WO2011118603A1 - 競合プライマーによる標的塩基配列の検出方法 - Google Patents

競合プライマーによる標的塩基配列の検出方法 Download PDF

Info

Publication number
WO2011118603A1
WO2011118603A1 PCT/JP2011/056892 JP2011056892W WO2011118603A1 WO 2011118603 A1 WO2011118603 A1 WO 2011118603A1 JP 2011056892 W JP2011056892 W JP 2011056892W WO 2011118603 A1 WO2011118603 A1 WO 2011118603A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
base
competitive
target
detection
Prior art date
Application number
PCT/JP2011/056892
Other languages
English (en)
French (fr)
Inventor
牧野 洋一
明男 山根
雅人 中山
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN201180015155.7A priority Critical patent/CN102892901B/zh
Priority to US13/636,446 priority patent/US20130071844A1/en
Priority to EP11759408.5A priority patent/EP2551356B1/en
Priority to JP2012507021A priority patent/JP5842811B2/ja
Publication of WO2011118603A1 publication Critical patent/WO2011118603A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism

Definitions

  • the present invention relates to a method for detecting a target base sequence having a polymorphic base and a kit used in the method. More specifically, the present invention relates to a method for detecting a target base sequence with high accuracy by competing primers, and a kit used in the method.
  • This application claims priority based on Japanese Patent Application No. 2010-68490 filed in Japan on March 24, 2010, the contents of which are incorporated herein by reference.
  • SNPs single nucleotide polymorphisms
  • a single base difference in one gene is thought to cause the disease.
  • lifestyle-related diseases and cancer are thought to be affected by single base differences in multiple genes. Therefore, SNP analysis is considered to be extremely effective in drug development such as discovery of drug discovery targets or prediction of side effects. For this reason, analysis of SNPs is being promoted as a huge global project.
  • Non-Patent Documents 1 and 2 So far, various methods for detecting minute differences in base sequences, especially differences in single bases have been studied (see Non-Patent Documents 1 and 2). However, in order to perform detection at a practical level, it is required to be excellent in all points such as low cost, simple method, short detection time, and accuracy of detection result. To date, however, no method is known to meet the above requirements.
  • the target gene fragment When detecting minute differences in genes, especially differences in single bases, the target gene fragment is generally contained only in a small amount. In this case, it is necessary to amplify the target gene in advance by some method. Examples of such a gene amplification method include a PCR (Polymerase Chain Reaction) method.
  • the TaqMan method using a probe with a fluorescent dye and a quencher (see Non-Patent Document 3) or mass spectrometry of DNA using a mass spectrometer is used.
  • MALDI-TOF / MS method (see Non-Patent Document 4) has been reported.
  • an Invader method (see Non-Patent Document 5) using an enzyme that recognizes and cleaves a DNA structure has been reported.
  • these methods are still expensive to implement and the probe design is complex.
  • Non-Patent Document 6 a method for simultaneously performing gene amplification and single nucleotide identification has been reported (see Non-Patent Document 6).
  • This method utilizes the fact that in the extension reaction of DNA polymerase, the extension reaction may or may not occur depending on whether or not the 3 ′ end of the primer is complementary to the template DNA in the sample (hereinafter referred to as a match). Is. That is, when a primer is designed so that the 3 ′ end of one primer has a base complementary to a single nucleotide polymorphism in a pair of primer sets used in the PCR reaction, the primer is perfectly matched with the template. In this case, an extension reaction occurs, and an amplification reaction is caused between the other primer.
  • the reaction is susceptible to the reaction conditions such as the amount of template, temperature, amount of primer, or concentration of dNTP as a reaction substrate. For this reason, it is not easy to always obtain reproducible data.
  • Non-Patent Document 7 a method of introducing an artificial mutation (a base mismatched with a template) near the 3 'end of a primer has been studied (see Non-Patent Document 7).
  • this method also requires a certain amount of effort for primer optimization, and the identification accuracy may be affected by the quality of the sample.
  • Patent Documents 1 to 4 a method of competing at least two kinds of primers labeled with a fluorescent dye or the like has been proposed (see Patent Documents 1 to 4).
  • the 3 'end of the primer or the vicinity of the end is aligned with the position of the base to be examined.
  • an extension reaction occurs.
  • a detection method using the fact that the extension reaction is unlikely to occur is called allele-specific PCR (ASP-PCR).
  • Non-Patent Document 8 When performing allele-specific PCR, the base discrimination accuracy when competing with two or more allele-specific primers and when each allele-specific primer is individually amplified may be higher when competing. I know (see Non-Patent Document 8). This is because when an allele different from the allele to be detected exists, a primer that matches the different allele binds preferentially to the target base sequence and suppresses the nonspecific extension reaction of the primer to be detected. Furthermore, efficient extension of primers from different alleles consumes materials necessary for the extension reaction, so that generation of primer dimers by primers that are mismatched to the allele to be detected can also be suppressed. Such a method of competing primers is called competitive oligonucleotide priming (COP). In Patent Documents 1 to 4, COP is used.
  • the competing primer having a small number of mismatch bases forms a double strand with the target nucleic acid. It is a method that utilizes the property of being easy to perform, and is an excellent method for simply detecting a single base mutation in a target nucleic acid. However, in this method, there is a possibility that a false positive is generated in the SNP analysis. This is thought to be due to the insufficient ability to suppress extension from competing primers with a large number of mismatched bases, since the competing primers are designed focusing on single nucleotide mutations in the target nucleic acid.
  • the allele-specific primer used in the allele-specific PCR is important for duplex stability with the target nucleic acid near the 3 ′ end, and a base other than the base to be identified is separated from the target nucleic acid near the 3 ′ end. Base identification can be further enhanced by setting so as not to be complementary.
  • a base for identifying the SNP is introduced at the 3 ′ end of the competitive primer, and further from the 3 ′ end.
  • An artificial mutation is introduced into any one or more of 2 to 5 bases.
  • the present invention has been made in view of the above circumstances, and provides a method for detecting a target base sequence with high discrimination accuracy while having the same simplicity as that of a conventional method, and a kit used for the method. With the goal.
  • the present inventors have found that the problem can be solved by examining the position of the mutation introduced into the competitive primer.
  • the present invention provides the following (1) to (14).
  • (1) A method for detecting a target base sequence having a polymorphic base wherein (a) a nucleic acid sample having a target nucleic acid comprising a base sequence containing the target base sequence is essentially complementary to the target base sequence At least one detection primer, at least one competitive primer that is essentially complementary to the target base sequence and that competitively anneals to the target nucleic acid with the detection primer, and at least one type And (b) using the target base sequence having a polymorphic base in the nucleic acid sample as a template, and competitively using the detection primer and the competitive primer on the target nucleic acid.
  • the extension product A or B wherein the detection primer is a match base complementary to a polymorphic base and a non-polymorphic base with respect to the target sequence And at least one mismatch base that is non-complementary to the base sequence, and the competitive primer is non-complementary to a mismatch base that is non-complementary to the polymorphic base and to a base other than the polymorphic base to the target sequence At least one mismatch base, and the position of the at least one mismatch base of the detection primer is less non-complementary to a base other than the polymorphic base of the competitive primer.
  • the common primer is capable of amplifying the target nucleic acid paired with the detection primer or the competitive primer, and a method for detecting a target base sequence .
  • the detection primer may have a match base complementary to the polymorphic base at the 3 ′ end or the second base from the 3 ′ end.
  • a mismatch base that is non-complementary to a base other than a polymorphic base is the detection primer.
  • the bases are located within 17 bases from the mismatch bases complementary to the polymorphic bases, and the mismatching bases are non-complementary to the polymorphic bases in the competitive primer.
  • the difference in chain length between the competitive primer and the detection primer may be within 16 bases.
  • the first mismatch base is located within 6 bases from the 3 ′ end, 2 mismatch bases are located 7 or more bases from the 3 ′ end to the 5 ′ end side, and the position of the first mismatch base of the detection primer is different from the position of the first mismatch base of the competitive primer,
  • the second mismatch base of the detection primer and the second mismatch base of the competitive primer may be different from each other.
  • the position of the second mismatch base of the detection primer and the competitive primer may be the same.
  • the steps (b) to (d) are performed by PCR, LAMP, NASBA, ICAN, TRC, SDA, TMA, SMAP, RPA, HDA It may be a step performed by one selected from the group consisting of: (8)
  • the method for detecting a target base sequence according to any one of (1) to (7) at least one of the detection primer, the competitive primer, or the common primer may be labeled.
  • the labeling substance used for the labeling may be at least one selected from the group consisting of a fluorescent dye and an energy absorbing substance.
  • the detection primer and the competitive primer are labeled with different types of labeling substances, respectively, and the step (e) The step of separately detecting the extension product from the detection primer and the extension product from the competitive primer may be used.
  • the step (e) is a step performed simultaneously with the steps (b) to (d), and is labeled.
  • This may be a step of detecting a state in which the extension product from the primer forms a double strand.
  • the step (e) is a step performed after the step (d), wherein the extension product has a melting curve or It may be a step of detecting using an amplification curve.
  • the step (e) may be a step of detecting using a QP (Quenching Probe / Primer) method. .
  • a kit for use in a method for detecting a target base sequence having a polymorphic base comprising at least one detection primer that is essentially complementary to the target base sequence; And at least one competitive primer that is complementary and anneals competitively with the detection primer to the target nucleic acid, and at least one common primer, the detection primer comprising a polymorphic base And at least one mismatch base that is non-complementary to a base other than the polymorphic base with respect to the target sequence, and the competitive primer is a mismatch base that is non-complementary to the polymorphic base. And at least one mismatch base that is non-complementary to a base other than a polymorphic base with respect to the target sequence, and that the detection primer has.
  • the position of the match base is different from the position of at least one mismatch base that is non-complementary to a base other than the polymorphic base of the competitive primer, and the common primer is paired with the detection primer or the competitive primer.
  • the target nucleic acid can be amplified, and the method comprises (a) adding the detection primer and the competitive primer to a nucleic acid sample having the target nucleic acid, and (b) Using the target base sequence having a polymorphic base as a template, annealing the detection primer and the competitive primer competitively to the target nucleic acid, performing an extension reaction, and synthesizing an extension product A; (c ) Annealing the extension product A obtained in the step (b) or the step (d) and the common primer to perform an extension reaction, (D) annealing the extension product B obtained in the step (c) and the detection primer or the competitive primer to synthesize the extension product A, and (e) the extension product A or Detecting B.
  • the target base sequence detection method of the present invention can be performed more simply.
  • the target base sequence detection method of the present invention is a method for detecting a target nucleic acid having a polymorphic base.
  • the target base sequence refers to a base sequence having a polymorphic base.
  • detecting a target base sequence means detecting whether or not the base sequence of a nucleic acid contained in a nucleic acid sample is the same base sequence as a known base sequence.
  • a nucleic acid having a polymorphism to be identified is referred to as a “target nucleic acid”.
  • the target nucleic acid is not particularly limited as long as it has a base sequence containing a polymorphic base and the base sequence has been clarified to such an extent that a primer capable of annealing with the target nucleic acid can be designed.
  • the polymorphic base possessed by the target base sequence may be an innate polymorphism such as SNP or an acquired polymorphism such as somatic mutation as long as it is a single nucleotide polymorphism.
  • SNP single nucleotide polymorphism
  • somatic mutation means a difference between cells of genes acquired in the same solid.
  • the mutation site means a site where the base is different in the sequence.
  • the mutation in the base sequence may include not only single base substitution but also substitution, deletion or insertion of a plurality of bases.
  • polymorphisms to be detected examples include genetic diseases, lifestyle-related diseases, various diseases such as cancer, gene polymorphisms related to drug metabolism, and the like.
  • the present invention relates to a gene polymorphism at position 1173 (1173C> T) in the intron 1 region of vitamin K epoxide reductase complex 1 (VKORC1), which is a gene related to the optimal dose of warfarin, and an oncogene. It is preferably used for detecting a mutation in the 12th or 13th codon of K-Ras.
  • the detection primer refers to a primer for detecting a target base sequence.
  • the detection primer has a match base complementary to the polymorphic base and at least one mismatch base other than the polymorphic base with respect to the target base sequence.
  • the number of mismatch bases that the detection primer has may be one or two or more. Preferably, it is 1 to 5, more preferably 1 to 3, and particularly preferably 1 or 2.
  • the competitive primer is a primer that anneals competitively with the detection primer with respect to the region containing the polymorphic base in the target nucleic acid, and has a mismatch base that is non-complementary to the polymorphic base. Since the competitive primer has a mismatch base that is non-complementary to the polymorphic base, it does not form a base pair with the polymorphic base in the target nucleic acid when annealed to the target nucleic acid.
  • the competitive primer has at least one mismatch base other than the polymorphic base with respect to the target base sequence in addition to the mismatch base non-complementary to the polymorphic base.
  • the number of mismatched bases in the competitive primer may be one or two or more. Preferably, it is 1 to 5, more preferably 1 to 3, and particularly preferably 1 or 2.
  • a match means a state in which a DNA base pair forming a double strand forms a Watson-Crick base pair, and a mismatch does not form a Watson-Crick base pair.
  • the mismatch base may be a natural base or an artificial base, but it must be different from the template base.
  • the position of at least one mismatch base that the detection primer has is different from the position of the mismatch base that the competitive primer has. Therefore, the base sequence differs by at least 3 bases between the detection primer and the competitive primer.
  • the position of the mismatched base refers to a position based on the base corresponding to the polymorphic base in the primer when the template and the primer form a double strand.
  • the polymorphic base detection accuracy can be improved by annealing both of the target nucleic acids competitively. This means that when there is an allele different from the allele to be detected (target nucleic acid in the present invention), a primer that can detect the target allele is used as a detection primer, and a primer that can detect a different allele is used as a competitive primer.
  • the competitive primer preferentially binds to the different alleles to suppress non-specific reaction of the detection primer. Further, since the extension from the competing primer proceeds efficiently due to the difference in stability near the 3 ′ end, the material necessary for the extension reaction is consumed, so that nonspecific amplification from the detection primer can also be suppressed.
  • the detection primer and the competitive primer are essentially complementary to the target base sequence.
  • being essentially complementary means that the oligonucleotide has a base sequence capable of forming a double-stranded state with a target nucleic acid having a specific sequence under the reaction conditions of the extension reaction. It does not necessarily have to be completely complementary, and may contain several mismatched base pairs.
  • the annealing regions may be different. From the viewpoint of competitively annealing to the target nucleic acid, it is preferable to design both primers so that the target nucleic acid and the competitive primer anneal in the same region as the region where the detection primer anneals.
  • the detection primer preferably has a base complementary to the polymorphic base at the 3 'end or the second base from the 3' end.
  • the competitive primer preferably has a non-complementary base to the polymorphic base at the 3 'end or the second base from the 3' end.
  • the detection primer for detecting this polymorphic base A is near the 3 ′ end.
  • the competitive primer can have a 5′-GCAG-3 ′ or 5′-GCAGGG sequence near the 3 ′ end.
  • the above example is an example, and the base to be mismatched can be selected from three types except for one base to be matched.
  • the position where the detection primer identifies the base of the template is more preferably the 3 'end or the second base from the 3' end, but it may be away from the 3 'end.
  • the base type of the base mismatched with the polymorphic base in the competitive primer base sequence is a base type that matches a polymorphism of a genotype other than the target base sequence.
  • the base sequence containing the polymorphic base A is used as the target base sequence, competition
  • any of A, G, and C may be selected as a non-complementary base to polymorphic base A, but it is preferable to select G that is complementary to the wild type.
  • one type of competitive primer may be used, or two or more types may be used.
  • a polymorphism having a plurality of genotypes such as K-ras described later, it is preferable to use a plurality of types of competing primers that match each genotype other than the genotype to be detected.
  • the common primer is capable of amplifying the target nucleic acid paired with the detection primer or the competitive primer, and has 10 to 30 bases on the 3 ′ end side of the extension product from the detection primer or the competitive primer. It has a sequence that is a match, and has the ability to extend in the PCR reaction using an extension product from a detection primer or a competitive primer as a template.
  • two or more types of common primers may be used, and two or more types of common primers may be in a competitive relationship. Two or more kinds of common primers having a competitive relationship may contain a polymorphic base sequence.
  • Mismatch bases that are non-complementary to the bases other than the polymorphic bases of the detection primer and competitive primer match bases that are complementary to the polymorphic bases in the detection primer, and non-complementary to polymorphic bases in the competitive primer It is preferable that any mismatched base is located within 17 bases, more preferably within 8 bases.
  • Each of the detection primer and the competitive primer may have a plurality of mismatch bases.
  • the first mismatch base is located within 6 bases from the 3 ′ end in the detection primer and the competitive primer, It is preferable that the 2 mismatch bases are located 7 or more bases from the 3 ′ end to the 5 ′ end. Further, the position of the first mismatch base of the detection primer is preferably different from the position of the first mismatch base of the competitive primer.
  • the second mismatch bases may have different positions from each other and may have different base types. That is, in the same position, the base species may be different.
  • “the second mismatch base of the detection primer and the second mismatch base of the competitive primer are different from each other” specifically means that the positions of the two are different or the positions of the two are different. It means the same and different base species.
  • the position of the second mismatch base in the detection primer and the competitive primer may be the same.
  • the second mismatch base is preferably 7 bases or more away from the 3 ′ end, and more preferably 9 bases or more away from the 3 ′ end.
  • the second mismatch base is arranged near the center of the primer because the efficiency of the amplification reaction from the detection primer can be increased.
  • the second mismatch base is preferably located at the 7th to 15th bases from the 3 ′ end, and is located at the 9th to 15th bases. It is more preferable.
  • the lengths of the detection primer and the competitive primer may affect the discrimination ability and reactivity.
  • a primer having a longer chain length tends to preferentially anneal to the target nucleic acid. Therefore, in order to detect the target base sequence with higher accuracy, the difference in chain length between the competitive primer and the detection primer is preferably within 16 bases, more preferably within 2 bases, and more preferably 1 base Is particularly preferable.
  • the competitive primer anneals in preference to the detection primer, and the annealing of the detection primer may be inhibited.
  • the chain length of the detection primer is long, the detection primer anneals in preference to the competitive primer, and the annealing of the competitive primer may be inhibited. For this reason, it is preferable that the chain length of a detection primer and a competition primer is comparable.
  • FIG. 1 is a diagram schematically showing one aspect of a conventional method for detecting a target base sequence.
  • a template S having a gene polymorphism (C> T) a template S having a gene polymorphism (C> T)
  • a detection primer primer A: equivalent to a forward primer
  • a competitive primer primer B: equivalent to a forward primer
  • Common primers corresponding to reverse primers
  • Primer A guanine as a base for detecting a polymorphic base at the 3 ′ end, and a mismatch base non-complementary to a base other than the polymorphic base at the second base from the 3 ′ end. Thymine has been introduced.
  • Primer B is a competitive primer.
  • primer B adenine as a mismatch base non-complementary to the polymorphic base at the 3 ′ end is non-complementary to a base other than the polymorphic base at the second base from the 3 ′ end.
  • thymine has been introduced.
  • the bases and introduction positions of the mutations introduced into the primers A and B are the same.
  • dNTP deoxynucleotide triphosphate
  • primer A and B primers A and B
  • detection primer or a competitive primer primers A and B
  • Round means two cycles in PCR.
  • 1 Round is an extension reaction after the detection primer or competing primer anneals with the template, and after denaturation, the extension product from the detection primer or competing primer and the common primer anneal, and the detection primer or competing primer It means a step of performing an extension reaction from a common primer using an extension product as a template.
  • the primer A has a higher efficiency of the extension reaction because the double strand formed with the template S is more stable than the primer B in the first round.
  • the difference between the specific extension efficiency from primer A and the nonspecific extension efficiency from primer B can be increased. This is because it can.
  • the extension product generated by the non-specific extension reaction in spite of a low frequency is replicated as a template for the common primer (template b) in the next cycle, and DNA containing a sequence complementary to the sequence of primer B (template) b ′) is synthesized.
  • Template a ′ or template b ′ is completely complementary to primer A or primer B, respectively, and is efficiently extended from the next round. Furthermore, in the next round, a mismatch base that is non-complementary to a base other than the polymorphic base of primer B is a match for template a ′. For this reason, primer B forms a double strand with template a ′ and undergoes an extension reaction. For this reason, after 2nd Round, the effect of the mismatch base introduced to increase the specificity of primer A and primer B is lost. Since the template a ′ increases exponentially every time Round is repeated, b and b ′ increase with the increase of the templates a and a ′ although the efficiency is lower than that of the specific extension reaction. Therefore, this method leaves room for improvement in terms of increasing the difference in extension efficiency between primer A and primer B relative to the template.
  • FIG. 2 is a diagram schematically showing one aspect of a conventional method for detecting a target base sequence.
  • primer A guanine is introduced at the 3 ′ end as a base for detecting a polymorphic base, and thymine is introduced as a mismatch base non-complementary to a base other than the polymorphic base at the second base from the 3 ′ end.
  • primer B adenine is introduced as a mismatch base non-complementary to the polymorphic base at the 3 ′ end, and cytosine is introduced as a mismatch base non-complementary to a base other than the polymorphic base at the second base from the 3 ′ end. Yes.
  • the introduction positions of the mutations introduced into the primers A and B are the same, but the bases are different.
  • the non-specific extension reaction to template a ′ is a mismatch of 2 bases at the 3 ′ end, and the effect of the mismatched base other than the position for detecting the polymorphic base persists, resulting in a non-specific reaction. Is suppressed.
  • the template a ′ continues to increase during the amplification process, it is necessary to suppress the non-specific extension reaction more effectively.
  • FIG. 3 and FIG. 4 show the case where the position of the mismatched base other than the base for detecting the polymorphism is different between the detection primer and the competitive primer in the present invention.
  • the configuration other than the primer is the same as that described with reference to FIG.
  • primer A has a match at the 3 ′ end to template S, but a mismatch at the second base from the 3 ′ end.
  • primer B is mismatched with respect to template S at the 3 'end and the 3rd base from the 3' end.
  • Primer B is mismatched with 3 bases at the 3 'end with respect to template a', and the nonspecific extension reaction is very effectively suppressed.
  • a mismatch base introduced in addition to a base for detecting a polymorphic base brings about a very large effect by changing the position between competing primers despite one base.
  • primer A has a match at the 3 ′ end to template S, but a mismatch at the second base from the 3 ′ end.
  • primer B is mismatched with template S at the 3 'end and the 5th base from the 3' end. Even in such a case, since the primer B has a mismatch between the 2 'base at the 3' end and the first base at the 5th base from the 3 'end with respect to the template a', the nonspecific reaction is effectively suppressed.
  • FIG. 5 shows the case where the base for detecting the polymorphic base is set to the second base from the 3 'end of the primer in the present invention.
  • the mismatch base introduced in addition to the base for detecting the polymorphic base is one base in each primer
  • primer B becomes a mismatch of 3 bases at the 3 ′ end with respect to the template a ′ and is non- Specific reactions are effectively suppressed.
  • FIG. 6 shows a case where three types of competitive primers are used in the present invention.
  • the configuration other than the primer is the same as that described with reference to FIG.
  • the mismatch site with the template S or template a ′ annealed by the detection primer and the competitive primer is underlined.
  • SNPs there are often two types of alleles, but in rare cases there are three types.
  • K-ras which is an oncogene.
  • the position where the K-ras mutation is detected is defined as the 3 ′ end of the primer.
  • Primer A detects cytosine bases
  • the 3 ′ end matches template S
  • thymine is introduced as a mismatched base with template S at the second base from the 3 ′ end.
  • Primer B detects a thymine base.
  • the 3 ′ end is mismatched with template S
  • thymine is introduced as a mismatched base with template S at the third base from the 3 ′ end.
  • Primer C detects a guanine base.
  • the 3 ′ end is mismatched with template S
  • thymine is introduced as a mismatched base with template S at the fourth base from the 3 ′ end.
  • primer D detects an adenine base.
  • the 3 ′ end is mismatched with template S, and thymine is introduced as a mismatched base with template S at the 5th base from the 3 ′ end.
  • each of the primers B, C, and D becomes a 3-base mismatch with the template a ′, and the nonspecific extension reaction from each primer is effectively suppressed. Therefore, in the present invention, even when competing for two or more types of allele-specific primers that compete with each other, nonspecific extension reaction can be performed by changing the position of the mutation to be introduced in addition to the base for identifying the mutation. Can be suppressed at the target level.
  • the effect of the present invention shown in FIG. 3 was simulated by calculation using Microsoft Excel. First, assuming that the SNP to be detected is cytosine or thymine, four types of primers were designed. The template and primer sequences are shown in Table 1.
  • Primer [1] is for C allele detection, the 3 ′ end is guanine, and the second base from the 3 ′ end is a thymine mismatched with the template.
  • Primer [2] is for T allele detection. The 3 ′ end is adenine, and the second base from the 3 ′ end is a thymine mismatched with the template in the same manner as primer [1].
  • Primer [3] is for T allele detection like primer [2], but the mismatched base introduced at the second base from the 3 ′ end is cytosine, and is different from primer [1].
  • Primer [4] is for T allele detection, and has a thymine as a mismatch base at the third base from the 3 ′ end so as to be different from the position at which the mismatch base was introduced in primer [1].
  • the initial template concentration (mold S) is 1.
  • the ratio of template S or extension product (template a ′, template b ′) forming a double strand with each primer is made equal.
  • the extension efficiency from the common primer is 1.
  • Table 2 assumes the primer extension efficiency when competing primer [1] with primer [2], primer [3] or primer [4]. Although extension efficiency is a rather bold assumption, the order of the number of mismatches and the efficiency of the extension reaction is a reasonable assumption. It is assumed that the mold S is a C allele. Double-stranded [1], [2], [3] and [4] correspond to primer [1], primer [2], primer [3] and primer [4], where S is template S, [ 1] 'is obtained by extending from the common primer using the extension product from primer [1] as a template, and [2]' is obtained by extending from the common primer using the extension product from primer [2] as a template. The same applies to [3] ′ and [4] ′ below. The upper part of the sequence shows the primer and the lower part shows the template sequence. In the primer, the base mismatched with the template is underlined.
  • Tables 3 to 8 show the calculation results up to 20 Round when the primer [1] is competed with the primer [2], the primer [3], or the primer [4].
  • the base mismatched with the template is shown in italics.
  • graphs showing the amount of product extended from the primer at each Round are shown in FIGS. 7A to 9B.
  • FIG. 7A shows the breakdown of the extension product template extended from primer [1]
  • FIG. 7B shows the extension product template breakdown extended from primer [2].
  • the identification accuracy is higher for the combination of primers [1] and [4] than for the combination of primers [1] and [2] and the combination of primers [1] and [3]. Therefore, it was confirmed that changing the position of the mismatch base introduced into the detection primer and the competitive primer in both directions leads to improvement in the identification accuracy.
  • the method for detecting a target base sequence of the present invention comprises: (a) at least one detection primer that is essentially complementary to the target base sequence in a nucleic acid sample having a target nucleic acid comprising a base sequence including the target base sequence. And at least one competitive primer that is essentially complementary to the target base sequence and that competitively anneals to the target nucleic acid with the detection primer, and at least one common primer And (b) using the target base sequence having a polymorphic base in the nucleic acid sample as a template, annealing the detection primer and the competitive primer competitively with the target nucleic acid, and performing an extension reaction.
  • a step of synthesizing the extension product A (c) annealing the extension product A obtained in the step (b) or the step (d) and the common primer, and extending And (d) annealing the extension product B obtained in the step (c) and the detection primer or the competitive primer to synthesize the extension product A, and (E) a step of detecting the extension product A or B.
  • each step will be described.
  • step (a) a nucleic acid sample having a target nucleic acid composed of a base sequence including a target base sequence, one kind of detection primer, at least one kind of competitive primer, and at least one kind of common primer And are added.
  • the nucleic acid sample is not particularly limited as long as it is a sample containing nucleic acid, and is preferably a sample obtained by extracting nucleic acid from animals, plants, microorganisms, cultured cells and the like. Extraction of nucleic acids from animals and the like can be performed by a known method such as a phenol / chloroform method.
  • the nucleic acid contained in a nucleic acid sample is a double stranded nucleic acid, it is preferable to make it a single stranded nucleic acid beforehand.
  • a detection primer and a competitive primer can be annealed to the single-stranded nucleic acid in the step (b) described later.
  • the extracted double-stranded nucleic acid can be made into a single strand by a known method such as application of heat energy.
  • the nucleic acid in the nucleic acid sample is not particularly limited as long as it is DNA or RNA, and may be natural or synthesized.
  • natural nucleic acids include genomic DNA, mRNA, rRNA, hnRNA and the like recovered from living organisms.
  • synthesized nucleic acids DNA synthesized by a known chemical synthesis method such as ⁇ -cyanoethyl phosphoramidite method, DNA solid phase synthesis method, nucleic acid synthesized by a known nucleic acid synthesis method such as PCR, Examples include cDNA synthesized by reverse transcription reaction.
  • oligonucleotide means not only natural and non-natural, but also one having the same function as deoxyribonucleotide (DNA) or ribonucleotide (RNA), and includes artificial nucleic acids such as PNA and LNA.
  • a primer is a short nucleic acid fragment that is in a double-stranded state with a template and has a role of supplying a 3 ′ hydroxyl group when DNA polymerase or reverse transcriptase synthesizes DNA.
  • step (b) a target base sequence having a polymorphic base in a nucleic acid sample is used as a template, and the target nucleic acid is annealed competitively with the detection primer and the competitive primer, and an extension reaction is performed. To synthesize extension product A.
  • reaction conditions for the detection primer or competing primer to anneal to the target nucleic acid are not particularly limited, and the normal conditions such as temperature, pH, salt concentration, buffer solution, etc. are considered in consideration of the Tm value of each primer. Under the conditions.
  • the extension reaction is a nucleic acid synthesis reaction performed using a reagent such as dNTP or DNA polymerase, and includes an extension reaction using reverse transcriptase using RNA as a template.
  • DNA polymerase is a general term for enzymes that synthesize a DNA strand having a base sequence complementary to a template DNA annealed with primers.
  • the DNA polymerase used in the present invention is not particularly limited, but it is preferable to use a thermostable DNA polymerase such as Taq DNA polymerase, Tth DNA polymerase, Vent DNA polymerase, etc., and a hot start function to prevent extension before the start of the test.
  • a DNA polymerase having it is particularly preferable to use a DNA polymerase having no 3 ′ ⁇ 5 ′ exonuclease activity in order to identify the base near the 3 ′ end of the primer.
  • a DNA polymerase having no 3 ′ ⁇ 5 ′ exonuclease activity in order to identify the base near the 3 ′ end of the primer.
  • the extension product A obtained in the step (b) or the step (d) and the common primer are annealed, an extension reaction is performed, and an extension product B is synthesized.
  • the extension product B obtained in the step (c) is annealed with the detection primer or the competitive primer to synthesize the extension product A.
  • PCR Polymerase Chain Reaction
  • LAMP Long-Mediated Isothermal Amplification
  • NASBA Nucleic Acid Sequence Based Amplification
  • ICAN Isothermal and Chimerical primer-initiated Amplification of Nucleic acids
  • TRC Transcription Reverse -Translation Concerted
  • SDA String Displacement Amplification
  • TMA Transcribion Mediated
  • SMAP SMart Amplification Process
  • RPA Recombines polymerase amplification
  • HDA Helicase-dependent amplification
  • the optimal concentration of the detection primer, competing primer, or common primer can be determined as appropriate, but the concentration of the common primer should be set below the total concentration of the detection primer and competing primer. More preferably, it is 25% or less of the total concentration of the detection primer and the competitive primer. This is because, as PCR progresses, detection primers that match the template are preferentially consumed, and the relative concentration of competing primers that are mismatched with the template increases, thereby preventing the discrimination accuracy from falling. . By reducing the concentration of the common primer, the common primer is consumed together with the detection primer that matches the template, and the identification system can be maintained.
  • the extension product A or B is detected.
  • the method for detecting the extension product from the primer in step (e) is not particularly limited, and includes labeling of the primer with a fluorescent dye, electrophoresis, high performance liquid chromatography and mass spectrum, melting curve analysis, growth curve analysis, etc. Any method capable of analyzing nucleic acids can be mentioned.
  • the extension product By labeling the detection primer, the competitive primer, or the common primer with a labeling substance, the extension product can be detected using the labeling substance as an index.
  • a labeling substance include fluorescent dyes, energy absorbing substances, radioisotopes, chemiluminescent substances, enzymes, antibodies and the like.
  • the position at which the primer is labeled is not particularly limited, but a position that does not inhibit the extension reaction is preferable.
  • the method of distinguishing from which primer was labeled by labeling with a different fluorescent dye is preferable because it has little influence on specificity and is a simple method without the need to measure a melting curve.
  • Non-Patent Document 9 More preferred is a method of introducing fluorescein and acridine into the 5 ′ end of the primer.
  • this primer exists in a single-stranded state, even if it is irradiated with the excitation wavelength of fluorescein, it is quenched by acridine which is an energy absorbing substance, and fluorescence from fluorescein is not observed.
  • acridine which is also an intercalator, binds to a double-stranded nucleic acid, so that the distance from fluorescein is increased and fluorescence from fluorescein cannot be absorbed.
  • the primer for which the primer extension reaction has occurred emits fluorescence (see FIG. 10). Therefore, by making the fluorescent dyes for the detection primer and the competitive primer different, it is possible to determine which primer is the extension product.
  • a primer that detects a mutant allele is used as a detection primer
  • a primer that can detect a wild type allele is used as a competitive primer.
  • the detection primer and the competitive primer are labeled with different fluorescent dyes and the extension product of each primer is detected. Multiple polymorphisms can be detected.
  • the position at which the fluorescent dye is introduced is not particularly limited, but a position that does not inhibit the polymerase reaction is preferable because the competitive primer is labeled.
  • pyrene may be used instead of acridine. Since pyrene is also energy-absorbing and can bind to double strands, double-strand formation reactions can be examined in the same manner as acridine.
  • LUX trade name
  • Amplifluor trade name
  • UNI primer trade name
  • a suitable detection method using a fluorescent dye includes a detection method using a QP (Quenching Probe / Primer) method.
  • the QP method is a detection method that utilizes the fact that fluorescence is quenched when a guanine base is spatially close to a certain fluorescent dye.
  • the presence or absence of proximity between the detection primer and the target nucleic acid can be detected by labeling the detection primer of the present invention with a fluorescent dye that quenches upon proximity to the guanine base.
  • the guanine base may be a target nucleic acid or a detection primer, but is preferably a detection primer.
  • the fluorescent dye that quenches by the proximity to the guanine base it can be performed using a fluorescent dye usually used in the QP method.
  • a fluorescent dye usually used in the QP method for example, BODIPY FL (trade name, manufactured by Invitrogen), PACIC BLUE (trade name, Invitrogen), CR6G (trade name, manufactured by Invitrogen), TAMRA (trade name, manufactured by Invitrogen) and the like.
  • the length of the competing two primers is changed, and the length of the extension product is changed, so that it can be detected by the difference in the degree of migration.
  • ethidium bromide or cyber green is more preferable because it binds to double-stranded DNA and emits fluorescence.
  • Cyber Green is a fluorescent dye, it can be distinguished from which primer the product is extended by measuring the melting curve described later.
  • high-performance liquid chromatography can distinguish extension products from two primers.
  • the lengths of extension products from the two primers may be different, or the primers may be labeled with substances having different masses. The latter case is preferable because it has little influence on specificity.
  • the step (e) may be provided simultaneously with the nucleic acid amplification step comprising the steps (b) to (d), or may be performed after the nucleic acid amplification step.
  • Examples of the identification method during the nucleic acid amplification step include a method of measuring the double-stranded state of a labeled primer or its extension product.
  • This discrimination method utilizes the difference in ability of the competing primer forming a double strand with the template or the extension product from the competing primer to form a double strand.
  • the extension product from the primer may be measured for fluorescence at a temperature at which a double strand is formed. In this method, only the extended product from the competing primer can be detected, so that discrimination can be performed with higher accuracy.
  • Examples of the identification method after the nucleic acid amplification step include a method of measuring a melting curve. This is a method that utilizes the temperature dependence of the amplification product transitioning from double-stranded to single-stranded. In this method, it is possible to detect only the amplification product by the two competing primers, and therefore it is possible to identify with higher accuracy.
  • the detection method of the present invention can be used for a DNA sequence inspection instrument such as a real-time PCR apparatus.
  • a DNA sequence inspection instrument such as a real-time PCR apparatus.
  • the sample DNA is placed in a container to which the above-described reagents necessary for PCR and primers are added, and real-time PCR is performed to detect extension products from the detection primers. Scattering and contamination of the amplification product can be prevented by performing detection while sealing the sample DNA.
  • the target base sequence detection kit of the present invention is a kit used in the above method for detecting a target base sequence having a polymorphic base, and includes the detection primer, a competitive primer, and a common primer.
  • a cell destruction reagent for sample pretreatment, a reagent for detecting the label of the labeling substance, and the like may be combined.
  • VK1Mtg The four competitive primers (VK1Mtg, VK1Mat, VK1Mac, VK1Wat) and the common primer (VK1R2) shown in Table 9 were purchased from Greiner Japan from those synthesized by a conventional synthesis method.
  • the genomic DNA used as a template was purchased from Coriell.
  • position 1173 and the polymorphic base recognition site are shown in bold, and the mismatch base introduction site is underlined.
  • “Acridine” indicates acridine
  • 6-FAM indicates 6-fluorocein labeling
  • the numbers in the right column indicate sequence numbers corresponding to the sequences before labeling shown in the sequence listing.
  • FIG. 11 is a diagram showing the result of Comparative Example 1 as a negative first derivative curve of the melting curve.
  • the detection primer VK1Wat-Acridine
  • the energy absorbing substance acridine is intercalated into the double stranded nucleic acid, and the amount of energy absorbed by acridine is reduced.
  • the fluorescence intensity increases.
  • the melting curve is a curve obtained by measuring the fluorescence intensity until the double-stranded nucleic acid amplified by the PCR method is denatured into a single-stranded state by gradually raising the temperature from a low temperature.
  • the negative first derivative curve of the melting curve indicates the amount of fluorescence change with respect to temperature change, and the place where the change amount is maximum is Tm of double-stranded DNA.
  • Comparative Example 1 it has already been found that the extension product from VK1Wat-Acridine has the largest amount of change between the single-stranded state and the double-stranded state in the range of 83 ° C to 86 ° C. Therefore, when a peak is observed in the negative first derivative curve of the melting curve in the range of 83 ° C. to 86 ° C., it can be determined from VK1Wat-Acryline that an extension reaction has occurred. When the detection primer set and the competitive primer set of Comparative Example 1 were used, the same result was obtained regardless of which C allele or T allele was used as a template. This suggests that the extension reaction is not specific to the C allele in the above primer set.
  • Comparative Example 2 The same reaction and the same analysis as in Comparative Example 1 were performed except that VK1Wat-Acryline was used as a detection primer and VK1Mac was used as a competitive primer. The results are shown in FIG.
  • FIG. 12 is a diagram showing the result of Comparative Example 2 as a negative first derivative curve of the melting curve.
  • amplification from VK1 Wat-Aciline was predominantly observed when the C allele was used as a template.
  • a slight peak is seen when the T allele is used as a template. This suggests that the suppression of elongation from VK1Wat-Acridine is not sufficient when the T allele is used as a sample.
  • Example 1 The same reaction and the same analysis as in Comparative Example 1 were performed except that VK1Wat-Acryline was used as a detection primer and VK1Mtg was used as a competitive primer. The results are shown in FIG.
  • FIG. 13 is a diagram showing the result of Example 1 as a negative first derivative curve of a melting curve.
  • Example 2 The same reaction and the same analysis as in Comparative Example 1 were performed except that VK1Mtg-Acridine was used as a detection primer and VK1Wat was used as a competitive primer. The results are shown in FIG.
  • FIG. 14 is a diagram showing the result of Example 2 as a negative first derivative curve of the melting curve.
  • Example 2 it has already been found that the extension product from VK1Mtg-Acridine has the largest amount of change between the single-stranded state and the double-stranded state in the range of 83 ° C to 86 ° C. Therefore, when a peak is observed in the negative first derivative curve of the melting curve in the range of 83 ° C. to 86 ° C., it can be determined that the extension reaction has occurred from the fluorescently labeled VK1Mtg-Acridine.
  • the primer set of Example 2 is the same as the primer set of Example 1 except that a fluorescent label is introduced into the mutant primer, and the base sequence set is the same. Therefore, from the results of Examples 1 and 2, it became clear that the presence or absence of the extension reaction from the fluorescently labeled primer can be determined by fluorescent labeling of either VK1Wat or VK1Mtg. Therefore, by introducing fluorescent dyes having different fluorescence wavelengths into VK1Wat and VK1Mtg, extension reactions from the respective fluorescently labeled primers can be measured simultaneously.
  • VKORC1 vitamin K epoxide reductase complex 1
  • warfarin 1173C> T
  • Table 11 a detection primer (VK1Mtg-pyren) for newly identifying the VKORC1 gene polymorphism was prepared.
  • an amino-modifier C6 dA (Glen Research) was introduced into the second base adenine from the 5 'end, and 6-fluorocein (Glen Research) was introduced into the 5' end.
  • As a competitive primer and a common primer those purchased from Greiner Japan which were synthesized by a conventional synthesis method were used. A plurality of competitive primers were prepared with different mismatch base introduction positions. Others are the same as described in Comparative Example 1.
  • Example 3 The reaction mixture in which VK1ORC1 gene polymorphism C or T allele is used as a template, VK1Wat-pyrene as a detection primer, VK1M4t as a competitive primer, and VK1R2 as a common primer is mixed is as shown in Table 12.
  • the above reaction solution is set in a real-time PCR system (Roche, “LightCycler”), held at 95 ° C. for 1 minute to denature the DNA polymerase antibody, followed by two-step PCR at 58 ° C. for 20 seconds and 95 ° C. for 5 seconds.
  • the melting curve analysis was performed from 95 ° C. to 40 ° C.
  • template was made into negative control. The results are shown in FIG.
  • FIG. 15 is a diagram showing the result of Example 3 as a negative first derivative curve of a melting curve.
  • Example 4 The same reaction and the same analysis as in Example 3 were performed except that VK1M5t was used as a competitive primer. The results are shown in FIG.
  • FIG. 16 is a diagram showing the results of Example 4 as a negative first derivative curve of a melting curve.
  • the detection primer and competitive primer set of Example 4 were used, the same results as in Example 3 were obtained. Accordingly, even when the mismatched base of the competitive primer is located at the 5th base from the 3 'end, it is suggested that the C allele specificity is superior as in the case of being located at the 3rd base from the 3' end in Example 1. It was done.
  • Example 5 The same reaction and the same analysis as in Example 3 were performed except that VK1M8t was used as a competitive primer. The results are shown in FIG.
  • FIG. 17 is a diagram showing the result of Example 5 as a negative first derivative curve of the melting curve.
  • the detection primer set and the competitive primer set of Example 5 were used, the same results as in Example 3 were obtained. Therefore, even when the mismatching base of the competitive primer is located at the 8th base from the 3 ′ end, it is suggested that the C allele specificity is superior as in the case of being located at the 3rd base from the 3 ′ end in Example 1. It was done.
  • Example 6 The same reaction and the same analysis as in Example 3 were performed except that VK1Mtg-pyrene was used as a detection primer and VK1W4t was used as a competitive primer. The results are shown in FIG.
  • FIG. 18 is a diagram showing the result of Example 6 as a negative first derivative curve of the melting curve.
  • the detection primer and competitive primer set of Example 6 were used, the same results as in Example 2 were obtained. Therefore, it was suggested that even when a mismatch base was introduced at the fourth base from the 3 ′ end of the competitive primer in the primer set for detecting mutation, the T allele specificity was more excellent.
  • Example 7 The same reaction and the same analysis as in Example 6 were performed except that VK1W5t was used as a competitive primer. The results are shown in FIG.
  • FIG. 19 is a diagram showing the result of Example 7 as a negative first derivative curve of the melting curve.
  • Example 8 The same reaction and the same analysis as in Example 7 were performed except that VK1W8t was used as a competitive primer. The results are shown in FIG.
  • FIG. 20 is a diagram showing the result of Example 8 as a negative first derivative curve of the melting curve.
  • the detection primer set and the competitive primer set of Example 8 were used, the same results as in Example 6 were obtained. Therefore, it was suggested that even when a mutation was introduced at the 8th base from the 3 ′ end of the competitive primer in the primer set for detecting the mutation, the T allele specificity was more excellent.
  • the composition shown in Table 11 is a reaction mixture in which VK1ORC1 gene polymorphism C allele or T allele is used as a template, detection primer and competitive primer set shown in Table 13 is mixed, and VK1R2 is mixed as a common primer. It prepared so that it might become.
  • the above reaction solution is set in a real-time PCR system (Roche, “LightCycler”), kept at 95 ° C. for 1 minute to denature the DNA polymerase antibody, and then 2-step PCR at 62 ° C. for 20 seconds and 95 ° C. for 5 seconds.
  • the melting curve analysis was performed from 95 ° C. to 40 ° C.
  • template was made into negative control. The results are shown in FIGS.
  • 21 to 30 are graphs showing the results of Examples 9 to 18 as negative first derivative curves of melting curves.
  • the detection primer and competitive primer set of Examples 9 to 13 were used, the same results as in Example 3 were obtained, but when the detection primer and competitive primer set of Examples 14 to 18 were used. The same results as in Example 6 were obtained.
  • VKORC1 vitamin K epoxide reductase complex 1
  • warfarin 1173C> T
  • Table 14 a detection primer (VK1Wat-P-FAM1) for newly identifying the VKORC1 gene polymorphism was prepared.
  • amino-modifier C6 dC (Glen Research) was introduced into cytosine at the 4th base from the 5 ′ end, and fluorescein dT (Glen Research) was introduced into the 6th thymine from the 5 ′ end.
  • the introduced product was purchased from Nippon Bio Service Co., Ltd., and 1-pyrenebutanoic acid succinimidyl ester (Invitrogen) was used for pyrene modification to the amino group.
  • the competitive primer and the common primer shown in Table 14 those purchased from Greiner Japan which were synthesized by a conventional synthesis method were used. A plurality of competitive primers with different chain lengths were prepared.
  • the composition shown in Table 10 is a reaction mixture in which VKORC1 gene polymorphism C allele or T allele is used as a template, detection primer and competitive primer set shown in Table 15 is mixed, and VK1R2 is mixed as a common primer. It prepared so that it might become.
  • the reaction solution is set in a real-time PCR system (Roche, “LightCycler 480”), held at 95 ° C. for 1 minute to denature the DNA polymerase antibody, and then a two-step PCR at 64 ° C. for 30 seconds and 95 ° C. for 5 seconds. For 60 cycles.
  • the results obtained by reacting using the C allele as a template are shown in FIG.
  • Example 21 to 26 using a competitive primer 2 to 16 bases longer than the detection primer were more reactive than Example 27 using a competitive primer 20 bases longer than the detection primer.
  • Example 19 and Example 20 using a competitive primer having the same chain length as the detection primer or one base longer than Examples 21 to 26 using a competitive primer 2 to 16 bases longer than the detection primer was also confirmed to be excellent in reactivity.
  • VKORC1 vitamin K epoxide reductase complex 1
  • a detection primer VK1Wat-P-FAM2 to 8 for newly identifying a VKORC1 gene polymorphism was prepared.
  • amino-modifier C6 dC (Glen Research) was introduced into cytosine at the 4th base from the 5 ′ end, and fluorescein dT (Glen Research) was introduced into the 6th thymine from the 5 ′ end.
  • the introduced product was purchased from Nippon Bio Service Co., Ltd., and 1-pyrenebutanoic acid succinimidyl ester (Invitrogen) was used for pyrene modification to the amino group.
  • the competitive primer and common primer shown in Table 16 those purchased from Greiner Japan which were synthesized by a conventional synthesis method were used. A plurality of competitive primers were prepared with different positions for introducing the second mismatch base.
  • the composition shown in Table 10 is a reaction mixture in which VKORC1 gene polymorphism C allele or T allele is used as a template, detection primer and competitive primer set shown in Table 17 is mixed, and VK1R2 is mixed as a common primer. It prepared so that it might become.
  • the reaction solution is set in a real-time PCR system (Roche, “LightCycler 480”), held at 95 ° C. for 1 minute to denature the DNA polymerase antibody, and then a two-step PCR at 64 ° C. for 30 seconds and 95 ° C. for 5 seconds. For 60 cycles.
  • the results obtained by reacting using the C allele as a template are shown in FIG.
  • Examples 29 to 35 using a set of detection primer and competitive primer in which the second mismatch base is separated from the 3 ′ end by 7 bases or more are more reactive than Example 28 in which the second mismatch base is not introduced. It was confirmed that it was excellent in performance. In particular, it was confirmed that Examples 29 to 34 using a set of detection primer and competitive primer in which the second mismatch base was 9 bases or more away from the 3 ′ end were particularly excellent in reactivity.
  • the genotype identification accuracy is very excellent, and therefore it can be used in the field of clinical examination, particularly in the field of single nucleotide polymorphism and somatic mutation. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 多型塩基を有する標的塩基配列を検出する方法であって、(a)標的塩基配列を含む塩基配列からなる標的核酸を有する核酸試料に、少なくとも1種の検出用プライマーと、少なくとも1種の競合プライマーと、少なくとも1種の共通プライマーと、を添加する工程と、(b)前記標的核酸に、前記検出用プライマーと前記競合プライマーとを競合的にアニールさせ、伸長産物Aを合成する工程と、(c)前記工程(b)または後記工程(d)で得られた前記伸長産物Aと前記共通プライマーをアニールさせ、伸長産物Bを合成する工程と、(d)前記工程(c)で得られた伸長産物Bと前記検出用プライマーまたは前記競合プライマーをアニールさせ、伸長産物Aを合成する工程と、(e)前記伸長産物AまたはBを検出する工程と、を有する。

Description

競合プライマーによる標的塩基配列の検出方法
多型塩基を有する標的塩基配列の検出方法及び前記方法に用いられるキットに関する。さらに詳述すると、プライマーを競合させることによって、高精度に標的塩基配列を検出する方法、及び前記方法に用いられるキットに関する。
本願は、2010年3月24日に、日本に出願された特願2010-68490号に基づき優先権を主張し、その内容をここに援用する。
 近時、世界的なヒトゲノム解析により、その約31億個の塩基対の配列が明らかにされ、ヒトの遺伝子の数が約3~4万個であることが明らかとなった。
ヒトには個体間で塩基配列の違いが存在し、特定の集団人口の1%以上の頻度で存在するものを遺伝子多型と呼んでいる。その中でも遺伝子の塩基配列が一塩基だけ異なっている一塩基多型(Single Nucleotide Polymorphism、SNP)は、種々の疾患と関連性があることが示唆されている。例えば、ヒトの遺伝子病は、一つの遺伝子中の一塩基の違いが病気の原因となると考えられている。また、生活習慣病やガンなどは、複数の遺伝子における一塩基の違いが影響していると考えられている。
したがって、SNPの解析は、創薬ターゲットの探索または副作用の予見などの医薬品の開発において、極めて有効であると考えられる。このため、SNPの解析は世界的な巨大プロジェクトとして押し進められている。
薬物の効果や副作用の程度に個人差があることの原因の一つとして、個々人の薬物代謝に関わる酵素群の違いが挙げられる。その違いも遺伝子上のわずかな違いによるものであることが最近明らかにされつつある。
そこで、あらかじめ患者の遺伝子を解析することによって、最適な薬剤を選択し患者に投与する方法が考えられている。さらに、単一遺伝子疾患のみならず多因子疾患についても、遺伝子診断の意義が急速に高まりつつある。
また、病原細菌やウイルスを標的とした薬物の効果は、同一種であっても、個体毎に異なることがあり、これらは個体毎の遺伝子の微細な違いによることが多い。このような外来因子である病原細菌やウイルスの遺伝子診断も、今後は検査対象が確実に増加することが予想される。
このようにポストゲノム時代の医療においては、ヒトや病原微生物の遺伝子の微細な違い、とりわけ一塩基の違いを検出できることは重要であり、今後もその重要性が増すと予想される。
これまでに、塩基配列における微細な違い、とりわけ一塩基の違いを検出する方法が種々検討されている(非特許文献1~2参照。)。
しかしながら、実用レベルでの検出を行うためには、低コスト、方法の簡便性、検出時間の短さ、検出結果の正確さなどの点がいずれも優れていることが要求される。しかしながら、現在までのところ、上記要求を満たす方法は知られていない。
 遺伝子の微細な違い、とりわけその一塩基の違いを検出する場合、目的とする遺伝子断片は試料中にわずかしか含まれていないのが一般的である。この場合、目的とする遺伝子を、何らかの方法によって予め増幅させておくことが必要となる。このような遺伝子増幅法としては、例えば、PCR(Polymerase  Chain  Reaction)法が挙げられる。
一般的に、目的の遺伝子の一塩基の違いを検出するためには、遺伝子増幅の段階と、増幅させた遺伝子の一塩基の違いを調べる段階との二段階の工程を必要とする(非特許文献2参照。)。しかしながら、二段階の工程を必要とする方法は、工程が複数あるため、処理が煩雑となる。
このような二段階の工程の煩雑さを改善するため、例えば、蛍光色素とクエンチャーがついたプローブを用いるTaqMan法(非特許文献3参照。)や、質量分析計によるDNAの質量分析を利用したMALDI-TOF/MS法(非特許文献4参照。)等が報告されている。また、遺伝子の増幅を必要としない方法として、DNAの構造を認識して切断する酵素を用いるInvader法(非特許文献5参照。)が報告されている。しかしながら、これらの方法は依然として実施するコストが高く、またプローブの設計も複雑である。
一方、遺伝子の増幅と一塩基の識別とを同時に行う方法が報告されている(非特許文献6参照。)。この方法は、DNAポリメラーゼの伸長反応において、プライマーの3’末端がサンプル中の鋳型DNAと相補的(以下、マッチ)であるか否かによって、伸長反応が起こったり起こらなかったりすることを利用するものである。すなわち、PCR反応に用いられる一対のプライマーセットにおいて、一方のプライマーの3’末端が一塩基多型に相補的な塩基を有るようにプライマーを設計すると、プライマーが鋳型と完全にマッチである場合には、伸長反応が起こり、他方のプライマーとの間で増幅反応が引き起こされる。ところが、一方のプライマーと鋳型との間で一塩基のミスマッチがある場合には、そのプライマーからの伸長反応は起こりにくく、他方のプライマーとの間での増幅反応も起こりにくい。このようにして増幅反応による増幅産物の量によって、一塩基の識別を行うことができる。この方法によれば、増幅反応後にさらに操作を行って一塩基を識別する必要がない。
しかしながら、この方法は、反応条件、例えば、鋳型の量、温度、プライマーの量、または反応基質であるdNTPの濃度などにより、反応が影響を受けやすい。このため、常に再現性のあるデータを得ることが容易でない。
別の方法として、例えば、プライマーの3’末端付近に人工的な変異(鋳型とミスマッチである塩基)を導入する方法が検討されている(非特許文献7参照。)。しかしながら、この方法でも、プライマーの最適化に一定の労力を必要とし、識別精度も試料の品質によって影響を受けることがある。
これらの問題を解決するために、蛍光色素などで標識された少なくとも二種類のプライマーを競合させる方法が提案されている(特許文献1~4参照。)。
 特許文献1~3に提案されている様な、プライマーの3’末端または末端付近を調べたい塩基の位置に合わせ、サンプル中の標的核酸の塩基とマッチしたときは伸長反応が起こり、ミスマッチのときには伸長反応が起こりにくいことを利用した検出方法をアレル特異的PCR(ASP-PCR)という。
アレル特異的PCRを行う際に、2つ以上のアレル特異的なプライマーを競合させた場合と各アレル特異的プライマーを個別に増幅させた場合での塩基識別精度は、競合させたほうが高いことが分かっている(非特許文献8参照。)。これは、検出したいアレルと異なるアレルが存在するとき、異なるアレルにマッチするプライマーが、標的塩基配列に優先的に結合し、検出したいプライマーの非特異伸長反応を抑えるためである。さらに、異なるアレルにマッチするプライマーからの伸長が効率よく進むことで、伸長反応に必要な材料が消費されるため、検出したいアレルにミスマッチであるプライマーによるプライマーダイマーの生成を抑制することもできる。このようにプライマーを競合させる方法を競合オリゴヌクレオチドプライミング(Competitive Oligonucleotide Priming、COP)といい、特許文献1~4においては、COPが用いられている。
特許文献1で提案されている方法は、標的核酸に対して、ミスマッチ塩基の数が異なる複数の競合プライマーを用いた時に、ミスマッチ塩基の数が少ない競合プライマーが標的核酸と2本鎖を形成しやすいという性質を利用した方法であり、標的核酸中の一塩基変異を簡便に検出する場合には優れた方法である。
しかしながら、この方法では、SNP解析の際に擬陽性が出る可能性がある。これは、標的核酸中の一塩基変異にのみ着目して競合プライマーの設計を行っているため、ミスマッチ塩基の数が多い競合プライマーからの伸長を抑制する能力が不十分であるためと考えられる。
アレル特異的PCRに用いられるアレル特異的プライマーは、3’末端付近での標的核酸との2本鎖の安定性が重要であり、3’末端付近において、識別したい塩基以外の塩基が標的核酸と相補にならないように設定することでさらに塩基識別を高めることができる。
特許文献2で提案されているSNP検出方法においては、特許文献1で問題となっていた擬陽性を低減すべく、競合プライマーの3’末端にSNPを識別する塩基を導入し、更に3’末端から2~5塩基のいずれか1つ以上に人工的な変異を導入している。
また、特許文献3で提案されている塩基多型の検出方法においては、競合プライマーの3’末端から5番目までの位置に人工的な変異を導入している。
特許文献2~3に提案されている方法は、競合プライマー間で同じ位置に同じ変異を導入したものであり、プライマーの3’末端付近が標的核酸とマッチであれば効率よく伸長反応が進み、ミスマッチ塩基が増えるほど伸長効率が落ちることを利用したものである。また、ミスマッチ塩基が増えることによってプライマーと標的核酸との2本鎖が全体として不安定になることも伸長効率の低下に関連している。
特許文献4で提案されている塩基多型の検出方法では、競合プライマー間で同じ位置に異なる変異を導入することが記載されている。
特許第2760553号公報 特開2003-52372号公報 特開2005-287499号公報 特許第4228041号公報
Landegren、Laboratory protocols for mutation detection、Oxford university press、1996年 Ahmadianら、Biotechniques、第32巻、第1122~1137頁、2002年 Livakら、PCR Methods Appl.、第5巻、第357~362頁、1995年 Griffinら、Trends Biotechnol.、第18巻、第77~84頁、2000年 Ryanら、Molecular diagnosis、第4巻、第135~144頁、1999年 Okayamaら、J.Lab.Clin.Med.、第114巻、第105~113頁、1989年 Newtonら、Nucleic Acids Res.、第17巻、第2503~2516頁、1989年 Myakishevら、Genome Res.、第11巻、第163~169頁、2001年 Shinozukaら、J.Chem.Soc.,Chem.Commun.、第10巻、1377~1378頁、1994年
しかしながら、これらの方法でも、鋳型と3’末端付近がミスマッチとなる競合プライマーからの伸長を抑制する能力が依然として不十分である。
本発明は、上記事情に鑑みてなされたものであって、従来の方法と同様の簡便さを持ちながら、識別精度の高い標的塩基配列の検出方法、及び前記方法に用いられるキットを提供することを目的とする。
本発明者らは上記課題を解決するため、鋭意研究を行った結果、競合プライマーに導入する変異の位置を検討することにより、課題を解決できることを見出した。
すなわち本発明は、下記(1)~(14)を提供するものである。
(1)多型塩基を有する標的塩基配列を検出する方法であって、(a)標的塩基配列を含む塩基配列からなる標的核酸を有する核酸試料に、前記標的塩基配列に本質的に相補的な少なくとも1種の検出用プライマーと、前記標的塩基配列に本質的に相補的であり、かつ前記標的核酸に対して前記検出用プライマーと競合的にアニールする少なくとも1種の競合プライマーと、少なくとも1種の共通プライマーと、を添加する工程と、(b)前記核酸試料中の多型塩基を有する標的塩基配列を鋳型として用い、前記標的核酸に、前記検出用プライマーと前記競合プライマーとを競合的にアニールさせ、伸長反応を行い、伸長産物Aを合成する工程と、(c)前記工程(b)または後記工程(d)で得られた前記伸長産物Aと前記共通プライマーをアニールさせ、伸長反応を行い、伸長産物Bを合成する工程と、(d)前記工程(c)で得られた伸長産物Bと前記検出用プライマーまたは前記競合プライマーをアニールさせ、伸長産物Aを合成する工程と、(e)前記伸長産物AまたはBを検出する工程と、を有し、前記検出用プライマーは、多型塩基に相補的なマッチ塩基と、前記標的配列に対して多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基とを有し、前記競合プライマーは、多型塩基に非相補的なミスマッチ塩基と、前記標的配列に対して多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基を有し、前記検出用プライマーが有する少なくとも1つのミスマッチ塩基の位置が、前記競合プライマーが有する多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基の位置とは異なり、前記共通プライマーは、前記検出用プライマー又は前記競合プライマーと対になって前記標的核酸を増幅しうるものであることを特徴とする標的塩基配列の検出方法。
(2)前記(1)の標的塩基配列の検出方法において、前記検出用プライマーは、3’末端または3’末端から2塩基目に多型塩基に相補的なマッチ塩基を有してもよい。
(3)前記(1)又は(2)の標的塩基配列の検出方法においては、前記検出用プライマー及び前記競合プライマーにおいて、多型塩基以外の塩基に非相補的なミスマッチ塩基が、前記検出用プライマーでは多型塩基に相補的なマッチ塩基から、前記競合プライマーでは多型塩基に非相補的なミスマッチ塩基からいずれも17塩基以内に位置し、それぞれのプライマーでミスマッチ塩基の位置が異なってもよい。
(4)前記(1)~(3)の標的塩基配列の検出方法において、前記競合プライマーと前記検出用プライマーの鎖長の差は16塩基以内であってもよい。
(5)前記(1)~(3)の標的塩基配列の検出方法においては、前記検出用プライマー及び前記競合プライマーにおいて、第1のミスマッチ塩基が、3’末端から6塩基以内に位置し、第2のミスマッチ塩基が、3’末端から7塩基以上5’ 末端側に位置し、前記検出用プライマーの第1のミスマッチ塩基の位置が、前記競合プライマーの第1のミスマッチ塩基の位置とは異なり、 前記検出用プライマーの第2のミスマッチ塩基と前記競合プライマーの第2のミスマッチ塩基が互いに異なっていてもよい。
(6)前記(5)の標的塩基配列の検出方法において、前記検出用プライマー及び前記競合プライマーが有する前記第2のミスマッチ塩基の位置が同じであってもよい。
(7)前記(1)~(6)の標的塩基配列の検出方法において、前記工程(b)~(d)が、PCR、LAMP、NASBA、ICAN、TRC、SDA、TMA、SMAP、RPA、HDAよりなる群から選ばれる1つにより行われる工程であってもよい。
(8)前記(1)~(7)のいずれかの標的塩基配列の検出方法において、前記検出用プライマー、前記競合プライマー、または前記共通プライマーの少なくとも1つが標識されていてもよい。
(9)前記(8)の標的塩基配列の検出方法において、前記標識に用いられる標識物質が、蛍光色素及びエネルギー吸収性物質からなる群より選ばれる少なくとも1つであってもよい。
(10)前記(8)又は(9)に記載の標的塩基配列の検出方法において、前記検出用プライマーと、前記競合プライマーとを、異なる種類の標識物質でそれぞれ標識し、前記工程(e)が、前記検出用プライマーからの伸長産物と、前記競合プライマーからの伸長産物とを別個に検出する工程であってもよい。
(11)前記(8)~(10)のいずれかの標的塩基配列の検出方法において、前記工程(e)は、前記工程(b)~(d)と同時に行われる工程であって、標識されたプライマーからの伸長産物が、2本鎖を形成している状態を検出する工程であってもよい。
(12)前記(8)~(10)のいずれかの標的塩基配列の検出方法において、前記工程(e)は、前記工程(d)後に行われる工程であって、前記伸長産物の融解曲線または増幅曲線を用いて検出する工程であってもよい。
(13)前記(8)~(12)のいずれかの標的塩基配列の検出方法において、前記工程(e)は、QP(Quenching Probe/Primer)法、を用いて検出する工程であってもよい。
(14)多型塩基を有する標的塩基配列を検出する方法に用いるキットであって、前記標的塩基配列に本質的に相補的な少なくとも1種の検出用プライマーと、前記標的塩基配列に本質的に相補的であり、かつ前記標的核酸に対して前記検出用プライマーと競合的にアニールする少なくとも1種の競合プライマーと、少なくとも1種の共通プライマーと、を含み、前記検出用プライマーは、多型塩基に相補的なマッチ塩基と、前記標的配列に対して多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基とを有し、前記競合プライマーは、多型塩基に非相補的なミスマッチ塩基と、前記標的配列に対して多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基を有し、前記検出用プライマーが有する少なくとも1つのミスマッチ塩基の位置が、前記競合プライマーが有する多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基の位置とは異なり、前記共通プライマーは、前記検出用プライマー又は前記競合プライマーと対になって前記標的核酸を増幅しうるものであり、前記方法は、(a)標的核酸を有する核酸試料に、前記検出用プライマーと前記競合プライマーとを添加する工程と、(b)前記核酸試料中の多型塩基を有する標的塩基配列を鋳型として用い、前記標的核酸に、前記検出用プライマーと前記競合プライマーとを競合的にアニールさせ、伸長反応を行い、伸長産物Aを合成する工程と、(c)前記工程(b)または後記工程(d)で得られた前記伸長産物Aと前記共通プライマーをアニールさせ、伸長反応を行い、伸長産物Bを合成する工程と、(d)前記工程(c)で得られた伸長産物Bと前記検出用プライマーまたは前記競合プライマーをアニールさせ、伸長産物Aを合成する工程と、(e)前記伸長産物AまたはBを検出する工程と、を有している。
本発明の標的塩基配列の検出方法によれば、従来の方法と同様の簡便さを持ちながら、一塩基多型および一塩基の体細胞変異を高精度に識別することができる。
また、本発明の標的塩基配列検出キットによれば、本発明の標的塩基配列の検出方法をより簡便に行うことをできる。
従来の標的塩基配列の検出方法の一態様を模式的に示した図である。 従来の標的塩基配列の検出方法の一態様を模式的に示した図である。 本発明の標的塩基配列の検出方法の一態様を模式的に示した図である。 本発明の標的塩基配列の検出方法の一態様を模式的に示した図である。 本発明の標的塩基配列の検出方法の一態様を模式的に示した図である。 本発明の標的塩基配列の検出方法の一態様を模式的に示した図である。 プライマー[1]と[2]を競合させた場合に各Roundでプライマーから伸長される産物量を表す図である。 プライマー[1]と[2]を競合させた場合に各Roundでプライマーから伸長される産物量を表す図である。 プライマー[1]と[3]を競合させた場合に各Roundでプライマーから伸長される産物量を表す図である。 プライマー[1]と[3]を競合させた場合に各Roundでプライマーから伸長される産物量を表す図である。 プライマー[1]と[4]を競合させた場合に各Roundでプライマーから伸長される産物量を表す図である。 プライマー[1]と[4]を競合させた場合に各Roundでプライマーから伸長される産物量を表す図である。 1本鎖状態と2本鎖状態を見分ける方法を模式的に示した図である。○;アクリジン、◇;フルオロセイン 比較例1の結果を融解曲線の負の一次微分曲線で示した図である。 比較例2の結果を融解曲線の負の一次微分曲線で示した図である。 実施例1の結果を融解曲線の負の一次微分曲線で示した図である。 実施例2の結果を融解曲線の負の一次微分曲線で示した図である。 実施例3の結果を融解曲線の負の一次微分曲線で示した図である。 実施例4の結果を融解曲線の負の一次微分曲線で示した図である。 実施例5の結果を融解曲線の負の一次微分曲線で示した図である。 実施例6の結果を融解曲線の負の一次微分曲線で示した図である。 実施例7の結果を融解曲線の負の一次微分曲線で示した図である。 実施例8の結果を融解曲線の負の一次微分曲線で示した図である。 実施例9の結果を融解曲線の負の一次微分曲線で示した図である。 実施例10の結果を融解曲線の負の一次微分曲線で示した図である。 実施例11の結果を融解曲線の負の一次微分曲線で示した図である。 実施例12の結果を融解曲線の負の一次微分曲線で示した図である。 実施例13の結果を融解曲線の負の一次微分曲線で示した図である。 実施例14の結果を融解曲線の負の一次微分曲線で示した図である。 実施例15の結果を融解曲線の負の一次微分曲線で示した図である。 実施例16の結果を融解曲線の負の一次微分曲線で示した図である。 実施例17の結果を融解曲線の負の一次微分曲線で示した図である。 実施例18の結果を融解曲線の負の一次微分曲線で示した図である。 実施例19~27の結果を増幅曲線で示した図である。 実施例28~35の結果を増幅曲線で示した図である。
 本発明の標的塩基配列の検出方法は、多型塩基を有する標的核酸を検出する方法である。
 本発明において、標的塩基配列とは、多型塩基を有する塩基配列をいう。
本発明において、標的塩基配列を検出するとは、核酸試料中に含まれている核酸の塩基配列が、既知の塩基配列と同一の塩基配列であるか否かを検出することをいう。
 本明細書および特許請求の範囲において、識別対象である多型を有する核酸を「標的核酸」という。
標的核酸は、多型塩基を含有する塩基配列からなり、前記標的核酸とアニール可能なプライマーを設計できる程度に塩基配列が明らかにされているものであれば、特に限定されるものではない。
また、標的塩基配列が有する多型塩基は、一塩基多型であれば、SNPのような先天的な多型であってもよく、体細胞変異等の後天的な多型であってもよい。
SNP(一塩基多型)とは、同一生物種の個体間のゲノム塩基配列中に一塩基の違いがあり、その変異が集団内で1%以上の頻度で見られるものと定義されている。
一方、体細胞変異とは同一固体内において後天的に生じた遺伝子の細胞間での違いを意味する。また、変異部位とは、配列中における塩基の相違する部位を意味する。塩基配列中の変異は一塩基置換のみならず複数の塩基が置換、欠失あるいは挿入されている場合がある。
検出の対象とする多型としては、たとえば、遺伝病、生活習慣病、がん等の各種疾患、薬物代謝に関連する遺伝子の多型等が挙げられる。本発明は、特に、ワルファリンの至適投与量に関連する遺伝子であるビタミンKエポキシド還元酵素複合体1(VKORC1)のイントロン1領域の1173位における遺伝子多型(1173C>T)や、がん遺伝子K-Rasの12番目又は13番目のコドンにおける変異の検出に好適に用いられる。
本発明において、検出用プライマーとは、標的塩基配列を検出するプライマーをいう。
検出用プライマーは、多型塩基に相補的なマッチ塩基と、前記標的塩基配列に対して、多型塩基以外に少なくとも1つのミスマッチ塩基とを有する。
検出用プライマーが有するミスマッチ塩基の数は、1つでもよく、2つ以上でもよい。好ましくは、1~5であり、より好ましくは、1~3であり、特に好ましくは1又は2である。
本発明において、競合プライマーとは、標的核酸中の多型塩基を含む領域に対して、前記検出用プライマーと競合的にアニールするプライマーであり、多型塩基に非相補的なミスマッチ塩基を有する。競合プライマーは、多型塩基に非相補的なミスマッチ塩基を有するため、標的核酸にアニールした際に、標的核酸中の多型塩基とは塩基対を形成しない。また、競合プライマーは、多型塩基に非相補的なミスマッチ塩基に加えて、前記標的塩基配列に対して、多型塩基以外に少なくとも1つのミスマッチ塩基を有する。
競合プライマーが有するミスマッチ塩基の数は、1つでもよく、2つ以上でもよい。好ましくは、1~5であり、より好ましくは、1~3であり、特に好ましくは1又は2である。
尚、本発明において、マッチとは、2本鎖を形成しているDNA塩基対がワトソンクリック型塩基対を形成している状態を意味し、ミスマッチとはワトソンクリック型塩基対を形成していない状態を意味する。ワトソンクリック型塩基対とはデオキシリボ核酸の2本のポリヌクレオチド分子が、アデニン(A)とチミン(T)(もしくはウラシル(U))、グアニン(G)とシトシン(C)という組を作り、水素結合で繋がったものをいう。ミスマッチ塩基は天然塩基でも人工塩基でも構わないが、鋳型の塩基と異なっている必要がある。
検出用プライマーが有する少なくとも1つのミスマッチ塩基の位置は、前記競合プライマーが有するミスマッチ塩基の位置とは異なる。従って、検出用プライマーと競合プライマーとの間では、塩基配列が少なくとも3塩基異なる。
ここで、ミスマッチ塩基の位置とは、鋳型とプライマーが2本鎖を形成したときに、プライマー中において多型塩基に対応する塩基を基準とした位置をいう。
標的核酸に対して両者を競合的にアニールさせることにより、多型塩基検出精度を向上させることができる。これは、検出したいアレル(本発明における標的核酸)と異なるアレルが存在するとき、目的のアレルを検出できるプライマーを検出用プライマーとし、異なるアレルを検出できるプライマーを競合プライマーとして用いた場合には、当該異なるアレルに競合プライマーが優先的に結合することにより、検出用プライマーの非特異反応を抑えるためである。また、3’末端付近の安定性の違いから競合プライマーからの伸長が効率よく進むことで、伸長反応に必要な材料が消費されるため、検出用プライマーからの非特異増幅を抑えることもできる。
本発明において、検出用プライマー及び競合プライマーは、標的塩基配列に本質的に相補的である。ここで、本発明において本質的に相補的であるとは、オリゴヌクレオチドが、伸長反応の反応条件下において、特定の配列を持つ標的核酸と2本鎖状態を形成することのできる塩基配列を持つことを意味し、必ずしも完全に相補的である必要はなく、いくつかのミスマッチ塩基対を含んでいてもよい。
また、検出用プライマー及び競合プライマーは、標的塩基配列中であれば、アニールする領域が異なっていてもよい。標的核酸に競合的にアニールさせる点からは、検出用プライマーがアニールする領域と同じ領域において、標的核酸と競合プライマーとがアニールするように、両プライマーを設計することが好ましい。
本発明において検出用プライマーは、3’末端、または3’末端から2塩基目に多型塩基に相補的な塩基を有することが好ましい。標的核酸に競合的にアニールさせる点から、競合プライマーは、3’末端、または3’末端から2塩基目に多型塩基に非相補的な塩基を有することが好ましい。
例えば、標的塩基配列が5’-ATGCATGC-3’であり、5’末端から5塩基のAが多型塩基であったときに、この多型塩基Aを検出する検出用プライマーは3’末端付近の配列を5’-GCAT-3’または5’-GCATG-3’とすることができる。このとき競合プライマーは、3’末端付近の配列を5’-GCAG-3’ または5’-GCAGGとすることができる。前記の例は一例であり、ミスマッチにする塩基はマッチになる1種の塩基を除いて3種類の中から選ぶことができる。検出用プライマーが鋳型の塩基を識別する位置は3’末端、または3’末端から2塩基目がより好ましいが、3’末端から離れていてもよい。
 競合プライマー塩基配列中の、多型塩基とミスマッチにする塩基の塩基種は、標的塩基配列以外の遺伝子型の多型とマッチする塩基種とすることが好ましい。例えば、野生型がCであり、変異型がAである多型を検出する場合であって、変異型を検出する場合に、多型塩基Aを含む塩基配列を標的塩基配列とする場合、競合プライマーは、多型塩基Aと非相補的な塩基として、A、G、Cのいずれを選択してもよいが、野生型と相補的であるGを選択することが好ましい。
 本発明において、競合プライマーは、1種類を用いてもよく、2種類以上を用いてもよい。例えば、後述するK-rasのように、複数の遺伝子型がある多型の場合には、検出対象である遺伝子型以外の各遺伝子型にそれぞれマッチする複数種類の競合プライマーを用いることが好ましい。
本発明において共通プライマーとは、検出用プライマー又は競合プライマーと対になって標的核酸を増幅しうるものであり、検出用プライマー又は競合プライマーからの伸長産物の3’末端側の10~30塩基とマッチである配列を持ち、PCR反応において検出用プライマー又は競合プライマーからの伸長産物を鋳型として伸長を行う能力を持つものをいう。本発明においては、2種類以上の共通プライマーを用いてもよく、2種類以上の共通プライマーが競合関係にあってもよい。競合関係にある2種類以上の共通プライマーは多型塩基配列を含んでいてもよい。
検出用プライマー及び競合プライマーが有する多型塩基以外の塩基に非相補的なミスマッチ塩基が、前記検出用プライマーでは多型塩基に相補的なマッチ塩基から、前記競合プライマーでは多型塩基に非相補的なミスマッチ塩基から、いずれも17塩基以内に位置することが好ましく、8塩基以内に位置することがより好ましい。
検出用プライマー及び競合プライマーは、それぞれ複数のミスマッチ塩基を有してもよい。検出用プライマー及び競合プライマーがそれぞれ2つのミスマッチ塩基を有している場合には、前記検出用プライマー及び前記競合プライマーにおいて、第1のミスマッチ塩基が、3’末端から6塩基以内に位置し、第2のミスマッチ塩基が、3’末端から7塩基以上5’ 末端側に位置していることが好ましい。
更に、検出用プライマーの第1のミスマッチ塩基の位置が、前記競合プライマーが有する第1のミスマッチ塩基の位置とは異なっていることが好ましい。
また、検出用プライマー及び競合プライマーにおいて、第2のミスマッチ塩基は、互いに位置が異なっていてもよく、塩基種が異なっていてもよい。
つまり、同じ位置の場合には、塩基種が異なっていてもよい。
 本発明において、「前記検出用プライマーの第2のミスマッチ塩基と前記競合プライマーの第2のミスマッチ塩基が互いに異なる」とは、具体的には、両者の位置が異なる場合、又は、両者の位置が同じであり、かつ塩基種が異なる場合を意味する。
本発明において、検出プライマーと競合プライマーにおける、第2のミスマッチ塩基の位置が同じであってもよい。
検出用プライマー及び競合プライマーにおいて、第2のミスマッチ塩基は、3’末端から7塩基以上離れていることが好ましく、3’末端から9塩基以上離れていることがより好ましい。
また、第2のミスマッチ塩基は、プライマーの中央付近に配置することが、検出プライマーからの増幅反応の効率を上げることができる点で好ましい。例えば、20~25塩基のプライマーを用いた場合には、第2のミスマッチ塩基は、3’末端から7~15塩基目に位置していることが好ましく、9~15塩基目に位置していることがより好ましい。
 検出プライマーおよび競合プライマーの長さは、識別能や反応性に影響を与える場合がある。例えば、鎖長が長いプライマーほど標的核酸に優先的にアニールする傾向にある。従って、より精度よく標的塩基配列を検出するためには、前記競合プライマーと前記検出用プライマーの鎖長の差は16塩基以内であることが好ましく、2塩基以内であることがより好ましく、1塩基以内であることが特に好ましい。
例えば、鎖長に差があり競合プライマーの鎖長が長い場合には、競合プライマーが、検出用プライマーよりも優先してアニールし、検出プライマーのアニールが阻害される場合がある。逆に、検出プライマーの鎖長が長い場合には、検出プライマーが、競合プライマーよりも優先してアニールし、競合プライマーのアニールが阻害される場合がある。このため、検出プライマーと競合プライマーの鎖長は同程度であることが好ましい。
次に、本発明の標的塩基配列の検出方法について、図1~図6を用いてより詳細に説明する。
図1は、従来の標的塩基配列の検出方法の一態様を模式的に示した図である。
図1には反応組成物の一部として、遺伝子多型(C>T)を有する鋳型S、検出用プライマー(プライマーA:フォワードプライマーに相当)、競合プライマー(プライマーB:フォワードプライマーに相当)及び共通プライマー(リバースプライマーに相当)が挙げられている。
検出用プライマー及び競合プライマーがアニールした鋳型Sとのミスマッチ部位に下線を付した。
プライマーAは、検出用プライマーであり、プライマーAにおいて、3’末端に多型塩基を検出する塩基としてグアニン、3’末端から2塩基目に多型塩基以外の塩基に非相補的なミスマッチ塩基としてチミンが導入されている。
また、プライマーBは、競合プライマーであり、プライマーBにおいて、3’末端に多型塩基に非相補的なミスマッチ塩基としてアデニン、3’末端から2塩基目に多型塩基以外の塩基に非相補的なミスマッチ塩基としてチミンが導入されている。
ここで、プライマーA及びBに導入された変異の塩基及び導入位置は同じである。
鋳型Sに、4種類のデオキシヌクレオチド三リン酸(dNTP)、DNAポリメラーゼ及び共通プライマーと共に2種類のプライマー(プライマーA及びB)を同時に作用させることで、検出用プライマー又は競合プライマーと、共通プライマーとの間で遺伝子が増幅される。
ここで、本明細書中において、RoundとはPCRにおける2サイクルをいう。例えば1Roundとは、検出用プライマー又は競合プライマーが鋳型とアニールした後、伸長反応し、変性後に検出用プライマー又は競合プライマーからの伸長生成物と共通プライマーがアニールし、検出用プライマー又は競合プライマーからの伸長産物を鋳型として共通プライマーから伸長反応する工程を意味する。
図1において、1st Round目ではプライマーAはプライマーBと比較して鋳型Sと形成した2本鎖がより安定であるために伸長反応の効率が高い。両方のプライマーの3’末端から2塩基目に鋳型Sとミスマッチになるチミンを導入することにより、プライマーAからの特異的伸長効率とプライマーBからの非特異的伸長効率の差を大きくすることができるためである。
しかし、低頻度ながらも非特異的伸長反応によって生じた伸長産物は、次のサイクルで共通プライマーの鋳型(鋳型b)となって複製され、プライマーBの配列に相補的な配列を含むDNA(鋳型b’)が合成される。鋳型a’あるいは鋳型b’は、それぞれプライマーAあるいはプライマーBと完全に相補的であり、次のRoundからはいずれも効率よく伸長される。
さらに、次のRoundにおいて、プライマーBの多型塩基以外の塩基に非相補的なミスマッチ塩基は、鋳型a’に対してはマッチとなる。このため、プライマーBは、鋳型a’と2本鎖を形成し、伸長反応する。このため2nd Round以降は、プライマーAとプライマーBの特異性を高めるために導入したミスマッチ塩基の効果がなくなってしまう。鋳型a’はRoundを繰り返すごとに指数関数的に増加するため、特異的伸長反応に比べて効率は低いものの鋳型aおよびa’の増加に伴ってbおよびb’が増加する。
従って、当該方法は、鋳型に対してプライマーAとプライマーBの伸長効率の差をいかに大きくするという点で改良の余地を残している。
従来の標的塩基配列の検出方法として、検出用プライマー及び競合プライマーの間で同じ位置に異なる変異を導入している場合を、図2を用いてより詳細に説明する。
図2は、従来の標的塩基配列の検出方法の一態様を模式的に示した図である。プライマーAにおいて、3’末端に多型塩基を検出する塩基としてグアニン、3’末端から2塩基目に多型塩基以外の塩基に非相補的なミスマッチ塩基としてチミンが導入されている。また、プライマーBにおいて、3’末端に多型塩基に非相補的なミスマッチ塩基としてアデニン、3’末端から2塩基目に多型塩基以外の塩基に非相補的なミスマッチ塩基としてシトシンが導入されている。
ここで、プライマーA及びBに導入された変異の導入位置は同じであるが、塩基は異なる。図1と比較すると、鋳型a’に対する非特異的伸長反応は3’末端が2塩基のミスマッチとなり、多型塩基を検出するための位置以外に導入したミスマッチ塩基の効果が持続し非特異的反応は抑制される。
しかしながら、鋳型a’は増幅の過程で増え続けるため、より効果的な非特異伸長反応の抑制が必要である。
 次に本発明の検出方法を図3~5を用いて説明する。
図3、図4は、本発明において、多型を検出する塩基以外に導入したミスマッチ塩基の位置が検出用プライマーと競合プライマー間で異なる場合である。プライマーの構成以外は、図1で説明したものと同様であるため説明を省略する。検出用プライマー及び競合プライマーがアニールした鋳型S又は鋳型a’とのミスマッチ部位に下線を付した。
図3において、プライマーAは鋳型Sに対して3’末端はマッチであるが、3’末端から2塩基目がミスマッチである。一方、プライマーBは鋳型Sに対して3’末端と3’末端から3塩基目がミスマッチである。この場合、2nd Round以降、プライマーBは鋳型a’に対して3’末端で3塩基がミスマッチとなり、非特異伸長反応は非常に効果的に抑制される。多型塩基を検出する塩基以外に導入するミスマッチ塩基は、1塩基にもかかわらず競合するプライマー間で位置を変えることで、非常に大きな効果をもたらす。
 図4において、プライマーAは鋳型Sに対して3’末端はマッチであるが、3’末端から2塩基目がミスマッチである。一方、プライマーBは鋳型Sに対して3’末端と3’末端から5塩基目がミスマッチである。この様な場合でもプライマーBは鋳型a’に対して3’末端の2塩基および3’末端から5塩基目の一塩基がミスマッチになるので非特異反応は効果的に抑制される。
 図5は、本発明において、多型塩基を検出する塩基をプライマーの3’末端から2塩基目に設定した場合を示したものである。この場合も多型塩基を検出するための塩基以外に導入したミスマッチ塩基がそれぞれのプライマーで一塩基であるにもかかわらずプライマーBは鋳型a’に対して3’末端で3塩基のミスマッチとなり非特異反応は効果的に抑制される。
図6は、本発明において、競合プライマーを3種類用いた場合を示したものである。プライマーの構成以外は、図1で説明したものと同様であるため説明を省略する。検出用プライマー及び競合プライマーがアニールした鋳型S又は鋳型a’とのミスマッチ部位に下線を付した。
一般的なSNPにおいてはアレルの種類は2種類であることが多いが、まれには3種類の場合がある。さらに、がん遺伝であるK-rasにおいては一箇所で可能性のある変異がすべて見出されている。このような場合、それぞれ4種類の塩基に対応する4種類のプライマーを競合させることが好ましい。
図6において、K-rasの変異を検出する位置をプライマーの3’末端とする。
プライマーAはシトシン塩基を検出するもので、3’末端は鋳型Sとマッチであり、3’末端から2塩基目に鋳型Sとミスマッチな塩基としてチミンを導入している。
プライマーBはチミン塩基を検出するもので、3’末端は鋳型Sとミスマッチであり、さらに3’末端から3塩基目に鋳型Sとミスマッチな塩基としてチミンを導入している。
プライマーCはグアニン塩基を検出するもので、3’末端は鋳型Sとミスマッチであり、さらに3’末端から4塩基目に鋳型Sとミスマッチな塩基としてチミンを導入している。
同様にプライマーDはアデニン塩基を検出するもので、3’末端は鋳型Sとミスマッチであり、さらに3’末端から5塩基目に鋳型Sとミスマッチな塩基としてチミンを導入している。
この場合、プライマーB、CおよびDそれぞれは鋳型a’と3塩基ミスマッチになり、各プライマーからの非特異伸長反応が効果的に抑制される。
よって、本発明では競合する2種以上のアレル特異的なプライマーを競合させる場合においても、変異を識別する塩基以外に導入する変異の位置をそれぞれのプライマーで変えることにより、非特異伸長反応を実用的レベルで抑制することが可能となる。
 図3で示した本発明による効果について、マイクロソフト・エクセルを用いた計算によりシミュレーションを行った。まず、検出するSNPがシトシンかチミンであるかを想定し、4種類のプライマーを設計した。鋳型およびプライマーの配列を表1に示す。
Figure JPOXMLDOC01-appb-T000001
太字:多型塩基位置    下線:鋳型(Cアレル)とミスマッチな塩基
 プライマー[1]はCアレル検出用であり、3’末端はグアニンで、3’末端から2塩基目は鋳型とミスマッチなチミンである。
 プライマー[2]はTアレル検出用であり、3’末端がアデニンで3’末端から2塩基目はプライマー[1]と同様、鋳型とミスマッチなチミンである。
 プライマー[3]はプライマー[2]と同様Tアレル検出用だが、3’末端から2塩基目に導入したミスマッチになる塩基がシトシンであり、プライマー[1]とは異なる。
 プライマー[4]はTアレル検出用であり、プライマー[1]のミスマッチ塩基を導入した位置とは異なるように3’末端から3塩基目にミスマッチ塩基としてチミンを入れたものである。
 シミュレーションに際し、以下のような設定を行った。
  ・ 初期の鋳型濃度(鋳型S)を1とする。
  ・ 鋳型Sあるいは伸長産物(鋳型a’、鋳型b’)がそれぞれのプライマーと2本鎖を形成する割合を同等とする。
  ・ 共通プライマーからの伸長効率は1とする。
表2はプライマー[1]とプライマー[2]、プライマー[3]またはプライマー[4]を競合させた場合のプライマー伸長効率を仮定したものである。伸長効率はかなり大胆な仮定であるが、それぞれのミスマッチの数と伸長反応の効率の順序は妥当な仮定である。鋳型SがCアレルである場合を想定したものである。2本鎖の[1]、[2]、[3]および[4]はプライマー[1]、プライマー[2]、プライマー[3]、およびプライマー[4]に相当し、Sは鋳型S、[1]’はプライマー[1]からの伸長生成物を鋳型として共通プライマーから伸長してできたもの、[2]’はプライマー[2]からの伸長生成物を鋳型として共通プライマーから伸長してできたもの、以下[3]’および[4]’も同様である。配列の上段がプライマー、下段が鋳型の配列を示している。
尚、プライマーにおいて、鋳型とミスマッチな塩基に下線を付した。
Figure JPOXMLDOC01-appb-T000002
表3~表8にプライマー[1]とプライマー[2]、プライマー[3]またはプライマー[4]とを競合させた場合の20Roundまでの計算結果を示した。尚、プライマーにおいて、鋳型とミスマッチな塩基を斜体で示した。
また、各Roundでプライマーから伸長される産物量を表すグラフを図7A~9Bに示した。図7Aはプライマー[1]から伸長される伸長産物の鋳型の内訳を示し、図7Bはプライマー[2]から伸長される伸長産物の鋳型の内訳を示している。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
図7A及び7Bより、プライマー[1]と[2]の組み合わせでは、鋳型とプライマーがミスマッチの場合でも、高頻度で伸長が行われるため、プライマー[2]からの伸長産物量が多い。特に、[1]’とプライマー[2]が2本鎖を形成して伸長反応が起こってしまう(図7B;[1]’を鋳型とした伸長)と、次のRoundからはプライマー[2]とマッチな鋳型ができてしまう(図7B;[2]’を鋳型とした伸長)ため、プライマー[2]からの伸長産物がさらに増えてしまう結果となる。また、[2]’は、プライマー[1]の鋳型にもなりうる(図7A;[2]’を鋳型とした伸長)ため、プライマー[1]からの偽陽性の伸長産物量も多くなる。
図8A及び8Bより、プライマー[1]と[3]の組み合わせでは、鋳型とプライマーがミスマッチの場合には、伸長反応がある程度抑制されるため、プライマー[3]からの伸長産物量は少ない。[1]’とプライマー[3]が2本鎖を形成して伸長反応が起こってしまう(図8B;[1]’を鋳型とした伸長)と、次のRoundからはプライマー[3]とマッチな鋳型ができ(図8B;[3]’を鋳型とした伸長)、プライマー[3]からの伸長産物量がさらに増えてしまう。
図9A及び9Bよりプライマー[1]と[4]の組み合わせでは、鋳型とプライマーがミスマッチの場合には、ほとんど伸長反応が起こらないため、[1]’を鋳型とするプライマー[4]からの伸長産物量(図9B;[1]’を鋳型とした伸長)はごくわずかである。よって、プライマー[1]からの伸長産物量が増えてきてもプライマー[4]からの伸長産物量はほとんど増えない。
シミュレーション結果より、識別精度は、プライマー[1]と[2]の組み合わせや、プライマー[1]と[3]の組み合わせよりも、プライマー[1]と[4]の組み合わせの方が高い。よって、検出用プライマー及び競合プライマーに導入するミスマッチ塩基の位置を双方で変えることが、識別精度の向上につながることが確認された。
本発明の標的塩基配列を検出する方法は、(a)標的塩基配列を含む塩基配列からなる標的核酸を有する核酸試料に、前記標的塩基配列に本質的に相補的な少なくとも1種の検出用プライマーと、前記標的塩基配列に本質的に相補的であり、かつ前記標的核酸に対して前記検出用プライマーと競合的にアニールする少なくとも1種の競合プライマーと、少なくとも1種の共通プライマーと、を添加する工程と、(b)前記核酸試料中の多型塩基を有する標的塩基配列を鋳型として用い、前記標的核酸に、前記検出用プライマーと前記競合プライマーとを競合的にアニールさせ、伸長反応を行い、伸長産物Aを合成する工程と、(c)前記工程(b)または後記工程(d)で得られた前記伸長産物Aと前記共通プライマーをアニールさせ、伸長反応を行い、伸長産物Bを合成する工程と、(d)前記工程(c)で得られた伸長産物Bと前記検出用プライマーまたは前記競合プライマーをアニールさせ、伸長産物Aを合成する工程と、(e)前記伸長産物AまたはBを検出する工程、を有する。
以下、各工程について説明する。
まず、工程(a)において、(a)標的塩基配列を含む塩基配列からなる標的核酸を有する核酸試料に、1種の検出用プライマーと、少なくとも1種の競合プライマーと、少なくとも1種の共通プライマーと、を添加する。
核酸試料とは、核酸を含有する試料であれば、特に限定されるものではなく、動物、植物、微生物、培養細胞等から核酸を抽出したサンプルであることが好ましい。動物等からの核酸の抽出は、フェノール/クロロホルム法等の公知の手法により行うことができる。なお、核酸試料中に含有される核酸が、2本鎖核酸である場合、あらかじめ1本鎖核酸にしておくことが好ましい。1本鎖核酸を用いることにより、後述する工程(b)において、該1本鎖核酸に、検出用プライマー、競合プライマーをアニールさせることができる。抽出された2本鎖核酸の1本鎖化は、熱エネルギーを加える等の公知の手法により行うことができる。
核酸試料中の核酸とは、DNAまたはRNAであれば特に限定されず、天然のものであっても合成されたものであってもよい。天然の核酸としては、たとえば、生物から回収されたゲノムDNA、mRNA、rRNA、hnRNA等がある。また、合成された核酸として、β-シアノエチルホスフォロアミダイト法、DNA固相合成法等の公知の化学的合成法により合成されたDNAや、PCR等の公知の核酸合成法により合成された核酸、逆転写反応により合成されたcDNA等がある。
 なお、本発明において、オリゴヌクレオチドとは天然、非天然に限らずデオキシリボヌクレオチド(DNA)やリボヌクレオチド(RNA)と同様の機能を有するものをいい、PNAやLNAなどの人工核酸も含まれるものとする。
 本発明において、プライマーとは、鋳型と2本鎖状態になり、DNAポリメラーゼや逆転写酵素が DNAを合成する際に3’水酸基を供給する役割をもつ短い核酸の断片である。
次に、工程(b)において、核酸試料中の多型塩基を有する標的塩基配列を鋳型として用い、前記標的核酸に、前記検出用プライマーと前記競合プライマーとを競合的にアニールさせ、伸長反応を行い、伸長産物Aを合成する。
検出用プライマーまたは競合プライマーが、標的核酸にアニールする反応条件は、特に限定されるものではなく、各プライマーのTm値等を考慮した上で、温度、pH、塩濃度、緩衝液等の通常の条件下で行うことができる。
 本発明において伸長反応とは、dNTP、DNAポリメラーゼ等の試薬を用いて行われる核酸合成反応であり、RNAを鋳型とする逆転写酵素による伸長反応も含まれる。
DNAポリメラーゼとはプライマーがアニールした鋳型DNAと相補的な塩基配列を持つDNA鎖を合成する酵素の総称である。
本発明に用いられるDNAポリメラーゼとしては、特に限定されないが、Taq DNAポリメラーゼ、Tth DNAポリメラーゼ、Vent DNAポリメラーゼ等の熱安定性DNAポリメラーゼを用いることが好ましく、試験開始前の伸長を防ぐためにホットスタート機能を持つDNAポリメラーゼを使用することがより好ましい。さらに、本発明においては、プライマーの3’末端近傍で塩基を識別するため、3’→5’エキソヌクレアーゼ活性を持たないDNAポリメラーゼを使用するのが特に好ましい。
 また、この伸長反応を行う際の反応条件等の具体的な方法については、実験医学第8巻第9号(羊土社、(1990))、PCRテクノロジー・ストックトン・プレス(PCR Technology Stockton press)(1989)等の文献に記載された公知の方法に従い行うことができる。
次に、工程(c)において、前記工程(b)または後記工程(d)で得られた前記伸長産物Aと前記共通プライマーをアニールさせ、伸長反応を行い、伸長産物Bを合成し、工程(d)において、前記工程(c)で得られた伸長産物Bと前記検出用プライマーまたは前記競合プライマーをアニールさせ、伸長産物Aを合成する。これらの工程により標的核酸が増幅される。
上記核酸増幅工程としては、PCR(Polymerase Chain Reaction)、LAMP(Loop-Mediated Isothermal Amplification)、NASBA(Nucleic Acid Sequence Based Amplification)、ICAN(Isothermal and Chimerical primer-initiated Amplification of Nucleic acids)、TRC(Transcription Reverse-Transcription Concerted)、SDA(Strand Displacement Amplification)、TMA(Transcription Mediated Amplification)、SMAP(SMart Amplification Process)、RPA(Recombines polymerase amplification)、HDA(Helicase-dependent amplification)などが挙げられる。
例示した上記核酸増幅工程において、等温増幅反応が用いられる場合には常法に従う。
PCR反応において、検出用プライマー、競合プライマー、または共通プライマーの濃度としては、適宜最適な濃度を検討することができるが、共通プライマーの濃度を検出用プライマーと競合プライマーの合計濃度以下に設定することが好ましく、さらに好ましくは検出用プライマーおよび競合プライマーの合計濃度の25%以下である。これは、PCRが進んでいくと鋳型とマッチである検出用プライマーが優先的に消費され、鋳型とミスマッチである競合プライマーの相対濃度が上がってしまい識別精度が落ちてしまうのを防ぐためである。共通プライマーの濃度を低くすることで、鋳型とマッチである検出用プライマーの消費とともに共通プライマーも消費され、識別制度を維持することができる。
次に、工程(e)において、前記伸長産物AまたはBを検出する。
工程(e)におけるプライマーからの伸長産物の検出方法は、特に限定するものではなく、蛍光色素等によるプライマーの標識、電気泳動、高速液体クロマトグラフィーやマススペクトル、融解曲線分析、増殖曲線分析など、核酸を分析できるあらゆる方法が挙げられる。
検出用プライマー、競合プライマー、又は共通プライマーを、標識物質により標識しておくことにより、標識物質を指標として伸長産物を検出することができる。このような標識物質としては、例えば、蛍光色素、エネルギー吸収性物質、ラジオアイソトープ、化学発光体、酵素、抗体等が挙げられる。プライマーに標識する位置については、特に限定するものではないが、伸長反応を阻害しないような位置が好ましい。
プライマーを異なる蛍光色素で標識していずれのプライマーから増幅したものかを区別する方法は、特異性に与える影響も少なく、融解曲線を測定する必要もなく簡便な方法であるため好ましい。
より好ましくは、プライマーの5’末端にフルオロセインとアクリジンを導入する方法が挙げられる(非特許文献9参照)。このプライマーは1本鎖状態で存在する場合、フルオロセインの励起波長を照射してもエネルギー吸収性物質であるアクリジンによって消光されてフルオロセインからの蛍光は観察されない。
一方、2本鎖を形成している場合、インターカレーターでもあるアクリジンは2本鎖核酸に結合するため、フルオロセインとの距離が離れフルオロセインからの蛍光を吸収することができなくなる。よってプライマー伸長反応が生じたプライマーのみ蛍光を発光することになる(図10参照。)。
従って、検出用プライマー及び競合プライマーの蛍光色素を異なるものにすることにより、いずれのプライマーからの伸長生成物であるかを判断することができる。
よって例えば、本発明の検出方法において、野生型と変異型の2種類からなる多型のうち、変異型アレルを検出するプライマーを検出用プライマーとし、野生型アレルを検出し得るプライマーを競合プライマーとして用い、かつ、検出用プライマーと競合プライマーをそれぞれ異なる蛍光色素で標識し、各プライマーの伸長産物をそれぞれ検出することにより、試料中の1つの多型の有無を検出することができるだけでなく、試料中の複数の多型を検出することができる。
蛍光色素を導入する位置については、特に限定するものではないが、競合プライマーに標識するため、ポリメラーゼ反応を阻害しないような位置が好ましい。
また、アクリジンの代わりにピレンを用いてもよい。ピレンもまたエネルギー吸収性を有し、2本鎖に結合できるため、アクリジンと同様に2本鎖形成反応を調べることができる。
このほか、2つ以上のアレル特異的プライマーのどれから伸長が起こったかを検出する方法としては、LUX(商標名)プライマー(invitrogen社)やAmplifluor(商標名)UNIプライマー(商標名)(CHEMICON社)など、プライマーの1本鎖状態と2本鎖状態を判別することができる方法があり(Ranasingheら、Chem.Commun、第44巻、第5487~5502頁、2005年)、いずれの方法も適用可能である。
蛍光色素を用いた好適な検出方法としては、QP(Quenching Probe/Primer)法を用いた検出方法が挙げられる。
QP法は、ある種の蛍光色素に、グアニン塩基が空間的に近接することにより、蛍光が消光することを利用した検出方法である。
本発明の検出用プライマーを、グアニン塩基との近接により消光する蛍光色素で標識することにより、検出用プライマーと、標的核酸との近接の有無を検出することができる。該グアニン塩基を有するのは、標的核酸であっても、検出用プライマーであってもよいが、検出用プライマーであることが好ましい。
前記グアニン塩基との近接により消光する蛍光色素としては、QP法に通常使用される蛍光色素を用いて行うことができ、たとえば、BODIPY FL(商品名、インビトロジェン社製)、PACFIC BLUE(商品名、インビトロジェン社製)、CR6G(商品名、インビトロジェン社製)、TAMRA(商品名、インビトロジェン社製)等が挙げられる。
電気泳動で検出する場合、競合する二つのプライマーの長さを変えておき、伸長生成物の長さを変えることによって泳動度の差により検出することができる。ただし、プライマーの長さを変えることによって特異性に影響が出ないようにすることが重要である。
電気泳動による検出に用いる試薬としては二本鎖DNAに結合して蛍光を発するので、臭化エチジウムやサイバーグリーンがより好ましい。
 また、サイバーグリーンは蛍光色素であるため、後述する融解曲線を測定することによっていずれのプライマーから伸長した生成物かを区別することができる。
高速液体クロマトグラフィーでも同様に二つのプライマーからの伸長生成物を区別することができる。
また、質量分析法を利用する場合は二つのプライマーからの伸長生成物の長さが異なるようにしてもよいし、プライマーを質量が異なる物質で標識してもよい。後者の場合、特異性に与える影響が少なく好ましい。
 前記工程(e)は、前記工程(b)~(d)からなる核酸増幅工程と同時に設けられてもよく、核酸増幅工程後に行われてもよい。
核酸増幅工程中の識別方法としては、標識されたプライマー、またはその伸長産物の2本鎖状態を測定する方法が挙げられる。この識別方法は、鋳型と2本鎖を形成している競合するプライマーまたは競合するプライマーからの伸長産物が2本鎖を形成する能力差を利用している。
また、プライマーからの伸長産物は2本鎖を形成する温度下で蛍光測定してもよい。この方法では、競合するプライマーから伸長した産物だけを検出することができるので、さらに高精度に識別が可能である。
核酸増幅工程後の識別方法としては、融解曲線を測定する方法が挙げられる。これは、増幅生成物が2本鎖から1本鎖に遷移する温度依存性を利用する方法である。この方法では、競合する2つのプライマーによる増幅産物だけを検出することができるので、さらに高精度に識別が可能である。
本発明の検出方法をリアルタイムPCR装置のようなDNA配列検査器具に用いることができる。この場合、上述したPCRに必要な試薬と、プライマーとを添加した容器内に検体DNAを入れ、リアルタイムPCRを行い、検出用プライマーからの伸長産物の検出を行う。検体DNAを入れた後、密閉したまま検出を行うことで増幅産物の飛散や汚染を防ぐことができる。
本発明の標的塩基配列検出キットは、多型塩基を有する標的塩基配列を検出する上記方法に用いるキットであり、上記検出用プライマーと競合プライマーと共通プライマーとを含むことを特徴とする。
その他、試料前処理用の細胞破壊試薬や、標識物質の標識を検出するための試薬等を組み合わせてもよい。
 このように、本発明の標的塩基配列の検出方法に必要な試薬等をキット化することにより、より簡便かつ短時間で一塩基多型の識別をすることができる。
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
比較例1~2及び実施例1~2では、ワルファリンの至適投与量に関連する遺伝子であるビタミンKエポキシド還元酵素複合体1(VKORC1)のイントロン1領域の1173位における遺伝子多型(1173C>T)を識別対象とした。
表9に示されるように、VKORC1の上記遺伝子多型を検出する2種類の検出用プライマー(VK1Wat-Acridine及びVK1Mtg-Acridine)及び共通プライマー(VK1R2)を作製した。検出用プライマーとしては、5’末端にアクリジンホスホロアミダイト(グレンリサーチ社)を用いてアクリジンを導入し、さらにその5’末端に6-フルオロセイン(グレンリサーチ社)を導入したものを日本バイオサービス社から購入した。表9に示される4種の競合プライマー(VK1Mtg、VK1Mat、VK1Mac、VK1Wat)および共通プライマー(VK1R2)については、常法の合成方法で合成したものをグライナージャパンから購入した。鋳型となるゲノムDNAとしてはCoriell社から購入したものを用いた。
表9中、1173位及び多型塩基認識部位を太字で示し、ミスマッチ塩基導入部位に下線を付した。また、「Acridine」はアクリジンを、「6-FAM」は6-フルオロセイン標識を、右欄の数字は配列表中に示した標識前の配列に対応する配列番号を、それぞれ示す。
Figure JPOXMLDOC01-appb-T000009
(比較例1)
鋳型として、VK1ORC1の遺伝子多型であるCアレル、またはTアレルを、検出用プライマーとしてVK1Wat-Acridine及び競合プライマーとしてVK1Matを、共通プライマーとしてVK1R2を混合した反応液を表10記載の組成となるように調製した。上記反応液をリアルタイムPCRシステム(Roche製、「LightCycler」)にセットし、95℃で1分間保持し、DNAポリメラーゼの抗体を変性させた後、62℃20秒、95℃5秒の2ステップPCRを55サイクル行い、95℃から40℃まで融解曲線解析を行った。なお、鋳型に蒸留水(D.W.)を用いたものをネガティブコントロールとした。結果を図11に示す。
Figure JPOXMLDOC01-appb-T000010
図11は、比較例1の結果を融解曲線の負の一次微分曲線で示した図である。
検出用プライマー(VK1Wat-Acridine)が、2本鎖を形成すると、エネルギー吸収物質であるアクリジンが2本鎖核酸にインターカレートし、アクリジンによるエネルギー吸収量が小さくなるため、6-フルオロセインからの蛍光強度が大きくなる。
融解曲線とは、温度を低温から徐々に上げることにより、PCR法により増幅された2本鎖核酸が1本鎖状態に変性するまでの蛍光強度を測定して得られる曲線をいう。融解曲線の負の一次微分曲線は温度変化に対する蛍光変化量を示すもので、変化量が最大のところが2本鎖DNAのTmとなる。
比較例1において、VK1Wat-Acridineからの伸長産物は、83℃から86℃の範囲で1本鎖状態と2本鎖状態の変化量が最も多いことが既に分かっている。よって、融解曲線の負の一次微分曲線において83℃から86℃の範囲でピークが見られる場合には、VK1Wat-Acridineから伸長反応が起きたと判断することができる。
比較例1の検出用プライマー及び競合プライマーのセットを用いた場合には、Cアレル、またはTアレルのどちらを鋳型として用いても同様の結果が得られた。これは、上記プライマーセットでは、伸長反応がCアレル特異的でないことを示唆している。
(比較例2)
検出用プライマーとしてVK1Wat-Acridine及び競合プライマーとしてVK1Macを用いた以外は、比較例1と同様の反応及び同様の解析を行った。結果を図12に示す。
図12は、比較例2の結果を融解曲線の負の一次微分曲線で示した図である。
比較例2の検出用プライマー及び競合プライマーのセットを用いた場合には、Cアレルを鋳型として用いたときのVK1Wat-Acridineからの増幅が優位に観察された。しかしながら、Tアレルを鋳型として用いたときにわずかなピークが見られる。これは、TアレルをサンプルとしたときVK1Wat-Acridineからの伸長抑制は十分ではないことを示唆している。
(実施例1)
検出用プライマーとしてVK1Wat-Acridine及び競合プライマーとしてVK1Mtgを用いた以外は、比較例1と同様の反応及び同様の解析を行った。結果を図13に示す。
図13は、実施例1の結果を融解曲線の負の一次微分曲線で示した図である。
実施例1の検出用プライマー及び競合プライマーのセットを用いた場合には、Cアレルを鋳型として用いたときのVK1Wat-Acridineからの増幅が優位に観察された。さらに、比較例2の結果に比べTアレルを鋳型として用いたときのVK1Wat-Acridineからの増幅が抑えられていることから、上記プライマーセットでは、Cアレル特異性がより優れていることを示唆している。
(実施例2)
検出用プライマーとしてVK1Mtg-Acridine及び競合プライマーとしてVK1Watを用いた以外は、比較例1と同様の反応及び同様の解析を行った。結果を図14に示す。
図14は、実施例2の結果を融解曲線の負の一次微分曲線で示した図である。
実施例2において、VK1Mtg-Acridineからの伸長産物は、83℃から86℃の範囲で1本鎖状態と2本鎖状態の変化量が最も多いことが既に分かっている。よって、融解曲線の負の一次微分曲線において83℃から86℃の範囲でピークが見られる場合には、蛍光標識されたVK1Mtg-Acridineから伸長反応が起きたと判断することができる。
実施例2の検出用プライマー及び競合プライマーのセットを用いた場合には、Tアレルを鋳型として用いたときのVK1Mtg-Acridineからの増幅が優位に観察された。これは、上記プライマーセットでは、伸長反応がTアレル特異的であることを示唆している。
実施例2のプライマーセットは、実施例1のプライマーセットとは蛍光標識が変異型プライマーに導入されていることのみが異なるだけで塩基配列のセットとしては同じである。よって、実施例1及び2の結果から、VK1Wat及びVK1Mtgのどちらを蛍光標識しても、蛍光標識されたプライマーからの伸長反応の有無を判断できることが明らかとなった。
従って、VK1Wat及びVK1Mtgに互いに蛍光波長の異なる蛍光色素を導入することにより、各蛍光標識プライマーからの伸長反応を同時に測定することができる。
実施例3~5では、上記と同様、ワルファリンの至適投与量に関連する遺伝子であるビタミンKエポキシド還元酵素複合体1(VKORC1)のイントロン1領域の1173位における遺伝子多型(1173C>T)を検出対象とし、競合プライマーの多型塩基以外に導入するミスマッチ塩基の位置が検出精度に与える影響を調べた。
表11に示されるように、新たにVKORC1の遺伝子多型を識別する検出用プライマー(VK1Mtg-pyren)を作製した。検出用プライマーとしては、5’末端から2塩基目のアデニンにAmino-modifer C6 dA(グレンリサーチ社)を導入し、さらにその5’末端に6-フルオロセイン(グレンリサーチ社)を導入したものを日本バイオサービス社から購入し、1-ピレンブタノイックアシッドサクシンイミジルエステル(インビトロジェン社)を用いてアミノ基へピレン修飾を行ったものを用いた。
競合プライマーおよび共通プライマーとしては、常法の合成方法で合成したものをグライナージャパンから購入したものを用いた。競合プライマーについては、ミスマッチ塩基の導入位置を変えたものを複数作製した。他は、比較例1の記載と同様である。
表11中、多型塩基認識部位を太字で示し、ミスマッチ塩基導入部位に下線を付し、ピレン修飾した塩基は二重下線を付した。また、「pyrene」はピレンを、「6-FAM」は6-FAM標識を、右欄の数字は配列表中に示した標識前の配列に対応する配列番号を、それぞれ示す。尚、用いたテンプレートは表9記載の配列と同様のものである。
Figure JPOXMLDOC01-appb-T000011
(実施例3)
鋳型として、VK1ORC1の遺伝子多型であるCアレルまたは、Tアレルを、検出用プライマーとしてVK1Wat-pyrene及び競合プライマーとしてVK1M4tを、共通プライマーとしてVK1R2を混合した反応液を表12記載の組成となるように調製した。上記反応液をリアルタイムPCRシステム(Roche製、「LightCycler」)にセットし、95℃で1分間保持し、DNAポリメラーゼの抗体を変性させた後、58℃20秒、95℃5秒の2ステップPCRを55サイクル行い、95℃から40℃まで融解曲線解析を行った。なお、鋳型に蒸留水(D.W.)を用いたものをネガティブコントロールとした。結果を図15に示す。
Figure JPOXMLDOC01-appb-T000012
図15は、実施例3の結果を融解曲線の負の一次微分曲線で示した図である。
実施例3の検出用プライマー及び競合プライマーのセットを用いた場合には、実施例1と同様の結果が得られた。したがって競合プライマーのミスマッチ塩基が3’末端から4塩基目に位置する場合でも実施例1の3’末端から3塩基目に位置する場合と同様に、Cアレル特異性がより優れていることが示唆された。
(実施例4)
競合プライマーとしてVK1M5tを用いた以外は、実施例3と同様の反応及び同様の解析を行った。結果を図16に示す。
図16は、実施例4の結果を融解曲線の負の一次微分曲線で示した図である。
実施例4の検出用プライマー及び競合プライマーのセットを用いた場合には、実施例3と同様の結果が得られた。したがって競合プライマーのミスマッチ塩基が3’末端から5塩基目に位置する場合でも実施例1の3’末端から3塩基目に位置する場合と同様に、Cアレル特異性がより優れていることが示唆された。
(実施例5)
競合プライマーとしてVK1M8tを用いた以外は、実施例3と同様の反応及び同様の解析を行った。結果を図17に示す。
図17は、実施例5の結果を融解曲線の負の一次微分曲線で示した図である。
実施例5の検出用プライマー及び競合プライマーのセットを用いた場合には、実施例3と同様の結果が得られた。したがって競合プライマーのミスマッチ塩基が3’末端から8塩基目に位置する場合でも実施例1の3’末端から3塩基目に位置する場合と同様に、Cアレル特異性がより優れていることが示唆された。
(実施例6)
検出用プライマーとしてVK1Mtg-pyrene及び競合プライマーとしてVK1W4tを用いた以外は、実施例3と同様の反応及び同様の解析を行った。結果を図18に示す。
図18は、実施例6の結果を融解曲線の負の一次微分曲線で示した図である。
実施例6の検出用プライマー及び競合プライマーのセットを用いた場合には、実施例2と同様の結果が得られた。したがって変異を検出するプライマーセットにおいて競合プライマーの3’末端から4塩基目にミスマッチ塩基を導入しても、Tアレル特異性がより優れていることが示唆された。
(実施例7)
競合プライマーとしてVK1W5tを用いた以外は、実施例6と同様の反応及び同様の解析を行った。結果を図19に示す。
図19は、実施例7の結果を融解曲線の負の一次微分曲線で示した図である。
実施例7の検出用プライマー及び競合プライマーのセットを用いた場合には、実施例6と同様の結果が得られた。したがって変異を検出するプライマーセットにおいて競合プライマーの3’末端から5塩基目に変異を導入してもTアレル特異性がより優れていることが示唆された。
(実施例8)
競合プライマーとしてVK1W8tを用いた以外は、実施例7と同様の反応及び同様の解析を行った。結果を図20に示す。
図20は、実施例8の結果を融解曲線の負の一次微分曲線で示した図である。
実施例8の検出用プライマー及び競合プライマーのセットを用いた場合には、実施例6と同様の結果が得られた。したがって変異を検出するプライマーセットにおいて競合プライマーの3’末端から8塩基目に変異を導入してもTアレル特異性がより優れていることが示唆された。
(実施例9~18)
鋳型として、VK1ORC1の遺伝子多型であるCアレル、またはTアレルを、プライマーとして、表13に示す検出用プライマー及び競合プライマーのセットを、共通プライマーとしてVK1R2を混合した反応液を表11記載の組成となるように調製した。上記反応液をリアルタイムPCRシステム(Roche製、「LightCycler」)にセットし、95℃で1分間保持し、DNAポリメラーゼの抗体を変性させた後、62℃20秒、95℃5秒の2ステップPCRを55サイクル行い、95℃から40℃まで融解曲線解析を行った。なお、鋳型に蒸留水(D.W.)を用いたものをネガティブコントロールとした。結果を図21~30に示す。
Figure JPOXMLDOC01-appb-T000013
図21~30は、実施例9~18の結果を融解曲線の負の一次微分曲線で示した図である。
実施例9~13の検出用プライマー及び競合プライマーのセットを用いた場合には、実施例3と同様の結果が、実施例14~18の検出用プライマー及び競合プライマーのセットを用いた場合には、実施例6と同様の結果が得られた。
実施例9~13から、検出用プライマーが有するミスマッチ塩基及び競合プライマーが有するミスマッチ塩基が、多型塩基にマッチな塩基から17塩基以内に位置する場合には精度良く検出できることが確認された。
また、実施例3~8から、アニール温度が低い条件下においても8塩基以内に位置する場合には精度良く検出できることが確認された。
実施例19~27では、上記と同様、ワルファリンの至適投与量に関連する遺伝子であるビタミンKエポキシド還元酵素複合体1(VKORC1)のイントロン1領域の1173位における遺伝子多型(1173C>T)を検出対象とし、競合プライマーと検出用プライマーの鎖長の差が検出精度に与える影響を調べた。
表14に示されるように、新たにVKORC1の遺伝子多型を識別する検出用プライマー(VK1Wat-P-FAM1)を作製した。検出用プライマーとしては、5’末端から4塩基目のシトシンにAmino-modifer C6 dC(グレンリサーチ社)を導入し、さらに5’末端から6塩基目のチミンにフルオロセインdT(グレンリサーチ社)を導入したものを日本バイオサービス社から購入し、1-ピレンブタノイックアシッドサクシンイミジルエステル(インビトロジェン社)を用いてアミノ基へピレン修飾を行ったものを用いた。
表14に示される競合プライマーおよび共通プライマーとしては、常法の合成方法で合成したものをグライナージャパンから購入したものを用いた。競合プライマーについては、鎖長を変えたものを複数作製した。
表14中、1173位及び多型塩基認識部位を太字で示し、ミスマッチ塩基導入部位に下線を付した。また、「FAMdT」はフルオロセインdTを、「PyrendC」はピレン標識を行ったAmino-modifer C6 dCを、右欄の数字は配列表中に示した標識前の配列に対応する配列番号を、それぞれ示す。尚、用いたテンプレートは表9記載の配列と同様のものである。
(実施例19~27)
鋳型として、VKORC1の遺伝子多型であるCアレル、またはTアレルを、プライマーとして、表15に示す検出用プライマー及び競合プライマーのセットを、共通プライマーとしてVK1R2を混合した反応液を表10記載の組成となるように調製した。上記反応液をリアルタイムPCRシステム(Roche製、「LightCycler480」)にセットし、95℃で1分間保持し、DNAポリメラーゼの抗体を変性させた後、64℃30秒、95℃5秒の2ステップPCRを60サイクル行った。鋳型としてCアレルを用いて反応させて得られた結果を図31に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
図31に示すように、実施例19~27の検出用プライマー及び競合プライマーのセットを用いた場合には、遺伝子多型を精度よく検出できることが確認された。
検出用プライマーよりも2塩基~16塩基長い競合プライマーを用いた実施例21~26は、検出プライマーより20塩基長い競合プライマーを用いた実施例27よりも反応性に優れていることが確認された。
更に、検出用プライマーと同じ鎖長、または1塩基長い競合プライマーを用いた実施例19及び実施例20は、検出用プライマーよりも2塩基~16塩基長い競合プライマーを用いた実施例21~26よりも反応性に優れていることが確認された。
実施例28~35では、上記と同様、ワルファリンの至適投与量に関連する遺伝子であるビタミンKエポキシド還元酵素複合体1(VKORC1)のイントロン1領域の1173位における遺伝子多型(1173C>T)を検出対象とし、競合プライマーと検出用プライマーに導入した第2のミスマッチ塩基が検出精度に与える影響を調べた。
表16に示されるように、新たにVKORC1の遺伝子多型を識別する検出用プライマー(VK1Wat-P-FAM2~8)を作製した。検出用プライマーとしては、5’末端から4塩基目のシトシンにAmino-modifer C6 dC(グレンリサーチ社)を導入し、さらに5’末端から6塩基目のチミンにフルオロセインdT(グレンリサーチ社)を導入したものを日本バイオサービス社から購入し、1-ピレンブタノイックアシッドサクシンイミジルエステル(インビトロジェン社)を用いてアミノ基へピレン修飾を行ったものを用いた。
表16に示される競合プライマーおよび共通プライマーとしては、常法の合成方法で合成したものをグライナージャパンから購入したものを用いた。競合プライマーについては、第2のミスマッチ塩基の導入位置を変えたものを複数作製した。
表16中、1173位及び多型塩基認識部位を太字で示し、ミスマッチ塩基導入部位に下線を付した。また、「FAMdT」はフルオロセインdTを、「PyrendC」はピレン標識を行ったAmino-modifer C6 dCを、右欄の数字は配列表中に示した標識前の配列に対応する配列番号を、それぞれ示す。尚、用いたテンプレートは表9記載の配列と同様のものである。
(実施例28~35)
鋳型として、VKORC1の遺伝子多型であるCアレル、またはTアレルを、プライマーとして、表17に示す検出用プライマー及び競合プライマーのセットを、共通プライマーとしてVK1R2を混合した反応液を表10記載の組成となるように調製した。上記反応液をリアルタイムPCRシステム(Roche製、「LightCycler480」)にセットし、95℃で1分間保持し、DNAポリメラーゼの抗体を変性させた後、64℃30秒、95℃5秒の2ステップPCRを60サイクル行った。鋳型としてCアレルを用いて反応させて得られた結果を図32に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
図32に示すように、実施例28~35の検出用プライマー及び競合プライマーのセットを用いた場合には、遺伝子多型を精度よく検出できることが確認された。
第2のミスマッチ塩基が、3’末端から7塩基以上離れている検出プライマー及び競合プライマーのセットを用いた実施例29~35は、第2のミスマッチ塩基が導入されていない実施例28よりも反応性に優れていることが確認された。
中でも第2のミスマッチ塩基が、3’末端から9塩基以上離れている検出プライマー及び競合プライマーのセットを用いた実施例29~34は、特に反応性に優れていることが確認された。
本発明の競合プライマーによる標的塩基配列の検出方法によれば、遺伝子型の識別精度が非常に優れているため、臨床検査等の分野、特に一塩基多型や体細胞変異の分野において利用が可能である。

Claims (14)

  1. 多型塩基を有する標的塩基配列を検出する方法であって、
     (a)標的塩基配列を含む塩基配列からなる標的核酸を有する核酸試料に、
    前記標的塩基配列に本質的に相補的な少なくとも1種の検出用プライマーと、
    前記標的塩基配列に本質的に相補的であり、かつ前記標的核酸に対して前記検出用プライマーと競合的にアニールする少なくとも1種の競合プライマーと、
    少なくとも1種の共通プライマーと、を添加する工程と、
     (b)前記核酸試料中の多型塩基を有する標的塩基配列を鋳型として用い、前記標的核酸に、前記検出用プライマーと前記競合プライマーとを競合的にアニールさせ、伸長反応を行い、伸長産物Aを合成する工程と、
     (c)前記工程(b)または後記工程(d)で得られた前記伸長産物Aと前記共通プライマーをアニールさせ、伸長反応を行い、伸長産物Bを合成する工程と、
     (d)前記工程(c)で得られた伸長産物Bと前記検出用プライマーまたは前記競合プライマーをアニールさせ、伸長産物Aを合成する工程と、
    (e)前記伸長産物AまたはBを検出する工程と、を有し、
    前記検出用プライマーは、多型塩基に相補的なマッチ塩基と、前記標的配列に対して多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基とを有し、
    前記競合プライマーは、多型塩基に非相補的なミスマッチ塩基と、前記標的配列に対して多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基を有し、
    前記検出用プライマーが有する少なくとも1つのミスマッチ塩基の位置が、前記競合プライマーが有する多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基の位置とは異なり、
    前記共通プライマーは、前記検出用プライマー又は前記競合プライマーと対になって前記標的核酸を増幅しうるものであることを特徴とする標的塩基配列の検出方法。
  2. 前記検出用プライマーは、3’末端または3’末端から2塩基目に多型塩基に相補的なマッチ塩基を有することを特徴とする請求項1に記載の標的塩基配列の検出方法。
  3.  前記検出用プライマー及び前記競合プライマーにおいて、
    多型塩基以外の塩基に非相補的なミスマッチ塩基が、前記検出用プライマーでは多型塩基に相補的なマッチ塩基から、前記競合プライマーでは多型塩基に非相補的なミスマッチ塩基から、いずれも17塩基以内に位置し、それぞれのプライマーでミスマッチ塩基の位置が異なることを特徴とする請求項1又は2に記載の標的塩基配列の検出方法。
  4.  前記競合プライマーと前記検出用プライマーの鎖長の差は16塩基以内であることを特徴とする請求項1~3のいずれか一項に記載の標的塩基配列の検出方法。
  5.  前記検出用プライマー及び前記競合プライマーにおいて、
     第1のミスマッチ塩基が、3’末端から6塩基以内に位置し、
    第2のミスマッチ塩基が、3’末端から7塩基以上5’末端側に位置し、
    前記検出用プライマーの第1のミスマッチ塩基の位置が、前記競合プライマーの第1のミスマッチ塩基の位置とは異なり、
     前記検出用プライマーの第2のミスマッチ塩基と前記競合プライマーの第2のミスマッチ塩基が互いに異なることを特徴とする請求項1~3のいずれか一項に記載の標的塩基配列の検出方法。
  6. 前記検出用プライマー及び前記競合プライマーが有する前記第2のミスマッチ塩基の位置が同じであることを特徴とする請求項5に記載の標的塩基配列の検出方法。
  7.  前記工程(b)~(d)が、PCR、LAMP、NASBA、ICAN、TRC、SDA、TMA、SMAP、RPA、HDAよりなる群から選ばれる1つにより行われる工程であることを特徴とする請求項1~6のいずれか一項に記載の標的塩基配列の検出方法。
  8.  前記検出用プライマー、前記競合プライマー、または前記共通プライマーの少なくとも1つが標識されていることを特徴とする請求項1~7のいずれか一項に記載の標的塩基配列の検出方法。
  9. 前記標識に用いられる標識物質が、蛍光色素及びエネルギー吸収性物質からなる群より選ばれる少なくとも1つであることを特徴とする請求項8に記載の標的塩基配列の検出方法。
  10.  前記検出用プライマーと、前記競合プライマーとを、異なる種類の標識物質でそれぞれ標識し、前記工程(e)が、前記検出用プライマーからの伸長産物と、前記競合プライマーからの伸長産物とを別個に検出する工程であることを特徴とする請求項8又は9に記載の標的塩基配列の検出方法。
  11.  前記工程(e)は、前記工程(b)~(d)と同時に行われる工程であって、標識されたプライマーからの伸長産物が、2本鎖を形成している状態を検出する工程であることを特徴とする請求項8~10のいずれか一項に記載の標的塩基配列の検出方法。
  12. 前記工程(e)は、前記工程(d)後に行われる工程であって、前記伸長産物の融解曲線または増幅曲線を用いて検出する工程であることを特徴とする請求項8~10のいずれか一項に記載の標的塩基配列の検出方法。
  13.  前記工程(e)は、QP(Quenching Probe/Primer)法、を用いて検出する工程であることを特徴とする請求項8~12のいずれか一項に記載の標的塩基配列の検出方法。
  14. 多型塩基を有する標的塩基配列を検出する方法に用いるキットであって、
    前記標的塩基配列に本質的に相補的な少なくとも1種の検出用プライマーと、
    前記標的塩基配列に本質的に相補的であり、かつ前記標的核酸に対して前記検出用プライマーと競合的にアニールする少なくとも1種の競合プライマーと、
    少なくとも1種の共通プライマーと、を含み、
    前記検出用プライマーは、多型塩基に相補的なマッチ塩基と、前記標的配列に対して多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基とを有し
    前記競合プライマーは、多型塩基に非相補的なミスマッチ塩基と、前記標的配列に対して多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基を有し、
    前記検出用プライマーが有する少なくとも1つのミスマッチ塩基の位置が、前記競合プライマーが有する多型塩基以外の塩基に非相補的な少なくとも1つのミスマッチ塩基の位置とは異なり、
     前記共通プライマーは、前記検出用プライマー又は前記競合プライマーと対になって前記標的核酸を増幅しうるものであり、
    前記方法は、
     (a)標的核酸を有する核酸試料に、前記検出用プライマーと前記競合プライマーとを添加する工程と、
     (b)前記核酸試料中の多型塩基を有する標的塩基配列を鋳型として用い、前記標的核酸に、前記検出用プライマーと前記競合プライマーとを競合的にアニールさせ、伸長反応を行い、伸長産物Aを合成する工程と、
     (c)前記工程(b)または後記工程(d)で得られた前記伸長産物Aと前記共通プライマーをアニールさせ、伸長反応を行い、伸長産物Bを合成する工程と、
     (d)前記工程(c)で得られた伸長産物Bと前記検出用プライマーまたは前記競合プライマーをアニールさせ、伸長産物Aを合成する工程と、
     (e)前記伸長産物AまたはBを検出する工程と、を有していることを特徴とする標的塩基配列検出キット。
PCT/JP2011/056892 2010-03-24 2011-03-23 競合プライマーによる標的塩基配列の検出方法 WO2011118603A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180015155.7A CN102892901B (zh) 2010-03-24 2011-03-23 利用竞争性引物的目标碱基序列的检测方法
US13/636,446 US20130071844A1 (en) 2010-03-24 2011-03-23 Method for detecting target base sequence using competitive primer
EP11759408.5A EP2551356B1 (en) 2010-03-24 2011-03-23 Method for detecting target base sequence using competitive primer
JP2012507021A JP5842811B2 (ja) 2010-03-24 2011-03-23 競合プライマーによる標的塩基配列の検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-068490 2010-03-24
JP2010068490 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011118603A1 true WO2011118603A1 (ja) 2011-09-29

Family

ID=44673154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056892 WO2011118603A1 (ja) 2010-03-24 2011-03-23 競合プライマーによる標的塩基配列の検出方法

Country Status (5)

Country Link
US (1) US20130071844A1 (ja)
EP (1) EP2551356B1 (ja)
JP (1) JP5842811B2 (ja)
CN (1) CN102892901B (ja)
WO (1) WO2011118603A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157377A1 (ja) * 2013-03-26 2014-10-02 株式会社ニッポンジーン 遺伝子多型の識別に用いるプライマーとプローブのセットおよびその利用
JP2018514219A (ja) * 2015-04-30 2018-06-07 メディカル カレッジ オブ ウィスコンシン インコーポレイテッド 無細胞dnaを評価するための多重/最適化ミスマッチ増幅(moma)−リアルタイムpcr
CN109715826A (zh) * 2016-04-29 2019-05-03 威斯康星州立大学医学院 用于评估癌症的多重优化错配扩增(moma)实时pcr
KR20190066031A (ko) * 2016-10-26 2019-06-12 에이껜 가가꾸 가부시끼가이샤 표적 염기 배열을 검출하는 방법 프로브를 설계 및 제조하는 방법 및 키트
JP2019518438A (ja) * 2016-04-29 2019-07-04 ザ メディカル カレッジ オブ ウィスコンシン インクThe Medical College Of Wisconsin, Inc. 多重/最適化ミスマッチ増幅(moma)−標的数
CN110177874A (zh) * 2016-11-02 2019-08-27 威斯康星州立大学医学院 用于使用错配扩增和统计方法来评估风险的方法
JP2019534016A (ja) * 2016-11-02 2019-11-28 ザ メディカル カレッジ オブ ウィスコンシン,インコーポレイテッドThe Medical College of Wisconsin, Inc. 全および特異的な無細胞dnaを使用しリスクを評価するための方法
JP2020529194A (ja) * 2017-06-20 2020-10-08 ザ メディカル カレッジ オブ ウィスコンシン,インコーポレイテッドThe Medical College of Wisconsin, Inc. セルフリーdnaによる移植患者のモニタリング
US11414709B2 (en) 2014-04-21 2022-08-16 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11519035B2 (en) 2010-05-18 2022-12-06 Natera, Inc. Methods for simultaneous amplification of target loci
US11530442B2 (en) 2016-12-07 2022-12-20 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US11773434B2 (en) 2017-06-20 2023-10-03 The Medical College Of Wisconsin, Inc. Assessing transplant complication risk with total cell-free DNA
US11931674B2 (en) 2019-04-04 2024-03-19 Natera, Inc. Materials and methods for processing blood samples
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11946101B2 (en) 2015-05-11 2024-04-02 Natera, Inc. Methods and compositions for determining ploidy
US12020778B2 (en) 2010-05-18 2024-06-25 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US12024738B2 (en) 2018-04-14 2024-07-02 Natera, Inc. Methods for cancer detection and monitoring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3741871A3 (en) 2012-04-19 2021-02-17 The Medical College of Wisconsin, Inc. Highly sensitive surveillance using detection of cell free dna
EP4276196A1 (en) * 2022-05-10 2023-11-15 Philipps-Universität Marburg Decoy-oligonucleotides in nucleic acid detection methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760553B2 (ja) 1988-03-18 1998-06-04 ベイラー カレッジ オブ メディシン 競合オリゴヌクレオチドのプライミングによる変異の検出法
JP2001057892A (ja) * 1999-06-17 2001-03-06 Becton Dickinson & Co 核酸配列変異を検出するための方法とオリゴヌクレオチド
WO2001042498A1 (fr) * 1999-12-10 2001-06-14 Toyo Boseki Kabushiki Kaisha Procede de detection de polymorphisme nucleotidique
JP2001286300A (ja) * 1999-04-20 2001-10-16 Japan Bioindustry Association 核酸の測定方法、それに用いる核酸プローブ及びその方法によって得られるデータを解析する方法
JP2002171986A (ja) * 2000-12-07 2002-06-18 Toyobo Co Ltd 塩基多型の同定方法
JP2003052372A (ja) 2001-07-27 2003-02-25 Unitech Kk 簡易snp検出法(ssd)
JP2005027518A (ja) * 2003-07-08 2005-02-03 Toyobo Co Ltd 塩基多型の検出方法
JP2005287499A (ja) 2004-03-08 2005-10-20 Toyobo Co Ltd 塩基多型の同定方法
JP2009247230A (ja) * 2008-04-02 2009-10-29 Olympus Corp Vkorc1フォワードプライマー、vkorc1リバースプライマー、cyp2c9フォワードプライマー、及びcyp2c9リバースプライマー
JP2010068490A (ja) 2008-09-12 2010-03-25 Sanyo Electric Co Ltd 画像処理装置および画像処理システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1620568T3 (da) * 2003-04-24 2009-03-30 Afshin Ahmadian Analyse til allelspecifik mutationspåvisning
US7824861B2 (en) * 2008-07-10 2010-11-02 National Tsing Hua University Method for quantitative analysis of transcripts with nucleotide polymorphism at specific site
WO2010048691A1 (en) * 2008-10-28 2010-05-06 British Columbia Cancer Agency Branch Multiplex genotyping assay for detecting mutations in k-ras
WO2010077324A2 (en) * 2008-12-17 2010-07-08 Life Technologies Corporation Methods, compositions, and kits for detecting allelic variants
CN101575642A (zh) * 2009-06-19 2009-11-11 华南理工大学 竞争性交替结合猝灭探针环介导等温扩增快速检测方法
US8815515B1 (en) * 2009-09-24 2014-08-26 University Of Utah Research Foundation Methods, compositions, and kits for rare allele detection

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760553B2 (ja) 1988-03-18 1998-06-04 ベイラー カレッジ オブ メディシン 競合オリゴヌクレオチドのプライミングによる変異の検出法
JP2001286300A (ja) * 1999-04-20 2001-10-16 Japan Bioindustry Association 核酸の測定方法、それに用いる核酸プローブ及びその方法によって得られるデータを解析する方法
JP2001057892A (ja) * 1999-06-17 2001-03-06 Becton Dickinson & Co 核酸配列変異を検出するための方法とオリゴヌクレオチド
WO2001042498A1 (fr) * 1999-12-10 2001-06-14 Toyo Boseki Kabushiki Kaisha Procede de detection de polymorphisme nucleotidique
JP2002171986A (ja) * 2000-12-07 2002-06-18 Toyobo Co Ltd 塩基多型の同定方法
JP2003052372A (ja) 2001-07-27 2003-02-25 Unitech Kk 簡易snp検出法(ssd)
JP2005027518A (ja) * 2003-07-08 2005-02-03 Toyobo Co Ltd 塩基多型の検出方法
JP4228041B2 (ja) 2003-07-08 2009-02-25 東洋紡績株式会社 塩基多型の検出方法
JP2005287499A (ja) 2004-03-08 2005-10-20 Toyobo Co Ltd 塩基多型の同定方法
JP2009247230A (ja) * 2008-04-02 2009-10-29 Olympus Corp Vkorc1フォワードプライマー、vkorc1リバースプライマー、cyp2c9フォワードプライマー、及びcyp2c9リバースプライマー
JP2010068490A (ja) 2008-09-12 2010-03-25 Sanyo Electric Co Ltd 画像処理装置および画像処理システム

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Jikken Igaku", vol. 8, 1990, YODOSHA CO., LTD.
"PCR Technology", 1989, STOCKTON PRESS
AHMADIAN, BIOTECHNIQUES, vol. 32, 2002, pages 1122 - 1137
GRIFFIN, TRENDS BIOTECHNOL., vol. 18, 2000, pages 77 - 84
KURATA, S. ET AL.: "Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPYO FL-labeled probe or primer. abstr e34", NUCLEIC ACIDS RES., vol. 29, no. 6, 2001, pages 1 - 5, XP002376104 *
LANDEGREN: "Laboratory protocols for mutation detection", 1996, OXFORD UNIVERSITY PRESS
LIVAK, PCR METHODS APPL., vol. 5, 1995, pages 357 - 362
MYAKISHEV, GENOME RES., vol. 11, 2001, pages 163 - 169
NEWTON, NUCLEIC ACIDS RES., vol. 17, 1989, pages 2503 - 2516
OKAYAMA, J. LAB. CLIN. MED., vol. 114, 1989, pages 105 - 113
RANASINGHE, CHEM. COMMUN, vol. 44, 2005, pages 5487 - 5502
RYAN, MOLECULAR DIAGNOSIS, vol. 4, 1999, pages 135 - 144
See also references of EP2551356A4
SHINOZUKA, J. CHEM. SOC., CHEM. COMMUN., vol. 10, 1994, pages 1377 - 1378

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12020778B2 (en) 2010-05-18 2024-06-25 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11519035B2 (en) 2010-05-18 2022-12-06 Natera, Inc. Methods for simultaneous amplification of target loci
JPWO2014157377A1 (ja) * 2013-03-26 2017-02-16 株式会社ニッポンジーン 遺伝子多型の識別に用いるプライマーとプローブのセットおよびその利用
WO2014157377A1 (ja) * 2013-03-26 2014-10-02 株式会社ニッポンジーン 遺伝子多型の識別に用いるプライマーとプローブのセットおよびその利用
US11530454B2 (en) 2014-04-21 2022-12-20 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11486008B2 (en) 2014-04-21 2022-11-01 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11414709B2 (en) 2014-04-21 2022-08-16 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
JP2022002508A (ja) * 2015-04-30 2022-01-11 ザ メディカル カレッジ オブ ウィスコンシン, インコーポレイテッドThe Medical College of Wisconsin, Inc. 無細胞dnaを評価するための多重/最適化ミスマッチ増幅(moma)−リアルタイムpcr
JP2018514219A (ja) * 2015-04-30 2018-06-07 メディカル カレッジ オブ ウィスコンシン インコーポレイテッド 無細胞dnaを評価するための多重/最適化ミスマッチ増幅(moma)−リアルタイムpcr
US11946101B2 (en) 2015-05-11 2024-04-02 Natera, Inc. Methods and compositions for determining ploidy
JP2019518438A (ja) * 2016-04-29 2019-07-04 ザ メディカル カレッジ オブ ウィスコンシン インクThe Medical College Of Wisconsin, Inc. 多重/最適化ミスマッチ増幅(moma)−標的数
JP2019518437A (ja) * 2016-04-29 2019-07-04 ザ メディカル カレッジ オブ ウィスコンシン インクThe Medical College Of Wisconsin, Inc. 多重/最適化ミスマッチ増幅(moma)−がんの評価のためのリアルタイムpcr
CN109715826A (zh) * 2016-04-29 2019-05-03 威斯康星州立大学医学院 用于评估癌症的多重优化错配扩增(moma)实时pcr
KR102438915B1 (ko) 2016-10-26 2022-08-31 에이껜 가가꾸 가부시끼가이샤 표적 염기 배열을 검출하는 방법 프로브를 설계 및 제조하는 방법 및 키트
KR20190066031A (ko) * 2016-10-26 2019-06-12 에이껜 가가꾸 가부시끼가이샤 표적 염기 배열을 검출하는 방법 프로브를 설계 및 제조하는 방법 및 키트
JP2019534017A (ja) * 2016-11-02 2019-11-28 ザ メディカル カレッジ オブ ウィスコンシン,インコーポレイテッドThe Medical College of Wisconsin, Inc. ミスマッチ増幅を使用するリスクを評価するための方法および統計方法
CN110177874A (zh) * 2016-11-02 2019-08-27 威斯康星州立大学医学院 用于使用错配扩增和统计方法来评估风险的方法
JP2019534016A (ja) * 2016-11-02 2019-11-28 ザ メディカル カレッジ オブ ウィスコンシン,インコーポレイテッドThe Medical College of Wisconsin, Inc. 全および特異的な無細胞dnaを使用しリスクを評価するための方法
US11530442B2 (en) 2016-12-07 2022-12-20 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
JP7323462B2 (ja) 2017-06-20 2023-08-08 ザ メディカル カレッジ オブ ウィスコンシン,インコーポレイテッド セルフリーdnaによる移植患者のモニタリング
US11773434B2 (en) 2017-06-20 2023-10-03 The Medical College Of Wisconsin, Inc. Assessing transplant complication risk with total cell-free DNA
JP2020529194A (ja) * 2017-06-20 2020-10-08 ザ メディカル カレッジ オブ ウィスコンシン,インコーポレイテッドThe Medical College of Wisconsin, Inc. セルフリーdnaによる移植患者のモニタリング
US12024738B2 (en) 2018-04-14 2024-07-02 Natera, Inc. Methods for cancer detection and monitoring
US11931674B2 (en) 2019-04-04 2024-03-19 Natera, Inc. Materials and methods for processing blood samples

Also Published As

Publication number Publication date
JP5842811B2 (ja) 2016-01-13
US20130071844A1 (en) 2013-03-21
CN102892901A (zh) 2013-01-23
EP2551356B1 (en) 2017-06-14
EP2551356A1 (en) 2013-01-30
JPWO2011118603A1 (ja) 2013-07-04
CN102892901B (zh) 2015-11-25
EP2551356A4 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5842811B2 (ja) 競合プライマーによる標的塩基配列の検出方法
JP5805064B2 (ja) 対立遺伝子変種を検出するための方法、組成物、およびキット
CN105339505B (zh) 基于通用报告体的基因分型方法和材料
US7803543B2 (en) Methods and kits for the detection of nucleotide mutations using peptide nucleic acid as both PCR clamp and sensor probe
JP2012511927A (ja) 対立遺伝子変種を検出するための方法、組成物、およびキット
JP2003528626A (ja) ハイブリダイゼーション・ビーコン、並びに迅速に配列を検出および判別する方法
KR20100080621A (ko) 표적 핵산 서열의 증폭 방법, 그것을 사용한 변이의 검출 방법, 및, 그것에 사용하는 시약
CN104450869B (zh) 一种双脱氧核苷修饰的引物方法、反应体系及其在突变检测中的应用
KR20130099092A (ko) 광을 이용한 핵산의 증폭 억제 방법 및 고감도의 선택적 핵산 증폭 방법
JP2022024071A (ja) 標的核酸を検出する方法
WO2011062258A1 (ja) Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途
JP2022550469A (ja) 希少配列変異体を検出するためのアッセイ方法およびキット
EP2646575A1 (en) Detecting mutations in dna
JP5290957B2 (ja) 免疫関連遺伝子の多型の検出用プローブおよびその用途
EP3055430B1 (en) Method for the detection of target nucleic acid sequences
EP2450443A1 (en) Target sequence amplification method, polymorphism detection method, and reagents for use in the methods
US20170275675A1 (en) Detection method and kit of base mutation, and method for limiting pcr amplification of nucleic acid sample
JP2008161165A (ja) 競合オリゴヌクレオチドを用いた遺伝子検出法
US20210262015A1 (en) Method for detecting polynucleotide sequence having gene mutation
US8758997B2 (en) Method for detecting polymorphism at nucleotide position-1639 of VKORC1 gene, and nucleic acid probe and kit therefor
US9523119B2 (en) Method of distinguishing genotypes
JP2010273660A (ja) 部分競合型プローブを用いた標的塩基配列の検出方法
JP4406366B2 (ja) 多型配列部位を有する核酸の識別方法
WO2018079579A1 (ja) 標的塩基配列を検出する方法、プローブを設計および製造する方法ならびにキット
KR102575618B1 (ko) 가이드 프로브 및 클램핑 프로브를 이용한 표적핵산 증폭방법 및 이를 포함하는 표적핵산 증폭용 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015155.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507021

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13636446

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011759408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011759408

Country of ref document: EP