低い場合には、酸化物の溶解に時間を要したり、場合によっては溶解が不十分となり酸化物が十分に除去できなくなるためである。なお、無機酸としては、リン酸、フッ酸もあるが、リン酸は溶解力に乏しく、フッ酸は溶解力が強く、LaB6自体も溶解する上、毒物であり危険性が高い等の欠点を有しており、好適な無機酸ではない。一方、有機酸は酸化物溶解力に乏しいため不適当である。
 硝酸、硫酸は強い酸化力を有しているためにLaB6自体を酸化溶解させてしまう可能性が高く、処理条件の選択や制御を厳密に行う必要が生じるため、使用には注意を要する。一方、塩酸は酸化力がほとんど無いことから、LaB6自体を酸化溶解させてしまう可能性が低く、好適に用いることができる。
 例えば、塩酸を使用する場合、濃度は1mol/dm3以上かつ6mol/dm3以下が好ましい。その理由は1mol/dm3未満では不純物の溶出速度が遅く時間がかかるためであり、6mol/dm3を越えるとLaB6自体が酸化されやすくなるためである。より好ましい濃度は、2mol/dm3以上6mol/dm3以下であり、特に好ましい濃度は4mol/dm3以上6mol/dm3以下である。
 また、この処理は常温で行ってもよいが、加熱して行うのが好ましい。加熱処理する場合の処理温度は、40℃以上かつ80℃以下が望ましい。40℃未満では不純物の溶出に時間がかかるためであり、80℃を越えるとLaB6自体が酸化されやすくなるからである。
 酸処理後の粉末は、純水やイオン交換水にて酸成分を除去した後に水分を除去するために乾燥処理、特に真空乾燥処理することが好ましい。真空乾燥する理由は、水分が蒸発する際にLaB6と反応して酸化不純物を生成するのを避けるためである。
 このようにして、原料LaB6粉末に対して高純度化処理((a)工程及び(b)工程)を施すことにより、得られるLaB6粉末の酸処理物中の酸素含有量を好ましくは1.0質量%未満、より好ましくは0.5質量%未満に、かつ炭素含有量を好ましくは0.1質量%未満、より好ましくは0.05質量%未満に調整する。
<(b’)工程>
 前記(b)工程と後述する(c)工程との間に、さらに(b’)工程として、前記(a)工程及び(b)工程からなる高純度化処理を施したLaB6粉末(前記LaB6粉末の酸処理物)を、該LaB6粉末よりも平均粒径の小さい微細LaB6粉末と混合して混合粉末を得る工程を設けてもよい。
 なお、この(b’)工程に関する記載においては、前記高純度化処理を施したLaB6粉末をLaB6粉末Nと称し、この微細LaB6粉末を微細LaB6粉末Sと称することがある。
 このように、異なる平均粒径を有する2種類の六ホウ化ランタン粉末を混合し、後述する(c)工程でこの混合粉末を成形、焼結することにより、高純度かつ高密度の六ホウ化ランタン焼結体を製造することができる。
(LaB6粉末N)
 この(b’)工程で使用する場合にあっては、LaB6粉末Nの平均粒径は、微細LaB6粉末Sよりも大きくする観点から、1μm以上5μm以下とすることが好ましい。このLaB6粉末Nの平均粒径は、より好ましくは1μm以上4μm以下、更に好ましくは1μm以上3μm以下である。
 なお、原料のLaB6粉末を前記高純度化処理によりLaB6粉末Nとした際の粒径減少率は高々数%程度であることから、LaB6粉末Nの平均粒径を規定する代わりに原料のLaB6粉末の平均粒径を上記範囲に規定しても、実質的な差異はない。
(微細LaB6粉末S)
 微細LaB6粉末Sは、前述したLaB6粉末Nに比べて、平均粒径が小さいことから、表面積が大きく、焼結の駆動力となる表面エネルギーが大きいため、粒子自身は焼結性に優れている。しかし、粒径が小さいために強いファンデルワールス力により粒子が不均一に凝集体を形成して、粒子の充填性が悪くなる。その結果、粒子同士の接触が不十分となり、焼結反応が開始されにくいという問題がある。
 本発明者らは、この微細LaB6粉末Sよりも平均粒径が大きく充填性に優れるLaB6粉末N中に微細LaB6粉末Sを適量添加して粒子の接触が十分取れるようにすれば、当該微細LaB6粉末Sの大きな表面エネルギーにより優れた焼結性が示されることを見出した。
 当該微細LaB6粉末Sは、平均粒径が50nm以上500nm以下であることが好ましい。この平均粒径が50nm未満では、大量に製造するのが困難であり、経済的ではない。また、平均粒径が500nmより大きいと、ホウ化ランタン焼結体の相対密度を向上させる効果が見られない。この平均粒径は、より好ましくは50nm以上300nm以下、更に好ましくは60nm以上200nm以下である。
 当該微細LaB6粉末Sの製造方法は限定されないが、市販のLaB6粉末をジェットミル、ビーズミル等で粉砕し所定の粒径に調整しても良い。
 また、ランタン化合物と炭化ホウ素との還元雰囲気下での熱還元合成、熱プラズマでの合成、あるいは還元剤を添加し水熱合成法で合成しても良い。さらに、これらの得られた粉末を、ジェットミル、ビーズミル等で粉砕し所定の粒径に調整しても良い。
 微細LaB6粉末Sの好ましい製造方法としては、ランタン含有化合物とホウ素含有化合物とを、真空中又は不活性ガス雰囲気下、1200℃以上1500℃以下程度の温度にて熱還元処理した後、得られたホウ化ランタンを含む生成物中の不純物を低減させる処理を施す方法を挙げることができる。
 ここで、不純物を低減させる処理は各種方法で行うことができ、その方法は限定されないが、無機酸と水の混合物により酸洗浄等する方法が挙げられる。酸洗浄に使用する無機酸としては、得られたホウ化ランタンの酸化を抑えるために、塩酸が好ましい。熱還元処理で得られた生成物は、ホウ化ランタン以外に、原料起因の不純物を多く含んでいる。酸洗浄による不純物を低減させる処理を行うことで、例えば、生成物中の炭素含有量を2.0質量%以下、酸素含有量を3.0質量%以下とすることができる。
 また、前述したLaB6粉末Nを得るための方法と同様の高純度化処理、すなわち前記工程(a)の加熱処理及び前記工程(b)の酸処理を施して、不純物含有量を市販品と同程度の、例えば炭素含有量を0.5質量%以下、酸素含有量を1.0質量%以下とすればより好ましく、前述したLaB6粉末Nと同程度の不純物含有量とすれば、さらに好ましい。
 なお、前記のLaB6粉末Nと微細LaB6粉末Sの平均粒径は、走査型電子顕微鏡(SEM)により測定した値である。
 また、これら炭素含有量及び酸素含有量は、前記した赤外線吸収法及び不活性ガス溶融法により測定した値である。
(LaB6粉末Nと微細LaB6粉末Sとの混合割合、及び混合方法)
 本発明の製造方法においては、LaB6粉末Nの質量MNと微細LaB6粉末Sの質量MSとを、好ましくは質量比(質量MN/質量MS)97/3乃至70/30、より好ましくは96/4乃至90/10の割合で混合する。LaB6粉末Nと微細LaB6粉末Sとの合計量に対して、微細LaB6粉末Sの含有量が3質量%未満であると、微細LaB6粉末Sの大きな表面エネルギーが寄与するには添加量が不十分なため、相対密度向上の効果が得られない場合がある。30質量%より多いと、微細LaB6粉末Sの凝集の影響により、充填性が低下して、焼結反応が起こりにくくなる場合がある。また、30質量%より多いと、なんらかの方法で凝集を回避したとしても、微細LaB6粉末Sの製造コストの面で実用的ではない。また、微細LaB6粉末Sは表面積が大きく表面酸化物層由来の酸素含有量が多いため、微細LaB6粉末Sの添加量が多すぎると焼結体中に含まれる酸素含有量が多くなり、ターゲット材料として使用された際、スパッタ膜の性能低下を引き起こす場合がある。
 混合方法については各種方法をとることができ、その方法は限定されないが、例えば、有機溶媒中でスラリー化しボールミル混合等を行う方法が挙げられる。また、任意のバインダーを添加し、有機溶媒中でスラリー化しボールミル混合を行ってもよい。
 混合した粉末は、減圧下あるいは不活性雰囲気中乾燥するのが望ましい。またスプレードライ等で乾燥、造粒させ顆粒にしても良い。
<(c)工程>
 この(c)工程は、前述した(b)工程により得られたLaB6粉末の酸処理物か、又は(b’)工程により得られたLaB6粉末Nと微細LaB6粉末Sとの混合粉末を、窒素ガス雰囲気下において、温度1800℃以上、圧力30MPa以上の条件で焼結することにより、緻密なLaB6焼結体を得るとともに、得られるLaB6焼結体の格子内に、窒素元素を固溶させる工程である。
 この焼結工程においては、高純度化処理して得られたLaB6粉末はそのまま成型して焼結してもよいし、任意のバインダーとともに溶媒中に添加してスラリー化し、造粒した後に成型、脱脂しても良い。
 一般的にLaB6粉末は難焼結性であるが、高純度化処理したLaB6粉末を窒素ガス中で1800℃以上、プレス圧30MPa以上にて加圧焼結することで、窒素含有量が0.1質量%以上3質量%以下、窒素以外の不純物含有量が0.3体積%以下で相対密度が88%以上のLaB6焼結体を得ることができる。
 加圧焼結は、ホットプレス装置を用いて行うのが適当である。ホットプレス装置内の黒鉛モールドに、得られたLaB6粉末を充填して、窒素ガス中にて1800℃以上1950℃以下程度、プレス圧30MPa以上40MPa以下程度で加圧焼結する。これにより、不純物含有量が0.3体積%以下、窒素含有量が0.1質量%以上3質量%以下であり、相対密度88%以上の焼結体を得ることができる。
 1800℃未満では緻密化に必要な温度に足りないために、加圧量を増しても相対密度が88%以上の焼結体を得ることができず、1950℃を越えると粒成長が促進されるために、相対密度が低下するおそれがある。
 また圧力が30MPa未満では、十分な緻密化が行われず、相対密度が88%以上の焼結体を得ることができない。加圧力は高い方が良いが、通常ホットプレス焼結に使用する焼結冶具の耐圧力は40MPaであり、それ以上の高耐圧冶具はほとんど存在しないことから、上限は40MPaが目安となる。
 窒素を固溶させる他の方法としては、焼結前のLaB6粉末を窒素中で加熱処理する方法がある。この加熱温度は1000℃以上が必要である。窒素を十分固溶させるために加熱温度を上げると粒成長により焼結活性が低下するので、再度粉砕を行う必要がある。この場合、粉砕による酸化でLaB6粉末中に不純物が含有することは避けられない。したがって、窒素雰囲気中で焼結することが、窒素を固溶する方法としては好ましい。
 なお、条件が整えば、熱間等方圧プレス(HIP)焼結法など、他の焼結法を用いてもよい。
 このような本発明のLaB6焼結体の製造方法により、高純度で緻密であって、結晶性に優れ、かつ仕事関数の良好なLaB6薄膜の製造用のスパッタリングターゲットなどとして好適なLaB6焼結体を、効果的に製造することができる。
[ターゲット及びLaB6スパッタ膜]
 本発明はまた、前述した性状を有する本発明のLaB6焼結体を用いたことを特徴とするターゲットと、このターゲットをスパッタリングしてなるLaB6スパッタ膜をも提供する。
 不純物含有量が少なく、窒素含有量を適切に制御したLaB6を用いたターゲットを使用してスパッタリングすることで、従来のLaB6ターゲットを用いた場合と比較して純度が高く、結晶性に優れたLaB6スパッタ膜を得ることができる。
 即ち、結晶性に優れ、純度が高いLaB6スパッタ膜を製膜するためには、ターゲットに用いるLaB6焼結体として、88%以上の相対密度を有し、窒素含有量が0.1質量%以上3質量%以下で、且つ窒素以外の不純物含有量が0.3体積%以下であるものを用いる。このLaB6焼結体は、不純物に基く酸素含有量が好ましくは1.0質量%未満、より好ましくは0.5質量%以下であり、炭素含有量が好ましくは0.1質量%未満であり、より好ましくは0.05質量%以下である。
 このようにして得られる、純度が高く、結晶性に優れたLaB6スパッタ膜は、仕事関数が小さいものとなる。このLaB6スパッタ膜の仕事関数は、好ましくは3.1eV以下、より好ましくは2.8eV以下、更に好ましくは2.7eV以下である。
 なお、仕事関数の測定法としては、紫外線光電子分光法(UPS:Ultraviolet  Photoelectron Spectroscopy)、X線光電子分光法(XPS:X-ray  Photoelectron Spectroscopy)といった光電子分光法のほか、ケルビンプローブ法が挙げられる。光電子分光法は、測定精度が高いが、装置が高価であり、測定費用が高くつく。一方、ケルビンプローブ法は、装置が安価であり、測定費用が安いが、測定精度にやや劣る。よって、本発明では、光電子分光法のうち紫外線光電子分光法(UPS)による測定値を仕事関数の値として採用し、ケルビンプローブ法により測定した仕事関数の値は参考として用いる。
 スパッタリング装置としては、一般的に2極DCグロー放電スパッタ装置、マグネトロンスパッタ装置、イオンビームスパッタ装置等があるが、本発明のLaB6焼結体を用いたターゲットは、いずれのスパッタリング装置にも適用できる。
 スパッタリング時の雰囲気は、Arガス等の不活性ガス雰囲気であることが好ましい。
 LaB6スパッタ膜を製膜させる対象物(基板等)の材料には特に限定はないが、例えば、タングステンや銅等の金属、ガラス、Siウェハ、及びポリアミド樹脂等の合成樹脂が挙げられる。スパッタリング時の温度は、0℃以上300℃以下であることが好ましい。スパッタリング時の温度が高い方が結晶性に優れたLaB6スパッタ膜が得られるが、300℃以上であると、成膜後、室温まで冷却した場合における熱応力が過大になる可能性があり、またスパッタチャンバー内に基板を導入した際に基板温度が均一になるまで時間が掛かり生産性に乏しくなるからである。
 また、スパッタリング温度の上限は製膜基板により決定される。例えば金属やSiウェハ等耐熱性を有する基板にスパッタする場合は問題ないが、樹脂基板にスパッタする場合、当該樹脂の耐熱温度以下で製膜する必要がある。従って、より一般的に適用するためには好ましくは100℃以下で製膜することが望ましい。
 一方、スパッタリング時の温度が0℃以下の場合、スパッタチャンバー内の温度を冷却するために水以外の冷媒が必要となるため好ましくない。従ってスパッタリング時の温度は、好ましくは0℃以上300℃以下、より好ましくは0℃以上100℃以下である。
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、各例における諸特性は、下記の方法に従って測定した。
 また、各種粉末の平均粒径は、走査型電子顕微鏡(SEM)[日立製作所社製、S-4000]により測定した。各種粉末ごとに、300~500個程度の粒子について最長径を測定し、その平均を平均粒径とした。
<高純度化処理LaB6粉末>
(1)酸素含有量及び炭素含有量の測定
 酸素含有量は、試料粉末50mgを取り、酸素・窒素同時分析装置[LECO社製、TC-436]を用いて、前記不活性ガス溶融法にて測定した。
 また、炭素含有量は、試料粉末100mgを取り、炭素分析装置[LECO社製、WC-200]を用いて,前記赤外線吸収を用いる方法にて測定した。
<微細LaB6粉末>
(2)酸素含有量及び炭素含有量の測定
 上記高純度化処理LaB6粉末と同様の方法にて、酸素含有量及び炭素含有量を測定した。
<LaB6粉末の焼結体>
(3)酸素含有量及び炭素含有量
 焼結体試料を破砕粉にしたのち、前記LaB6粉末と同様にして、酸素含有量及び炭素含有量を測定した。
(4)不純物含有量
 破砕粉にされた焼結体試料について、走査型電子顕微鏡(SEM)[日立製作所製、S-4000]にて観察し、視野内の不純物相の面積比より不純物含有量を求めた。なお、1視野の大きさは、720μm×940μmであり、20視野の観察値を合計して、該面積比を求めた。
(5)不純物種の同定
 上記SEM観察視野内の不純物相について、電子プローブマイクロアナライザ(EPMA:Electron probe microanalyser)[日本電子社製、JXA-8800]を用いて元素分析を行った。
(6)相対密度
 市販の電子天秤を用いて、焼結体試料の空気中の重量と水中の重量を測定し、得られた浮力値から密度を計算する、いわゆるアルキメデス法を用いて密度を求め、理論密度に対する密度比(相対密度)を求めた。
(7)窒素元素の含有量
 焼結体の窒素含有量は、試料粉末50mgを取り、酸素・窒素同時分析装置[LECO社製、TC-436]を用いて、前記熱伝導度法により測定した。
(8)LaB6焼結体の格子内への窒素元素固溶の確認
 X線回折装置[スペクトリス社製、PANalytical X'Pert PRO]を用い、LaB6の400面、410面、411面、331面、420面、421面のピークを用いて格子定数を算出し、理論値と比較することにより、LaB6焼結体の格子内に窒素元素が固溶していることを確認した。
<LaB6スパッタ膜>
(9)真空UPS法による仕事関数の測定
 紫外線光電子分光装置[PHI社製、MUL-010HI]を用い、圧力1.33×10-6Paにて、LaB6スパッタ膜の仕事関数を測定した。
(10)ケルビンプローブ法による仕事関数の測定
 ケルビンプローブ[KPテクノロジー社製、走査型ケルビンプローブ SKP5050]を用い、大気中にて、LaB6スパッタ膜の仕事関数を測定した。
(11)薄膜XRD測定
 薄膜X線回折装置[日本フィリップス社製、PW3040/00]を用いて、X線回折測定を行った。X線源としてはCuKα線(波長λ;0.154nm)を用い、測定角度(2θ)を20~100度とした。得られた結果から、最も強度の強い結晶面のピークに関し、各スパッタ膜ごとにピーク強度を比較した。
実施例1
(1)LaB6市販粉末の高純度化処理
 LaB6市販粉末を大気中700℃にて酸化処理を行い、次いで6mol/dm3塩酸中で60℃にて酸処理を行った。酸処理後の粉末をイオン交換水にて、濾液のpHが6以上、塩素イオン濃度が1mg/dm3以下になるまで洗浄し、110℃にて真空乾燥した。得られたLaB6粉末は、不純物に基く酸素含有量が0.38質量%、炭素含有量が0.006質量%であった。また、得られたLaB6粉末の平均粒径は、1.5μmであった。
(2)LaB6焼結体の作製
 上記(1)で高純度化処理したLaB6粉末をホットプレス装置にて窒素ガス中、1950℃、プレス圧40MPaにて2時間焼結した。得られた焼結体は、92.4%の相対密度を有し、窒素元素含有量が0.44質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素以外の不純物含有量は0.006体積%であった。その不純物含有量は、炭素含有量で0.011質量%、酸素含有量で0.21質量%であった。また、得られたLaB6焼結体の格子定数は4.1578Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に固溶していることが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力0.5Pa、温度20℃にてスパッタリング製膜を行った。得られたLaB6膜は窒素以外の不純物が殆ど含有されておらず、後述する比較例1の窒素元素が固溶されていないLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定によるピーク強度が約2.5倍であり、結晶性が高かった。また、仕事関数はケルビンプローブ法では3.6eVであった。
 処理条件及び結果を第1表に示す。
実施例2
(1)LaB6市販粉末の高純度化処理
 実施例1(1)と同様である。
(2)LaB6焼結体の作製
 上記(1)で高純度化処理した粉末をホットプレス装置にて窒素ガス中、1950℃、プレス圧30MPaにて2時間焼結した。得られた焼結体は、91.5%の相対密度を有し、窒素元素含有量が0.42質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素以外の不純物含有量は0.008体積%であり、その不純物含有量は炭素含有量で0.015質量%、酸素含有量で0.25質量%であった。また、得られたLaB6焼結体の格子定数は4.1576Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に固溶していることが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力0.5Pa、温度20℃にてスパッタリング製膜を行った。得られたLaB6膜は窒素以外の不純物が殆ど含有されておらず、後述する比較例1の窒素元素が固溶されていないLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定によるピーク強度が約2.0倍であり、結晶性が高かった。また、仕事関数は、ケルビンプローブ法では3.6eV、真空UPS法では2.6eVであり、比較例1と比較して小さい値を有していた。
 処理条件及び結果を第1表に示す。
実施例3
(1)LaB6市販粉末の高純度化処理
 実施例1(1)と同様である。
(2)LaB6焼結体の作製
 上記(1)で高純度化処理したLaB6粉末をホットプレス装置にて窒素ガス中、1950℃、プレス圧40MPaにて3時間焼結した。得られた焼結体は、91.7%の相対密度を有し、窒素元素含有量が0.99質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素元素以外の不純物含有量は0.005体積%であった。その不純物含有量は、炭素含有量で0.018質量%、酸素含有量で0.18質量%であった。また、得られたLaB6焼結体の格子定数は4.1581Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に固溶していることが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力0.5Pa、温度20℃にてスパッタリング製膜を行った。得られたLaB6膜は窒素以外の不純物が殆ど含有されておらず、後述する比較例1の窒素元素が固溶されていないLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定によるピーク強度が約1.7倍であり、結晶性が高かった。また、仕事関数は、ケルビンプローブ法では3.7eVであった。
 処理条件及び結果を第1表に示す。
実施例4
(1)LaB6市販粉末の高純度化処理
 実施例1(1)と同様である。
(2)LaB6焼結体の作製
 上記(1)で高純度化処理した粉末をホットプレス装置にて窒素ガス中、1950℃、プレス圧40MPaにて6時間焼結した。得られた焼結体は、89.5%の相対密度を有し、窒素元素含有量が2.9質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素以外の不純物含有量は0.01体積%であった。その不純物含有量は、炭素含有量で0.038質量%、酸素含有量で0.17質量%であった。また、得られたLaB6焼結体の格子定数は4.1736Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に固溶していることが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力0.5Pa、温度20℃にてスパッタリング製膜を行った。得られたLaB6膜は窒素以外の不純物が殆ど含有されておらず、後述する比較例1の窒素元素が固溶されていないLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定によるピーク強度が約1.5倍であり、結晶性が高かった。また、仕事関数は、ケルビンプローブ法では3.7eVであった。
 処理条件及び結果を第1表に示す。
実施例5
(1)LaB6市販粉末の高純度化処理
 実施例1(1)と同様である。
(2)LaB6焼結体の作製
 上記(1)で高純度化処理したLaB6粉末をホットプレス装置にて窒素ガス中、1800℃、プレス圧40MPaにて2時間焼結した。得られた焼結体は、90.8%の相対密度を有し、窒素元素含有量が0.28質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素以外の不純物含有量は0.005体積%であった。その不純物含有量は、炭素含有量で0.013質量%、酸素含有量で0.27質量%であった。また、得られたLaB6焼結体の格子定数は4.1574Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に固溶していることが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力6.7Paにてスパッタリング製膜を行った。得られたLaB6膜は窒素元素以外の不純物が殆ど含有されておらず、後述する比較例1の窒素元素が固溶されていないLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定によるピーク強度が約2.0倍であり、結晶性が高かった。また、仕事関数は、ケルビンプローブ法では3.6eVであった。
 処理条件及び結果を第1表に示す。
実施例6
(1)LaB6市販粉末の高純度化処理
 実施例1(1)と同様である。
(2)LaB6焼結体の作製
 上記(1)で高純度化処理したLaB6粉末をホットプレス装置にて窒素ガス中、1800℃、プレス圧30MPaにて2時間焼結した。得られた焼結体は、89.6%の相対密度を有し、窒素元素含有量が0.15質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素元素以外の不純物含有量は0.009体積%であった。その不純物含有量は炭素含有量で0.015質量%、酸素含有量で0.28質量%であった。また、得られたLaB6焼結体の格子定数は4.1573Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に固溶していることが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力6.7Paにてスパッタリング製膜を行った。得られたLaB6膜は窒素元素以外の不純物が殆ど含有されておらず、後述する比較例1の窒素元素が固溶されていないLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定によるピーク強度が約1.5倍であり、結晶性が高かった。また、仕事関数は、ケルビンプローブ法では3.7eV、真空UPS法では3.0eVであり、比較例1と比較して小さい値を有していた。
 処理条件及び結果を第1表に示す。
実施例7
(1)LaB6市販粉末の高純度化処理
 実施例1(1)と同様である。
(2)LaB6焼結体の作製
上記(1)で高純度化処理して得られた平均粒径1.5μmのLaB6粉末に、LaB6微粒子(平均粒径:100nm、酸素含有量0.7質量%、炭素含有量0.1質量%)を5質量%添加し、ホットプレス装置にて窒素ガス中、1800℃、プレス圧30MPaにて2時間焼結した。得られた焼結体は、94.3%の相対密度を有し、窒素元素含有量が0.33質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素元素以外の不純物含有量は0.007体積%であった。その不純物含有量は、炭素含有量で0.024質量%、酸素含有量で0.20質量%であった。また、得られたLaB6焼結体の格子定数は4.1576Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に固溶していることが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力0.5Pa、温度20℃にてスパッタリング製膜を行った。得られたLaB6膜は窒素元素以外の不純物が殆ど含有されておらず、後述する比較例1の窒素元素が固溶されていないLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定によるピーク強度が約2.6倍であり、結晶性が高かった。また、仕事関数はケルビンプローブ法による評価では3.5eVであった。
 処理条件及び結果を第1表に示す。
実施例8
(1)LaB6市販粉末の高純度化処理
 実施例1(1)と同様である。
(2)LaB6焼結体の作製
 上記(1)で高純度化処理して得られた平均粒径1.5μmのLaB6粉末に、実施例7と同様のLaB6微粒子を5質量%添加し、ホットプレス装置にて窒素ガス中、1950℃、プレス圧30MPaにて2時間焼結した。得られた焼結体は、96.1%の相対密度を有し、窒素元素含有量が0.40質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素元素以外の不純物含有量は0.011体積%であった。その不純物含有量は、炭素含有量で0.031質量%、酸素含有量で0.15質量%であった。また、得られたLaB6焼結体の格子定数は4.1577Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に固溶していることが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力0.5Pa、温度20℃にてスパッタリング製膜を行った。得られたLaB6膜は窒素元素以外の不純物が殆ど含有されておらず、後述する比較例1の窒素元素が固溶されていないLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定のピーク強度が約2.8倍であり、結晶性が高かった。また、仕事関数は、ケルビンプローブ法では3.45eV、真空UPS法では2.4eVであり、比較例1と比較して小さい値を有していた。
 処理条件及び結果を第1表に示す。
比較例1
(1)LaB6市販粉末の高純度化処理
 実施例1(1)と同様である。
(2)LaB6焼結体の作製
 上記(1)で高純度化処理したLaB6粉末をホットプレス装置にてアルゴンガス中、1950℃、プレス圧40MPaにて2時間焼結した。得られた焼結体は、89.5%の相対密度を有し、窒素元素含有量が0.006質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素元素以外の不純物含有量は0.005体積%であった。その不純物含有量は、炭素含有量で0.015質量%、酸素含有量で0.31質量%であった。また、得られたLaB6焼結体の格子定数は4.1567Åであり、理論値と殆ど変わらなかった。これにより、窒素元素はLaB6焼結体の格子内にはほとんど固溶していないことが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力0.5Pa、温度20℃にてスパッタリング製膜を行った。得られたLaB6膜は窒素元素以外の不純物が殆ど含有されておらず、実施例1の窒素元素が固溶させたLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定によるLaB6のピーク強度は40%程度であり、結晶性が低かった。また、仕事関数は、ケルビンプローブ法では3.9eV、真空UPS法では3.7eVであった。
 処理条件及び結果を第1表に示す。
比較例2
(1)LaB6市販粉末を用いたLaB6焼結体の作製
 LaB6市販粉末をホットプレス装置にて窒素ガス中、1950℃、プレス圧40MPaにて2時間焼結した。得られた焼結体は、91.5%の相対密度を有し、窒素元素含有量が0.45質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素元素以外の不純物含有量は0.9体積%であった。その不純物含有量は、炭素含有量で0.3質量%、酸素含有量で1.8質量%であった。また、得られたLaB6焼結体の格子定数は4.1576Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に固溶していることが確認された。
(2)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(1)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力6.7Paにてスパッタリング製膜を行った。得られたLaB6膜は、高純度化処理の後に窒素ガス中で焼結してなる実施例1のLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定によるLaB6のピーク強度は同等の値を有していたものの、LaB6の結晶構造以外の結晶構造をもつ不純物が多量に含まれていた。また、仕事関数は、ケルビンプローブ法では3.8eV、真空UPS法では3.2eVであった。
 処理条件及び結果を第1表に示す。
比較例3
(1)LaB6市販粉末の高純度化処理
 実施例1(1)と同様である。
(2)LaB6焼結体の作製
 上記(1)で高純度化処理したLaB6粉末をホットプレス装置にて窒素ガス中、1800℃、プレス圧20MPaにて2時間焼結した。得られた焼結体は、86.5%の相対密度を有し、窒素元素含有量が0.10質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素元素以外の不純物含有量は0.08体積%であった。その不純物含有量は、炭素含有量で0.020質量%、酸素含有量で0.33質量%であった。また、得られたLaB6焼結体の格子定数は4.1571Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に少量ながら固溶していることが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力0.5Pa、温度20℃にてスパッタリング製膜を行った。得られたLaB6膜は窒素元素以外の不純物が殆ど含有されておらず、実施例1の窒素元素を適切な範囲内で固溶させたLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定によるLaB6のピーク強度は20%程度と結晶性の低い膜であった。また、仕事関数は、ケルビンプローブ法では4.8eV、真空UPS法では4.2eVであった。
 処理条件及び結果を第1表に示す。
比較例4
(1)LaB6市販粉末の高純度化処理
 実施例1(1)と同様である。
(2)LaB6焼結体の作製
 上記(1)で高純度化処理したLaB6粉末をホットプレス装置にて窒素ガス中、1950℃、プレス圧20MPaにて6時間焼結した。得られた焼結体は、87.5%の相対密度を有し、窒素元素含有量が3.5質量%、非晶質ホウ素炭化物と非晶質ランタン-ホウ素複合酸化物から構成された窒素元素以外の不純物含有量は0.2体積%であった。その不純物含有量は、炭素含有量で0.042質量%、酸素含有量で0.11質量%であった。また、得られたLaB6焼結体の格子定数は4.1759Åであり、理論値と比較して格子定数が大きくなっていた。これにより、窒素元素がLaB6焼結体の格子内に固溶していることが確認された。
(3)LaB6焼結体をターゲットとするスパッタリング製膜
 上記(2)で得られたLaB6焼結体をターゲットとして、マグネトロンスパッタリング装置を用い、Arガス中、圧力0.5Pa、温度20℃にてスパッタリング製膜を行った。得られたLaB6膜は窒素元素以外の不純物が殆ど含有されておらず、比較例1のLaB6焼結体をターゲットに用いた場合と比較して、薄膜XRD測定においてLaB6のピーク強度は90%程度と結晶性の低い膜であった。また、仕事関数はケルビンプローブ法では4.0eVであった。
 処理条件及び結果を第1表に示す。
Figure JPOXMLDOC01-appb-T000001
[注]
(1)実施例1~実施例8、比較例1及び比較例3は、焼結体の原料として、LaB6市販粉末を高純度化処理してなる、不純物に基く酸素含有量が0.38質量%、炭素含有量が0.006質量%、平均粒径1.5μmのものを用いた。
 実施例7,8では、さらにLaB6微粒子として、酸素含有量が0.7質量%、炭素含有量が0.1質量%、平均粒径100nmのものを用いた。
(2)比較例2は、焼結体の原料として、LaB6市販粉末をそのまま用いた。*1は、実施例1のスパッタ膜と同等のピーク強度を有しているものの、薄膜XRD測定においてLaB6結晶構造以外の結晶構造をもつ不純物が多量に含まれていたことを指す。
 第1表から明らかなように、実施例1~8のLaB6焼結体はいずれも、窒素元素含有量が0.1質量%以上3質量%以下の範囲内にあり、かつ窒素元素以外の不純物含有量が0.3体積%未満であって、相対密度が88%より高い。また、実施例1~8のスパッタ膜は、比較例1の窒素元素が固溶されていないLaB6焼結体をターゲットとするスパッタ膜に比べて、薄膜XRD測定におけるピーク強度比が約1.5倍以上約2.5倍以下と結晶性が高く、またケルビンプローブ法による仕事関数が0.2~0.45eVも低い。なお、実施例2,6,8及び比較例1~3から明らかなとおり、ケルビンプローブ法により測定された仕事関数の順位と真空UPS法により測定された仕事関数の順位は同一である。このことから、実施例1~8のスパッタ膜の真空UPS法による仕事関数も、比較例1のスパッタ膜よりも低いことが予測される。
 これに対し、比較例1のLaB6焼結体は、アルゴンガス中で焼結しているため、窒素元素が固溶されていない。また、比較例1のスパッタ膜は、ピーク強度比が実施例1のスパッタ膜の約40%と結晶性が低く、ケルビンプローブ法及び真空UPS法による仕事関数が高い。比較例2は、LaB6市販粉末をそのまま用いているため、得られたLaB6焼結体は、窒素元素以外の不純物含有量が0.9体積%と高く、該LaB6焼結体をターゲットとするスパッタ膜中にも、LaB6以外の不純物が多く含まれており、ケルビンプローブ法及び真空UPS法による仕事関数も高い。比較例3は、焼結圧力が20MPaと低いため、得られたLaB6焼結体は、相対密度が86.5%と低く、ケルビンプローブ法及び真空UPS法による仕事関数も高い。比較例4は、窒素元素含有量が3.5質量%と高いため、該LaB6焼結体をターゲットとするスパッタ膜は、ピーク強度比が比較例1のスパッタ膜の約90%と結晶性が低く、ケルビンプローブ法による仕事関数も高い。
 実施例7,8では、平均粒径の異なる2種類の粒子(LaB6粒子とLaB6微粒子)を用いている。このため、実施例7,8では実施例1~6及び比較例1~4と比べて、LaB6焼結体の相対密度(94.3%及び96.1%)が高い。また、実施例7,8では実施例1~6及び比較例1~4と比べて、LaB6スパッタ膜のピーク強度比(2.6倍及び2.8倍)が高くて結晶性が高く、また、ケルビンプローブ法による仕事関数(3.5及び3.45eV)が低い。さらに実施例8の真空UPS法による仕事関数は2.4eVであり、実施例1~8及び比較例1~4の中で最低である。
 なお、実施例1のLaB6焼結体のSEM写真を図1に示し、相対密度が最も低い比較例3のLaB6焼結体のSEM写真を図2に示す。
 上記実施例1~8及び比較例1~4のLaB6焼結体の元素分析結果を表2に示す。なお、La、C、O及びBは前記EPMA分析による値を示すが、Nについては前記熱伝導度法により測定した結果による値である。表2から明らかなとおり、不純物は、炭素単体、並びに/あるいはLa、C、O及びBの中から選ばれる少なくとも2種の元素から構成されていた。
Figure JPOXMLDOC01-appb-T000002
 本発明のLaB6焼結体は、高純度で緻密であって、結晶性に優れかつ仕事関数の良好なLaB6薄膜の製造用のスパッタリングターゲット用などとして好適である。

Claims (10)

  1.  窒素元素含有量が0.1質量%以上3質量%以下であり、炭素単体、並びに/あるいはLa、C、O及びBの中から選ばれる少なくとも2種の元素から構成された不純物の含有量が0.3体積%以下であって、焼結体の相対密度が88%以上であることを特徴とする六ホウ化ランタン焼結体。
  2.  炭素含有量が0.1質量%未満であり、かつ酸素含有量が1.0質量%未満である請求項1に記載の六ホウ化ランタン焼結体。
  3.  格子定数が4.1570Å以上4.1750Å以下である請求項1又は2に記載の六ホウ化ランタン焼結体。
  4.  請求項1乃至3のいずれか1に記載の六ホウ化ランタン焼結体を用いたことを特徴とするターゲット。
  5.  請求項4に記載のターゲットをスパッタリングすることにより製膜された、紫外線光電子分光法による仕事関数が3.1eV以下である六ホウ化ランタン膜。
  6.  (a)六ホウ化ランタン粉末を、大気中にて600℃以上800℃以下の温度で加熱処理する工程、(b)前記(a)工程で得られた六ホウ化ランタン粉末の加熱処理物を酸処理する工程、及び(c)前記(b)工程で得られた六ホウ化ランタン粉末の酸処理物を、窒素ガス雰囲気下において、温度1800℃以上、圧力30MPa以上の条件で焼結する工程を含み、かつ前記(b)工程において、得られる六ホウ化ランタン粉末の酸処理物中の酸素含有量を1.0質量%未満に、かつ炭素含有量を0.1質量%未満に調整することを特徴とする請求項1乃至3のいずれか1に記載の六ホウ化ランタン焼結体の製造方法。
  7.  前記(b)工程後の六ホウ化ランタン粉末の酸処理物は、平均粒径が1μm以上5μm以下であり、
     前記(b)工程と(c)工程間に、さらに(b’)工程として、前記酸処理物を、平均粒径が50nm以上500nm以下の微細六ホウ化ランタン粉末と混合して混合粉末を得る工程を有しており、
     前記(c)工程において、前記混合粉末を前記条件で焼結する請求項6に記載の六ホウ化ランタン焼結体の製造方法。
  8.  前記(b’)工程において、前記酸処理物の質量MNと前記微細六ホウ化ランタン粉末の質量MSとを、質量比(MN/MS)が97/3乃至70/30の割合で混合する請求項7に記載の六ホウ化ランタン焼結体の製造方法。
  9.  前記微細六ホウ化ランタン粉末が、ランタン含有化合物とホウ素含有化合物とを、真空中又は不活性ガス雰囲気下、1200℃以上1500℃以下の温度にて熱還元処理した後、得られた生成物中の不純物を低減させる処理を施したものである請求項7又は8に記載の六ホウ化ランタン焼結体の製造方法。
  10.  六ホウ化ランタン焼結体がターゲット用の焼結体である請求項7乃至9のいずれか1に記載の六ホウ化ランタン焼結体の製造方法。
PCT/JP2011/052178 2010-03-29 2011-02-02 六ホウ化ランタン焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び該焼結体の製造方法 WO2011122100A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/637,812 US9346715B2 (en) 2010-03-29 2011-02-02 Lanthanum hexaboride sintered body, target and lanthanum hexaboride film each comprising same, and process for production of the sintered body
KR1020127024940A KR20130018247A (ko) 2010-03-29 2011-02-02 6붕화란탄 소결체, 그것을 이용한 타깃, 6붕화란탄막, 및 당해 소결체의 제조 방법
JP2012508125A JP5761178B2 (ja) 2010-03-29 2011-02-02 六ホウ化ランタン焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び該焼結体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-076034 2010-03-29
JP2010076034 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011122100A1 true WO2011122100A1 (ja) 2011-10-06

Family

ID=44711852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052178 WO2011122100A1 (ja) 2010-03-29 2011-02-02 六ホウ化ランタン焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び該焼結体の製造方法

Country Status (4)

Country Link
US (1) US9346715B2 (ja)
JP (1) JP5761178B2 (ja)
KR (1) KR20130018247A (ja)
WO (1) WO2011122100A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010923A (ja) * 2012-06-27 2014-01-20 Tohoku Univ 冷陰極体及びその冷陰極体を備えた冷陰極管並びにそれらの製造方法
JP2014019584A (ja) * 2012-07-12 2014-02-03 Sumitomo Osaka Cement Co Ltd 六ホウ化ランタン焼結体、その製造方法、六ホウ化ランタン膜及び有機半導体デバイス
US20140061553A1 (en) * 2012-09-03 2014-03-06 Ngk Insulators, Ltd. Lanthanum boride sintered body and method for producing the same
JP2020148821A (ja) * 2019-03-11 2020-09-17 国立研究開発法人物質・材料研究機構 六ホウ化ランタン膜及びその製造方法
CN113184870A (zh) * 2021-05-24 2021-07-30 兰州理工大学 一种宏量粒度可控LaB6粉体的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3401279B1 (en) * 2016-01-04 2022-03-16 Sumitomo Metal Mining Co., Ltd. Methods for producing boride particles, boride particle dispersed liquid, infrared light shielding transparent base, infrared light shielding optical member, infrared light shielding particle dispersed body, infrared light shielding laminated transparent base, infrared light shielding particle dispersed powder, and master batch
IL260353B (en) * 2016-01-04 2022-08-01 Sumitomo Metal Mining Co Boride particles, liquid with dispersed boride particles, transparent base that protects infrared light, optical part that protects infrared light, body with dispersed particles that protects infrared light, transparent base that protects infrared light layered, powder with dispersed particles that protects infrared light and master batches
EP3835452B1 (fr) * 2019-12-09 2024-01-31 The Swatch Group Research and Development Ltd Methode de fabrication d'une surface decorative
CN115159538B (zh) * 2022-07-11 2024-01-02 安徽光智科技有限公司 一种纳米六硼化镧粉体的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140715A (en) * 1979-04-16 1980-11-04 Natl Inst For Res In Inorg Mater Manufacture of lanthanum boride powder
JPS5895652A (ja) * 1981-11-30 1983-06-07 トヨタ自動車株式会社 窒化珪素焼結体の製造方法
JPS61261272A (ja) * 1985-05-10 1986-11-19 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 六ホウ化ランタンを基材とする多結晶焼結体及びその製造方法
JPH0812417A (ja) * 1994-06-24 1996-01-16 Kyocera Corp 希土類珪酸化物系焼結体及びその製造方法
WO2010001796A1 (ja) * 2008-07-02 2010-01-07 国立大学法人東北大学 希土類元素ホウ化物部材およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846546B2 (ja) * 1976-02-14 1983-10-17 電気化学工業株式会社 金属蒸発容器の製造法
FR2661406A1 (fr) 1990-04-25 1991-10-31 Rhone Poulenc Chimie Procede de frittage d'un hexaborure de lanthane ou hexaborure isostructural de celui-ci.
JPH04243913A (ja) * 1991-01-25 1992-09-01 Sumitomo Metal Mining Co Ltd ホウ化物微粉末の製造方法
JPH05213673A (ja) * 1992-01-31 1993-08-24 Kyocera Corp 高熱伝導性炭化珪素質焼結体の製法
JPH06248446A (ja) 1993-02-26 1994-09-06 Mitsubishi Materials Corp スパッタリング用ターゲット及びその製造方法
JP2004077429A (ja) * 2002-08-22 2004-03-11 Toyota Central Res & Dev Lab Inc 多成分系無機化合物のガス反応性判別方法、それに用いる多成分系無機化合物薄膜、および多成分系無機化合物のガス反応性判別装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140715A (en) * 1979-04-16 1980-11-04 Natl Inst For Res In Inorg Mater Manufacture of lanthanum boride powder
JPS5895652A (ja) * 1981-11-30 1983-06-07 トヨタ自動車株式会社 窒化珪素焼結体の製造方法
JPS61261272A (ja) * 1985-05-10 1986-11-19 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 六ホウ化ランタンを基材とする多結晶焼結体及びその製造方法
JPH0812417A (ja) * 1994-06-24 1996-01-16 Kyocera Corp 希土類珪酸化物系焼結体及びその製造方法
WO2010001796A1 (ja) * 2008-07-02 2010-01-07 国立大学法人東北大学 希土類元素ホウ化物部材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAYOSHI NAKAHARA, MUKI KAGOBUTSU SAKUTAI JITEN, 10 June 1997 (1997-06-10), pages 933 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010923A (ja) * 2012-06-27 2014-01-20 Tohoku Univ 冷陰極体及びその冷陰極体を備えた冷陰極管並びにそれらの製造方法
JP2014019584A (ja) * 2012-07-12 2014-02-03 Sumitomo Osaka Cement Co Ltd 六ホウ化ランタン焼結体、その製造方法、六ホウ化ランタン膜及び有機半導体デバイス
US20140061553A1 (en) * 2012-09-03 2014-03-06 Ngk Insulators, Ltd. Lanthanum boride sintered body and method for producing the same
US9257210B2 (en) * 2012-09-03 2016-02-09 Ngk Insulators, Ltd. Lanthanum boride sintered body and method for producing the same
JP2020148821A (ja) * 2019-03-11 2020-09-17 国立研究開発法人物質・材料研究機構 六ホウ化ランタン膜及びその製造方法
JP7347778B2 (ja) 2019-03-11 2023-09-20 国立研究開発法人物質・材料研究機構 六ホウ化ランタン膜及びその製造方法
CN113184870A (zh) * 2021-05-24 2021-07-30 兰州理工大学 一种宏量粒度可控LaB6粉体的制备方法

Also Published As

Publication number Publication date
US9346715B2 (en) 2016-05-24
JPWO2011122100A1 (ja) 2013-07-08
US20130017137A1 (en) 2013-01-17
KR20130018247A (ko) 2013-02-20
JP5761178B2 (ja) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5761178B2 (ja) 六ホウ化ランタン焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び該焼結体の製造方法
JP5188182B2 (ja) スパッタリングターゲット、透明導電膜及びタッチパネル用透明電極
JP4885274B2 (ja) アモルファス複合酸化膜、結晶質複合酸化膜、アモルファス複合酸化膜の製造方法および結晶質複合酸化膜の製造方法
JP4987238B2 (ja) 窒化アルミニウム焼結体、半導体製造用部材及び窒化アルミニウム焼結体の製造方法
JP4489842B2 (ja) 複合酸化物焼結体、アモルファス複合酸化膜の製造方法、アモルファス複合酸化膜、結晶質複合酸化膜の製造方法及び結晶質複合酸化膜
WO2020244484A1 (zh) 一种常压固相烧结的高纯SiC陶瓷及其制备方法
JP4947942B2 (ja) スパッタリングターゲット
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
JP2010037161A (ja) 酸化物焼結体およびその製造方法、スパッタリングターゲット、半導体薄膜
WO2013065564A1 (ja) スパッタリングターゲットおよびその製造方法
EP2650271A1 (en) Zinc oxide sintered compact, sputtering target, and zinc oxide thin film
CN107473237B (zh) 一种二元钨硼化物超硬材料的制备方法
JP5910242B2 (ja) 六ホウ化ランタン微粒子の製造方法、六ホウ化ランタン微粒子、六ホウ化ランタン焼結体、六ホウ化ランタン膜及び有機半導体デバイス
EP2189431B1 (en) Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same
JP2014019584A (ja) 六ホウ化ランタン焼結体、その製造方法、六ホウ化ランタン膜及び有機半導体デバイス
CN114672715A (zh) 高温高熵合金表面碳化物/金刚石颗粒涂层的制备方法
JP5434583B2 (ja) 金属ホウ化物焼結体の製造方法
JP5998712B2 (ja) Igzo焼結体、及びスパッタリングターゲット並びに酸化物膜
WO2013065784A1 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP2011063487A (ja) ホウ化ランタン焼結体、その焼結体を用いたターゲット及びその焼結体の製造方法
JP4170045B2 (ja) ホウ素亜酸化物粉末およびその焼結体の製造方法
JP2013023745A (ja) 窒化チタンスパッタリングターゲットおよびその製造方法
JP2004175616A (ja) ZnO系焼結体およびその製造方法
JP2013142187A (ja) 六ホウ化ランタン膜及び有機半導体デバイス
TW202206609A (zh) Cr-Si-C系燒結體及其製造方法、濺鍍靶、膜的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024940

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012508125

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13637812

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762341

Country of ref document: EP

Kind code of ref document: A1