WO2011104843A1 - 非水系二次電池用負極板の製造方法及び非水系二次電池の製造方法 - Google Patents

非水系二次電池用負極板の製造方法及び非水系二次電池の製造方法 Download PDF

Info

Publication number
WO2011104843A1
WO2011104843A1 PCT/JP2010/052962 JP2010052962W WO2011104843A1 WO 2011104843 A1 WO2011104843 A1 WO 2011104843A1 JP 2010052962 W JP2010052962 W JP 2010052962W WO 2011104843 A1 WO2011104843 A1 WO 2011104843A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode plate
secondary battery
aqueous secondary
producing
Prior art date
Application number
PCT/JP2010/052962
Other languages
English (en)
French (fr)
Inventor
祐介 小野田
隆浩 坪内
智彦 石田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201080064777.4A priority Critical patent/CN102782904B/zh
Priority to JP2010536670A priority patent/JP5348142B2/ja
Priority to US13/578,645 priority patent/US8974550B2/en
Priority to PCT/JP2010/052962 priority patent/WO2011104843A1/ja
Publication of WO2011104843A1 publication Critical patent/WO2011104843A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a method for producing a negative electrode plate for a non-aqueous secondary battery and a method for producing a non-aqueous secondary battery.
  • lithium-ion secondary batteries have been actively developed using a carbon material capable of doping and undoping lithium as a negative electrode and a lithium composite oxide such as lithium cobalt oxide and lithium nickel oxide as a positive electrode. Yes.
  • a carbon material capable of doping and undoping lithium as a negative electrode
  • a lithium composite oxide such as lithium cobalt oxide and lithium nickel oxide as a positive electrode.
  • these batteries do not form lithium dendrite as seen in battery systems using lithium metal, have less self-discharge, have excellent cycle characteristics and safety, and have low temperatures. It has excellent characteristics, load characteristics, and quick chargeability, and it has great expectations, and has been put to practical use as a power source for portable devices such as laptop computers, word processors, camera-integrated VTRs, LCD TVs, and mobile phones. Has reached.
  • a fluid electrode mixture is applied to a metal foil as a current collector and dried to manufacture an electrode (positive electrode, negative electrode).
  • the electrode mixture composition consists of an active material that directly contributes to the battery reaction (charge / discharge reaction), a conductive agent that supports this battery reaction, a binder that holds them together, a diluting solvent for uniformly mixing and coating these, Consists of thickeners and the like.
  • the purpose is to evaporate the diluted solvent in the electrode mixture that does not contribute to the battery reaction, but in that case, since the binder convects in the electrode mixture, In some cases, it is not evenly distributed and is unevenly distributed on the coating film surface (electrode surface).
  • the binder is unevenly distributed on the electrode surface in this way, the resistance on the electrode surface increases and the charge / discharge reaction does not proceed smoothly, or problems in production such as separation of the electrode mixture from the current collector occur.
  • Patent Document 1 discloses a method of drying by controlling the removal rate of moisture in the electrode mixture in the drying step of the electrode mixture of the negative electrode. Yes.
  • Patent Document 2 discloses a drying method in which the temperature of hot air blown from above the electrode is 90 ° C. or lower and the temperature of hot air blown from below is 110 ° C. or higher in the drying step.
  • Patent Document 3 discloses a method in which an electrode mixture containing carboxymethyl cellulose and a pH adjuster and having a pH of 5 or more and 9 or less is applied on a current collector and dried.
  • Patent Document 4 discloses a method in which an electrode mixture containing a vinyl polymer is applied on a current collector and dried.
  • the binder since it is not evaluated whether or not the binder is uniformly distributed in the coating film, the binder is unevenly distributed on the electrode surface in the actual manufacturing process. May be built into the battery.
  • Patent Document 5 the concentration of the surface of the electrode mixture applied to the current collector is evaluated by fluorescent X-ray method, X-ray photoelectron spectroscopy, energy dispersive X-ray method, total reflection fluorescence method, etc. A technique for changing the drying conditions in accordance with the evaluation result is disclosed. However, in the method of Patent Document 5, since measurement takes time, productivity may be reduced.
  • Patent Document 6 discloses a technique for evaluating the distribution state of the binder in the cross section of the electrode using an electron beam probe microanalyzer (EPMA).
  • EPMA electron beam probe microanalyzer
  • Patent Documents 7 and 8 disclose a technique for evaluating the glossiness of the surface of a measurement object, although the measurement object is not an electrode of a lithium ion secondary battery. Since the measurement object of the methods of Patent Documents 7 and 8 is completely different from the measurement object in the present invention, the method of Patent Documents 7 and 8 cannot evaluate the uneven distribution of the binder on the electrode surface.
  • An object of the present invention is to provide a negative electrode plate for a non-aqueous secondary battery that can evaluate whether the binder is unevenly distributed on the electrode surface without reducing the productivity of the negative electrode plate for the non-aqueous secondary battery. It is in providing the manufacturing method of.
  • the present invention is a method for producing a negative electrode plate for a non-aqueous secondary battery produced by applying an electrode mixture containing at least a negative electrode active material and a binder to a current collector and drying it. After the coating and drying, the reflectance of the coating film surface of the negative electrode plate is measured, and an inspection step for judging pass / fail is provided. In the inspection step, when the incident angle and the light receiving angle are in the range of 80 ° to 90 °, A negative electrode plate satisfying a reflectance of 15 to 35% on the coating film surface of the negative electrode plate is judged as good.
  • the incident angle and the light receiving angle are each 85 °.
  • the reflectance of the coating film surface of the negative electrode plate is preferably in the range of 15 to 25%.
  • the present invention also provides a method for producing a non-aqueous secondary battery comprising a positive electrode plate, a negative electrode plate, and a non-aqueous electrolyte interposed between the positive electrode plate and the negative electrode plate, the negative electrode plate Is produced by the method for producing a negative electrode plate for a non-aqueous secondary battery according to any one of (1) to (3) above.
  • the present invention it is possible to evaluate whether or not the binder is unevenly distributed on the electrode surface without reducing the productivity of the negative electrode plate for a non-aqueous secondary battery.
  • FIG. 1 is a flowchart for explaining a method of manufacturing a negative electrode plate for a non-aqueous secondary battery according to this embodiment.
  • a negative electrode active material, a binder, a diluting solvent, and a thickener are kneaded to prepare a negative electrode mixture (paste) 10, and the negative electrode mixture 10 is collected as a current collector such as a copper foil.
  • the negative electrode plate 14 is obtained.
  • coating and drying is measured, and a quality is determined. As shown in FIG.
  • the reflectance of the coating film surface 14a of the negative electrode plate 14 is such that the incident angle and the light receiving angle are in the range of 80 ° to 90 °, preferably 85 °, respectively. 18 is measured, and the reflectance is measured when the incident angle and the light receiving angle are in the range of 80 ° to 90 ° (preferably 85 ° each), and the glossiness of the reference surface of the specular glossiness is 100 Indicates the percentage.
  • the incident angle and the light receiving angle are the angle of the light source 16 and the angle of the light receiving unit 18 with respect to the vertical line drawn from the negative electrode plate.
  • the negative electrode plate 14 satisfying the reflectance of the coating film surface 14a of the negative electrode plate 14 determined as described above in the range of 15 to 35% is determined as good. That is, if the reflectance of the coating film surface 14a of the negative electrode plate 14 is within the above range, it is judged that the binder is uniformly dispersed, and the non-aqueous secondary material with good electrode performance and coating film peeling strength is obtained. It can be determined that the battery negative electrode plate 14 is used. On the other hand, when the reflectance of the coating film surface 14a of the negative electrode plate 14 exceeds 35%, the binder is unevenly distributed on the coating film surface 14a (not uniformly dispersed), and a defective non-aqueous secondary battery is present.
  • the negative electrode plate 14 is used.
  • Such a negative electrode plate 14 for a non-aqueous secondary battery in which the binder is unevenly distributed on the coating film surface 14a has an increased surface resistance, and the charge / discharge reaction does not proceed smoothly. Problems such as peeling of the agent 10) occur.
  • the reflectance is measured under such conditions and the negative electrode plate 14 for a non-aqueous secondary battery is determined to be defective, it is preferable to reset the manufacturing conditions such as the drying time and temperature within an appropriate range.
  • the negative electrode plate 14 for non-aqueous secondary batteries determined to be defective is marked with a non-aqueous secondary battery negative electrode plate 14 determined to be good and distinguished from the production line.
  • the coating film surface 14a of the negative electrode plate 14 after drying is dried at predetermined time intervals. It is also possible to continuously measure the reflectance under the above conditions to determine whether the product is good or bad. For example, the reflectance of the coating film surface 14a of the negative electrode plate 14 is continuously measured at predetermined time intervals when the incident angle and the light receiving angle are each in the range of 80 ° to 90 ° (preferably 85 ° each). The negative electrode plate 14 that satisfies all the continuously measured reflectances in the range of 15 to 35% is determined as good. As described above, in this embodiment, it is possible to measure the reflectance online while performing continuous coating.
  • the method of the present embodiment for measuring the reflectance and evaluating whether or not the binder is unevenly distributed on the coating film surface 14a has the following effects, for example. (1) It is a simple method that does not require the use of special equipment, (2) It can be evaluated whether the binder is unevenly distributed in a short time without destroying the negative electrode plate, 3) Since it can be evaluated in a short time, with a simple method and non-destructive, the quality can be confirmed online within the electrode manufacturing process. (4) Since the quality can be confirmed online, the drying temperature and drying time. It is possible to provide feedback to manufacturing conditions such as
  • the negative electrode plate for a non-aqueous secondary battery after the above-described inspection process is pressed, slitted, or the like as necessary to produce a negative electrode plate for a non-aqueous secondary battery that has been processed to a predetermined dimension.
  • Examples of the negative electrode active material constituting the negative electrode mixture 10 include natural graphite, spherical or fibrous artificial graphite, graphitizable carbon such as coke, and non-graphitizable carbon such as a phenol resin fired body. However, it is not limited to these.
  • the negative electrode active material is preferably a powder having a particle size in the range of 1 to 100 ⁇ m and an average particle size of 3 to 30 ⁇ m, for example, in order to uniformly disperse it in the coating film.
  • the binder constituting the negative electrode mixture 10 is not particularly limited as long as it binds the negative electrode active materials to each other, and the negative electrode active material and the current collector 12.
  • synthetic rubber latex It is desirable to employ a mold binder.
  • the synthetic rubber latex binder for example, one or more of styrene butadiene rubber latex, nitrile butadiene rubber latex, methyl methacrylate butadiene rubber latex, chloroprene rubber latex, and carboxy-modified styrene butadiene rubber latex can be used.
  • the content ratio of the binder in the negative electrode mixture 10 is, for example, when the negative electrode active material is 100% by weight from the viewpoint of improving the binding property between the carbon material as the negative electrode active material and the current collector 12. It is desirable that the amount is 0.5% by weight or more of the binder weight. In addition, if the content ratio of the binder is large, the uniform dispersibility of the binder is affected. Therefore, the upper limit of the content ratio of the binder in the negative electrode mixture 10 is the reflectance condition described above. It is necessary to set appropriately within the range that satisfies the above.
  • the diluting solvent and thickener constituting the negative electrode mixture 10 mainly play a role of dispersing the negative electrode active material, the binder, and the like in the negative electrode mixture 10.
  • the thickener may have a function of binding the negative electrode active materials to each other and the negative electrode active material and the current collector 12.
  • the content of the thickener in the negative electrode mixture 10 is determined in consideration of the content of the negative electrode active material, the binder, and the like, but the negative electrode active material and the binder are uniformly dispersed. From the standpoint of performance, it is desirable to set as appropriate in a range satisfying the above-described reflectance condition.
  • the dilution solvent examples include water and alcohol.
  • the thickener is, for example, one or more cellulose resins selected from the group such as methyl cellulose, ethyl cellulose, benzyl cellulose, triethyl cellulose, cyanoethyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, aminoethyl cellulose, and oxyethyl cellulose. Is mentioned.
  • a positive electrode active material, a conductive agent, a binder, a diluting solvent and a thickener are kneaded to prepare a positive electrode mixture (paste), and the positive electrode mixture is applied onto a current collector 12 such as an aluminum foil. ,dry. Thereafter, a positive electrode plate for a non-aqueous secondary battery that is pressed and slit processed as necessary to be processed into a predetermined size is produced.
  • a lithium metal composite oxide having a layered rock salt structure such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used. These positive electrode active materials occlude and release lithium.
  • the active material is not limited to the above as long as it can be charged and discharged.
  • the conductive agent constituting the positive electrode mixture is for increasing the electric conductivity of the positive electrode plate for non-aqueous secondary batteries, and for example, carbon materials such as acetylene black, ketjen black, or graphite are used. Is done.
  • the binder constituting the positive electrode mixture is not particularly limited as long as it binds the positive electrode active materials to each other, and the positive electrode active material and the current collector 12.
  • Fluoroethylene (PTFE), polyvinylidene fluoride (PVDF), or the like is used.
  • these materials are kneaded to produce a positive electrode mixture paste, and the mixing ratio of these materials can be arbitrarily adjusted according to the suitability of the battery.
  • a non-aqueous secondary battery is, for example, a winding in which a negative electrode plate (for example, a sheet shape) and a positive electrode plate (for example, a sheet shape) obtained as described above are wound in close contact via a separator.
  • the body is loaded into the battery can, and after the nonaqueous electrolyte is injected into the battery can, an insulating sealing gasket is sandwiched between the battery can and the battery lid, and the body is caulked.
  • the non-aqueous electrolyte is obtained by, for example, dissolving a lithium salt such as LiPF 6 or LiClO 4 in an organic solvent.
  • organic solvent for example, a cyclic carbonate such as ethylene carbonate or propylene carbonate, or a chain carbonate such as diethyl carbonate, dimethyl carbonate, or ethyl methyl carbonate, or the like may be used alone or in combination.
  • a cyclic carbonate such as ethylene carbonate or propylene carbonate
  • a chain carbonate such as diethyl carbonate, dimethyl carbonate, or ethyl methyl carbonate, or the like may be used alone or in combination.
  • the non-aqueous secondary battery is not particularly limited in shape, such as a cylindrical shape, a square shape, a coin shape, or a button shape, and can be various sizes such as a thin shape and a large size. .
  • the non-aqueous secondary battery using the non-aqueous secondary battery negative electrode plate 14 obtained by the manufacturing method according to the present embodiment is, for example, a small power source for mobile devices such as mobile phones and portable personal computers, and a power source for automobiles. It can be used as a household power source.
  • Example 1 First, carboxymethyl cellulose (thickener, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., BSH-6) is dissolved in water (solvent) to give a 1% carboxymethyl cellulose solution, and natural graphite (negative electrode) having an average particle diameter of 11 ⁇ m is added to the solution. Active material) was added, and the mixture was kneaded with a 5-liter biaxial planetary kneader. Thereafter, water and styrene butadiene rubber latex (binder, manufactured by JSR Corporation, TRD2001) are added, and the solid content ratio of natural graphite, carboxymethyl cellulose, and styrene butadiene rubber latex is 98: 1: 1. A negative electrode mixture paste was prepared so that the content of the negative electrode mixture was 46% by weight.
  • a negative electrode mixture paste was applied to a copper foil having a thickness of 10 ⁇ m at a coating speed of 5 m / mm, and the four drying conditions (A) to ( Negative electrode plates A to D dried in D) were prepared.
  • the drying zone is divided into three, and the drying temperature and the rotation speed (air volume) of the fan can be changed in each zone.
  • FIG. 2 is a diagram showing the relationship between the binder uneven distribution value obtained by EPMA and the reflectance at an incident angle and a light receiving angle of 0 °, 60 ° or 85 °.
  • the incident angle and the light receiving angle were 0 °
  • the reflectances of the negative electrodes A to D were all high, and no correlation with the binder uneven distribution value was observed.
  • the incident angle and the light receiving angle were 60 °
  • the reflectance of the negative electrode plates A to D was slightly increased as the binder uneven distribution value increased, but this was not a clear correlation.
  • the reflectance of the negative electrode plates A to D was increased as the binder uneven distribution value increased, and a positive correlation could be confirmed. Therefore, it was confirmed that the determination of the uneven distribution of the binder was possible by measuring the reflectance when the incident angle and the light receiving angle were 85 °.
  • FIG. 3 is a diagram showing the relationship between the reflectance of the negative plates A to D and the peel strength when the incident angle and the light receiving angle are 85 °.
  • the peel strength is 1.2 N / m or more, preferably 1.7 N / m or more.
  • the reflectance of the coating surface of the negative electrode plate needs to be in the range of 15 to 30%, and 15 to 25%. It is preferable that it exists in the range. Further, when the reflectance of the coating film surface of the negative electrode plate is in the range of 15 to 30%, the binder uneven distribution value is low as shown in FIG. 2, and it can be said that the uniform dispersibility of the binder is ensured.
  • the incident angle and the light receiving angle are each in the range of 85 ° ( ⁇ 5 °)
  • the negative electrode plate satisfies the reflectance of 15 to 35% on the coating surface of the negative electrode plate, the binder is applied. It can be determined that sufficient peel strength is secured without uneven distribution on the film surface.
  • Example 2 A negative electrode mixture paste similar to that of Example 1 was prepared, and the prepared negative electrode mixture paste was applied to a copper foil having a thickness of 10 ⁇ m at a coating speed of 5 m / mm using a comma coater (manufactured by Toray Engineering Co., Ltd.). After coating, the drying temperatures from the first zone to the third zone were set to 80 ° C., 80 ° C., and 120 ° C., the fan rotation speed was adjusted to 800 rpm, and the negative electrode plate was dried.
  • a comma coater manufactured by Toray Engineering Co., Ltd.
  • the negative electrode plate that has passed through the third zone is taken up by the take-up unit.
  • a light source and a light receiving unit are installed between the third zone and the take-up unit, and the reflectance of the negative electrode plate that passes through the third zone is applied. Measurements were taken continuously every minute. In the measurement of the reflectance of the negative electrode plate of Example 2, the light source and the light receiving unit were installed so that the incident angle and the light receiving angle were 85 °, respectively.
  • FIG. 4 is a diagram showing the reflectance of the coating film surface of the negative electrode plate measured every 1 minute of coating time. As shown in FIG. 4, it was confirmed by the method of Example 2 that online measurement within the negative electrode plate manufacturing process was possible. Moreover, when the peeling strength of the coating film of the negative electrode plate at this time was measured, it was 2.2 N / m on average. And in the manufacturing process of a non-aqueous secondary battery, there was no peeling of a coating film etc., and it was able to manufacture efficiently.
  • the method for evaluating the uneven distribution of the binder by measuring the reflectance of the coating film surface of the negative electrode plate is simple and destroys the negative electrode plate. Therefore, it can be said that it contributes to development of an excellent negative electrode plate, management of a manufacturing process, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明の目的は、非水系二次電池用負極板の生産性を低下させることなく、結着剤が電極表面に偏在しているか否かを評価することができる非水系二次電池用負極板の製造方法を提供することにある。 本発明は、少なくとも負極活物質、結着剤を含む電極合剤を集電体に塗布し、乾燥させることにより製造される非水系二次電池用負極板の製造方法であって、前記塗布、乾燥後、負極板の塗膜表面の反射率を測定し、良否を判定する検査工程を備え、前記検査工程では、入射角及び受光角がそれぞれ80°~90°の範囲の時、前記負極板の塗膜表面の反射率が15~35%の範囲を満たす負極板を良と判定する。

Description

非水系二次電池用負極板の製造方法及び非水系二次電池の製造方法
 本発明は、非水系二次電池用負極板の製造方法及び非水系二次電池の製造方法に関する。
 近年、高エネルギー密度を有し、しかも、クリーンな電池であるリチウムイオン二次電池に対して、大きな関心と期待が持たれている。
 リチウムのドープ・脱ドープが可能な炭素材料を負極とし、リチウムコバルト酸化物、リチウムニッケル酸化物等のリチウム複合酸化物を正極としたリチウムイオン二次電池の開発が、近年、活発に行われている。これらの電池は、正極/負極の設計容量を最適化することにより、リチウム金属を用いた電池系でみられるリチウムデンドライトの形成はなく、自己放電が少なく、サイクル特性、安全性に優れ、さらに低温特性、負荷特性、あるいは急速充電性にも優れており、おおいに期待が持たれているとともに、ラップトップコンピュータ、ワープロ、カメラ一体型VTR、液晶TV、携帯電話等のポータブル機器用電源として、実用化に至っている。
 また、これら小型民生用途のみならず、電力貯蔵用や電気自動車等の大容量の大型電池への技術発展も加速してきており、特にハイブリッド電気自動車用のリチウムイオン二次電池の開発が急速に進められている。
 リチウムイオン二次電池での電極製造工程では、集電体である金属箔に流動性のある電極合剤を塗布し、乾燥させることで電極(正極、負極)を製造している。電極合剤組成は電池反応(充放電反応)に直接寄与する活物質と、この電池反応をサポートする導電剤、それらをつなぎ止める結着剤、これらを均一に混合、かつ塗布するための希釈溶剤や増粘剤等から構成されている。
 塗布後の乾燥工程では、特に電池反応に寄与しない電極合剤中の希釈溶剤を蒸発させることを目的としているが、その際、結着剤が電極合剤中を対流するため、塗膜内に均一に分布せず、塗膜表面(電極表面)に偏在する場合がある。このように結着剤が電極表面に偏在すると、電極表面の抵抗が増加し充放電反応がスムーズに進行しない、あるいは集電体から電極合剤が剥離する等の製造面での問題が生じる。
 そこで、結着剤の偏在を抑制するために、例えば、特許文献1では、負極の電極合剤の乾燥工程において、電極合剤中の水分の除去速度をコントロールして乾燥させる方法が開示されている。
 また、例えば、特許文献2では、乾燥工程において、電極の上方から送風する熱風の温度を90℃以下とし、下方から送風する熱風の温度を110℃以上にして乾燥させる方法が開示されている。
 また、例えば、特許文献3では、カルボキシメチルセルロース及びpH調整剤を含み、pHが5以上、9以下である電極合剤を集電体の上に塗布し、乾燥させる方法が開示されている。
 また、例えば、特許文献4では、ビニル重合体を含む電極合剤を集電体の上に塗布し、乾燥させる方法が開示されている。
特開2009-37893号公報 特開2005-251481号公報 特開2009-64564号公報 特開平9-25454号公報 特開2003-249212号公報 特開2006-172976号公報 特開2005-67920号公報 特開2002-63909号公報
 しかし、上記特許文献では、結着剤が塗膜内で均一に分布されているか否かの評価が行われていないため、実際の製造工程において結着剤が電極表面に偏在している状態で電池に組み込まれる可能性がある。
 例えば、特許文献5では、蛍光X線法、X線光電子分光法、エネルギー分散型X線法、全反射蛍光法等によって、集電体に塗布された電極合剤の表面の濃度を評価し、その評価結果に応じて乾燥条件を変化させる技術が開示されている。しかし、特許文献5の方法では、測定に時間が掛かるため、生産性が低下する場合がある。
 また、特許文献6では、電極の断面部における結着剤の分布状態を電子線プローブマイクロアナライザー(EPMA)により評価する技術が開示されている。しかし、特許文献6の方法では、評価する際に電極の一部を切り取る必要があり、また、EPMAの解析には時間や手間が掛かり、装置も高価であるため、実用的ではない。
 なお、特許文献7,8では、測定対象物がリチウムイオン二次電池の電極ではないが、測定対象物の表面の光沢度を評価する技術が開示されている。特許文献7,8の方法の測定対象物は本発明における測定対象物と全く異なるため、特許文献7,8の方法で、電極表面の結着剤の偏在を評価することはできない。
 本発明の目的は、非水系二次電池用負極板の生産性を低下させることなく、結着剤が電極表面に偏在しているか否かを評価することができる非水系二次電池用負極板の製造方法を提供することにある。
 (1)本発明は、少なくとも負極活物質、結着剤を含む電極合剤を集電体に塗布し、乾燥させることにより製造される非水系二次電池用負極板の製造方法であって、前記塗布、乾燥後、負極板の塗膜表面の反射率を測定し、良否を判定する検査工程を備え、前記検査工程では、入射角及び受光角がそれぞれ80°~90°の範囲の時、前記負極板の塗膜表面の反射率が15~35%の範囲を満たす負極板を良と判定する。
 (2)上記(1)記載の前記非水系二次電池用負極板の製造方法において、前記入射角及び前記受光角はそれぞれ85°であることが好ましい。
 (3)上記(1)記載の前記非水系二次電池用負極板の製造方法において、前記負極板の塗膜表面の反射率は15~25%の範囲であることが好ましい。
 また、本発明は、正極板と、負極板と、前記正極板と前記負極板との間に介在されてなる非水電解質とを備える非水系二次電池の製造方法であって、前記負極板は上記(1)~(3)のいずれか1つに記載の非水系二次電池用負極板の製造方法により製造される。
 本発明によれば、非水系二次電池用負極板の生産性を低下させることなく、結着剤が電極表面に偏在しているか否かを評価することができる。
本実施形態に係る非水系二次電池用負極板の製造方法を説明するためのフロー図である。 EPMAにより求めた結着剤偏在値と0°、60°又は85°の入射角及び受光角における反射率との関係を示す図である。 入射角及び受光角が85°の時の負極板A~Dの反射率と剥離強度との関係を示す図である。 塗工時間1分毎に測定した負極板の塗膜表面の反射率を示す図である。
 本発明の実施の形態について以下説明する。
 図1は、本実施形態に係る非水系二次電池用負極板の製造方法を説明するためのフロー図である。図1に示すように、まず、負極活物質、結着剤、希釈溶剤及び増粘剤を混練して負極合剤(ペースト)10を作製し、その負極合剤10を銅箔等の集電体12上に塗布、乾燥することにより、負極板14が得られる。次に、塗布、乾燥後の負極板14の塗膜表面14aの反射率を測定し、良否を判定する。負極板14の塗膜表面14aの反射率は、図1に示すように、入射角及び受光角がそれぞれ80°~90°の範囲、好ましくはそれぞれ85°となるように、光源16及び受光部18を設置し、入射角及び受光角がそれぞれ80°~90°の範囲(好ましくはそれぞれ85°)のときの反射率を測定して、鏡面光沢度の基準面の光沢度を100としたときの百分率を示す。入射角及び受光角は、図1に示すように、負極板に対して垂直線を引き、その垂直線に対する光源16の角度及び受光部18の角度である。
 そして、上記のようにして求めた負極板14の塗膜表面14aの反射率が15~35%の範囲を満たす負極板14を良として判定する。すなわち、負極板14の塗膜表面14aの反射率が上記範囲内であれば、結着剤が均一に分散していると判断し、電極性能、塗膜の剥離強度が良好な非水系二次電池用負極板14であると判定することが可能である。一方、負極板14の塗膜表面14aの反射率が35%を超える場合は、結着剤が塗膜表面14aに偏在しており(均一に分散していない)、不良な非水系二次電池用負極板14であると判定することが可能である。このような、結着剤が塗膜表面14aに偏在した非水系二次電池用負極板14は表面抵抗が増加し充放電反応がスムーズに進行しない、あるいは集電体12から塗膜(負極合剤10)が剥離する等の問題が生じる。このような条件で反射率を測定し、非水系二次電池用負極板14が不良と判定された場合には、乾燥時間、温度等の製造条件を適切な範囲に再設定することが好ましい。なお、不良と判定された非水系二次電池用負極板14は、良と判定された非水系二次電池用負極板14とマーク等を付け、製造ラインから区別される。
 本実施形態では、塗工機等により、帯状の集電体12上に負極合剤10が連続的に塗布される場合、所定の時間間隔毎に、乾燥後の負極板14の塗膜表面14aの反射率を上記の条件で連続的に測定し、良否を判定することも可能である。例えば、入射角及び受光角がそれぞれ80°~90°の範囲(好ましくはそれぞれ85°)のときの負極板14の塗膜表面14aの反射率を所定の時間間隔毎に連続的に測定し、該連続的に測定された反射率が全て15~35%の範囲を満たす負極板14を良として判定する。このように、本実施形態では、連続塗工しながらオンラインで反射率を測定することが可能である。
 反射率を測定して、結着剤が塗膜表面14aに偏在しているか否かを評価する本実施形態の方法は、例えば、以下のような効果を奏する。(1)特殊な機器の使用を必要とせず簡易な方法であること、(2)負極板を破壊することなく短時間で結着剤が偏在しているか否かを評価することができること、(3)短時間、簡易的方法、非破壊で評価できるため、電極の製造工程内でオンラインで品質を確認することができること、(4)オンラインで品質確認が可能であるため、乾燥温度、乾燥時間等の製造条件へのフィードバックが可能である。
 上記検査工程後の非水系二次電池用負極板は、必要に応じてプレス、スリット加工等され、所定の寸法に加工された非水系二次電池用負極板が作製される。
 以下に、本実施形態で用いる負極合剤10の構成について説明する。
 負極合剤10を構成する負極活物質としては、例えば、天然黒鉛、球状あるいは繊維状の人造黒鉛、コークス等の易黒鉛化性炭素、フェノール樹脂焼成体等の難黒鉛化性炭素等が用いられるが、これらに制限されるものではない。負極活物質は、塗膜中に均一に分散させるために、例えば、1~100μmの範囲の粒径を有し、且つ平均粒径が3~30μmの粉体であることが好ましい。
 負極合剤10を構成する結着剤は、負極活物質同士、および負極活物質と集電体12とを結着させるものであれば特に制限されるものではないが、例えば、合成ゴム系ラテックス型結着剤を採用することが望ましい。合成ゴム系ラテックス型結着剤は、例えば、スチレンブタジエンゴムラテックス、ニトリルブタジエンゴムラテックス、メチルメタクリレートブタジエンゴムラテックス、クロロプレンゴムラテックス、カルボキシ変性スチレンブタジエンゴムラテックスのいずれか1種以上を用いることができる。
 負極合剤10中の結着剤の含有割合は、負極活物質である炭素材料と集電体12との結着性を向上させるという点から、例えば、負極活物質を100重量%とした場合、結着剤重量の0.5重量%以上とすることが望ましい。また、結着剤の含有割合が多いと、結着剤の均一分散性等に影響を与えることから、負極合剤10中の結着剤の含有割合の上限は、上記説明した反射率の条件を満足する範囲において適宜設定される必要がある。
 負極合剤10を構成する希釈溶剤及び増粘剤は、主に負極活物質や結着剤等を負極合剤10中に分散させる役割を果たすものである。なお、増粘剤は、負極活物質同士、および負極活物質と集電体12とを結着させる機能を有していてもよい。ここで、負極合剤10中の増粘剤の含有割合は、負極活物質、結着剤等の含有量を考慮して決定されることになるが、負極活物質、結着剤の均一分散性の点から、上記説明した反射率の条件を満足する範囲において適宜設定されることが望ましい。
 希釈溶剤は、例えば、水、アルコール等が挙げられる。増粘剤は、例えば、メチルセルロース、エチルセルロース、ベンジルセルロース、トリエチルセルロース、シアノエチルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、アミノエチルセルロース、およびオキシエチルセルロース等のグループから選ばれる1種または2種以上のセルロース系の樹脂等が挙げられる。
 次に、非水系二次電池用正極板について簡単に説明する。
 まず、正極活物質、導電剤、結着剤、希釈溶剤及び増粘剤を混練して正極合剤(ペースト)を作製し、その正極合剤をアルミ箔等の集電体12上に塗布し、乾燥させる。その後必要に応じてプレス、スリット加工され、所定の寸法に加工した非水系二次電池用正極板が作製される。
 正極合剤を構成する正極活物質には、LiCoO、LiNiO、LiMnなどの層状岩塩構造のリチウム金属複合酸化物等が使用されるが、これら正極活物質はリチウムを吸蔵、放出可能であって、充放電反応が可能である活物質であれば上記に限定されるものではない。
 また、正極合剤を構成する導電剤は、非水系二次電池用正極板の電気伝導性を高めるためのものであり、例えば、アセチレンブラック、ケッチェンブラック、または黒鉛等の炭素材料等が使用される。
 また、正極合剤を構成する結着剤は、正極活物質同士、及び正極活物質と集電体12とを結着させるものであれば、特に制限されるものではないが、例えば、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)等が使用される。
 また、これらの材料を混練して正極合剤ペーストを作製するが、これらの材料の混合比等は電池の使用適性に応じて任意に調整することが可能である。
 非水系二次電池は、例えば、上記のようにして得られる負極板(例えば、シート状)と正極板(例えば、シート状)とが、セパレータを介して密着状態で巻回されてなる巻回体を電池缶内部に装填し、また、電池缶内部に非水電解質を注入した後、電池缶と電池蓋との間に絶縁封口ガスケットを挟んで、かしめることにより作製される。非水電解質は、例えば、LiPF、LiClO等のリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、例えば、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート等の単独もしくは混合系等を用いる。
 なお、非水系二次電池は、円筒型、角型、コイン型、ボタン型等、その形状については特に制限されるものではなく、また、薄型、大型等の種々の大きさにすることができる。
 そして、本実施形態に係る製造方法により得られる非水系二次電池用負極板14を用いた非水系二次電池は、例えば、携帯電話、携帯用パソコン等のモバイル機器用小型電源、自動車用電源、家庭用電源等として用いることが出来る。
 以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
(実施例1)
 まず、カルボキシメチルセルロース(増粘剤、第一工業製薬株式会社製、BSH-6)を水(溶剤)に溶解させ、1%のカルボキシメチルセルロース溶液とし、該溶液に平均粒径11μmの天然黒鉛(負極活物質)を加え、5L容量の2軸プラネタリ混練機で混練した。その後、水とスチレンブタジエンゴムラテックス(結着剤、JSR株式会社製、TRD2001)を加え、天然黒鉛、カルボキシメチルセルロース、スチレンブタジエンゴムラテックスの固形分比率が98:1:1の配合比で、固形分が46重量%になるように負極合剤ペーストを調製した。
 次に、コンマコーター(東レエンジニアリング社製)により、負極合剤ペーストを厚み10μmの銅箔に、塗工速度5m/mmで塗工し、下記表1に示す4つの乾燥条件(A)~(D)で乾燥させた負極板A~Dを作製した。実施例1で使用した塗工機は、乾燥ゾーンが3分割されており、各ゾーンで乾燥温度、ファンの回転数(風量)を変えることができるものである。
Figure JPOXMLDOC01-appb-T000001
 次に、入射角及び受光角がそれぞれ0°、60°又は85°となるように、光源及び受光部を設置し、各負極板A~Dの反射率を測定した。その結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
 次に、塗膜中の結着剤の分布状態を、特開2006-172976号公報で開示されている方法、すなわち負極板をEPMAにより観測し、結着剤偏在値を測定した。その結果を表3にまとめた。
Figure JPOXMLDOC01-appb-T000003
 図2は、EPMAにより求めた結着剤偏在値と0°、60°又は85°の入射角及び受光角における反射率との関係を示す図である。図2から分かるように、入射角及び受光角が0°では、負極板A~Dの反射率はいずれも高く、結着剤偏在値との相関は見られなかった。また、入射角及び受光角が60°では、結着剤偏在値の増加と共に僅かに負極板A~Dの反射率の増加は見られるが、明瞭な相関ではなかった。入射角及び受光角が85°では、結着剤偏在値の増加と共に負極板A~Dの反射率の増加が見られ、正の相関が確認できた。したがって、入射角及び受光角が85°の時の反射率を測定すれば、結着剤の偏在状態の判定が可能であることを確認した。
 次に、負極板A~Dの塗膜の剥離強度試験を行った。この剥離強度試験は、JIS6854-1に基づいて行った。図3は、入射角及び受光角が85°の時の負極板A~Dの反射率と剥離強度との関係を示す図である。実際の製造工程では、剥離強度が1.2N/m未満であると、塗膜が剥離し易くなり、非水系二次電池の生産性が低下する。非水系二次電池の生産性を低下させないためには、剥離強度が1.2N/m以上、好ましくは1.7N/m以上必要である。
 そこで、図3から判断すると、負極板の剥離強度を十分に確保するためには、負極板の塗膜面の反射率は15~30%の範囲にあることが必要であり、15~25%の範囲にあることが好ましい。また、負極板の塗膜面の反射率が15~30%の範囲では、図2に示すように結着剤偏在値も低く、結着剤の均一分散性が確保されていると云える。
 したがって、入射角及び受光角がそれぞれ85°(±5°)の範囲の時、負極板の塗膜表面の反射率が15~35%の範囲を満たす負極板であれば、結着剤が塗膜表面に偏在することなく、十分な剥離強度が確保されていると判定することができる。
(実施例2)
 実施例1と同様の負極合剤ペーストを調製し、コンマコーター(東レエンジニアリング社製)により、調製した負極合剤ペーストを厚み10μmの銅箔に、塗工速度5m/mmで塗工した。塗工後、第1ゾーンから第3ゾーンの乾燥温度を80℃、80℃、120℃に設定し、ファン回転数を800rpmに調整して、負極板を乾燥した。
 第3ゾーンを通過した負極板は巻き取り部により巻き取られるが、第3ゾーンと巻き取り部の間に光源及び受光部を設置し、第3ゾーンを通過する負極板の反射率を塗工時間1分毎に連続的に測定した。実施例2の負極板の反射率の測定では、入射角及び受光角がそれぞれ85°となるように、光源及び受光部を設置した。
 図4は、塗工時間1分毎に測定した負極板の塗膜表面の反射率を示す図である。図4に示すように、実施例2の方法により、負極板の製造工程内でのオンライン測定が可能であることが確認された。また、この時の負極板の塗膜の剥離強度を測定すると、平均で2.2N/mであった。そして、非水系二次電池の製造工程において、塗膜の剥離等はなく、効率よく製造することができた。
 以上のように、負極板の乾燥後に、負極板の塗膜表面の反射率を測定することによって、結着剤の偏在を評価する方法は、簡易的であり、また、負極板を破壊することなく評価することが可能であるため、優れた負極板の開発、製造工程の管理等に寄与するものであると云える。
 10 負極合剤、12 集電体、14 負極板、14a 塗膜表面、16 光源、18 受光部。

Claims (4)

  1.  少なくとも負極活物質、結着剤を含む電極合剤を集電体に塗布し、乾燥させることにより製造される非水系二次電池用負極板の製造方法であって、
     前記塗布、乾燥後、負極板の塗膜表面の反射率を測定し、良否を判定する検査工程を備え、
     前記検査工程では、入射角及び受光角がそれぞれ80°~90°の範囲の時、前記負極板の塗膜表面の反射率が15~35%の範囲を満たす負極板を良と判定することを特徴とする非水系二次電池用負極板の製造方法。
  2.  請求項1記載の非水系二次電池用負極板の製造方法であって、前記入射角及び受光角はそれぞれ85°であることを特徴とする非水系二次電池用負極板の製造方法。
  3.  請求項1記載の非水系二次電池用負極板の製造方法であって、前記負極板の塗膜表面の反射率は15~25%の範囲であることを特徴とする非水系二次電池用負極板の製造方法。
  4.  正極板と、負極板と、前記正極板と前記負極板との間に介在されてなる非水電解質とを備える非水系二次電池の製造方法であって、前記負極板は請求項1~3のいずれか1項に記載の非水系二次電池用負極板の製造方法により製造されることを特徴とする非水系二次電池の製造方法。
PCT/JP2010/052962 2010-02-25 2010-02-25 非水系二次電池用負極板の製造方法及び非水系二次電池の製造方法 WO2011104843A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080064777.4A CN102782904B (zh) 2010-02-25 2010-02-25 非水系二次电池用负极板的制造方法和非水系二次电池的制造方法
JP2010536670A JP5348142B2 (ja) 2010-02-25 2010-02-25 非水系二次電池用負極板の製造方法及び非水系二次電池の製造方法
US13/578,645 US8974550B2 (en) 2010-02-25 2010-02-25 Manufacturing method of negative electrode plate for non-aqueous secondary battery and manufacturing method of non-aqueous secondary battery
PCT/JP2010/052962 WO2011104843A1 (ja) 2010-02-25 2010-02-25 非水系二次電池用負極板の製造方法及び非水系二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052962 WO2011104843A1 (ja) 2010-02-25 2010-02-25 非水系二次電池用負極板の製造方法及び非水系二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2011104843A1 true WO2011104843A1 (ja) 2011-09-01

Family

ID=44506290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052962 WO2011104843A1 (ja) 2010-02-25 2010-02-25 非水系二次電池用負極板の製造方法及び非水系二次電池の製造方法

Country Status (4)

Country Link
US (1) US8974550B2 (ja)
JP (1) JP5348142B2 (ja)
CN (1) CN102782904B (ja)
WO (1) WO2011104843A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053125A (ja) * 2013-09-05 2015-03-19 トヨタ自動車株式会社 導電ペーストの評価方法、及び、正極板の製造方法
JP2017130451A (ja) * 2016-01-19 2017-07-27 株式会社ダイセル 結着剤、電極用スラリー、電極及びその製造方法並びに二次電池
CN110231743A (zh) * 2019-04-18 2019-09-13 广州奥翼电子科技股份有限公司 一种电泳显示器及其制备方法
JP2019160781A (ja) * 2018-03-12 2019-09-19 Tdk株式会社 正極及びリチウムイオン二次電池
JP2019160782A (ja) * 2018-03-12 2019-09-19 Tdk株式会社 負極及びリチウムイオン二次電池
US11539047B2 (en) 2018-03-12 2022-12-27 Tdk Corporation Positive electrode and lithium ion secondary battery
JP2023512535A (ja) * 2020-08-28 2023-03-27 エルジー エナジー ソリューション リミテッド 電極の乾燥品質評価装置及び電極の乾燥品質評価方法
JP2023513068A (ja) * 2020-09-10 2023-03-30 エルジー エナジー ソリューション リミテッド 電極乾燥装置及び電極乾燥方法
JP2023513521A (ja) * 2020-10-06 2023-03-31 エルジー・ケム・リミテッド ニッケルに富んだリチウム複合遷移金属酸化物正極活物質粒子混合物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2575786B (en) 2018-07-20 2021-11-03 Dyson Technology Ltd Stack for an energy storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249212A (ja) * 2002-02-26 2003-09-05 Sony Corp 非水電解質電池の製造方法
JP2003279508A (ja) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd 有機材料の分散状態を評価する方法
JP2006107780A (ja) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd 電極板の製造方法および電極板
JP2006172976A (ja) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池用極板の結着剤分布状態の評価方法
JP2008210786A (ja) * 2007-02-01 2008-09-11 Matsushita Electric Ind Co Ltd 電池とその負極の検査方法、製造方法、負極の検査装置、製造装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271300B1 (en) 1994-07-08 2001-08-07 Sanyo Chemical Industries, Ltd. Thermoreversible thickening binder composition
JP2972985B2 (ja) 1994-07-08 1999-11-08 三洋化成工業株式会社 バインダー組成物
EP1306913B1 (en) 2000-08-04 2012-03-14 Panasonic Corporation Polyelectrolyte fuel cell and production method therefor
JP3558021B2 (ja) 2000-08-18 2004-08-25 松下電器産業株式会社 燃料電池用膜電極接合体とその製造法及びこれを用いた燃料電池
JP2005067920A (ja) 2003-08-20 2005-03-17 Matsushita Electric Ind Co Ltd スラリーの評価方法、スラリーの調製方法、及びセラミックグリーンシートの製造方法
JP2005251481A (ja) 2004-03-02 2005-09-15 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法及び非水電解質二次電池用電極板乾燥装置
JP4470917B2 (ja) * 2006-06-29 2010-06-02 ソニー株式会社 電極集電体、電池用電極及び二次電池
JP2008210783A (ja) 2007-02-01 2008-09-11 Matsushita Electric Ind Co Ltd 電池とその負極の製造方法、負極の製造装置
JP2009037893A (ja) 2007-08-02 2009-02-19 Panasonic Corp 非水系二次電池用負極板の製造方法
JP2009064564A (ja) 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
US8178241B2 (en) * 2008-08-28 2012-05-15 3M Innovative Properties Company Electrode including current collector with nano-scale coating and method of making the same
CN102160218B (zh) 2009-01-30 2013-08-14 松下电器产业株式会社 非水电解质二次电池及其制造方法
CN101488583B (zh) * 2009-02-11 2011-05-25 深圳新宙邦科技股份有限公司 液态锂离子电池及其制备方法
JP2010198770A (ja) * 2009-02-23 2010-09-09 Sanyo Electric Co Ltd 巻回電極体の製造方法、及び巻回電極体製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249212A (ja) * 2002-02-26 2003-09-05 Sony Corp 非水電解質電池の製造方法
JP2003279508A (ja) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd 有機材料の分散状態を評価する方法
JP2006107780A (ja) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd 電極板の製造方法および電極板
JP2006172976A (ja) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池用極板の結着剤分布状態の評価方法
JP2008210786A (ja) * 2007-02-01 2008-09-11 Matsushita Electric Ind Co Ltd 電池とその負極の検査方法、製造方法、負極の検査装置、製造装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053125A (ja) * 2013-09-05 2015-03-19 トヨタ自動車株式会社 導電ペーストの評価方法、及び、正極板の製造方法
JP2017130451A (ja) * 2016-01-19 2017-07-27 株式会社ダイセル 結着剤、電極用スラリー、電極及びその製造方法並びに二次電池
JP7135840B2 (ja) 2018-03-12 2022-09-13 Tdk株式会社 正極及びリチウムイオン二次電池
JP2019160781A (ja) * 2018-03-12 2019-09-19 Tdk株式会社 正極及びリチウムイオン二次電池
JP2019160782A (ja) * 2018-03-12 2019-09-19 Tdk株式会社 負極及びリチウムイオン二次電池
JP7115296B2 (ja) 2018-03-12 2022-08-09 Tdk株式会社 負極及びリチウムイオン二次電池
US11539047B2 (en) 2018-03-12 2022-12-27 Tdk Corporation Positive electrode and lithium ion secondary battery
CN110231743A (zh) * 2019-04-18 2019-09-13 广州奥翼电子科技股份有限公司 一种电泳显示器及其制备方法
JP2023512535A (ja) * 2020-08-28 2023-03-27 エルジー エナジー ソリューション リミテッド 電極の乾燥品質評価装置及び電極の乾燥品質評価方法
JP2023513068A (ja) * 2020-09-10 2023-03-30 エルジー エナジー ソリューション リミテッド 電極乾燥装置及び電極乾燥方法
JP7546952B2 (ja) 2020-09-10 2024-09-09 エルジー エナジー ソリューション リミテッド 電極乾燥装置及び電極乾燥方法
JP2023513521A (ja) * 2020-10-06 2023-03-31 エルジー・ケム・リミテッド ニッケルに富んだリチウム複合遷移金属酸化物正極活物質粒子混合物の製造方法
JP7446448B2 (ja) 2020-10-06 2024-03-08 エルジー・ケム・リミテッド ニッケルに富んだリチウム複合遷移金属酸化物正極活物質粒子混合物の製造方法

Also Published As

Publication number Publication date
US20120311852A1 (en) 2012-12-13
US8974550B2 (en) 2015-03-10
CN102782904B (zh) 2015-04-01
JPWO2011104843A1 (ja) 2013-06-17
JP5348142B2 (ja) 2013-11-20
CN102782904A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5348142B2 (ja) 非水系二次電池用負極板の製造方法及び非水系二次電池の製造方法
Park et al. Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries
JP5594548B2 (ja) 電池用電極の製造方法
WO2022047705A1 (zh) 正极材料、正极极片、锂二次电池、电池模块、电池包及装置
JP4794824B2 (ja) リチウムイオン二次電池およびその製造法
JP6692123B2 (ja) リチウムイオン二次電池
US20130065138A1 (en) Method for negative electrode active material evaluation and negative electrode active material
Ahn et al. A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries
US10601065B2 (en) Method for manufacturing battery
JP2012009276A (ja) リチウムイオン二次電池およびその製造方法
US20240178367A1 (en) Negative electrode plate, secondary battery, and electric apparatus
KR101687100B1 (ko) 비수 전해질 2차 전지용의 정극과 그 제조 방법
JP5578370B2 (ja) 二次電池用電極及びその製造方法
US20230378468A1 (en) Electrode and method for producing electrode
JP2010102873A (ja) 電池の製造方法
JP2010044871A (ja) 電極合剤スラリーの製造方法
EP2755270B1 (en) Secondary cell inspecting method
JP2009252398A (ja) リチウム二次電池の負極活物質層形成用組成物の検査方法および該電池の製造方法
JP2013098089A (ja) 非水電解質二次電池の製造方法および負極活物質の評価方法
US20170237062A1 (en) Production method for electrode plate
JP2022168684A (ja) リチウムイオン電池用正極の製造方法
JP2012043753A (ja) リチウムイオン二次電池とその製造方法
US20160254547A1 (en) Underlayer for cell electrodes, current collector using the same, electrode, and lithium ion secondary cell
JP7446266B2 (ja) 非水電解液二次電池用の負極活物質、および非水電解液二次電池
JP2006172976A (ja) 非水電解質二次電池用極板の結着剤分布状態の評価方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064777.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010536670

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13578645

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846508

Country of ref document: EP

Kind code of ref document: A1