WO2011062258A1 - Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途 - Google Patents

Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途 Download PDF

Info

Publication number
WO2011062258A1
WO2011062258A1 PCT/JP2010/070669 JP2010070669W WO2011062258A1 WO 2011062258 A1 WO2011062258 A1 WO 2011062258A1 JP 2010070669 W JP2010070669 W JP 2010070669W WO 2011062258 A1 WO2011062258 A1 WO 2011062258A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
base
probe
amplification
seq
Prior art date
Application number
PCT/JP2010/070669
Other languages
English (en)
French (fr)
Inventor
光春 平井
昌弘 小塚
Original Assignee
アークレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アークレイ株式会社 filed Critical アークレイ株式会社
Priority to CN201080052773.4A priority Critical patent/CN102666852A/zh
Priority to EP10831650.6A priority patent/EP2502994A4/en
Priority to JP2011541962A priority patent/JPWO2011062258A1/ja
Priority to US13/510,523 priority patent/US20120231463A1/en
Priority to KR1020127013959A priority patent/KR101446556B1/ko
Publication of WO2011062258A1 publication Critical patent/WO2011062258A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a primer set for amplifying an MTHFR gene, a reagent for amplifying an MTHFR gene containing the same, and use thereof.
  • Homocysteine is an intermediate in the metabolic pathway of methionine, and is partly metabolized to cysteine and partly metabolized to methionine again. It has been reported that, when increased in vivo, homocysteine is a cause of cardiovascular disease such as arteriosclerosis, coronary artery disease, heart disease and hyperhomocysteinemia. Methylene tetrahydrofolate reductase (MTHFR) is involved in the production of homocysteine, and the association between the polymorphism in the MTHFR gene and the aforementioned diseases has also been reported (eg, Non-Patent Document 1) reference).
  • MTHFR Methylene tetrahydrofolate reductase
  • MTHFR * 677 has a base at position 8747 in the MTHFR gene, a wild type cytosine (c) and a mutant thymine (t).
  • MTHFR * 1298 has a base at position 10649 in the MTHFR gene, a wild type adenine (a) and a mutant type cytosine (c).
  • examining a plurality of polymorphisms of the MTHFR gene may be used to predict the onset of a disease such as a cardiovascular disease due to an increase in the amount of homocysteine in blood, and the dose of a therapeutic agent such as rheumatoid arthritis. It is extremely important.
  • polymorphism is widely performed as a method of analyzing at the genetic level the cause of any disease, disease susceptibility among individuals, ie, susceptibility to disease, difference in medicinal efficacy among individuals, and the like.
  • the polymorphism include point mutations, so-called single nucleotide polymorphism (SNP) and the like.
  • SNP single nucleotide polymorphism
  • Examples of common polymorphism detection methods include Direct Sequencing, RFLP (Restriction Fragment Length Polymorphism) analysis, and ASP-PCR.
  • the Direct Sequencing method is, for example, a method of amplifying a region corresponding to a detection target sequence by PCR (Polymerase chain reaction) on a target DNA of a sample and analyzing the entire gene sequence.
  • PCR Polymerase chain reaction
  • a region corresponding to a sequence to be detected is first amplified by PCR on a target DNA of a sample.
  • the amplified product is cleaved by a restriction enzyme whose cleavage action differs depending on the presence or absence of a target mutation in the detection target sequence, and electrophoresis is performed to perform typing.
  • the ASP-PCR method is, for example, a method of performing PCR using a primer in which a target mutation is located in the 3 'end region, and determining a mutation based on the presence or absence of amplification.
  • Tm Melting Temperature
  • This is a method of analyzing the melting temperature (Tm) of double-stranded nucleic acid, and is also referred to as melting curve analysis because it is performed by analyzing the melting curve of the double-stranded nucleic acid.
  • Tm analysis is, for example, the following method. First, a probe complementary to a region containing a polymorphism to be detected is used to form a hybrid (double-stranded nucleic acid) of a test nucleic acid and the probe.
  • the obtained hybrid is subjected to heat treatment, and dissociation (melting) of the hybrid into single-stranded nucleic acid with temperature rise is detected by fluctuation of a signal such as absorbance.
  • the polymorphism is determined by determining the Tm value based on the detection result.
  • the Tm value is higher as the complementarity of both single stranded nucleic acids in the hybrid is higher and lower as the complementarity is lower. Therefore, when the polymorphism of the site to be detected is X or Y, Tm values (evaluation standard values) are obtained in advance for the hybrid of the nucleic acid containing the polymorphism (for example, Y) of interest and the probe 100% complementary thereto. Keep it.
  • Tm values (measurement values) of the test nucleic acid and the probe are measured. Then, if the measurement value is the same as the evaluation reference value, the test nucleic acid and the probe are perfect match, that is, the detection target site of the test nucleic acid is the target polymorphism (Y). It can be determined that there is. On the other hand, if the measurement value is lower than the evaluation reference value, it is determined that the test nucleic acid and the probe are mismatched, that is, the detection target site of the test nucleic acid is the other polymorphism (X). it can. With such a method, for example, the polymorphism can be detected only by subjecting the PCR reaction solution to which the probe is added to temperature treatment and measuring the signal. For this reason, automation of the detection device is also possible.
  • the present invention aims to provide a primer and a primer set for specifically amplifying a target region of the MTHFR gene by a nucleic acid amplification method.
  • the primer of the present invention is A primer comprising the oligonucleotide of (F1) below, A primer comprising the oligonucleotide of (R1) below: It is a primer for amplifying the MTHFR gene, which is a primer consisting of the oligonucleotide of the following (F2) or a primer consisting of the oligonucleotide of the following (R2).
  • 8817 is SEQ ID NO: An oligonucleotide (R2) having a guanine (g) at base number 10590 at its 3 'end in the base sequence shown in 1 and a base length of 22 to 34 bases, and in the base sequence shown in SEQ ID NO: 1, a nucleotide length of base number 10695 An oligonucleotide complementary to an oligonucleotide having a cytosine (c) at the 5 'end
  • the primer set of the present invention is A primer set (1) comprising at least one of a primer consisting of the oligonucleotide of (F1) and a primer consisting of the oligonucleotide of (R1), and Primer set (2) comprising at least one of a primer consisting of the oligonucleotide of (F2) and a primer consisting of the oligonucleotide of (R2)
  • It is a primer set for amplifying MTHFR gene, characterized in that it contains at least one of
  • the reagent for gene amplification of the present invention is a reagent for MTHFR gene amplification, comprising the primer or primer set for MTHFR gene amplification of the present invention.
  • the amplification method of the present invention comprises a step of performing amplification of MTHFR gene in a reaction system using the nucleic acid in the sample as a template and the MTHFR gene amplification primer or primer set of the present invention. It is a gene amplification method.
  • the amplification product detection method of the present invention is an amplification product detection method for detecting an amplification product of the MTHFR gene, which comprises the following step (A). (A) an amplification step of amplifying the MTHFR gene by the amplification method of the present invention
  • the polymorphism detection method of the present invention is a method for detecting a polymorphism of the MTHFR gene, which comprises the following step (A). (A) an amplification step of amplifying the MTHFR gene by the amplification method of the present invention
  • a region of interest including the detection target site (for example, MTHFR * 677 or MTHFR * 1298) in the MTHFR gene can be specifically amplified.
  • FIG. 1 is a graph showing the results of Tm analysis in Example 1 of the present invention.
  • FIG. 2 is a graph showing the results of Tm analysis in Example 2 of the present invention.
  • the polymorphism for detection purpose in the MTHFR gene is, for example, a polymorphism in at least one base of base number 8747 and base number 10649 in the base sequence of the MTHFR gene shown in SEQ ID NO: 1.
  • the base (y) of base No. 8747 is wild type cytosine (c) and the mutant is thymine (t).
  • this polymorphism is referred to as MTHFR * 677, and wild type homozygotes are MTHFR * 677 (C / C) or 8747 (C / C), and mutant homozygotes are MTHFR * 677 (T / T).
  • heterozygotes are referred to as MTHFR * 677 (C / T) or 8747 (C / T).
  • the base (m) of the base no. 10649 is wild type adenine (a) and the mutant type is cytosine (c).
  • this polymorphism is referred to as MTHFR * 1298
  • wild type homozygotes are MTHFR * 1298 (A / A) or 10649 (A / A)
  • mutant homozygotes are MTHFR * 1298 (C / C) Or 10649 (C / C)
  • Wild type can also be called normal type.
  • the nucleotide sequence of the MTHFR gene is, for example, NCBI accession: no. Registered in AY338232.
  • the nucleotide sequence of SEQ ID NO: 1 is the full-length sequence of the MTHFR gene in the nucleotide sequence of the accession number.
  • the site at which the polymorphism occurs for example, the base No. 8747 and the base No. 10649 in the sequence of SEQ ID NO: 1 (sense strand), or the base of the sense strand in its complementary sequence (antisense strand)
  • sites to be detected The bases corresponding to No. 8747 and No. 10649 are referred to as "sites to be detected”.
  • a region to be amplified by the primer and primer set of the present invention is referred to as "target region or amplification region".
  • the target area includes the detection target site.
  • the target region may be, for example, a region in the sense strand of the MTHFR gene, a region in the antisense strand, or both.
  • sense and antisense strands also include, for example, senses of sense strand and senses of antisense strand.
  • a region in the MTHFR gene that includes the site to be detected and to which a probe for polymorphism detection described later can hybridize is referred to as a “sequence to be detected or a hybridizing region”.
  • sequences to be detected a sequence to be detected that perfectly matches with the probe is referred to as a “perfect match sequence”, and a sequence to be detected that mismatches with the probe is referred to as a “mismatched sequence”.
  • perfect match means that the base of the site to be detected is complementary to the corresponding base in the probe, and preferably the sequence to be detected and the probe are completely complementary. It means that.
  • a mismatch means that the base of the site to be detected is non-complementary to the corresponding base in the probe, and preferably, the sequence to be detected and the probe are other than the site to be detected It means completely complementary.
  • the end of the base sequence means the 5'-side and the 3'-most end of the base sequence.
  • the 5 'terminal region is a region from the 5' end to several bases in the base sequence
  • the 3 'terminal region is a region from the 3' end to the several bases in the base sequence.
  • the several bases are, for example, 1 to 10 bases, 1 to 4 bases, 1 to 3 bases, 1 to 2 bases including the terminal base.
  • the Zth base from the end of the base sequence (Z is a positive integer) is an order such that the end base is the first, for example, the first end base is the end base,
  • the penultimate base means the base next to the end.
  • the primer of the present invention is, as described above, A primer comprising the oligonucleotide of (F1) below, A primer comprising the oligonucleotide of (R1) below: It is a primer for amplifying the MTHFR gene, which is a primer consisting of the oligonucleotide of the following (F2) or a primer consisting of the oligonucleotide of the following (R2).
  • 8817 is SEQ ID NO: An oligonucleotide (R2) having a guanine (g) at base number 10590 at its 3 'end in the base sequence shown in 1 and a base length of 22 to 34 bases, and in the base sequence shown in SEQ ID NO: 1, a nucleotide length of base number 10695 An oligonucleotide complementary to an oligonucleotide having a cytosine (c) at the 5 'end
  • the primer set for MTHFR gene amplification of the present invention is characterized by containing at least one of the primer set (1) and the primer set (2).
  • a region of interest in the MTHFR gene can be specifically amplified by the primer of the present invention or a primer set containing the same.
  • the MTHFR gene amplification primer and primer set of the present invention can also be referred to, for example, as a MTHFR gene amplification primer reagent.
  • a target region including, for example, MTHFR * 677 or MTHFR * 1298 can be specifically amplified as a detection target site of the MTHFR gene, and with high efficiency. It can be amplified.
  • the target region of the MTHFR gene can be specifically amplified, for example, polymorphism can be detected with high accuracy.
  • the polymorphism of the detection target site is detected more accurately. It is possible to determine the type of junction of polymorphisms.
  • amplification of the target area and detection of polymorphism can be performed, which also enables automation of the operation. Furthermore, using the primer and primer set of the present invention, even if it is a sample containing contaminants such as whole blood and oral mucosa, for example, pretreatment such as removal of contaminants can be omitted, so that it is quicker and simpler. Amplification reaction can be performed. Moreover, since the amplification reaction can be performed with the amplification efficiency superior to the conventional one by using the primer and the primer set of the present invention, the amplification reaction can also be shortened.
  • the primer set the primer set, the reagent containing the same, the amplification method using these, the amplification product detection method and the polymorphism detection method, it is possible to analyze the polymorphism of the MTHFR gene quickly and easily. Can be said to be extremely effective in the medical field.
  • the primer set for MTHFR gene amplification of the present invention may contain, for example, only one of the primer set (1) and the primer set (2), or the primer set (1) and the primer set (2) May be included.
  • the target region that can be specifically amplified by the primer set (1) is a region including a site where polymorphism MTHFR * 677 occurs in the MTHFR gene, and is specifically determined by the primer set (2).
  • a target region that can be amplified is a region that contains a site at which polymorphism MTHFR * 1298 occurs in the MTHFR gene.
  • the primer set for MTHFR gene amplification of the present invention includes both the primer set (1) and the primer set (2), for example, a target region including a site where polymorphism MTHFR * 677 occurs in the MTHFR gene A target region including a site where polymorphism MTHFR * 1298 is generated can be simultaneously amplified in the same reaction system.
  • these two polymorphisms of the MTHFR gene are known to influence the amount of homocysteine in vivo. Therefore, it is considered important to examine not only one type of polymorphism but also both types of polymorphism.
  • the conventional method there is a problem that it is difficult to detect a plurality of sequences in one reaction system. Therefore, in order to examine both of the two polymorphisms of the MTHFR gene, ie, MTHFR * 677 and MTHFR * 1298, the regions containing the site where each polymorphism occurs are respectively amplified in separate reaction systems. The amplified products need to be analyzed separately.
  • the conventional method it is extremely difficult to specifically amplify two types of target regions, each of which contains the MTHFR gene as a template and the MTHFR gene contains the site where the polymorphism occurs. And, as described above, since it takes a lot of effort to analyze one sample, there is a problem that it is not realistic to analyze a large number of samples.
  • the primer set of the present invention even when both of the primer set (1) and the primer set (2) are included, the respective target regions can be simultaneously and in the same reaction system. It can be amplified specifically. For this reason, unlike the above-mentioned conventional method, it is possible to reduce labor and cost.
  • the primer set of the present invention can be obtained, for example, from the primer set (1) and the primer set (2) because analysis of the two types of polymorphism in the MTHFR gene can be performed in the same reaction system.
  • the forward primer may be referred to as F primer and the reverse primer may be referred to as R primer.
  • the primer set (1) is a primer set including at least one of a primer consisting of an oligonucleotide of the following (F1) and a primer consisting of an oligonucleotide of the following (R1).
  • F1 An oligonucleotide having a base length of 20 to 28 bases and having a guanine (g) of base number 8715 in the base sequence shown in SEQ ID NO: 1
  • R1 a base length of 18 to 26 bases
  • the primer consisting of the oligonucleotide of (F1) is a forward primer and hereinafter also referred to as an F1 primer.
  • the F1 primer is identical to the partial sequence in the base sequence shown in SEQ ID NO: 1. That is, it is identical to a partial sequence in the sense strand of the MTHFR gene, and is capable of annealing to the antisense strand.
  • the primer consisting of the oligonucleotide of (R1) is a reverse primer and hereinafter also referred to as R1 primer.
  • the R1 primer is complementary to a partial sequence in the base sequence shown in SEQ ID NO: 1. That is, it is identical to a partial sequence in the antisense strand of the MTHFR gene and can be annealed to the sense strand.
  • the primer set (1) may include, for example, only the F1 primer, or may include only the R1 primer, and preferably includes both.
  • the primer set (1) is a primer set for amplifying a nucleic acid sequence including a region of base numbers 8716 to 8816 in SEQ ID NO: 1 as well as a complementary strand thereof.
  • the base of base No. 8747 in this region that is, the base of base No. 8747 in SEQ ID No. 1 is a site at which the above-mentioned polymorphism MTHFR * 677 occurs.
  • this primer set (1) is also referred to as “a primer set for MTHFR * 677”.
  • a primer set for MTHFR * 677 When analyzing only MTHFR * 677 polymorphism, only the primer set for MTHFR * 677 may be used.
  • the base at the 3 'end serving to determine the start point of amplification by DNA polymerase may satisfy the above-mentioned conditions.
  • the bases of the 3 'end of the F1 primer and the R1 primer may be fixed, so the lengths themselves of the respective primers are not particularly limited, and may be appropriately set to general lengths. It can be adjusted.
  • the length of each of the primers is, for example, in the range of 13 to 50 bases, preferably 14 to 45 bases, and more preferably 15 to 40 bases.
  • the F1 primer is an oligonucleotide having guanine (g) at base number 8715 at the 3 'end in the base sequence shown in SEQ ID NO: 1, and the base length is, for example, 20 to 28 bases in length.
  • the length is 21 to 26 bases, more preferably 22 to 24 bases.
  • the R1 primer is an oligonucleotide complementary to an oligonucleotide having 5 ′ end of cytosine (c) of base number 8817 in the base sequence shown in SEQ ID NO: 1, and the base length is, for example, 18 to 26 bases It is long, preferably 19 to 25 bases long, more preferably 21 to 23 bases long. Since the F1 primer and the R1 primer are each fixed at the 3 'end, the region extending from the primer is, for example, the region of base numbers 8716 to 8816 in SEQ ID NO: 1 as described above. The overall length of the amplified product varies with the length of the primer.
  • the F1 primer may or may not be completely identical to, for example, a partial sequence in the base sequence shown in SEQ ID NO: 1. That is, the partial sequence of the sense strand of the MTHFR gene may or may not be completely identical. As a specific example of the latter, when the F1 primer is made to correspond to, for example, the partial sequence of the sense strand, the partial sequence is different from the partial sequence by 1 to 5 bases in the portion excluding the base at the 3 'end. May be
  • the R1 primer may or may not be completely complementary to a partial sequence in the base sequence shown in SEQ ID NO: 1. That is, the partial sequence of the antisense strand of the MTHFR gene may or may not be completely identical. As a specific example of the latter, when the R1 primer is made to correspond to, for example, a partial sequence of the antisense strand, the partial sequence and one to five bases in a portion excluding the base at the 3 'end May be different.
  • the combination of the F1 primer and the R1 primer is not limited in any way.
  • a primer set including, for example, an F1-1 primer consisting of an oligonucleotide shown in SEQ ID NO: 7 and an R1-1 primer consisting of an oligonucleotide shown in SEQ ID NO: 15 is particularly preferable.
  • Tm (° C.) in the above table is the Tm (° C.) when the sequence of the above table and a sequence completely complementary to it hybridize with each other, and MELTCALC software (http://www.meltcalc.com/ ) Are values calculated under predetermined parameters (the same applies hereinafter).
  • the parameters were set to an oligonucleotide concentration of 0.2 ⁇ mol / L and a sodium equivalent (Na eq.) Of 50 mmol / L.
  • the Tm value can be calculated, for example, by conventionally known MELTCALC software (http://www.meltcalc.com/) or the like, and can also be determined by the nearest neighbor method (the same applies hereinafter).
  • the primer set (2) is a primer set including at least one of a primer consisting of an oligonucleotide of the following (F2) and a primer consisting of an oligonucleotide of the following (R2).
  • F2 An oligonucleotide (R2) having a base length of 26 to 36 bases and having guanine (g) at the base number 10590 at the 3 ′ end in the base sequence shown in SEQ ID NO: 1
  • R2 a base length of 22 to 34 bases
  • the primer consisting of the oligonucleotide of (F2) is a forward primer and hereinafter also referred to as F2 primer.
  • the F2 primer is identical to the partial sequence in the base sequence shown in SEQ ID NO: 1. That is, it is identical to a partial sequence in the sense strand of the MTHFR gene, and is capable of annealing to the antisense strand.
  • the primer consisting of the oligonucleotide of (R2) is a reverse primer and hereinafter also referred to as R2 primer.
  • the R2 primer is complementary to a partial sequence in the base sequence shown in SEQ ID NO: 1. That is, it is identical to a partial sequence in the antisense strand of the MTHFR gene and can be annealed to the sense strand.
  • the primer set (2) may include, for example, only the F2 primer or may include only the R2 primer, and preferably includes both.
  • the primer set (2) is a primer set for amplifying a nucleic acid sequence including the region of base numbers 10591 to 10694 in SEQ ID NO: 1 and its complementary strand.
  • the base of base No. 10649 in this region and the base of base No. 10649 in SEQ ID NO: 1 are the sites where the polymorphism MTHFR * 1298 described above is generated.
  • this primer set (2) is also referred to as “a primer set for MTHFR * 1298”. In the case of analyzing only the MTHFR * 1298 polymorphism, only the MTHFR * 1298 primer set may be used.
  • the base at the 3 'end may satisfy the conditions described above. Therefore, the lengths themselves of the F2 primer and the R2 primer are not particularly limited, and can be appropriately adjusted to the same length as described above.
  • the length of each of the primers is, for example, in the range of 13 to 50 bases, preferably 14 to 45 bases, and more preferably 15 to 40 bases.
  • the F2 primer is an oligonucleotide having guanine (g) of base number 10590 at its 3 'end in the base sequence shown in SEQ ID NO: 1, and its base length is, for example, 26 to 36 bases in length.
  • the R2 primer is an oligonucleotide complementary to the oligonucleotide having a cytosine (c) of the base number 10695 at the 5 ′ end in the base sequence shown in SEQ ID NO: 1, and the base length is, for example, 22 to 34 bases long And preferably 26 to 32 bases in length, more preferably 27 to 29 bases in length.
  • the 3 'end of each of the F2 primer and the R2 primer is fixed, so that the region extending from the primer is, for example, the region of base numbers 10591 to 10694 in SEQ ID NO: 1 as described above.
  • the overall length of the amplicon varies depending on the length of the primer used.
  • the F2 primer may or may not be completely identical to the partial sequence in the base sequence shown in SEQ ID NO: 1. That is, the partial sequence of the sense strand of the MTHFR gene may or may not be completely identical. As a specific example of the latter, when the F1 primer is made to correspond to a partial sequence of the sense strand, for example, the partial sequence differs by 1 to 5 bases from the partial sequence except for the base at the 3 'end It may be
  • the R2 primer may or may not be completely complementary to a partial sequence in the base sequence shown in SEQ ID NO: 1. That is, the partial sequence of the antisense strand of the MTHFR gene may or may not be completely identical. As a specific example of the latter, when the R2 primer is made to correspond to, for example, a partial sequence of the antisense strand, the partial sequence and one to five bases in the portion excluding the base at the 3 'end May be different.
  • the combination of the F2 primer and the R2 primer is not limited in any way.
  • a primer set including, for example, an F2-1 primer consisting of an oligonucleotide shown in SEQ ID NO: 25 and an R2-1 primer consisting of an oligonucleotide shown in SEQ ID NO: 38 is particularly preferable.
  • each primer of the primer sets (1) and (2) described above may be, for example, one obtained by adding any conventionally known sequence to the 5 'end in order to raise the reaction temperature of the amplification reaction.
  • the primer set for MTHFR gene amplification of the present invention is preferably used, for example, when amplifying the MTHFR gene in a biological sample.
  • the biological sample is not particularly limited, and examples thereof include whole blood samples.
  • the proportion of whole blood sample (the proportion of whole blood) in the reaction system of amplification reaction is, for example, It is preferable to set it to 0.1 to 0.5% by volume. This point will be described later.
  • the amplification method of the present invention includes, as described above, an amplification step of amplifying the MTHFR gene using a nucleic acid in a sample as a template and the MTHFR gene amplification primer or primer set of the present invention in a reaction system. It is a method for amplifying the MTHFR gene, characterized in that
  • the target region of the MTHFR gene can be amplified as described above.
  • the primer set for MTHFR gene amplification of the present invention includes both the primer set (1) and the primer set (2), for example, a target region including a site where polymorphism MTHFR * 677 occurs in the MTHFR gene A target region including a site where polymorphism MTHFR * 1298 is generated can be simultaneously amplified in the same reaction system.
  • the amplification method of the present invention is characterized by using the above-mentioned primer or primer set of the present invention, and the type and conditions of the nucleic acid amplification method are not limited at all.
  • amplification of the MTHFR gene can be performed by an amplification method using the primer or primer set of the present invention as a primer.
  • the amplification method of the nucleic acid is not particularly limited as described above, for example, PCR (Polymerase Chain Reaction) method, NASBA (Nucleic Acid Sequence Based Amplification) method, TMA (Transcription-Mediated Amplification) method, SDA (Strand Displacement) Amplification method etc., among which PCR method is preferable.
  • the reaction system of the amplification reaction in the amplification step may be, for example, a reaction solution.
  • the reaction system includes, for example, the primer or primer set of the present invention and the sample, and may further include a solvent, various components used for amplification of nucleic acid, and the like.
  • the sample to which the present invention is applied is not particularly limited, and examples thereof include a sample containing a nucleic acid as a template.
  • the present invention is preferably applied to, for example, a sample containing contaminants.
  • the sample containing the contaminants include a biological sample.
  • the biological sample is, for example, whole blood, cells in the oral cavity (eg, oral mucosa), somatic cells such as nails and hair, germ cells, sputum, amniotic fluid, paraffin-embedded tissue, urine, gastric juice (eg, gastric juice) And the like. According to the amplification method of the present invention, for example, even samples including various contaminants, in particular, biological samples such as whole blood and cells in the oral cavity are not easily affected.
  • the target region of the MTHFR gene can be specifically amplified. According to the present invention, even if the sample contains a large amount of contaminants that were difficult to amplify by the conventional method, for example, without performing pretreatment such as removal of contaminants from the sample, purification of the sample, etc. , It is possible to use the sample as it is. Therefore, for example, also from the viewpoint of the pretreatment of the sample, the present invention can amplify the MTHFR gene more rapidly than the conventional method.
  • the proportion of the sample is not particularly limited.
  • the sample is, for example, a biological sample
  • the lower limit of the proportion of the sample in the reaction system is, for example, 0.01% by volume or more, preferably 0.05% by volume or more, more preferably 0.
  • the upper limit is, for example, 2% by volume or less, preferably 1% by volume or less, and more preferably 0.5% by volume or less.
  • the proportion of the whole blood sample in the reaction system is, for example, the same.
  • the ratio of the biological sample in the reaction system may be set to, for example, 0.1 to 0.5 volume%. preferable.
  • the biological sample is not particularly limited, and is, for example, a whole blood sample.
  • the proportion of the whole blood sample in the reaction system can also be represented by the weight proportion of hemoglobin (hereinafter referred to as “Hb”) instead of the volume proportion as described above (for example, 0.1 to 0.5 vol%).
  • Hb hemoglobin
  • the ratio of whole blood sample in the reaction system is, for example, preferably in the range of 0.565 to 113 g / L, more preferably in the range of 2.825 to 56.5 g / L in terms of Hb amount. And more preferably in the range of 5.65 to 28.25 g / L.
  • the proportion of the whole blood sample in the reaction system may satisfy, for example, both the volume proportion and the Hb weight proportion, or may satisfy either one.
  • the whole blood may be, for example, whole blood collected from a living organism or whole blood processed after collection, and specific examples include hemolyzed whole blood, non-lyzed whole blood, anticoagulated whole blood, and a clotted fraction It may be any of whole blood and the like.
  • the nucleic acid in the sample may be, for example, a single stranded nucleic acid or a double stranded nucleic acid.
  • the nucleic acid in the sample is, for example, DNA.
  • the DNA may be, for example, a DNA originally contained in a sample such as a biological sample, or may be a DNA amplification product amplified by a nucleic acid amplification method. In the latter case, it may be, for example, cDNA synthesized from RNA in the sample.
  • the RNA in the sample include total RNA, mRNA and the like, and the cDNA can be synthesized from the RNA by RT-PCR (Reverse Transcription PCR), for example.
  • albumin it is preferable to further add albumin to the reaction system prior to the start of the amplification reaction in the amplification step.
  • the addition of albumin can further reduce the influence of, for example, the occurrence of precipitates and turbidity as described above, and can further improve the amplification efficiency.
  • albumin it is preferable to add albumin before the amplification step.
  • “Before the amplification step” may be, for example, before dissociating double-stranded DNA into single-stranded DNA in the amplification step.
  • the proportion of albumin in the reaction system is not particularly limited.
  • the ratio is, for example, in the range of 0.01 to 2% by weight, preferably in the range of 0.1 to 1% by weight, and more preferably in the range of 0.2 to 0.8% by weight.
  • the albumin is not particularly limited, and examples thereof include bovine serum albumin (BSA), human serum albumin, rat serum albumin, equine serum albumin and the like. Any one of these may be used, or two or more may be used in combination.
  • amplification method of the present invention using a primer set comprising the above-mentioned primer set (1) and the above-mentioned primer set (2) as a primer set for amplifying MTHFR gene of the present invention, using DNA in whole blood sample as a template.
  • An example will be described by amplifying two target regions of the MTHFR gene simultaneously in one reaction solution by PCR.
  • the two target areas are a target area including a site where polymorphism MTHFR * 677 occurs and a target area including a site where polymorphism MTHFR * 1298 occurs.
  • the present invention is characterized by using the primer set for MTHFR gene amplification of the present invention, and the other configurations and conditions are not limited at all.
  • the reaction solution preferably contains the primer set and the whole blood sample, and preferably further contains other components usable for the amplification reaction.
  • the proportion of each primer in the reaction solution is not particularly limited.
  • the ratio of the F1 primer and the F2 primer is preferably 0.1 to 2 ⁇ mol / L, more preferably 0.25 to 1.5 ⁇ mol / L, particularly preferably 0.5 to It is 1 ⁇ mol / L.
  • the ratio of the R1 primer and the R2 primer is preferably 0.1 to 2 ⁇ mol / L, more preferably 0.25 to 1.5 ⁇ mol / L, particularly preferably 0. It is 5 to 1 ⁇ mol / L.
  • the ratio of F primer to R primer (F: R, molar ratio) is not particularly limited, and, for example, 1: 0.25 to 1: 4, preferably 1: 0.5 to 1: 2.
  • the proportion of the whole blood sample in the reaction solution is not particularly limited, and, for example, the above-mentioned range is preferable.
  • the whole blood sample may be added to the reaction solution as it is, for example, or may be diluted with a solvent beforehand and then added to the reaction solution.
  • the solvent include water and buffer solutions.
  • the dilution rate is not particularly limited, and for example, the final whole blood ratio in the reaction solution can be set to be in the above range.
  • a specific example of the dilution rate is, for example, 100 to 2000 times, preferably 200 to 1000 times.
  • the other components are not particularly limited and may be conventionally known components, and the ratio thereof is not particularly limited.
  • the components include solvents and the like.
  • the components include various components used for PCR, and specific examples include polymerases such as DNA polymerase, nucleoside triphosphates and the like.
  • the component include albumin, as described above. The order of addition of the components in the reaction solution is not limited.
  • the above-mentioned polymerase is not particularly limited, and, for example, polymerases derived from thermostable bacteria known in the prior art can be used.
  • a DNA polymerase derived from Thermus aquaticus US Pat. Nos.
  • thermostable polymerases 4,889,818 and 5,079,352 (trade name: Taq polymerase), derived from Thermus thermophilus DNA polymerase (WO 91/09950) (rTth DNA polymerase), DNA polymerase derived from Pyrococcus furiosus (WO 92/9689) (Pfu DNA polymerase: manufactured by Stratagenes), polymerase derived from Thermococcus litoralis (Thermococcus litoralis) (EP-A 455 430) (trademark Vent) New England Biolabs, Inc.), etc. are commercially available, among others, Thermus aquaticus (Thermus aquaticus) derived from thermostable polymerases are preferred.
  • the proportion of DNA polymerase in the reaction solution is not particularly limited, and is, for example, 1 to 100 U / mL, preferably 5 to 50 U / mL, more preferably 20 to 30 U / mL.
  • the activity unit (U) of DNA polymerase generally has 1 U activity of incorporating 10 nmol of total nucleotides into acid-insoluble precipitate in 30 minutes at 74 ° C. in a reaction solution for activity measurement, using activated salmon sperm DNA as a template primer. It is.
  • the composition of the reaction liquid for activity measurement is, for example, 25 mmol / L TAPS buffer (pH 9.3, 25 ° C.), 50 mmol / L KCl, 2 mmol / L MgCl 2 , 1 mmol / L mercaptoethanol, 200 ⁇ mol / L dATP, 200 ⁇ mol / L dGTP, 200 ⁇ mol / L dTTP, 100 ⁇ mol / L “ ⁇ - 32 P” dCTP, 0.25 mg / mL activated salmon sperm DNA.
  • the nucleoside triphosphate is usually dNTP (dATP, dCTP, dGTP and dTTP or dUTP).
  • dNTP dATP, dCTP, dGTP and dTTP or dUTP
  • the proportion of dNTP in the reaction solution is not particularly limited, and is, for example, 0.01 to 1 mmol / L, preferably 0.05 to 0.5 mmol / L, more preferably 0.1 to 0.3 mmol / L. L
  • Examples of the solvent include buffer, water and the like.
  • Examples of the buffer include Tris-HCl, Tricine, MES, MOPS, HEPES, CAPS and the like, and commercially available buffers for PCR and buffers of commercially available PCR kits can be used.
  • the reaction solution may further contain, for example, heparin, betaine, KCl, MgCl 2 , MgSO 4 , glycerol and the like as the other components described above, and the ratio of these may be set within a range that does not inhibit the PCR reaction, for example. Just do it.
  • the total volume of the reaction solution is not particularly limited, and can be appropriately set according to, for example, the device to be used such as a thermal cycler.
  • the volume is usually, for example, 1 to 500 ⁇ L, preferably 10 to 100 ⁇ L.
  • the cycle conditions for the PCR are not particularly limited. As specific examples, for example, (1) dissociation of double-stranded DNA into single-stranded DNA, (2) annealing of the primer to the single-stranded DNA, and (3) extension of the primer are each shown in Table 3 below. Conditions can be illustrated.
  • the number of PCR cycles is not particularly limited, and for example, 30 cycles or more are preferable, with the following three steps (1) to (3) as one cycle.
  • the upper limit of the number of cycles is not particularly limited, and is, for example, 100 cycles or less, preferably 70 cycles or less, and more preferably 50 cycles or less.
  • the temperature change of each step can be automatically controlled using, for example, a thermal cycler.
  • the amplification efficiency is excellent. For this reason, in the conventional method, it takes about 3 hours for 50 cycles, but according to the present invention, it is possible to complete 50 cycles, for example, within about 1 hour, preferably within 1 hour. It is possible.
  • the two target regions in the MTHFR gene can be simultaneously amplified in the same reaction system.
  • one of the two target regions is amplified, for example, any one of the primer set (1) and the primer set (2) corresponding to the target region is used in the present invention. It may be used as a primer set for MTHFR gene amplification.
  • the amplification method of the present invention may further include a detection step of detecting an amplification product in a target region obtained in the amplification step.
  • a detection step of detecting an amplification product in a target region obtained in the amplification step it is possible to detect the presence or absence of amplification of the target region, polymorphisms in the target region of the MTHFR gene, such as MTHFR * 677 or MTHFR * 1298.
  • the presence or absence of the amplification and the detection of the polymorphism can be confirmed by, for example, a conventionally known method.
  • a probe capable of hybridizing to the detection target site of the MTHFR gene is further added to the reaction system. Examples of the probe include a labeled probe having a fluorescent substance.
  • the fluorescence intensity of the fluorescent substance of the labeled probe in the reaction system is measured. Thereby, the presence or absence of amplification of the target area and polymorphism of the detection target site can be confirmed.
  • two target regions to be amplified for example, in the amplification step, two types of probes capable of hybridizing to each detection target site of the MTHFR gene are further added to the reaction system.
  • the fluorescence intensity of the fluorescent substance of each of the labeled probes is measured for the reaction system. Thereby, the presence or absence of amplification of each of the target regions and the polymorphism of each detection target site can be confirmed.
  • the detection of the amplification product of the target region of the MTHFR gene and the detection of polymorphisms in the MTHFR gene, such as MTHFR * 677 and MTHFR * 1298, are described below as other forms of the amplification method of the present invention, respectively. Do.
  • the method for detecting an amplification product of the present invention is characterized by using the primer of the present invention or the primer set of the present invention, and is characterized by comprising the following step (A): amplification for detecting an amplification product of MTHFR gene It is an object detection method.
  • A) Amplification step of amplifying MTHFR gene by the amplification method of MTHFR gene of the present invention is, for example, using a nucleic acid in a sample as a template in a reaction system, primer set for MTHFR gene amplification of the present invention Can also be referred to as an amplification step for amplifying the MTHFR gene (the same applies hereinafter).
  • the detection method of the present invention preferably further includes, for example, a step of detecting the amplified product of the MTHFR gene using a probe.
  • a step of detecting the amplified product of the MTHFR gene using a probe preferably further includes, for example, a step of detecting the amplified product of the MTHFR gene using a probe.
  • B Temperature of reaction system containing the amplification product in the step (A) and a probe capable of hybridizing to the amplification product of the MTHFR gene Measuring the signal value indicating the melting state of the hybrid between the amplification product and the probe, and
  • C detecting the amplification product of the MTHFR gene from the fluctuation of the signal value accompanying the temperature change Process
  • the description of the MTHFR gene amplification method of the present invention described above can be cited in the step (A).
  • amplification of the MTHFR gene may be performed in the presence of the probe. That is, in the method of detecting an amplification product of the present invention, for example, in the step (A), amplification of the MTHFR gene may be performed in the reaction system containing the probe, and in the step (B), for example, The temperature of the reaction system in the step (A) may be changed to measure the signal value.
  • the amplification product detection method of the present invention can be cited from the description of the polymorphism detection method of the present invention described later.
  • the (A) step and the (B) step in the amplificate detection method of the present invention are described in the (A) step and the (B) step in the polymorphism detection method of the present invention described later. I can quote.
  • the step (C) in the method for detecting an amplification product of the present invention can refer to the step (D) in the method for detecting polymorphism of the present invention described later, and specifically, in the step (D) described later The step (C) will be described together.
  • the polymorphism detection method of the present invention is, as described above, a method for detecting a polymorphism of the MTHFR gene, which comprises the following step (A).
  • the polymorphism detection method of the present invention preferably further includes, for example, a step of detecting polymorphism of a detection target site of the MTHFR gene using a probe.
  • a step of detecting polymorphism of a detection target site of the MTHFR gene using a probe preferably further includes, for example, a step of detecting polymorphism of a detection target site of the MTHFR gene using a probe.
  • B) The temperature of the reaction system containing the amplification product in the step (A) and the probe capable of hybridizing to the detection target site is changed, Measuring step (D) of measuring a signal value indicating the melting state of the hybrid between the amplification product and the probe, and detecting the polymorphism of the detection target site from the fluctuation of the signal value accompanying the temperature change
  • the primer or primer set of the present invention By amplifying the MTHFR gene using the primer or primer set of the present invention, as described above, it is possible to amplify a target region including the detection target site in the MTHFR gene. Therefore, for example, the polymorphism of the detection target site in the target area can be analyzed with high sensitivity.
  • the amplification step (A) can be performed in the same manner as the above-mentioned amplification method of the present invention.
  • the description of the MTHFR gene amplification method of the present invention described above can be cited in the step (A).
  • the probe is not particularly limited.
  • the probe include a probe that hybridizes to a detection target site of MTHFR * 677 and a probe that hybridizes to a detection target site of MTHFR * 1298.
  • MTHFR * 677 probe the former is also referred to as “MTHFR * 677 probe” and the latter is also referred to as “MTHFR * 1298 probe”.
  • These probes are preferably probes that are complementary to the detection target sequence including the detection target site in the MTHFR gene.
  • any one type of probe for MTHFR * 677 and probe for MTHFR * 1298 may be used, or two or more types may be used in combination.
  • the probe used in the present invention can be appropriately determined depending on, for example, the type of the target region to be amplified by the MTHFR gene amplification primer or primer set of the present invention.
  • polymorphisms of two detection target sites ie, MTHFR * 677 and MTHFR * 1298 can be analyzed using the same reaction system.
  • the probe may be, for example, a probe capable of hybridizing to the sense strand of the MTHFR gene or a probe capable of hybridizing to the antisense strand.
  • the design method of the probe is not particularly limited, and a conventionally known method can be adopted.
  • the detection target sequence including the detection target site may be set to the sequence of the sense strand of the MTHFR gene and designed based on the sequence, or the detection target sequence may be set to the sequence of the antisense strand. , And may be designed based on the arrangement.
  • the base of the detection target site in the detection target sequence can be appropriately determined according to the type of each polymorphism in the detection target site.
  • c and t are known as bases of base number 8747 in SEQ ID NO: 1.
  • a probe complementary to the detection target sequence in which the base number 8747 in the sense strand is cytosine (c) and a probe complementary to the detection target sequence in the sense strand where the base number 8747 is thymine (t) can give.
  • These can be said to be probes for detecting the sense strand that hybridizes to the sense strand.
  • probes complementary to the sequence of the antisense strand can be mentioned, and these can be said to be probes for detection of the antisense strand that hybridizes to the antisense strand.
  • a and “c” are known as bases of base number 10649 in SEQ ID NO: 1.
  • a probe complementary to the detection target sequence in which the base number 10649 is adenine (a) in the sense strand and a probe complementary to the detection target sequence in which the base number 10649 is cytosine (c) in the sense strand can give.
  • These can be said to be probes for detecting the sense strand that hybridizes to the sense strand.
  • probes complementary to the sequence of the antisense strand can be mentioned, and these can be said to be probes for detection of the antisense strand that hybridizes to the antisense strand.
  • each detection target site of the MTHFR gene can It can be determined whether to indicate the type.
  • the length of the probe is not particularly limited, and is, for example, 5 to 50 bases in length, preferably 10 to 30 bases in length.
  • the probe include, for example, a probe containing at least one of the following oligonucleotide (P1), the oligonucleotide (P1 ′), the oligonucleotide (P2) and the oligonucleotide (P2 ′):
  • P1 The base sequence is 17 to 50 bases long and consists of a base sequence complementary to the base sequence including the base numbers 8744 to 8760 in SEQ ID NO: 1, and the base complementary to the base base number 8744 is 3
  • Oligonucleotide (P2) consisting of a nucleotide sequence complementary to the oligonucleotide of (P1)
  • the base length is 14 to 50 bases, and the base number 10643 to SEQ ID NO: 1
  • Oligonucleotide (P2 ') having a base complementary to the base sequence including 10656 and having a base complementary to the base of the above-
  • the probe may be, for example, a probe containing the oligonucleotide or a probe consisting of the oligonucleotide.
  • the probe containing the oligonucleotide of (P1) is a P1 probe
  • the probe containing the oligonucleotide of (P1 ′) is a P1 ′ probe
  • the probe containing an oligonucleotide of (P2) is a P2 probe
  • the (P2 ′) The probe containing the oligonucleotide of is referred to as P2 'probe.
  • These probes are also referred to as probes for detection of the MTHFR gene of the present invention.
  • the P1 probe and the P1 ′ probe are examples of the MTHFR * 677 probe. These probes are probes for detecting polymorphism (c / t) of the base (y) of base No. 8747 in the base sequence of SEQ ID NO: 1.
  • the oligonucleotide (P1) is, for example, complementary to the sense strand of the MTHFR gene, and the polymorphism can be confirmed by hybridization with the sense strand.
  • the (P1 ′) oligonucleotide is, for example, homologous to the sense strand of the MTHFR gene, and the polymorphism can be confirmed by hybridization with the antisense strand.
  • the oligonucleotides (P1) and (P1 ') have a base length of 17 to 50 bases, as described above, and preferably 17 to 40 bases, for example, and more preferably 17 to 30 bases. It is preferably 17 to 21 bases long.
  • the oligonucleotide (P1) contains a base (r) corresponding to the base (y) of base No. 8747 in the base sequence shown in SEQ ID NO: 1.
  • the r is guanine (g) or adenine (a).
  • the oligonucleotide of (P1) perfectly matches the detection target site (y) in the sense strand with the detection target sequence of wild type (c), and “r is In the case of a ", the oligonucleotide (P1) perfectly matches the detection target site (y) in the sense strand with the detection target sequence of the mutant (t). Therefore, whether the polymorphism of the detection target site is wild type or mutant can be confirmed depending on whether or not the amplification product obtained by the amplification method and the oligonucleotide of (P1) are perfect match.
  • the oligonucleotide (P1) has a base complementary to the base of the base number 8744 in the 3 'terminal region, and is preferably the first to fourth positions counting from the 3' end, more preferably , 1 to 3 and particularly preferably 1st (3 'end) or 2nd.
  • Examples of the oligonucleotide (P1) include oligonucleotides consisting of the nucleotide sequences shown in any of SEQ ID NOS: 44 to 48 in Table 4 below.
  • the base (r) may be either guanine (g) or adenine (a), preferably adenine (a).
  • the (P1 ') oligonucleotide is complementary to the (P1) oligonucleotide as described above.
  • the oligonucleotide (P1 ′) has a base length of 17 to 50 bases and consists of a base sequence homologous to the base sequence including the base numbers 8744 to 8760 in SEQ ID NO: 1, and the base of the base number 8744 It can also be referred to as an oligonucleotide having a 5 'terminal region.
  • the (P1 ′) oligonucleotide includes a base (y) of base number 8747 in the base sequence shown in SEQ ID NO: 1.
  • the y is cytosine (c) or thymine (t).
  • the oligonucleotide of (P1 ′) perfectly matches the detection target sequence of the detection target site (r) in the antisense strand with a wild type (g)
  • the oligonucleotide (P1 ′) perfectly matches the detection target site (r) in the antisense strand with the detection target sequence of mutant (a). Therefore, whether the polymorphism of the site to be detected is wild-type or mutant-type can be confirmed depending on whether the amplification product obtained by the amplification method and the oligonucleotide of (P1 ′) are perfect match or not. .
  • the P2 probe and the P2 ′ probe are examples of the MTHFR * 1298 probe. These probes are probes for detecting polymorphism (a / c) polymorphism of base (m) of base number 10649 in the base sequence shown in SEQ ID NO: 1.
  • the oligonucleotide (P2) is, for example, complementary to the sense strand of the MTHFR gene, and the polymorphism can be confirmed by hybridization with the sense strand.
  • the (P2 ') oligonucleotide is, for example, homologous to the sense strand of the MTHFR gene, and the polymorphism can be confirmed by hybridization with the antisense strand.
  • the oligonucleotides (P1) and (P1 ′) have a base length of 14 to 50 bases, as described above, and preferably 14 to 40 bases, for example, and more preferably 14 to 30 bases. It is long, more preferably 14 to 19 bases in length.
  • the oligonucleotide (P2) contains a base (k) corresponding to the base (m) of the base number 10649 in the base sequence shown in SEQ ID NO: 1.
  • the k is thymine (t), uracil (u) or guanine (g).
  • the oligonucleotide of (P2) when “r is t or u”, the oligonucleotide of (P2) is the same as the sequence of the wild type (a) where the detection target site (m) in the sense strand is When the match is “r is g”, the oligonucleotide (P2) perfectly matches the detection target site (m) in the sense strand with the detection target sequence of the mutant (c). Therefore, whether the polymorphism of the site to be detected is wild-type or mutant-type can be confirmed depending on whether or not the amplification product obtained by the amplification method and the oligonucleotide of (P2) are perfect match.
  • the oligonucleotide of (P2) has a base complementary to the base of the base No. 10643 in the 3 'terminal region, preferably in the first to fourth positions counting from the 3' end, more preferably , 1 to 3 and particularly preferably 1st (3 'end) or 2nd.
  • the oligonucleotide of (P1) can be, for example, an oligonucleotide consisting of the base sequence shown in any one of SEQ ID NOS: 49 to 54 in Table 4 above.
  • the base (k) may be any of thymine (t), uracil (u) and guanine (g), preferably guanine (g).
  • the (P2 ') oligonucleotide is complementary to the (P2) oligonucleotide as described above.
  • the oligonucleotide (P2 ′) has a base length of 14 to 50 bases, and consists of a base sequence homologous to the base sequence including the base numbers 10643 to 10656 in SEQ ID NO: 1, and the base of the base number 10643 It can also be referred to as an oligonucleotide having a 5 'terminal region.
  • the (P2 ') oligonucleotide contains a base (m) of base number 10649 in the base sequence shown in SEQ ID NO: 1.
  • the m is adenine (a) or cytosine (c).
  • the oligonucleotide of (P2 ′) when “m is a”, the oligonucleotide of (P2 ′) is a sequence to be detected of the site to be detected (k) in the antisense strand is wild type (t) Perfect match, when "m is c", the (P2 ') oligonucleotide perfect matches the detection target site (k) in the antisense strand with the detection target sequence of mutant (g). Therefore, whether the polymorphism of the site to be detected is wild-type or mutant-type can be confirmed depending on whether or not the amplification product obtained by the amplification method and the oligonucleotide of (P2 ′) are perfect match. .
  • the probe for MTHFR * 677 is preferably a probe (P1-1) consisting of an oligonucleotide consisting of the base sequence shown in SEQ ID NO: 46, and the probe for MTHFR * 1298 is an array of the P2 probes.
  • a probe (P2-1) consisting of an oligonucleotide consisting of the base sequence shown in No. 52 is preferred.
  • “Tm (° C.)” of the P1 probe is the Tm (° C.) when the sequence in which the base (r) is adenine (a) hybridizes with a sequence completely complementary thereto. It is a value calculated based on the parameter by the MELTCALC software.
  • Tm (° C.) of the P2 probe is the Tm (° C.) when the sequence in which the base (k) is guanine (g) and the sequence completely complementary thereto hybridize Yes, it is a value calculated in the same manner as described above.
  • the P1 probe and the P2 probe may be, for example, probes consisting of oligonucleotides shown in the respective SEQ ID NOs shown in Table 4 or probes containing the oligonucleotides.
  • the probe is preferably, for example, a labeled probe having a labeling substance, and for example, it is preferable that the oligonucleotide is labeled (modified) with the labeling substance.
  • the site to be labeled with the labeling substance in the oligonucleotide is not particularly limited, and is preferably, for example, a 5 'terminal region or a 3' terminal region, more preferably a 5 'terminal or a 3' terminal.
  • cytosine (c) or guanine (g) is preferable, and cytosine (c) is more preferable, as a base to be labeled by the labeling substance.
  • the labeling substance may, for example, directly label a base or indirectly label the base. In the latter case, the base can be indirectly labeled, for example, by labeling any site of the nucleotide residue containing the base.
  • the oligonucleotide of (P1) and the oligonucleotide of (P2) preferably have the labeling substance in the 3 ′ end region, and specifically, for example, the first to fourth bases counted from the 3 ′ end It is preferable to have the labeling substance at the position of 1, more preferably the first to fourth bases counted from the 3 ′ end, still more preferably the first to third bases counted from the 3 ′ end, particularly Preferably, it is the second or 3 'end base counted from the 3' end.
  • the basic base (c) has the labeling substance.
  • the basic base (c) has the labeling substance.
  • the oligonucleotide of (P1 ′) and the oligonucleotide of (P2 ′) preferably have the labeling substance in the 5 ′ end region, and specifically, for example, the first to fourth counted from the 5 ′ end It is preferable to have the above-mentioned labeling substance at the position of the base, more preferably the 1st to 4th bases counted from the 5 'end, still more preferably the 1st to 3rd bases counted from the 5' end Most preferably, it is the second base counted from the 5 'end or the 5' end.
  • the oligonucleotide (P1 ′) preferably has the labeling substance at any one of the base numbers 8744 to 8747, for example, and more preferably the base (g) at the base number 8744 It is preferred to have a labeling substance.
  • the oligonucleotide (P2 ′) preferably has the labeling substance at any one of the bases of the base Nos. 10643 to 10646, for example, and more preferably, the base (g) of the base No. 10643 It is preferable to have the labeling substance.
  • the labeling substance is not particularly limited, and for example, one that emits a signal depending on whether the labeling probe is alone or forms a hybrid is preferable.
  • the type of the signal is not particularly limited, and examples thereof include fluorescence and color.
  • the color may be, for example, a color or a color.
  • the signal value may be, for example, fluorescence intensity.
  • the signal value may be, for example, reflectance, absorbance, transmittance or the like.
  • the signal may, for example, be emitted directly from the labeling substance or may be emitted indirectly.
  • the labeling substance is not particularly limited, and examples thereof include fluorescent substances such as fluorophores.
  • fluorescent substances include fluorescein, phosphor, rhodamine, polymethine dye derivative and the like.
  • Commercially available fluorescent substances are, for example, Pacific Blue (trade name, manufactured by Molecular Probes), BODIPY FL (trade name, manufactured by Molecular Probes), FluorePrime (trade name, manufactured by Amersham Pharmacia), Fluoredite (trade name, Millipore) And FAM (trade name, manufactured by ABI), Cy3 and Cy5 (trade name, manufactured by Amersham Pharmacia), TAMRA (trade name, manufactured by Molecular Probes), and the like.
  • the detection conditions of the fluorescent substance are not particularly limited, and can be determined as appropriate depending on, for example, the type of fluorescent substance used.
  • Pacific Blue can be detected at, for example, a detection wavelength of 450 to 480 nm
  • TAMRA can be detected at, for example, a detection wavelength of 585 to 700 nm
  • BODIPY FL can be detected at, for example, a detection wavelength of 515 to 555 nm. If such a labeled probe is used, for example, by detecting fluorescence as the signal and measuring the fluorescence intensity as the signal value, hybridization and dissociation can be easily confirmed from the fluctuation of the fluorescence intensity.
  • the present invention can amplify two target regions of the MTHFR gene, for example, in the same reaction system as described above. Therefore, by combining the probe for MTHFR * 677 and the probe for MTHFR * 1298 in the same reaction system, polymorphisms of MTHFR * 677 and MTHFR * 1298 in the MTHFR gene can be determined in the same reaction system.
  • each of the probes preferably has different labeling substances detected under different conditions.
  • polymorphisms of each detection target site can be analyzed separately even in the same reaction system, for example, by changing detection conditions.
  • each probe preferably has, for example, different fluorescent dyes, specifically, fluorescent dyes detected at different wavelengths as the labeling substance.
  • the probe is a guanine quenching probe, for example, the MTHFR * 677 probe (P1 probe) and the MTHFR * 1298 probe (P2 probe) shown in the above-mentioned Table 4 have, for example, a 3 'end region, preferably a 3' end
  • the cytosine (c) is labeled with the fluorescent dye.
  • it is preferable to label each of the fluorescent dyes for example, with different fluorescent dyes such as TAMRA and BODIPY FL.
  • a phosphate group may be further added to the 3' end of the probe. This can prevent, for example, extension of the probe itself.
  • the labeled probe is, for example, preferably a labeled probe that exhibits a signal alone and does not exhibit a signal upon hybridization, or a labeled probe that alone exhibits no signal and exhibits a signal upon hybridization.
  • the labeling substance is a fluorescent substance
  • a probe which is labeled with the fluorescent substance exhibits fluorescence alone, and which decreases fluorescence (for example, quenching) by hybridization is preferable.
  • Such a phenomenon is generally called a fluorescence quenching phenomenon (Quenching phenomenon).
  • Probes utilizing this phenomenon are generally referred to as fluorescence quenching probes.
  • the fluorescence quenching probe is preferably, for example, that the 3 'end or the 5' end of the oligonucleotide is labeled with the fluorescent substance, and the terminal base to be labeled is cytosine (c) or guanine (G) is preferred.
  • the fluorescence quenching probe forms a pair with the labeled terminal cytosine (c) in the test nucleic acid, for example, when forming a hybrid with the test nucleic acid
  • the base sequence of the fluorescence quenching probe such that guanine (g) is a base or a base separated by 1 to 3 bases from the base forming the pair is guanine (g).
  • the base separated by one base from the paired base means, for example, a base next to the paired base.
  • Such a probe is generally called a guanine quenching probe and is known as a so-called QProbe (registered trademark).
  • guanine quenching probe hybridizes to the test nucleic acid, for example, cytosine (c) at the end labeled with the fluorescent material approaches guanine (g) in the test nucleic acid, whereby It shows a phenomenon that the light emission becomes weak, that is, the fluorescence intensity decreases. If the above-mentioned probe is used, hybridization and dissociation can be easily confirmed by, for example, fluctuation of fluorescence intensity.
  • the terminal base is guanine (g)
  • the labeled terminal guanine (g) in the test nucleic acid It is preferable to design the base sequence of the fluorescence quenching probe such that the cytosine (c) is a base forming a pair with or a base separated by 1 to 3 bases from the base forming the pair is cytosine (c).
  • the probe may have, for example, a phosphate group at the 3 'end.
  • the amplification step may be performed, for example, in the coexistence of a probe.
  • a phosphate group is added to the 3 'end of the probe, extension of the probe itself can be sufficiently prevented in the amplification step.
  • the same effect can also be obtained by, for example, adding a labeling substance as described above to the 3 'end of the probe.
  • the ratio of the probe is not particularly limited, and for example, the range of 10 to 1000 nmol / L is preferable for one type of probe, and more preferably 20 to 500 nmol / L. It is.
  • an unlabeled probe having the same sequence as the labeled probe may be used in combination.
  • the unlabeled probe may have, for example, a phosphate added at its 3 'end.
  • the molar ratio of the labeled probe to the unlabeled probe is, for example, preferably 1:10 to 10: 1.
  • the molar ratio of the amplification product to the probe in the reaction system is, for example, preferably 1:10 to 10: 1.
  • the molar ratio of the amplification product to the probe may be, for example, a molar ratio to double-stranded nucleic acid or a molar ratio to single-stranded nucleic acid.
  • the probe may be contained in, for example, the reaction system containing the amplification product obtained in the amplification step (A), and the timing of its addition is not particularly limited.
  • the reaction system in the measurement step (B) may be newly prepared, for example, using the amplification product obtained in the amplification step (A) and the probe, or in the amplification step (A) It may be a reaction system of the amplification reaction.
  • the probe may be added to the reaction system of the amplification reaction before or during the amplification step (A), and after the amplification step (A), the reaction system of the amplification reaction May be added to Among others, for example, it is preferable to add the probe to the reaction system of the amplification reaction in advance before the amplification reaction in the amplification step (A).
  • the amplification step (A) preferably amplifies the MTHFR gene in the presence of the probe.
  • the reaction system of the amplification step (A) can be used as the reaction system of the measurement step (B).
  • the proportion of the sample is not particularly limited, and is as described in the amplification method of the present invention.
  • the sample is a biological sample
  • the reaction system of the amplification step (A) is used as the reaction system, and signal detection is performed optically in the presence of the probe.
  • the proportion of the sample in the reaction system of the amplification step (A) is preferably set to, for example, 0.1 to 0.5% by volume.
  • the proportion of the sample in the reaction system is preferably, for example, 0.1 to 0.5% by volume.
  • the sample is usually subjected to heat treatment for DNA denaturation, that is, dissociation into single-stranded DNA.
  • heat treatment due to this heat treatment, sugars, proteins and the like contained in the sample may be denatured, and insolubilized precipitates and turbidity may occur. For this reason, when detecting a signal as mentioned above, generation
  • the proportion of the sample in the reaction system of the amplification step (A) is set, for example, in the above-mentioned range, the mechanism is unknown, but the influence of generation of a precipitate or the like due to denaturation is sufficient. It is possible to prevent the decrease in measurement accuracy by the optical method. Moreover, if it sets to the above-mentioned range, inhibition of the amplification reaction by the contaminant in the said sample can fully be suppressed, for example, and the fall prevention of amplification efficiency can be improved further. Therefore, in addition to the use of the primer or primer set of the present invention, by setting the proportion of the sample in the reaction system to the above-mentioned range, the need for sample pretreatment can be further eliminated.
  • the proportion of the whole blood sample in the reaction system is not the volume proportion as described above, for example, 0.1 to 0.5 volume%, for example, hemoglobin (hereinafter referred to as “Hb” It can also be expressed by the weight ratio of
  • the ratio of whole blood sample in the reaction system is, for example, preferably in the range of 0.565 to 113 g / L, more preferably in the range of 2.825 to 56.5 g / L, more preferably in terms of Hb amount. Is in the range of 5.65 to 28.25 g / L.
  • the proportion of the whole blood sample in the reaction system may satisfy, for example, both the volume proportion and the Hb weight proportion, or may satisfy either one.
  • the polymorphism detection method of the present invention can be used for so-called Tm analysis as described above.
  • Tm value in Tm analysis will be described.
  • the absorbance at 260 nm increases. This is because the hydrogen bond between both strands in double-stranded DNA is released by heating and dissociated into single-stranded DNA (DNA melting).
  • DNA melting single-stranded DNA
  • the absorbance thereof is about 1.5 times the absorbance at the start of heating (absorbance of only double-stranded DNA).
  • the melting temperature (Tm) is generally defined as the temperature at which the absorbance reaches 50% of the total increase in absorbance.
  • the measurement of the signal indicating the melting state of the hybrid of the amplification product and the probe may be, for example, the absorbance measurement at 260 nm as described above, or the signal measurement of the labeled substance.
  • the labeled probe labeled with the labeling substance as the probe to measure the signal of the labeling substance.
  • the labeled probe may be, for example, a labeled probe that exhibits a signal alone and does not exhibit a signal upon hybridization, or a labeled probe that exhibits no signal alone and exhibits a signal upon hybridization.
  • the former probe does not show a signal when forming a hybrid (double-stranded DNA) with the amplification product, and shows a signal when the probe is dissociated from the amplification product by heating.
  • a signal is shown by forming a hybrid (double-stranded DNA) with the amplification product, and the signal decreases (or disappears) when the probe is released from the amplification product by heating. Therefore, detection of the progress of melting of the hybrid, determination of the Tm value, and the like can be performed by detection of the signal of the labeling substance, as in the case of the absorbance measurement at 260 nm.
  • the signal detection of the labeled substance may be detected, for example, under conditions specific to the signal of the labeled substance. Examples of the detection condition include an excitation wavelength, a detection wavelength and the like.
  • the labeled probe and the labeled substance are as described above.
  • the detection of the polymorphism from the fluctuation of the signal value can be performed by a conventional method.
  • the variation of the signal value is the variation of the hybrid of the probe for detecting the polymorphism and the detection target of the mutant and / or the probe for detecting the polymorphism and the detection target of the wild type It can be judged whether the polymorphism is mutant or wild type, as compared to the variation of the hybrid. That is, if it is the same as the mutant type, it can be judged as the wild type if it is the same as the mutant type.
  • the Tm value is obtained from the fluctuation of the signal
  • the polymorphism can be determined by comparison with the Tm value of the evaluation standard.
  • the Tm value is obtained from the fluctuation of the signal value.
  • the measured Tm value is compared with the Tm wt value for the wild-type detection target sequence and / or the Tm mt value for the mutant-type detection target sequence previously determined.
  • the mutant type is the same or similar to the Tm mt value of the evaluation standard If the mutant type is lower than the T m m value, it can be judged as a wild type.
  • a primer set including the primer set (1) and the primer set (2) is used as a primer set for MTHFR gene amplification of the present invention, and two types of fluorescent substance-labeled below are used as the probes. It is an example using a probe.
  • two target regions of the MTHFR gene are simultaneously amplified in one reaction solution by PCR using the primer set, and further, using the probe, two polymorphic MTHFR * 677 in the MTHFR gene. And MTHFR * 1298 is detected.
  • the following probe for MTHFR * 677 is a probe consisting of the base sequence shown in SEQ ID NO: 46, the base (r) being adenine (a), and the 3 'end of which is labeled with a fluorescent dye TAMRA.
  • the following probe for MTHFR * 1298 is a probe consisting of the base sequence shown in SEQ ID NO: 52, the base (k) being guanine (g), and the 3 'end thereof being labeled with a fluorescent dye BODIPY FL.
  • the present invention is not limited to these.
  • reaction solution for PCR is prepared, PCR is performed as described above, and two target regions of the MTHFR gene are simultaneously amplified in the same reaction solution.
  • the reaction solution preferably contains, for example, the primer set (1), the primer set (2) and the sample, and preferably further contains other components usable for the amplification reaction. According to the present invention, as described above, for example, even if it is a sample containing contaminants such as whole blood, the sample can be used as it is without performing pretreatment.
  • the reaction solution may further contain the probe, for example, as described above.
  • amplification of the MTHFR gene may be performed in the presence of the probe.
  • the obtained amplified product (double-stranded DNA) is dissociated into single-stranded DNA, and the single-stranded DNA obtained by the dissociation is hybridized with the labeled probe.
  • This can be done, for example, by changing the temperature of the reaction solution in the presence of the labeled probe. In this case, as described above, it is preferable to change the temperature of the reaction solution after performing an amplification reaction on the reaction solution to which the labeling probe has been added in advance.
  • the heating temperature in the dissociation step may be, for example, a temperature at which the double-stranded amplification product can be dissociated into single strands.
  • the heating temperature is not particularly limited, and is, for example, 85 to 95 ° C.
  • the heating time is not particularly limited, and is usually 1 second to 10 minutes, preferably 1 second to 5 minutes.
  • Hybridization between the dissociated single-stranded DNA and the labeled probe can be performed, for example, by decreasing the heating temperature in the dissociation step after the dissociation step.
  • the temperature condition is, for example, 40 to 50.degree.
  • the treatment time at the temperature is not particularly limited, and is, for example, 1 to 600 seconds.
  • the temperature of the reaction solution is changed, and a signal value indicating the melting state of the hybrid of the amplification product and the labeled probe is measured.
  • the reaction solution is heated, that is, the hybrid of the single-stranded DNA and the labeled probe is heated, and the fluctuation of the signal value accompanying the temperature rise is measured.
  • a guanine quenching probe that is, a probe in which cytosine (c) at the end is labeled
  • fluorescence is reduced (or quenched) and dissociated in a hybridized state with single-stranded DNA In the state, it emits fluorescence.
  • hybrids with reduced (or quenched) fluorescence may be heated gradually and the increase in fluorescence intensity with increasing temperature may be measured.
  • the temperature range is not particularly limited.
  • the start temperature is, for example, room temperature to 85 ° C., preferably 25 to 70 ° C.
  • the end temperature is, for example, 40 to 105 ° C.
  • the rate of temperature rise is not particularly limited, and is, for example, 0.1 to 20 ° C./second, preferably 0.3 to 5 ° C./second.
  • the fluctuation of the signal value is analyzed to determine the Tm value. Specifically, the amount of change in fluorescence intensity per unit time (-d change in fluorescence intensity / dt or d change in fluorescence intensity / dt) at each temperature is calculated from the obtained fluorescence intensities, and the most changed value is The indicated temperature can be determined as the Tm value.
  • the temperature at which the increase in fluorescence intensity is measured and the increase in fluorescence intensity per unit time shows the lowest value, or The temperature at which the fluorescence intensity increment (d fluorescence intensity increment / dt) exhibits the highest value per unit time can also be determined as the Tm value.
  • the decrease in fluorescence intensity may be measured.
  • the fluctuation of the signal value may be analyzed for each of the detection wavelengths.
  • the Tm value can be calculated by, for example, the conventionally known MELTCALC software (http://www.meltcalc.com/) or the like, or can be determined by the nearest neighbor method.
  • the signal value is measured under the condition corresponding to each labeling substance of the two types of probes. Then, the Tm value of each of the probes is determined.
  • TAMRA of the MTHFR * 677 probe can be detected at a detection wavelength of 585 to 700 nm
  • BODIPY FL of the MTHFR * 1298 probe can be detected at a detection wavelength of 515 to 555 nm.
  • the genotype at each detection target site is determined. That is, it is determined whether the bases of base numbers 8747 and 10649 in the base sequence of SEQ ID NO: 1 are the wild type or the mutant type.
  • Tm analysis for example, a completely complementary hybrid (match) results in that the Tm value indicating dissociation is higher than that of a hybrid (mismatch) different by one or more bases. Therefore, the polymorphism at the detection target site can be determined by previously determining the Tm value of the completely complementary hybrid and the Tm value of the hybrid in which one base is different for the probe. Specifically, for example, it can be determined as follows. Assuming that the base of the site to be detected is a mutant, for example, the base of base No.
  • the polymorphism of the amplification product is judged as a mutant homozygote.
  • the polymorphism of the amplification product is wild-type homozygous For example, it can be judged that the base of base No. 8747 in SEQ ID NO: 1 is a homozygote of cytosine (c).
  • the polymorphism of the MTHFR gene can be detected from the fluctuation of the signal value, it can also be detected whether the target region containing the polymorphism is amplified or not. Therefore, in the same manner as the step (D), the amplification product can be detected by performing the step (C) of the amplification product detection method of the present invention described above.
  • the present invention instead of increasing the temperature of the reaction system containing the probe, that is, heating the hybrid to measure the signal fluctuation accompanying the temperature increase, for example, at the time of hybridization Measurement of signal fluctuation may be performed. That is, when the temperature of the reaction system containing the probe is lowered to form a hybrid, for example, the signal fluctuation accompanying the temperature drop may be measured.
  • a labeled probe for example, a guanine quenched probe
  • the labeled probe emits fluorescence in the state where the single-stranded DNA and the labeled probe are dissociated, but the fluorescence decreases (or is quenched) when a hybrid is formed due to a drop in temperature. Therefore, for example, the temperature of the reaction system may be gradually decreased to measure the decrease in fluorescence intensity as the temperature decreases.
  • the temperature of the reaction system may be gradually decreased to measure the increase in fluorescence intensity as the temperature decreases.
  • the primer set (1) and the primer set (2) when analyzing one of the two polymorphisms MTHFR * 677 and MTHFR * 1298 of the MTHFR gene, for example, the purpose of the primer set (1) and the primer set (2)
  • the primer set for MTHFR gene amplification of the present invention which contains one kind of primer set corresponding to the region, may be used, and further, one kind of probe that hybridizes to a target detection target site may be used.
  • the reagent for MTHFR gene amplification of the present invention is, as described above, a reagent for amplification of the MTHFR gene, characterized in that it comprises the primer or primer set for MTHFR gene amplification of the present invention.
  • the reagent for MTHFR gene amplification of the present invention is characterized by including the primer set of the present invention, and the composition and the like other than this are not limited at all.
  • the reagent for MTHFR gene amplification of the present invention preferably includes, for example, any one of the primer set (1) and the primer set (2), and more preferably includes both.
  • the reagent for MTHFR gene amplification of the present invention preferably further contains a probe capable of hybridizing to the amplification product of MTHFR gene, for example, in order to detect the amplification product obtained by the amplification method using the primer set of the present invention .
  • a probe capable of hybridizing to the amplification product of MTHFR gene for example, in order to detect the amplification product obtained by the amplification method using the primer set of the present invention .
  • amplification of one or two target regions in the MTHFR gene for example, according to the types of the primer set (1) and the primer set (2) contained therein The thing is obtained. Therefore, for example, the presence or absence of amplification, polymorphism of the detection target site, and the like can be detected by the above-mentioned method using the probe.
  • the probe is as described above.
  • the probe preferably includes, for example, at least one of the P1 probe and the P2 probe, and more preferably includes both.
  • the reagent for MTHFR gene amplification of the present invention is preferably used, for example, when amplifying the MTHFR gene in a biological sample such as whole blood.
  • a biological sample such as whole blood.
  • the proportion of whole blood sample in the reaction system of amplification reaction is preferably 0.1 to 0.5% by volume.
  • the reagent for MTHFR gene amplification of the present invention may further contain, for example, components necessary for a nucleic acid amplification reaction. Specific examples thereof include, for example, polymerases such as DNA polymerase as described above, nucleoside triphosphates, buffers, various catalysts and the like.
  • each component may be housed, for example, in the same container or in another container.
  • the form of the MTHFR gene amplification reagent of the present invention is not particularly limited, and may be, for example, a liquid reagent containing the MTHFR gene amplification primer set of the present invention, or a dry reagent suspended in a solvent before use It is also good.
  • the content of the primer set for MTHFR gene amplification is also not particularly limited.
  • the amplification reagent of the present invention can also be said to be, for example, a kit used for amplification of the MTHFR gene.
  • each component may be housed, for example, in the same container or in a separate container.
  • the amplification kit of the present invention may further include instructions for use.
  • the reagent for detecting an amplification product of the present invention is a reagent for detecting an amplification product of the MTHFR gene, which is characterized by comprising the primer set for MTHFR gene amplification of the present invention. Furthermore, the reagent for detecting polymorphism of the present invention is a reagent for detecting polymorphism of MTHFR gene, which is characterized by containing the primer set for amplifying MTHFR gene of the present invention. The present invention is characterized by including the above-mentioned primer set for MTHFR gene amplification of the present invention, and the other constitution and conditions are not limited at all.
  • the reagent for detecting an amplification product and the reagent for detecting a polymorphism of the present invention are the same as the above-mentioned reagent for MTHFR gene amplification unless otherwise indicated.
  • the polymorphism detection probe of the present invention is, as described above, characterized in that it contains at least one of the oligonucleotides (P1) and (P2).
  • the polymorphism detection method of the present invention is a method for detecting a polymorphism of the MTHFR gene, which comprises the step of detecting a polymorphism of the MTHFR gene using the probe for detection of polymorphism of the present invention.
  • the above description can be referred for the probe of the present invention and various methods using the same.
  • Example 1 In this example, whole blood samples not subjected to pretreatment were used as samples, amplification of MTHFR gene was performed, and polymorphisms were analyzed.
  • the PCR conditions were as follows: treatment at 95 ° C. for 60 seconds, 50 cycles of 95 ° C. for 1 second and 66 ° C. for 15 seconds as one cycle, and further treatment at 95 ° C. for 1 second and 40 ° C. for 60 seconds. Subsequently, the PCR reaction solution was heated from 40 ° C. to 75 ° C. at a temperature increase rate of 1 ° C./3 seconds, and a change in fluorescence intensity with time was measured to conduct Tm analysis. The measurement wavelengths were 515 to 555 nm (detection of fluorochrome BODIPY FL) and 585 to 700 nm (detection of fluorochrome TAMRA).
  • the Tm serving as the evaluation criterion is as follows.
  • the Tm value of the perfect match hybrid with the MTHFR * 677 probe is 62.5 ° C
  • the Tm value of the hybrid mismatch with the MTHFR * 677 probe is 56 ° C
  • the Tm value of the perfect match with the MTHFR * 1298 probe is 57
  • the Tm value of the hybrid that mismatches with the probe for MTHFR * 1298 is 47 ° C.
  • FIG. 1 is a graph of Tm analysis showing the change in fluorescence intensity with temperature rise.
  • the vertical axis indicates the change in fluorescence intensity at each temperature (hereinafter, also referred to as “the amount of change in fluorescence intensity”).
  • the unit of the vertical axis is the derivative value “d fluorescence intensity increase amount / dt”, which is indicated as “dF / dt”.
  • the horizontal axis indicates the temperature (° C.) at the time of measurement.
  • sample 1 is a mutant homozygote 677 (T / T) whose genotype is MTHFR * 677, and a wild type homozygote 1298 (A / A) whose genotype is MTHFR * 1298 Met.
  • Sample 2 is a heterozygote 677 (C / T) of wild type and mutant type of MTHFR * 677, and a heterozygote 1298 of wild type and mutant type of MTHFR * 1298 (A / C).
  • Sample 3 had a wild type homozygote 677 (C / C) with a MTHFR * 677 genotype and a wild type homozygote 1298 (A / A) with a MTHFR * 1298 genotype .
  • two regions of the MTHFR gene are simultaneously amplified in the same reaction solution using a non-pretreated whole blood sample, and the same reaction described above
  • the liquid was used to analyze two types of polymorphisms, and the conjugate type could be determined.
  • Example 2 In this example, purified nucleic acid was used as a sample, amplification of the MTHFR gene was performed, and polymorphisms were analyzed.
  • the purified human genome was prepared from whole blood of Samples 1, 2 and 3 of Example 1. Specifically, the whole blood was purified using the GFX Genomic Blood DNA Purification Kit (manufactured by GE Healthcare Biosciences) according to the genomic DNA extraction protocol attached to the kit to prepare the purified human genome.
  • GFX Genomic Blood DNA Purification Kit manufactured by GE Healthcare Biosciences
  • the Tm serving as the evaluation criterion is the same as described above. That is, the Tm value of the hybrid matched perfectly with the MTHFR * 677 probe is 62.5 ° C., the Tm value of the hybrid mismatched with the MTHFR * 677 probe is 56 ° C., the Tm of the hybrid matched perfectly with the MTHFR * 1298 probe Is 57 ° C., and the Tm value of the hybrid mismatched with the probe for MTHFR * 1298 is 47 ° C.
  • FIG. 2 is a graph of Tm analysis which shows the change of the fluorescence intensity accompanying a temperature rise.
  • the vertical axis indicates the change in fluorescence intensity at each temperature (hereinafter, also referred to as “the amount of change in fluorescence intensity”).
  • the unit of the vertical axis is the derivative value “d fluorescence intensity increase amount / dt”, which is indicated as “dF / dt”.
  • the horizontal axis indicates the temperature (° C.) at the time of measurement.
  • sample 1 has a wild type homozygote 677 (C / C) for the MTHFR * 677 genotype, and a mutant homozygote 1298 (C / C) for the MTHFR * 1298 genotype.
  • Sample 2 was a mutant homozygote 677 (T / T) with a MTHFR * 677 genotype and a wild type homozygote 1298 (A / A) with a MTHFR * 1298 genotype .
  • Sample 3 is a heterozygote 677 (C / T) of wild type and mutant type of MTHFR * 677, and a heterozygote 1298 of wild type and mutant type of MTHFR * 1298 (A / C).
  • genotypes of MTHFR * 677 and MTHFR * 1298 were confirmed for the samples 1, 2 and 3 by the conventional RFLP method.
  • the genotype of each sample according to the conventional RFLP method was the same as in the example.
  • a region of interest including the detection target site (for example, MTHFR * 677 or MTHFR * 1298) in the MTHFR gene can be specifically amplified. Therefore, according to the primer of the present invention, the primer set, the reagent containing the same, and the amplification method and polymorphism detection method using them, the polymorphism of the MTHFR gene can be analyzed quickly and easily, which is extremely effective in the medical field. It can be said.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 核酸増幅法によりMTHFR遺伝子の目的領域を特異的に増幅するためのプライマーセットを提供する。 F1プライマーとR1プライマーとを含むプライマーセット(1)、および、F2のプライマーとR2プライマーとを含むプライマーセット(2)を含むプライマーセットを使用する。これにより、例えば、同一反応液において同時に、MTHFR遺伝子の2種類の多型を生じる部分をそれぞれ含む2つの目的領域を増幅できる。 (F1)塩基長が20~28塩基長であり、配列番号1に示す塩基配列において、塩基番号8715のグアニン(g)を3'末端とするオリゴヌクレオチド (R1)塩基長が18~26塩基長であり、配列番号1に示す塩基配列において、塩基番号8817のシトシン(c)を5'末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチド (F2)塩基長が26~36塩基長であり、配列番号1に示す塩基配列において、塩基番号10590のグアニン(g)を3'末端とするオリゴヌクレオチド (R2)塩基長が22~34塩基長であり、配列番号1に示す塩基配列において、塩基番号10695のシトシン(c)を5'末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチド

Description

MTHFR遺伝子増幅用プライマーセット、それを含むMTHFR遺伝子増幅用試薬およびその用途
 本発明は、MTHFR遺伝子を増幅するためのプライマーセット、それを含むMTHFR遺伝子増幅用試薬およびその用途に関する。
 ホモシステインは、メチオニンの代謝経路における中間産物であり、一部はシステインに代謝され、一部は再びメチオニンに代謝される。ホモシステインは、生体内で増加すると、動脈硬化、冠動脈疾患、心疾患等の心血管系疾患、高ホモシステイン血症の原因となることが報告されている。ホモシステインの産生には、メチレンテトラヒドロ葉酸還元酵素(methylene tetrahydrofolic reductase、MTHFR)が関与しており、MTHFR遺伝子における多型と前述の疾患との関連性も報告されている(例えば、非特許文献1参照)。
 具体的には、MTHFR遺伝子の多型に起因するMTHFRの活性低下が、血中ホモシステインを増加させ、前記疾患の発症を引き起こすと考えられている。MTHFR遺伝子の多型は、例えば、MTHFR*677、MTHFR*1298等が知られている。前者のMTHFR*677は、MTHFR遺伝子における8747番目の塩基が、野生型はシトシン(c)、変異型はチミン(t)である。後者のMTHFR*1298は、MTHFR遺伝子における10649番目の塩基が、野生型はアデニン(a)、変異型はシトシン(c)である。例えば、MTHFR遺伝子に、ホモ接合体の変異MTHFR*677(T/T)が生じると、MTHFR活性が低下し、血中ホモシステイン量が上昇することが報告されている。他方、メカニズムは不明だが、MTHFR遺伝子に、ヘテロ接合体の変異MTHFR*1298(A/C)またはホモ接合体の変異MTHFR*1298(C/C)が生じると、MTHFR活性が低下し、例えば、メトトレキサート等の関節リウマチ治療薬の必要投与量が減少することが報告されている(例えば、非特許文献2参照)。このため、MTHFR遺伝子について、複数の多型を調べることは、血中ホモシステイン量の上昇による心血管系疾患等の疾患の発症、および関節リウマチ等の治療薬の投与量を予測するために、極めて重要である。
 他方、あらゆる疾患の原因、個体間の疾患易罹患性すなわち疾患のかかり易さ、個体間における薬効の違い等を遺伝子レベルで解析する方法として、多型の検出が広く行われている。前記多型は、例えば、点突然変異、いわゆる一塩基多型(SNP)等があげられる。多型の一般的な検出方法は、例えば、Direct Sequencing法、RFLP(Restriction Fragment Length Polymorphism)解析、ASP-PCR法等があげられる。前記Direct Sequencing法は、例えば、試料の標的DNAについて、検出対象配列に相当する領域をPCR(Polymerase chain reaction)により増幅させ、その全遺伝子配列を解析する方法である。前記RFLP法は、例えば、まず、試料の標的DNAについて、検出対象配列に相当する領域をPCRにより増幅させる。そして、前記検出対象配列における目的の変異の有無により切断作用が異なる制限酵素によって、その増幅物を切断し、電気泳動することでタイピングを行う方法である。ASP-PCR法は、例えば、3’末端領域に目的の変異が位置するプライマーを用いてPCRを行い、増幅の有無によって変異を判断する方法である。
 しかしながら、これらの方法は、例えば、試料から抽出したDNAの精製、電気泳動、制限酵素処理等が必須であるため、手間やコストがかかる。また、PCRを行った後、反応容器を一旦開封する必要がある。このため、前記増幅物が次の反応系に混入し、解析精度が低下するおそれがある。さらに、自動化が困難であるため、大量のサンプルを解析できない。また、前記ASP-PCR法は、特異性が低いという問題もある。
 このような問題から、近年、多型の検出方法として、Tm(Melting Temperature)解析が実用化されている。これは、二本鎖核酸の融解温度(Tm)を解析する方法であり、前記二本鎖の融解曲線の解析により行われることから、融解曲線解析とも呼ばれる。Tm解析は、例えば、以下のような方法である。まず、検出目的の多型を含む領域に相補的なプローブを用いて、被検核酸と前記プローブとのハイブリッド(二本鎖核酸)を形成させる。そして、得られたハイブリッドに加熱処理を施し、温度上昇に伴う前記ハイブリッドの一本鎖核酸への解離(融解)を、吸光度等のシグナルの変動によって検出する。この検出結果に基づいてTm値を決定することによって、多型を判断する方法である。Tm値は、前記ハイブリッドにおける両一本鎖核酸の相補性が高い程高く、相補性が低い程低くなる。そこで、検出対象部位の多型がXまたはYの場合、目的の多型(例えば、Y)を含む核酸とそれに100%相補的なプローブとのハイブリッドについて、予めTm値(評価基準値)を求めておく。続いて、前記被検核酸と前記プローブとのTm値(測定値)を測定する。そして、この測定値が、前記評価基準値と同じであれば、前記被検核酸と前記プローブとはパーフェクトマッチである、すなわち、前記被検核酸の検出対象部位が目的の多型(Y)であると判断できる。他方、前記測定値が前記評価基準値よりも低ければ、前記被検核酸と前記プローブとはミスマッチである、すなわち、前記被検核酸の検出対象部位が他方の多型(X)であると判断できる。このような方法であれば、例えば、前記プローブを添加したPCR反応液に温度処理を施し、シグナル測定を行うのみで、多型を検出できる。このため、検出装置の自動化も可能である。
 しかしながら、このようなTm解析を利用した検出方法についても、例えば、PCRにおいて、検出目的の多型を含む領域を、特異的且つ効率的に増幅できなければならないという問題がある。特に、複数の遺伝子多型を有する場合には、1つのサンプルを解析するにも多大な労力を伴うため、大量のサンプルを解析することは実用的ではないという問題もある。
福澤ら、「特集 高血圧 最新の研究動向 基礎編」、日本臨床、株式会社日本臨床社、2006年7月、64巻増刊5、173~176頁 Uranoら、「Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis,as evidenced by single locus and haplotype analyses.」、Pharmacogenetics、2002年4月、12(3)、183~190頁
 そこで、本発明は、核酸増幅法によりMTHFR遺伝子の目的の領域を特異的に増幅するためのプライマーおよびプライマーセットの提供を目的とする。
 前記目的を達成するために、本発明のプライマーは、
下記(F1)のオリゴヌクレオチドからなるプライマー、
下記(R1)のオリゴヌクレオチドからなるプライマー、
下記(F2)のオリゴヌクレオチドからなるプライマーまたは
下記(R2)のオリゴヌクレオチドからなるプライマー
であることを特徴とする、MTHFR遺伝子を増幅するためのプライマーである。
(F1)塩基長が20~28塩基長であり、配列番号1に示す塩基配列において、塩基番号8715のグアニン(g)を3’末端とするオリゴヌクレオチド
(R1)塩基長が18~26塩基長であり、配列番号1に示す塩基配列において、塩基番号8817のシトシン(c)を5’末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチド
(F2)塩基長が26~36塩基長であり、配列番号1に示す塩基配列において、塩基番号10590のグアニン(g)を3’末端とするオリゴヌクレオチド
(R2)塩基長が22~34塩基長であり、配列番号1に示す塩基配列において、塩基番号10695のシトシン(c)を5’末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチド
 本発明のプライマーセットは、
前記(F1)のオリゴヌクレオチドからなるプライマーおよび前記(R1)のオリゴヌクレオチドからなるプライマーの少なくとも一方を含むプライマーセット(1)、および、
前記(F2)のオリゴヌクレオチドからなるプライマーおよび前記(R2)のオリゴヌクレオチドからなるプライマーの少なくとも一方を含むプライマーセット(2)
の少なくとも一方を含むことを特徴とする、MTHFR遺伝子を増幅するためのプライマーセットである。
 本発明の遺伝子増幅用試薬は、本発明のMTHFR遺伝子増幅用プライマーまたはプライマーセットを含むことを特徴とする、MTHFR遺伝子増幅用試薬である。
 本発明の増幅方法は、反応系において、試料中の核酸を鋳型として、本発明のMTHFR遺伝子増幅用プライマーまたはプライマーセットを用いて、MTHFR遺伝子の増幅を行う工程を含むことを特徴とする、MTHFR遺伝子の増幅方法である。
 本発明の増幅物検出方法は、下記(A)工程を含むことを特徴とする、MTHFR遺伝子の増幅物を検出する増幅物検出方法である。
(A)本発明の増幅方法により、MTHFR遺伝子を増幅させる増幅工程
 本発明の多型検出方法は、下記(A)工程を含むことを特徴とする、MTHFR遺伝子の多型検出方法である。
(A)本発明の増幅方法により、MTHFR遺伝子を増幅させる増幅工程
 本発明のプライマーおよびプライマーセットによれば、MTHFR遺伝子における検出対象部位(例えば、MTHFR*677またはMTHFR*1298)を含む目的の領域を、特異的に増幅できる。
図1は、本発明の実施例1におけるTm解析の結果を示すグラフである。 図2は、本発明の実施例2におけるTm解析の結果を示すグラフである。
 本発明において、MTHFR遺伝子における検出目的の多型は、例えば、配列番号1に示すMTHFR遺伝子の塩基配列における塩基番号8747および塩基番号10649の少なくとも一方の塩基における多型である。配列番号1の塩基配列において、塩基番号8747の塩基(y)は、野生型がシトシン(c)であり、変異型はチミン(t)である。以下、この多型を、MTHFR*677といい、野生型のホモ接合体をMTHFR*677(C/C)または8747(C/C)、変異型のホモ接合体をMTHFR*677(T/T)または8747(T/T)、ヘテロ接合体をMTHFR*677(C/T)または8747(C/T)という。また、配列番号1の塩基配列において、塩基番号10649の塩基(m)は、野生型がアデニン(a)であり、変異型はシトシン(c)である。以下、この多型を、MTHFR*1298といい、野生型のホモ接合体をMTHFR*1298(A/A)または10649(A/A)、変異型のホモ接合体をMTHFR*1298(C/C)または10649(C/C)、ヘテロ接合体をMTHFR*1298(A/C)または10649(A/C)という。野生型は、正常型ということもできる。
 MTHFR遺伝子の塩基配列は、例えば、NCBIアクセッション:No.AY338232に登録されている。配列番号1の塩基配列は、前記アクセッション番号の塩基配列におけるMTHFR遺伝子の完全長配列である。
 本発明において、前記多型が発生する部位、例えば、配列番号1の配列(センス鎖)において塩基番号8747および塩基番号10649の塩基、または、その相補配列(アンチセンス鎖)において前記センス鎖の塩基番号8747および塩基番号10649に対応する塩基を「検出対象部位」という。また、本発明において、本発明のプライマーおよびプライマーセットにより増幅させる領域を、「目的領域または増幅領域」という。前記目的領域は、前記検出対象部位を含む。前記目的領域は、例えば、MTHFR遺伝子のセンス鎖における領域でもよいし、アンチセンス鎖における領域でもよいし、両方でもよい。本発明において、センス鎖およびアンチセンス鎖は、例えば、センス鎖の増幅物、アンチセンス鎖の増幅物の意味も含む。
 本発明において、MTHFR遺伝子における、前記検出対象部位を含み、後述する多型検出用のプローブがハイブリダイズ可能な領域を、「検出対象配列またはハイブリダイズ領域」という。前記検出対象配列の中でも、前記プローブとパーフェクトマッチする検出対象配列を「パーフェクトマッチ配列」、前記プローブとミスマッチする検出対象配列を「ミスマッチ配列」という。本発明において、パーフェクトマッチとは、前記検出対象部位の塩基が前記プローブにおける対応塩基と相補的であることを意味し、好ましくは、前記検出対象配列と前記プローブとが、完全に相補的であることを意味する。本発明において、ミスマッチとは、前記検出対象部位の塩基が前記プローブにおける対応塩基と非相補的であることを意味し、好ましくは、前記検出対象配列と前記プローブとが、前記検出対象部位以外において完全に相補的であることを意味する。
 本発明において、塩基配列の末端とは、塩基配列における5’側および3’側の最も端の塩基を意味する。また、5’末端領域とは、塩基配列における5’末端から数塩基の領域であり、3’末端領域とは、塩基配列における3’末端から数塩基の領域である。前記数塩基とは、例えば、前記末端塩基を含む1~10塩基、1~4塩基、1~3塩基、1~2塩基である。本発明において、塩基配列の末端からZ番目の塩基(Zは正の整数)とは、末端の塩基を1番目とした順番であり、例えば、末端から1番目の塩基とは、末端の塩基、末端から2番目の塩基とは、末端の隣の塩基を意味する。
<MTHFR遺伝子増幅用プライマーおよびプライマーセット>
 本発明のプライマーは、前述のように、
下記(F1)のオリゴヌクレオチドからなるプライマー、
下記(R1)のオリゴヌクレオチドからなるプライマー、
下記(F2)のオリゴヌクレオチドからなるプライマーまたは
下記(R2)のオリゴヌクレオチドからなるプライマー
であることを特徴とする、MTHFR遺伝子を増幅するためのプライマーである。
(F1)塩基長が20~28塩基長であり、配列番号1に示す塩基配列において、塩基番号8715のグアニン(g)を3’末端とするオリゴヌクレオチド
(R1)塩基長が18~26塩基長であり、配列番号1に示す塩基配列において、塩基番号8817のシトシン(c)を5’末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチド
(F2)塩基長が26~36塩基長であり、配列番号1に示す塩基配列において、塩基番号10590のグアニン(g)を3’末端とするオリゴヌクレオチド
(R2)塩基長が22~34塩基長であり、配列番号1に示す塩基配列において、塩基番号10695のシトシン(c)を5’末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチド
 本発明のMTHFR遺伝子増幅用プライマーセットは、前述のように、前記プライマーセット(1)および前記プライマーセット(2)の少なくとも一方を含むことを特徴とする。
 前記本発明のプライマーまたはそれを含むプライマーセットによって、例えば、MTHFR遺伝子における目的の領域を特異的に増幅することが可能である。本発明のMTHFR遺伝子増幅用プライマーおよびプライマーセットは、例えば、MTHFR遺伝子増幅用プライマー試薬ということもできる。
 本発明のプライマーおよびプライマーセットによれば、前述のように、MTHFR遺伝子の検出対象部位として、例えば、MTHFR*677またはMTHFR*1298を含む目的領域を、特異的に増幅でき、また、高効率で増幅できる。このように、MTHFR遺伝子の前記目的領域を特異的に増幅できることから、例えば、精度よく多型の検出することもできる。具体的には、例えば、得られた増幅物について、さらに、前記検出対象部位にハイブリダイズ可能なプローブを使用したTm解析を行うことで、前記検出対象部位の多型を、より精度よく検出し、多型の接合体型を判定することが可能となる。また、例えば、1つの反応系で、前記目的領域の増幅ならびに多型の検出が可能であることから、操作の自動化も可能となる。さらに、本発明のプライマーおよびプライマーセットを用いれば、例えば、全血および口腔粘膜等の夾雑物が含まれる試料であっても、夾雑物の除去等の前処理を省略できるため、より迅速且つ簡便に増幅反応を行うことができる。また、本発明のプライマーおよびプライマーセットを用いれば、従来よりも優れた増幅効率で増幅反応が行えるため、増幅反応の短縮化も可能である。したがって、本発明のプライマー、プライマーセット、これを含む試薬、ならびにこれらを用いた増幅方法、増幅物の検出方法および多型検出方法によれば、MTHFR遺伝子の多型を迅速且つ簡便に解析できることから、医療分野においてきわめて有効といえる。
 本発明のMTHFR遺伝子増幅用プライマーセットは、例えば、前記プライマーセット(1)および前記プライマーセット(2)のいずれか一方のみを含んでもよいし、前記プライマーセット(1)および前記プライマーセット(2)の両方を含んでもよい。後述するが、前記プライマーセット(1)により特異的に増幅し得る目的領域は、MTHFR遺伝子において、多型MTHFR*677が発生する部位を含む領域であり、前記プライマーセット(2)により特異的に増幅し得る目的領域は、MTHFR遺伝子において、多型MTHFR*1298が発生する部位を含む領域である。本発明のMTHFR遺伝子増幅用プライマーセットが、例えば、前記プライマーセット(1)および前記プライマーセット(2)の両方を含む場合、MTHFR遺伝子における、多型MTHFR*677が発生する部位を含む目的領域と多型MTHFR*1298が発生する部位を含む目的領域とを、それぞれ、同一反応系で同時に増幅できる。
 前述のように、MTHFR遺伝子のこれら2種類の多型は、生体内のホモシステイン量に影響を与えることが知られている。このため、いずれか1種類の多型だけでなく、2種類両方の多型を調べることが重要視されている。しかしながら、従来法では、1つの反応系において複数の配列を検出することが困難という問題がある。このため、MTHFR遺伝子の2種類の多型、すなわち、MTHFR*677およびMTHFR*1298を両方調べるには、それぞれの多型が生じる部位を含む領域を、別個の反応系において各々増幅させ、得られた増幅物を別個に解析する必要がある。このように、従来法では、MTHFR遺伝子のみを鋳型とし、且つ、MTHFR遺伝子において、前記多型が生じる部位をそれぞれ含む2種類の目的領域を特異的に増幅させることは極めて困難である。そして、このように、1つのサンプルを解析するにも多大な労力を伴うため、多数のサンプルを解析することは現実的でないという問題がある。これに対して、本発明のプライマーセットによれば、前記プライマーセット(1)および前記プライマーセット(2)の両方を含む場合であっても、それぞれの目的領域を、同一反応系において、同時に且つ特異的に増幅できる。このため、前述の従来法とは異なり、手間およびコストの低減が可能となる。また、このように、同一反応系において2つの目的領域が特異的に増幅されることから、例えば、それぞれの目的領域における検出対象部位にハイブリダイズ可能なプローブを使用し、Tm解析を行うことによって、前記2種類の多型をそれぞれ検出し、また、接合体型を判別することが可能となる。このように、MTHFR遺伝子における2種類の多型について、同一反応系での解析が可能になることから、本発明のプライマーセットは、例えば、前記プライマーセット(1)および前記プライマーセット(2)のいずれか1種類を含む場合はもちろんのこと、2種類を含むことも好ましい。このような本発明のプライマーセットを用いて、1つの目的領域はもちろんのこと、2つの目的領域を同時に増幅すれば、従来よりも効率よく、MTHFR遺伝子の多型を検出できる。
 以下、フォワードプライマーをFプライマー、リバースプライマーをRプライマーということがある。
 前記プライマーセット(1)は、前述のように、下記(F1)のオリゴヌクレオチドからなるプライマーおよび下記(R1)のオリゴヌクレオチドからなるプライマーの少なくとも一方を含むプライマーセットである。
(F1)塩基長が20~28塩基長であり、配列番号1に示す塩基配列において、塩基番号8715のグアニン(g)を3’末端とするオリゴヌクレオチド
(R1)塩基長が18~26塩基長であり、配列番号1に示す塩基配列において、塩基番号8817のシトシン(c)を5’末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチド
 前記(F1)のオリゴヌクレオチドからなるプライマーは、フォワードプライマーであり、以下、F1プライマーともいう。前記F1プライマーは、配列番号1に示す塩基配列における部分配列と同一である。すなわち、MTHFR遺伝子のセンス鎖における部分配列と同一であり、アンチセンス鎖にアニーリング可能である。
 前記(R1)のオリゴヌクレオチドからなるプライマーは、リバースプライマーであり、以下、R1プライマーともいう。前記R1プライマーは、配列番号1に示す塩基配列における部分配列に相補的である。すなわち、MTHFR遺伝子のアンチセンス鎖における部分配列と同一であり、センス鎖にアニーリング可能である。
 前記プライマーセット(1)は、例えば、前記F1プライマーのみを含んでもよいし、前記R1プライマーのみを含んでもよく、好ましくは両方を含む。
 前記プライマーセット(1)は、配列番号1における塩基番号8716~8816の領域を含む核酸配列ならびにその相補鎖を増幅させるためのプライマーセットである。この領域内の塩基番号8747の塩基、すなわち、配列番号1における塩基番号8747の塩基が、前述の多型MTHFR*677が生じる部位である。以下、このプライマーセット(1)を、「MTHFR*677用プライマーセット」ともいう。MTHFR*677の多型のみを解析する場合には、MTHFR*677用プライマーセットのみを使用すればよい。
 前記プライマーセット(1)において、前記F1プライマーおよび前記R1プライマーは、DNAポリメラーゼによる増幅の開始点を決定する役割を果たす3’末端の塩基が、前述の条件を満たしていればよい。このように各プライマーの3’末端の塩基を固定することによって、前記プライマーセット(1)が、例えば、類似する他の配列に結合することを十分に防止できる。
 このように、前記F1プライマーおよび前記R1プライマーは、その3’末端の塩基が固定されていればよいことから、前記各プライマーの長さ自体は、特に制限されず、一般的な長さに適宜調整できる。前記各プライマーの長さは、例えば、13~50塩基長の範囲であり、好ましくは14~45塩基長、より好ましくは15~40塩基長である。具体例として、前記F1プライマーは、配列番号1に示す塩基配列において、塩基番号8715のグアニン(g)を3’末端とするオリゴヌクレオチドであり、その塩基長が、例えば、20~28塩基長であり、好ましくは、21~26塩基長、より好ましくは、22~24塩基長である。前記R1プライマーは、配列番号1に示す塩基配列において、塩基番号8817のシトシン(c)を5’末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチドであり、その塩基長が、例えば、18~26塩基長であり、好ましくは、19~25塩基長、より好ましくは、21~23塩基長である。前記F1プライマーと前記R1プライマーは、3’末端がそれぞれ固定されていることから、プライマーから伸長する領域は、例えば、前述のように配列番号1における塩基番号8716~8816の領域であるが、得られる増幅物の全体の長さは、プライマーの長さに応じて変化する。
 前記F1プライマーは、例えば、配列番号1に示す塩基配列における部分配列と完全に同一でもよいし、完全に同一でなくてもよい。すなわち、MTHFR遺伝子のセンス鎖の部分配列と、完全に同一でもよいし、完全に同一でなくてもよい。後者の具体例として、前記F1プライマーは、例えば、前記センス鎖の部分配列と対応させた場合に、3’末端の塩基を除く部分において、前記部分配列と1個~5個の塩基が異なっていてもよい。
 前記R1プライマーは、配列番号1に示す塩基配列における部分配列に、完全に相補的でもよいし、完全に相補的でなくてもよい。すなわち、MTHFR遺伝子のアンチセンス鎖の部分配列と、完全に同一でもよいし、完全に同一でなくてもよい。後者の具体例として、前記R1プライマーは、例えば、前記アンチセンス鎖の部分配列と対応させた場合に、前記3’末端の塩基を除く部分において、前記部分配列と、1個~5個の塩基が異なっていてもよい。
 以下に、前記F1プライマーおよびR1プライマーの具体例を示すが、本発明は、これには限定されない。
Figure JPOXMLDOC01-appb-T000001
 前記F1プライマーとR1プライマーとの組み合わせは、何ら制限されない。具体例としては、例えば、配列番号7に示すオリゴヌクレオチドからなるF1-1プライマーと、配列番号15に示すオリゴヌクレオチドからなるR1-1プライマーとを含むプライマーセットが特に好ましい。前記表における「Tm(℃)」は、前記表の配列とそれに完全に相補的な配列とがハイブリッドした場合のTm(℃)であり、MELTCALCソフトウエア(http://www.meltcalc.com/)により、所定のパラメーターのもと算出した値である(以下、同様)。前記パラメーターは、パラメーターをオリゴヌクレオチド濃度0.2μmol/L、ナトリウム当量(Na eq.)50mmol/Lとした。前記Tm値は、例えば、従来公知のMELTCALCソフトウエア(http://www.meltcalc.com/)等により算出でき、また、最近隣接法(Nearest Neighbor Method)によっても決定できる(以下、同様)。
 つぎに、前記プライマーセット(2)は、前述のように、下記(F2)のオリゴヌクレオチドからなるプライマーおよび下記(R2)のオリゴヌクレオチドからなるプライマーの少なくとも一方を含むプライマーセットである。
(F2)塩基長が26~36塩基長であり、配列番号1に示す塩基配列において、塩基番号10590のグアニン(g)を3’末端とするオリゴヌクレオチド
(R2)塩基長が22~34塩基長であり、配列番号1に示す塩基配列において、塩基番号10695のシトシン(c)を5’末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチド
 前記(F2)のオリゴヌクレオチドからなるプライマーは、フォワードプライマーであり、以下、F2プライマーともいう。前記F2プライマーは、配列番号1に示す塩基配列における部分配列と同一である。すなわち、MTHFR遺伝子のセンス鎖における部分配列と同一であり、アンチセンス鎖にアニーリング可能である。
 前記(R2)のオリゴヌクレオチドからなるプライマーは、リバースプライマーであり、以下、R2プライマーともいう。前記R2プライマーは、配列番号1に示す塩基配列における部分配列に相補的である。すなわち、MTHFR遺伝子のアンチセンス鎖における部分配列と同一であり、センス鎖にアニーリング可能である。
 前記プライマーセット(2)は、例えば、前記F2プライマーのみを含んでもよいし、前記R2プライマーのみを含んでもよく、好ましくは両方を含む。
 前記プライマーセット(2)は、配列番号1における塩基番号10591~10694の領域を含む核酸配列ならびにその相補鎖を増幅させるためのプライマーセットである。この領域内の塩基番号10649の塩基、配列番号1における塩基番号10649の塩基が、前述の多型MTHFR*1298が生じる部位である。以下、このプライマーセット(2)を、「MTHFR*1298用プライマーセット」ともいう。なお、MTHFR*1298の多型のみを解析する場合には、MTHFR*1298用プライマーセットのみを使用すればよい。
 前記プライマーセット(2)における前記F2プライマーおよびR2プライマーは、前記プライマーセット(1)と同様の理由から、3’末端の塩基が、前述の条件を満たしていればよい。このため、前記F2プライマーおよびR2プライマーの長さ自体は特に制限されず、前述と同様の長さに適宜調整できる。前記各プライマーの長さは、例えば、13~50塩基長の範囲であり、好ましくは14~45塩基長、より好ましくは15~40塩基長である。具体例として、前記F2プライマーは、配列番号1に示す塩基配列において、塩基番号10590のグアニン(g)を3’末端とするオリゴヌクレオチドであり、その塩基長が、例えば、26~36塩基長であり、好ましくは、28~34塩基長、より好ましくは、30~32塩基長である。前記R2プライマーは、配列番号1に示す塩基配列において、塩基番号10695のシトシン(c)を5’末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチドであり、塩基長が、例えば、22~34塩基長であり、好ましくは、26~32塩基長、より好ましくは、27~29塩基長である。前記F2プライマーとR2プライマーは、3’末端がそれぞれ固定されていることから、プライマーから伸長する領域は、例えば、前述のように配列番号1における塩基番号10591~10694の領域であるが、得られる増幅物の全体の長さは、使用するプライマーの長さに応じて変化する。
 前記F2プライマーは、配列番号1に示す塩基配列における部分配列と、完全に同一でもよいし、完全に同一でなくてもよい。すなわち、MTHFR遺伝子のセンス鎖の部分配列と、完全に同一でもよいし、完全に同一でなくてもよい。後者の具体例として、前記F1プライマーは、例えば、前記センス鎖の部分配列と対応させた場合に、3’末端の塩基を除く部分において、前記部分配列と、1個~5個の塩基が異なっていてもよい。
 前記R2プライマーは、配列番号1に示す塩基配列における部分配列に、完全に相補的でもよいし、完全に相補的でなくてもよい。すなわち、MTHFR遺伝子のアンチセンス鎖の部分配列と、完全に同一でもよいし、完全に同一でなくてもよい。後者の具体例として、前記R2プライマーは、例えば、前記アンチセンス鎖の部分配列と対応させた場合に、前記3’末端の塩基を除く部分において、前記部分配列と、1個~5個の塩基が異なっていてもよい。
 以下に、前記F2プライマーおよび前記R2プライマーの具体例を示すが、本発明は、これには限定されない。
Figure JPOXMLDOC01-appb-T000002
 前記F2プライマーと前記R2プライマーとの組み合わせは、何ら制限されない。具体例としては、例えば、配列番号25に示すオリゴヌクレオチドからなるF2-1プライマーと配列番号38に示すオリゴヌクレオチドからなるR2-1プライマーとを含むプライマーセットが特に好ましい。
 また、前述したプライマーセット(1)および(2)の各プライマーは、例えば、増幅反応の反応温度を上げるために、従来公知の任意の配列を5’末端に付加したものでもよい。
 本発明のMTHFR遺伝子増幅用プライマーセットは、例えば、生体試料におけるMTHFR遺伝子を増幅させる際に使用することが好ましい。前記生体試料は、特に制限されず、全血試料があげられる。特に、本発明のMTHFR遺伝子増幅用プライマーセットを、後述するように、多型検出用のプローブとともに使用する場合、増幅反応の反応系における全血試料の割合(全血の含有割合)を、例えば、0.1~0.5体積%とすることが好ましい。この点については、後述する。
<増幅方法>
 本発明の増幅方法は、前述のように、反応系において、試料中の核酸を鋳型として、本発明のMTHFR遺伝子増幅用プライマーまたはプライマーセットを用いて、前記MTHFR遺伝子の増幅を行う増幅工程を含むことを特徴とする、MTHFR遺伝子の増幅方法である。
 本発明のMTHFR遺伝子増幅用プライマーまたはプライマーセットを用いて、増幅反応を行うことにより、前述のように、MTHFR遺伝子の目的領域を増幅できる。本発明のMTHFR遺伝子増幅用プライマーセットが、例えば、前記プライマーセット(1)および前記プライマーセット(2)の両方を含む場合、MTHFR遺伝子における、多型MTHFR*677が発生する部位を含む目的領域と多型MTHFR*1298が発生する部位を含む目的領域とを、同一反応系で同時に増幅できる。本発明の増幅方法は、前記本発明のプライマーまたはプライマーセットを使用することが特徴であって、核酸の増幅法の種類および条件等は、何ら制限されない。
 前記増幅工程において、前記MTHFR遺伝子の増幅は、プライマーとして前記本発明のプライマーまたはプライマーセットを用いた増幅法により行うことができる。前記核酸の増幅法は、前述のように、特に制限されず、例えば、PCR(Polymerase Chain Reaction)法、NASBA(Nucleic Acid Sequence Based Amplification)法、TMA(Transcription-Mediated Amplification)法、SDA(Strand Displacement Amplification)法等があげられ、中でも、PCR法が好ましい。
 前記増幅工程における増幅反応の前記反応系は、例えば、反応液があげられる。前記反応系は、例えば、本発明のプライマーまたはプライマーセットおよび試料を含み、さらに、溶媒、核酸の増幅に使用する各種成分等を含んでもよい。
 本発明を適用する試料は、特に制限されず、例えば、鋳型となる核酸を含む試料があげられる。本発明は、例えば、夾雑物が含まれる試料に適用することが好ましい。前記夾雑物が含まれる試料は、例えば、生体試料があげられる。前記生体試料は、例えば、全血、口腔内細胞(例えば、口腔粘膜)、爪および毛髪等の体細胞、生殖細胞、喀痰、羊水、パラフィン包埋組織、尿、胃液(例えば、胃液洗液)等、それらの懸濁液等があげられる。本発明の増幅方法によれば、例えば、様々な夾雑物が含まれる試料、特に、全血および口腔内細胞等の生体試料であっても、その影響を受け難い。このため、本発明によれば、MTHFR遺伝子の前記目的領域を特異的に増幅できる。本発明によれば、従来法では増幅が困難であった夾雑物が多く含まれる試料であっても、例えば、前記試料からの夾雑物の除去、前記試料の精製等の前処理を行うことなく、前記試料をそのまま使用することが可能である。したがって、例えば、前記試料の前処理等の観点からも、従来法より、本発明は、さらに迅速にMTHFR遺伝子を増幅可能といえる。
 前記反応系において、前記試料の割合は、特に制限されない。前記試料が、例えば、生体試料の場合の場合、前記反応系における試料の割合は、下限が、例えば、0.01体積%以上、好ましくは、0.05体積%以上、より好ましくは、0.1体積%以上であり、上限が、例えば、2体積%以下、好ましくは、1体積%以下、より好ましくは、0.5体積%以下である。具体例として、前記生体試料が全血試料の場合、前記反応系における前記全血試料の割合は、例えば、同様である。
 増幅反応後の前記反応系について、例えば、後述するように光学的な検出を行う場合、前記反応系における前記生体試料の割合は、例えば、0.1~0.5体積%に設定することが好ましい。前記生体試料は、特に制限されず、例えば、全血試料である。前記反応系における全血試料の割合は、前述のような体積割合(例えば、0.1~0.5体積%)ではなく、ヘモグロビン(以下、「Hb」という)の重量割合で表すこともできる。この場合、前記反応系における全血試料の割合は、Hb量に換算して、例えば、0.565~113g/Lの範囲が好ましく、より好ましくは、2.825~56.5g/Lの範囲、さらに好ましくは、5.65~28.25g/Lの範囲である。なお、前記反応系における全血試料の割合は、例えば、前記体積割合とHb重量割合の両方を満たしてもよいし、いずれか一方を満たしてもよい。
 前記全血は、例えば、生体から採取した全血、採取後に処理した全血のいずれでもよく、具体例として、溶血した全血、未溶血の全血、抗凝固全血、凝固画分を含む全血等のいずれであってもよい。
 前記増幅工程において、前記試料中の核酸は、例えば、一本鎖核酸でもよいし、二本鎖核酸でもよい。前記試料中の核酸は、例えば、DNAである。前記DNAは、例えば、生体試料等の試料に元来含まれるDNAでもよいし、核酸の増幅法により増幅させたDNA増幅物でもよい。後者の場合、例えば、前記試料中のRNAから合成したcDNAでもよい。前記試料中の前記RNAは、例えば、トータルRNA、mRNA等があげられ、前記cDNAは、例えば、前記RNAからRT-PCR(Reverse Transcription PCR)により合成できる。
 本発明の増幅方法は、例えば、前記増幅工程における増幅反応の開始に先立ち、前記反応系に、さらにアルブミンを添加することが好ましい。アルブミンの添加によって、例えば、前述のような沈殿物および濁りの発生による影響を、より一層低減でき、且つ、増幅効率を、さらに向上できる。具体的には、例えば、前記増幅工程の前に、アルブミンを添加することが好ましい。前記増幅工程の前とは、例えば、増幅工程において、二本鎖DNAを一本鎖DNAに解離する前であってもよい。
 前記反応系において、アルブミンの割合は、特に制限されない。前記割合は、例えば、0.01~2重量%の範囲、好ましくは、0.1~1重量%の範囲、より好ましくは、0.2~0.8重量%の範囲である。前記アルブミンは、特に制限されず、例えば、ウシ血清アルブミン(BSA)、ヒト血清アルブミン、ラット血清アルブミン、ウマ血清アルブミン等があげられる。これらは、いずれか1種類でもよいし、2種類以上を併用してもよい。
 つぎに、本発明の増幅方法に関し、全血試料中のDNAを鋳型とし、本発明のMTHFR遺伝子増幅用プライマーセットとして前記プライマーセット(1)および前記プライマーセット(2)を含むプライマーセットを使用し、PCRによって、一つの反応液中で、同時に、MTHFR遺伝子の2つの目的領域を増幅する例をあげて説明する。前記2つの目的領域は、多型MTHFR*677が発生する部位を含む目的領域と多型MTHFR*1298が発生する部位を含む目的領域である。本発明は、本発明のMTHFR遺伝子増幅用プライマーセットを使用することが特徴であり、他の構成および条件は何ら制限されない。
 まず、PCRの反応液を調製する。前記反応液は、前記プライマーセットおよび前記全血試料を含み、さらに、前記増幅反応に使用可能な他の成分を適宜含むことが好ましい。
 前記反応液において、各プライマーの割合は、特に制限されない。前記反応液において、前記F1プライマーおよび前記F2プライマーの割合は、それぞれ、0.1~2μmol/Lが好ましく、より好ましくは、0.25~1.5μmol/L、特に好ましくは、0.5~1μmol/Lである。また、前記反応液において、前記R1プライマーおよび前記R2プライマーの割合は、それぞれ、0.1~2μmol/Lが好ましく、より好ましくは、0.25~1.5μmol/L、特に好ましくは、0.5~1μmol/Lである。前記プライマーセット(1)および前記プライマーセット(2)において、それぞれ、FプライマーとRプライマーとの割合(F:R、モル比)は、特に制限されず、例えば、1:0.25~1:4、好ましくは、1:0.5~1:2である。
 前記反応液における前記全血試料の割合は、特に制限されず、例えば、前述の範囲が好ましい。前記全血試料は、例えば、そのまま前記反応液に添加してもよいし、予め、溶媒で希釈してから前記反応液に添加してもよい。前記溶媒は、例えば、水および緩衝液等があげられる。前記全血試料を予め希釈する場合、希釈率は、特に制限されず、例えば、前記反応液における最終的な全血割合が、前記範囲となるように設定できる。前記希釈率の具体例は、例えば、100~2000倍、好ましくは、200~1000倍である。
 前記他の成分は、特に制限されず、従来公知の成分があげられ、それらの割合は、特に制限されない。前記成分は、例えば、溶媒等があげられる。前記成分は、例えば、PCRに使用する各種成分があげられ、具体例として、DNAポリメラーゼ等のポリメラーゼ、ヌクレオシド三リン酸等があげられる。前記成分は、例えば、前述のように、アルブミンがあげられる。前記反応液において、各成分の添加順序は、何ら制限されない。
 前記ポリメラーゼは、特に制限されず、例えば、従来公知の耐熱性細菌由来のポリメラーゼが使用できる。具体例として、テルムス・アクアティカス(Thermus aquaticus)由来DNAポリメラーゼ(米国特許第4,889,818号および同第5,079,352号)(商品名Taqポリメラーゼ)、テルムス・テルモフィラス(Thermus thermophilus)由来DNAポリメラーゼ(WO 91/09950)(rTth DNA polymerase)、ピロコッカス・フリオサス(Pyrococcus furiosus)由来DNAポリメラーゼ(WO 92/9689)(Pfu DNA polymerase:Stratagenes社製)、テルモコッカス・リトラリス(Thermococcus litoralis)由来ポリメラーゼ(EP-A 455 430)(商標Vent:New England Biolabs社製)等が商業的に入手可能であり、中でも、テルムス・アクアティカス(Thermus aquaticus)由来の耐熱性ポリメラーゼが好ましい。
 前記反応液において、DNAポリメラーゼの割合は、特に制限されず、例えば、1~100U/mL、好ましくは、5~50U/mL、より好ましくは、20~30U/mLである。DNAポリメラーゼの活性単位(U)は、一般に、活性化サケ精子DNAを鋳型プライマーとして、活性測定用反応液中、74℃で、30分間に10nmolの全ヌクレオチドを酸不溶性沈殿物に取り込む活性が1Uである。前記活性測定用反応液の組成は、例えば、25mmol/L TAPS buffer(pH9.3、25℃)、50mmol/L KCl、2mmol/L MgCl、1mmol/Lメルカプトエタノール、200μmol/L dATP、200μmol/L dGTP、200μmol/L dTTP、100μmol/L「α-32P」dCTP、0.25mg/mL活性化サケ精子DNAである。
 前記ヌクレオシド三リン酸は、通常、dNTP(dATP、dCTP、dGTPおよびdTTPまたはdUTP)があげられる。前記反応液において、dNTPの割合は、特に制限されず、例えば、0.01~1mmol/L、好ましくは、0.05~0.5mmol/L、より好ましくは、0.1~0.3mmol/Lである。
 前記溶媒は、例えば、緩衝液、水等があげられる。前記緩衝液は、例えば、Tris-HCl、Tricine、MES、MOPS、HEPES、CAPS等があげられ、市販のPCR用緩衝液および市販のPCRキットの緩衝液等が使用できる。
 前記反応液は、前記その他の成分として、例えば、さらに、ヘパリン、ベタイン、KCl、MgCl、MgSO、グリセロール等を含んでもよく、これらの割合は、例えば、PCR反応を阻害しない範囲で設定すればよい。
 前記反応液の全体積は、特に制限されず、例えば、サーマルサイクラー等の使用する機器等に応じて適宜設定できる。前記体積は、通常、例えば、1~500μLであり、好ましくは、10~100μLである。
 つぎに、PCRを行う。前記PCRのサイクル条件は、特に制限されない。具体例として、例えば、(1)二本鎖DNAの一本鎖DNAへの解離、(2)前記一本鎖DNAへのプライマーのアニーリング、(3)プライマーの伸長は、それぞれ、下記表3の条件が例示できる。PCRのサイクル数は、特に制限されず、下記(1)~(3)の3ステップを1サイクルとして、例えば、30サイクル以上が好ましい。前記サイクル数の上限は、特に制限されず、例えば、100サイクル以下、好ましくは、70サイクル以下、さらに好ましくは、50サイクル以下である。各ステップの温度変化は、例えば、サーマルサイクラー等を用いて自動的に制御できる。本発明のMTHFR遺伝子増幅用プライマーセットを使用した場合、前述のように、増幅効率に優れる。このため、従来法では、50サイクルに3時間程度を要していたのに対して、本発明によれば、例えば、約1時間程度、好ましくは1時間以内で、50サイクルを完了することも可能である。
Figure JPOXMLDOC01-appb-T000003
 このようにして、同一の反応系において、同時に、MTHFR遺伝子における前記2つの目的領域を増幅できる。前記2つの目的領域のうちいずれか一方を増幅する場合、例えば、前記プライマーセット(1)および前記プライマーセット(2)のうち、前記目的領域に対応するいずれか一方のプライマーセットを、本発明のMTHFR遺伝子増幅用プライマーセットとして使用すればよい。
 本発明の増幅方法は、さらに、前記増幅工程において得られた目的領域の増幅物を検出する検出工程を含んでもよい。これによって、例えば、後述するように、前記目的領域の増幅の有無、MTHFR遺伝子の前記目的領域における多型、例えば、MTHFR*677またはMTHFR*1298を検出できる。前記増幅の有無および前記多型の検出は、例えば、従来公知の方法によって確認できる。具体的には、例えば、前記増幅工程において、前記反応系に、さらに、MTHFR遺伝子の検出対象部位にハイブリダイズ可能なプローブを添加しておく。前記プローブは、例えば、蛍光物質を有する標識プローブがあげられる。そして、前記増幅工程後、前記検出工程において、前記反応系について、前記標識プローブの前記蛍光物質について、蛍光強度を測定する。これによって、前記目的領域の増幅の有無および前記検出対象部位の多型を確認できる。また、増幅させる目的領域が2つの場合には、例えば、前記増幅工程において、前記反応系に、さらに、MTHFR遺伝子の各検出対象部位にハイブリダイズ可能なプローブを2種類添加しておく。そして、前記検出工程において、前記反応系について、前記各標識プローブの前記蛍光物質の蛍光強度を測定する。これによって、前記各目的領域の増幅の有無および各検出対象部位の多型を、それぞれ確認できる。
 MTHFR遺伝子の前記目的領域の増幅物の検出、および、MTHFR遺伝子における多型、例えば、MTHFR*677およびMTHFR*1298の検出については、それぞれ、本発明の増幅方法のその他の形態として、以下に説明する。
<増幅物検出方法>
 本発明の増幅物の検出方法は、本発明のプライマーまたは本発明のプライマーセットを使用することを特徴し、下記(A)工程を含むことを特徴とする、MTHFR遺伝子の増幅物を検出する増幅物検出方法である。
(A)本発明のMTHFR遺伝子の増幅方法により、MTHFR遺伝子を増幅させる増幅工程
前記(A)工程は、例えば、反応系において、試料中の核酸を鋳型として、本発明のMTHFR遺伝子増幅用プライマーセットを用いて、MTHFR遺伝子を増幅させる増幅工程ということもできる(以下、同様)。
 本発明の検出方法は、例えば、さらに、プローブを用いて、前記MTHFR遺伝子の増幅物を検出する工程を含むことが好ましい。具体的には、例えば、下記(A)、(B)および(C)工程を含むことが好ましい。
(A)本発明のMTHFR遺伝子の増幅方法により、MTHFR遺伝子を増幅させる増幅工程
(B)前記(A)工程における増幅物および前記MTHFR遺伝子の増幅物にハイブリダイズ可能なプローブを含む反応系の温度を変化させ、前記増幅物と前記プローブとのハイブリッドの融解状態を示すシグナル値を測定する測定工程
(C)前記温度変化に伴う前記シグナル値の変動から、前記MTHFR遺伝子の増幅物を検出する検出工程
 本発明の増幅物検出方法において、前記(A)工程は、前述した本発明のMTHFR遺伝子の増幅方法における記載を引用できる。
 本発明の増幅物の検出方法は、例えば、前記プローブの存在下で、MTHFR遺伝子の増幅を行ってもよい。すなわち、本発明の増幅物の検出方法は、例えば、前記(A)工程において、前記プローブを含む前記反応系において、MTHFR遺伝子の増幅を行ってもよく、さらに、前記(B)工程において、例えば、前記(A)工程の前記反応系の温度を変化させ、前記シグナル値の測定を行ってもよい。
 本発明の増幅物検出方法は、後述する本発明の多型の検出方法における記載を引用できる。具体的に、例えば、本発明の増幅物検出方法における前記(A)工程および前記(B)工程は、後述する本発明の多型の検出方法における(A)工程および(B)工程の記載を引用できる。また、例えば、本発明の増幅物検出方法における前記(C)工程は、後述する本発明の多型の検出方法における(D)工程を引用でき、具体的には、後述する(D)工程において、合わせて前記(C)工程について説明する。
<多型検出方法>
 本発明の多型検出方法は、前述のように、下記(A)工程を含むことを特徴とする、MTHFR遺伝子の多型検出方法である。
(A)本発明の増幅方法により、MTHFR遺伝子を増幅させる増幅工程
 本発明の多型検出方法は、例えば、さらに、プローブを用いて、MTHFR遺伝子の検出対象部位の多型を検出する工程を含むことが好ましい。具体的には、例えば、下記(A)、(B)および(D)工程を含むことが好ましい。
(A)本発明の増幅方法により、MTHFR遺伝子を増幅させる増幅工程
(B)前記(A)工程における増幅物および前記検出対象部位にハイブリダイズ可能なプローブを含む反応系の温度を変化させ、前記増幅物と前記プローブとのハイブリッドの融解状態を示すシグナル値を測定する測定工程
(D)前記温度変化に伴う前記シグナル値の変動から、前記検出対象部位の前記多型を検出する検出工程
 本発明のプライマーまたはプライマーセットを用いて、MTHFR遺伝子を増幅することによって、前述のように、MTHFR遺伝子における前記検出対象部位を含む目的領域を増幅できる。このため、例えば、前記目的領域における前記検出対象部位の多型を、感度良く解析できる。
 前記増幅工程(A)は、前述の本発明の増幅方法と同様に行うことができる。本発明の増幅物検出方法において、前記(A)工程は、前述した本発明のMTHFR遺伝子の増幅方法における記載を引用できる。
 前記測定工程(B)において、前記プローブは、特に制限されない。前記プローブは、例えば、MTHFR*677の検出対象部位にハイブリダイズするプローブおよびMTHFR*1298の検出対象部位にハイブリダイズするプローブがあげられる。以下、前者を「MTHFR*677用プローブ」、後者を「MTHFR*1298用プローブ」ともいう。これらのプローブは、MTHFR遺伝子において、前記検出対象部位を含む検出対象配列に相補的なプローブであることが好ましい。本発明は、例えば、MTHFR*677用プローブおよびMTHFR*1298用プローブのうち、いずれか1種類を使用してもよいし、2種類を併用してもよい。本発明において使用するプローブは、例えば、本発明のMTHFR遺伝子増幅用プライマーまたはプライマーセットによって増幅させる目的領域の種類に応じて、適宜決定できる。2種類のプローブを併用することによって、例えば、同一反応系を用いて、2つの検出対象部位の多型、すなわちMTHFR*677およびMTHFR*1298を解析できる。
 前記プローブは、例えば、MTHFR遺伝子のセンス鎖にハイブリダイズ可能なプローブでもよいし、アンチセンス鎖にハイブリダイズ可能なプローブでもよい。前記プローブの設計方法は、特に制限されず、従来公知の方法が採用できる。例えば、前記検出対象部位を含む検出対象配列を、MTHFR遺伝子のセンス鎖の配列に設定し、前記配列に基づいて設計してもよいし、前記検出対象配列を、アンチセンス鎖の配列に設定し、前記配列に基づいて設計してもよい。前記検出対象配列における前記検出対象部位の塩基は、前記検出対象部位における各多型の種類に応じて、適宜決定できる。
 MTHFR*677の場合、配列番号1における塩基番号8747の塩基として、「c」および「t」が知られている。そこで、例えば、センス鎖において塩基番号8747がシトシン(c)である検出対象配列に相補的なプローブ、および、センス鎖において塩基番号8747がチミン(t)である検出対象配列に相補的なプローブがあげられる。これらは、センス鎖にハイブリダイズするセンス鎖の検出用プローブといえる。また、そのアンチセンス鎖の配列に相補的なプローブがあげられ、これらは、アンチセンス鎖にハイブリダイズするアンチセンス鎖の検出用プローブといえる。
 MTHFR*1298の場合、配列番号1における塩基番号10649の塩基として、「a」および「c」が知られている。そこで、例えば、センス鎖において塩基番号10649がアデニン(a)である検出対象配列に相補的なプローブ、および、センス鎖において塩基番号10649がシトシン(c)である検出対象配列に相補的なプローブがあげられる。これらは、センス鎖にハイブリダイズするセンス鎖の検出用プローブといえる。また、そのアンチセンス鎖の配列に相補的なプローブがあげられ、これらは、アンチセンス鎖にハイブリダイズするアンチセンス鎖の検出用プローブといえる。
 このように、多型が生じる検出対象部位の塩基を、前述のいずれかの塩基に決定し、プローブを設計しても、後述の方法により、MTHFR遺伝子の各検出対象部位が、どのような多型を示すかを判断可能である。
 前記プローブの長さは、特に制限されず、例えば、5~50塩基長であり、好ましくは、10~30塩基長である。
 前記プローブの具体例は、例えば、下記(P1)のオリゴヌクレオチド、(P1’)のオリゴヌクレオチド、(P2)のオリゴヌクレオチドおよび(P2’)のオリゴヌクレオチドの少なくともいずれかを含むプローブがあげられる。
(P1)塩基長が17~50塩基長であり、配列番号1における塩基番号8744~8760を含む塩基配列に相補的な塩基配列からなり、前記塩基番号8744の塩基に相補的な塩基を、3’末端領域に有するオリゴヌクレオチド
(P1’)前記(P1)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
(P2)塩基長が14~50塩基長であり、配列番号1における塩基番号10643~10656を含む塩基配列に相補的な塩基配列からなり、前記塩基番号10643の塩基に相補的な塩基を、3’末端領域に有するオリゴヌクレオチド
(P2’)前記(P2)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
 前記プローブは、例えば、前記オリゴヌクレオチドを含むプローブでもよいし、前記オリゴヌクレオチドからなるプローブでもよい。
 これらのプローブは、一例であって、本発明は、これらには制限されない。以下、前記(P1)のオリゴヌクレオチドを含むプローブをP1プローブ、前記(P1’)のオリゴヌクレオチドを含むプローブをP1’プローブ、前記(P2)のオリゴヌクレオチドを含むプローブをP2プローブ、前記(P2’)のオリゴヌクレオチドを含むプローブをP2’プローブという。これらのプローブを、本発明のMTHFR遺伝子の検出用プローブともいう。
 前記P1プローブおよびP1’プローブは、前記MTHFR*677用プローブの一例である。これらのプローブは、配列番号1の塩基配列における塩基番号8747の塩基(y)の多型(c/t)を検出するためのプローブである。前記(P1)のオリゴヌクレオチドは、例えば、MTHFR遺伝子のセンス鎖に相補的であり、センス鎖とのハイブリダイゼーションにより、前記多型を確認できる。前記(P1’)のオリゴヌクレオチドは、例えば、MTHFR遺伝子のセンス鎖に相同的であり、アンチセンス鎖とのハイブリダイゼーションにより、前記多型を確認できる。
 前記(P1)および(P1’)のオリゴヌクレオチドは、その塩基長が、前述のように、17~50塩基長であり、例えば、17~40塩基長が好ましく、より好ましくは、17~30塩基長であり、さらに好ましくは、17~21塩基長である。
 前記(P1)のオリゴヌクレオチドは、配列番号1に示す塩基配列における塩基番号8747の塩基(y)に対応する塩基(r)を含む。前記rは、グアニン(g)またはアデニン(a)である。前記P1プローブにおいて、「rがg」の場合、前記(P1)のオリゴヌクレオチドは、センス鎖における前記検出対象部位(y)が野生型(c)の検出対象配列とパーフェクトマッチし、「rがa」の場合、前記(P1)のオリゴヌクレオチドは、センス鎖における前記検出対象部位(y)が変異型(t)の検出対象配列とパーフェクトマッチする。このため、前記増幅方法により得られた前記増幅物と前記(P1)のオリゴヌクレオチドとが、パーフェクトマッチか否かにより、前記検出対象部位の多型が、野生型か変異型かを確認できる。
 前記(P1)のオリゴヌクレオチドは、前記塩基番号8744の塩基に相補的な塩基を、前記3’末端領域に有し、好ましくは、3’末端から数えて1~4番目の位置、より好ましくは、1~3番目、特に好ましくは1番目(3’末端)または2番目に有する。前記(P1)のオリゴヌクレオチドは、例えば、下記表4の配列番号44~48のいずれかに示す塩基配列からなるオリゴヌクレオチドが例示できる。前記(P1)のオリゴヌクレオチドの塩基配列において、塩基(r)は、グアニン(g)およびアデニン(a)のいずれでもよく、好ましくは、アデニン(a)である。
Figure JPOXMLDOC01-appb-T000004
 前記(P1’)のオリゴヌクレオチドは、前述のように、前記(P1)のオリゴヌクレオチドに相補的である。前記(P1’)のオリゴヌクレオチドは、塩基長が17~50塩基長であり、配列番号1における塩基番号8744~8760を含む塩基配列に相同的な塩基配列からなり、前記塩基番号8744の塩基を、5’末端領域に有するオリゴヌクレオチドということもできる。
 前記(P1’)のオリゴヌクレオチドは、前記(P1)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチドの場合、配列番号1に示す塩基配列における塩基番号8747の塩基(y)を含む。前記yは、シトシン(c)またはチミン(t)である。前記P1’プローブにおいて、「yがc」の場合、前記(P1’)のオリゴヌクレオチドは、アンチセンス鎖における前記検出対象部位(r)が野生型(g)の検出対象配列とパーフェクトマッチし、「yがt」の場合、前記(P1’)のオリゴヌクレオチドは、アンチセンス鎖における前記検出対象部位(r)が変異型(a)の検出対象配列とパーフェクトマッチする。このため、前記増幅方法により得られた前記増幅物と前記(P1’)のオリゴヌクレオチドとが、パーフェクトマッチか否かにより、前記検出対象部位の多型が、野生型か変異型かを確認できる。
 前記P2プローブおよびP2’プローブは、前記MTHFR*1298用プローブの一例である。これらのプローブは、配列番号1に示す塩基配列において、塩基番号10649の塩基(m)の多型(a/c)の多型を検出するためのプローブである。前記(P2)のオリゴヌクレオチドは、例えば、MTHFR遺伝子のセンス鎖に相補的であり、センス鎖とのハイブリダイゼーションにより、前記多型を確認できる。前記(P2’)のオリゴヌクレオチドは、例えば、MTHFR遺伝子のセンス鎖に相同的であり、アンチセンス鎖とのハイブリダイゼーションにより、前記多型を確認できる。
 前記(P1)および(P1’)のオリゴヌクレオチドは、その塩基長が、前述のように、14~50塩基長であり、例えば、14~40塩基長が好ましく、より好ましくは、14~30塩基長であり、さらに好ましくは、14~19塩基長である。
 前記(P2)のオリゴヌクレオチドは、配列番号1に示す塩基配列における塩基番号10649の塩基(m)に対応する塩基(k)を含む。前記kは、チミン(t)、ウラシル(u)またはグアニン(g)である。前記(P2)のオリゴヌクレオチドにおいて、「rがtまたはu」の場合、前記(P2)のオリゴヌクレオチドは、センス鎖における前記検出対象部位(m)が野生型(a)の検出対象配列とパーフェクトマッチし、「rがg」の場合、前記(P2)のオリゴヌクレオチドは、センス鎖における前記検出対象部位(m)が変異型(c)の検出対象配列とパーフェクトマッチする。このため、前記増幅方法により得られた前記増幅物と前記(P2)のオリゴヌクレオチドとが、パーフェクトマッチか否かにより、前記検出対象部位の多型が、野生型か変異型かを確認できる。
 前記(P2)のオリゴヌクレオチドは、前記塩基番号10643の塩基に相補的な塩基を、前記3’末端領域に有し、好ましくは、3’末端から数えて1~4番目の位置、より好ましくは、1~3番目、特に好ましくは1番目(3’末端)または2番目に有する。前記(P1)のオリゴヌクレオチドは、例えば、前記表4の配列番号49~54のいずれかに示す塩基配列からなるオリゴヌクレオチドが例示できる。前記(P2)のオリゴヌクレオチドの塩基配列において、塩基(k)は、チミン(t)、ウラシル(u)およびグアニン(g)のいずれでもよく、好ましくは、グアニン(g)である。
 前記(P2’)のオリゴヌクレオチドは、前述のように、前記(P2)のオリゴヌクレオチドに相補的である。前記(P2’)のオリゴヌクレオチドは、塩基長が14~50塩基長であり、配列番号1における塩基番号10643~10656を含む塩基配列に相同的な塩基配列からなり、前記塩基番号10643の塩基を、5’末端領域に有するオリゴヌクレオチドということもできる。
 前記(P2’)のオリゴヌクレオチドは、前記(P2)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチドの場合、配列番号1に示す塩基配列における塩基番号10649の塩基(m)を含む。前記mは、アデニン(a)またはシトシン(c)である。前記(P2’)のオリゴヌクレオチドにおいて、「mがa」の場合、前記(P2’)のオリゴヌクレオチドは、アンチセンス鎖における前記検出対象部位(k)が野生型(t)の検出対象配列とパーフェクトマッチし、「mがc」の場合、前記(P2’)のオリゴヌクレオチドは、アンチセンス鎖における前記検出対象部位(k)が変異型(g)の検出対象配列とパーフェクトマッチする。このため、前記増幅方法により得られた前記増幅物と前記(P2’)のオリゴヌクレオチドとが、パーフェクトマッチか否かにより、前記検出対象部位の多型が、野生型か変異型かを確認できる。
 前記MTHFR*677用プローブは、前記P1プローブの中でも、配列番号46に示す塩基配列からなるオリゴヌクレオチドからなるプローブ(P1-1)が好ましく、MTHFR*1298用プローブは、前記P2プローブの中でも、配列番号52に示す塩基配列からなるオリゴヌクレオチドからなるプローブ(P2-1)が好ましい。前記表4において、前記P1プローブの「Tm(℃)」は、前記塩基(r)がアデニン(a)である配列と、それに完全に相補的な配列とがハイブリッドした場合のTm(℃)であり、前記MELTCALCソフトウエアにより、前記パラメーターのもと算出した値である。前記表4において、前記P2プローブの「Tm(℃)」は、前記塩基(k)がグアニン(g)である配列と、それに完全に相補的な配列とがハイブリッドした場合のTm(℃)であり、前述と同様にして算出した値である。
 前記P1プローブおよび前記P2プローブは、例えば、前記表4に示す各配列番号に示すオリゴヌクレオチドからなるプローブでもよいし、前記オリゴヌクレオチドを含むプローブでもよい。
 前記プローブは、例えば、標識物質を有する標識プローブが好ましく、例えば、前記オリゴヌクレオチドが、前記標識物質で標識(修飾)されていることが好ましい。前記オリゴヌクレオチドにおいて、前記標識物質により標識化される部位は、特に制限されず、例えば、5’末端領域または3’末端領域が好ましく、より好ましくは、5’末端または3’末端である。後述するように、前記オリゴヌクレオチドにおいて、前記標識物質により標識化される塩基は、例えば、シトシン(c)またはグアニン(g)が好ましく、より好ましくは、シトシン(c)である。前記標識物質は、例えば、塩基を直接標識化してもよいし、前記塩基を間接的に標識化してもよい。後者の場合、例えば、前記塩基を含むヌクレオチド残基のいずれかの部位を標識することによって、前記塩基を間接的に標識化できる。
 前記(P1)のオリゴヌクレオチドおよび(P2)のオリゴヌクレオチドは、3’末端領域に、前記標識物質を有することが好ましく、具体的には、例えば、3’末端から数えて1~4番目の塩基の位置に、前記標識物質を有することが好ましく、より好ましくは、3’末端から数えて1~4番目の塩基であり、さらに好ましくは、3’末端から数えて1~3番目の塩基、特に好ましくは、3’末端から数えて2番目または3’末端の塩基である。前記(P1)のオリゴヌクレオチドは、例えば、前記塩基番号8744~8747の塩基に相補的ないずれかの塩基が、前記標識物質を有することが好ましく、より好ましくは、前記塩基番号8744の塩基に相補的な塩基(c)が、前記標識物質を有することが好ましい。前記(P2)のオリゴヌクレオチドは、例えば、前記塩基番号10643~10646の塩基に相補的ないずれかの塩基が、前記標識物質を有することが好ましく、より好ましくは、前記塩基番号10643の塩基に相補的な塩基(c)が、前記標識物質を有することが好ましい。
 前記(P1’)のオリゴヌクレオチドおよび(P2’)のオリゴヌクレオチドは、5’末端領域に、前記標識物質を有することが好ましく、具体的には、例えば、5’末端から数えて1~4番目の塩基の位置に、前記標識物質を有することが好ましく、より好ましくは、5’末端から数えて1~4番目の塩基であり、さらに好ましくは、5’末端から数えて1~3番目の塩基、特に好ましくは、5’末端から数えて2番目または5’末端の塩基である。前記(P1’)のオリゴヌクレオチドは、例えば、前記塩基番号8744~8747のいずれかの塩基に、前記標識物質を有することが好ましく、より好ましくは、前記塩基番号8744の塩基(g)に、前記標識物質を有することが好ましい。前記(P2’)のオリゴヌクレオチドは、例えば、前記塩基番号10643~10646の塩基のいずれかの塩基に、前記標識物質を有することが好ましく、より好ましくは、前記塩基番号10643の塩基(g)に、前記標識物質を有することが好ましい。
 前記標識物質は、特に制限されず、例えば、前記標識プローブが単独であるか、ハイブリッドを形成しているかによって、シグナルを発するものが好ましい。前記シグナルの種類は、特に制限されず、例えば、蛍光、呈色等があげられる。前記呈色は、例えば、発色でもよいし、変色でもよい。前記シグナルが蛍光の場合、シグナル値は、例えば、蛍光強度があげられる。前記シグナルが呈色の場合、前記シグナル値は、例えば、反射率、吸光度、透過率等があげられる。前記シグナルは、例えば、前記標識物質から直接発せられてもよいし、間接的に発せられてもよい。
 前記標識物質は、特に制限されず、例えば、蛍光団等の蛍光物質等があげられる。前記蛍光物質は、例えば、フルオレセイン、リン光体、ローダミン、ポリメチン色素誘導体等があげられる。市販の蛍光物質は、例えば、Pacific Blue(商標名、モレキュラープローブ社製)、BODIPY FL(商標名、モレキュラープローブ社製)、FluorePrime(商品名、アマシャムファルマシア社製)、Fluoredite(商品名、ミリポア社製)、FAM(商標名、ABI社製)、Cy3およびCy5(商品名、アマシャムファルマシア社製)、TAMRA(商標名、モレキュラープローブ社製)等があげられる。前記蛍光物質の検出条件は、特に制限されず、例えば、使用する蛍光物質の種類により適宜決定できる。具体例として、Pacific Blueは、例えば、検出波長450~480nm、TAMRAは、例えば、検出波長585~700nm、BODIPY FLは、例えば、検出波長515~555nmで検出できる。このような標識プローブを使用すれば、例えば、前記シグナルとして蛍光を検出し、前記シグナル値として蛍光強度を測定することにより、蛍光強度の変動から、ハイブリダイズと解離とを容易に確認できる。
 本発明は、前述のように、例えば、同一反応系で、MTHFR遺伝子の2つの目的領域を増幅できる。このため、前記MTHFR*677用プローブと前記MTHFR*1298用プローブとを、同一反応系で併用することによって、MTHFR遺伝子におけるMTHFR*677およびMTHFR*1298の多型を、同一反応系において判別できる。この場合、前記各プローブは、それぞれ、異なる条件で検出される異なる標識物質を有することが好ましい。このように、異なる標識物質を使用することによって、同一反応系であっても、例えば、検出条件を変えることによって、各検出対象部位の多型を、別個に解析可能となる。
 2種類以上のプローブを併用する場合、各プローブは、例えば、前記標識物質として、異なる蛍光色素、具体的には、異なる波長で検出される蛍光色素を有することが好ましい。前記プローブがグアニン消光プローブの場合、例えば、前記表4に示すMTHFR*677用プローブ(P1プローブ)およびMTHFR*1298用プローブ(P2プローブ)は、例えば、3’末端領域、好ましくは3’末端のシトシン(c)を、前記蛍光色素で標識化する。具体的には、それぞれ、前記蛍光色素として、例えば、TAMRA、BODIPY FL等の異なる蛍光色素で標識化することが好ましい。前記プローブの5’末端を蛍光色素で標識化した場合、前記プローブは、例えば、その3’末端に、さらにリン酸基が付加されてもよい。これによって、例えば、前記プローブ自体が伸長することを防止できる。
 前記標識プローブは、例えば、単独でシグナルを示し、且つハイブリッド形成によりシグナルを示さない標識プローブ、または、単独でシグナルを示さず、且つハイブリッド形成によりシグナルを示す標識プローブが好ましい。前記標識物質が蛍光物質の場合、前記標識プローブは、例えば、前記蛍光物質で標識化され、単独で蛍光を示し、且つハイブリッド形成により蛍光が減少(例えば、消光)するプローブが好ましい。このような現象は、一般に、蛍光消光現象(Quenching phenomenon)と呼ばれる。この現象を利用したプローブは、一般に、蛍光消光プローブと呼ばれる。中でも、前記蛍光消光プローブは、例えば、オリゴヌクレオチドの3’末端もしくは5’末端が前記蛍光物質で標識化されていることが好ましく、標識化される前記末端の塩基は、シトシン(c)またはグアニン(g)が好ましい。前記末端の塩基がシトシン(c)の場合、前記蛍光消光プローブは、例えば、被検核酸とハイブリッドを形成した際、前記被検核酸における、標識化された末端のシトシン(c)と対をなす塩基または前記対をなす塩基から1~3塩基離れた塩基がグアニン(g)となるように、前記蛍光消光プローブの塩基配列を設計することが好ましい。前記対をなす塩基から1塩基離れた塩基とは、例えば、前記対をなす塩基の隣の塩基を意味する。このようなプローブは、一般的にグアニン消光プローブと呼ばれ、いわゆるQProbe(登録商標)として知られている。前記グアニン消光プローブが前記被検核酸にハイブリダイズすると、例えば、前記蛍光物質で標識化された末端のシトシン(c)が、前記被検核酸におけるグアニン(g)に近づくことによって、前記蛍光物質の発光が弱くなる、すなわち蛍光強度が減少するという現象を示す。前記プローブを使用すれば、例えば、蛍光強度の変動により、ハイブリダイズと解離とを容易に確認できる。同様に、前記末端の塩基がグアニン(g)の場合、前記蛍光消光プローブは、例えば、前記被検核酸とハイブリッドを形成した際、前記被検核酸における、標識化された末端のグアニン(g)と対をなす塩基または前記対をなす塩基から1~3塩基離れた塩基がシトシン(c)となるように、前記蛍光消光プローブの塩基配列を設計することが好ましい。
 前記プローブは、例えば、3’末端にリン酸基が付加されてもよい。前述のように、前記増幅工程は、例えば、プローブの共存下で行ってもよい。このような場合、前記プローブの3’末端にリン酸基を付加させておけば、前記増幅工程において前記プローブ自体が伸長することを十分に防止できる。また、前記プローブの3’末端に、例えば、前述のような標識物質を付加することによっても、同様の効果が得られる。
 前記測定工程(B)の前記反応系において、前記プローブの割合は、特に制限されず、例えば、1種類のプローブについて、10~1000nmol/Lの範囲が好ましく、より好ましくは、20~500nmol/Lである。
 前記プローブが、前記標識物質として蛍光物質を有する標識プローブの場合、例えば、検出する蛍光強度を調整するために、前記標識プローブと同じ配列である非標識プローブを併用してもよい。前記非標識プローブは、例えば、その3’末端にリン酸が付加されてもよい。前記標識プローブと前記非標識プローブとのモル比は、例えば、1:10~10:1が好ましい。前記反応系において、前記増幅物と前記プローブとのモル比は、例えば、1:10~10:1が好ましい。前記増幅物と前記プローブとのモル比は、例えば、二本鎖核酸に対するモル比でもよいし、一本鎖核酸に対するモル比でもよい。
 前記測定工程(B)において、前記プローブは、例えば、前記増幅工程(A)で得られた増幅物を含む反応系に、含まれていればよく、その添加のタイミングは、特に制限されない。前記測定工程(B)における前記反応系は、例えば、前記増幅工程(A)で得られた増幅物と前記プローブとを用いて、新たに調製してもよいし、前記増幅工程(A)における前記増幅反応の反応系であってもよい。後者の場合、前記プローブは、例えば、前記増幅工程(A)の前または途中に、前記増幅反応の反応系に添加されてもよく、前記増幅工程(A)の後、前記増幅反応の反応系に添加されてもよい。中でも、例えば、前記増幅工程(A)における前記増幅反応の前に、予め、前記プローブを、前記増幅反応の反応系に添加することが好ましい。この場合、前記増幅工程(A)は、前記プローブの存在下、MTHFR遺伝子を増幅させることが好ましい。これにより、例えば、前記プローブの添加のために、増幅反応の途中または後で、前記反応系を外部環境に露出する必要がなく、また、前記増幅反応とシグナル値の測定とを、連続的に行うことが可能である。
 前述のように、前記測定工程(B)の前記反応系は、例えば、前記増幅工程(A)の前記反応系を使用できる。前記増幅工程(A)の前記反応系において、前記試料の割合は、特に制限されず、前記本発明の増幅方法において述べた通りである。ここで、前記試料が生体試料であり、前記測定工程(B)において、前記反応系として前記増幅工程(A)の前記反応系を使用し、前記プローブの存在下、光学的にシグナルの検出を行う場合、前記増幅工程(A)の前記反応系における試料の割合は、例えば、0.1~0.5体積%に設定することが好ましい。前記生体試料が、例えば、全血試料の場合、前記反応系における試料の割合は、例えば、0.1~0.5体積%が好ましい。PCR等の増幅反応では、通常、DNA変性、つまり一本鎖DNAへの解離のため、試料に熱処理が施される。しかし、この熱処理によって、前記試料に含まれる糖およびタンパク質等が変性し、不溶化の沈殿物および濁り等が発生するおそれがある。このため、前述のようにシグナルを検出する場合、前記沈殿物および濁り等の発生が、測定精度に影響を及ぼす可能性がある。これに対して、前記増幅工程(A)の前記反応系における前記試料の割合を、例えば、前述の範囲に設定すれば、メカニズムは不明であるが、変性による沈殿物等の発生による影響を十分に防止でき、光学的手法による測定精度の低下を防止できる。また、前述の範囲に設定すれば、例えば、前記試料中の夾雑物による増幅反応の阻害も十分に抑制でき、増幅効率の低下防止をより一層向上できる。このため、本発明のプライマーまたはプライマーセットの使用に加えて、さらに、前記反応系における前記試料の割合を前述の範囲に設定することで、より一層、試料の前処理の必要性を排除できる。
 前記試料が全血試料の場合、前記反応系における全血試料の割合は、前述のような体積割合、例えば、0.1~0.5体積%ではなく、例えば、ヘモグロビン(以下、「Hb」という)の重量割合で表すこともできる。前記反応系における全血試料の割合は、Hb量に換算して、例えば、0.565~113g/Lの範囲が好ましく、より好ましくは、2.825~56.5g/Lの範囲、さらに好ましくは、5.65~28.25g/Lの範囲である。前記反応系における全血試料の割合は、例えば、前記体積割合と前記Hb重量割合の両方を満たしてもよいし、いずれか一方を満たしてもよい。
 本発明の多型検出方法は、前述のような、いわゆるTm解析に利用できる。Tm解析におけるTm値について説明する。例えば、二本鎖DNAを含む溶液を加熱していくと、260nmにおける吸光度が上昇する。これは、二本鎖DNAにおける両鎖間の水素結合が加熱によってほどけ、一本鎖DNAに解離(DNAの融解)することが原因である。そして、全ての二本鎖DNAが解離して一本鎖DNAになると、その吸光度は、加熱開始時の吸光度(二本鎖DNAのみの吸光度)の約1.5倍程度を示す。これによって、融解が完了したと判断できる。この現象に基づき、融解温度(Tm)とは、一般に、吸光度が、吸光度全上昇分の50%に達した時の温度と定義される。
 前記測定工程(B)において、前記増幅物と前記プローブとのハイブリッドの融解状態を示すシグナルの測定は、例えば、前述した、260nmにおける吸光度測定でもよいし、前記標識物質のシグナル測定でもよい。具体的には、前記プローブとして、前述のように、前記標識物質で標識化された標識プローブを使用し、前記標識物質のシグナル測定を行うことが好ましい。前記標識プローブは、例えば、単独でシグナルを示し、且つハイブリッド形成によりシグナルを示さない標識プローブ、または、単独でシグナルを示さず、且つハイブリッド形成によりシグナルを示す標識プローブがあげられる。前者のようなプローブであれば、前記増幅物とハイブリッド(二本鎖DNA)を形成している際にはシグナルを示さず、加熱により前記増幅物から前記プローブが解離するとシグナルを示す。また、後者のプローブであれば、前記増幅物とハイブリッド(二本鎖DNA)を形成することによってシグナルを示し、加熱により前記増幅物から前記プローブが遊離するとシグナルが減少(または消失)する。したがって、前記標識物質のシグナルの検出によって、前記260nmにおける吸光度測定と同様に、ハイブリッドの融解の進行の検出、Tm値の決定等を行うことができる。前記標識物質のシグナル検出は、例えば、前記標識物質のシグナルに特有の条件で検出すればよい。前記検出条件は、例えば、励起波長、検出波長等があげられる。前記標識プローブならびに前記標識物質は、前述のとおりである。
 前記(D)工程または前記(C)工程において、シグナル値の変動からの前記多型の検出は、従来の方法により行うことができる。具体例としては、例えば、前記シグナル値の変動を、前記多型検出用プローブと変異型の検出対象配列とのハイブリッドの変動および/または前記多型検出用プローブと野生型の検出対象配列とのハイブリッドの変動と比較し、多型が変異型か野生型かを判断できる。つまり、変異型と同様であれば変異型、野生型と同様であれば野生型と判断できる。また、例えば、前記シグナルの変動からTm値を求め、評価基準のTm値との比較により、多型を判断できる。まず、前記シグナル値の変動から、Tm値を求める。つぎに、測定した前記Tm値を、予め求めた、野生型の検出対象配列についてのTmwt値および/または変異型の検出対象配列についてのTmmt値と比較する。そして、測定したTm値が、評価基準のTmwt値と同じまたは同程度であれば野生型、Tmwt値よりも低いならば変異型、評価基準のTmmt値と同じまたは同程度であれば変異型、Tmmt値よりも低いならば野生型と判断できる。
 つぎに、本発明の多型の検出方法について、一例をあげて説明する。本例は、本発明のMTHFR遺伝子増幅用プライマーセットとして、前記プライマーセット(1)および前記プライマーセット(2)を含むプライマーセットを使用し、前記プローブとして、蛍光物質で標識された2種類の下記プローブを使用する例である。本例では、前記プライマーセットを用いたPCRによって、一つの反応液中で、MTHFR遺伝子の2つの目的領域を同時に増幅させ、さらに、前記プローブを用いて、MTHFR遺伝子における2つの多型MTHFR*677およびMTHFR*1298を検出する。下記MTHFR*677用プローブは、配列番号46に示す塩基配列からなり、塩基(r)がアデニン(a)であり、3’末端を蛍光色素TAMRAで標識化したプローブである。下記MTHFR*1298用プローブは、配列番号52に示す塩基配列からなり、塩基(k)がグアニン(g)であり、3’末端を蛍光色素BODIPY FLで標識化したプローブである。本発明は、これらには制限されない。
(プローブ)
MTHFR*677用プローブ
 5'-gtgatgatgaaatcgActc-(TAMRA)-3'     (配列番号55)
MTHFR*1298用プローブ
 5'-aagacacttGcttcac-(BODIPYFL)-3'     (配列番号56)
 まず、PCRの反応液を調製し、前述のようにPCRを行い、同一反応液中で、MTHFR遺伝子の2つの目的領域を同時に増幅させる。前記反応液は、例えば、前記プライマーセット(1)、プライマーセット(2)および試料を含み、さらに、前記増幅反応に使用可能な他の成分を適宜含むことが好ましい。本発明によれば、前述のように、例えば、全血等の夾雑物が含まれる試料であっても、前処理を行うことなく、前記試料をそのまま使用可能である。
 前記反応液は、例えば、前述のように、さらに、前記プローブを含んでもよい。この場合、例えば、前記プローブの存在下、前記MTHFR遺伝子の増幅を行ってもよい。
 次に、得られた増幅物(二本鎖DNA)の一本鎖DNAへの解離、および、解離により得られた前記一本鎖DNAと前記標識プローブとのハイブリダイズを行う。これは、例えば、前記標識プローブの存在下、前記反応液の温度を変化させることで行える。この場合、前述のように、予め前記標識プローブを添加した前記反応液について、増幅反応を行った後、前記反応液を温度変化させることが好ましい。
 前記解離工程における加熱温度は、例えば、二本鎖の前記増幅物を一本鎖に解離できる温度があげられる。前記加熱温度は、特に制限されず、例えば、85~95℃である。加熱時間は、特に制限されず、通常、1秒~10分であり、好ましくは、1秒~5分である。
 解離した一本鎖DNAと前記標識プローブとのハイブリダイズは、例えば、前記解離工程の後、前記解離工程における加熱温度を降下させることによって行える。温度条件は、例えば、40~50℃である。前記温度での処理時間は、特に制限されず、例えば、1~600秒である。
 そして、前記反応液の温度を変化させ、前記増幅物と前記標識プローブとのハイブリッドの融解状態を示すシグナル値を測定する。具体的には、例えば、前記反応液を加熱し、すなわち、前記一本鎖DNAと前記標識プローブとのハイブリッドを加熱し、温度上昇に伴うシグナル値の変動を測定する。前述のように、グアニン消光プローブ、すなわち、末端のシトシン(c)が標識化されたプローブを使用した場合、一本鎖DNAとハイブリダイズした状態では、蛍光が減少(または消光)し、解離した状態では、蛍光を発する。したがって、例えば、蛍光が減少(または消光)しているハイブリッドを徐々に加熱し、温度上昇に伴う蛍光強度の増加を測定すればよい。
 前記蛍光強度の変動を測定する際、その温度範囲は、特に制限されない。前記開始温度は、例えば、室温~85℃であり、好ましくは、25~70℃であり、終了温度は、例えば、40~105℃である。温度の上昇速度は、特に制限されず、例えば、0.1~20℃/秒であり、好ましくは、0.3~5℃/秒である。
 つぎに、前記シグナル値の変動を解析してTm値を決定する。具体的には、得られた蛍光強度から、各温度における単位時間当たりの蛍光強度変化量(-d蛍光強度変化量/dtまたはd蛍光強度変化量/dt)を算出し、最も変化した値を示す温度をTm値として決定できる。前記標識プローブが前記蛍光消光プローブの場合、例えば、蛍光強度の増加量を測定し、単位時間当たりの蛍光強度増加量(-d蛍光強度増加量/dt)が最も低い値を示す温度、または、単位時間当たりの蛍光強度増加量(d蛍光強度増加量/dt)が最も高い値を示す温度を、Tm値として決定することもできる。一方、前記標識プローブとして、前記蛍光消光プローブではなく、単独でシグナルを示さず且つハイブリッド形成によりシグナルを示すプローブを使用した場合は、反対に、蛍光強度の減少量を測定すればよい。
 前記標識プローブとして、例えば、検出波長の異なる標識物質を標識した複数のプローブを用いた場合、前記検出波長ごとに、前記シグナル値の変動を解析してもよい。
 前記Tm値は、例えば、従来公知のMELTCALCソフトウエア(http://www.meltcalc.com/)等により算出でき、また、最近接塩基対法(Nearest Neighbor Method)によって決定することもできる。
 本例においては、2つの多型MTHFR*677およびMTHFR*1298を検出するため、前記2種類のプローブの各標識物質に応じた条件で、シグナル値の測定を行う。そして、前記各プローブのシグナルについて、それぞれのTm値を決定する。MTHFR*677用プローブのTAMRAは、検出波長585~700nm、MTHFR*1298用プローブのBODIPY FLは、検出波長515~555nmで、それぞれ検出できる。
 そして、これらのTm値から、各検出対象部位における遺伝子型を決定する。つまり、配列番号1の塩基配列における塩基番号8747および塩基番号10649の塩基が、前記野生型であるか、前記変異型であるかを決定する。Tm解析では、例えば、完全に相補であるハイブリッド(マッチ)は、一塩基以上が異なるハイブリッド(ミスマッチ)よりも、解離を示すTm値が高くなるという結果が得られる。したがって、予め、前記プローブについて、完全に相補であるハイブリッドのTm値と、一塩基が異なるハイブリッドのTm値とを決定しておくことにより、前記検出対象部位における多型を決定できる。具体的には、例えば、以下のように決定できる。前記検出対象部位の塩基を変異型、例えば、配列番号1における塩基番号8747の塩基がチミン(t)と仮定し、それを含む検出対象配列に相補的なプローブを使用した場合、形成したハイブリッドのTm値が、完全に相補的なハイブリッドのTm値と同じであれば、前記増幅物の多型は、変異型のホモ接合体と判断できる。また、形成したハイブリッドのTm値が、一塩基異なるハイブリッドのTm値と同じ(完全に相補的なハイブリッドのTm値より低い値)であれば、前記増幅物の多型は、野生型のホモ接合体、例えば、配列番号1における塩基番号8747の塩基がシトシン(c)のホモ接合体と判断できる。さらに、両方のTm値が検出された場合には、ヘテロ接合体と決定できる。このようにして、前記各プローブに対する2つのTm値から、多型MTHFR*677およびMTHFR*1298の遺伝子型を判断できる。
 このようにシグナル値の変動からMTHFR遺伝子の多型を検出できることから、同様に、前記多型を含む前記目的領域が増幅されているか否かも、検出できる。このため、前記(D)工程と同様にして、前述した本発明の増幅物検出方法の前記(C)工程を行うことで、前記増幅物の検出を行うことができる。
 本発明は、前述のように、前記プローブを含む反応系の温度を上昇させて、すなわち、ハイブリッドを加熱して、温度上昇に伴うシグナル変動を測定する方法に代えて、例えば、ハイブリッド形成時におけるシグナル変動の測定を行ってもよい。すなわち、前記プローブを含む反応系の温度を降下させてハイブリッドを形成する際に、例えば、前記温度降下に伴うシグナル変動を測定してもよい。
 具体例として、単独でシグナルを示し、且つハイブリッド形成によりシグナルを示さない標識プローブ(例えば、グアニン消光プローブ)を使用した場合を例にあげる。この場合、前記標識プローブは、一本鎖DNAと前記標識プローブとが解離している状態では蛍光を発しているが、温度の降下によりハイブリッドを形成すると、前記蛍光が減少(または消光)する。したがって、例えば、前記反応系の温度を徐々に降下させて、温度下降に伴う蛍光強度の減少を測定すればよい。他方、単独でシグナルを示さず、且つハイブリッド形成によりシグナルを示す標識プローブを使用した場合、前記一本鎖DNAと前記標識プローブとが解離している状態では蛍光を発していないが、温度の降下によりハイブリッドを形成すると、蛍光を発するようになる。したがって、例えば、前記反応系の温度を徐々に降下させて、温度下降に伴う蛍光強度の増加を測定すればよい。
 本発明において、MTHFR遺伝子の2種類の多型MTHFR*677およびMTHFR*1298のうち1種類の多型を解析する場合は、例えば、前記プライマーセット(1)および前記プライマーセット(2)のうち目的領域に対応する1種類のプライマーセットを含む、本発明のMTHFR遺伝子増幅用プライマーセットを使用し、さらに、目的の検出対象部位にハイブリダイズする1種類のプローブを使用すればよい。
<MTHFR遺伝子の増幅用試薬>
 本発明のMTHFR遺伝子増幅用試薬は、前述のように、本発明のMTHFR遺伝子増幅用プライマーまたはプライマーセットを含むことを特徴とする、MTHFR遺伝子の増幅用試薬である。本発明のMTHFR遺伝子増幅用試薬は、前記本発明のプライマーセットを含むことが特徴であり、これ以外の組成等については何ら制限されない。
 本発明のMTHFR遺伝子増幅用試薬は、例えば、前記プライマーセット(1)および前記プライマーセット(2)のいずれか一方を含むことが好ましく、より好ましくは、両方を含む。
 本発明のMTHFR遺伝子増幅用試薬は、例えば、本発明のプライマーセットを用いた増幅方法により得られる増幅物を検出するため、さらに、MTHFR遺伝子の増幅物にハイブリダイズ可能なプローブを含むことが好ましい。前述のように、本発明のプライマーセットによれば、例えば、それに含まれる前記プライマーセット(1)および前記プライマーセット(2)の種類に応じて、MTHFR遺伝子における1つまたは2つの目的領域の増幅物が得られる。このため、前記プローブによって、例えば、増幅の有無および検出対象部位の多型等を、前述の方法によって検出可能である。前記プローブは、前述の通りである。前記プローブは、例えば、前記P1プローブおよび前記P2プローブの少なくとも一方を含むことが好ましく、より好ましくは両方を含む。
 本発明のMTHFR遺伝子増幅用試薬は、例えば、全血等の生体試料におけるMTHFR遺伝子を増幅させる際に使用することが好ましい。特に、本発明のMTHFR遺伝子増幅用試薬を、例えば、前記プローブとともに使用する際には、増幅反応の反応系における全血試料の割合を0.1~0.5体積%とすることが好ましい。
 本発明のMTHFR遺伝子増幅用試薬は、この他にも、例えば、核酸の増幅反応に必要な成分を含んでもよい。具体例としては、例えば、前述のような、DNAポリメラーゼ等のポリメラーゼ、ヌクレオシド三リン酸、緩衝液、各種触媒等があげられる。本発明の多型検出用試薬において、各成分は、例えば、同じ容器に収容されてもよいし、別の容器に収容されてもよい。
 本発明のMTHFR遺伝子増幅用試薬の形態は、特に制限されず、例えば、本発明のMTHFR遺伝子増幅用プライマーセットを含有する液体試薬でもよいし、使用前に溶媒で懸濁する乾燥試薬であってもよい。また、MTHFR遺伝子増幅用プライマーセットの含有量も、特に制限されない。
 本発明の増幅用試薬は、例えば、MTHFR遺伝子の増幅に使用するキットともいえる。本発明の増幅用キットにおいて、各成分は、例えば、同じ容器に収容されてもよいし、別の容器に収容されてもよい。本発明の増幅用キットは、さらに、使用説明書を含んでもよい。
<増幅物検出用試薬および多型検出用試薬>
 本発明の増幅物検出用試薬は、本発明のMTHFR遺伝子増幅用プライマーセットを含むことを特徴とする、MTHFR遺伝子の増幅物の検出用試薬である。また、本発明の多型検出用試薬は、本発明のMTHFR遺伝子増幅用プライマーセットを含むことを特徴とする、MTHFR遺伝子の多型の検出用試薬である。本発明においては、前記本発明のMTHFR遺伝子増幅用プライマーセットを含むことが特徴であり、その他の構成および条件は何ら制限されない。本発明の増幅物検出用試薬および多型検出用試薬は、特に示さない限り、前記MTHFR遺伝子増幅用試薬と同様である。
 本発明の多型検出用プローブは、前述の通りであって、前記(P1)および(P2)の少なくとも一方のオリゴヌクレオチドを含むことを特徴とする。本発明の多型検出方法は、本発明の多型検出用プローブを用いて、MTHFR遺伝子の多型を検出する工程を含むことを特徴とする、MTHFR遺伝子の多型検出方法である。本発明のプローブおよびこれを用いた各種方法は、前述の記載を参照できる。
 つぎに、本発明の実施例について説明する。本発明は、下記実施例により制限されない。下記実施例において、特に示さない限り、%は、w/v%を示す。
[実施例1]
 本例では、試料として、前処理をしていない全血試料を使用し、MTHFR遺伝子の増幅を行い、多型を解析した。
 被験者3人から、ヘパリンリチウム採血管を用いて、全血を採取した。それぞれ、サンプル1、2、3とした。下記組成の希釈液1 70μLに、前記全血10μLを添加して混合し、この混合液10μLを、下記組成の希釈液2 70μLに添加し、希釈試料を調製した。蓋付きのチューブに前記希釈試料17μLを入れ、蓋を開けた状態で、95℃で10分間加熱し、前記希釈試料を約4μLにまで濃縮した。前記濃縮試料に下記表5に示す反応試薬46μLを添加して、PCR反応液とした。前記PCR反応液について、サーマルサイクラーを用いてPCRを行った。PCRの条件は、95℃で60秒処理した後、95℃1秒および66℃15秒を1サイクルとして50サイクル繰り返し、さらに95℃で1秒、40℃で60秒処理した。そして、続けて、温度の上昇速度を1℃/3秒として、前記PCR反応液を40℃から75℃に加熱していき、経時的な蛍光強度の変化を測定し、Tm解析を行った。測定波長は、515~555nm(蛍光色素BODIPY FLの検出)および585~700nm(蛍光色素TAMRAの検出)とした。
(希釈液1)
  濃度          成分        
10mmol/L   Tris-HCl(pH8)
0.1mmmol/L EDTA
0.05%      NaN
0.3%       SDS
(希釈液2)
  濃度          成分        
10mmol/L   Tris-HCl(pH8)
0.1mmmol/L EDTA
0.05%      NaN
Figure JPOXMLDOC01-appb-T000005
(プローブ)
MTHFR*677用プローブ
 5'-gtgatgatgaaatcgActc-(TAMRA)-3'     (配列番号55)
MTHFR*1298用プローブ
 5'-aagacacttGcttcac-(BODIPY FL)-3'    (配列番号56)
(プライマーセット)
MTHFR*677 F1プライマー
 5'-cagggagctttgaggctgacctg-3'       (配列番号7)
MTHFR*677 R1プライマー
 5'-gatggggcaagtgatgcccatg-3'       (配列番号15)
MTHFR*1298 F2プライマー
 5'-gctgaaggactactacctcttctacctgaag-3'   (配列番号25)
MTHFR*1298 R2プライマー
 5'-gcatcactcactttgtgaccattccgg-3'     (配列番号38)
 Tm解析において、形成されるハイブリッドがパーフェクトマッチの場合、評価基準となるTmは、以下の通りである。MTHFR*677用プローブとパーフェクトマッチするハイブリッドのTm値は62.5℃、MTHFR*677用プローブとミスマッチするハイブリッドのTm値は56℃、MTHFR*1298用プローブとパーフェクトマッチするハイブリッドのTm値は57℃、MTHFR*1298用プローブとミスマッチするハイブリッドのTm値は47℃である。
 これらの結果を図1に示す。図1は、温度上昇に伴う蛍光強度の変化を示すTm解析のグラフである。図1において、縦軸は、各温度における蛍光強度の変化(以下、「蛍光強度変化量」ともいう)を示す。縦軸の単位は、微分値「d蛍光強度増加量/dt」であり、「dF/dt」と示す。図1において、横軸は、測定時の温度(℃)を示す。
 図1に示すシグナルのピークから、各サンプルにおけるMTHFR*677およびMTHFR*1298の遺伝子型を決定した。その結果、サンプル1は、MTHFR*677の遺伝子型が、変異型のホモ接合体677(T/T)であり、MTHFR*1298の遺伝子型が、野生型のホモ接合体1298(A/A)であった。サンプル2は、MTHFR*677の遺伝子型が、野生型と変異型とのヘテロ接合体677(C/T)であり、MTHFR*1298の遺伝子型が、野生型と変異型とのヘテロ接合体1298(A/C)であった。サンプル3は、MTHFR*677の遺伝子型が、野生型のホモ接合体677(C/C)であり、MTHFR*1298の遺伝子型が、野生型のホモ接合体1298(A/A)であった。
 前記実施例1の結果を裏付けるために、前記サンプル1、2および3について、従来法のRFLP法によって、MTHFR*677およびMTHFR*1298の遺伝子型を確認した。従来法のRFLP法による前記各サンプルの遺伝子タイプは、実施例1と同じ結果であった。
 このように、本発明のプライマーセットを使用することにより、前処理をしていない全血試料を使用して、MTHFR遺伝子の2つの領域を同一反応液中で同時に増幅し、且つ、前記同一反応液を用いて2種類の多型を解析し、接合体型を判定できた。
[実施例2]
 本例では、試料として、精製核酸を使用し、MTHFR遺伝子の増幅を行い、多型を解析した。
 前記実施例1における前記濃縮試薬4μLに代えて、精製したヒトゲノム 4μLを使用した。そして、前記ヒトゲノムに前記加熱処理を行うことなく、前記表5に示す反応試薬46μLを添加した以外は、前記実施例1と同様にして、PCRおよびTm解析を行った。前記精製ヒトゲノムは、前記実施例1のサンプル1、2および3の全血から、調製した。具体的には、GFX Genomic Blood DNA Purification Kit(GEヘルスケア バイオサイエンス社製)を用いて、前記キット添付のゲノムDNA抽出プロトコールに従い、前記全血を精製して、前記精製ヒトゲノムを調製した。
 Tm解析において、形成されるハイブリッドがパーフェクトマッチの場合、評価基準となるTmは、前述と同様である。すなわち、MTHFR*677用プローブとパーフェクトマッチするハイブリッドのTm値は62.5℃、MTHFR*677用プローブとミスマッチするハイブリッドのTm値は56℃、MTHFR*1298用プローブとパーフェクトマッチするハイブリッドのTm値は57℃、MTHFR*1298用プローブとミスマッチするハイブリッドのTm値は47℃である。
 これらの結果を図2に示す。同図は、温度上昇に伴う蛍光強度の変化を示すTm解析のグラフである。図2において、縦軸は、各温度における蛍光強度の変化(以下、「蛍光強度変化量」ともいう)を示す。縦軸の単位は、微分値「d蛍光強度増加量/dt」であり、「dF/dt」と示す。図2において、横軸は、測定時の温度(℃)を示す。
 図2に示すシグナルのピークから、各サンプルにおけるMTHFR*677およびMTHFR*1298の遺伝子型を決定した。その結果、サンプル1は、MTHFR*677の遺伝子型が、野生型のホモ接合体677(C/C)であり、MTHFR*1298の遺伝子型が、変異型のホモ接合体1298(C/C)であった。サンプル2は、MTHFR*677の遺伝子型が、変異型のホモ接合体677(T/T)であり、MTHFR*1298の遺伝子型が、野生型のホモ接合体1298(A/A)であった。サンプル3は、MTHFR*677の遺伝子型が、野生型と変異型とのヘテロ接合体677(C/T)であり、MTHFR*1298の遺伝子型が、野生型と変異型とのヘテロ接合体1298(A/C)であった。
 前記実施例2の結果を裏付けるために、前記サンプル1、2および3について、従来法のRFLP法によって、MTHFR*677およびMTHFR*1298の遺伝子型を確認した。従来法のRFLP法による各サンプルの遺伝子タイプは、実施例と同じ結果であった。
 このように、本発明のプライマーセットを使用することにより、MTHFR遺伝子の2つの領域を同一反応液中で同時に増幅し、且つ、前記同一反応液を用いて2種類の多型を解析し、接合体型を判定できた。
 以上のように、本発明のプライマーおよびプライマーセットによれば、MTHFR遺伝子における検出対象部位(例えば、MTHFR*677またはMTHFR*1298)を含む目的の領域を、特異的に増幅できる。したがって、本発明のプライマー、プライマーセット、これを含む試薬、ならびにこれらを用いた増幅方法および多型検出方法によれば、MTHFR遺伝子の多型を迅速且つ簡便に解析できることから、医療分野においてきわめて有効といえる。
 以上、実施形態および実施例を参照して、本発明を説明したが、本発明は、上記発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2009年11月19日に出願された日本出願特願2009-264052を基礎とする優先権を主張し、その開示のすべてをここに取り込む。

Claims (23)

  1. 下記(F1)のオリゴヌクレオチドからなるプライマーおよび下記(R1)のオリゴヌクレオチドからなるプライマーの少なくとも一方を含むプライマーセット(1)、
    および、
    下記(F2)のオリゴヌクレオチドからなるプライマーおよび下記(R2)のオリゴヌクレオチドからなるプライマーの少なくとも一方を含むプライマーセット(2)
    の少なくとも一方を含むことを特徴とする、MTHFR遺伝子増幅用プライマーセット。
    (F1)塩基長が20~28塩基長であり、配列番号1に示す塩基配列において、塩基番号8715のグアニン(g)を3’末端とするオリゴヌクレオチド
    (R1)塩基長が18~26塩基長であり、配列番号1に示す塩基配列において、塩基番号8817のシトシン(c)を5’末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチド
    (F2)塩基長が26~36塩基長であり、配列番号1に示す塩基配列において、塩基番号10590のグアニン(g)を3’末端とするオリゴヌクレオチド
    (R2)塩基長が22~34塩基長であり、配列番号1に示す塩基配列において、塩基番号10695のシトシン(c)を5’末端とするオリゴヌクレオチドに相補的なオリゴヌクレオチド
  2. 前記(F1)、(R1)、(F2)および(R2)のオリゴヌクレオチドが、それぞれ、下記(F1-1)、(R1-1)、(F2-1)および(R2-1)のオリゴヌクレオチドである、請求項1記載のMTHFR遺伝子増幅用プライマーセット。
    (F1-1)配列番号7に示す塩基配列からなるオリゴヌクレオチド
    (R1-1)配列番号15に示す塩基配列からなるオリゴヌクレオチド
    (F2-1)配列番号25に示す塩基配列からなるオリゴヌクレオチド
    (R2-1)配列番号38に示す塩基配列からなるオリゴヌクレオチド
  3. 請求項1記載のMTHFR遺伝子増幅用プライマーセットおよびMTHFR遺伝子の増幅物にハイブリダイズ可能なプローブを含むことを特徴とする、MTHFR遺伝子増幅用試薬。
  4. 前記プローブが、下記(P1)のオリゴヌクレオチド、(P1’)のオリゴヌクレオチド、(P2)のオリゴヌクレオチドおよび(P2’)のオリゴヌクレオチドの少なくともいずれかを含むプローブである、請求項3記載の増幅用試薬。
    (P1)塩基長が17~50塩基長であり、配列番号1における塩基番号8744~8760を含む塩基配列に相補的な塩基配列からなり、前記塩基番号8744の塩基に相補的な塩基を、3’末端領域に有するオリゴヌクレオチド
    (P1’)前記(P1)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
    (P2)塩基長が14~50塩基長であり、配列番号1における塩基番号10643~10656を含む塩基配列に相補的な塩基配列からなり、前記塩基番号10643の塩基に相補的な塩基を、3’末端領域に有するオリゴヌクレオチド
    (P2’)前記(P2)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
  5. 前記(P1)のオリゴヌクレオチドが、前記塩基番号8744の塩基に相補的な塩基を、3’末端から数えて1~4番目の位置に有し、
    前記(P2)のオリゴヌクレオチドが、前記塩基番号10643の塩基に相補的な塩基を、3’末端から数えて1~4番目の位置に有する、請求項4記載の増幅用試薬。
  6. 前記(P1)のオリゴヌクレオチドおよび(P2)のオリゴヌクレオチドが、それぞれ、下記(P1-1)および(P2-1)のオリゴヌクレオチドである、請求項4記載の増幅用試薬。
    (P1-1)配列番号46に示す塩基配列からなるオリゴヌクレオチド
    (P2-1)配列番号52に示す塩基配列からなるオリゴヌクレオチド
  7. 前記プローブが、標識物質を有する標識プローブである、請求項3記載の増幅用試薬。
  8. 前記(P1)のオリゴヌクレオチドおよび(P2)のオリゴヌクレオチドが、3’末端領域に、前記標識物質を有し、前記(P1’)のオリゴヌクレオチドおよび(P2’)のオリゴヌクレオチドが、5末端領域に、前記標識物質を有する、請求項7記載の増幅用試薬。
  9. 前記(P1)のオリゴヌクレオチドおよび(P2)のオリゴヌクレオチドが、3’末端から数えて1~4番目の塩基の位置に、前記標識物質を有し、
    前記(P1’)のオリゴヌクレオチドおよび(P2’)のオリゴヌクレオチドが、5’末端から数えて1~4番目の塩基の位置に、前記標識物質を有する、請求項8記載の増幅用試薬。
  10. 前記(P1)のオリゴヌクレオチドが、前記塩基番号8744の塩基に相補的な塩基に、前記標識物質を有し、
    前記(P1’)のオリゴヌクレオチドが、配列番号1における塩基番号8744の塩基に、前記標識物質を有し、
    前記(P2)のオリゴヌクレオチドが、前記塩基番号10643の塩基に相補的な塩基に、前記標識物質を有し、
    前記(P2’)のオリゴヌクレオチドが、配列番号1における塩基番号10643の塩基に、前記標識物質を有する、請求項8記載の増幅用試薬。
  11. 前記(P1)のオリゴヌクレオチドを含むプローブおよび前記(P2)のオリゴヌクレオチドを含むプローブを含む、請求項4記載の増幅用試薬。
  12. 下記(A)工程を含むことを特徴とする、MTHFR遺伝子の増幅物を検出する増幅物検出方法。
    (A)反応系において、試料中の核酸を鋳型として、請求項1記載のMTHFR遺伝子増幅用プライマーセットを用いて、MTHFR遺伝子を増幅させる増幅工程
  13. 下記(A)、(B)および(C)工程を含む、請求項12記載の増幅物検出方法。
    (A)反応系において、試料中の核酸を鋳型として、請求項1記載のMTHFR遺伝子増幅用プライマーセットを用いて、MTHFR遺伝子を増幅させる増幅工程
    (B)前記(A)工程における増幅物および前記MTHFR遺伝子の増幅物にハイブリダイズ可能なプローブを含む反応系の温度を変化させ、前記増幅物と前記プローブとのハイブリッドの融解状態を示すシグナル値を測定する測定工程
    (C)前記温度変化に伴う前記シグナル値の変動から、前記MTHFR遺伝子の増幅物を検出する検出工程
  14. 前記(A)工程において、前記プローブを含む前記反応系において、MTHFR遺伝子の増幅を行い、
    前記(B)工程において、前記(A)工程の前記反応系の温度を変化させる、請求項13記載の増幅物検出方法。
  15. 前記プローブが、前記プローブが、下記(P1)のオリゴヌクレオチド、(P1’)のオリゴヌクレオチド、(P2)のオリゴヌクレオチドおよび(P2’)のオリゴヌクレオチドの少なくともいずれかを含むプローブである、請求項13記載の増幅物検出方法。
    (P1)塩基長が17~50塩基長であり、配列番号1における塩基番号8744~8760を含む塩基配列に相補的な塩基配列からなり、前記塩基番号8744の塩基に相補的な塩基を、3’末端領域に有するオリゴヌクレオチド
    (P1’)前記(P1)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
    (P2)塩基長が14~50塩基長であり、配列番号1における塩基番号10643~10656を含む塩基配列に相補的な塩基配列からなり、前記塩基番号10643の塩基に相補的な塩基を、3’末端領域に有するオリゴヌクレオチド
    (P2’)前記(P2)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
  16. 前記(P1)のオリゴヌクレオチドおよび(P2)のオリゴヌクレオチドが、それぞれ、下記(P1-1)および(P2-1)のオリゴヌクレオチドである、請求項15記載の増幅物検出方法。
    (P1-1)配列番号46に示す塩基配列からなるオリゴヌクレオチド
    (P2-1)配列番号52に示す塩基配列からなるオリゴヌクレオチド
  17. 前記プローブが、標識物質を有する標識プローブである、請求項13記載の増幅物検出方法。
  18. 前記反応系が、前記(P1)のオリゴヌクレオチドを含むプローブおよび前記(P2)のオリゴヌクレオチドを含むプローブを含む、請求項15記載の増幅物検出方法。
  19. 下記(A)、(B)および(D)工程を含むことを特徴とする多型検出方法。
    (A)反応系において、試料中の核酸を鋳型として、請求項1記載のMTHFR遺伝子増幅用プライマーセットを用いて、MTHFR遺伝子を増幅させる増幅工程
    (B)前記(A)工程における増幅物およびMTHR遺伝子の検出対象部位にハイブリダイズ可能なプローブを含む反応系の温度を変化させ、前記増幅物と前記プローブとのハイブリッドの融解状態を示すシグナル値を測定する測定工程
    (D)前記温度変化に伴う前記シグナル値の変動から、前記検出対象部位の前記多型を検出する検出工程
  20. 前記(A)工程において、前記プローブを含む前記反応系において、MTHFR遺伝子の増幅を行い、
    前記(B)工程において、前記(A)工程の前記反応系の温度を変化させる、請求項19記載の多型検出方法。
  21. 前記プローブが、下記(P1)のオリゴヌクレオチド、(P1’)のオリゴヌクレオチド、(P2)のオリゴヌクレオチドおよび(P2’)のオリゴヌクレオチドの少なくともいずれかを含むプローブである、請求項19記載の多型検出方法。
    (P1)塩基長が17~50塩基長であり、配列番号1における塩基番号8744~8760を含む塩基配列に相補的な塩基配列からなり、前記塩基番号8744の塩基に相補的な塩基を、3’末端領域に有するオリゴヌクレオチド
    (P1’)前記(P1)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
    (P2)塩基長が14~50塩基長であり、配列番号1における塩基番号10643~10656を含む塩基配列に相補的な塩基配列からなり、前記塩基番号10643の塩基に相補的な塩基を、3’末端領域に有するオリゴヌクレオチド
    (P2’)前記(P2)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
  22. 前記(P1)のオリゴヌクレオチドおよび(P2)のオリゴヌクレオチドが、それぞれ、下記(P1-1)および(P2-1)のオリゴヌクレオチドである、請求項21記載の多型検出方法。
    (P1-1)配列番号46に示す塩基配列からなるオリゴヌクレオチド
    (P2-1)配列番号52に示す塩基配列からなるオリゴヌクレオチド
  23. 前記プローブが、標識物質を有する標識プローブである、請求項19記載の多型検出方法。
PCT/JP2010/070669 2009-11-19 2010-11-19 Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途 WO2011062258A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080052773.4A CN102666852A (zh) 2009-11-19 2010-11-19 Mthfr基因扩增用引物对、含有其的mthfr基因扩增用试剂及其用途
EP10831650.6A EP2502994A4 (en) 2009-11-19 2010-11-19 PRIMER SET FOR MTHFR GENE AMPLIFICATION, MTHFR GENE AMPLIFICATION REAGENT COMPRISING THE SAME, AND USE THEREOF
JP2011541962A JPWO2011062258A1 (ja) 2009-11-19 2010-11-19 Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途
US13/510,523 US20120231463A1 (en) 2009-11-19 2010-11-19 Primer Set for Amplification of MTHFR Gene, MTHFR Gene Amplification Reagent Containing the Same, and Use of the Same
KR1020127013959A KR101446556B1 (ko) 2009-11-19 2010-11-19 Mthfr 유전자 증폭용 프라이머 세트, 그것을 포함하는 mthfr 유전자 증폭용 시약 및 그 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-264052 2009-11-19
JP2009264052 2009-11-19

Publications (1)

Publication Number Publication Date
WO2011062258A1 true WO2011062258A1 (ja) 2011-05-26

Family

ID=44059730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070669 WO2011062258A1 (ja) 2009-11-19 2010-11-19 Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途

Country Status (6)

Country Link
US (1) US20120231463A1 (ja)
EP (1) EP2502994A4 (ja)
JP (1) JPWO2011062258A1 (ja)
KR (1) KR101446556B1 (ja)
CN (1) CN102666852A (ja)
WO (1) WO2011062258A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205484A (zh) * 2012-09-21 2013-07-17 厦门市第三医院 一种mthfrd基因多态性c677t的检测试剂盒
CN105296621A (zh) * 2015-10-27 2016-02-03 智海生物工程(北京)有限公司 用于检测mthfr基因多态性的引物对、荧光探针及试剂盒
CN106755525A (zh) * 2017-02-21 2017-05-31 北京易活生物科技有限公司 一种检测mthfr基因突变的探针及其应用和试剂盒
CN106801099A (zh) * 2017-02-21 2017-06-06 北京易活生物科技有限公司 一种检测mthfr基因突变的核酸组合及其应用和试剂盒
CN114107488A (zh) * 2021-12-28 2022-03-01 上海美吉逾华生物医药科技有限公司 一种检测mthfr基因多态性的引物组及试剂盒

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224980A (zh) * 2013-01-24 2013-07-31 武汉康圣达医学检验所有限公司 一种检测mthfr基因化疗药物相关snp位点的引物组及方法
CN104962653A (zh) * 2015-07-28 2015-10-07 上海睿玻生物科技有限公司 亚甲基四氢叶酸还原酶基因多态性检测的试剂盒及检测方法
CN113832215B (zh) 2016-02-09 2024-02-06 荣研化学株式会社 对目标核酸进行检测的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
WO1991009950A1 (en) 1989-12-22 1991-07-11 F. Hoffmann-La Roche Ag Recombinant expression vectors and purification methods for thermus thermophilus dna polymerase
EP0455430A2 (en) 1990-04-26 1991-11-06 New England Biolabs, Inc. Purified thermostable DNA polymerase obtainable from Thermococcus litoralis
US5079352A (en) 1986-08-22 1992-01-07 Cetus Corporation Purified thermostable enzyme
WO1992009689A1 (en) 1990-12-03 1992-06-11 Stratagene PURIFIED THERMOSTABLE $i(PYROCOCCUS FURIOSUS)
JP2004502469A (ja) * 2000-06-12 2004-01-29 マクギル ユニバーシティー ヒトメチレンテトラヒドロ葉酸還元酵素のcDNA及びその使用
JP2008237139A (ja) * 2007-03-28 2008-10-09 Toshiba Corp メチレンテトラヒドロ葉酸還元酵素(mthfr)の遺伝子型を検出するための核酸プライマーセット及び核酸プローブ
JP2009264052A (ja) 2008-04-28 2009-11-12 Mitsuba Corp 車両用ドアロック装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE332398T1 (de) * 2000-08-11 2006-07-15 Univ Utah Res Found Einfach markierte oligonukleotidsonden
WO2002050308A1 (en) * 2000-12-19 2002-06-27 Discoverx Strand displacement detection of target nucleic acid
US20060286571A1 (en) * 2005-04-28 2006-12-21 Prometheus Laboratories, Inc. Methods of predicting methotrexate efficacy and toxicity
US20070134709A1 (en) * 2005-12-14 2007-06-14 Xiping Xu Usages of MTHFR gene polymorphisms in predicting homocysteine level, disease risk, and treatment effects and related methods and kit
JP4580875B2 (ja) * 2006-01-20 2010-11-17 株式会社東芝 核酸検出法のためのプライマーの設計方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
US5079352A (en) 1986-08-22 1992-01-07 Cetus Corporation Purified thermostable enzyme
WO1991009950A1 (en) 1989-12-22 1991-07-11 F. Hoffmann-La Roche Ag Recombinant expression vectors and purification methods for thermus thermophilus dna polymerase
EP0455430A2 (en) 1990-04-26 1991-11-06 New England Biolabs, Inc. Purified thermostable DNA polymerase obtainable from Thermococcus litoralis
WO1992009689A1 (en) 1990-12-03 1992-06-11 Stratagene PURIFIED THERMOSTABLE $i(PYROCOCCUS FURIOSUS)
JP2004502469A (ja) * 2000-06-12 2004-01-29 マクギル ユニバーシティー ヒトメチレンテトラヒドロ葉酸還元酵素のcDNA及びその使用
JP2008237139A (ja) * 2007-03-28 2008-10-09 Toshiba Corp メチレンテトラヒドロ葉酸還元酵素(mthfr)の遺伝子型を検出するための核酸プライマーセット及び核酸プローブ
JP2009264052A (ja) 2008-04-28 2009-11-12 Mitsuba Corp 車両用ドアロック装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 21 July 2003 (2003-07-21), RIEDER, M.J. ET AL.: "Definition: Homo sapiens 5,10- methylenetetrahydrofolate reductase (NADPH) (MTHFR) gene, complete cds.", retrieved from http://www.ncbi.nlm.nih.gov/ nuccore/32815069?sat=NCBI&satkey=5131972 Database accession no. AY338232 *
FUKUZAWA ET AL.: "Tokusyu Kouketsuatsu Saishin no Kenkyu Douko Kiso-hen (The Latest Trend in Hypertension Research, Basic Edition", JAPANESE JOURNAL OF CLINICAL MEDICINE, NIPPON RINSHO, vol. 64, no. 5, July 2006 (2006-07-01), pages 173 - 176
HIROKI YAMAGUCHI ET AL.: "Tokushu Kotsuzui Zoshokusei Shikkan: Aratana Tenkai [The methodology of detecting gene mutation in chronic myeloproliferative disorders]", THE CELL, vol. 41, no. 3, 20 March 2009 (2009-03-20), pages 100 - 103 *
MATSUMOTO, N. ET AL.: "Single nucleotide polymorphism genotyping of CYP2C19 using a new automated system.", ANAL. BIOCHEM., vol. 370, no. 1, 1 November 2007 (2007-11-01), pages 121 - 123 *
See also references of EP2502994A4 *
URANO ET AL.: "Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses.", PHARMACOGENETICS, vol. 12, no. 3, April 2002 (2002-04-01), pages 183 - 190

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205484A (zh) * 2012-09-21 2013-07-17 厦门市第三医院 一种mthfrd基因多态性c677t的检测试剂盒
CN103205484B (zh) * 2012-09-21 2015-01-07 厦门市第三医院 一种mthfrd基因多态性c677t的检测试剂盒
CN105296621A (zh) * 2015-10-27 2016-02-03 智海生物工程(北京)有限公司 用于检测mthfr基因多态性的引物对、荧光探针及试剂盒
CN106755525A (zh) * 2017-02-21 2017-05-31 北京易活生物科技有限公司 一种检测mthfr基因突变的探针及其应用和试剂盒
CN106801099A (zh) * 2017-02-21 2017-06-06 北京易活生物科技有限公司 一种检测mthfr基因突变的核酸组合及其应用和试剂盒
CN114107488A (zh) * 2021-12-28 2022-03-01 上海美吉逾华生物医药科技有限公司 一种检测mthfr基因多态性的引物组及试剂盒

Also Published As

Publication number Publication date
EP2502994A4 (en) 2013-05-22
EP2502994A1 (en) 2012-09-26
KR101446556B1 (ko) 2014-10-01
US20120231463A1 (en) 2012-09-13
JPWO2011062258A1 (ja) 2013-04-11
KR20120078739A (ko) 2012-07-10
CN102666852A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5307538B2 (ja) Ugt1a1遺伝子増幅用プライマーセット、それを含むugt1a1遺伝子増幅用試薬およびその用途
JP5637850B2 (ja) 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
WO2011062258A1 (ja) Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途
JP5224526B2 (ja) 遺伝子増幅用プライマーセット、それを含む遺伝子増幅用試薬およびその用途
JPWO2008066162A1 (ja) Cyp2c19遺伝子増幅用プライマーセット、それを含むcyp2c19遺伝子増幅用試薬およびその用途
US9200326B2 (en) Probe for detecting polymorphism in disease-related gene and use of the probe
EP3064596B1 (en) Method for analysing cyp2c19 gene polymorphism, kit and use thereof for analysing the cyp2c19 gene polymorphisms and to evaluate drug efficacy.
EP2450443B1 (en) Target sequence amplification method, polymorphism detection method, and reagents for use in the methods
JPWO2008066163A1 (ja) Cyp2c9遺伝子増幅用プライマーセット、それを含むcyp2c9遺伝子増幅用試薬およびその用途
KR101119417B1 (ko) 비만 유전자 증폭용 프라이머 세트, 그것을 포함하는 비만 유전자 증폭용 시약 및 그 용도
WO2011052755A1 (ja) Mpl遺伝子多型検出用プローブおよびその用途
US8455192B2 (en) Probes for detection of SULT1A1 gene, reagent containing the same, and the uses thereof
KR101068605B1 (ko) Nat2 유전자 증폭용 프라이머 셋트, 그것을 포함하는 nat2 유전자 증폭용 시약 및 그 용도
US8748095B2 (en) Probe for detecting polymorphism in EGFR gene and use of the probe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052773.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541962

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13510523

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127013959

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010831650

Country of ref document: EP