WO2011052755A1 - Mpl遺伝子多型検出用プローブおよびその用途 - Google Patents

Mpl遺伝子多型検出用プローブおよびその用途 Download PDF

Info

Publication number
WO2011052755A1
WO2011052755A1 PCT/JP2010/069379 JP2010069379W WO2011052755A1 WO 2011052755 A1 WO2011052755 A1 WO 2011052755A1 JP 2010069379 W JP2010069379 W JP 2010069379W WO 2011052755 A1 WO2011052755 A1 WO 2011052755A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
oligonucleotide
probe
polymorphism
base
Prior art date
Application number
PCT/JP2010/069379
Other languages
English (en)
French (fr)
Inventor
光春 平井
真理子 小森
Original Assignee
アークレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アークレイ株式会社 filed Critical アークレイ株式会社
Priority to EP10826885.5A priority Critical patent/EP2495318A4/en
Priority to JP2011509743A priority patent/JPWO2011052755A1/ja
Priority to CN201080049710.3A priority patent/CN102741402A/zh
Priority to US13/503,946 priority patent/US20120208196A1/en
Publication of WO2011052755A1 publication Critical patent/WO2011052755A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a probe for detecting polymorphism of MPL gene and its use.
  • Chronic myeloproliferative disease is a clonal disease caused by abnormal hematopoietic stem cells, and chronic myelogenous leukemia (CML), erythrocytosis (PV), essential thrombocythemia (ET), primary bone marrow fibers Is a generic term for diseases such as hypertension (PMF).
  • CML chronic myelogenous leukemia
  • PV erythrocytosis
  • ET essential thrombocythemia
  • PMF primary bone marrow fibers
  • the 515 tryptophan (W) of the MPL protein is leucine (L)
  • lysine (K) is substituted (Non-patent Document 1).
  • the substitution (W 515 L) for leucine (L) can be achieved by mutation of base guanine (g) to thymine (t) of base number 11535 in the base sequence of the MPL gene shown in SEQ ID NO: 1 and lysine (K).
  • the substitution (W515K) of is caused by the mutation of thymine (t) of base No. 11534 to adenine (a) and the mutation of guanine (g) of base No. 11535 to adenine (a) in the base sequence It becomes clear (nonpatent literature 1). Therefore, by detecting the presence or absence of these mutations in the MPL gene, that is, the polymorphism, it is possible to diagnose, for example, essential thrombocythemia and primary myelofibrosis.
  • PCR-RFLP a region to be detected is amplified by PCR for a target DNA of a sample, the amplified product is subjected to restriction enzyme treatment, and a change in restriction fragment length due to polymorphism is typed by Southern hybridization. is there.
  • the recognition site of the restriction enzyme disappears, so that the presence or absence of the mutation can be detected by the change in restriction fragment length.
  • the resulting amplified product needs to be treated with various restriction enzymes and analyzed, which is time-consuming.
  • restriction enzyme treatment of the obtained amplification product has to be performed once by taking out the amplification product from the reactor. For this reason, the amplification product obtained in the first reaction may scatter and be mixed in with the second reaction. Because of these problems, it is difficult to automate detection of polymorphisms.
  • Tm Melting Temperature
  • Tm value is higher as the complementarity of both single stranded nucleic acids in the hybrid is higher and lower as the complementarity is lower. Therefore, when the polymorphism of the site to be detected is X or Y, Tm values (evaluation standard values) are obtained in advance for the hybrid of the nucleic acid containing the polymorphism (for example, Y) of interest and the probe 100% complementary thereto. Keep it. Subsequently, Tm values (measurement values) of the test nucleic acid and the probe are measured. When the measured value is the same as the evaluation reference value, the test nucleic acid and the probe are perfect match, that is, the detection target site of the test nucleic acid is the target polymorphism (Y). It can be judged.
  • the detection target site of the test nucleic acid is the other polymorphism (X).
  • the polymorphism can be detected only by subjecting the PCR reaction solution to which the probe is added to temperature treatment and measuring the signal. For this reason, automation of the detection device is also possible.
  • the difference between single bases must be determined by the Tm value. For this reason, it is required to detect the presence or absence of a mutation correctly, even when a wild-type polymorphism and a mutation-type polymorphism are mixed in particular.
  • this invention aims at the provision of the probe for polymorphism detection which can discriminate
  • the polymorphism detection probe of the present invention comprises a probe comprising an oligonucleotide of (P1) below, a probe comprising an oligonucleotide of (P1 ′), a probe comprising an oligonucleotide of (P2) and It is a polymorphism detection probe of MPL gene, characterized in that it is at least one of the probes containing the oligonucleotide of (P2 ′).
  • oligonucleotide (P1 ′) comprising a base sequence having a base length of 9 to 50 and including the base numbers 11535 to 11543 in SEQ ID NO: 1 and having the base of the base number 11543 in the 3 ′ end region
  • the oligonucleotide (P2) comprising a nucleotide sequence complementary to the oligonucleotide of (P1) is 10 to 50 nucleotides long and comprises a nucleotide sequence comprising nucleotide numbers 11535 to 11544 in SEQ ID NO: 1, the nucleotide number Oligonucleotide having 11 544 bases in the 3 'terminal region (P2') Oligonucleotide consisting of a nucleotide sequence complementary to the oligonucleotide of the above (P2)
  • the reagent for detecting polymorphism of the present invention is a reagent for detecting polymorphism of the MPL gene, which is characterized by comprising the probe for detecting polymorphism of the present invention.
  • the polymorphism detection method of the present invention is a method for detecting a polymorphism of an MPL gene, comprising the step of detecting the polymorphism of the MPL gene using the probe for detecting a polymorphism of the present invention.
  • the polymorphism of the MPL gene can be easily determined with excellent reliability.
  • FIG. 1 is a graph showing the results of Tm analysis of a reaction solution containing wt 100% in Example 1 of the present invention.
  • FIG. 2 is a graph showing the results of Tm analysis of a reaction solution containing 50% of W515L in Example 1 of the present invention.
  • FIG. 3 is a graph showing the results of Tm analysis of a reaction solution containing 50% of W515K in Example 1 of the present invention.
  • the polymorphism for detection purpose in the MPL gene is, for example, a polymorphism in at least one base of base numbers 11534 and 11535 in the base sequence of the MPL gene shown in SEQ ID NO: 1.
  • the base (w) of base No. 11534 is thymine (t)
  • the base (d) of base No. 11535 is guanine (g)
  • the MPL protein The 515th amino acid of is tryptophan (515 W).
  • mutations There are two types of mutations. One variant is that the base (w) of base No. 11534 is thymine (t) and the base (d) of base No.
  • 11535 is thymine (t) in the base sequence of the MPL gene shown in SEQ ID NO: 1;
  • the 515th amino acid of is leucine (W515L).
  • the other variant is that in the base sequence of the MPL gene shown in SEQ ID NO: 1, the base (w) of base number 11534 is adenine (a) and the base (d) of base number 11535 is adenine (a);
  • the 515th amino acid of is lysine (W515K).
  • the base of the base number 11534 or the base number 11535 is a mutant as described above, it can be judged that there is a possibility of diseases such as essential thrombocythemia, primary myelofibrosis and the like.
  • the polymorphism of the MPL gene of 515 W will be referred to as “wild-type polymorphism or normal polymorphism”
  • the polymorphism of the MPL gene of W515 L will be referred to as “W515 L polymorphism or W515 L variant polymorphism”
  • W515K polymorphism or W515K mutation polymorphism The polymorphism of a gene is also referred to as "W515K polymorphism or W515K mutation polymorphism”.
  • the base sequence of the MPL gene is, for example, GenBank Accession No. It is registered as NG_007525.
  • the base sequence shown in SEQ ID NO: 1 is the full-length base sequence of the MPL gene, and is the region of base numbers 5001 to 21661 in the base sequence of the accession number.
  • mutant MPL gene the MPL gene in which the base is a mutant
  • W515L mutant MPL gene the mutant MPL gene having W515L polymorphism
  • W515K mutant MPL gene the mutant MPL gene having a type
  • wild-type MPL gene or normal MPL gene the mutant MPL gene having a wild-type polymorphism
  • the site at which the polymorphism occurs ie, the bases 11534 and 11535 in the base sequence of SEQ ID NO: 1 (sense strand), or the complementary sequence (antisense strand) thereof in the complementary sequence (antisense strand)
  • the bases corresponding to the base No. 11534 and the base No. 11535 are referred to as "the detection target site”.
  • the region containing the detection target site and to which the polymorphism detection probe can hybridize is referred to as “sequence to be detected, detection target region Or "hybridizing region”.
  • perfect match means that the base of the detection target site is complementary to the corresponding base in the polymorphism detection probe, and preferably, the detection target sequence and the polymorphism detection probe are , Means completely complementary.
  • the mismatch means that the base of the detection target site is non-complementary to the corresponding base in the polymorphism detection probe, and preferably, the detection target sequence and the polymorphism detection probe are And means completely complementary at other than the detection target site.
  • the amplified region in the MPL gene is hereinafter referred to as "amplification target region".
  • the region to be amplified may be, for example, a region in the sense strand of the MPL gene, a region in the corresponding antisense strand, or both of them.
  • the sense strand and the antisense strand also include, for example, the meanings of the amplification product of the sense strand and the amplification product of the antisense strand.
  • the end of the base sequence means the 5'-side and the 3'-most end of the base sequence.
  • the 5 'terminal region is a region from the 5' end to several bases in the base sequence
  • the 3 'terminal region is a region from the 3' end of the base sequence to several bases.
  • the several bases are, for example, 1 to 10 bases including the terminal base.
  • the Zth base from the end of the base sequence (Z is a positive integer) is an order from the end base to the first, for example, the first end base is the end base, from the end
  • the second base means the base next to the end.
  • the polymorphism detection probe of the present invention is a probe containing the oligonucleotide of (P1) below, a probe containing the oligonucleotide of (P1 ′), a probe containing the oligonucleotide of (P2) and (P2 ′) It is a probe for a polymorphism detection of the MPL gene, characterized in that it is at least one of the probes comprising the oligonucleotide of (P1)
  • An oligonucleotide (P1 ′) comprising a base sequence having a base length of 9 to 50 and including the base numbers 11535 to 11543 in SEQ ID NO: 1 and having the base of the base number 11543 in the 3 ′ end region
  • the oligonucleotide (P2) comprising a nucleotide sequence complementary to the oligonucleotide of (P1) is 10 to 50 nucleotides long
  • polymorphism of the MPL gene can be determined easily and with high reliability by, for example, Tm analysis.
  • Tm analysis for example, when the MPL gene in which the target polymorphism is a wild type and the MPL gene in a mutant type coexist in the sample, or a plurality of MPL genes of different mutant types coexist.
  • the present invention is particularly useful for a sample containing both a wild type MPL gene and a mutant MPL gene, or a sample containing different mutant MPL genes.
  • the polymorphism of the MPL gene can be easily determined with excellent reliability, so that, for example, the detection result can be reflected in the diagnosis and the like of the aforementioned diseases. Therefore, the present invention can be said to be extremely useful in the medical field and the like.
  • the polymorphism detection probe of the present invention is the polymorphism (g / a, g / t) of base (d) of base number 11535 and / or base number 11534 in the base sequence of the MPL gene shown in SEQ ID NO: 1
  • These probes are for detecting polymorphism (t / a) of base (w) of (1) and polymorphism (g / a, g / t) of base (d) of base number 11535.
  • w is thymine (t) or adenine (a)
  • d is guanine (g), adenine (a) or thymine (t) (the same applies hereinafter).
  • the oligonucleotides of (P1) and (P1 ′) have a base length of 9 to 50, preferably 13 to 30, and more preferably 15 to 20 as described above. Base length.
  • the oligonucleotides of (P2) and (P2 ′) have a base length of 10 to 50 bases, preferably 13 to 30 bases, as described above, and more preferably 15 to 20. Base length.
  • the oligonucleotides of (P1) and (P2) are, for example, homologous to the sense strand of the MPL gene, and the polymorphism can be confirmed by hybridization with the antisense strand of the MPL gene.
  • the oligonucleotides of (P1) and (P2) above include the base (d) of base No. 11535 and may further include the base (w) of base No. 11534 in the base sequence shown in SEQ ID NO: 1 Is preferred.
  • the sequence of "wd” is, for example, “tg", “tt” or "aa”.
  • wd is tg
  • the oligonucleotide perfectly matches the sequence to be detected in the antisense strand of the wild-type MPL gene.
  • wd is tt
  • the oligonucleotide perfectly matches the detection target sequence in the antisense strand of the W515L mutant MPL gene.
  • “wd is aa” the oligonucleotide perfectly matches the sequence to be detected in the antisense strand of the W515K mutant MPL gene.
  • the polymorphism of the MPL gene can be detected depending on whether the oligonucleotide is a perfect match with the detection target sequence of the MPL gene.
  • the oligonucleotide of “wd is tg” can detect a wild-type polymorphism, and the oligonucleotide of “wd can be tt” can detect a polymorphism of W515L mutant, “wd With the above-mentioned oligonucleotide of “aa”, polymorphism of W515K mutant can be detected.
  • the oligonucleotide of “wd is tg” is also referred to as a wild type detection probe
  • the oligonucleotide of “wd is tt” is also referred to as a W515L mutant detection probe
  • the oligonucleotide of “wd is aa” Is also referred to as a W515K mutant-type detection probe.
  • the oligonucleotide of (P1) has the base of the base number 11543 in the 3 'terminal region, and is preferably the first to fourth positions counting from the 3' end, more preferably the first to third Most preferably, it is at the first (3 'end) or second.
  • Examples of the oligonucleotide (P1) include the oligonucleotides shown in SEQ ID NO: 2 or SEQ ID NO: 3.
  • the oligonucleotide of (P2) has a base of the base number 11544 in the 3 'terminal region, and is preferably the first to fourth positions counted from the 3' end, more preferably the first to third Most preferably, it is at the first (3 'end) or second.
  • Examples of the oligonucleotide of (P2) include the oligonucleotide shown in SEQ ID NO: 4.
  • the underlined wd corresponds to the detection target site wd of the MPL gene shown in SEQ ID NO: 1.
  • ctgagg wd gcagtttc SEQ ID NO: 2
  • gctgagg wd gcagtttc SEQ ID NO: 3
  • ctgagg wd gcagtttcc SEQ ID NO: 4
  • wd is, for example, at least one of tt, aa and tg.
  • Examples of the oligonucleotide shown in SEQ ID NO: 2 include the oligonucleotide shown in SEQ ID NO: 5.
  • the underlined tt corresponds to the detection target site in the sense strand of the W515L mutant MPL gene, and the probe containing the oligonucleotide shown in SEQ ID NO: 5 is a W515L mutant detection probe It can be used.
  • Examples of the oligonucleotide shown in SEQ ID NO: 3 include the oligonucleotide shown in SEQ ID NO: 6.
  • the underlined aa corresponds to the detection target site in the sense strand of the W515K mutant MPL gene, and the probe containing the oligonucleotide shown in SEQ ID NO: 6 is used as a W515K mutant detection probe It can be used.
  • the oligonucleotide shown in SEQ ID NO: 4 is, for example, the oligonucleotide shown in SEQ ID NO: 7.
  • the underlined tg corresponds to a detection target site in the sense strand of a wild-type MPL gene, and a probe containing the oligonucleotide shown in SEQ ID NO: 7 can be used as a wild-type detection probe .
  • ctgagg tt gcagtttc SEQ ID NO: 5
  • gctgagg aa gcagtttc SEQ ID NO: 6
  • ctgagg tg gcagtttcc SEQ ID NO: 7
  • the oligonucleotides (P1 ') and (P2') are, for example, complementary to the sense strand of the MPL gene, and the polymorphism can be confirmed by hybridization with the sense strand of the MPL gene.
  • the base complementary to the base (w) of the detection target site (base No. 11534 of SEQ ID NO: 1) of the sense strand is represented by w, Is thymine (t) or adenine (a), and the base complementary to the base (d) of the detection target site (base No.
  • the polymorphism detection probe of the present invention may be, for example, a probe containing the above-mentioned oligonucleotide or a probe consisting of the above-mentioned oligonucleotide.
  • the probe for detecting a polymorphism of the present invention is preferably a labeled probe having a labeling substance.
  • the oligonucleotide is labeled (modified) with the labeling substance.
  • the site to be labeled with the labeling substance in the oligonucleotide is not particularly limited, and is preferably, for example, a 5 'end region or a 3' end region, more preferably a 5 'end or a 3' end.
  • cytosine (c) or guanine (g) is preferable as the base to be labeled by the labeling substance.
  • the labeling substance may, for example, directly label a base or indirectly label the base.
  • the base can be indirectly labeled, for example, by labeling any site of the nucleotide residue containing the base.
  • cytosine (c) at the 3 'end is preferably labeled with the labeling substance.
  • the oligonucleotides of (P1) and (P2) preferably have the labeling substance in the 3 ′ end region, and specifically, for example, in the position of the first to fourth bases counted from the 3 ′ end It is preferable to have the above-mentioned labeling substance, more preferably the first to fourth bases counted from the 3 'end, still more preferably the first to third bases counted from the 3' end, particularly preferably It is the base of the second or 3 'end counted from the 3' end.
  • the base of any of the base numbers 11540 to 11543 preferably has the labeling substance, and more preferably, the base (c) of the base number 11543 is the label With substance.
  • the base of any of the base numbers 11541 to 11544 have the labeling substance, more preferably the base (c) of the base number 11544 is the label It is preferred to have a substance.
  • the oligonucleotides of (P1 ′) and (P2 ′) preferably have the labeling substance in the 5 ′ end region, and specifically, for example, the first to fourth bases counted from the 5 ′ end It is preferable to have the labeling substance at the position, more preferably the first to fourth bases counted from the 5 'end, still more preferably the first to third bases counted from the 5' end, particularly preferred Is the second or 5 'end base, counting from the 5' end.
  • a base complementary to any one of the base numbers 11540 to 11543 preferably has the labeling substance, and more preferably, the base of the base number 11543
  • the complementary base (c) carries the labeling substance.
  • a base complementary to any one of the base numbers 11541 to 11544 preferably has the labeling substance, and more preferably is complementary to the base of the base number 11544
  • Base (c) carries the labeling substance.
  • the labeling substance is not particularly limited, and for example, one that emits a signal depending on whether the labeling probe is alone or forms a hybrid is preferable.
  • the type of the signal is not particularly limited, and examples thereof include fluorescence and color.
  • the color may be, for example, a color or a color.
  • the signal value may be, for example, fluorescence intensity.
  • the signal value may be, for example, reflectance, absorbance, transmittance or the like.
  • the signal may, for example, be emitted directly from the labeling substance or may be emitted indirectly.
  • the labeling substance is not particularly limited, and examples thereof include fluorescent substances such as fluorophores.
  • fluorescent substances include fluorescein, phosphor, rhodamine, polymethine dye derivative and the like.
  • Commercially available fluorescent substances are, for example, Pacific Blue (registered trademark, manufactured by Molecular Probes), BODIPY FL (registered trademark, manufactured by Molecular Probes), FluorePrime (trade name, manufactured by Amersham Pharmacia), Fluoredite (trade name, Millipore) And FAM (registered trademark, manufactured by ABI), Cy3 and Cy5 (trade names, manufactured by Amersham Pharmacia), TAMRA (registered trademark, manufactured by Molecular Probes), and the like.
  • the detection conditions of the fluorescent substance are not particularly limited, and can be determined as appropriate depending on, for example, the type of fluorescent substance used.
  • Pacific Blue can be detected at, for example, a detection wavelength of 450 to 480 nm
  • TAMRA can be detected at, for example, a detection wavelength of 585 to 700 nm
  • BODIPY FL can be detected at, for example, a detection wavelength of 515 to 555 nm. If such a labeled probe is used, for example, by detecting fluorescence as a signal and measuring fluorescence intensity as a signal value, hybridization and dissociation can be easily confirmed from fluctuations in fluorescence intensity.
  • any two or all of the wild type detection probe, the W515L mutation type detection probe, and the W515K mutation type detection probe have the same reaction. It can also be used in systems. Thereby, polymorphisms of wild type, W515L mutant and W515K mutant in the MPL gene can be discriminated in the same reaction system.
  • each of the probes preferably has different labeling substances that are detected under different conditions.
  • the labeled probe is, for example, preferably a labeled probe that exhibits a signal alone and does not exhibit a signal upon hybridization, or a labeled probe that alone exhibits no signal and exhibits a signal upon hybridization.
  • the labeling substance is a fluorescent substance
  • a probe which is labeled with the fluorescent substance exhibits fluorescence alone, and which decreases fluorescence (for example, quenching) by hybridization is preferable.
  • Such a phenomenon is generally called a fluorescence quenching phenomenon (Quenching phenomenon).
  • Probes utilizing this phenomenon are generally referred to as fluorescence quenching probes.
  • the fluorescence quenching probe is preferably, for example, that the 3 'end or the 5' end of the oligonucleotide is labeled with the fluorescent substance, and the terminal base to be labeled is cytosine (c) or guanine (G) is preferred.
  • the fluorescence quenching probe forms a pair with the labeled terminal cytosine (c) in the test nucleic acid, for example, when forming a hybrid with the test nucleic acid
  • the base sequence of the fluorescence quenching probe such that guanine (g) is a base or a base separated by 1 to 3 bases from the base forming the pair is guanine (g).
  • the base separated by one base from the paired base means, for example, a base next to the paired base.
  • Such a probe is generally called a guanine quenching probe and is known as a so-called QProbe (registered trademark).
  • guanine quenching probe hybridizes to the test nucleic acid, for example, cytosine (c) at the end labeled with the fluorescent material approaches guanine (g) in the test nucleic acid, whereby It shows a phenomenon that fluorescence becomes weak, that is, fluorescence intensity decreases. If the above-mentioned probe is used, hybridization and dissociation can be easily confirmed by, for example, fluctuation of fluorescence intensity.
  • the terminal base is guanine (g)
  • the labeled terminal guanine (g) in the test nucleic acid It is preferable to design the base sequence of the fluorescence quenching probe such that the cytosine (c) is a base forming a pair with or a base separated by 1 to 3 bases from the base forming the pair is cytosine (c).
  • a phosphate group may be added to the 3 'end.
  • the test nucleic acid can be prepared, for example, by a nucleic acid amplification method such as PCR.
  • the polymorphism detection probe of the present invention may be coexistent in the reaction system of the nucleic acid amplification reaction.
  • a phosphate group is added to the 3 'end of the polymorphism detection probe, extension of the polymorphism detection probe itself by the nucleic acid amplification reaction can be sufficiently prevented.
  • the same effect can be obtained by, for example, adding a labeling substance as described above to the 3 'end of the polymorphism detection probe.
  • the detection method is not limited at all, and any method using hybridization of the detection target sequence with the probe may be used.
  • the polymorphism detection method of the present invention will be described below as the polymorphism detection method.
  • the polymorphism detection method of the present invention includes a step of detecting polymorphism of the MPL gene using the polymorphism detection probe of the present invention, the polymorphism detection method of the MPL gene It is.
  • the polymorphism detection method of the present invention preferably includes, for example, the following steps (A) and (B).
  • the polymorphism detection method of the present invention is characterized by using the polymorphism detection probe of the present invention, and the other configurations, conditions, and the like are not limited to the following description.
  • the polymorphism detection probe of the present invention is preferably a labeled probe.
  • the reaction system is, for example, a reaction solution.
  • the polymorphism detection probe used in the polymorphism detection method of the present invention may be one type or two types, but it is preferable to use three types in combination. Specifically, any one or two or more types of the wild type detection probe, the W515L mutant type detection probe, and the W515K mutant type detection probe may be used, but three types are used in combination. Is preferred.
  • the polymorphism detection probes in combination whether the polymorphism of the nucleotide numbers 11534 and 11535 of the MPL gene shown in SEQ ID NO: 1 is the wild type, the W515L mutant or the W515K mutant For example, it can be detected in one reaction system.
  • the combination of the polymorphism detection probes is not particularly limited.
  • a W515L mutant detection probe containing the oligonucleotide shown in SEQ ID NO: 5 and a W515K mutation detection probe containing the oligonucleotide shown in SEQ ID NO: 6
  • each of the polymorphism detection probes is preferably the labeled probe.
  • Each of the labeled probes is preferably labeled with a labeling substance under different detection conditions.
  • the test nucleic acid may be a single stranded nucleic acid or a double stranded nucleic acid.
  • the step (A) includes heating the reaction system to dissociate the double-stranded test nucleic acid. Is preferred. By dissociating the double stranded nucleic acid into a single stranded nucleic acid, the polymorphism detection probe of the present invention can be hybridized with the single stranded nucleic acid.
  • the test nucleic acid may be, for example, a nucleic acid originally contained in a sample, or an amplification product of the nucleic acid.
  • the latter is preferable, for example, because it can improve detection accuracy, and the amplification product can be prepared, for example, by amplifying the nucleic acid in the sample as a template nucleic acid by a nucleic acid amplification method.
  • the amplification product may be, for example, an amplification product using DNA in the sample as a template, or an amplification product using cDNA synthesized from RNA in the sample as a template.
  • RNA in the sample include RNA such as total RNA, mRNA and the like, and the cDNA can be synthesized, for example, from the RNA by RT-PCR (Reverse Transcription PCR).
  • the polymorphism detection method of the present invention may further include, for example, the following step (X).
  • the step (X) is preferably performed, for example, prior to the step (A).
  • the step (X) may be, for example, a step of producing the amplification product from the template nucleic acid in a reaction system in the presence of the polymorphism detection probe.
  • (X) a step of producing the amplification product from a template nucleic acid
  • the polymorphism detection probe may be included in the reaction system, for example, and the timing of its addition is not particularly limited.
  • the reaction system in the step (A) newly uses, for example, the amplification product obtained in the step (X) and the polymorphism detection probe. It may be prepared, or may be a reaction system of the amplification reaction in the step (X). In the latter case, the polymorphism detection probe may be added to the reaction system of the amplification reaction, for example, before or during the step (X), and after the step (X), the amplification reaction of the amplification reaction It may be added to the reaction system.
  • the nucleic acid amplification method is not particularly limited.
  • PCR Polymerase Chain Reaction
  • NASBA Nucleic Acid Sequence Based Amplification
  • TMA Transcription-Mediated Amplification
  • SDA String Displacement Amplification
  • the conditions for the nucleic acid amplification method are not particularly limited, and can be performed by a conventionally known method.
  • a primer for amplifying a region containing a polymorphism for detection in the MPL gene For generation of the nucleic acid amplification product from the template nucleic acid, it is preferable to use, for example, a primer for amplifying a region containing a polymorphism for detection in the MPL gene.
  • the sequence of the primer is not particularly limited, for example, as long as it can amplify a detection target sequence including the detection target site, and can be appropriately set by a conventionally known method according to the detection target sequence, its surrounding sequence, and the like.
  • the length of the primer is not particularly limited and can be set to a general length, for example, a length of 10 to 30 bases.
  • the primer may be, for example, one of a forward primer (hereinafter also referred to as “F primer”) for amplifying the sense strand of a gene and a reverse primer (hereinafter also referred to as “R primer”) for amplifying the antisense strand. It is preferable to use a primer set in which both are paired. Below, F primer and R primer are illustrated, but these are examples and do not limit the present invention.
  • F primer forward primer
  • R primer reverse primer
  • the addition ratio of the primer is not particularly limited, and is, for example, 0.1 to 2 ⁇ mol / L, preferably 0.25 to 1.5 ⁇ mol / L, for one type of primer. And particularly preferably 0.5 to 1 ⁇ mol / L.
  • the addition ratio (molar ratio F: R) in particular of said F primer (F) and R primer (R) is not restrict
  • the addition ratio (molar ratio) of the polymorphism detection probe to the test nucleic acid is not particularly limited, and is preferably 1 or less, more preferably, because a detection signal can be sufficiently secured. 0.1 times or less.
  • the test nucleic acid may be, for example, the sum of a perfect match nucleic acid having a perfect match sequence and a mismatch nucleic acid having a mismatch sequence, or a total of an amplification product containing the perfect match sequence and an amplification product containing the mismatch sequence. May be.
  • the addition ratio (molar ratio) of the polymorphism detection probe is perfect match nucleic acid (amplification containing perfect match sequence) Is preferably 10 times or less, more preferably 5 times or less, and still more preferably 3 times or less.
  • the lower limit is not particularly limited, and is, for example, 0.001 times or more, preferably 0.01 times or more, and more preferably 0.1 times or more.
  • the addition ratio of the polymorphism detection probe to the test nucleic acid may be, for example, a molar ratio to double-stranded nucleic acid or a molar ratio to single-stranded nucleic acid.
  • the addition ratio of the polymorphism detection probe in the reaction system is not particularly limited, and for example, it is preferable to add one kind of the polymorphism detection probe in a range of 10 to 1000 nmol / L, and more preferably. Preferably, it is 20 to 500 nmol / L.
  • the molar ratio of the polymorphism detection probe to the test nucleic acid in the reaction system is, for example, preferably 1 or less, more preferably 0.1 It is below.
  • the addition ratio of the polymorphism detection probe to the test nucleic acid may be, for example, a molar ratio to double-stranded nucleic acid or a molar ratio to single-stranded nucleic acid.
  • the sample to which the polymorphism detection method of the present invention is applied is not particularly limited, and examples thereof include a biological sample.
  • the biological sample include whole blood, blood cells such as white blood cells, oral cells such as oral mucosa, somatic cells such as nails and hair, germ cells, sputum, amniotic fluid, paraffin-embedded tissue, urine, gastric juice , Stomach lavage and the like.
  • the method of collecting the sample, the method of preparing the test nucleic acid from the sample, and the like are not limited, and conventionally known methods can be adopted.
  • the polymorphism detection method of the present invention can be used for so-called Tm analysis as described above.
  • Tm value in Tm analysis will be described.
  • the absorbance at 260 nm increases. This is because the hydrogen bond between both strands in double-stranded DNA is released by heating and dissociated into single-stranded DNA (DNA melting).
  • DNA melting single-stranded DNA
  • the absorbance thereof is about 1.5 times the absorbance at the start of heating (absorbance of only double-stranded DNA).
  • the melting temperature (Tm) is generally defined as the temperature at which the absorbance reaches 50% of the total increase in absorbance.
  • the measurement of the signal indicating the melting state of the hybrid of the test nucleic acid and the polymorphism detection probe may be, for example, the absorbance measurement at 260 nm as described above, or the signal measurement of the labeling substance May be.
  • the labeled probe labeled with the labeling substance as the polymorphism detection probe to measure the signal of the labeling substance.
  • the labeled probe may be, for example, a labeled probe that exhibits a signal alone and does not exhibit a signal upon hybridization, or a labeled probe that exhibits no signal alone and exhibits a signal upon hybridization.
  • the former probe does not show a signal when forming a hybrid (double-stranded DNA) with the amplification product, and shows a signal when the probe is dissociated from the amplification product by heating.
  • a signal is shown by forming a hybrid (double-stranded DNA) with the amplification product, and when the probe is dissociated from the amplification product by heating, the signal decreases (disappears). Therefore, detection of the signal of the labeling substance enables detection of the progress of melting of the hybrid, determination of the Tm value, and the like, as in the absorbance measurement at 260 nm.
  • the signal detection of the labeled substance may be detected, for example, under conditions specific to the signal of the labeled substance. Examples of the detection condition include an excitation wavelength, a detection wavelength and the like.
  • the labeled probe and the labeled substance are as described above.
  • the polymorphism detection method of the present invention will be described by way of an example.
  • a labeled probe labeled with a fluorescent substance is used as a polymorphism detection probe of the present invention, and amplification of the template nucleic acid is performed in the presence of the polymorphism detection probe, and the obtained amplification product is It is an example set as the test nucleic acid.
  • the polymorphism detection method of the present invention is characterized by using the polymorphism detection probe of the present invention itself, and the other steps and conditions are not limited at all.
  • genomic DNA is isolated from the biological sample.
  • the isolation of genomic DNA from the biological sample is not particularly limited, and can be performed by a conventionally known method.
  • a commercially available genomic DNA isolation kit (trade name GFX Genomic Blood DNA Purification kit; manufactured by GE Healthcare Biosciences) can be used.
  • the labeled probe is added to a sample containing the isolated genomic DNA to prepare a reaction solution.
  • QProbe registered trademark
  • the labeled probe may be added, for example, to a sample containing isolated genomic DNA, or may be mixed with genomic DNA in a solvent.
  • the solvent is not particularly limited, and for example, a buffer such as Tris-HCl, a solvent containing KCl, MgCl 2 , MgSO 4 , glycerol or the like, a reaction liquid for nucleic acid amplification such as a reaction liquid for PCR, etc. The thing is raised.
  • the timing of addition of the labeled probe is not particularly limited, and can be added, for example, before, during or after the nucleic acid amplification reaction. Among them, for example, it is not necessary to expose the reaction solution to the external environment for the addition of the labeled probe, and it is possible to continuously perform the nucleic acid amplification reaction and the measurement of the signal value, It is preferable to add to the reaction solution before the nucleic acid amplification reaction.
  • the labeled probe is preferably modified at its 3 'end with a labeling substance or a phosphate group.
  • a sequence to be detected including a polymorphism to be detected is amplified by nucleic acid amplification such as PCR in the presence of the labeled probe using the isolated genomic DNA as a template.
  • nucleic acid amplification such as PCR
  • PCR will be described as an example of a nucleic acid amplification method, but the present invention is not limited thereto.
  • the conditions for PCR are not particularly limited, and can be performed by a conventionally known method.
  • PCR is performed on the reaction solution containing the genomic DNA, the labeled probe, and the primer.
  • the composition of the reaction solution is not particularly limited, and can be appropriately set by those skilled in the art.
  • the reaction solution may contain, for example, a polymerase such as a DNA polymerase, nucleoside triphosphate, a buffer, various catalysts, etc., in addition to the genomic DNA, the labeled probe and the primer.
  • the addition ratio of the labeled probe and the primer in the reaction solution is not particularly limited, and examples thereof include the ranges described above.
  • the DNA polymerase is not particularly limited, and, for example, polymerases derived from thermostable bacteria known in the art can be used.
  • DNA polymerase derived from Thermus aquaticus US Pat. Nos. 4,889,818 and 5,079,352 (trade name: Taq polymerase), Thermus thermophilus ( Thermus thermophilus) ) DNA polymerase (WO 91/09950) (rTth DNA polymerase), DNA polymerase derived from Pyrococcus furiosus (WO 92/9689) (Pfu DNA polymerase: manufactured by Stratagenes), Thermococcus litoralis ( Thermococcus litoralis ) Polymerase derived from (EP-A 455 430 (trademark Vent): ew England Biolabs, Inc.), etc. are commercially available, among others, Thermus aquaticus (Thermus aquaticus) derived thermostable DNA polymerase is preferred.
  • the addition ratio of the DNA polymerase in the reaction solution is not particularly limited, and is, for example, 1 to 100 U / mL, preferably 5 to 50 U / mL, more preferably 20 to 40 U / mL.
  • the activity unit (U) of DNA polymerase generally has 1 U activity of incorporating 10 nmol of total nucleotides into acid-insoluble precipitate in 30 minutes at 74 ° C. in a reaction solution for activity measurement, using activated salmon sperm DNA as a template primer. It is.
  • the composition of the reaction liquid for activity measurement is, for example, 25 mmol / L TAPS buffer (pH 9.3, 25 ° C.), 50 mmol / L KCl, 2 mmol / L MgCl 2 , 1 mmol / L mercaptoethanol, 200 ⁇ mol / L dATP, 200 ⁇ mol / L dGTP, 200 ⁇ mol / L dTTP, 100 ⁇ mol / L “ ⁇ - 32 P” dCTP, 0.25 mg / mL activated salmon sperm DNA.
  • the nucleoside triphosphate is usually dNTP (dATP, dCTP, dGTP and dTTP or dUTP).
  • dNTP dATP, dCTP, dGTP and dTTP or dUTP
  • the addition ratio of dNTP in the reaction solution is not particularly limited, and is, for example, 0.01 to 1 mmol / L, preferably 0.05 to 0.5 mmol / L, and more preferably 0.1 It is ⁇ 0.3 mmol / L.
  • buffer examples include Tris-HCl, Tricine, MES, MOPS, HEPES, CAPS and the like, and commercially available buffers for PCR and buffers of commercially available PCR kits can be used.
  • the reaction solution may further contain heparin, betaine, KCl, MgCl 2 , MgSO 4 , glycerol and the like, and the addition ratio thereof may be set, for example, in a range that does not inhibit the PCR reaction.
  • the total volume of the reaction solution is not particularly limited, and can be appropriately set according to, for example, the device to be used such as a thermal cycler, but is usually 1 to 500 ⁇ L, preferably 10 to 100 ⁇ L.
  • the cycle conditions for the PCR are not particularly limited. As a specific example, for example, (1) dissociation of double-stranded DNA which is a test nucleic acid into single-stranded DNA, (2) annealing of the primer to the single-stranded DNA, (3) The extension can be exemplified by the conditions in Table 1 below.
  • the number of PCR cycles is not particularly limited, and for example, 30 cycles or more are preferable, with the following three steps (1) to (3) as one cycle.
  • the upper limit of the total number of cycles is not particularly limited, and is, for example, 100 cycles or less, preferably 70 cycles or less, and more preferably 50 cycles or less.
  • the temperature change of each step can be automatically controlled using, for example, a thermal cycler.
  • the addition ratio of the labeled probe in the reaction solution is not particularly limited.
  • the labeled probe is preferably added in a range of 10 to 1000 nmol / L, more preferably 20 to 500 nmol / L. .
  • the molar ratio of the labeled probe to the test nucleic acid in the reaction solution is, for example, preferably 1 or less, more preferably 0.1 or less.
  • the addition ratio of the labeled probe to the test nucleic acid may be, for example, a molar ratio to double-stranded nucleic acid or a molar ratio to single-stranded nucleic acid.
  • dissociation of the obtained amplification product (double-stranded DNA) and hybridization of the single-stranded DNA obtained by dissociation with the labeled probe are performed.
  • This can be done, for example, by changing the temperature of the reaction solution in the presence of the labeled probe.
  • the heating temperature in the dissociation step may be, for example, a temperature at which the double-stranded amplification product can be dissociated into single strands.
  • the heating temperature is not particularly limited, and is, for example, 85 to 95 ° C.
  • the heating time is not particularly limited, and is usually 1 second to 10 minutes, preferably 1 second to 5 minutes.
  • Hybridization between the dissociated single-stranded DNA and the labeled probe can be performed, for example, by decreasing the heating temperature in the dissociation step after the dissociation step.
  • the temperature condition is, for example, 40 to 50.degree.
  • the treatment time at the temperature is not particularly limited, and is, for example, 1 to 600 seconds.
  • the temperature of the reaction solution is changed, and a signal value indicating the melting state of the hybrid of the amplification product and the labeled probe is measured.
  • the reaction solution is heated, that is, the hybrid of the single-stranded DNA and the labeled probe is heated, and the fluctuation of the signal value accompanying the temperature rise is measured.
  • a guanine quenching probe that is, a probe in which cytosine (c) at the end is labeled
  • fluorescence is reduced (or quenched) and dissociated in a hybridized state with single-stranded DNA In the state, it emits fluorescence.
  • hybrids with reduced (or quenched) fluorescence may be heated gradually and the increase in fluorescence intensity with increasing temperature may be measured.
  • the temperature range is not particularly limited.
  • the start temperature is, for example, room temperature to 85 ° C., preferably 25 to 70 ° C.
  • the end temperature is, for example, 40 to 105 ° C.
  • the rate of temperature rise is not particularly limited, and is, for example, 0.1 to 20 ° C./second, preferably 0.3 to 5 ° C./second.
  • the fluctuation of the signal value is analyzed to determine the Tm value. Specifically, the amount of change in fluorescence intensity per unit time (-d change in fluorescence intensity / dt or d change in fluorescence intensity / dt) at each temperature is calculated from the obtained fluorescence intensity, and the most changed value Can be determined as the Tm value.
  • the temperature at which the increase in fluorescence intensity is measured and the increase in fluorescence intensity per unit time shows the lowest value, or The temperature at which the fluorescence intensity increment (d fluorescence intensity increment / dt) exhibits the highest value per unit time can also be determined as the Tm value.
  • the decrease in fluorescence intensity may be measured.
  • the fluctuation of the signal value may be analyzed for each of the detection wavelengths.
  • the Tm value can be calculated by, for example, the conventionally known MELTCALC software (http://www.meltcalc.com/) or the like, or can be determined by the nearest neighbor method.
  • the base of the base number 11534 or 11535 in the base sequence of the MPL gene shown in SEQ ID NO: 1 in the sequence to be detected is the wild type or the mutant.
  • a completely complementary hybrid (match) has a result that the Tm value indicating dissociation is higher than that of a hybrid (mismatch) different by one or more bases. Therefore, by determining in advance the Tm value of the hybrid that is completely complementary and the Tm value of the hybrid that differs by one or more bases for the labeled probe, the base of the sequence to be detected is the wild type It can be determined whether it is the mutant or the mutant.
  • the Tm value of the completely complementary hybrid is shown
  • the type of polymorphism can also be determined depending on which probe it is.
  • Measurement of signal fluctuation during hybridization may be performed. That is, when the temperature of the reaction system including the polymorphism detection probe is lowered to form a hybrid, for example, the signal fluctuation associated with the temperature drop may be measured.
  • a labeled probe for example, a guanine quenched probe
  • the labeled probe emits fluorescence in the state where the single-stranded DNA and the labeled probe are dissociated, but the fluorescence decreases (or is quenched) when a hybrid is formed due to a drop in temperature. Therefore, for example, the temperature of the reaction solution may be gradually decreased to measure the decrease in fluorescence intensity as the temperature decreases.
  • the temperature of the reaction solution may be gradually decreased to measure the increase in fluorescence intensity accompanying the temperature decrease.
  • the reagent for detecting polymorphism of the present invention is a reagent for detecting polymorphism of the MPL gene, which is characterized by comprising the probe for detecting polymorphism of the present invention.
  • the present invention is characterized by including the polymorphism detection probe of the present invention, and the other configurations and conditions are not limited at all.
  • the polymorphism detection reagent may contain, for example, one type or two types of the polymorphism detection probe, and preferably three types. Specifically, any one or two or more types of the wild type detection probe, the W515L mutant type detection probe, and the W515K mutant type detection probe may be included, but three types are included. Is preferred.
  • the combination of the polymorphism detection probe of the present invention is not particularly limited.
  • the W515L mutant detection probe containing the oligonucleotide shown in SEQ ID NO: 5 and the W515K mutation type containing the oligonucleotide shown in SEQ ID NO: 6 A combination of the detection probe and the wild-type detection probe containing the oligonucleotide shown in SEQ ID NO: 7 can be exemplified.
  • the polymorphism detection reagent of the present invention may further include a primer or primer set for amplifying a region of the MPL gene including the target site for detection.
  • a primer or primer set for amplifying a region of the MPL gene including the target site for detection examples include those described above.
  • the polymorphism detection reagent of the present invention may further contain, for example, components necessary for a nucleic acid amplification reaction. Specific examples thereof include, for example, polymerases such as DNA polymerase as described above, nucleoside triphosphates, buffers, various catalysts and the like.
  • each component may be housed, for example, in the same container or in another container.
  • the reagent for detection of polymorphism of the present invention can be said to be, for example, a probe kit used for detection of polymorphism of MPL gene.
  • each component may be housed, for example, in the same container or in a separate container.
  • the polymorphism detection kit of the present invention may further include instructions for use.
  • the primer for amplifying MPL gene of the present invention is at least one of the primers consisting of the oligonucleotides shown in SEQ ID NOs: 8 to 9 as described above.
  • the amplification method of the present invention includes an amplification step of amplifying the MPL gene using a nucleic acid in a sample as a template and the primer for amplifying MPL gene of the present invention in a reaction system. Amplification method.
  • the method of detecting an amplification product of the present invention is characterized by using the primer of the present invention, and comprising an amplification step of amplifying the MPL gene by the amplification method of the MPL gene of the present invention, It is an amplification thing detection method which detects amplification thing.
  • the detection method of the present invention preferably further includes, for example, the step of detecting the amplified product of the MPL gene using the probe of the present invention.
  • Example 1 Tm analysis was performed in the coexistence of a wild-type plasmid and a mutant-type plasmid to detect polymorphism of the MPL gene.
  • a wild type plasmid (wt), a mutant plasmid (W515L) and a mutant plasmid (W515K) were prepared.
  • the partial sequence of the wild type MPL gene (base number of SEQ ID NO: 1) in which base w of nucleotide No. 11534 of SEQ ID NO: 1 is thymine (t) and base d of base No. 11535 is guanine (g)
  • a double-stranded plasmid was inserted with 11391-1711).
  • the W515L was a double-stranded plasmid into which a partial sequence of the W515L mutant MPL gene (base numbers 11391 to 11711 of SEQ ID NO: 1) in which the base d of the base number 11535 was mutated to thymine (t) was inserted.
  • the double-stranded plasmid was inserted with the numbers 11391 to 11711). Then, the wt and W515L or W515K were mixed at a predetermined ratio to prepare three types of nucleic acid samples shown below.
  • PCR reaction solution 1 ⁇ L (1 ⁇ 10 4 copies / ⁇ L) of the nucleic acid sample and 49 ⁇ L of the reaction reagent shown in Table 2 below were added to prepare a PCR reaction solution.
  • the PCR reaction solution was subjected to PCR and Tm analysis using a fully automatic SNPs tester (trade name i-densy (registered trademark), manufactured by ARKRAY, Inc.).
  • the PCR was carried out at 95 ° C. for 60 seconds, followed by 50 cycles of 95 ° C. for 1 second and 62 ° C. for 15 seconds as one cycle, and further treated at 95 ° C. for 1 second and 40 ° C. for 60 seconds.
  • the PCR reaction solution is heated from 40 ° C. to 75 ° C. at a temperature increase rate of 1 ° C./3 seconds, and at the detection wavelength according to the type of fluorescent substance of the polymorphism detection probe. The change in fluorescence intensity over time was measured, and Tm analysis was performed.
  • F primer (SEQ ID NO: 8) 5'-tgggccgaagtctgacccttt-3 '
  • R primer (SEQ ID NO: 9) 5'-acagagcgaaccaagaatgcctgt-3 '
  • W515L mutant type detection probe 1 (SEQ ID NO: 5) 5'-ctgaggTTgcagtttc- (TAMRA) -3 ' W515K mutant type detection probe 1 (SEQ ID NO: 6) 5'-gctgaggAAgcagtttc- (BODIPY FL) -3 ' Wild type detection probe 1 (SEQ ID NO: 7) 5'-ctgaggTGgcagtttcc- (Pacific Blue) -3 '
  • the W515L mutant-type detection probe 1, the W515K mutant-type detection probe 1 and the wild-type detection probe 1 are sequences that perfectly match the antisense strand of the MPL gene, and the base in upper case is used in each sequence. Corresponds to the base (wd) of the base numbers 11534 to 11535 in SEQ ID NO: 1. The 3 'end of each probe was labeled with a fluorescent substance, respectively. TAMRA was detected at wavelengths of 445-480 nm, BODIPY FL at 520-555 nm, and Pacific Blue at 585-700 nm.
  • FIGS. 1 to 3 are graphs of Tm analysis showing changes in fluorescence intensity with temperature rise.
  • FIG. 1 shows the results for wt 100%
  • FIG. 2 for W515L 50%
  • FIG. 3 for W515K 50%.
  • the horizontal axis indicates the temperature (° C.) at the time of measurement
  • the vertical axis indicates the change in fluorescence intensity (hereinafter also referred to as “fluorescence change amount”), and the unit is “d fluorescence intensity increase amount / dt”.
  • fluorescence change amount the change in fluorescence intensity increase amount / dt
  • Tm as an evaluation criterion is as follows.
  • the Tm value of wt is 58 ° C.
  • the Tm value of W515L is 55 ° C.
  • the Tm value of W515K is 57 ° C.
  • the wild-type detection probe according to the present embodiment when the wild-type detection probe according to the present embodiment, the W515L mutant-type detection probe, and the W515K mutant-type detection probe are used, the wild-type and the wild-type are detected regardless of which polymorphism is present. It has been found that polymorphisms of two variants can be detected.
  • Comparative Example 1 the polymorphism of the MPL gene was detected in the same manner as in Example 1 except that each of the following polymorphism detection probes was used as the polymorphism detection probe.
  • P indicates phosphorylation at the 3 'end.
  • Wild type detection probe 2 (SEQ ID NO: 10) 5 '-(TAMRA) -ctgcCAcctcagcagca-P-3' W515L mutant type detection probe 2 (SEQ ID NO: 11) 5'-aggaaactgcAacc- (TAMRA) -3 ' W515K mutant type detection probe 2 (SEQ ID NO: 12) 5'-ggaa actgcTTcc- (TAMRA) -3 ' W515K mutant type detection probe 3 (SEQ ID NO: 13) 5 '-(TAMRA) -ctgaggAAgcagtttc-P-3'
  • polymorphism of the MPL gene can be determined easily and with high reliability by, for example, Tm analysis.
  • the present invention is particularly useful for a sample containing both a wild type MPL gene and a mutant MPL gene, or a sample containing different mutant MPL genes.
  • the polymorphism of the MPL gene can be easily determined with excellent reliability, so that, for example, the detection result can be reflected in the determination and treatment of diseases as described above, etc. . Therefore, the present invention can be said to be extremely useful in the medical field and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 MPL遺伝子について、多型を簡便且つ優れた信頼性で判別可能な、多型検出用プローブおよびその用途を提供する。下記(P1)、(P1')、(P2)および(P2')の少なくともいずれかのオリゴヌクレオチドを含むプローブを、MPL遺伝子の多型検出用プローブとする。 (P1)塩基長が9~50塩基長であり、配列番号1における塩基番号11535~11543を含む塩基配列からなり、前記塩基番号11543の塩基を、3'末端領域に有するオリゴヌクレオチド (P1')前記(P1)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド (P2)塩基長が10~50塩基長であり、配列番号1における塩基番号11535~11544を含む塩基配列からなり、前記塩基番号11544の塩基を、3'末端領域に有するオリゴヌクレオチド (P2')前記(P2)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド

Description

MPL遺伝子多型検出用プローブおよびその用途
 本発明は、MPL遺伝子の多型を検出するためのプローブおよびその用途に関する。
 慢性骨髄増殖性疾患(MPD)は、造血幹細胞の異常によるクローン性疾患であり、慢性骨髄性白血病(CML)、真性赤血球増加症(PV)、本態性血小板血症(ET)、原発性骨髄線維症(PMF)等の疾患の総称である。本態性血小板血症および原発性骨髄線維症の患者の一部は、トロンボポエチン受容体をコードする、MPL(myeloproliferative leukemia)遺伝子の変異により、MPLタンパク質の515番目のトリプトファン(W)がロイシン(L)またはリジン(K)に置換されていることが知られている(非特許文献1)。ロイシン(L)への前記置換(W515L)は、配列番号1に示すMPL遺伝子の塩基配列における塩基番号11535の塩基グアニン(g)のチミン(t)への変異により、また、リジン(K)への前記置換(W515K)は、前記塩基配列における塩基番号11534の塩基チミン(t)のアデニン(a)への変異および塩基番号11535の塩基グアニン(g)のアデニン(a)への変異によることが明らかになっている(非特許文献1)。したがって、MPL遺伝子における、これらの変異の有無、すなわち、多型を検出することにより、例えば、本態性血小板血症および原発性骨髄線維症の診断等が可能となる。
 他方、遺伝子の多型を検出する方法としては、様々な方法が報告されており、例えば、PCR(Polymerase Chain Reaction)-RFLP(Restriction Fragment Length Polymorphism)法等があげられる。
 前記PCR-RFLP法は、試料の標的DNAについて、検出目的の領域をPCRで増幅させ、その増幅物を制限酵素処理し、多型による制限断片長の変化を、サザンハイブリダイゼーションによりタイピングする方法である。遺伝子に目的の変異が存在すると、制限酵素の認識部位が消失するため、切断の有無、すなわち、制限断片長の変化によって、変異の有無を検出できる。
 しかしながら、前記PCR-RFLP法は、例えば、PCRの後、得られた増幅物を種々の制限酵素で処理し、解析する必要があり、手間がかかる。また、得られた増幅物の制限酵素処理は、一旦、反応器から前記増幅物を取り出して行う必要がある。このため、1回目の反応で得られた増幅物が飛散し、2回目の別の反応に混入するおそれがある。このような問題から、多型の検出を自動化し難い。
 このような問題から、近年、多型の検出方法として、Tm(Melting Temperature)解析が注目されている。これは、まず、検出目的の多型を含む領域に相補的なプローブを用いて、被検核酸と前記プローブとのハイブリッド(二本鎖核酸)を形成させる。そして、得られた前記ハイブリッドに加熱処理を施して、温度上昇に伴う前記ハイブリッドの一本鎖核酸への解離(融解)を、吸光度等のシグナルの測定により検出する。この検出結果に基づいてTm値を決定することによって、多型を判断する方法である。Tm値は、前記ハイブリッドにおける両一本鎖核酸の相補性が高い程高く、相補性が低い程低くなる。そこで、検出対象部位の多型がXまたはYの場合、目的の多型(例えば、Y)を含む核酸とそれに100%相補的なプローブとのハイブリッドについて、予めTm値(評価基準値)を求めておく。続いて、前記被検核酸と前記プローブとのTm値(測定値)を測定する。そして、この測定値が、前記評価基準値と同じ場合、前記被検核酸と前記プローブとはパーフェクトマッチである、すなわち、前記被検核酸の検出対象部位が目的の多型(Y)であると判断できる。他方、前記測定値が前記評価基準値よりも低い場合、前記被検核酸と前記プローブとはミスマッチである、すなわち、前記被検核酸の検出対象部位が他方の多型(X)であると判断できる。このような方法であれば、例えば、前記プローブを添加したPCR反応液に温度処理を施し、シグナル測定を行うのみで、多型を検出できる。このため、検出装置の自動化も可能である。
 しかしながら、このようなTm解析を利用した検出方法は、例えば、一塩基の違いをTm値によって判断しなければならない。このため、特に、野生型の多型と変異型の多型とが混在している場合等であっても、変異の有無を正確に検出することが求められている。
パルダナーニ(Paradanani)ら、blood、2006年、Vol.108、No.10、p.3472-3476
 そこで、本発明は、MPL遺伝子について、多型を、簡便且つ優れた信頼性で判別可能な、多型検出用プローブおよびその用途の提供を目的とする。
 前記目的を達成するために、本発明の多型検出用プローブは、下記(P1)のオリゴヌクレオチドを含むプローブ、(P1’)のオリゴヌクレオチドを含むプローブ、(P2)のオリゴヌクレオチドを含むプローブおよび(P2’)のオリゴヌクレオチドを含むプローブの少なくともいずれかであることを特徴とする、MPL遺伝子の多型検出プローブである。
(P1)塩基長が9~50塩基長であり、配列番号1における塩基番号11535~11543を含む塩基配列からなり、前記塩基番号11543の塩基を、3’末端領域に有するオリゴヌクレオチド
(P1’)前記(P1)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
(P2)塩基長が10~50塩基長であり、配列番号1における塩基番号11535~11544を含む塩基配列からなり、前記塩基番号11544の塩基を、3’末端領域に有するオリゴヌクレオチド
(P2’)前記(P2)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
 本発明の多型検出用試薬は、本発明の多型検出用プローブを含むことを特徴とする、MPL遺伝子の多型検出用試薬である。
 本発明の多型検出方法は、本発明の多型検出用プローブを用いて、MPL遺伝子の多型を検出する工程を含むことを特徴とする、MPL遺伝子の多型検出方法である。
 本発明の多型検出用プローブによれば、MPL遺伝子の多型を、簡便且つ優れた信頼性で判別できる。
図1は、本発明の実施例1における、wt 100%を含む反応液のTm解析の結果を示すグラフである。 図2は、本発明の実施例1における、W515L 50%を含む反応液のTm解析の結果を示すグラフである。 図3は、本発明の実施例1における、W515K 50%を含む反応液のTm解析の結果を示すグラフである。
 本発明において、MPL遺伝子における検出目的の多型は、例えば、配列番号1に示すMPL遺伝子の塩基配列における塩基番号11534および塩基番号11535の少なくとも一方の塩基における多型である。野生型は、配列番号1に示すMPL遺伝子の塩基配列において、塩基番号11534の塩基(w)がチミン(t)であり、塩基番号11535の塩基(d)がグアニン(g)であり、MPLタンパク質の515番目のアミノ酸は、トリプトファン(515W)となる。変異型は、2種類あげられる。一方の変異型は、配列番号1に示すMPL遺伝子の塩基配列において、塩基番号11534の塩基(w)がチミン(t)、塩基番号11535の塩基(d)がチミン(t)であり、MPLタンパク質の515番目のアミノ酸は、ロイシンとなる(W515L)。他方の変異型は、配列番号1に示すMPL遺伝子の塩基配列において、塩基番号11534の塩基(w)がアデニン(a)、塩基番号11535の塩基(d)がアデニン(a)であり、MPLタンパク質の515番目のアミノ酸は、リジンとなる(W515K)。MPL遺伝子において、前記塩基番号11534または塩基番号11535の塩基が、前述のような変異型の場合、例えば、本態性血小板血症、原発性骨髄線維症等の疾患の可能性があると判断できる。以下、515WとなるMPL遺伝子の多型を、「野生型多型または正常型多型」、W515LとなるMPL遺伝子の多型を、「W515L多型またはW515L変異型多型」、W515KとなるMPL遺伝子の多型を、「W515K多型またはW515K変異型多型」ともいう。
 MPL遺伝子の塩基配列は、例えば、GenBankアクセッションNo.NG_007525として登録されている。配列番号1に示す塩基配列は、MPL遺伝子の全長塩基配列であり、前記アクセッション番号の塩基配列における塩基番号5001~21661の領域である。
 本発明において、以下、前記塩基が変異型であるMPL遺伝子を「変異型MPL遺伝子」といい、このうち、W515L多型を有する変異型MPL遺伝子を「W515L変異型MPL遺伝子」といい、W515K多型を有する変異型MPL遺伝子を「W515K変異型MPL遺伝子」という。野生型多型を有するMPL遺伝子を「野生型MPL遺伝子または正常型MPL遺伝子」という。
 本発明において、前記多型が発生する部位、すなわち、配列番号1の塩基配列(センス鎖)において塩基番号11534および塩基番号11535の塩基、または、その相補配列(アンチセンス鎖)において前記センス鎖の塩基番号11534および塩基番号11535に対応する塩基を「検出対象部位」という。配列番号1の塩基配列(センス鎖)またはその相補配列(アンチセンス鎖)において、前記検出対象部位を含み、前記多型検出用プローブがハイブリダイズ可能な領域を、「検出対象配列、検出対象領域またはハイブリダイズ領域」という。前記検出対象配列の中でも、前記多型検出用プローブとパーフェクトマッチする検出対象配列を「パーフェクトマッチ配列」、前記多型検出用プローブとミスマッチする検出対象配列を「ミスマッチ配列」という。本発明において、パーフェクトマッチは、前記検出対象部位の塩基が前記多型検出用プローブにおける対応塩基と相補的であることを意味し、好ましくは、前記検出対象配列と前記多型検出用プローブとが、完全に相補的であることを意味する。本発明において、ミスマッチは、前記検出対象部位の塩基が前記多型検出用プローブにおける対応塩基と非相補的であることを意味し、好ましくは、前記検出対象配列と前記多型検出用プローブとが、前記検出対象部位以外において完全に相補的であることを意味する。
 本発明において、MPL遺伝子を増幅させ、さらに、得られた増幅物と本発明の多型検出用プローブとをハイブリダイズさせる場合、MPL遺伝子における増幅領域を、以下、「増幅対象領域」という。前記増幅対象領域は、例えば、MPL遺伝子のセンス鎖における領域でもよいし、それに対応するアンチセンス鎖における領域でもよいし、両方でもよい。本発明において、センス鎖およびアンチセンス鎖は、例えば、センス鎖の増幅産物、アンチセンス鎖の増幅産物の意味も含む。
 本発明において、塩基配列の末端は、塩基配列における5’側および3’側の最も端の塩基を意味する。また、5’末端領域は、塩基配列における5’末端から数塩基の領域であり、3’末端領域は、塩基配列の3’末端から数塩基の領域である。前記数塩基は、例えば、前記末端塩基を含む1塩基~10塩基である。本発明において、塩基配列の末端からZ番目の塩基(Zは正の整数)は、末端の塩基を1番目とした順番であり、例えば、末端から1番目の塩基は、末端の塩基、末端から2番目の塩基は、末端の隣の塩基を意味する。
<多型検出用プローブ>
 本発明の多型検出用プローブは、前述のように、下記(P1)のオリゴヌクレオチドを含むプローブ、(P1’)のオリゴヌクレオチドを含むプローブ、(P2)のオリゴヌクレオチドを含むプローブおよび(P2’)のオリゴヌクレオチドを含むプローブの少なくともいずれかであることを特徴とする、MPL遺伝子の多型検出用プローブである。
(P1)塩基長が9~50塩基長であり、配列番号1における塩基番号11535~11543を含む塩基配列からなり、前記塩基番号11543の塩基を、3’末端領域に有するオリゴヌクレオチド
(P1’)前記(P1)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
(P2)塩基長が10~50塩基長であり、配列番号1における塩基番号11535~11544を含む塩基配列からなり、前記塩基番号11544の塩基を、3’末端領域に有するオリゴヌクレオチド
(P2’)前記(P2)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
 本発明の多型検出用プローブによれば、前述のように、MPL遺伝子の多型を、例えば、Tm解析によって、簡便且つ優れた信頼性で判別できる。具体的には、例えば、試料中に、目的の多型が野生型であるMPL遺伝子と変異型であるMPL遺伝子とが共存している場合、あるいは、異なる変異型の複数のMPL遺伝子が共存している場合でも、本発明の多型検出用プローブを用いたTm解析を行うことで、多型の種類または変異の有無を、簡便且つ優れた信頼性で検出できる。このため、本発明は、野生型のMPL遺伝子と変異型のMPL遺伝子とを両方含む試料、あるいは、異なる変異型のMPL遺伝子を含む試料に対して、特に有用である。このように、本発明によれば、MPL遺伝子の多型を、簡便且つ優れた信頼性で判別できることから、例えば、検出結果を、前述のような疾患の診断等に反映できる。したがって、本発明は、医療分野等において極めて有用といえる。
 本発明の多型検出用プローブは、配列番号1に示すMPL遺伝子の塩基配列において、塩基番号11535の塩基(d)の多型(g/a、g/t)、および/または、塩基番号11534の塩基(w)の多型(t/a)および塩基番号11535の塩基(d)の多型(g/a、g/t)を検出するためのプローブである。配列番号1に示す塩基配列において、wは、チミン(t)またはアデニン(a)であり、dは、グアニン(g)、アデニン(a)またはチミン(t)である(以下、同様)。
 前記(P1)および(P1’)のオリゴヌクレオチドは、その塩基長が、前述のように、9~50塩基長であり、好ましくは、13~30塩基長であり、より好ましくは、15~20塩基長である。前記(P2)および(P2’)のオリゴヌクレオチドは、その塩基長が、前述のように、10~50塩基長であり、好ましくは、13~30塩基長であり、より好ましくは、15~20塩基長である。
 前記(P1)および(P2)のオリゴヌクレオチドは、例えば、MPL遺伝子のセンス鎖と相同的であり、MPL遺伝子のアンチセンス鎖とのハイブリダイゼーションにより、前記多型を確認できる。前記(P1)および(P2)のオリゴヌクレオチドは、配列番号1に示す塩基配列において、塩基番号11535の塩基(d)を含み、さらに、塩基番号11534の塩基(w)を含んでもよく、両方含むことが好ましい。
 前記(P1)および(P2)のオリゴヌクレオチドにおいて、「wd」の配列は、例えば、「tg」、「tt」または「aa」があげられる。「wdがtg」の場合、前記オリゴヌクレオチドは、野生型MPL遺伝子のアンチセンス鎖における検出対象配列とパーフェクトマッチする。「wdがtt」の場合、前記オリゴヌクレオチドは、W515L変異型MPL遺伝子のアンチセンス鎖における検出対象配列とパーフェクトマッチする。「wdがaa」の場合、前記オリゴヌクレオチドは、W515K変異型MPL遺伝子のアンチセンス鎖における検出対象配列とパーフェクトマッチする。したがって、前記オリゴヌクレオチドが、MPL遺伝子の検出対象配列とパーフェクトマッチか否かによって、MPL遺伝子の多型を検出できる。具体的には、例えば、「wdがtg」の前記オリゴヌクレオチドにより、野生型の多型を検出でき、「wdがtt」の前記オリゴヌクレオチドにより、W515L変異型の多型を検出でき、「wdがaa」の前記オリゴヌクレオチドにより、W515K変異型の多型を検出できる。以下、「wdがtg」の前記オリゴヌクレオチドを、野生型検出用プローブともいい、「wdがtt」の前記オリゴヌクレオチドを、W515L変異型検出用プローブともいい、「wdがaa」の前記オリゴヌクレオチドを、W515K変異型検出用プローブともいう。これらのオリゴヌクレオチドを含むプローブのうち、いずれか2種類または全てを使用することで、例えば、後述するように、野生型、W515L変異型およびW515K変異型の多型を、同一反応系において検出することも可能である。
 前記(P1)のオリゴヌクレオチドは、前記塩基番号11543の塩基を、前記3’末端領域に有し、好ましくは、3’末端から数えて1~4番目の位置、より好ましくは、1~3番目、特に好ましくは1番目(3’末端)または2番目に有する。前記(P1)のオリゴヌクレオチドは、例えば、配列番号2または配列番号3で示されるオリゴヌクレオチドがあげられる。前記(P2)のオリゴヌクレオチドは、前記塩基番号11544の塩基を、前記3’末端領域に有し、好ましくは、3’末端から数えて1~4番目の位置、より好ましくは、1~3番目、特に好ましくは1番目(3’末端)または2番目に有する。前記(P2)のオリゴヌクレオチドは、例えば、配列番号4で示されるオリゴヌクレオチドがあげられる。配列番号2、3および4の塩基配列において、下線部のwdは、配列番号1に示すMPL遺伝子の検出対象部位wdに相当する。
    ctgaggwdgcagtttc(配列番号2)
    gctgaggwdgcagtttc(配列番号3)
    ctgaggwdgcagtttcc(配列番号4)
 前記(P1)および前記(P2)のオリゴヌクレオチドにおいて、前記wdは、前述のように、例えば、tt、aaおよびtgの少なくともいずれかである。
 前記配列番号2に示すオリゴヌクレオチドは、例えば、配列番号5に示すオリゴヌクレオチドがあげられる。配列番号5の塩基配列において、下線部のttは、W515L変異型MPL遺伝子のセンス鎖における検出対象部位に相当し、配列番号5に示す前記オリゴヌクレオチドを含むプローブは、W515L変異型検出用プローブとして使用できる。前記配列番号3に示すオリゴヌクレオチドは、例えば、配列番号6に示すオリゴヌクレオチドがあげられる。配列番号6の塩基配列において、下線部のaaは、W515K変異型MPL遺伝子のセンス鎖における検出対象部位に相当し、配列番号6に示す前記オリゴヌクレオチドを含むプローブは、W515K変異型検出用プローブとして使用できる。前記配列番号4に示すオリゴヌクレオチドは、例えば、配列番号7に示すオリゴヌクレオチドがあげられる。配列番号7の塩基配列において、下線部のtgは、野生型MPL遺伝子のセンス鎖における検出対象部位に相当し、配列番号7に示す前記オリゴヌクレオチドを含むプローブは、野生型検出用プローブとして使用できる。
    ctgaggttgcagtttc(配列番号5)
    gctgaggaagcagtttc(配列番号6)
    ctgaggtggcagtttcc(配列番号7)
 前記(P1’)および(P2’)のオリゴヌクレオチドは、例えば、MPL遺伝子のセンス鎖と相補的であり、MPL遺伝子のセンス鎖とのハイブリダイゼーションにより、前記多型を確認できる。前記(P1’)および(P2’)のオリゴヌクレオチドにおいて、前記センス鎖の検出対象部位(配列番号1の塩基番号11534)の塩基(w)に相補的な塩基は、wで表され、前記wは、チミン(t)またはアデニン(a)であり、前記センス鎖の検出対象部位(配列番号1の塩基番号11535)の塩基(d)に相補的な塩基は、hで表され、前記hは、シトシン(c)、チミン(t)またはアデニン(a)である(以下、同様)。前記(P1’)および(P2’)のオリゴヌクレオチドの塩基長は、前記(P1)または(P2)のオリゴヌクレオチドと同様である。
 本発明の多型検出用プローブは、例えば、前記オリゴヌクレオチドを含むプローブでもよいし、前記オリゴヌクレオチドからなるプローブでもよい。
 本発明の多型検出用プローブは、標識物質を有する標識プローブが好ましく、例えば、前記オリゴヌクレオチドが、前記標識物質で標識化(修飾)されていることが好ましい。前記オリゴヌクレオチドにおいて、前記標識物質により標識化される部位は、特に制限されず、例えば、5’末端領域または3’末端領域が好ましく、より好ましくは5’末端または3’末端である。後述するように、前記オリゴヌクレオチドにおいて、前記標識物質により標識化される塩基は、例えば、シトシン(c)またはグアニン(g)が好ましい。前記標識物質は、例えば、塩基を直接標識化してもよいし、前記塩基を間接的に標識化してもよい。後者の場合、例えば、前記塩基を含むヌクレオチド残基のいずれかの部位を標識することによって、前記塩基を間接的に標識化できる。配列番号2~7に示す前記オリゴヌクレオチドは、例えば、3’末端のシトシン(c)が、前記標識物質で標識化されていることが好ましい。
 前記(P1)および(P2)のオリゴヌクレオチドは、3’末端領域に、前記標識物質を有することが好ましく、具体的には、例えば、3’末端から数えて1~4番目の塩基の位置に、前記標識物質を有することが好ましく、より好ましくは、3’末端から数えて1~4番目の塩基であり、さらに好ましくは、3’末端から数えて1~3番目の塩基、特に好ましくは、3’末端から数えて2番目または3’末端の塩基である。前記(P1)のオリゴヌクレオチドは、例えば、前記塩基番号11540~11543のいずれかの塩基が、前記標識物質を有することが好ましく、より好ましくは、前記塩基番号11543の塩基(c)が、前記標識物質を有する。前記(P2)のオリゴヌクレオチドは、例えば、前記塩基番号11541~11544のいずれかの塩基が、前記標識物質を有することが好ましく、より好ましくは、前記塩基番号11544の塩基(c)が、前記標識物質を有することが好ましい。
 前記(P1’)および(P2’)のオリゴヌクレオチドは、5’末端領域に、前記標識物質を有することが好ましく、具体的には、例えば、5’末端から数えて1~4番目の塩基の位置に、前記標識物質を有することが好ましく、より好ましくは、5’末端から数えて1~4番目の塩基であり、さらに好ましくは、5’末端から数えて1~3番目の塩基、特に好ましくは、5’末端から数えて2番目または5’末端の塩基である。前記(P1’)のオリゴヌクレオチドは、例えば、前記塩基番号11540~11543のいずれかの塩基に相補的な塩基が、前記標識物質を有することが好ましく、より好ましくは、前記塩基番号11543の塩基に相補的な塩基(c)が、前記標識物質を有する。前記(P2)のオリゴヌクレオチドは、例えば、前記塩基番号11541~11544のいずれかの塩基に相補的な塩基が、前記標識物質を有することが好ましく、より好ましくは、前記塩基番号11544の塩基に相補的な塩基(c)が、前記標識物質を有する。
 前記標識物質は、特に制限されず、例えば、前記標識プローブが単独であるか、ハイブリッドを形成しているかによって、シグナルを発するものが好ましい。前記シグナルの種類は、特に制限されず、例えば、蛍光、呈色等があげられる。前記呈色は、例えば、発色でもよいし、変色でもよい。前記シグナルが蛍光の場合、シグナル値は、例えば、蛍光強度があげられる。前記シグナルが呈色の場合、前記シグナル値は、例えば、反射率、吸光度、透過率等があげられる。前記シグナルは、例えば、前記標識物質から直接発せられてもよいし、間接的に発せられてもよい。
 前記標識物質は、特に制限されず、例えば、蛍光団等の蛍光物質等があげられる。前記蛍光物質は、例えば、フルオレセイン、リン光体、ローダミン、ポリメチン色素誘導体等があげられる。市販の蛍光物質は、例えば、Pacific Blue(登録商標、モレキュラープローブ社製)、BODIPY FL(登録商標、モレキュラープローブ社製)、FluorePrime(商品名、アマシャムファルマシア社製)、Fluoredite(商品名、ミリポア社製)、FAM(登録商標、ABI社製)、Cy3およびCy5(商品名、アマシャムファルマシア社製)、TAMRA(登録商標、モレキュラープローブ社製)等があげられる。前記蛍光物質の検出条件は、特に制限されず、例えば、使用する蛍光物質の種類により適宜決定できる。具体例として、Pacific Blueは、例えば、検出波長450~480nm、TAMRAは、例えば、検出波長585~700nm、BODIPY FLは、例えば、検出波長515~555nmで検出できる。このような標識プローブを使用すれば、例えば、シグナルとして蛍光を検出し、シグナル値として蛍光強度を測定することにより、蛍光強度の変動から、ハイブリダイズと解離とを容易に確認できる。本発明の多型検出用プローブは、前述のように、前記野生型検出用プローブ、前記W515L変異型検出用プローブおよび前記W515K変異型検出用プローブのうち、いずれか2種類または全てを、同一反応系で使用することもできる。これによって、MPL遺伝子における、野生型、W515L変異型およびW515K変異型の多型を、同一反応系において判別できる。この場合、前記各プローブは、それぞれ異なる条件で検出される異なる標識物質を有することが好ましい。
 前記標識プローブは、例えば、単独でシグナルを示し、且つハイブリッド形成によりシグナルを示さない標識プローブ、または、単独でシグナルを示さず、且つハイブリッド形成によりシグナルを示す標識プローブが好ましい。前記標識物質が蛍光物質の場合、前記標識プローブは、例えば、前記蛍光物質で標識化され、単独で蛍光を示し、且つハイブリッド形成により蛍光が減少(例えば、消光)するプローブが好ましい。このような現象は、一般に、蛍光消光現象(Quenching phenomenon)と呼ばれる。この現象を利用したプローブは、一般に、蛍光消光プローブと呼ばれる。中でも、前記蛍光消光プローブは、例えば、オリゴヌクレオチドの3’末端もしくは5’末端が前記蛍光物質で標識化されていることが好ましく、標識化される前記末端の塩基は、シトシン(c)またはグアニン(g)が好ましい。前記末端の塩基がシトシン(c)の場合、前記蛍光消光プローブは、例えば、被検核酸とハイブリッドを形成した際、前記被検核酸における、標識化された末端のシトシン(c)と対をなす塩基または前記対をなす塩基から1~3塩基離れた塩基がグアニン(g)となるように、前記蛍光消光プローブの塩基配列を設計することが好ましい。前記対をなす塩基から1塩基離れた塩基は、例えば、前記対をなす塩基の隣の塩基を意味する。このようなプローブは、一般的にグアニン消光プローブと呼ばれ、いわゆるQProbe(登録商標)として知られている。前記グアニン消光プローブが前記被検核酸にハイブリダイズすると、例えば、前記蛍光物質で標識化された末端のシトシン(c)が、前記被検核酸におけるグアニン(g)に近づくことによって、前記蛍光物質の蛍光が弱くなる、すなわち蛍光強度が減少するという現象を示す。前記プローブを使用すれば、例えば、蛍光強度の変動により、ハイブリダイズと解離とを容易に確認できる。同様に、前記末端の塩基がグアニン(g)の場合、前記蛍光消光プローブは、例えば、前記被検核酸とハイブリッドを形成した際、前記被検核酸における、標識化された末端のグアニン(g)と対をなす塩基または前記対をなす塩基から1~3塩基離れた塩基がシトシン(c)となるように、前記蛍光消光プローブの塩基配列を設計することが好ましい。
 本発明の多型検出用プローブは、例えば、3’末端にリン酸基が付加されてもよい。後述するように、被検核酸は、例えば、PCR等の核酸の増幅法によって調製できる。この際、本発明の多型検出用プローブを、核酸増幅反応の反応系に共存させてもよい。このような場合、前記多型検出用プローブの3’末端にリン酸基を付加させておけば、前記核酸増幅反応によって前記多型検出用プローブ自体が伸長することを十分に防止できる。前記多型検出用プローブの3’末端に、例えば、前述のような標識物質を付加することによっても、同様の効果が得られる。
 本発明の多型検出用プローブを用いた多型の検出において、検出方法は何ら制限されず、前記検出対象配列とプローブとのハイブリダイズを利用する方法であればよい。前記多型の検出方法として、以下に、本発明の多型検出方法を説明する。
<多型検出方法>
 本発明の多型検出方法は、前述のように、本発明の多型検出用プローブを用いて、MPL遺伝子の多型を検出する工程を含むことを特徴とする、MPL遺伝子の多型検出方法である。
 本発明の多型検出方法は、例えば、下記(A)工程および(B)工程を含むことが好ましい。
(A)被検核酸および本発明の多型検出用プローブを含む反応系の温度を変化させ、前記被検核酸と前記多型検出用プローブとのハイブリッドの融解状態を示すシグナル値を測定する工程
(B)前記温度変化に伴う前記シグナル値の変動から、前記被検核酸における前記多型を決定する工程
 本発明の多型検出方法は、本発明の多型検出用プローブを使用することが特徴であって、その他の構成および条件等は、以下の記載に制限されない。本発明の多型検出用プローブは、前述のように標識プローブが好ましい。本発明において、前記反応系は、例えば、反応液である。
 本発明の多型検出方法において使用する前記多型検出用プローブは、前述のように、1種類でもよいし、2種類でもよいが、3種類を併用することが好ましい。具体的には、前記野生型検出用プローブ、前記W515L変異型検出用プローブおよび前記W515K変異型検出用プローブのうち、いずれか1種類でもよいし、2種類以上でもよいが、3種類を併用することが好ましい。これらの多型検出用プローブを併用することによって、配列番号1に示すMPL遺伝子の塩基番号11534および11535の多型が、前記野生型、前記W515L変異型および前記W515K変異型のいずれであるかを、例えば、一つの反応系において検出できる。前記多型検出用プローブの組み合わせは、特に制限されず、例えば、配列番号5に示すオリゴヌクレオチドを含むW515L変異型検出用プローブと、配列番号6に示すオリゴヌクレオチドを含むW515K変異型検出用プローブと、配列番号7に示すオリゴヌクレオチドを含む野生型検出用プローブとの組み合わせが例示できる。
 一つの反応系に2種類以上の多型検出用プローブを添加する場合、前記多型検出用プローブは、それぞれ前記標識プローブが好ましい。前記各標識プローブは、それぞれ、異なる検出条件の標識物質で標識化されていることが好ましい。これによって、検出条件を変えるのみで、例えば、同じ反応系を用いて、2種類以上の多型を簡便に検出できる。
 本発明において、前記被検核酸は、一本鎖核酸でもよいし、二本鎖核酸でもよい。前記被検核酸が前記二本鎖核酸の場合、例えば、後述するように、前記(A)工程において、前記反応系を加熱して、二本鎖の前記被検核酸を解離させる工程を含むことが好ましい。前記二本鎖核酸を一本鎖核酸に解離することによって、本発明の多型検出用プローブと前記一本鎖核酸とがハイブリダイズできる。
 本発明において、前記被検核酸は、例えば、試料中に元来含まれる核酸でもよいし、前記核酸の増幅物でもよい。後者は、例えば、検出精度を向上できることから好ましく、前記増幅物は、例えば、前記試料中の前記核酸を鋳型核酸として、核酸の増幅法により増幅させることで調製できる。前記増幅物は、例えば、前記試料中のDNAを鋳型とした増幅物でもよいし、前記試料中のRNAから合成したcDNAを鋳型とした増幅物でもよい。前記試料中のRNAは、例えば、トータルRNA、mRNA等のRNAがあげられ、前記cDNAは、例えば、前記RNAから、RT-PCR(Reverse Transcription PCR)により合成できる。
 本発明の多型検出方法は、前記被検核酸が前記増幅物の場合、例えば、さらに、下記(X)工程を含んでもよい。前記(X)工程は、例えば、前記(A)工程に先立って行うことが好ましい。また、前記(X)工程は、例えば、前記多型検出用プローブの存在下、反応系において、前記鋳型核酸から前記増幅物を生成する工程でもよい。
(X) 鋳型核酸から前記増幅物を生成する工程
 前記(A)工程において、前記多型検出用プローブは、例えば、前記反応系に含まれていればよく、その添加のタイミングは、特に制限されない。前記被検核酸が前記増幅物の場合、前記(A)工程における前記反応系は、例えば、前記(X)工程で得られた前記増幅物と前記多型検出用プローブとを用いて、新たに調製してもよいし、前記(X)工程における前記増幅反応の反応系でもよい。後者の場合、前記多型検出用プローブは、例えば、前記(X)工程の前または途中に、前記増幅反応の反応系に添加されてもよく、前記(X)工程の後、前記増幅反応の反応系に添加されてもよい。
 前記核酸増幅法は、特に制限されず、例えば、PCR(Polymerase Chain Reaction)法、NASBA(Nucleic Acid Sequence Based Amplification)法、TMA(Transcription-Mediated Amplification)法、SDA(Strand Displacement Amplification)法等があげられ、中でも、PCR法が好ましい。前記核酸増幅法の条件は、特に制限されず、従来公知の方法により行える。
 前記鋳型核酸からの前記核酸増幅物の生成は、例えば、MPL遺伝子における検出目的の多型を含む領域を増幅するためのプライマーを使用することが好ましい。前記プライマーの配列は、特に制限されず、例えば、前記検出対象部位を含む検出対象配列を増幅できればよく、前記検出対象配列およびその周辺配列等に応じて、従来公知の方法により適宜設定できる。前記プライマーの長さは、特に制限されず、一般的な長さに設定でき、例えば、10~30塩基長があげられる。
 前記プライマーは、例えば、遺伝子のセンス鎖を増幅するフォワードプライマー(以下、「Fプライマー」ともいう)およびアンチセンス鎖を増幅するリバースプライマー(以下、「Rプライマー」ともいう)のいずれか一方を使用でき、両者を一対とするプライマーセットを使用することが好ましい。以下に、FプライマーおよびRプライマーを例示するが、これらは一例であって、本発明を制限するものではない。
Fプライマー
 5'-tgggccgaagtctgacccttt-3'(配列番号8)
Rプライマー
 5'-acagagcgaaccaagaatgcctgt-3'(配列番号9)
 前記反応系において、前記プライマーの添加割合は、特に制限されず、例えば、1種類のプライマーについて、例えば、0.1~2μmol/Lであり、好ましくは、0.25~1.5μmol/Lであり、特に好ましくは、0.5~1μmol/Lである。また、FプライマーとRプライマーとを使用する場合、前記Fプライマー(F)とRプライマー(R)との添加割合(モル比F:R)は、特に制限されず、例えば、1:0.25~1:4が好ましく、より好ましくは、1:0.5~1:2である。
 前記(A)工程において、前記被検核酸に対する前記多型検出用プローブの添加割合(モル比)は、特に制限されず、検出シグナルを十分に確保できることから、1倍以下が好ましく、より好ましくは、0.1倍以下である。この際、前記被検核酸は、例えば、パーフェクトマッチ配列を有するパーフェクトマッチ核酸とミスマッチ配列を有するミスマッチ核酸との合計でもよいし、パーフェクトマッチ配列を含む増幅物とミスマッチ配列を含む増幅物との合計でもよい。前記被検核酸におけるパーフェクトマッチ核酸の割合は、通常、不明であるが、結果的に、前記多型検出用プローブの添加割合(モル比)は、パーフェクトマッチ核酸(パーフェクトマッチ配列を含む増幅物)に対して10倍以下となることが好ましく、より好ましくは5倍以下、さらに、好ましくは3倍以下である。また、その下限は、特に制限されず、例えば、0.001倍以上であり、好ましくは0.01倍以上であり、より好ましくは0.1倍以上である。前記被検核酸に対する前記多型検出用プローブの添加割合は、例えば、二本鎖核酸に対するモル比でもよいし、一本鎖核酸に対するモル比でもよい。
 前記反応系における前記多型検出用プローブの添加割合は、特に制限されず、例えば、1種類の前記多型検出用プローブを10~1000nmol/Lの範囲となるように添加することが好ましく、より好ましくは20~500nmol/Lである。また、例えば、十分なシグナル値を確保できることから、前記反応系において、前記被検核酸に対する前記多型検出用プローブのモル比は、例えば、1倍以下が好ましく、より好ましくは、0.1倍以下である。前記被検核酸に対する前記多型検出用プローブの添加割合は、例えば、二本鎖核酸に対するモル比でもよいし、一本鎖核酸に対するモル比でもよい。
 本発明の多型検出方法を適用する試料は、特に制限されず、例えば、生体試料があげられる。前記生体試料の具体例は、例えば、全血、白血球細胞等の血球、口腔粘膜等の口腔内細胞、爪や毛髪等の体細胞、生殖細胞、喀痰、羊水、パラフィン包埋組織、尿、胃液、胃洗浄液等があげられる。本発明において、前記試料の採取方法、前記試料からの被検核酸の調製方法等は、制限されず、従来公知の方法が採用できる。
 本発明の多型検出方法は、前述のような、いわゆるTm解析に利用できる。Tm解析におけるTm値について説明する。例えば、二本鎖DNAを含む溶液を加熱していくと、260nmにおける吸光度が上昇する。これは、二本鎖DNAにおける両鎖間の水素結合が加熱によってほどけ、一本鎖DNAに解離(DNAの融解)することが原因である。そして、全ての二本鎖DNAが解離して一本鎖DNAになると、その吸光度は、加熱開始時の吸光度(二本鎖DNAのみの吸光度)の約1.5倍程度を示す。これによって、融解が完了したと判断できる。この現象に基づき、融解温度(Tm)は、一般に、吸光度が、吸光度全上昇分の50%に達した時の温度と定義される。
 前記(A)工程において、前記被検核酸と前記多型検出用プローブとのハイブリッドの融解状態を示すシグナルの測定は、例えば、前述した、260nmにおける吸光度測定でもよいし、前記標識物質のシグナル測定でもよい。具体的には、前記多型検出用プローブとして、前述したように、前記標識物質で標識化された標識プローブを使用し、前記標識物質のシグナル測定を行うことが好ましい。前記標識プローブは、例えば、単独でシグナルを示し、且つハイブリッド形成によりシグナルを示さない標識プローブ、または、単独でシグナルを示さず、且つハイブリッド形成によりシグナルを示す標識プローブがあげられる。前者のようなプローブであれば、前記増幅物とハイブリッド(二本鎖DNA)を形成している際にはシグナルを示さず、加熱により前記増幅物から前記プローブが解離するとシグナルを示す。また、後者のプローブであれば、前記増幅物とハイブリッド(二本鎖DNA)を形成することによってシグナルを示し、加熱により前記増幅物から前記プローブが解離するとシグナルが減少(消失)する。したがって、前記標識物質のシグナルの検出によって、前記260nmにおける吸光度測定と同様に、ハイブリッドの融解の進行の検出、Tm値の決定等を行える。前記標識物質のシグナル検出は、例えば、前記標識物質のシグナルに特有の条件で検出すればよい。前記検出条件は、例えば、励起波長、検出波長等があげられる。前記標識プローブならびに前記標識物質は、前述のとおりである。
 つぎに、本発明の多型検出方法について、一例をあげて説明する。本例は、本発明の多型検出用プローブとして、蛍光物質で標識された標識プローブを使用し、前記多型検出用プローブの存在下、鋳型核酸の増幅を行い、得られた増幅物を、前記被検核酸とする例である。本発明の多型検出方法は、本発明の多型検出用プローブを使用すること自体が特徴であり、その他の工程および条件については何ら制限されない。
 まず、前記生体試料からゲノムDNAを単離する。前記生体試料からのゲノムDNAの単離は、特に制限されず、従来公知の方法により行える。具体例としては、例えば、市販のゲノムDNA単離キット(商品名GFX Genomic Blood DNA Purification kit;GEヘルスケアバイオサイエンス社製)等が使用できる。
 つぎに、単離したゲノムDNAを含む試料に前記標識プローブを添加して、反応液を調製する。前記標識プローブは、例えば、前述のように、QProbe(登録商標)が好ましい。
 前記標識プローブは、例えば、単離したゲノムDNAを含む試料に添加してもよいし、溶媒中でゲノムDNAと混合してもよい。前記溶媒は、特に制限されず、例えば、Tris-HCl等の緩衝液、KCl、MgCl、MgSO、グリセロール等を含む溶媒、PCR用の反応液等の核酸増幅用反応液等、従来公知のものがあげられる。
 前記標識プローブの添加のタイミングは、特に制限されず、例えば、核酸増幅反応の前、途中または後に添加できる。中でも、例えば、前記標識プローブの添加のために前記反応液を外部環境に露出する必要がなく、また、前記核酸増幅反応とシグナル値の測定とを、連続的に行うことが可能であるため、前記核酸増幅反応前に前記反応液に添加することが好ましい。この場合、前記標識プローブは、前述のように、その3’末端が標識物質またはリン酸基で修飾されていることが好ましい。
 続いて、単離したゲノムDNAを鋳型として、前記標識プローブの存在下、PCR等の核酸増幅法によって、検出目的の多型を含む検出対象配列を増幅させる。以下、核酸増幅法としてPCRを例にあげて説明するが、本発明は、これには制限されない。PCRの条件は、特に制限されず、従来公知の方法により行える。
 具体的には、前記ゲノムDNA、前記標識プローブおよび前記プライマーを含む前記反応液について、PCRを行う。前記反応液の組成は、特に制限されず、当業者であれば適宜設定できる。前記反応液は、例えば、前記ゲノムDNA、前記標識プローブおよび前記プライマーの他に、DNAポリメラーゼ等のポリメラーゼ、ヌクレオシド三リン酸、緩衝液、各種触媒等を含んでもよい。前記反応液における前記標識プローブおよび前記プライマーの添加割合は、特に制限されず、例えば、それぞれ、前述の範囲があげられる。
 前記DNAポリメラーゼは、特に制限されず、例えば、従来公知の耐熱性細菌由来のポリメラーゼが使用できる。具体例として、例えば、テルムス・アクアティカス(Thermus aquaticus)由来DNAポリメラーゼ(米国特許第4,889,818号および同第5,079,352号)(商品名Taqポリメラーゼ)、テルムス・テルモフィラス(Thermus thermophilus)由来DNAポリメラーゼ(WO 91/09950)(rTth DNA polymerase)、ピロコッカス・フリオサス(Pyrococcus furiosus)由来DNAポリメラーゼ(WO 92/9689)(Pfu DNA polymerase:Stratagenes社製)、テルモコッカス・リトラリス(Thermococcus litoralis)由来ポリメラーゼ(EP-A 455 430(商標Vent):New England Biolabs社製)等が商業的に入手可能であり、中でも、テルムス・アクアティカス(Thermus aquaticus)由来の耐熱性DNAポリメラーゼが好ましい。
 前記反応液におけるDNAポリメラーゼの添加割合は、特に制限されず、例えば、1~100U/mLであり、好ましくは、5~50U/mLであり、より好ましくは、20~40U/mLである。DNAポリメラーゼの活性単位(U)は、一般に、活性化サケ精子DNAを鋳型プライマーとして、活性測定用反応液中、74℃で、30分間に10nmolの全ヌクレオチドを酸不溶性沈殿物に取り込む活性が1Uである。前記活性測定用反応液の組成は、例えば、25mmol/L TAPS buffer(pH9.3、25℃)、50mmol/L KCl、2mmol/L MgCl、1mmol/Lメルカプトエタノール、200μmol/L dATP、200μmol/L dGTP、200μmol/L dTTP、100μmol/L「α-32P」dCTP、0.25mg/mL活性化サケ精子DNAである。
 前記ヌクレオシド三リン酸は、通常、dNTP(dATP、dCTP、dGTPおよびdTTPまたはdUTP)があげられる。前記反応液中のdNTPの添加割合は、特に制限されず、例えば、0.01~1mmol/Lであり、好ましくは、0.05~0.5mmol/Lであり、より好ましくは、0.1~0.3mmol/Lである。
 前記緩衝液は、例えば、Tris-HCl、Tricine、MES、MOPS、HEPES、CAPS等があげられ、市販のPCR用緩衝液および市販のPCRキットの緩衝液等が使用できる。
 前記反応液は、さらに、ヘパリン、ベタイン、KCl、MgCl、MgSO、グリセロール等を含んでもよく、これらの添加割合は、例えば、PCR反応を阻害しない範囲で設定すればよい。
 前記反応液の全体積は、特に制限されず、例えば、サーマルサイクラー等の使用する機器等に応じて適宜設定できるが、通常、1~500μLであり、好ましくは10~100μLである。
 つぎに、PCRを行う。前記PCRのサイクル条件は、特に制限されない。具体例として、例えば、(1)被検核酸である二本鎖DNAの一本鎖DNAへの解離、(2)前記一本鎖DNAへのプライマーのアニーリング、(3)ポリメラーゼ反応による前記プライマーの伸長は、それぞれ、下記表1の条件が例示できる。PCRのサイクル数は、特に制限されず、下記(1)~(3)の3ステップを1サイクルとして、例えば、30サイクル以上が好ましい。前記サイクル数の合計の上限は、特に制限されず、例えば、100サイクル以下、好ましくは70サイクル以下、さらに好ましくは、50サイクル以下である。各ステップの温度変化は、例えば、サーマルサイクラー等を用いて自動的に制御できる。
Figure JPOXMLDOC01-appb-T000001
 前記反応液における前記標識プローブの添加割合は、特に制限されず、例えば、前記標識プローブを10~1000nmol/Lの範囲となるように添加することが好ましく、より好ましくは20~500nmol/Lである。例えば、十分なシグナル値を確保できることから、前記反応液において、前記被検核酸に対する前記標識プローブのモル比は、例えば、1倍以下が好ましく、より好ましくは、0.1倍以下である。前記被検核酸に対する前記標識プローブの添加割合は、例えば、二本鎖核酸に対するモル比でもよいし、一本鎖核酸に対するモル比でもよい。
 つぎに、得られた増幅物(二本鎖DNA)の解離、および、解離により得られた一本鎖DNAと前記標識プローブとのハイブリダイズを行う。これは、例えば、前記標識プローブの存在下、前記反応液の温度を変化させることで行える。この場合、前述のように、予め前記標識プローブを添加した前記反応液について、増幅反応を行った後、前記反応液を温度変化させることが好ましい。
 前記解離工程における加熱温度は、例えば、二本鎖の前記増幅物を一本鎖に解離できる温度があげられる。前記加熱温度は、特に制限されず、例えば、85~95℃である。加熱時間は、特に制限されず、通常、1秒~10分であり、好ましくは1秒~5分である。
 解離した一本鎖DNAと前記標識プローブとのハイブリダイズは、例えば、前記解離工程の後、前記解離工程における加熱温度を降下させることによって行える。温度条件は、例えば、40~50℃である。前記温度での処理時間は、特に制限されず、例えば、1~600秒である。
 そして、前記反応液の温度を変化させ、前記増幅物と前記標識プローブとのハイブリッドの融解状態を示すシグナル値を測定する。具体的には、例えば、前記反応液を加熱し、すなわち、前記一本鎖DNAと前記標識プローブとのハイブリッドを加熱し、温度上昇に伴うシグナル値の変動を測定する。前述のように、グアニン消光プローブ、すなわち、末端のシトシン(c)が標識化されたプローブを使用した場合、一本鎖DNAとハイブリダイズした状態では、蛍光が減少(または消光)し、解離した状態では、蛍光を発する。したがって、例えば、蛍光が減少(または消光)しているハイブリッドを徐々に加熱し、温度上昇に伴う蛍光強度の増加を測定すればよい。
 前記蛍光強度の変動を測定する際、その温度範囲は、特に制限されない。前記開始温度は、例えば、室温~85℃であり、好ましくは、25~70℃であり、終了温度は、例えば、40~105℃である。温度の上昇速度は、特に制限されず、例えば、0.1~20℃/秒であり、好ましくは、0.3~5℃/秒である。
 つぎに、前記シグナル値の変動を解析してTm値を決定する。具体的には、得られた蛍光強度から、各温度における単位時間当たりの蛍光強度変化量(-d蛍光強度変化量/dtまたはd蛍光強度変化量/dt)を算出し、最も変化した値値を示す温度をTm値として決定できる。前記標識プローブが前記蛍光消光プローブの場合、例えば、蛍光強度の増加量を測定し、単位時間当たりの蛍光強度増加量(-d蛍光強度増加量/dt)が最も低い値を示す温度、または、単位時間当たりの蛍光強度増加量(d蛍光強度増加量/dt)が最も高い値を示す温度を、Tm値として決定することもできる。一方、前記標識プローブとして、前記蛍光消光プローブではなく、単独でシグナルを示さず且つハイブリッド形成によりシグナルを示すプローブを使用した場合は、反対に、蛍光強度の減少量を測定すればよい。
 前記標識プローブとして、例えば、検出波長の異なる標識物質を標識した複数の標識プローブを用いた場合、前記検出波長ごとに、前記シグナル値の変動を解析してもよい。
 前記Tm値は、例えば、従来公知のMELTCALCソフトウエア(http://www.meltcalc.com/)等により算出でき、また、最近接塩基対法(Nearest Neighbor Method)によって決定することもできる。
 そして、前記Tm値から、前記検出対象配列において、配列番号1に示すMPL遺伝子の塩基配列における塩基番号11534または11535の塩基が、前記野生型であるか、前記変異型であるかを決定する。前記Tm解析では、例えば、完全に相補であるハイブリッド(マッチ)は、一塩基以上が異なるハイブリッド(ミスマッチ)よりも、解離を示すTm値が高くなるという結果が得られる。したがって、予め、前記標識プローブについて、完全に相補であるハイブリッドのTm値と、一塩基以上が異なるハイブリッドのTm値とを決定しておくことにより、前記検出対象配列の塩基が、前記野生型であるか、前記変異型であるかを決定できる。また、前述のように、前記野生型検出用プローブ、前記W515L変異型検出用プローブおよび前記W515K変異型検出用プローブを併用すれば、例えば、完全に相補であるハイブリッドのTm値を示したのが、いずれのプローブであるかによって、前記多型の種類を決定することもできる。
 本発明は、前述のように、前記多型検出用プローブを含む反応系の温度を上昇させて、すなわち、ハイブリッドを加熱して、温度上昇に伴うシグナル変動を測定する方法に代えて、例えば、ハイブリッド形成時におけるシグナル変動の測定を行ってもよい。すなわち、前記多型検出用プローブを含む反応系の温度を降下させてハイブリッドを形成する際に、例えば、前記温度降下に伴うシグナル変動を測定してもよい。
 具体例として、単独でシグナルを示し、且つハイブリッド形成によりシグナルを示さない標識プローブ(例えば、グアニン消光プローブ)を使用した場合を例にあげる。この場合、前記標識プローブは、一本鎖DNAと前記標識プローブとが解離している状態では蛍光を発しているが、温度の降下によりハイブリッドを形成すると、前記蛍光が減少(または消光)する。したがって、例えば、前記反応液の温度を徐々に降下させて、温度下降に伴う蛍光強度の減少を測定すればよい。他方、単独でシグナルを示さず、且つハイブリッド形成によりシグナルを示す標識プローブを使用した場合、前記一本鎖DNAと前記標識プローブとが解離している状態では蛍光を発していないが、温度の降下によりハイブリッドを形成すると、蛍光を発するようになる。したがって、例えば、前記反応液の温度を徐々に降下させて、温度下降に伴う蛍光強度の増加を測定すればよい。
<多型検出用試薬>
 本発明の多型検出用試薬は、本発明の多型検出用プローブを含むことを特徴とする、MPL遺伝子の多型検出用試薬である。本発明は、前記本発明の多型検出用プローブを含むことが特徴であり、その他の構成および条件は何ら制限されない。
 前記多型検出用試薬は、例えば、前記多型検出用プローブを、1種類含んでもよいし、2種類含んでもよいが、3種類含むことが好ましい。具体的には、前記野生型検出用プローブ、前記W515L変異型検出用プローブおよび前記W515K変異型検出用プローブのうち、いずれか1種類でもよいし、2種類以上でもよいが、3種類を含むことが好ましい。本発明の多型検出用プローブの組み合わせは、特に制限されず、例えば、配列番号5に示すオリゴヌクレオチドを含む前記W515L変異型検出用プローブと、配列番号6に示すオリゴヌクレオチドを含む前記W515K変異型検出用プローブと、配列番号7に示すオリゴヌクレオチドを含む前記野生型検出用プローブとの組み合わせが例示できる。
 本発明の多型検出用試薬は、さらに、MPL遺伝子における前記検出目的部位を含む領域を増幅するためのプライマーまたはプライマーセットを含んでもよい。前記プライマーは、例えば、前述のものがあげられる。
 本発明の多型検出用試薬は、この他にも、例えば、核酸増幅反応に必要な成分を含んでもよい。具体例としては、例えば、前述のような、DNAポリメラーゼ等のポリメラーゼ、ヌクレオシド三リン酸、緩衝液、各種触媒等があげられる。本発明の多型検出用試薬において、各成分は、例えば、同じ容器に収容されてもよいし、別の容器に収容されてもよい。
 本発明の多型検出用試薬は、例えば、MPL遺伝子の多型の検出に使用するプローブキットともいえる。本発明の多型検出用キットにおいて、各成分は、例えば、同じ容器に収容されてもよいし、別の容器に収容されてもよい。本発明の多型検出キットは、さらに、使用説明書を含んでもよい。
 本発明のMPL遺伝子増幅用プライマーは、前述の通りであって、配列番号8~9に示すオリゴヌクレオチドからなるプライマーの少なくとも一つである。本発明の増幅方法は、反応系において、試料中の核酸を鋳型として、本発明のMPL遺伝子増幅用プライマーを用いて、前記MPL遺伝子の増幅を行う増幅工程を含むことを特徴とする、MPL遺伝子の増幅方法である。本発明の増幅物の検出方法は、本発明のプライマーを使用することを特徴し、本発明のMPL遺伝子の増幅方法により、MPL遺伝子を増幅させる増幅工程を含むことを特徴とする、MPL遺伝子の増幅物を検出する増幅物検出方法である。本発明の検出方法は、例えば、さらに、本発明のプローブを用いて、前記MPL遺伝子の増幅物を検出する工程を含むことが好ましい。本発明のプライマーおよびこれを用いた各種方法は、前述の記載を参照できる。
 つぎに、本発明の実施例について説明する。本発明は、下記実施例により制限されない。下記実施例において、特に示さない限り、%は、w/v%を示す。
[実施例1]
 本例では、野生型プラスミドと変異型プラスミドとの共存下で、Tm解析を行い、MPL遺伝子の多型を検出した。
 野生型プラスミド(wt)、変異型プラスミド(W515L)および変異型プラスミド(W515K)を作製した。前記wtは、配列番号1の塩基番号11534の塩基wがチミン(t)であり、塩基番号11535の塩基dがグアニン(g)である、野生型MPL遺伝子の部分配列(配列番号1の塩基番号11391~11711)を挿入した二本鎖プラスミドとした。前記W515Lは、前記塩基番号11535の塩基dがチミン(t)に変異したW515L変異型MPL遺伝子の部分配列(配列番号1の塩基番号11391~11711)を挿入した二本鎖プラスミドとした。前記W515Kは、前記塩基番号11534の塩基wがアデニン(a)に変異し、かつ、塩基番号11535の塩基dがアデニン(a)に変異したW515K変異型MPL遺伝子の部分配列(配列番号1の塩基番号11391~11711)を挿入した二本鎖プラスミドとした。そして、前記wtと、前記W515LまたはW515Kとを、所定の割合で混合し、下記に示す3種類の核酸試料を調製した。
(核酸試料)
  核酸試料         各プラスミドの混合割合   
             wt   W515L  W515K  
 wt 100%    100%    0%     0%
 W515L 50%   50%   50%     0%
 W515K 50%   50%    0%    50%
 チューブ内に、前記核酸試料1μL(1×10コピー/μL)および下記表2の反応試薬49μLを添加し、PCR反応液とした。前記PCR反応液について、全自動SNPs検査装置(商品名i-densy(登録商標)、アークレイ社製)を用いて、PCRおよびTm解析を行った。前記PCRは、95℃で60秒処理した後、95℃1秒および62℃15秒を1サイクルとして50サイクル繰り返し、さらに、95℃で1秒、40℃で60秒処理した。そして、続けて、温度の上昇速度を1℃/3秒として、前記PCR反応液を40℃から75℃に加熱していき、前記多型検出用プローブの蛍光物質の種類に応じた検出波長において、経時的な蛍光強度の変化を測定し、Tm解析を行った。
Figure JPOXMLDOC01-appb-T000002
 前記FプライマーおよびRプライマーは、下記配列のプライマーを使用した。
Fプライマー(配列番号8)
 5'-tgggccgaagtctgacccttt-3'
Rプライマー(配列番号9)
 5'-acagagcgaaccaagaatgcctgt-3'
 前記各多型検出用プローブは、下記の配列のプローブを使用した。
W515L変異型検出用プローブ1(配列番号5)
 5'-ctgaggTTgcagtttc-(TAMRA)-3'
W515K変異型検出用プローブ1(配列番号6)
 5'-gctgaggAAgcagtttc-(BODIPY FL)-3'
野生型検出用プローブ1(配列番号7)
 5'-ctgaggTGgcagtttcc-(Pacific Blue)-3'
 前記W515L変異型検出用プローブ1、前記W515K変異型検出用プローブ1および前記野生型検出用プローブ1は、それぞれ、MPL遺伝子のアンチセンス鎖にパーフェクトマッチする配列であり、各配列において、大文字の塩基が、配列番号1における塩基番号11534~11535の塩基(wd)に相当する。各プローブの3’末端は、それぞれ、蛍光物質で標識化されており、TAMRAは、445~480nm、BODIPY FLは、520~555nm、Pacific Blueは、585~700nmの波長で検出した。
 これらの結果を図1~3に示す。図1~3は、温度上昇に伴う蛍光強度の変化を示すTm解析のグラフである。図1はwt 100%、図2はW515L 50%、図3はW515K 50%の結果である。横軸は、測定時の温度(℃)を示し、縦軸は蛍光強度の変化(以下、「蛍光変化量」ともいう)を示し、単位は「d蛍光強度増加量/dt」とした。図1~3において、黒丸(●)は、前記野生型検出用プローブによる検出結果、白丸(○)は、前記W515K変異型検出用プローブによる検出結果、白三角(△)は、前記W515L変異型検出用プローブによる検出結果である。形成されるハイブリッドがパーフェクトマッチの場合、評価基準となるTmは、以下の通りである。wtのTm値は、58℃、W515LのTm値は、55℃、W515KのTm値は、57℃である。
 図1に示すように、wt 100%の試料については、wtのTm値でのみピークが確認された。そして、図2に示すように、W515Lを50%およびwtを50%含む試料については、wtのTm値およびW515LのTm値の両方で、ピークが確認された。図3に示すように、W515Kを50%およびwtを50%含む試料については、wtのTm値と、W515KのTm値の両方で、ピークが確認された。このように、本実施例の前記野生型検出用プローブ、前記W515L変異型検出用プローブおよび前記W515K変異型検出用プローブを用いれば、いずれの多型が存在する場合であっても、野生型および2種類の変異型の多型を検出可能であることがわかった。
[比較例1]
 本例では、前記多型検出用プローブとして、下記の各多型検出用プローブをそれぞれ使用した以外は、前記実施例1と同様にして、MPL遺伝子の多型を検出した。下記配列において、Pは、3’末端のリン酸化を示す。
野生型検出用プローブ2(配列番号10)
 5'-(TAMRA)-ctgcCAcctcagcagca-P-3'
W515L変異型検出用プローブ2(配列番号11)
 5'-aggaaactgcAacc-(TAMRA)-3'
W515K変異型検出用プローブ2(配列番号12)
 5'-ggaaactgcTTcc-(TAMRA)-3'
W515K変異型検出用プローブ3(配列番号13)
 5'-(TAMRA)-ctgaggAAgcagtttc-P-3'
 これらの多型検出用プローブを使用した場合、前記実施例1の結果とは異なり、検出目的のプラスミドが存在する場合であっても、蛍光が消光せず、蛍光変化量のピークを確認できなかった。
 以上のように、本発明によれば、MPL遺伝子の多型を、例えば、Tm解析によって、簡便且つ優れた信頼性で判別できる。本発明は、野生型のMPL遺伝子と変異型のMPL遺伝子とを両方含む試料、あるいは、異なる変異型のMPL遺伝子を含む試料に対して、特に有用である。このように、本発明によれば、MPL遺伝子の多型を、簡便且つ優れた信頼性で判別できることから、例えば、検出結果を、前述のような疾患の判定および治療等に反映することもできる。したがって、本発明は、医療分野等において極めて有用といえる。
 以上、実施形態および実施例を参照して、本発明を説明したが、本発明は、上記発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2009年10月30日に出願された日本出願特願2009-251429を基礎とする優先権を主張し、その開示のすべてをここに取り込む。

Claims (21)

  1. 下記(P1)のオリゴヌクレオチドを含むプローブ、(P1’)のオリゴヌクレオチドを含むプローブ、(P2)のオリゴヌクレオチドを含むプローブおよび(P2’)のオリゴヌクレオチドを含むプローブの少なくともいずれかであることを特徴とする、MPL遺伝子の多型検出用プローブ。
    (P1)塩基長が9~50塩基長であり、配列番号1における塩基番号11535~11543を含む塩基配列からなり、前記塩基番号11543の塩基を、3’末端領域に有するオリゴヌクレオチド
    (P1’)前記(P1)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
    (P2)塩基長が10~50塩基長であり、配列番号1における塩基番号11535~11544を含む塩基配列からなり、前記塩基番号11544の塩基を、3’末端領域に有するオリゴヌクレオチド
    (P2’)前記(P2)のオリゴヌクレオチドに相補的な塩基配列からなるオリゴヌクレオチド
  2. 前記(P1)および(P2)のオリゴヌクレオチドにおいて、
    前記配列番号1に示す塩基配列における塩基番号11534~11535の塩基配列が、tt、aaおよびtgの少なくともいずれかである、請求項1に記載の多型検出用プローブ。
  3. 前記(P1)のオリゴヌクレオチドが、前記塩基番号11543の塩基を、3’末端から数えて1~4番目の位置に有し、
    前記(P2)のオリゴヌクレオチドが、前記塩基番号11544の塩基を、3’末端から数えて1~4番目の位置に有する、請求項1に記載の多型検出用プローブ。
  4. 前記(P1)のオリゴヌクレオチドが、配列番号2および3の少なくともいずれかで示されるオリゴヌクレオチドであり、
    前記(P2)のオリゴヌクレオチドが、配列番号4で示されるオリゴヌクレオチドである、請求項1に記載の多型検出用プローブ。
        ctgaggwdgcagtttc(配列番号2)
        gctgaggwdgcagtttc(配列番号3)
        ctgaggwdgcagtttcc(配列番号4)
  5. 配列番号2に示すオリゴヌクレオチド、配列番号3に示すオリゴヌクレオチドおよび配列番号4に示すオリゴヌクレオチドが、それぞれ、配列番号5に示すオリゴヌクレオチド、配列番号6に示すオリゴヌクレオチドおよび配列番号7に示すオリゴヌクレオチドである、請求項4に記載の多型検出用プローブ。
        ctgaggttgcagtttc(配列番号5)
        gctgaggaagcagtttc(配列番号6)
        ctgaggtggcagtttcc(配列番号7)
  6. 前記プローブが、蛍光標識物質を有する標識プローブである、請求項1に記載の多型検出用プローブ。
  7. 前記(P1)のオリゴヌクレオチドおよび(P2)のオリゴヌクレオチドが、3’末端領域に、前記蛍光標識物質を有し、前記(P1’)のオリゴヌクレオチドおよび(P2’)のオリゴヌクレオチドが、5’末端領域に、前記蛍光標識物質を有する、請求項6に記載の多型検出用プローブ。
  8. 前記(P1)のオリゴヌクレオチドおよび(P2)のオリゴヌクレオチドが、3’末端から数えて1~4番目の塩基の位置に、前記蛍光標識物質を有し、
    前記(P1’)のオリゴヌクレオチドおよび(P2’)のオリゴヌクレオチドが、5’末端から数えて1~4番目の塩基の位置に、前記蛍光標識物質を有する、請求項6に記載の多型検出用プローブ。
  9. 前記(P1)のオリゴヌクレオチドが、前記塩基番号11543の塩基に、前記蛍光標識物質を有し、
    前記(P1’)のオリゴヌクレオチドが、配列番号1における塩基番号11543の塩基に相補的な塩基に、前記蛍光標識物質を有し、
    前記(P2)のオリゴヌクレオチドが、前記塩基番号11544の塩基に、前記蛍光標識物質を有し、
    前記(P2’)のオリゴヌクレオチドが、配列番号1における塩基番号11544の塩基に相補的な塩基に、前記標識物質を有する、請求項6に記載の多型検出用プローブ。
  10. 前記多型検出用プローブが、Tm解析用のプローブである、請求項1に記載の多型検出用プローブ。
  11. 請求項1に記載の多型検出用プローブを含むことを特徴とする、MPL遺伝子の多型検出用試薬。
  12. さらに、MPL遺伝子における検出目的の多型を含む領域を増幅するためのプライマーを含む、請求項11に記載の多型検出用試薬。
  13.  請求項1に記載の多型検出用プローブを用いて、MPL遺伝子の多型を検出する工程を含むことを特徴とする、MPL遺伝子の多型検出方法。
  14. 下記(A)工程および(B)工程を含む、請求項13に記載の多型検出方法。
    (A)被検核酸および請求項1に記載の多型検出用プローブを含む反応系の温度を変化させ、前記被検核酸と前記多型検出用プローブとのハイブリッドの融解状態を示すシグナル値を測定する工程
    (B)前記温度変化に伴う前記シグナル値の変動から、前記被検核酸における前記多型を決定する工程
  15. 前記反応系が、2種類以上の前記多型検出用プローブを含む、請求項14に記載の多型検出方法。
  16. 前記反応系が、
    前記多型検出用プローブとして、
    配列番号2に示すオリゴヌクレオチドを含むプローブ、配列番号3に示すオリゴヌクレオチドを含むプローブおよび配列番号4に示すオリゴヌクレオチドを含むプローブのうち、いずれか2種類のプローブを含み、
    配列番号2、配列番号3および配列番号4において、wdの塩基配列は、それぞれ異なり、tt、aaまたはtgである、請求項15に記載の多型検出方法。
        ctgaggwdgcagtttc(配列番号2)
        gctgaggwdgcagtttc(配列番号3)
        ctgaggwdgcagtttcc(配列番号4)
  17. 前記反応系が、
    前記多型検出用プローブとして、
    配列番号2に示すオリゴヌクレオチドを含むプローブ、配列番号3に示すオリゴヌクレオチドを含むプローブおよび配列番号4に示すオリゴヌクレオチドを含むプローブを含み、
    配列番号2、配列番号3および配列番号4において、wdの塩基配列は、それぞれ異なり、tt、aaまたはtgである、請求項15に記載の多型検出方法。
        ctgaggwdgcagtttc(配列番号2)
        gctgaggwdgcagtttc(配列番号3)
        ctgaggwdgcagtttcc(配列番号4)
  18. 配列番号2に示すオリゴヌクレオチド、配列番号3に示すオリゴヌクレオチドおよび配列番号4に示すオリゴヌクレオチドが、それぞれ、配列番号5に示すオリゴヌクレオチド、配列番号6に示すオリゴヌクレオチドおよび配列番号7に示すオリゴヌクレオチドである、請求項16に記載の多型検出方法。
        ctgaggttgcagtttc(配列番号5)
        gctgaggaagcagtttc(配列番号6)
        ctgaggtggcagtttcc(配列番号7)
  19. 2種類以上の前記多型検出用プローブが、それぞれ、異なる標識物質を有する標識プローブである、請求項15に記載の多型検出方法。
  20. 前記(A)工程において、前記被検核酸が、鋳型核酸からの増幅物である、請求項14に記載の多型検出方法。
  21. さらに、下記(X)工程を含み、
    前記(X)工程が、前記多型検出用プローブの存在下、反応系において、前記鋳型核酸から前記増幅物を生成する工程であり、
    前記(A)工程において、前記(X)工程における前記反応系の温度を変化させ、前記シグナル値の測定を行う、請求項20に記載の多型検出方法。
    (X) 鋳型核酸から増幅物を生成する工程
PCT/JP2010/069379 2009-10-30 2010-10-29 Mpl遺伝子多型検出用プローブおよびその用途 WO2011052755A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10826885.5A EP2495318A4 (en) 2009-10-30 2010-10-29 PROBE FOR DETECTION OF POLYMORPHISM OF THE MPL GENE AND USE THEREOF
JP2011509743A JPWO2011052755A1 (ja) 2009-10-30 2010-10-29 Mpl遺伝子多型検出用プローブおよびその用途
CN201080049710.3A CN102741402A (zh) 2009-10-30 2010-10-29 Mpl基因多态性检测用探针及其用途
US13/503,946 US20120208196A1 (en) 2009-10-30 2010-10-29 Probe for Detecting Polymorphism in MPL Gene and Use of the Probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009251429 2009-10-30
JP2009-251429 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052755A1 true WO2011052755A1 (ja) 2011-05-05

Family

ID=43922177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069379 WO2011052755A1 (ja) 2009-10-30 2010-10-29 Mpl遺伝子多型検出用プローブおよびその用途

Country Status (6)

Country Link
US (1) US20120208196A1 (ja)
EP (1) EP2495318A4 (ja)
JP (1) JPWO2011052755A1 (ja)
KR (1) KR20120068992A (ja)
CN (1) CN102741402A (ja)
WO (1) WO2011052755A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925559A (zh) * 2012-09-29 2013-02-13 童永清 一种定量检测mpl基因w515位点突变的试剂盒
US9487562B2 (en) 2011-06-17 2016-11-08 President And Fellows Of Harvard College Stabilized polypeptides as regulators of RAB GTPase function

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028428B2 (en) 2015-11-11 2021-06-08 The Catholic University Of Korea Industry-Academic Cooperation Foundation Peptide nucleic acid probe for multiplex detection of BCR/ABL negative myeloproliferative neoplasm-associated gene mutations
US11905560B2 (en) 2017-04-10 2024-02-20 Avellino Lab Usa, Inc. Methods for multiplex detection of alleles associated with corneal dystrophy
CN112941171A (zh) * 2021-03-30 2021-06-11 迈杰转化医学研究(苏州)有限公司 一种检测mpl基因w515l、w515s和w515a突变的引物探针及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
WO1991009950A1 (en) 1989-12-22 1991-07-11 F. Hoffmann-La Roche Ag Recombinant expression vectors and purification methods for thermus thermophilus dna polymerase
EP0455430A2 (en) 1990-04-26 1991-11-06 New England Biolabs, Inc. Purified thermostable DNA polymerase obtainable from Thermococcus litoralis
US5079352A (en) 1986-08-22 1992-01-07 Cetus Corporation Purified thermostable enzyme
WO1992009689A1 (en) 1990-12-03 1992-06-11 Stratagene PURIFIED THERMOSTABLE $i(PYROCOCCUS FURIOSUS)
WO2008084672A1 (ja) * 2007-01-10 2008-07-17 Arkray, Inc. 光学検出装置の性能確認方法およびそれに用いる標準試薬
CN101403009A (zh) * 2008-11-13 2009-04-08 北京大学人民医院 一种用于检测骨髓增殖性疾病mplw515l突变的试剂盒及其专用引物与探针
WO2009072084A2 (en) * 2007-12-07 2009-06-11 Universita' Degli Studi Di Firenze Mutational analysis of chronic myeloproliferative disorders
JP2009251429A (ja) 2008-04-09 2009-10-29 Konica Minolta Business Technologies Inc ベルト駆動方式の定着装置及び画像形成装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
WO2008070370A2 (en) * 2006-11-02 2008-06-12 University Of Utah Research Foundation Oligonucleotides for use in allele-specific pcr

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
US5079352A (en) 1986-08-22 1992-01-07 Cetus Corporation Purified thermostable enzyme
WO1991009950A1 (en) 1989-12-22 1991-07-11 F. Hoffmann-La Roche Ag Recombinant expression vectors and purification methods for thermus thermophilus dna polymerase
EP0455430A2 (en) 1990-04-26 1991-11-06 New England Biolabs, Inc. Purified thermostable DNA polymerase obtainable from Thermococcus litoralis
WO1992009689A1 (en) 1990-12-03 1992-06-11 Stratagene PURIFIED THERMOSTABLE $i(PYROCOCCUS FURIOSUS)
WO2008084672A1 (ja) * 2007-01-10 2008-07-17 Arkray, Inc. 光学検出装置の性能確認方法およびそれに用いる標準試薬
WO2009072084A2 (en) * 2007-12-07 2009-06-11 Universita' Degli Studi Di Firenze Mutational analysis of chronic myeloproliferative disorders
JP2009251429A (ja) 2008-04-09 2009-10-29 Konica Minolta Business Technologies Inc ベルト駆動方式の定着装置及び画像形成装置
CN101403009A (zh) * 2008-11-13 2009-04-08 北京大学人民医院 一种用于检测骨髓增殖性疾病mplw515l突变的试剂盒及其专用引物与探针

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KAZUTAKA NAKAYAMA ET AL.: "Kotsuzui Zoshokusei Shuyo ni Okeru JAK2 exon12 no Hen'i to c- MPLW515L/K Hen'i no Shinki Kenshutsuho no Kaihatsu", RINSHO KETSUEKI, vol. 50, no. 9, 30 September 2009 (2009-09-30), pages 939 *
PARADANANI ET AL., BLOOD, vol. 108, no. 10, 2006, pages 3472 - 3476
PARDANANI, A., D. ET AL.: "MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients", BLOOD, vol. 108, 2006, pages 3472 - 3476, XP009117093, DOI: doi:10.1182/blood-2006-04-018879 *
RUAN, G., R. ET AL.: "MPL W515L/K mutations in 343 Chinese adults with JAK2V617F mutation- negative chronic myeloproliferative disorders detected by a newly developed RQ-PCR based on TaqMan MGB probes", HEMATOL. ONCOL., vol. 28, 2010, pages 33 - 39 *
See also references of EP2495318A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487562B2 (en) 2011-06-17 2016-11-08 President And Fellows Of Harvard College Stabilized polypeptides as regulators of RAB GTPase function
CN102925559A (zh) * 2012-09-29 2013-02-13 童永清 一种定量检测mpl基因w515位点突变的试剂盒
CN102925559B (zh) * 2012-09-29 2014-12-10 童永清 一种定量检测mpl基因w515位点突变的试剂盒

Also Published As

Publication number Publication date
CN102741402A (zh) 2012-10-17
EP2495318A1 (en) 2012-09-05
JPWO2011052755A1 (ja) 2013-03-21
US20120208196A1 (en) 2012-08-16
EP2495318A4 (en) 2013-06-12
KR20120068992A (ko) 2012-06-27

Similar Documents

Publication Publication Date Title
JP5637850B2 (ja) 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
JP5509075B2 (ja) 核酸増幅のコントロールの検出方法およびその用途
WO2009081967A1 (ja) 標的核酸配列の増幅方法およびそれに用いるプローブ
JP5917144B2 (ja) 疾患関連遺伝子の多型検出用プローブおよびその用途
WO2011062258A1 (ja) Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途
WO2011052755A1 (ja) Mpl遺伝子多型検出用プローブおよびその用途
JPWO2009048027A1 (ja) 免疫関連遺伝子の多型の検出用プローブおよびその用途
JP5684737B2 (ja) 標的配列の増幅方法、多型検出方法およびそれに用いる試薬
WO2011077990A1 (ja) c-kit遺伝子の多型検出用プローブおよびその用途
JP2011062143A (ja) ピロリ菌の23SrRNA遺伝子増幅用プライマー試薬およびその用途
JP5635496B2 (ja) Egfr遺伝子多型検出用プローブおよびその用途
JP5860667B2 (ja) Egfrエクソン21l858r遺伝子多型検出用プライマーセット及びその用途
JP2013017395A (ja) 骨髄増殖性疾患に関する遺伝子変異を検出するためのプローブおよび該プローブを用いた遺伝子変異の検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049710.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011509743

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826885

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13503946

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127012781

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010826885

Country of ref document: EP