WO2011105010A1 - 気相成長用半導体基板支持サセプタおよびエピタキシャルウェーハ製造装置およびエピタキシャルウェーハの製造方法 - Google Patents

気相成長用半導体基板支持サセプタおよびエピタキシャルウェーハ製造装置およびエピタキシャルウェーハの製造方法 Download PDF

Info

Publication number
WO2011105010A1
WO2011105010A1 PCT/JP2011/000462 JP2011000462W WO2011105010A1 WO 2011105010 A1 WO2011105010 A1 WO 2011105010A1 JP 2011000462 W JP2011000462 W JP 2011000462W WO 2011105010 A1 WO2011105010 A1 WO 2011105010A1
Authority
WO
WIPO (PCT)
Prior art keywords
susceptor
semiconductor substrate
vapor
counterbore
epitaxial
Prior art date
Application number
PCT/JP2011/000462
Other languages
English (en)
French (fr)
Inventor
寿 桝村
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to KR1020127022154A priority Critical patent/KR101608947B1/ko
Priority to US13/578,174 priority patent/US20120309175A1/en
Publication of WO2011105010A1 publication Critical patent/WO2011105010A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins

Definitions

  • the present invention relates to a susceptor used for supporting a semiconductor substrate in a vapor phase growth process, an epitaxial wafer manufacturing apparatus using the susceptor, and an epitaxial wafer manufacturing method.
  • Vapor phase growth of an epitaxial layer (for example, a silicon epitaxial layer) on the main surface of a semiconductor substrate is performed by a susceptor in a reaction vessel, and the substrate is grown as desired by a heating device in a state where the substrate is arranged on the susceptor. While heating to temperature, it supplies by supplying a source gas on the main surface of a board
  • the epitaxial wafer thus formed has an extremely high quality surface with no damage and few defects.
  • silicon epitaxial wafers have begun to be used for power devices such as MOS FETs such as MPU, DRAM and flash memory, IGBTs, and imaging devices such as CCD and CIS.
  • power devices such as MOS FETs such as MPU, DRAM and flash memory, IGBTs, and imaging devices such as CCD and CIS.
  • high integration and miniaturization of devices have progressed for high yield and high performance, and not only the surface quality of the substrate but also the flatness of the substrate has become particularly important.
  • the region that guarantees flatness for the purpose of improving the yield of the device has also expanded from the region excluding the outer periphery of 5 mm to the region excluding the outer periphery of 3 mm or the outer periphery of 2 mm.
  • the layer thickness uniformity of the epitaxial layer has been improved by using an apparatus for batch processing to single wafer processing.
  • the substrate before epitaxial growth is not flat, it is necessary to adjust the layer thickness distribution of the epitaxial layer in accordance with the shape of the substrate before growth, instead of simply forming an epitaxial layer having a uniform layer thickness.
  • the substrate before the epitaxial growth is polished and planarized, and the central portion of the silicon wafer achieves high flatness.
  • sufficient flatness cannot be achieved for the peripheral portion, and it is necessary to improve the flatness by adjusting the layer thickness of the peripheral portion in the epitaxial growth process.
  • Patent Document 1 For such a problem, there is a method of adjusting the depth of the spot facing portion of the susceptor. Further, as disclosed in Patent Document 1, for example, a plurality of injectors for supplying a source gas to the center and the outer periphery of the substrate are provided, and the concentration and flow rate of the source gas supplied from each injector are adjusted to adjust the silicon wafer There has also been proposed a method of controlling the thickness of the epitaxial layer in the central portion and the peripheral portion to achieve flattening.
  • Patent Document 2 the length of a region called a ledge where the susceptor and the back surface of the silicon wafer are brought into close contact with each other is changed, and an epitaxial layer is formed on the back surface side of the peripheral portion of the silicon wafer.
  • a method for selectively controlling the shape of the film has also been proposed.
  • the shape of the peripheral portion is formed by adding the layer thickness distribution of the epitaxial layer on the front side of the silicon wafer and the layer thickness distribution of the epitaxial layer on the back side.
  • problems such as lack of nature. If the shape control is not performed well, conversely, waviness occurs in the outer periphery of the wafer, and the flatness may be greatly deteriorated.
  • the present invention has been made in view of such a problem, and it is possible to improve the flatness of the epitaxial wafer by controlling the thickness of the epitaxial layer in the peripheral portion on the epitaxial wafer main surface side. It is a main object to provide a susceptor for supporting a semiconductor substrate during phase growth, and an epitaxial wafer manufacturing apparatus and method using the susceptor.
  • the present invention provides a susceptor that supports a semiconductor substrate during vapor phase growth, the susceptor including a counterbore portion on which the semiconductor substrate is disposed, and an end of the counterbore portion.
  • a semiconductor substrate supporting susceptor for vapor phase growth characterized in that the upper surface of the susceptor has a taper portion formed with a taper inclined upward or downward from the outside.
  • the periphery of the semiconductor substrate is used.
  • the flow of the source gas in the part can be adjusted, and the layer thickness of the epitaxial layer in the peripheral part of the semiconductor substrate can be controlled.
  • the layer thickness uniformity of the epitaxial layer on the outer periphery of the semiconductor substrate It is possible to improve the degree of freedom of control. That is, it becomes easy to control, and an epitaxial layer having a uniform and stable layer thickness can be vapor-phase grown, so that the production yield can be improved.
  • the layer thickness distribution of the epitaxial layer in the peripheral portion of the semiconductor substrate is adjusted, and the semiconductor substrate The shape of the outer peripheral portion can be corrected, and an epitaxial wafer having a highly flat surface can be stably supplied.
  • the taper portion has an outward length from the counterbore portion end of 1% or more and less than 7.5%, more preferably 2.5% or more and less than 7.5% of the diameter of the semiconductor substrate. It is preferable that it is a length.
  • the length from the end of the spot facing portion toward the outside is 1% or more and less than 7.5% of the diameter of the semiconductor substrate, more preferably 2.5% or more and less than 7.5%.
  • the taper part has a height of 30% or less of the thickness of the semiconductor substrate.
  • the height of the tapered portion is set to 30% or less of the thickness of the semiconductor substrate, it is possible to reliably suppress disturbance of the flow of the source gas in the peripheral portion of the semiconductor substrate, and the layer thickness is more reliably uniform.
  • An epitaxial wafer on which an epitaxial layer is formed can be manufactured.
  • the taper may be formed without interruption over the entire circumference of the counterbore part, and may be formed intermittently along the circumferential direction of the counterbore part. You can also. In this way, by using a susceptor formed with a taper that is not interrupted over the entire periphery of the spot facing portion, the layer thickness of the outer peripheral portion of the semiconductor substrate can be adjusted uniformly over the entire periphery of the semiconductor substrate. . Further, if the taper is a susceptor formed intermittently along the circumferential direction of the spot facing portion, only a part of the outer peripheral portion of the semiconductor substrate can be adjusted in layer thickness. By appropriately selecting according to the surface shape of the substrate, an epitaxial wafer excellent in flatness can be obtained.
  • the depth of the counterbore part of the susceptor is preferably 0.9 to 1.1 times the thickness of the semiconductor substrate.
  • the substrate thickness of the semiconductor substrate to be epitaxially grown and the spot facing depth of the spot facing portion can be made substantially equal, and the layer thickness of the outer peripheral portion of the semiconductor substrate can be controlled with higher accuracy.
  • an epitaxial wafer manufacturing apparatus for vapor-phase growth of an epitaxial layer on a main surface of a semiconductor substrate, at least a reaction vessel, a source gas introduction pipe, an exhaust pipe, a heating apparatus, An epitaxial wafer manufacturing apparatus comprising the susceptor according to the present invention is provided.
  • the epitaxial growth conditions can be set by vapor-phase-growing the epitaxial layer on the main surface of the semiconductor substrate.
  • the epitaxial layer on the outer peripheral portion of the semiconductor substrate can be formed uniformly without modification.
  • the epitaxial layer thickness of the outer peripheral part of the semiconductor substrate can be adjusted according to the outer peripheral shape of the semiconductor substrate. That is, since the shape of the outer peripheral portion of the semiconductor substrate can be corrected, a highly flat epitaxial wafer can be stably supplied.
  • the manufacturing method of the epitaxial wafer which vapor-phase-grows an epitaxial layer on a semiconductor substrate, Comprising: It describes in this invention in the vapor-phase growth process of vapor-phase-growing an epitaxial layer on the main surface of a semiconductor substrate.
  • An epitaxial wafer manufacturing method is provided, wherein the semiconductor substrate is disposed on the spot facing portion of the susceptor, and the epitaxial layer is vapor-phase grown.
  • a method for producing an epitaxial wafer wherein an epitaxial layer is vapor-grown on a semiconductor substrate, wherein the semiconductor substrate comprises a vapor-phase growth step of vapor-growing an epitaxial layer on a main surface of the semiconductor substrate.
  • the semiconductor is provided in the counterbore portion of the susceptor, which includes a counterbore portion to be disposed, and has a taper portion in which an upper surface of the susceptor is inclined upward or downward from an end of the counterbore portion toward the outside.
  • An epitaxial wafer manufacturing method is provided, wherein a substrate is disposed and the epitaxial layer is vapor-phase grown.
  • the susceptor supporting the semiconductor substrate is gradually moved upward or downward for a certain distance from the end of the spot facing portion toward the outside.
  • the amount of sag and sag at the outer periphery of the semiconductor substrate after the epitaxial layer is formed can be adjusted.
  • An epitaxial wafer having a high flatness can be produced.
  • the height of the taper it is possible to easily control the sag and sag of the outer periphery, and by adjusting the length from the counterbore edge to the outside, sag and sag of the outer periphery of the epitaxial layer are generated. Since the position of the epitaxial layer can be adjusted, the surface shape of the epitaxial layer can be controlled only by adjusting the taper shape of the susceptor according to the surface shape of the semiconductor substrate before vapor phase growth. An epitaxial wafer can be easily manufactured.
  • the thickness of the epitaxial layer on the outer peripheral portion of the semiconductor substrate can be made uniform.
  • the distribution of the epitaxial layer on the outer peripheral portion can be adjusted in accordance with the outer peripheral shape of the semiconductor substrate before epitaxial growth, and a highly flat epitaxial wafer can be stably supplied.
  • FIG. 6 is a diagram showing the layer thickness distribution of the outer peripheral portion of the silicon epitaxial layer of Example 1-5 and Comparative Example 2-3.
  • FIG. 6 is a diagram showing the layer thickness distribution of the outer peripheral portion of the silicon epitaxial layer of Example 6-9 and Comparative Example 1-2.
  • FIG. 6 is a diagram showing a layer thickness distribution at the outer peripheral portion of the silicon epitaxial layer of Comparative Example 1-3. It is the figure which showed the outline of the cross-sectional shape of the conventional susceptor. It is the figure which showed the outline of the cross-sectional shape of the conventional susceptor with a counterbore depth. It is the figure which showed the outline of the cross-sectional shape of the conventional susceptor with a counterbore depth shallow.
  • the epitaxial wafer manufacturing apparatus 10 supports at least a susceptor 20 (described later in detail), a reaction vessel 11 in which the susceptor 20 is arranged, and supports the susceptor 20 to rotate and drive up and down.
  • the susceptor support member 12 and the susceptor 20 are passed through the front and back, and can be moved up and down with respect to the susceptor 20, and moved up and down while supporting a semiconductor substrate W (hereinafter sometimes abbreviated as substrate W).
  • substrate W semiconductor substrate W
  • lift pins 13 for attaching to and detaching from the susceptor 20, and heating devices 14a and 14b (specifically, for example, halogen lamps) for heating the substrate W to a desired growth temperature during vapor phase growth.
  • a gas phase growth gas containing a source gas (specifically, for example, trichlorosilane) and a carrier gas (specifically, for example, hydrogen) is used as a reaction vessel. 1 is introduced into the region above the susceptor 20 and supplied onto the main surface of the substrate W on the susceptor 20, and the gas phase growth gas is introduced into the reaction vessel 11.
  • a source gas specifically, for example, trichlorosilane
  • a carrier gas specifically, for example, hydrogen
  • a purge gas introduction pipe 16 that is provided on the same side as the pipe 15 and introduces a purge gas (specifically, for example, hydrogen) into the region below the susceptor 20 in the reaction vessel 11, and the purge gas introduction pipe 16 and the source gas introduction pipe 15 and an exhaust pipe 17 that is provided on the opposite side of the reaction vessel 11 and exhausts gas (a gas phase growth source gas and a purge gas) from the reaction vessel 11.
  • a purge gas specifically, for example, hydrogen
  • the susceptor 20 supports the substrate W during vapor phase growth, and is made of, for example, graphite coated with silicon carbide.
  • the conventional susceptor 100 is configured, for example, in a substantially disk shape, and a counterbore 101 (a circular recess in a plan view) for positioning the substrate W is formed on the main surface thereof.
  • the bottom face of the spot facing portion 101 may be a flat surface or a concave curved surface.
  • the bottom face of the counterbore part 101 has a flat surface near the counterbore end bottom part 101a and a concave curved surface on the inside, and further has a hole penetrating to the back surface of the susceptor 100 in the vicinity of the counterbore part bottom bottom part 101a. Etc. are also proposed.
  • a lift pin penetrating hole portion 102 is formed on the bottom surface of the counterbore portion 101 of the susceptor 100 so as to penetrate the back surface of the susceptor 100 and through which the lift pin is inserted.
  • the lift pin penetrating holes 102 are, for example, disposed at three positions on the spot facing portion 101 at equal angular intervals.
  • the lift pin 13 includes, for example, a body portion 13b configured in a round bar shape, and a head portion 13a formed on the upper end portion of the body portion 13b and supporting the substrate W from the lower surface side. I have.
  • the head portion 13a has a diameter larger than that of the body portion 13b so as to easily support the substrate W.
  • the lift pin 13 is inserted into the lift pin penetrating hole 20a from the lower end thereof, and as a result, the head 13a is prevented from coming off downward by the edge of the lift pin penetrating hole 20a and supported by the susceptor 20.
  • the body portion 13b is suspended from the lift pin through hole 20a.
  • the body portion 13b of the lift pin 13 also penetrates the through hole 12b provided in the support arm 12a of the susceptor support member 12.
  • the susceptor support member 12 is provided with a plurality of support arms 12a radially, and the susceptor 20 is supported from the lower surface side by these support arms 12a. Thereby, the upper surface of the susceptor 20 is maintained in a substantially horizontal state.
  • the epitaxial manufacturing apparatus 10 is configured as described above. Then, by using this epitaxial wafer manufacturing apparatus 10 and performing vapor phase growth in the following manner, a silicon epitaxial layer can be formed on the main surface of the substrate W to manufacture a silicon epitaxial wafer.
  • the substrate W is supported by the susceptor 20 in the reaction vessel 11.
  • the lift pins 13 are raised relative to the susceptor 20 so as to protrude upward from the upper surface of the susceptor 20 by substantially equal amounts. Further, the susceptor 20 may be lowered as the susceptor support member 12 is lowered. During the descending process, after the lower end of the lift pin 13 reaches the inner bottom surface of the reaction vessel 11, for example, the lift pin 13 cannot be lowered further, but the susceptor 20 can be further lowered. For this reason, the lift pin 13 rises relative to the susceptor 20, and the lift pin and the susceptor eventually have a positional relationship as shown in FIG. 2 (the state where there is no substrate W in FIG. 2).
  • each lift pin 13 is lowered relative to the susceptor 20 in order to support the substrate W by the susceptor 20.
  • the susceptor 20 is raised as the susceptor support member 12 is raised while the transfer device is retracted.
  • the substrate W that has been supported on the head 13a of the lift pin 13 until then is It shifts to a state where it is supported in the vicinity of the counterbore end bottom 21a. Furthermore, when the edge of the lift pin penetrating hole 20a reaches the head 13a of the lift pin 13, the lift pin 13 that has been supported by the inner bottom surface of the reaction vessel 11 until then is supported by the susceptor 20. And migrate.
  • the substrate W is supported by the susceptor 20 in this way, vapor phase growth is performed.
  • the substrate W is rotated as the susceptor 20 is rotated by rotating the susceptor support member 12 about the vertical axis, and the substrate W on the susceptor 20 is grown to a desired growth by the heating devices 14a and 14b.
  • a vapor phase growth gas is supplied substantially horizontally onto the main surface of the substrate W via the source gas introduction pipe 15, while a purge gas is supplied to the lower side of the susceptor 20 via the purge gas introduction pipe 16. Install approximately horizontally.
  • a gas phase growth gas flow is formed on the upper side of the susceptor 20 and a purge gas flow is formed on the lower side substantially parallel to the susceptor 20 and the substrate W, respectively.
  • the manufactured epitaxial wafer is carried out of the reaction vessel 11. That is, after the rotation of the susceptor 20 is stopped, the susceptor support member 12 is lowered to cause the lift pins 13 to project above the susceptor 20 by substantially equal amounts as shown in FIG.
  • the substrate W is raised above the counterbore portion 21 of the susceptor 20. Then, the substrate W is unloaded by a transfer device (not shown).
  • the vapor phase growth gas is introduced from the vapor phase growth gas introduction pipe 15, flows along the surface of the susceptor 20, and is carried to the edge portion of the substrate W.
  • the growth rate of the epitaxial layer near the edge of the substrate W greatly depends on the concentration and flow rate of the vapor phase growth gas near the edge of the substrate W.
  • the counterbore depths of the counterbore parts 111 and 121 for supporting the substrate W of the susceptors 110 and 120 the bottom part of the counterbore part of the counterbore parts 111 and 121).
  • 111a, 121a and counterbore edge tops 111b, 121b) is adjusted to change the flow of the vapor phase growth gas in the vicinity of the edge of the substrate W, thereby changing the epitaxial growth rate in the vicinity of the edge of the substrate W.
  • the method of adjusting the is used.
  • the concentration of the vapor phase growth gas supplied to the edge portion of the substrate W decreases, and the edge of the substrate W
  • the epitaxial growth rate in the vicinity decreases.
  • the flow of the vapor phase growth gas is disturbed, and the epitaxial growth rate of the substrate W is reduced. It extends from the part to the inner area. For this reason, precise control of the epitaxial growth rate of the outer peripheral portion of the substrate W cannot be performed.
  • the concentration of the vapor growth gas supplied to the edge portion of the substrate W increases, and the edge of the substrate W is increased.
  • the epitaxial growth rate in the vicinity increases.
  • a step is generated between the substrate W and the counterbore end upper portion 121b of the counterbore portion 121 of the susceptor.
  • the flow of the vapor phase growth gas is disturbed, and the increase in the epitaxial growth rate of the substrate W It extends from the edge part to the inner area. For this reason, the epitaxial growth rate on the outer peripheral portion of the substrate W cannot be precisely controlled.
  • the susceptor 30 keeps the height of the counterbore end upper portion 31 b of the counterbore 31 substantially equal to the height of the main surface of the substrate W. (T ⁇ t w ), having a tapered portion 33 formed with a taper in which the upper surface of the susceptor gradually inclines upward from the counterbore portion end upper portion 31b to the tapered portion end 31c toward the outside of the counterbore portion 31 It is.
  • the epitaxial layer is vapor-phase grown on the main surface of the semiconductor substrate, thereby changing the epitaxial growth conditions without changing the epitaxial growth conditions.
  • the outer peripheral epitaxial layer can be formed uniformly.
  • the epitaxial layer thickness of the outer peripheral part of a semiconductor substrate can be adjusted according to the outer peripheral shape of the semiconductor substrate before epitaxial growth. Therefore, it becomes possible to correct the outer peripheral portion shape of the semiconductor substrate without changing the vapor phase growth conditions, and it is also possible to stably supply an epitaxial wafer that is highly flat especially to the outer peripheral portion.
  • the epitaxial growth rate in the vicinity of the edge of the substrate is set to a desired level.
  • tapered section 33 can be the height h is 30% or less of the thickness t w of the semiconductor substrate W.
  • the length d is adjusted from the position of the tapered portion end 31c and the counterbore end 31b where the semiconductor substrate is disposed to the counterbore end upper portion 31b. It is possible to suppress the epitaxial growth rate. For example, by increasing the length d, the starting point where the layer thickness changes in the peripheral portion of the semiconductor substrate can be changed to a position close to the edge of the semiconductor substrate. Further, when the length d is shortened, the starting point where the layer thickness changes in the peripheral portion of the semiconductor substrate can be changed to a position far from the edge of the semiconductor substrate.
  • the taper portion 33 has a length d that extends outward from the counterbore end upper portion 31b of 1% to less than 7.5%, more preferably 2.5% to less than 7.5% of the diameter of the semiconductor substrate. It can be a length. This makes it possible to reliably control the vapor growth rate in the vicinity of the end of the spot facing portion, and to produce a susceptor capable of manufacturing an epitaxial wafer with excellent flatness.
  • the depth t of the counterbore section 31 may be 0.9 to 1.1 times the thickness t w of the semiconductor substrate. Thus, it is possible to substantially equalize the counterbore depth t of the substrate thickness t w and spot facing of the semiconductor substrate for conducting the epitaxial growth, to perform an outer peripheral portion of the layer thickness control of the semiconductor substrate W with higher accuracy Will be able to.
  • the susceptor 40 keeps the height of the counterbore end upper portion 41b of the counterbore 41 substantially equal to the height of the main surface of the substrate W ( t ⁇ t w ), and has a tapered portion 43 in which a taper is formed such that the upper surface of the susceptor is gradually inclined downward from the counterbore portion end upper portion 41b to the taper portion end 41c toward the outer side of the counterbore portion 41. is there.
  • the epitaxial growth rate in the vicinity of the edge of the substrate W is increased from the edge of the substrate W to a desired region. Things will be possible. Further, by adjusting the height difference h between the counterbore end 41b and the taper end 41c (height of the taper 43 itself) of the counterbore 41, the epitaxial growth rate in the vicinity of the edge of the substrate W can be set to a desired value. It becomes possible to raise to the level.
  • the length d of the tapered portion 43 is also adjusted in the range of 1% to less than 7.5% of the diameter of the substrate W, more preferably in the range of 2.5% to less than 7.5%.
  • the growth rate can be sufficiently controlled, and an epitaxial layer having a uniform layer thickness can be easily and stably vapor-phase grown.
  • the susceptor 40 by in the range of 0.9-1.1 times the counterbore depth t of the substrate thickness t w, the thickness of the outer peripheral portion of the semiconductor substrate W with higher accuracy Control can be performed.
  • the tapered portion 53 is formed from the counterbore end upper portion 51b toward the outside of the susceptor 50 without interruption.
  • the layer thickness of the outer peripheral portion of the semiconductor substrate W of the spot facing portion 61 where the semiconductor substrate W is disposed is set.
  • a tapered portion 63 is formed intermittently from the counterbore end upper portion 61b toward the outside of the susceptor 60 along the circumferential direction of the counterbore portion end upper portion 61b of the counterbore portion 61 in an area corresponding to the portion to be adjusted. It should be good.
  • the height h of the tapered portion itself, the length d between the end of the tapered portion and the spot facing portion of the spot facing portion where the semiconductor substrate is disposed, the depth t of the spot facing portion, the taper By adjusting the presence or absence of taper in the circumferential direction, the shape of the epitaxial layer around the semiconductor substrate can be adjusted, so by adjusting these factors according to various substrate / vapor phase growth conditions, A flat epitaxial wafer can be produced.
  • Example 1 A susceptor as shown in FIG. 3 was produced.
  • the counterbore depth t of the susceptor is set to 800 ⁇ m, which is close to the thickness of the silicon single crystal substrate, the taper height h is fixed to 100 ⁇ m, and the taper length (length from the end of the counterbore portion to the outside) d is set.
  • d 22.5 mm
  • Example 3 10 mm
  • Example 5 3 mm.
  • Table 1 and FIG. 7 to be described later susceptor parameters of Comparative Examples 2 and 3 to be described later and variations in the thickness of the silicon epitaxial layer when using them are described for comparison.
  • the susceptor fabricated previously is mounted at the position of the susceptor of the epitaxial manufacturing apparatus as shown in FIG. 1, and a P + type silicon single crystal having a diameter of 300 mm, a resistivity of 0.01 to 0.02 ⁇ ⁇ cm, and a thickness of 775 ⁇ m.
  • a P ⁇ -type silicon epitaxial layer having a thickness of about 5 ⁇ m was vapor-grown on each main surface on the substrate by using each susceptor.
  • the outer periphery of the silicon substrate was measured at a 1 mm pitch in the range from 2 mm to 30 mm, and the thickness distribution of the silicon epitaxial layer was determined. It was measured. The result is shown in FIG. In FIG. 7, the measured value at each point is divided by the average value of all the measured points, and 1 is subtracted from that value, which is displayed as a percentage and used as an index representing the variation in the thickness of the epitaxial layer.
  • Example 7 in the case of Example 1 in which the taper length d was increased, the effect of the outer periphery sagging due to the formation of the taper was weakened, resulting in a layer thickness distribution close to that of Comparative Example 2.
  • Example 5 in which the taper length d was shortened, it was found that the effect of sagging in the outer periphery due to the formation of the taper was strengthened, and the layer thickness distribution was similar to that of Comparative Example 3.
  • the taper length d can be adjusted to an appropriate value so that it can be adjusted to a desired sag position, and in the case of Example 2, a substantially flat layer thickness distribution can be obtained up to the outer periphery. It was.
  • Example 6-9 A susceptor as shown in FIG. 4 was produced.
  • the counterbore depth t of the susceptor is set to 800 ⁇ m, which is close to the thickness of the silicon single crystal substrate, the taper height h is fixed to 100 ⁇ m, and the taper length (length from the end of the counterbore portion to the outside) d is set.
  • Table 2 and FIG. 8 to be described later susceptor parameters of Comparative Examples 1 and 2 to be described later and variations in the thickness of the silicon epitaxial layer when using the parameters are described for comparison.
  • the susceptor previously produced is mounted at the position of the susceptor of the epitaxial manufacturing apparatus as shown in FIG. 1, and a P + type silicon single-piece having a diameter of 300 mm, a resistivity of 0.01 to 0.02 ⁇ ⁇ cm, and a thickness of 775 ⁇ m is mounted.
  • a P ⁇ -type silicon epitaxial layer having a thickness of about 5 ⁇ m was vapor-grown on each main surface on the crystal substrate using each susceptor.
  • the outer periphery of the silicon substrate was measured at a 1 mm pitch in the range from 2 mm to 30 mm, and the thickness distribution of the silicon epitaxial layer was determined. It was measured. The result is shown in FIG. In FIG. 8, as in FIG. 7, the measured value at each point is divided by the average value of all the measured points, and 1 is subtracted from that value. did.
  • Example 8 in which the taper length d was increased, the peripheral effect due to the formation of the taper was weakened, and a layer thickness distribution close to that of Comparative Example 2 was obtained.
  • Example 9 in which the taper length d was shortened, it was found that the outer peripheral effect due to the formation of the taper was strengthened, and the layer thickness distribution was close to that of Comparative Example 1.
  • the taper length d can be adjusted to a desired value by adjusting the taper length d to an appropriate value.
  • Comparative Example 1-3 A susceptor as shown in FIG. 10 was produced. Three types of susceptor counterbore depth t of 700 ⁇ m in Comparative Example 1, 800 ⁇ m in Comparative Example 2, and 900 ⁇ m in Comparative Example 3 were prepared.
  • each of the above susceptors is mounted, the diameter is 300 mm, the resistivity is 0.01 to 0.02 ⁇ ⁇ cm, the thickness is A P ⁇ -type silicon epitaxial layer having a thickness of about 5 ⁇ m was vapor-grown on each main surface on a P + -type silicon single crystal substrate having a thickness of 775 ⁇ m using each susceptor.
  • the outer periphery of the silicon substrate was measured at a 1 mm pitch in the range from 2 mm to 30 mm, and the thickness distribution of the silicon epitaxial layer was determined. It was measured. The result is shown in FIG. In FIG. 9, similarly to FIGS. 7 and 8, the measured value at each point is divided by the average value of all the measured points, and 1 is subtracted from that value to indicate the percentage, thereby representing the variation in the thickness of the epitaxial layer. It was used as an index.
  • the layer thickness distribution of the silicon epitaxial layer changes from a sag to a sagging shape.
  • the sagging and splashing positions have also changed greatly, and it has been found that it is difficult to control the sagging and splashing amount and the position of the epitaxial layer in the outer peripheral portion at the same time to make it flat.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 本発明は、気相成長の際に半導体基板を支持するサセプタであって、該サセプタは、前記半導体基板が配置される座ぐり部を備え、前記座ぐり部の端から外側に向かって、前記サセプタの上面が上方または下方に傾斜するテーパーが形成されたテーパー部を有するものであることを特徴とする気相成長用半導体基板支持サセプタである。これによってエピタキシャルウェーハ主表面側の周辺部のエピタキシャル層の層厚を制御することによってエピタキシャルウェーハの平坦性を向上させることができる気相成長の際に半導体基板を支持するためのサセプタと、このサセプタを用いたエピタキシャルウェーハの製造装置が提供される。

Description

気相成長用半導体基板支持サセプタおよびエピタキシャルウェーハ製造装置およびエピタキシャルウェーハの製造方法
 本発明は、気相成長工程において半導体基板を支持するために用いるサセプタと、このサセプタを用いたエピタキシャルウェーハの製造装置およびエピタキシャルウェーハの製造方法に関する。
 
 半導体基板の主表面上へのエピタキシャル層(例えばシリコンエピタキシャル層)の気相成長は、反応容器内にサセプタを配し、このサセプタ上に基板を配した状態で、基板を加熱装置により所望の成長温度に加熱するとともに、ガス供給装置により基板の主表面上に原料ガスを供給することによって行われている。
 このようにして形成されたエピタキシャルウェーハは、ダメージフリーで欠陥も少ない極めて良質な表面を有している。
 近年、MPUやDRAM、フラッシュメモリー等のMOS FET、IGBT等のPowerデバイス、CCD、CIS等の撮像デバイスにシリコンエピタキシャルウェーハが使用され始めている。
 また、高収率化、高性能化のためにデバイスの高集積化、微細化が進み、基板表面品質のみならず、基板の平坦性が特に重要となってきている。
 さらにデバイスの収率向上を目的に平坦性を保証する領域についても、外周5mmを除外した領域から外周3mmあるいは外周2mmを除外した領域へと広がってきている。
 ここで、非常に高い平坦性を要求されているシリコンウェーハのエピタキシャル成長については、バッチ処理から枚葉処理の装置を用いることでエピタキシャル層の層厚均一性の向上を図ってきている。
 しかしながら、エピタキシャル成長前の基板が平坦でない場合には、単純に均一な層厚のエピタキシャル層を形成するのでなく、成長前の基板の形状に合わせてエピタキシャル層の層厚分布を調整する必要がある。
 例えばシリコンウェーハの場合、エピタキシャル成長前の基板に研磨加工を施して平坦化処理を行っており、シリコンウェーハの中心部は高平坦性が達成されている。しかし、周辺部については十分な平坦性が達成できておらず、エピタキシャル成長工程において周辺部の層厚を調整して平坦性を改善する必要がある。
 このような問題に対して、サセプタの座ぐり部の深さを調整する方法がある。
 また、例えば特許文献1にあるように、基板の中心と外周部に原料ガスを供給するための複数のインジェクタを設けて、各インジェクタから供給する原料ガスの濃度や流量を調整してシリコンウェーハの中心部と周辺部のエピタキシャル層の層厚をコントロールして平坦化を図る方法等も提案されている。
 更に、特許文献2にあるように、サセプタとシリコンウェーハ裏面が近接・接触するレッジと呼ばれる領域の長さを変化させて、シリコンウェーハ周辺部裏面側にもエピタキシャル層を形成し、シリコンウェーハ周辺部の形状を選択的に制御する方法等も提案されている。
 
特開平06-232060号公報 特開2007-273623号公報
 しかし、座ぐり部の深さを調整する方法では、ウェーハエッジとサセプタ間で段差が生じて、ガスの流れに乱れが発生し、エッジ部分だけでなく、ウェーハの内側の領域まで層厚が変化してしまう問題がある。
 また特許文献1に記載されている各々のインジェクタからの原料ガスの流量等を調節する方法では、原料ガスが拡散するために、基板となるシリコンウェーハの周辺部分のみのエピタキシャル層の層厚を選択的に制御できないという問題がある。
 そして、特許文献2に記載された方法では、シリコンウェーハの表面側のエピタキシャル層の層厚分布と裏面側のエピタキシャル層の層厚分布の足し合わせで周辺部形状が形成されるため、複雑で安定性に欠ける等の課題がある。そして、形状の制御がうまく行かなかった場合には、逆にウェーハ外周部にうねりが生じてフラットネスを大幅に悪化させる恐れもある。
 そこで、本発明はこのような問題点に鑑みなされたものであって、エピタキシャルウェーハ主表面側の周辺部のエピタキシャル層の層厚を制御することによってエピタキシャルウェーハの平坦性を向上させることができる気相成長の際に半導体基板を支持するためのサセプタと、このサセプタを用いたエピタキシャルウェーハの製造装置および製造方法を提供することを主な目的とする。
 上記課題を解決するため、本発明では、気相成長の際に半導体基板を支持するサセプタであって、該サセプタは、前記半導体基板が配置される座ぐり部を備え、前記座ぐり部の端から外側に向かって、前記サセプタの上面が上方または下方に傾斜するテーパーが形成されたテーパー部を有するものであることを特徴とする気相成長用半導体基板支持サセプタを提供する。
 このように、座ぐり部の端から外側に向かってある一定距離の間に徐々にサセプタの上面が上方または下方に傾斜するテーパーが形成されたテーパー部を有するサセプタを用いると、半導体基板の周辺部の原料ガスの流れを調整することができ、半導体基板の周辺部のエピタキシャル層の層厚を制御することができるようになる。
 このため、例えばあるエピタキシャル成長条件下で外周部の層厚均一性が悪化している場合でも、エピタキシャル成長条件を変更しないでサセプタ形状のみを調整することで半導体基板外周部のエピタキシャル層の層厚均一性を改善する事が可能となり、制御の自由度を上げることができる。すなわち制御が容易になり、層厚が均一且つ安定したエピタキシャル層を気相成長させることが可能となり、製造歩留りの改善を図ることができる。
 また、エピタキシャル成長を行う前の半導体基板の外周部の平坦性が悪い場合にも、本発明のサセプタを用いる事で、半導体基板の周辺部のエピタキシャル層の層厚分布を調整して、該半導体基板の外周部形状を修正することができ、高平坦な表面を有するエピタキシャルウェーハを安定して供給することも可能となる。
 ここで、前記テーパー部は、前記座ぐり部端から外側に向かう長さが、前記半導体基板の直径の1%以上7.5%未満、より好ましくは2.5%以上7.5%未満の長さであるものとすることが好ましい。
 このように、座ぐり部の端から外側に向かう長さが半導体基板の直径の1%以上7.5%未満、より好ましくは2.5%以上7.5%未満であれば、半導体基板の周辺部の層厚調整効果を十分に高いものとすることができ、高平坦性のエピタキシャルウェーハの製造に大きく貢献することができるサセプタになる。
 また、前記テーパー部は、その高さが前記半導体基板の厚さの30%以下であるものとすることが好ましい。
 このように、テーパー部の高さを半導体基板の厚さの30%以下とすることによって、半導体基板周辺部での原料ガスの流れが乱れることを確実に抑制でき、より確実に層厚が均一なエピタキシャル層が形成されたエピタキシャルウェーハを製造することができる。
 そして、前記テーパーが、前記座ぐり部の全周に渡って途切れることなく形成されたものとすることができ、また、前記座ぐり部の周方向に沿って間欠的に形成されたものとすることもできる。
 このように、テーパーが、座ぐり部の全周に渡って途切れることなく形成されたサセプタとすることによって、半導体基板の外周部の層厚を半導体基板の全周において均一に調整することができる。
 また、テーパーが、座ぐり部の周方向に沿って間欠的に形成されたサセプタであれば、半導体基板の外周部の一部のみを層厚調整することができるため、気相成長前の半導体基板の表面形状に合わせて適宜選択することによって平坦性に優れたエピタキシャルウェーハが得られる。
 また、前記サセプタの前記座ぐり部の深さが、前記半導体基板の厚さの0.9~1.1倍であるものとすることが好ましい。
 このように、座ぐり部の深さが、半導体基板の厚さの0.9~1.1倍のサセプタとすることによって、エピタキシャル成長を行う半導体基板の基板厚さと座ぐり部の座ぐり深さを略等しくすることができ、半導体基板の外周部の層厚制御を更に高い精度で行うことができる。
 また、本発明では、半導体基板の主表面上にエピタキシャル層を気相成長させるためのエピタキシャルウェーハ製造装置であって、少なくとも、反応容器と、原料ガス導入管と、排気管と、加熱装置と、本発明に記載のサセプタとを備えるものであることを特徴とするエピタキシャルウェーハ製造装置を提供する。
 このように、本発明に係る半導体基板を支持するサセプタを備えたエピタキシャルウェーハの製造装置であれば、これを用いて半導体基板の主表面上にエピタキシャル層を気相成長させることによって、エピタキシャル成長条件を変更しないで半導体基板の外周部のエピタキシャル層を均一に形成することができる。
 また、半導体基板の外周形状に合わせて半導体基板の外周部のエピタキシャル層厚を調整することができる。すなわち、半導体基板の外周部形状を修正することができるので、高平坦なエピタキシャルウェーハを安定して供給することも可能となる。
 そして、本発明では、半導体基板上にエピタキシャル層を気相成長させるエピタキシャルウェーハの製造方法であって、半導体基板の主表面上にエピタキシャル層を気相成長させる気相成長工程において、本発明に記載のサセプタの前記座ぐり部に前記半導体基板を配置して、前記エピタキシャル層を気相成長させることを特徴とするエピタキシャルウェーハの製造方法を提供する。
 更に、本発明では、半導体基板上にエピタキシャル層を気相成長させるエピタキシャルウェーハの製造方法であって、半導体基板の主表面上にエピタキシャル層を気相成長させる気相成長工程において、前記半導体基板が配置される座ぐり部を備え、前記座ぐり部の端から外側に向かって、前記サセプタの上面が上方または下方に傾斜するテーパーが形成されたテーパー部を有するサセプタの前記座ぐり部に前記半導体基板を配置して、前記エピタキシャル層を気相成長させることを特徴とするエピタキシャルウェーハの製造方法を提供する。
 このように、半導体基板上にエピタキシャル層を気相成長させる際に半導体基板を支持するサセプタに、座ぐり部の端から外側に向かってある一定距離の間に徐々にサセプタの上面が上方または下方に傾斜するテーパーが形成されたテーパー部を有するサセプタを用いることによって、エピタキシャル層が形成された後の半導体基板の外周のハネ及びダレ量の調整を行うことができ、中心部だけではなく、外周部も平坦度の高いエピタキシャルウェーハを製造することができる。
 特に、テーパーの高さを調整することによって外周部のハネ及びダレを容易にコントロールでき、また座ぐり部端から外側に向かう長さを調節することでエピタキシャル層の外周部のハネ及びダレが発生する位置を調節することができるため、気相成長前の半導体基板の表面形状に応じてサセプタのテーパー形状等を調整することのみでエピタキシャル層の表面形状を制御することができ、高平坦性のエピタキシャルウェーハを容易に製造できるようになる。
 以上説明したように、本発明によれば、半導体基板の外周部のエピタキシャル層の厚さも均一なものとすることができる。また、エピタキシャル成長前の半導体基板の外周形状に合わせて外周部のエピタキシャル層の分布を調整することができ、高平坦なエピタキシャルウェーハを安定して供給することもできる。
 
本発明に係るエピタキシャル製造装置の一例を示す概略図である。 本発明に係るエピタキシャル製造装置の他の様態を示す概略図である。 本発明に係るサセプタの第1の態様を示す概略図である。 本発明に係るサセプタの第2の態様を示す概略図である。 本発明に係るサセプタを上から視た時の一例(全周にテーパー部がある場合)を示す図である。 本発明に係るサセプタを上から視た時の他の一例(間欠的にテーパー部がある場合)を示す図である。 実施例1-5、比較例2-3のシリコンエピタキシャル層の外周部の層厚分布を示した図である。 実施例6-9、比較例1-2のシリコンエピタキシャル層の外周部の層厚分布を示した図である。 比較例1-3のシリコンエピタキシャル層の外周部の層厚分布を示した図である。 従来のサセプタの断面形状の概略を示した図である。 座ぐり深さが深い従来のサセプタの断面形状の概略を示した図である。 座ぐり深さが浅い従来のサセプタの断面形状の概略を示した図である。
 以下、本発明について図を参照して詳細に説明するが、本発明はこれらに限定されるものではない。
 先ず、図1及び図2を参照して、本発明に係るエピタキシャルウェーハ製造装置の一例としての枚葉式のエピタキシャルウェーハの製造装置について説明する。
 図1に示すように、エピタキシャルウェーハ製造装置10は、少なくとも、サセプタ20(詳細後述)と、該サセプタ20が内部に配される反応容器11と、サセプタ20を支持して回転駆動及び昇降動作させるサセプタ支持部材12と、サセプタ20を表裏に貫通するとともに該サセプタ20に対して昇降動作可能に設けられ、半導体基板W(以下基板Wと省略する事がある)を支持した状態で昇降動作するのに伴わせてサセプタ20上に着脱するためのリフトピン13と、気相成長の際に基板Wを所望の成長温度に加熱するための加熱装置14a、14b(具体的には、例えばハロゲンランプ)と、原料ガス(具体的には、例えばトリクロロシラン等)及びキャリアガス(具体的には、例えば水素等)を含む気相成長用ガスを反応容器11内のサセプタ20上側の領域に導入して該サセプタ20上の基板Wの主表面上に供給する気相成長用の原料ガス導入管15と、反応容器11に対しこの気相成長用ガス導入管15と同じ側に設けられパージガス(具体的には、例えば水素等)を反応容器11内のサセプタ20下側の領域に導入するパージガス導入管16と、これらパージガス導入管16及び原料ガス導入管15と反応容器11に対し反対側に設けられ該反応容器11からガス(気相成長用の原料ガス及びパージガス)を排気する排気管17とを備えて構成されている。
 このうち、サセプタ20は、気相成長の際に基板Wを支持するものであり、例えば炭化珪素で被覆されたグラファイトにより構成されている。
 まず、一般的な従来のサセプタの形状を図10に示す。
 従来のサセプタ100は、例えば略円盤状に構成され、その主表面には、該主表面上に基板Wを位置決めするための座ぐり部101(平面視円形の凹部)が形成されている。この座ぐり部101の底面は、平面のものや凹曲面上になっているものもある。また、座ぐり部101底面の座ぐり部端底部101aの近傍を平面、その内側を凹曲面にしたものや、更に座ぐり部端底部101a近傍にサセプタ100の裏面まで貫通した孔を設けたもの等も提案されている。
 また、図10に示すように、サセプタ100の座ぐり部101の底面には、サセプタ100の裏面に貫通した状態に形成され、リフトピンが挿通されるリフトピン貫通用孔部102が形成されている。このリフトピン貫通用孔部102は、例えば、座ぐり部101上に等角度間隔で三箇所に配設されているものである。
 ここで例えば図1に示すように、リフトピン13は、例えば丸棒状に構成された胴体部13bと、該胴体部13bの上端部に形成され、基板Wを下面側から支持する頭部13aとを備えている。このうち頭部13aは、基板Wを支持しやすいように胴体部13bよりも拡径されている。
 そして、リフトピン13は、その下端部から、リフトピン貫通用孔部20aに挿入された結果、該リフトピン貫通用孔部20aの縁部により頭部13aが下方に抜け止めされて、サセプタ20により支持されるとともに、その胴体部13bを該リフトピン貫通孔20aより垂下させた状態となっている。なお、リフトピン13の胴体部13bは、サセプタ支持部材12の支持アーム12aに設けられた貫通孔12bも貫通している。
 また、サセプタ支持部材12は、複数の支持アーム12aを放射状に備え、これら支持アーム12aにより、サセプタ20を下面側から支持している。これにより、サセプタ20は、その上面が略水平状態に保たれている。
 エピタキシャル製造装置10は、以上のように構成されている。
 そして、このエピタキシャルウェーハ製造装置10を用いて、以下の要領で気相成長を行うことにより、基板Wの主表面上にシリコンエピタキシャル層を形成してシリコンエピタキシャルウェーハを製造することができる。
 先ず、基板Wを反応容器11内のサセプタ20により支持させる。
 このためには、先ず、リフトピン13上に基板Wを受け渡すために、各リフトピン13を互いに略等量だけサセプタ20の上面より上方に突出するように該サセプタ20に対し相対的に上昇させる。また、サセプタ支持部材12を下降させるのに伴わせてサセプタ20を下降させるようにしてもよい。この下降の過程で、リフトピン13の下端部が、例えば反応容器11の内部底面に到達して以降は、リフトピン13はそれ以上に下降できないが、サセプタ20はさらに下降することができる。
 このため、サセプタ20に対し相対的にリフトピン13が上昇し、やがてリフトピンとサセプタは図2のような位置関係となる(図2において基板Wが無い状態)。
 次に図示しない移載装置により基板Wを反応容器11内に搬送し、上記上昇動作後の各リフトピン13の頭部13aにより、主表面を上にして基板Wを支持させる(図2の状態)。
 次に、基板Wをサセプタ20により支持させるために、各リフトピン13をサセプタ20に対し相対的に下降させる。このためには、移載装置を待避させる一方で、サセプタ支持部材12を上昇させるのに伴わせて、サセプタ20を上昇させる。この上昇の過程で、座ぐり部21の座ぐり部端底部21aが基板Wの主裏面に到達すると、それまでリフトピン13の頭部13a上に支持されていた基板Wが、座ぐり部21の座ぐり部端底部21a近傍で支持された状態へと移行する。
 さらに、リフトピン貫通用孔部20aの縁部がリフトピン13の頭部13aに到達すると、それまで反応容器11の内部底面により支持された状態であったリフトピン13は、サセプタ20により支持された状態へと移行する。
 このようにサセプタ20により基板Wを支持させたら、気相成長を行う。
 まず、サセプタ支持部材12を鉛直軸周りに回転駆動することによりサセプタ20を回転させるのに伴わせて基板Wを回転させるとともに、該サセプタ20上の基板Wを加熱装置14a,14bにより所望の成長温度に加熱しながら、原料ガス導入管15を介して基板Wの主表面上に気相成長用ガスを略水平に供給する一方で、パージガス導入管16を介してサセプタ20の下側にパージガスを略水平に導入する。
 従って、気相成長中、サセプタ20の上側には、気相成長用ガス流が、下側には、パージガス流が、それぞれサセプタ20及び基板Wと略平行に形成される。このように気相成長を行うことにより、基板Wの主表面上にエピタキシャル層を形成して、エピタキシャルウェーハを製造することができる。
 このようにエピタキシャルウェーハを製造したら、該製造後のエピタキシャルウェーハを、反応容器11外に搬出する。
 すなわち、サセプタ20の回転を止めた後に、サセプタ支持部材12を下降させて、図2に示すように各リフトピン13を互いに略等量だけサセプタ20の上方に突出動作させ、この突出動作に伴わせて基板Wをサセプタ20の座ぐり部21の上方に上昇させる。そして、図示しない移載装置により基板Wを搬出する。
 ここで、気相成長中は、気相成長ガスは気相成長ガス導入管15から導入され、サセプタ20の表面を沿って流れ、基板Wのエッジ部に運ばれる。基板Wのエッジ近傍のエピタキシャル層の成長速度は、基板Wのエッジ近傍の気相成長ガスの濃度や流速に大きく依存する。
 一般的には図11や図12に示すように、サセプタ110,120の基板Wを支持する為の座ぐり部111,121の座ぐり深さ(座ぐり部111,121の座ぐり部端底部111a,121aと座ぐり部端上部111b,121bの高さの差)を調節することで、基板Wのエッジ近傍の気相成長用ガスの流れを変化させて、基板Wのエッジ近傍のエピタキシャル成長速度を調整する方法が用いられている。
 例えば、図11に示すようにサセプタ110の座ぐり深さを基板Wの厚さよりも深くすれば、基板Wのエッジ部に供給される気相成長用ガスの濃度が低下し、基板Wのエッジ近傍のエピタキシャル成長速度は低下する。
 しかしながら、基板Wと座ぐり部111の座ぐり部端上部111bとの間で段差が生じる結果、気相成長ガスの流れの乱れが発生し、基板Wのエピタキシャル成長速度の低下は、基板Wのエッジ部からさらに内側の領域にまで及ぶようになる。この為、基板Wの外周部のエピタキシャル成長速度の精密な制御ができない。
 また、図12に示すようにサセプタ120の座ぐり深さを基板Wの厚さよりも浅くすれば、基板Wのエッジ部に供給される気相成長用ガスの濃度が上昇し、基板Wのエッジ近傍のエピタキシャル成長速度は上昇する。
 しかしながら、基板Wとサセプタの座ぐり部121の座ぐり部端上部121bとの間で段差が生じる結果、気相成長ガスの流れの乱れが発生し、基板Wのエピタキシャル成長速度の上昇は、基板Wのエッジ部からさらに内側の領域にまで及ぶようになる。この為、同様に基板Wの外周部のエピタキシャル成長速度の精密な制御ができない。
 これに対し、図3に示すように本発明の第1の実施形態のサセプタ30は、座ぐり部31の座ぐり部端上部31bの高さを基板Wの主表面の高さに略等しく保ち(t≒t)、座ぐり部端上部31bからテーパー部末端31cにかけて、座ぐり部31の外側に向けて徐々にサセプタの上面が上方に傾斜するテーパーが形成されたテーパー部33を有するものである。
 このように、本発明に係る半導体基板を支持するサセプタを備えたエピタキシャルウェーハの製造装置を用いて半導体基板の主表面上にエピタキシャル層を気相成長させることによって、エピタキシャル成長条件を変更しないで基板の外周部のエピタキシャル層を均一に形成することができる。
 また、エピタキシャル成長前の半導体基板の外周形状に合わせて半導体基板の外周部のエピタキシャル層厚を調整することができる。従って、半導体基板の外周部形状を気相成長条件を変更することなく修正することができるようになり、特に外周部まで高平坦となったエピタキシャルウェーハを安定して供給することも可能となる。
 ここで、座ぐり部31の座ぐり部端上部31bとテーパー部末端31cの高さの差h(テーパー部自体の高さ)を調整する事で、基板のエッジ近傍のエピタキシャル成長速度を所望のレベルまで抑制する事が可能となる。
 例えば、テーパー部33は、その高さhが半導体基板Wの厚さtの30%以下とすることができる。これによって、原料ガスの流れが乱れることを確実に抑制できるため、より確実かつ安定して均一な層厚のエピタキシャル層が形成されたエピタキシャルウェーハを製造するのに好適なサセプタとすることができる。
 そして、テーパー部末端31cの位置と半導体基板が配置される座ぐり部31の座ぐり部端上部31bにかけての長さdを調整することにより、基板のエッジから所望の領域まで基板のエッジ近傍のエピタキシャル成長速度を抑制する事が可能となる。例えば、長さdを長くすることで半導体基板の周辺部で層厚が変化する開始点を半導体基板のエッジに近い位置に変化させることができる。また、長さdを短くすると、半導体基板の周辺部で層厚が変化する開始点を半導体基板のエッジよりも遠い位置に変化させる事が可能となる。
 例えば、テーパー部33は、座ぐり部端上部31bから外側に向かう長さdが、半導体基板の直径の1%以上7.5%未満、より好ましくは2.5%以上7.5%未満の長さとすることができる。これによって、座ぐり部端近傍の気相成長速度の制御を確実に行うことができ、平坦性に優れたエピタキシャルウェーハを製造することができるサセプタになる。
 また、座ぐり部31の深さtは、半導体基板の厚さtの0.9~1.1倍とすることができる。
 これによって、エピタキシャル成長を行う半導体基板の基板厚さtと座ぐり部の座ぐり深さtをほぼ等しくすることができ、より高い精度で半導体基板Wの外周部の層厚の制御を行うことができるようになる。
 また、図4に示すように、本発明の第2の実施形態のサセプタ40は、座ぐり部41の座ぐり部端上部41bの高さを基板Wの主表面の高さに略等しく保ち(t≒t)、座ぐり部端上部41bからテーパー部末端41cにかけて、座ぐり部41の外側に向けて徐々にサセプタの上面が下方に傾斜するテーパーが形成されたテーパー部43を有するものである。
 このようなサセプタ40においては、テーパー部末端41cの径(すなわちテーパー部43の長さd)を調整することにより、基板Wのエッジから所望の領域まで基板Wのエッジ近傍のエピタキシャル成長速度を上昇させる事が可能となる。
 また、座ぐり部41の座ぐり部端上部41bとテーパー部末端41cの高さの差h(テーパー部43自体の高さ)を調整する事で、基板Wのエッジ近傍のエピタキシャル成長速度を所望のレベルまで上昇させる事が可能となる。
 ここで、前述のように、テーパー部43の高さhを基板Wの厚さtの30%以下の範囲で調整する事によって、気相成長ガスの流れを大きく乱してしまう恐れを確実に避けることができる。
 また、テーパー部43の長さdも基板Wの直径の1%以上7.5%未満、より好ましくは2.5%以上7.5%未満の範囲で調整する事によって、同様にエッジ近傍の成長速度の十分な制御ができ、層厚が均一なエピタキシャル層を容易且つ安定して気相成長させることができる。
 さらに、該サセプタ40の座ぐり深さtを基板の厚さtに対して0.9~1.1倍の範囲にする事によって、より高い精度で半導体基板Wの外周部の層厚の制御を行うことができるようになる。
 更に、半導体基板Wの外周部の層厚を半導体基板Wの全周において均一に調整する場合には、図5に示すように、半導体基板Wが配置される座ぐり部51の全周に渡って途切れることなく座ぐり部端上部51bからサセプタ50の外側に向かってテーパー部53が形成されたものとすることがよい。
 また、半導体基板Wの外周部の一部のみを層厚調整する場合には、図6に示すように、半導体基板Wが配置される座ぐり部61の半導体基板Wの外周部の層厚を調整する部分に相当する領域に、座ぐり部61の座ぐり部端上部61bの周方向に沿って間欠的に座ぐり部端上部61bからサセプタ60の外側に向かってテーパー部63が形成されたものとすることがよい。
 以上のように、本発明では、テーパー部自体の高さh、テーパーの端と半導体基板が配置される座ぐり部の座ぐり部端との長さd、座ぐり部の深さt、テーパーの向き、周方向におけるテーパーの有無を調整することにより、半導体基板周辺部のエピタキシャル層の形状を調整することができるため、様々の基板・気相成長条件に従ってこれらのファクターを調整することで、平坦なエピタキシャルウェーハを作製することができる。
 
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 (実施例1-5)
 図3に示すようなサセプタを作製した。サセプタの座ぐり深さtは、シリコン単結晶基板の厚さに近い800μmとし、テーパーの高さhを100μmに固定して、テーパー長さ(座ぐり部端から外側に向かう長さ)dを実施例1ではd=22.5mm、実施例2はd=15mm、実施例3はd=10mm、実施例4はd=7.5mm、実施例5はd=3mmとした5種類のサセプタを作製した。
 サセプタの上記パラメータを表1にまとめて示す。なお、表1及び後述する図7には、後述する比較例2,3のサセプタのパラメータと、それを用いた時のシリコンエピタキシャル層の厚さのバラツキを比較のために記載しておく。
Figure JPOXMLDOC01-appb-T000001
 そして図1に示すようなエピタキシャル製造装置のサセプタの位置に先に作製したサセプタを搭載して、直径300mm、抵抗率0.01~0.02Ω・cm、厚さ775μmのP型シリコン単結晶基板上の主表面上に厚さ約5μmのP型シリコンエピタキシャル層を各々のサセプタを用いて気相成長させた。
 その後、フーリエ赤外線分光を用いたナノメトリクス社製シリコンエピタキシャル層厚測定装置QS3300EGを用いて、前記シリコン基板の外周2mmから30mmまでの範囲を1mmピッチで測定して、シリコンエピタキシャル層の厚さ分布を測定した。その結果を図7に示す。図7では、各点の測定値を全測定点の平均値で割って、その値から1を引いたものをパーセント表示し、エピタキシャル層の厚さのばらつきを表す指標とした。
 図7に示すように、テーパー長さdを長くした実施例1の場合は、テーパーを形成した事による外周ダレ効果が弱まり、比較例2に近い層厚分布となった。
 逆にテーパー長さdを短くした実施例5の場合は、テーパーを形成した事による外周ダレ効果が強まり、比較例3に近い層厚分布となっていることが判った。
 このようにテーパー長さdを適切な値に調整する事で所望のダレの位置に調整でき、また、実施例2の場合には、外周までほぼフラットな層厚分布を得ることができることが判った。
 
 (実施例6-9)
 図4に示すようなサセプタを作製した。サセプタの座ぐり深さtは、シリコン単結晶基板の厚さに近い800μmとし、テーパーの高さhを100μmに固定して、テーパー長さ(座ぐり部端から外側に向かう長さ)dを実施例6ではd=22.5mm、実施例7はd=15mm、実施例8はd=7.5mm、実施例9はd=3mmとした4種類のサセプタを作製した。
 サセプタの上記パラメータを表2にまとめて示す。なお、表2及び後述する図8には、後述する比較例1,2のサセプタのパラメータと、それを用いた時のシリコンエピタキシャル層の厚さのバラツキを比較のために記載しておく。
Figure JPOXMLDOC01-appb-T000002
 そして、図1に示すようなエピタキシャル製造装置のサセプタの位置に先に作製したサセプタを搭載して、直径300mm、抵抗率0.01~0.02Ω・cm、厚さ775μmのP型シリコン単結晶基板上の主表面上に厚さ約5μmのP型シリコンエピタキシャル層を各々のサセプタを用いて気相成長させた。
 その後、フーリエ赤外線分光を用いたナノメトリクス社製シリコンエピタキシャル層厚測定装置QS3300EGを用いて、前記シリコン基板の外周2mmから30mmまでの範囲を1mmピッチで測定して、シリコンエピタキシャル層の厚さ分布を測定した。その結果を図8に示す。図8では、図7と同様に、各点の測定値を全測定点の平均値で割って、その値から1を引いたものをパーセント表示し、エピタキシャル層の厚さのばらつきを表す指標とした。
 図8に示すように、テーパー長さdを長くした実施例6の場合は、テーパーを形成した事による外周ハネ効果が弱まり、比較例2に近い層厚分布となった。
 逆にテーパー長さdを短くした実施例9の場合は、テーパーを形成した事による外周ハネ効果が強まり、比較例1に近い層厚分布となっていることが判った。
 このようにテーパー長さdを適切な値に調整する事で所望のハネの位置に調整できることが判った。
 
 (比較例1-3)
 図10に示すようなサセプタを作製した。サセプタの座ぐり部の深さtを、比較例1では700μm、比較例2は800μm、比較例3は900μmとした3種類を準備した。
 そして、図1に示したエピタキシャル製造装置のサセプタの位置に実施例で用いたものに変えて、上記各々のサセプタを搭載して、直径300mm、抵抗率0.01~0.02Ω・cm、厚さ775μmのP型シリコン単結晶基板上の主表面上に厚さ約5μmのP型シリコンエピタキシャル層を各々のサセプタを用いて気相成長させた。
 その後、フーリエ赤外線分光を用いたナノメトリクス社製シリコンエピタキシャル層厚測定装置QS3300EGを用いて、前記シリコン基板の外周2mmから30mmまでの範囲を1mmピッチで測定して、シリコンエピタキシャル層の厚さ分布を測定した。その結果を図9に示す。図9では、図7,8と同様に、各点の測定値を全測定点の平均値で割って、その値から1を引いたものをパーセント表示し、エピタキシャル層の厚さのばらつきを表す指標とした。
 図9に示すように、座ぐり深さを浅い方から深い方に変化させる事で、シリコンエピタキシャル層の層厚分布はハネからダレ形状に変化している。
 しかし、ダレ及びハネ位置も同様に大きく変化しており、外周部のエピタキシャル層のダレ及びハネ量とその位置を同時に制御して平坦にする事が困難であることが判った。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (10)

  1.  気相成長の際に半導体基板を支持するサセプタであって、
     該サセプタは、前記半導体基板が配置される座ぐり部を備え、前記座ぐり部の端から外側に向かって、前記サセプタの上面が上方または下方に傾斜するテーパーが形成されたテーパー部を有するものであることを特徴とする気相成長用半導体基板支持サセプタ。
     
  2.  前記テーパー部は、前記座ぐり部端から外側に向かう長さが、前記半導体基板の直径の1%以上7.5%未満の長さであることを特徴とする請求項1に記載の気相成長用半導体基板支持サセプタ。
     
  3.  前記テーパー部は、前記座ぐり部端から外側に向かう長さが、前記半導体基板の直径の2.5%以上7.5%未満の長さであることを特徴とする請求項1または請求項2に記載の気相成長用半導体基板支持サセプタ。
     
  4.  前記テーパー部は、その高さが前記半導体基板の厚さの30%以下であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の気相成長用半導体基板支持サセプタ。
     
  5.  前記テーパーが、前記座ぐり部の全周に渡って途切れることなく形成されたものであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の気相成長用半導体基板支持サセプタ。
     
  6.  前記テーパーが、前記座ぐり部の周方向に沿って間欠的に形成されたものであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の気相成長用半導体基板支持サセプタ。
     
  7.  前記サセプタの前記座ぐり部の深さが、前記半導体基板の厚さの0.9~1.1倍であることを特徴とする請求項1ないし請求項6のいずれか1項に記載の気相成長用半導体基板支持サセプタ。
     
  8.  半導体基板の主表面上にエピタキシャル層を気相成長させるためのエピタキシャルウェーハ製造装置であって、
     少なくとも、反応容器と、原料ガス導入管と、排気管と、加熱装置と、請求項1ないし請求項7のいずれか1項に記載のサセプタとを備えるものであることを特徴とするエピタキシャルウェーハ製造装置。
     
  9.  半導体基板上にエピタキシャル層を気相成長させるエピタキシャルウェーハの製造方法であって、
     半導体基板の主表面上にエピタキシャル層を気相成長させる気相成長工程において、請求項1ないし請求項7のいずれか1項に記載のサセプタの前記座ぐり部に前記半導体基板を配置して、前記エピタキシャル層を気相成長させることを特徴とするエピタキシャルウェーハの製造方法。
     
  10.  半導体基板上にエピタキシャル層を気相成長させるエピタキシャルウェーハの製造方法であって、
     半導体基板の主表面上にエピタキシャル層を気相成長させる気相成長工程において、前記半導体基板が配置される座ぐり部を備え、前記座ぐり部の端から外側に向かって、前記サセプタの上面が上方または下方に傾斜するテーパーが形成されたテーパー部を有するサセプタの前記座ぐり部に前記半導体基板を配置して、前記エピタキシャル層を気相成長させることを特徴とするエピタキシャルウェーハの製造方法。
PCT/JP2011/000462 2010-02-25 2011-01-28 気相成長用半導体基板支持サセプタおよびエピタキシャルウェーハ製造装置およびエピタキシャルウェーハの製造方法 WO2011105010A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127022154A KR101608947B1 (ko) 2010-02-25 2011-01-28 기상 성장용 반도체 기판 지지 서스셉터, 에피택셜 웨이퍼의 제조장치 및 에피택셜 웨이퍼의 제조방법
US13/578,174 US20120309175A1 (en) 2010-02-25 2011-01-28 Vapor-phase growth semiconductor substrate support susceptor, epitaxial wafer manufacturing apparatus, and epitaxial wafer manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010040313A JP5604907B2 (ja) 2010-02-25 2010-02-25 気相成長用半導体基板支持サセプタおよびエピタキシャルウェーハ製造装置およびエピタキシャルウェーハの製造方法
JP2010-040313 2010-02-25

Publications (1)

Publication Number Publication Date
WO2011105010A1 true WO2011105010A1 (ja) 2011-09-01

Family

ID=44506445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000462 WO2011105010A1 (ja) 2010-02-25 2011-01-28 気相成長用半導体基板支持サセプタおよびエピタキシャルウェーハ製造装置およびエピタキシャルウェーハの製造方法

Country Status (5)

Country Link
US (1) US20120309175A1 (ja)
JP (1) JP5604907B2 (ja)
KR (1) KR101608947B1 (ja)
TW (1) TWI606544B (ja)
WO (1) WO2011105010A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150275395A1 (en) * 2012-10-16 2015-10-01 Lg Siltron Inc. Susceptor for epitaxial growing and method for epitaxial growing
US20160126090A1 (en) * 2010-06-04 2016-05-05 Texas Instruments Incorporated Method for Processing a Semiconductor Wafer Using a Thin Edge Carrier Ring
JP2019007045A (ja) * 2017-06-23 2019-01-17 昭和電工株式会社 ウェハ支持台、化学気相成長装置、及び、SiCエピタキシャルウェハの製造方法
US10263167B2 (en) 2016-06-27 2019-04-16 Nichia Corporation Method of manufacturing semiconductor device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000848A1 (en) * 2011-07-01 2013-01-03 Novellus Systems Inc. Pedestal with edge gas deflector for edge profile control
TWM431893U (en) * 2012-02-10 2012-06-21 Well Thin Technology Ltd Deposition ring
US20130287529A1 (en) * 2012-04-27 2013-10-31 Applied Materials, Inc. Method and apparatus for independent wafer handling
JP2014216605A (ja) * 2013-04-30 2014-11-17 住友電気工業株式会社 半導体基板の製造方法および製造装置
JP6078428B2 (ja) * 2013-07-05 2017-02-08 昭和電工株式会社 ウェハ支持台、およびそのウェハ支持台が用いられてなる化学的気相成長装置
US10047457B2 (en) * 2013-09-16 2018-08-14 Applied Materials, Inc. EPI pre-heat ring
KR20160090698A (ko) * 2015-01-22 2016-08-01 주식회사 엘지실트론 에피택셜 웨이퍼의 성장을 위한 리액터의 재가동 준비 방법
KR102189137B1 (ko) * 2015-01-22 2020-12-09 에스케이실트론 주식회사 에피택셜 웨이퍼의 성장을 위한 리액터의 재가동 준비 방법
WO2016154052A1 (en) * 2015-03-25 2016-09-29 Applied Materials, Inc. Chamber components for epitaxial growth apparatus
US10184193B2 (en) 2015-05-18 2019-01-22 Globalwafers Co., Ltd. Epitaxy reactor and susceptor system for improved epitaxial wafer flatness
JP6493982B2 (ja) * 2015-11-26 2019-04-03 クアーズテック株式会社 サセプタ
JP7175766B2 (ja) 2016-03-28 2022-11-21 アプライド マテリアルズ インコーポレイテッド サセプタ支持体
DE102016210203B3 (de) * 2016-06-09 2017-08-31 Siltronic Ag Suszeptor zum Halten einer Halbleiterscheibe, Verfahren zum Abscheiden einer epitaktischen Schicht auf einer Vorderseite einer Halbleiterscheibe und Halbleiterscheibe mit epitaktischer Schicht
JP6587354B2 (ja) * 2016-10-06 2019-10-09 クアーズテック株式会社 サセプタ
US10622243B2 (en) * 2016-10-28 2020-04-14 Lam Research Corporation Planar substrate edge contact with open volume equalization pathways and side containment
US10923385B2 (en) * 2016-11-03 2021-02-16 Lam Research Corporation Carrier plate for use in plasma processing systems
KR102040378B1 (ko) * 2016-12-20 2019-11-05 주식회사 티씨케이 지그를 이용한 반도체 제조용 부품의 제조방법 및 제조장치
DE102017206671A1 (de) * 2017-04-20 2018-10-25 Siltronic Ag Suszeptor zum Halten einer Halbleiterscheibe mit Orientierungskerbe während des Abscheidens einer Schicht auf einer Vorderseite der Halbleiterscheibe und Verfahren zum Abscheiden der Schicht unter Verwendung des Suszeptors
KR102412341B1 (ko) * 2019-06-25 2022-06-23 피코순 오와이 기판 후면 보호
WO2021003705A1 (zh) * 2019-07-10 2021-01-14 苏州晶湛半导体有限公司 晶片承载盘与晶片外延设备
JP2021044336A (ja) * 2019-09-10 2021-03-18 キオクシア株式会社 半導体製造装置
KR102442463B1 (ko) * 2020-11-27 2022-09-14 주식회사 한화 균일도가 개선된 기판 트레이
CN115074823B (zh) * 2022-04-27 2024-05-07 华灿光电(苏州)有限公司 提高外延片成片良率的外延托盘及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327811A (ja) * 2003-04-25 2004-11-18 Sumitomo Mitsubishi Silicon Corp エピタキシャルウエーハ製造方法
JP2007194539A (ja) * 2006-01-23 2007-08-02 Shin Etsu Handotai Co Ltd Soiウエーハの製造方法およびsoiウエーハ
JP2007243167A (ja) * 2006-02-09 2007-09-20 Sumco Techxiv株式会社 サセプタおよびエピタキシャルウェハの製造装置
JP2009071210A (ja) * 2007-09-18 2009-04-02 Covalent Materials Tokuyama Corp サセプタおよびエピタキシャル成長装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891251A (en) * 1996-08-07 1999-04-06 Macleish; Joseph H. CVD reactor having heated process chamber within isolation chamber
WO1999023691A2 (en) * 1997-11-03 1999-05-14 Asm America, Inc. Improved low mass wafer support system
JP4196542B2 (ja) * 2001-03-05 2008-12-17 株式会社Sumco 気相成長用サセプタ及びこれを用いた気相成長方法
JP2004235439A (ja) * 2003-01-30 2004-08-19 Shin Etsu Handotai Co Ltd サセプタ及び気相成長装置
JP4019998B2 (ja) * 2003-04-14 2007-12-12 信越半導体株式会社 サセプタ及び気相成長装置
US7024105B2 (en) * 2003-10-10 2006-04-04 Applied Materials Inc. Substrate heater assembly
US20050217585A1 (en) * 2004-04-01 2005-10-06 Blomiley Eric R Substrate susceptor for receiving a substrate to be deposited upon
US8951351B2 (en) * 2006-09-15 2015-02-10 Applied Materials, Inc. Wafer processing hardware for epitaxial deposition with reduced backside deposition and defects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327811A (ja) * 2003-04-25 2004-11-18 Sumitomo Mitsubishi Silicon Corp エピタキシャルウエーハ製造方法
JP2007194539A (ja) * 2006-01-23 2007-08-02 Shin Etsu Handotai Co Ltd Soiウエーハの製造方法およびsoiウエーハ
JP2007243167A (ja) * 2006-02-09 2007-09-20 Sumco Techxiv株式会社 サセプタおよびエピタキシャルウェハの製造装置
JP2009071210A (ja) * 2007-09-18 2009-04-02 Covalent Materials Tokuyama Corp サセプタおよびエピタキシャル成長装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160126090A1 (en) * 2010-06-04 2016-05-05 Texas Instruments Incorporated Method for Processing a Semiconductor Wafer Using a Thin Edge Carrier Ring
US10720323B2 (en) * 2010-06-04 2020-07-21 Texas Instruments Incorporated Method for processing a semiconductor wafer using a thin edge carrier ring
US20150275395A1 (en) * 2012-10-16 2015-10-01 Lg Siltron Inc. Susceptor for epitaxial growing and method for epitaxial growing
US10263167B2 (en) 2016-06-27 2019-04-16 Nichia Corporation Method of manufacturing semiconductor device
JP2019007045A (ja) * 2017-06-23 2019-01-17 昭和電工株式会社 ウェハ支持台、化学気相成長装置、及び、SiCエピタキシャルウェハの製造方法

Also Published As

Publication number Publication date
TWI606544B (zh) 2017-11-21
KR101608947B1 (ko) 2016-04-05
KR20120125311A (ko) 2012-11-14
US20120309175A1 (en) 2012-12-06
JP5604907B2 (ja) 2014-10-15
TW201203444A (en) 2012-01-16
JP2011176213A (ja) 2011-09-08

Similar Documents

Publication Publication Date Title
JP5604907B2 (ja) 気相成長用半導体基板支持サセプタおよびエピタキシャルウェーハ製造装置およびエピタキシャルウェーハの製造方法
JP6424726B2 (ja) サセプタ及びエピタキシャル成長装置
JP5024382B2 (ja) サセプタ及びシリコンエピタキシャルウェーハの製造方法
JP4655935B2 (ja) シリコンエピタキシャルウェーハの製造方法
JP2001126995A (ja) 半導体製造装置
JP6112474B2 (ja) ウェーハ昇降装置、エピタキシャルウェーハの製造方法
WO2007091638A1 (ja) サセプタおよびエピタキシャルウェハの製造装置
US20110073037A1 (en) Epitaxial growth susceptor
JP5834632B2 (ja) サセプタ、該サセプタを用いた気相成長装置およびエピタキシャルウェーハの製造方法
JP4868503B2 (ja) エピタキシャルウェーハの製造方法
US8038793B2 (en) Epitaxial growth method
JP2004119859A (ja) サセプタ、半導体ウェーハの製造装置及び製造方法
JP3972710B2 (ja) サセプタ、エピタキシャルウェーハの製造装置および製造方法
JP2010034372A (ja) 気相成長装置用のサセプタ及び気相成長装置
JP2010016312A (ja) エピタキシャルウェーハの製造方法
JP2009135201A (ja) 半導体製造装置および半導体製造方法
JP2009038294A (ja) 出力調整方法、シリコンエピタキシャルウェーハの製造方法、及びサセプタ
JPWO2018207942A1 (ja) サセプタ、エピタキシャル基板の製造方法、及びエピタキシャル基板
JP2015506588A (ja) サセプタ
JP2006041028A (ja) サセプタ、およびエピタキシャルウェーハの製造方法
JP6841359B1 (ja) シリコンエピタキシャルウェーハ製造用サセプタの製造方法及びシリコンエピタキシャルウェーハの製造方法
EP3305940A1 (en) Susceptor
JP2002261023A (ja) エピタキシャルウェーハの製造方法
JP2015026776A (ja) エピタキシャルウェーハの製造方法
JP2013115342A (ja) シリコンエピタキシャルウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11746983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13578174

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127022154

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11746983

Country of ref document: EP

Kind code of ref document: A1