WO2011093444A1 - アクリルゴム組成物およびゴム架橋物 - Google Patents

アクリルゴム組成物およびゴム架橋物 Download PDF

Info

Publication number
WO2011093444A1
WO2011093444A1 PCT/JP2011/051741 JP2011051741W WO2011093444A1 WO 2011093444 A1 WO2011093444 A1 WO 2011093444A1 JP 2011051741 W JP2011051741 W JP 2011051741W WO 2011093444 A1 WO2011093444 A1 WO 2011093444A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic rubber
weight
parts
general formula
compound
Prior art date
Application number
PCT/JP2011/051741
Other languages
English (en)
French (fr)
Inventor
知則 小川
正将 篠原
務 吉村
坂本 圭
智史 桐木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2011551930A priority Critical patent/JP5712937B2/ja
Priority to KR1020127022375A priority patent/KR101718576B1/ko
Priority to EP11737154.2A priority patent/EP2530119B1/en
Priority to US13/575,778 priority patent/US8609753B2/en
Priority to CN201180016803.0A priority patent/CN102812083B/zh
Publication of WO2011093444A1 publication Critical patent/WO2011093444A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/34[b, e]-condensed with two six-membered rings with hetero atoms directly attached to the ring sulfur atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/30Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing heterocyclic ring with at least one nitrogen atom as ring member
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0625Polyacrylic esters or derivatives thereof

Definitions

  • the present invention relates to an acrylic rubber composition and a rubber cross-linked product, and more specifically, relates to an acrylic rubber composition that gives a rubber cross-linked product excellent in heat resistance, and a rubber cross-linked product obtained by cross-linking the acrylic rubber composition.
  • acrylic rubber Since acrylic rubber is excellent in heat resistance and oil resistance, it is widely used for rubber members such as hoses, seals, gaskets and the like in fields related to automobiles.
  • Patent Document 1 discloses an acrylic rubber composition obtained by blending acrylic rubber with two types of diphenylamine anti-aging agents.
  • Patent Document 1 discloses an acrylic rubber composition obtained by blending acrylic rubber with two types of diphenylamine anti-aging agents.
  • the tensile strength change rate, the elongation change rate, and the compression set in a heat resistance test in a relatively short time have been improved, at a high temperature for a long time. In the heat resistance test, the improvement effect was insufficient.
  • Patent Document 2 discloses a technique in which a specific styrenated diphenylamine compound is used in place of 4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine as an anti-aging agent blended in acrylic rubber.
  • Patent Document 3 discloses an acrylic rubber composition obtained by blending a carboxyl group-containing acrylic rubber with a secondary diamine type anti-aging agent and a secondary monoamine type anti-aging agent in combination.
  • Patent Document 3 discloses an acrylic rubber composition obtained by blending a carboxyl group-containing acrylic rubber with a secondary diamine type anti-aging agent and a secondary monoamine type anti-aging agent in combination.
  • Patent Document 2 and Patent Document 3 a relatively short time is required as compared with the case where 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine is used alone as an anti-aging agent.
  • the tensile strength change rate in the heat resistance test was improved, the effect of improving the elongation change rate and compression set rate was
  • Patent Document 4 discloses a crosslinkable acrylic rubber composition obtained by blending an acrylic rubber with a polyvalent primary amine crosslinking agent and p-aminodiphenylamine as an anti-aging agent.
  • the rate of change in elongation in the heat resistance test is higher than in the conventional case where 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine is used alone as an anti-aging agent.
  • further improvements have been desired in order to sufficiently satisfy the recent demand for heat resistance of acrylic rubber.
  • the present invention provides an acrylic rubber composition that has a high heat resistance, and can provide a crosslinked rubber product that can suppress deterioration in physical properties such as elongation even when exposed to high temperature conditions for a long time, and the acrylic rubber composition
  • the object is to provide a rubber cross-linked product obtained by cross-linking the product.
  • the present inventors can achieve the above object by blending a specific amount of a condensed heterocyclic compound and a crosslinking agent as an anti-aging agent into acrylic rubber. As a result, the present invention has been completed.
  • acrylic rubber containing 0.1 to 50 parts by weight of a compound represented by the following general formula (1) and 0.05 to 20 parts by weight of a crosslinking agent with respect to 100 parts by weight of acrylic rubber.
  • a composition is provided.
  • Y represents a chemical single bond or —SO 2 —.
  • R a and R b each independently have 1 to 30 carbon atoms which may have a substituent.
  • Z a and Z b each independently represents a chemical single bond or —SO 2 —, wherein n and m are each independently 0 or 1, and at least n and m One is 1.
  • R a and R b in the compound represented by the general formula (1) each independently have a linear or branched carbon number of 2 to 8 which may have a substituent.
  • Y is —SO 2 —
  • R a and R b are each independently a linear or branched group optionally having a substituent.
  • the alkyl group having 2 to 8 carbon atoms and Z a and Z b are chemical single bonds, and n and m are 1.
  • the content of the compound represented by the general formula (1) with respect to 100 parts by weight of the acrylic rubber is 0.3 to 5 parts by weight.
  • the acrylic rubber is a carboxyl group-containing acrylic rubber, an epoxy group-containing acrylic rubber, a halogen atom-containing acrylic rubber, or a carboxyl group- and halogen atom-containing acrylic rubber.
  • the acrylic rubber contains 0.1 to 100% by weight of ethylene-acrylate rubber.
  • the compound further contains at least one anti-aging agent other than the compound represented by the general formula (1), and the compound represented by the general formula (1) with respect to 100 parts by weight of the acrylic rubber. The total content of the other anti-aging agent is 0.1 to 50 parts by weight.
  • crosslinking the acrylic rubber composition in any one of the said is provided.
  • the rubber cross-linked product of the present invention is preferably an extruded product or a seal member.
  • an acrylic rubber composition having a high heat resistance capable of providing a crosslinked rubber product capable of suppressing deterioration in physical properties such as elongation even when exposed to high temperature conditions for a long time, and the acrylic rubber composition.
  • a rubber cross-linked product obtained by cross-linking a rubber composition can be provided.
  • the acrylic rubber composition of the present invention comprises 0.1 to 50 parts by weight of a compound represented by the following general formula (1) as an anti-aging agent and 0.05 to 20 crosslinking agents with respect to 100 parts by weight of the acrylic rubber. It is an acrylic rubber composition containing parts by weight.
  • the acrylic rubber used in the present invention is a (meth) acrylic acid ester monomer [acrylic acid as a main component (in this application, having 50% by weight or more in the total monomer units of rubber) in the molecule.
  • the acrylic rubber used in the present invention contains 50 to 100% by weight of (meth) acrylic acid ester monomer units as main components and 0 to 10% by weight of crosslinkable monomer units in the molecule. A polymer etc. are mentioned.
  • the (meth) acrylic acid ester monomer that forms the (meth) acrylic acid ester monomer unit suitable as the main component of the acrylic rubber used in the present invention is not particularly limited.
  • (meth) acrylic acid examples thereof include alkyl ester monomers and (meth) acrylic acid alkoxyalkyl ester monomers.
  • the (meth) acrylic acid alkyl ester monomer is not particularly limited, but is preferably an ester of an alkanol having 1 to 8 carbon atoms and (meth) acrylic acid, specifically, methyl (meth) acrylate, ( (Meth) ethyl acrylate, (meth) acrylic acid n-propyl, (meth) acrylic acid isopropyl, (meth) acrylic acid n-butyl, (meth) acrylic acid isobutyl, (meth) acrylic acid n-hexyl, (meth) Examples include 2-ethylhexyl acrylate and cyclohexyl (meth) acrylate.
  • ethyl (meth) acrylate and n-butyl (meth) acrylate are preferable, and ethyl acrylate and n-butyl acrylate are particularly preferable. These can be used alone or in combination of two or more.
  • the (meth) acrylic acid alkoxyalkyl ester monomer is not particularly limited, but an ester of an alkoxyalkyl alcohol having 2 to 8 carbon atoms and (meth) acrylic acid is preferable.
  • (meth) acrylic acid Methoxymethyl, ethoxymethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-propoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate , 3-methoxypropyl (meth) acrylate, 4-methoxybutyl (meth) acrylate, and the like.
  • 2-ethoxyethyl (meth) acrylate and 2-methoxyethyl (meth) acrylate are preferable, and 2-ethoxyethyl acrylate and 2-methoxyethyl acrylate are particularly preferable. These can be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester monomer unit in the acrylic rubber used in the present invention is 50 to 100% by weight, preferably 50 to 99.9% by weight, more preferably 60 to 99.5% by weight. More preferably, it is 70 to 99.5% by weight, and particularly preferably 70 to 99% by weight.
  • a (meth) acrylic acid ester monomer unit there exists a possibility that the weather resistance of the rubber crosslinked material obtained, heat resistance, and oil resistance may fall.
  • the (meth) acrylic acid ester monomer units are 30 to 100% by weight of (meth) acrylic acid alkyl ester monomer units and 70 to (meth) acrylic acid alkoxyalkyl ester monomer units. It is preferable to consist of 0% by weight.
  • the crosslinkable monomer that forms the crosslinkable monomer unit is not particularly limited.
  • an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer a monomer having an epoxy group; a halogen atom Monomer; diene monomer; and the like.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer is not particularly limited, and examples thereof include ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid having 3 to 12 carbon atoms, ⁇ , ⁇ having 4 to 12 carbon atoms.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid having 3 to 12 carbon atoms include acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, crotonic acid, and cinnamic acid.
  • ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms include butenedionic acid such as fumaric acid and maleic acid; itaconic acid; citraconic acid; chloromaleic acid;
  • monoesters of ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acids having 4 to 12 carbon atoms and alkanols having 1 to 8 carbon atoms include monomethyl fumarate, monoethyl fumarate, mono n-butyl fumarate, malein Butenedionic acid mono-chain alkyl esters such as monomethyl acid, monoethyl maleate and mono-n-butyl maleate; monocyclopentyl fumarate, monocyclohexyl fumarate, monocyclohexenyl fumarate, monocyclopentyl maleate, monocyclohexyl maleate, maleic acid And butenedionic acid monoesters having an alicyclic structure such
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomers can be used alone or in combination of two or more.
  • dicarboxylic acids include those that exist as anhydrides.
  • the acrylic rubber when an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer is used as the crosslinkable monomer, can be a carboxyl group-containing acrylic rubber.
  • the acrylic rubber is a carboxyl group-containing acrylic rubber, the heat aging resistance of the acrylic rubber can be further improved.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit is preferably 0.1 to 10% by weight, more preferably It is 0.5 to 7% by weight, more preferably 1 to 5% by weight.
  • the carboxyl group content that is, the mole number of carboxyl groups per 100 g of acrylic rubber (ephr) is preferably 4 ⁇ 10 ⁇ 4. 4 ⁇ 10 ⁇ 1 (ephr), more preferably 1 ⁇ 10 ⁇ 3 to 2 ⁇ 10 ⁇ 1 (ephr), and even more preferably 5 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 1 (ephr). If the carboxyl group content is too small, crosslinking may be insufficient, resulting in insufficient mechanical properties of the resulting rubber cross-linked product or lack of smoothness on the surface of the molded product. On the other hand, if the amount is too large, the elongation of the resulting rubber cross-linked product may decrease, or the compression set may increase.
  • the monomer having an epoxy group is not particularly limited, and examples thereof include an epoxy group-containing (meth) acrylic acid ester and an epoxy group-containing ether.
  • epoxy group-containing (meth) acrylic acid ester examples include glycidyl (meth) acrylate.
  • Specific examples of the epoxy group-containing ether include allyl glycidyl ether and vinyl glycidyl ether. Among these, glycidyl methacrylate and allyl glycidyl ether are preferable. These monomers having an epoxy group can be used alone or in combination of two or more.
  • the acrylic rubber when a monomer having an epoxy group is used as the crosslinkable monomer, can be an epoxy group-containing acrylic rubber.
  • the content of the monomer unit having an epoxy group is preferably 0.1 to 10% by weight, more preferably 0.5 to 7% by weight. %, More preferably 0.5 to 5% by weight. If the content of the monomer unit having an epoxy group is too small, crosslinking may be insufficient, and it may be difficult to maintain the shape of the resulting rubber cross-linked product, while the content of the monomer unit having an epoxy group may be present. If the amount is too large, the elongation of the resulting rubber cross-linked product may decrease, or the compression set may increase.
  • unsaturated alcohol ester of halogen-containing saturated carboxylic acid for example, unsaturated alcohol ester of halogen-containing saturated carboxylic acid, (meth) acrylic acid haloalkyl ester, (meth) acrylic acid haloacyloxyalkyl ester, (meth) acrylic Examples include acid (haloacetylcarbamoyloxy) alkyl esters, halogen-containing unsaturated ethers, halogen-containing unsaturated ketones, halomethyl group-containing aromatic vinyl compounds, halogen-containing unsaturated amides, and haloacetyl group-containing unsaturated monomers.
  • the unsaturated alcohol ester of a halogen-containing saturated carboxylic acid include vinyl chloroacetate, vinyl 2-chloropropionate, and allyl chloroacetate.
  • Specific examples of (meth) acrylic acid haloalkyl esters include chloromethyl (meth) acrylate, 1-chloroethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 1,2-dichloroethyl (meth) acrylate. , 2-chloropropyl (meth) acrylate, 3-chloropropyl (meth) acrylate, and 2,3-dichloropropyl (meth) acrylate.
  • (meth) acrylic acid haloacyloxyalkyl esters include 2- (chloroacetoxy) ethyl (meth) acrylate, 2- (chloroacetoxy) propyl (meth) acrylate, and 3- (chloro) (meth) acrylic acid. Acetoxy) propyl and 3- (hydroxychloroacetoxy) propyl (meth) acrylate.
  • (meth) acrylic acid (haloacetylcarbamoyloxy) alkyl esters include 2- (chloroacetylcarbamoyloxy) ethyl (meth) acrylate and 3- (chloroacetylcarbamoyloxy) propyl (meth) acrylate Is mentioned.
  • Specific examples of the halogen-containing unsaturated ether include chloromethyl vinyl ether, 2-chloroethyl vinyl ether, 3-chloropropyl vinyl ether, 2-chloroethyl allyl ether, and 3-chloropropyl allyl ether.
  • halogen-containing unsaturated ketone examples include 2-chloroethyl vinyl ketone, 3-chloropropyl vinyl ketone, and 2-chloroethyl allyl ketone.
  • halomethyl group-containing aromatic vinyl compound examples include p-chloromethylstyrene, m-chloromethylstyrene, o-chloromethylstyrene, and p-chloromethyl- ⁇ -methylstyrene.
  • Specific examples of the halogen-containing unsaturated amide include N-chloromethyl (meth) acrylamide.
  • Specific examples of the haloacetyl group-containing unsaturated monomer include 3- (hydroxychloroacetoxy) propyl allyl ether and p-vinylbenzyl chloroacetate.
  • unsaturated alcohol esters of halogen-containing saturated carboxylic acids and halogen-containing unsaturated ethers are preferred, vinyl chloroacetate and 2-chloroethyl vinyl ether are more preferred, and vinyl chloroacetate is even more preferred.
  • vinyl chloroacetate and 2-chloroethyl vinyl ether are more preferred, and vinyl chloroacetate is even more preferred.
  • the acrylic rubber when a monomer having a halogen atom is used as the crosslinkable monomer, the acrylic rubber can be a halogen atom-containing acrylic rubber.
  • the content of the monomer unit having a halogen atom is preferably 0.1 to 10% by weight, more preferably 0.5 to 7% by weight. %, More preferably 0.5 to 5% by weight. If the content of the monomer unit having a halogen atom is too small, crosslinking may be insufficient, and it may be difficult to maintain the shape of the resulting rubber cross-linked product, whereas the content of the monomer unit having a halogen atom may be present. If the amount is too large, the elongation of the resulting rubber cross-linked product may decrease, or the compression set may increase.
  • the acrylic rubber can be converted into an acrylic rubber containing a carboxyl group and a halogen atom by using an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer and a monomer having a halogen atom as the crosslinkable monomer. It can be rubber.
  • crosslinkable monomer when the acrylic rubber used in the present invention is a carboxyl group- and halogen atom-containing acrylic rubber
  • the crosslinkable single monomer in the carboxyl group-containing acrylic rubber and the halogen atom-containing acrylic rubber described above Although the same thing as a body is mentioned, Among these, it is preferable to use methacrylic acid and p-chloromethylstyrene together.
  • the total content of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit and the monomer unit having a halogen atom is: It is preferably 0.1 to 10% by weight, more preferably 0.5 to 7% by weight, and still more preferably 0.5 to 5% by weight. If the content of these ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer units and halogen atom-containing monomer units is too small, crosslinking will be insufficient and it will be difficult to maintain the shape of the resulting rubber cross-linked product.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit to the monomer unit having a halogen atom is [ ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit: single unit having a halogen atom.
  • the weight ratio of the “mer unit” is preferably [1: 1.5 to 1:10], more preferably [1: 2 to 1: 8].
  • diene monomer examples include conjugated diene monomers and non-conjugated diene monomers.
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, and piperylene.
  • non-conjugated diene monomer examples include ethylidene norbornene, dicyclopentadiene, dicyclopentadienyl (meth) acrylate, and 2-dicyclopentadienyl ethyl (meth) acrylate. .
  • the acrylic rubber used in the present invention is the above-described carboxyl group-containing acrylic rubber, epoxy group-containing acrylic rubber, halogen atom-containing acrylic rubber, or carboxyl group- and halogen atom-containing acrylic rubber, as necessary.
  • other crosslinkable monomer units may be included.
  • the crosslinkable monomer which forms another crosslinkable monomer unit can be used individually by 1 type or in combination of 2 or more types.
  • the content of other crosslinkable monomer units in the acrylic rubber used in the present invention is preferably 0 to 9.9% by weight, more preferably 0 to 6.5% by weight, and still more preferably 0 to 4. 5% by weight, particularly preferably 0 to 4% by weight.
  • the total amount of all crosslinkable monomer units in the acrylic rubber is preferably 0.1 to 10% by weight, more preferably 0.5 to 7% by weight, still more preferably 0.5 to 5% by weight, particularly preferably 1 to 5% by weight.) If the content of these crosslinkable monomer units is too large, the elongation of the resulting rubber cross-linked product is reduced and the compression set is increased. There is a possibility.
  • (meth) acrylic acid ester monomer unit and the crosslinkable monomer unit the acrylic rubber used in the present invention, if necessary, (meth) acrylic acid ester monomer or crosslinkable You may have the unit of the other monomer copolymerizable with a monomer.
  • monomers that can be copolymerized are not particularly limited, and examples thereof include aromatic vinyl monomers, ⁇ , ⁇ -ethylenically unsaturated nitrile monomers, and monomers having two or more acryloyloxy groups. (Hereinafter, referred to as “polyfunctional acrylic monomer”), olefin monomers, vinyl ether compounds, and the like.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, divinylbenzene, and the like.
  • ⁇ , ⁇ -ethylenically unsaturated nitrile monomer include acrylonitrile and methacrylonitrile.
  • polyfunctional acrylic monomer examples include ethylene glycol di (meth) acrylate and propylene glycol di (meth) acrylate.
  • olefin monomer include ethylene, propylene, 1-butene, and 1-octene.
  • vinyl ether compound examples include vinyl acetate, ethyl vinyl ether, and n-butyl vinyl ether.
  • styrene, acrylonitrile, methacrylonitrile, ethylene and vinyl acetate are preferable, and acrylonitrile, methacrylonitrile, ethylene and vinyl acetate are more preferable.
  • the content of other monomer units in the acrylic rubber used in the present invention is 0 to 50% by weight, preferably 0 to 49.9% by weight, more preferably 0 to 39.5% by weight, and still more preferably. Is 0 to 29.5% by weight, particularly preferably 0 to 29% by weight.
  • the acrylic rubber used in the present invention can be obtained by polymerizing the above monomers.
  • any of an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, and a solution polymerization method can be used.
  • a conventionally known acrylic rubber It is preferable to use an emulsion polymerization method under normal pressure, which is generally used as a production method of the above.
  • Emulsion polymerization may be any of batch, semi-batch and continuous.
  • the polymerization is usually performed in a temperature range of 0 to 70 ° C, preferably 5 to 50 ° C.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) (polymer Mooney) of the acrylic rubber used in the present invention produced in this way is preferably 10 to 80, more preferably 20 to 70, still more preferably 25 to 60. is there.
  • the acrylic rubber produced as described above can be used singly or in combination of two or more.
  • the acrylic rubber produced in this manner may be one containing 0.1 to 100% by weight of ethylene-acrylate rubber.
  • the ratio of the ethylene-acrylate rubber is within the above range, the processability of the acrylic rubber, the mechanical properties such as the strength of the resulting rubber cross-linked product, and the heat resistance can be improved.
  • the ethylene-acrylate rubber includes 50 to 99.9% by weight of (meth) acrylic acid ester monomer unit as a main component, 0.1 to 50% by weight of ethylene monomer unit, and a crosslinkable monomer in the molecule.
  • a polymer containing 0 to 10% by weight of a monomer unit is preferable.
  • the acrylic rubber other than the ethylene-acrylate rubber contains the above-mentioned main component (meth) acrylate monomer unit of 50 to 100% by weight and crosslinkable monomer unit of 0 to 10% by weight.
  • a polymer to be used can be used.
  • the (meth) acrylic acid ester monomer forming the (meth) acrylic acid ester monomer unit suitable as the main component of the ethylene-acrylate rubber is not particularly limited, but the above-mentioned (meth) acrylic acid alkyl ester is not particularly limited. Examples thereof include monomers and (meth) acrylic acid alkoxyalkyl ester monomers.
  • the content of the (meth) acrylate monomer unit in the ethylene-acrylate rubber is preferably 50 to 99.9% by weight, more preferably 59.5 to 99% by weight, and further preferably 69 to 98% by weight. %.
  • the content of the (meth) acrylic acid ester monomer unit is preferably 50 to 99.9% by weight, more preferably 59.5 to 99% by weight, and further preferably 69 to 98% by weight. %.
  • the (meth) acrylic acid ester monomer unit is 30 to 100% by weight of the (meth) acrylic acid alkyl ester monomer unit, and the (meth) acrylic acid alkoxyalkyl ester monomer.
  • the unit is preferably composed of 70 to 0% by weight.
  • the ethylene-acrylate rubber used in the present invention contains an ethylene monomer unit as an essential component, and the content of the ethylene monomer unit is preferably 0.1 to 50% by weight, more preferably 0.5 to 40% by weight. More preferably, it is 1 to 30% by weight.
  • the content of the ethylene monomer unit is in the above range, the resulting rubber cross-linked product is excellent in mechanical properties such as strength, weather resistance, heat resistance, and oil resistance.
  • the ethylene-acrylate rubber may contain a crosslinkable monomer unit in addition to the (meth) acrylic acid ester monomer unit and the ethylene monomer unit.
  • examples of the crosslinkable monomer unit include those described above.
  • the content of the crosslinkable monomer unit in the ethylene-acrylate rubber is preferably 0 to 10% by weight, more preferably 0.5 to 7% by weight, and further preferably 1 to 5% by weight. When there is too much content of a crosslinkable monomer unit, there exists a possibility that the elongation of the rubber crosslinked material obtained may fall or a compression set rate may increase.
  • the ethylene-acrylate rubber used in the present invention can be a carboxyl group-containing ethylene-acrylate rubber having a carboxyl group as a cross-linking point, which is used in the present invention.
  • ⁇ , ⁇ as crosslinkable monomers that form some monomer units of acrylic rubber other than ethylene-acrylate rubber and ethylene-acrylate rubber It is preferable to use an ethylenically unsaturated carboxylic acid monomer.
  • the ethylene-acrylate rubber used in the present invention includes (meth) acrylic acid as necessary in addition to the (meth) acrylic acid ester monomer unit, the ethylene monomer unit, and the crosslinkable monomer unit. You may have a unit of ester monomer, ethylene, and the other monomer copolymerizable with a crosslinkable monomer. Examples of the other copolymerizable monomers include those described above.
  • the content of other monomer units in the ethylene-acrylic rubber used in the present invention is preferably 0 to 49.9% by weight, more preferably 0 to 39.5% by weight, still more preferably 0 to 29. % By weight.
  • the ethylene-acrylate rubber constituting the acrylic rubber used in the present invention can be obtained by polymerizing the above monomers.
  • any of the emulsion polymerization method, suspension polymerization method, bulk polymerization method, and solution polymerization method can be used as the form of the polymerization reaction, and any polymerization method can be selected.
  • the acrylic rubber used in the present invention includes an ethylene-acrylate rubber and an acrylic rubber other than the ethylene-acrylate rubber
  • the ethylene-acrylate rubber obtained by the above-described method and an acrylic rubber other than the ethylene-acrylate rubber are used.
  • the acrylic rubber used in the present invention can be obtained by mixing by a known method.
  • the mixing method is not particularly limited, but a method of performing dry blending after isolating each acrylic rubber is suitable.
  • the anti-aging agent used in the present invention is a compound represented by the following general formula (1).
  • Y represents a chemical single bond or —SO 2 —.
  • R a and R b each independently have 1 to 30 carbon atoms which may have a substituent.
  • Z a and Z b each independently represents a chemical single bond or —SO 2 —, wherein n and m are each independently 0 or 1, and at least n and m One is 1.
  • Y is a chemical single bond, or —SO 2 —, and preferably —SO 2 —.
  • R a and R b each independently represents an organic group having 1 to 30 carbon atoms which may have a substituent.
  • the organic group having 1 to 30 carbon atoms constituting R a and R b is not particularly limited.
  • An alkyl group having 1 to 30 carbon atoms such as butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group and n-decyl group;
  • cyclopropyl A cycloalkyl group having 3 to 30 carbon atoms such as a group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group; an
  • the organic group which comprises Ra and Rb mentioned above may have a substituent, and can be made into arbitrary positions as a position of this substituent.
  • substituents when the organic group is an alkyl group, a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom; an alkoxy having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group or an isopropoxy group Nitro group; cyano group; phenyl group optionally having substituents such as phenyl group, 4-methylphenyl group, 2-chlorophenyl group; and the like.
  • examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom; a C 1 -C atom such as a methoxy group, an ethoxy group, or an isopropoxy group. 10 alkoxy groups; nitro groups; cyano groups; alkyl groups having 1 to 10 carbon atoms such as methyl, ethyl, and t-butyl groups; Furthermore, when the organic group is an alkoxy group, examples of the substituent include halogen atoms such as fluorine atom, chlorine atom and bromine atom; nitro group; cyano group;
  • the carbon number of the organic group does not include the carbon number of the substituent. That is, the organic group constituting R a and R b may have a number of carbon atoms in the range of 1 to 30 excluding the carbon atoms contained in the substituent.
  • the organic group constituting R a and R b is a methoxyethyl group
  • the organic group has 2 carbon atoms. That is, in this case, since the methoxy group is a substituent, the carbon number of the organic group is obtained by removing the carbon number of the methoxy group that is the substituent.
  • R a and R b are each independently an alkyl group having 2 to 20 carbon atoms which may have a substituent, or 6 to 30 carbon atoms which may have a substituent.
  • the aryl group is preferably a linear or branched alkyl group having 2 to 20 carbon atoms which may have a substituent, or a phenyl group which may have a substituent, or a substituent. It is more preferably a naphthyl group which may have a straight chain or branched alkyl group having 2 to 8 carbon atoms which may have a substituent, or a substituent. It is more preferably a good phenyl group, and a linear or branched alkyl group having 2 to 8 carbon atoms which may have a substituent is particularly preferred.
  • Preferable specific examples of the organic group constituting R a and R b include ⁇ -methylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, t-butyl group, phenyl group, 4-methylphenyl group and the like. Among these, ⁇ , ⁇ -dimethylbenzyl group or 4-methylphenyl group is more preferable, and ⁇ , ⁇ -dimethylbenzyl group is more preferable. These can be independent of each other.
  • Z a and Z b are each independently a chemical single bond or —SO 2 —, and preferably a chemical single bond.
  • n and m are each independently 0 or 1, and at least one of n and m is 1. In addition, it is preferable that both n and m are 1.
  • the compound represented by the general formula (1) is preferably any one of compounds represented by the following general formulas (2) to (8).
  • R a , R b , Z a and Z b are the same as those in the general formula (1).
  • the compounds represented by the general formulas (2) to (8) are preferable, and the compounds represented by the general formula (6) Is more preferable.
  • -Z a -R a and -Z b -R b are each independently an ⁇ -methylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, t-butyl.
  • Y is —SO 2 —
  • R a and R b are each independently a linear or branched chain which may have a substituent.
  • the alkyl group having 2 to 8 carbon atoms, and Z a and Z b are chemical single bonds, and n and m are preferably 1.
  • the manufacturing method of the compound represented by the said General formula (1) is demonstrated.
  • the compound represented by the general formula (1) is a compound in which Y is —SO 2 —
  • the compound represented by the general formula (1) by applying a known method for producing a phenothiazine-based compound, in the general formula (1), It can be prepared by obtaining a compound in which Y is S and then oxidizing the resulting compound.
  • a substituent (—Z a —R a , —Z b —R b ) on the 1-position, 3-position, 6-position and / or 8-position of the aromatic ring in the general formula (9) by a known reaction method
  • Y 1 is S or a chemical single bond.
  • reaction method ⁇ for example, a reaction in which a carbon-carbon bond is formed on the carbon atom at the 1-position, 3-position, 6-position and / or 8-position of the aromatic ring in the general formula (9) ( Reaction method ⁇ ”)), a reaction for forming a carbon—SO 2 bond at the 1-position, 3-position, 6-position and / or 8-position carbon atom of the aromatic ring in the general formula (9) (this reaction method) Is referred to as “reaction method ⁇ ”.), A reaction for generating a carbon-sulfur bond at the 1-position, 3-position, 6-position and / or 8-position carbon atom of the aromatic ring in the general formula (9) (this The reaction method is referred to as “reaction method ⁇ ”).
  • the compound represented by the general formula (9) is used as a starting material, and the reaction method ⁇ , the reaction method ⁇ , and the reaction method ⁇ described above are used. The case where each method is used is illustrated and described in detail.
  • the compound represented by () can be obtained as a compound represented by the general formula (12a) and / or (12b) by oxidation.
  • Specific examples of the compound represented by the general formula (10) used in the above reaction include styrene; 4-methylstyrene, ⁇ -methylstyrene, 4, ⁇ -dimethylstyrene, 2,4-dimethylstyrene, ethylstyrene. And alkylated styrene such as pt-butylstyrene; halogenated styrene such as 2-chlorostyrene and 2,4-dichlorostyrene; and the like.
  • the amount of the compound represented by the general formula (10) is 0.5 to 1.5 mol per 1 mol of the compound represented by the general formula (9).
  • the acid catalyst used in the above reaction include sulfonic acids such as methanesulfonic acid, phenylsulfonic acid and p-toluenesulfonic acid; inorganic acids such as hydrochloric acid and sulfuric acid.
  • the acid catalyst is usually charged at the start of the reaction, but can be added during the reaction.
  • the amount of the acid catalyst used is usually 0.005 to 0.5 mol, preferably 0.01 to 0.3 mol, more preferably 1 mol per mol of the compound represented by the general formula (9). Is 0.02 to 0.1 mol.
  • the above reaction can be carried out in a suitable solvent.
  • the solvent to be used is not particularly limited as long as it is inert to the reaction.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene; n-pentane, n-hexane, n-octane, cyclopentane, And aliphatic hydrocarbon solvents such as cyclohexane; halogenated hydrocarbon solvents such as 1,2-dichloroethane and monochlorobenzene.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • n-pentane n-hexane
  • n-octane cyclopentane
  • aliphatic hydrocarbon solvents such as cyclohexane
  • halogenated hydrocarbon solvents such as 1,2-dichloroethane and monochlorobenzene.
  • the amount of the oxidizing agent used is 2 to 5 mol per 1 mol of the compound represented by the general formula (11a) or (11b).
  • Such an oxidation reaction can be performed in a suitable solvent.
  • the solvent to be used is not particularly limited as long as it is inert to the reaction.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene; n-pentane, n-hexane, n-octane, cyclopentane, And aliphatic hydrocarbon solvents such as cyclohexane; halogenated hydrocarbon solvents such as dichloromethane, chloroform, 1,2-dichloroethane, and monochlorobenzene; and acetic acid.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • n-pentane n-hexane
  • n-octane cyclopentane
  • aliphatic hydrocarbon solvents such as cyclohexane
  • halogenated hydrocarbon solvents such as dichloromethane, chloro
  • Such an oxidation reaction may be continuously performed by adding a predetermined amount of acetic acid and hydrogen peroxide to a reaction solution containing a compound represented by the general formula (11a) and / or (11b). it can.
  • the compound represented by () can be obtained as a compound represented by the general formula (12c) and / or (12d) by oxidation.
  • the same production method (1) using the reaction method ⁇ described above may be used. it can.
  • the amount of these compounds used is such that the amount of the compound represented by the general formula (10) is 2 to 3 moles relative to 1 mole of the compound represented by the general formula (9).
  • the same amount as in the above production method (1) using the reaction method ⁇ can be used except that the amount used is 2 to 10 mol with respect to 1 mol of the compound represented by the general formula (11c) or (11d). .
  • the compound (the compound represented by the above general formula (11e) and / or (11f)) can be obtained as a compound represented by the above general formula (12e) and / or (12f) by oxidation.
  • Examples of the sulfinate represented by the general formula (13) used in the above reaction include sodium phenylsulfinate, potassium phenylsulfinate, sodium p-toluenesulfinate, and potassium p-toluenesulfinate.
  • the amount of the compound represented by the general formula (13) is 0.5 to 1.5 mol per 1 mol of the compound represented by the general formula (9).
  • the amount of Lewis acid used is usually 5 to 10 mol per mol of the compound represented by the general formula (9), and the amount of acetate used is represented by the general formula (9).
  • the amount is usually 1 to 3 moles per mole of the compound.
  • the above reaction can be carried out in a suitable solvent.
  • the solvent to be used is not particularly limited as long as it is inert to the reaction, and examples thereof include alcohol solvents such as methyl alcohol, ethyl alcohol, propyl alcohol, and isopropyl alcohol.
  • the solvent to be used can be used singly or in combination of two or more.
  • the amount of the solvent used is 1 ml to 100 ml per 1 g of the compound represented by the general formula (9), although it depends on the reaction scale.
  • periodate used in the reaction for obtaining the diiodo compound represented by the general formula (14) include sodium periodate and potassium periodate.
  • the amount of periodate used is 0.1 mol to 1 mol per mol of the compound represented by the general formula (9a).
  • the amount of iodine used is 1 mol to 3 mol per mol of the compound represented by the general formula (9a).
  • the reaction for obtaining the diiodide can be performed in an appropriate solvent.
  • the solvent to be used is not particularly limited as long as it is inert to the reaction, and examples thereof include alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, and isopropyl alcohol.
  • the solvent to be used can be used singly or in combination of two or more.
  • the amount of the solvent used is 1 ml to 100 ml per 1 g of the compound represented by the general formula (9a), although it depends on the reaction scale.
  • mercaptans used for the reaction for obtaining the compound represented by the general formula (15) include thiophenol, p-toluenethiol, benzyl mercaptan, ⁇ -methylbenzyl mercaptan, ⁇ , ⁇ -Dimethyl mercaptan, t-butyl mercaptan and the like.
  • the amount of mercaptan used is 1 mol to 3 mol per mol of the compound represented by the general formula (14).
  • Examples of the base used in the reaction for obtaining the compound represented by the general formula (15) include metal alkoxides such as sodium t-butoxide and potassium t-butoxide; DBU (1,8-diazabicyclo [5.4.0] undeca- 7-ene) and organic bases such as DABCO (1,4-diazabicyclo [2.2.2] octane).
  • the amount of the base used is usually 1 mol to 10 mol per 1 mol of the compound represented by the general formula (14).
  • palladium (II) complex used in the reaction for obtaining the compound represented by the general formula (15) include [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride-dichloromethane adduct, etc. Is mentioned.
  • the reaction for obtaining the compound represented by the general formula (15) can be performed in an appropriate solvent.
  • the solvent to be used is not particularly limited as long as it is inert to the reaction.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene; n-pentane, n-hexane, n-octane, cyclopentane, And aliphatic hydrocarbon solvents such as cyclohexane; halogenated hydrocarbon solvents such as dichloromethane, chloroform, 1,2-dichloroethane, and monochlorobenzene.
  • the amount of the solvent used is 1 ml to 100 ml per 1 g of the compound represented by the general formula (14), although it depends on the reaction scale.
  • the oxidizing agent used in the oxidation reaction for obtaining the compound represented by the general formula (16) is not particularly limited, and examples thereof include organic peroxides such as acetic acid-hydrogen peroxide and m-chloroperbenzoic acid. .
  • the amount of the oxidizing agent used is 2 to 10 moles per mole of the compound represented by the general formula (15).
  • a suitable solvent for performing such an oxidation reaction the same solvent as that used in the oxidation reaction of the production method (1) using the reaction method ⁇ described above can be used.
  • Such an oxidation reaction can also be carried out continuously by adding a predetermined amount of acetic acid and hydrogen peroxide to the reaction solution containing the compound represented by the general formula (15).
  • reaction method ⁇ proceeds smoothly in a temperature range from 0 ° C. to the boiling point of the solvent used.
  • the reaction time is usually several minutes to several hours.
  • the usual post-treatment operation in organic synthetic chemistry is performed, and, if desired, known separation / purification means such as column chromatography, recrystallization method, distillation method, etc. are applied.
  • the target product can be isolated.
  • the structure of the target product can be identified by measurement of NMR spectrum, IR spectrum, mass spectrum, etc., and elemental analysis.
  • the content of the compound represented by the general formula (1) in the acrylic rubber composition of the present invention is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the acrylic rubber, based on weight. Is 0.3 to 15 parts by weight, more preferably 0.3 to 5 parts by weight, still more preferably 0.4 to 4.5 parts by weight, and particularly preferably 0.5 to 2.5 parts by weight.
  • the content of the compound represented by the general formula (1) is within the above range, the obtained rubber cross-linked product can suppress deterioration of physical properties such as elongation even when exposed to high temperature conditions for a long time. Yes, excellent heat resistance.
  • the content of the compound represented by the general formula (1) is too small, the heat resistance of the resulting rubber cross-linked product may be reduced.
  • the content is represented by the general formula (1).
  • the compound represented by the general formula (1) can be used alone or in combination of two or more.
  • the acrylic rubber composition of the present invention as an anti-aging agent, in addition to the compound represented by the general formula (1), other anti-aging agents other than the compound represented by the general formula (1) You may contain at least 1 sort of agent.
  • anti-aging agents used in the present invention are not particularly limited, but are amine-based anti-aging agents, phenol-based anti-aging agents, sulfur-based anti-aging agents, and phosphorus except for the compound represented by the general formula (1).
  • the anti-aging agent is preferable, and the acrylic rubber composition of the present invention preferably contains at least one anti-aging agent selected from the above-mentioned other anti-aging agents.
  • the amine-based anti-aging agent excluding the compound represented by the general formula (1) is not particularly limited, but octylated diphenylamine, dioctylated diphenylamine, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, p- (p-toluenesulfonylamido) diphenylamine, a reaction product of diphenylamine and acetone, a reaction product of diphenylamine and isobutylene, a reaction product of diphenylamine, acetone and aniline, a diphenylamine-based antioxidant such as alkylated diphenylamine; N, N'-diphenyl-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, N-cyclohexyl-N'-
  • the phenolic antioxidant is not particularly limited, but 2,6-di-t-butyl-p-cresol, 2,6-di-t-butyl-4-ethylphenol, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-sec butylphenol, 2- (1-methylcyclohexyl) -4,6-dimethylphenol, 2,6-di-t-butyl- ⁇ - Monophenolic antioxidants such as dimethylamino-p-cresol, 2,4-bis [(octylthio) methyl] -o-cresol, styrenated phenol, alkylated phenol; 2,2′-methylenebis (4-methyl-) 6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-methylenebis (2,6-di-t-butyl) Enol), 2,2′-methylenebis (6- ⁇ -methylbenz
  • Dialkyl thio dipropionate anti-aging agents such as dilauryl thiodiperopionate and a distearyl thio diperopionate; Dilauryl thiodipropionate, Nickel isopropyl xanthate, etc.
  • Organic thioic acid anti-aging agents 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, a mixture of 2-mercaptobenzimidazole and a phenol condensate, zinc salt of 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole
  • Benzimidazole antioxidants such as 4 and 5-mercaptomethylbenzimidazole; nickel dimethyldithiocarbamate, nickel diethyldithiocarbamate, nickel dibutyldithiocarbamate, And dithiocarbamate antioxidants such as nickel diisobutyldithiocarbamate; thiourea antioxidants such as 1,3-bis (dimethylaminopropyl) -2-thiourea and tributylthiourea; Among these, a benzimidazole type antiaging agent is preferable.
  • Triphenyl phosphite Triphenyl phosphite, diphenyl isooctyl phosphite, diphenyl isodecyl phosphite, diphenyl nonyl phenyl phosphite, triisodecyl phosphite, tris (nonyl phenyl) phosphite Tris (2,4-di-tert-butylphenyl) phosphite, 4,4′-butylidenebis (3-methyl-6-tert-butylditridecylphosphite), 2,2′-ethylidenebis (3-methyl- 6-t-butylphenol) fluorophosphite, 4,4′-isopropylidenediphenol alkyl (C12 to C18) phosphite, and the like, and the like.
  • the total content of the compound represented by the general formula (1) and the other anti-aging agent in the case where the compound represented by the general formula (1) and the other anti-aging agent are used in combination is weight. On the basis of 100 parts by weight of acrylic rubber, it is 0.1 to 50 parts by weight, preferably 0.3 to 15 parts by weight, more preferably 0.3 to 5 parts by weight, still more preferably 0.4 to 4.5 parts by weight.
  • the total content of the compound represented by the general formula (1) and other anti-aging agents can be appropriately combined within the above range. When the total content of the compound represented by the general formula (1) and the other anti-aging agent is within the above range, the obtained rubber cross-linked product may be stretched even if exposed to a high temperature condition for a long time.
  • the resin It is possible to suppress a decrease in physical properties of the resin and has excellent heat resistance.
  • the total content of the compound represented by the above general formula (1) and other anti-aging agents is too small, the heat resistance of the resulting rubber cross-linked product may be lowered. Bleeding out of the inhibitor, deterioration of physical properties of the crosslinked rubber, and discoloration of the molded product may occur.
  • Other anti-aging agents can be used alone or in combination of two or more, like the compound represented by the general formula (1).
  • the content ratio is the weight ratio of [the compound represented by the said general formula (1): other anti-aging agent]. [1: 0.1 to 1:30] is preferable, and [1: 0.2 to 1:10] is more preferable.
  • ⁇ Crosslinking agent> What is necessary is just to select suitably as a crosslinking agent used by this invention by the kind of the crosslinkable monomer contained in the acrylic rubber mentioned above, and the shaping
  • cross-linking agents examples include polyvalent amine compounds such as diamine compounds, and carbonates thereof; sulfur; sulfur donors; triazine thiol compounds; polyvalent epoxy compounds; organic carboxylic acid ammonium salts; dithiocarbamic acid metal salts; A conventionally known crosslinking agent such as polyvalent carboxylic acid; quaternary onium salt; imidazole compound; isocyanuric acid compound; organic peroxide; These crosslinking agents can be used alone or in combination of two or more.
  • the acrylic rubber used in the present invention is a carboxyl group-containing acrylic rubber
  • the polyvalent amine compound and carbonate thereof are not particularly limited, but polyvalent amine compounds having 4 to 30 carbon atoms and carbonates thereof are preferred. Examples of such polyvalent amine compounds and carbonates thereof include aliphatic polyvalent amine compounds, carbonates thereof, and aromatic polyvalent amine compounds. On the other hand, those having non-conjugated nitrogen-carbon double bonds such as guanidine compounds are not included.
  • the aliphatic polyvalent amine compound and the carbonate thereof are not particularly limited, and examples thereof include hexamethylene diamine, hexamethylene diamine carbamate, and N, N′-dicinnamylidene-1,6-hexane diamine. Among these, hexamethylenediamine carbamate is preferable.
  • the aromatic polyvalent amine compound is not particularly limited.
  • an aliphatic polyvalent amine compound such as hexamethylene diamine and hexamethylene diamine carbamate, and a carbonate thereof as a crosslinking agent
  • Aromatic polyvalent amine compounds such as 4'-methylenedianiline
  • carboxylic acid ammonium salts such as ammonium benzoate and ammonium adipate
  • dithiocarbamic acid metal salts such as zinc dimethyldithiocarbamate
  • polyvalent carboxylic acids such as tetradecanoic acid
  • Quaternary onium salts such as cetyltrimethylammonium bromide
  • imidazole compounds such as 2-methylimidazole
  • isocyanuric acid compounds such as ammonium isocyanurate
  • carboxylic acid ammonium salts and dithiols can be used.
  • Rubamin acid metal salts are preferred, ammonium benzoate is preferred.
  • the acrylic rubber used in the present invention is a halogen atom-containing acrylic rubber
  • sulfur donor examples include dipentamethylene thiuram hexasulfide and triethyl thiuram disulfide.
  • triazine thiol compound examples include 1,3,5-triazine-2,4,6-trithiol, 6-anilino-1,3,5-triazine-2,4-dithiol, 6-dibutylamino-1, 3,5-triazine-2,4-dithiol, 6-diallylamino-1,3,5-triazine-2,4-dithiol, and 6-octylamino-1,3,5-triazine-2,4-dithiol Among these, 1,3,5-triazine-2,4,6-trithiol is preferable among these.
  • the acrylic rubber used in the present invention is a carboxyl group- and halogen atom-containing acrylic rubber
  • a polyvalent amine compound and a carbonate thereof are preferable when the carboxyl group is used as a crosslinking point.
  • sulfur, a sulfur donor, or a triazine thiol compound is preferable.
  • These crosslinking agents can be used alone or in combination of two or more, and are suitable when a carboxyl group is used as a crosslinking point and suitable when a halogen atom is used as a crosslinking point.
  • a crosslinking agent can be used in combination.
  • Specific examples of the polyvalent amine compound, its carbonate, sulfur donor, and triazine thiol compound include those described above.
  • the acrylic rubber used in the present invention contains 0.1 to 100% by weight of ethylene-acrylate rubber and the acrylic rubber containing ethylene-acrylate rubber has a carboxyl group as a crosslinking point
  • the same one as in the case of the above-described carboxyl group-containing acrylic rubber can be used.
  • the content of the cross-linking agent in the acrylic rubber composition of the present invention is 0.05 to 20 parts by weight, preferably 0.1 to 15 parts by weight, more preferably 0.1 parts by weight with respect to 100 parts by weight of the acrylic rubber. 3 to 12 parts by weight.
  • the content of the crosslinking agent is within the above range, the crosslinking is sufficiently performed, and the mechanical properties of the resulting rubber crosslinked product are excellent.
  • the content of the crosslinking agent is too small, crosslinking may be insufficient, and it may be difficult to maintain the shape of the resulting rubber crosslinked product. If too much, the resulting rubber crosslinked product may be too hard. There is.
  • the acrylic rubber composition of the present invention preferably further contains a crosslinking accelerator.
  • crosslinking accelerator When the acrylic rubber mentioned above is a carboxyl group-containing acrylic rubber, and a crosslinking agent is a polyvalent amine compound or its carbonate, an aliphatic monovalent secondary Amine compounds, aliphatic monovalent tertiary amine compounds, guanidine compounds, imidazole compounds, quaternary onium salts, tertiary phosphine compounds, alkali metal salts of weak acids, diazabicycloalkene compounds, and the like are preferably used. These crosslinking accelerators can be used alone or in combination of two or more.
  • the crosslinking accelerator may be other than the dithiocarbamic acid metal salt used as the crosslinking agent. Dithiocarbamic acid metal salts and the like are preferably used. These crosslinking accelerators can be used alone or in combination of two or more.
  • the acrylic rubber used in the present invention is a halogen atom-containing acrylic rubber and the crosslinking agent is sulfur or a sulfur donor, a fatty acid metal soap or the like is preferably used as the crosslinking accelerator.
  • the acrylic rubber used in the present invention is a halogen atom-containing acrylic rubber and the crosslinking agent is a triazine thiol compound, as the crosslinking accelerator, dithiocarbamate and derivatives thereof, thiourea compounds, and A thiuram sulfide compound is preferably used.
  • These crosslinking accelerators can be used alone or in combination of two or more.
  • the crosslinking accelerator is aliphatic 1
  • divalent secondary amine compounds aliphatic monovalent tertiary amine compounds, guanidine compounds, imidazole compounds, quaternary onium salts, tertiary phosphine compounds, alkali metal salts of weak acids, diazabicycloalkene compounds, and the like.
  • the acrylic rubber used in the present invention is a carboxyl group- and halogen atom-containing acrylic rubber and the crosslinking agent is sulfur or a sulfur donor, a fatty acid metal soap or the like is preferably used as the crosslinking accelerator.
  • the acrylic rubber used in the present invention is a carboxyl group- and halogen atom-containing acrylic rubber, and the crosslinking agent is a triazine thiol compound, as the crosslinking accelerator, dithiocarbamate and derivatives thereof, thiourea compound , And thiuram sulfide compounds are preferably used.
  • These crosslinking accelerators can be used singly or in combination of two or more.
  • a carboxyl group is used as a crosslinking point
  • a crosslinking agent accelerator suitable for use as a crosslinking point A crosslinking accelerator suitable for the above can be used in combination.
  • the acrylic rubber used in the present invention contains 0.1 to 100% by weight of ethylene-acrylate rubber and the acrylic rubber containing the ethylene-acrylate rubber has a carboxyl group as a crosslinking point
  • the crosslinking agent is a polyvalent amine compound and a carbonate thereof
  • an aliphatic monovalent secondary amine compound, an aliphatic monovalent tertiary amine compound, a guanidine compound, an imidazole compound, a quaternary onium salt, a third Class phosphine compounds, alkali metal salts of weak acids, diazabicycloalkene compounds, and the like are preferably used.
  • These crosslinking accelerators can be used alone or in combination of two or more.
  • An aliphatic monovalent secondary amine compound is a compound in which two hydrogen atoms of ammonia are substituted with an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group substituted with a hydrogen atom preferably has 1 to 30 carbon atoms, and more preferably has 8 to 20 carbon atoms.
  • Specific examples of the aliphatic monovalent secondary amine compound include dimethylamine, diethylamine, di-n-propylamine, diallylamine, diisopropylamine, di-n-butylamine, di-t-butylamine, di-sec-butylamine, and dihexyl.
  • dioctylamine dioctylamine, didecylamine, didodecylamine, ditetradecylamine, dicetylamine, dioctadecylamine, di-cis-9-octadecenylamine, and dinonadecylamine are preferable.
  • An aliphatic monovalent tertiary amine compound is a compound in which all three hydrogen atoms of ammonia are substituted with an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group that substitutes for a hydrogen atom preferably has 1 to 30 carbon atoms, and more preferably has 1 to 22 carbon atoms.
  • aliphatic monovalent tertiary amine compound examples include trimethylamine, triethylamine, tri-n-propylamine, triallylamine, triisopropylamine, tri-n-butylamine, tri-t-butylamine, tri-sec-butylamine, Trihexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, triundecylamine, tridodecylamine, tritridecylamine, tritetradecylamine, tripentadecylamine, tricetylamine, tri-2 -Ethylhexylamine, trioctadecylamine, tri-cis-9-octadecenylamine, trinonadecylamine, N, N-dimethyldecylamine, N, N-dimethyldodecylamine, N, N-dimethyltetradec
  • N, N-dimethyldodecylamine, N, N-dimethyltetradecylamine, N, N-dimethylcetylamine, N, N-dimethyloctadecylamine, N, N-dimethylbehenylamine and the like are preferable.
  • guanidine compound examples include 1,3-di-o-tolylguanidine and 1,3-diphenylguanidine, and 1,3-di-o-tolylguanidine is preferable.
  • the imidazole compound examples include 2-methylimidazole and 2-phenylimidazole.
  • Specific examples of the quaternary onium salt include tetra n-butylammonium bromide, octadecyltri n-butylammonium bromide and the like.
  • tertiary phosphine compound include triphenylphosphine and tri-p-tolylphosphine.
  • alkali metal salts of weak acids include inorganic weak acid salts such as sodium and potassium phosphates and carbonates, and organic weak acid salts such as sodium and potassium stearates and laurates.
  • organic weak acid salts such as sodium and potassium stearates and laurates.
  • diazabicycloalkene compound include 1,8-diazabicyclo [5.4.0] unde-7-cene, 1,5-diazabicyclo [4.3.0] no-5-ene and the like. .
  • fatty acid metal soap examples include sodium stearate, potassium stearate, potassium oleate, sodium laurate, and sodium 2-ethylhexanoate.
  • dithiocarbamate and its derivatives include zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc di-n-butyldithiocarbamate, zinc methylbenzyldithiocarbamate, zinc dibenzyldithiocarbamate, zinc methylcyclohexyldithiocarbamate, N A metal salt of dithiocarbamate such as zinc pentamethylenedithiocarbamate, copper dimethyldithiocarbamate, lead dimethyldithiocarbamate, cadmium dimethyldithiocarbamate, bismuth dimethyldithiocarbamate, ferric dimethyldithiocarbamate, tellurium dimethyldithiocarbamate, selenium dimethyldithiocarbamate.
  • the acrylic rubber is a halogen atom-containing acrylic rubber, or a carboxyl group and a halogen atom-containing acrylic rubber, and a triazine thiol compound is used as a crosslinking agent
  • a metal salt of dithiocarbamate using zinc is preferable. More preferred is zinc di-n-butyldithiocarbamate.
  • ferric dimethyldithiocarbamate is preferred.
  • thiourea compounds include N, N′-diphenylthiourea, N, N′-diethylthiourea, N, N′-dibutylthiourea, N, N′-diortolylthiourea trimethylthiourea, and ethylenethio Examples include urea. Among these, N, N′-diethylthiourea is preferable.
  • thiuram sulfide compound examples include tetramethyl thiuram monosulfide, tetramethyl thiuram disulfide, tetraethyl thiuram disulfide, tetra-n-butyl thiuram disulfide, and dipentamethylene thiuram tetrasulfide.
  • the content of the crosslinking accelerator in the acrylic rubber composition of the present invention is preferably 0.1 to 20 parts by weight, more preferably 0.2 to 15 parts by weight, and more preferably 100 parts by weight of acrylic rubber.
  • the amount is preferably 0.3 to 10 parts by weight.
  • the content of the crosslinking agent accelerator is within the above range, crosslinking is sufficiently performed, and the mechanical properties of the resulting rubber crosslinked product are excellent.
  • the amount of crosslinking accelerator is too small, the mechanical properties of the rubber cross-linked product obtained without sufficient progress of crosslinking may be inferior.
  • the amount of crosslinking accelerator is too large, the crosslinking speed will be too high at the time of crosslinking. There is a risk that a crosslinking accelerator blooms on the surface of the resulting rubber cross-linked product, or the rubber cross-linked product becomes too hard.
  • acrylic rubber composition of the present invention acrylic rubber, the compound represented by the above general formula (1), a crosslinking agent, a crosslinking accelerator used as necessary, and the above-mentioned general used as necessary
  • a compounding agent usually used in the rubber processing field can be blended.
  • compounding agents include reinforcing fillers such as carbon black and silica; non-reinforcing fillers such as calcium carbonate and clay; light stabilizers; scorch inhibitors; plasticizers; processing aids; Adhesives; lubricants; flame retardants; antifungal agents; antistatic agents; coloring agents; silane coupling agents;
  • the compounding amount of these compounding agents is not particularly limited as long as it does not impair the object and effect of the present invention, and an amount corresponding to the compounding purpose can be appropriately compounded.
  • rubbers, elastomers, resins and the like other than the acrylic rubber used in the present invention may be further blended within a range not impairing the effects of the present invention.
  • natural rubber polybutadiene rubber, polyisoprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, silicone rubber, fluorine rubber, etc .
  • the total amount of rubber, elastomer, and resin other than acrylic rubber is preferably 50 parts by weight or less, more preferably 10 parts by weight or less, and still more preferably 1 part with respect to 100 parts by weight of acrylic rubber used in the present invention. Less than parts by weight.
  • the acrylic rubber composition of the present invention is a compound represented by the above general formula (1), a crosslinking agent, a crosslinking accelerator used as necessary, and other used as necessary in the acrylic rubber. It is prepared by blending an antioxidant and other compounding agents, mixing and kneading with a Banbury mixer or kneader, and then further kneading using a kneading roll.
  • the blending order of each component is not particularly limited. However, after sufficiently mixing components that are difficult to react or decompose with heat, a crosslinking agent or a crosslinking accelerator, which is a component that easily reacts or decomposes with heat, can be reacted or decomposed. It is preferable to mix in a short time at a temperature that does not occur.
  • the compound represented by the said General formula (1) among the said each component and the other anti-aging agent used as needed for example, adding beforehand in a polymer latex or a polymer solution, It is good also as a structure which solidifies the polymer latex and polymer solution which added the compound represented with the said General formula (1), and the other anti-aging agent used as needed. Or you may mix
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) (compound Mooney) of the acrylic rubber composition of the present invention is preferably 10 to 100, more preferably 20 to 90, and further preferably 25 to 80.
  • the rubber cross-linked product of the present invention is obtained by cross-linking the acrylic rubber composition of the present invention described above.
  • the rubber cross-linked product of the present invention uses the acrylic rubber composition of the present invention, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, and a roll, and is heated. It can be produced by carrying out a cross-linking reaction and fixing the shape as a rubber cross-linked product. In this case, crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 130 to 220 ° C., preferably 150 to 190 ° C.
  • the crosslinking time is usually 2 minutes to 10 hours, preferably 3 minutes to 5 hours.
  • a heating method a method used for crosslinking of rubber, such as press heating, steam heating, oven heating, and hot air heating, may be appropriately selected.
  • the rubber cross-linked product of the present invention may be further heated to perform secondary cross-linking.
  • the secondary crosslinking varies depending on the heating method, crosslinking temperature, shape, etc., but is preferably performed for 1 to 48 hours. What is necessary is just to select a heating method and heating temperature suitably.
  • the rubber cross-linked product of the present invention thus obtained is obtained by using the above-described acrylic rubber composition of the present invention. Therefore, the rubber cross-linked product of the present invention is excellent in heat resistance and stretched even when exposed to high temperature conditions for a long time. And deterioration of physical properties such as compression set can be suppressed. Therefore, the rubber cross-linked product of the present invention makes use of its characteristics to provide O-rings, packings, diaphragms, oil seals, shaft seals, bearing seals, mechanical seals, well head seals, electrical / electronic equipment seals, pneumatic equipments.
  • seals such as seals; cylinder head gaskets attached to the connecting part of the cylinder block and the cylinder head, rocker cover gaskets attached to the connecting part of the rocker cover and the cylinder head, oil pan and cylinder block or transmission case Oil pan gasket attached to the connecting part, fuel cell separator gasket attached between a pair of housings sandwiching a unit cell having a positive electrode, electrolyte plate and negative electrode, hard disk drive top cover gasket, etc.
  • Gaskets Gaskets; Various belts; Fuel hose, turbo air hose, oil hose, radiator hose, heater hose, water hose, vacuum brake hose, control hose, air conditioning hose, brake hose, power steering hose, air hose, marine hose, riser, flow Various hoses such as lines; Various boots such as CVJ boots, propeller shaft boots, constant velocity joint boots, rack and pinion boots; Damping material rubber parts such as cushion materials, dynamic dampers, rubber couplings, air springs, vibration-proof materials; In particular, it is suitably used for extruded products such as hoses used under severe high temperatures, and for sealing member applications such as gaskets and seals.
  • reaction solution was returned to room temperature, 48 ml of acetic acid and 85.34 g (752.7 mmol) of 30% aqueous hydrogen peroxide were added, and further reacted at 80 ° C. for 2 hours.
  • the reaction solution was returned to room temperature and then poured into 630 ml of methanol. Then, the precipitated crystals were filtered and rinsed with 320 ml of methanol to obtain 85.7 g of white crystalline compound 1 in a yield of 73%.
  • the structure of Compound 1 obtained was identified by 1 H-NMR.
  • Intermediate A was produced by the following method. That is, 13.34 g (66.94 mmol) of phenothiazine and 13.12 g (73.63 mmol) of sodium p-toluenesulfinate were added to a two-necked reactor and dissolved in 500 ml of methanol. Next, 13.14 g (133.9 mmol) of potassium acetate and 86.87 g (538.6 mmol) of iron trichloride were added to this solution, and the whole volume was reacted under reflux conditions for 3 hours.
  • reaction solution was concentrated to about 50 ml with an evaporator, 300 ml of 0.2N hydrochloric acid aqueous solution and 500 ml of saturated brine were added, and the mixture was extracted with 800 ml of ethyl acetate.
  • the extracted organic layer was further washed with 200 ml of a 0.1N aqueous sodium hydroxide solution, dried over anhydrous sodium sulfate, and then concentrated with a rotary evaporator.
  • the concentrate was dissolved in tetrahydrofuran (THF), and methanol was added to perform reprecipitation, thereby obtaining 12.07 g of intermediate A as a white crystal (yield 51%).
  • compound 2 was obtained according to the following method. That is, first, 11.0 g (31.12 mmol) of the intermediate A obtained above was added to a two-necked reactor and dissolved in 800 ml of THF. Next, 600 ml of acetic acid and 21.17 g (186.7 mmol) of 30% aqueous hydrogen peroxide were added to this solution, and the whole was reacted at 80 ° C. for 2 hours. The reaction solution was returned to room temperature and then poured into 4 liters of distilled water. The precipitated crystals were filtered.
  • Intermediate B was produced by the following method. That is, 25.0 g (149.5 mmol) of carbazole and 30.36 g (239.2 mmol) of iodine were dissolved in 600 ml of ethanol in a two-necked reactor. Next, 12.8 g (59.80 mmol) of sodium periodate was added to this solution, and 1 g of concentrated sulfuric acid was slowly added dropwise, and the whole was reacted at 65 ° C. for 3 hours. Thereafter, the reaction solution was returned to room temperature, concentrated to about 150 ml with a rotary evaporator, 500 ml of distilled water and 300 ml of saturated saline were added to the concentrate, and extracted with 1000 ml of chloroform.
  • intermediate C was obtained according to the following method. That is, first, in a nitrogen stream, 15.0 g (35.80 mmol) of the intermediate B obtained above and 9.34 g (75.18 mmol) of p-toluenethiol were added to a two-necked reactor. Dissolved in 350 ml. Next, 17.20 g (179.0 mmol) of sodium tert-butoxide, 0.73 g (0.895 mmol) of [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct was added to this solution.
  • compound 3 was obtained according to the following method. That is, first, 8.00 g (19.44 mmol) of Intermediate C was added to a two-necked reactor and dissolved in 160 ml of THF. Next, 240 ml of acetic acid and 13.22 g (116.6 mmol) of 30% aqueous hydrogen peroxide were added to this solution, and the whole was reacted at 80 ° C. for 10 hours. The reaction solution was returned to room temperature and then poured into 1.5 liters of distilled water. The precipitated crystals were filtered, dissolved in THF, and methanol was added to perform reprecipitation, thereby obtaining 8.04 g of white crystals of Compound 3 in a yield of 87%.
  • a polymerization reactor equipped with a thermometer and a stirrer was charged with 200 parts of water, 3 parts of sodium lauryl sulfate, 58 parts of ethyl acrylate, 40 parts of n-butyl acrylate, and 2 parts of mono-n-butyl fumarate. Then, after depressurization and nitrogen substitution twice to sufficiently remove oxygen, 0.005 part of cumene hydroperoxide and 0.002 part of sodium formaldehydesulfoxylate were added and emulsified at a temperature of 30 ° C. under normal pressure. Polymerization was started and the reaction was continued until the polymerization conversion reached 95%.
  • the obtained emulsion polymerization solution was coagulated with an aqueous calcium chloride solution, washed with water and dried to obtain a carboxyl group-containing acrylic rubber A.
  • the resulting Mooney viscosity (ML 1 + 4 , 100 ° C.) of the carboxyl group-containing acrylic rubber A was 45.
  • the composition of the obtained carboxyl group-containing acrylic rubber A was 58% by weight of ethyl acrylate units, 40% by weight of n-butyl acrylate units, and 2% by weight of mono n-butyl fumarate units.
  • a polymerization reactor equipped with a thermometer and a stirrer was charged with 200 parts of water, 3 parts of sodium lauryl sulfate, 49 parts of ethyl acrylate, 49 parts of n-butyl acrylate, and 2 parts of mono-n-butyl fumarate. Then, after depressurization and nitrogen substitution twice to sufficiently remove oxygen, 0.005 part of cumene hydroperoxide and 0.002 part of sodium formaldehydesulfoxylate were added and emulsified at a temperature of 30 ° C. under normal pressure. Polymerization was started and the reaction was continued until the polymerization conversion reached 95%.
  • the obtained emulsion polymerization solution was coagulated with an aqueous calcium chloride solution, washed with water and dried to obtain carboxyl group-containing acrylic rubber B.
  • the carboxyl group-containing acrylic rubber B obtained had a Mooney viscosity (ML 1 + 4 , 100 ° C.) of 35.
  • the composition of the carboxyl group-containing acrylic rubber B obtained above was 49% by weight of ethyl acrylate units, 49% by weight of n-butyl acrylate units, and 2% by weight of mono n-butyl fumarate units.
  • a polymerization reactor equipped with a thermometer and a stirrer was charged with 200 parts of water, 3 parts of sodium lauryl sulfate, 98.0 parts of ethyl acrylate, 0.5 parts of methacrylic acid, and 1.5 parts of p-chloromethylstyrene. It is. Then, after depressurization and nitrogen substitution twice to sufficiently remove oxygen, 0.005 part of cumene hydroperoxide and 0.002 part of sodium formaldehydesulfoxylate were added and emulsified at a temperature of 30 ° C. under normal pressure. Polymerization was started and the reaction was continued until the polymerization conversion reached 95%.
  • the resulting emulsion polymerization solution was coagulated with an aqueous calcium chloride solution, washed with water and dried to obtain carboxyl group- and chlorine atom-containing acrylic rubber C.
  • the resulting Mooney viscosity (ML 1 + 4 , 100 ° C.) of the carboxyl group-containing and chlorine atom-containing acrylic rubber C was 50.
  • the composition of the acrylic rubber C containing carboxyl group and chlorine atom obtained above was 98.0% by weight of ethyl acrylate unit, 0.5% by weight of methacrylic acid unit, and 1.5% by weight of p-chloromethylstyrene unit. Met.
  • ⁇ Heat resistance test for sealing materials The acrylic rubber composition was molded and crosslinked by pressing at 170 ° C. and 10 MPa for 20 minutes to produce a cylindrical specimen having a diameter of 29 mm and a thickness of 12.5 mm, and further heated at 170 ° C. for 4 hours. Secondary crosslinked. Then, after the secondary cross-linking, the test piece was allowed to stand in an environment of 180 ° C. for 168 hours while being compressed by 25% according to JIS K6262, and then the compression was released and the compression set was measured. .
  • Example 1-1 100 parts by weight of the carboxyl group-containing acrylic rubber A obtained in Production Example 1 of acrylic rubber described above, 60 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and Production Example 1 described above 2.30 parts by weight of the obtained compound 1 (anti-aging agent) (4.93 mmol with respect to 100 g of rubber) was kneaded at 50 ° C.
  • Example 1-2 An acrylic rubber composition was obtained in the same manner as in Example 1-1 except that the compounding amount of Compound 1 (anti-aging agent) was changed to 5.95 parts (12.73 mmol with respect to 100 g of rubber). The same evaluation was performed. The results are shown in Table 2.
  • Example 1-3, 1-4, Comparative Examples 1-1, 1-2 instead of compound 1 (anti-aging agent), compound 2 (anti-aging agent) obtained in Production Example 2 described above (Example 1-3) and compound 3 obtained in Production Example 3 above (aging), respectively.
  • Inhibitor (Example 1-4), 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine (anti-aging agent, Nowguard 445 manufactured by Chemtura) (Comparative Examples 1-1 and 1-2)
  • An acrylic rubber composition was obtained and evaluated in the same manner as in Example 1-1, except that these amounts were changed to those shown in Table 2. The results are shown in Table 2.
  • Comparative Examples 1-1 and 1-2 are broken in the middle, whereas in Examples 1-1 to 1-4, cracks are generated or broken even when bent at 180 °.
  • the rubber cross-linked product using the acrylic rubber composition of the present invention has improved heat resistance in a heat resistance test for use as an extruded product.
  • Example 1-5 100 parts by weight of carboxyl group-containing acrylic rubber B obtained in Production Example 2 of acrylic rubber described above, 60 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and Production Example 1 described above 2.30 parts by weight of the obtained compound 1 (anti-aging agent) (4.93 mmol with respect to 100 g of rubber) was kneaded for 5 minutes at 50 ° C. using a 0.8 liter Banbury, and then hexamethylene as a crosslinking agent.
  • Diamine carbamate (Diak No.
  • Example 1-6 An acrylic rubber composition was obtained in the same manner as in Example 1-5 except that the compounding amount of Compound 1 (antiaging agent) was changed to 5.95 parts (12.73 mmol with respect to 100 g of rubber). The same evaluation was performed. The results are shown in Table 3.
  • Example 1-7, 1-8, Comparative Examples 1-3, 1-4 instead of compound 1 (anti-aging agent), compound 2 (anti-aging agent) obtained in Production Example 2 described above (Example 1-7) and compound 3 obtained in Production Example 3 above (aging), respectively.
  • Inhibitor (Example 1-8), 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine (anti-aging agent, Nowguard 445 manufactured by Chemtura) (Comparative Examples 1-3, 1-4)
  • An acrylic rubber composition was obtained and evaluated in the same manner as in Example 1-5 except that the blending amounts thereof were those shown in Table 3. The results are shown in Table 3.
  • Test specimens were prepared in the same manner as in Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-4, and the tensile strength (strength), elongation at break (elongation), and hardness were measured in the same manner. It was measured.
  • the tensile strength before and behind heating was measured according to the tensile test of JIS K6251, and the strength change rate was measured by calculating the change rate according to the following formula. It is judged that the heat resistance is higher as the rate of change in strength is closer to zero, and a preferable result is obtained.
  • Strength change rate (%) 100 ⁇ [(tensile strength after heating (MPa)) ⁇ (tensile strength before heating (MPa))] / (tensile strength before heating (MPa))
  • Example 2-1 100 parts by weight of carboxyl group-containing acrylic rubber A obtained in Production Example 1 of acrylic rubber described above, 60 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and Production Example of the above-described compounds 0.50 parts by weight of Compound 1 (anti-aging agent) obtained in 1 was kneaded at 50 ° C.
  • Example 2-2 to 2-5 3.
  • Compound 1 antioxidant-aging agent
  • Example 2-3 1.00 parts
  • Example 2-4 2.00 parts
  • Example 2-4 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 2-1, except that the amount was changed to 00 parts (Example 2-5). The results are shown in Table 4.
  • Example 2-6 100 parts by weight of the carboxyl group-containing acrylic rubber B obtained in Production Example 2 of the acrylic rubber described above, 60 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and Production Example of the above-described compound After kneading 0.50 parts by weight of Compound 1 (anti-aging agent) obtained in 1 at 50 ° C. for 5 minutes using a 0.8 liter Banbury, hexamethylenediamine carbamate (DuPont Dow Elastomer Japan Co., Ltd.) Diak No.
  • Example 2-7 to 2-9 The compounding amount of Compound 1 (anti-aging agent) was changed to 1.00 parts (Example 2-7), 2.00 parts (Example 2-8), 4.00 parts (Example 2-9). Except for the above, an acrylic rubber composition was obtained in the same manner as in Example 2-6 and evaluated in the same manner. The results are shown in Table 5.
  • the rubber cross-linked product using the acrylic rubber composition of the present invention has an excellent balance of physical properties between elongation and strength in the heat resistance test, regardless of the type of the cross-linking agent and cross-linking accelerator, and has a high heat resistance. It was confirmed that there was an improvement.
  • Test pieces were prepared in the same manner as in Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-4, and in the same manner, tensile strength (strength), elongation at break (elongation), 100% tensile Stress and hardness were measured respectively.
  • Example 3-1 100 parts by weight of an epoxy group-containing acrylic rubber (Nipol AR51, manufactured by Nippon Zeon Co., Ltd.), 50 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seest SO), 2 parts by weight of stearic acid, and the compound obtained in Production Example 1 described above 1 (anti-aging agent) 1.00 part by weight was kneaded at 50 ° C.
  • Example 3-2 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 3-1, except that the amount of compound 1 (antiaging agent) was changed to 2.00 parts. The results are shown in Table 6.
  • Example 3-3 100 parts by weight of an epoxy group-containing acrylic rubber (Nipol AR51, manufactured by Nippon Zeon Co., Ltd.), 50 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seest SO), 2 parts by weight of stearic acid, and the compound obtained in Production Example 1 described above 1 (Anti-aging agent) 1.00 part by weight was kneaded at 50 ° C. for 5 minutes using 0.8 liter Banbury, and then ammonium benzoate (Onouchi Shinsei Chemical Co., Ltd., Barnock AB-S) as a crosslinking agent. 1.5 parts by weight was added and kneaded with an open roll at 50 ° C. to prepare an acrylic rubber composition. And using the obtained acrylic rubber composition, according to the said method, elongation change rate was measured as a test of a normal physical property, and a heat resistance test. The results are shown in Table 6.
  • Example 3-4 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 3-3, except that the amount of compound 1 (antiaging agent) was changed to 2.00 parts. The results are shown in Table 6.
  • Test pieces were prepared in the same manner as in Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-4, and in the same manner, tensile strength (strength), elongation at break (elongation), 100% tensile Stress and hardness were measured respectively.
  • Example 4-1 100 parts by weight of a chlorine atom-containing acrylic rubber (Nipol AR71, manufactured by Nippon Zeon Co., Ltd.), 50 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and the compound obtained in Production Example 1 described above After kneading 1 (anti-aging agent) 1.00 parts by weight using a 0.8 liter Banbury at 50 ° C.
  • a chlorine atom-containing acrylic rubber Napol AR71, manufactured by Nippon Zeon Co., Ltd.
  • carbon black manufactured by Tokai Carbon Co., Ltd., Seast SO
  • stearic acid 2 parts by weight of stearic acid
  • Example 4-2 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 4-1, except that the compounding amount of Compound 1 (antiaging agent) was changed to 2.00 parts. The results are shown in Table 7.
  • Example 4-3 100 parts by weight of a chlorine atom-containing acrylic rubber (Nipol AR71, manufactured by Nippon Zeon Co., Ltd.), 50 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and the compound obtained in Production Example 1 described above After mixing 1.00 parts by weight of 1 (anti-aging agent) at 50 ° C. for 5 minutes using 0.8 liter Banbury, 2,4,6-trimercapto-s-triazine (Sankyo Kasei Co., Ltd.) was used as a crosslinking agent.
  • 1 antioxidant-aging agent
  • ZISNET F zinc di-n-butyldithiocarbamate (Ouchi Shinsei Chemical Co., Noxeller BZ) 1.5 parts by weight as a crosslinking accelerator, and N, N′-diethylthiourea (Ouchi Shinsei Chemical Co., Ltd., Noxeller EUR) 0.3 parts by weight, N-cyclohexylthiophthalimide (Ouchi Shinko Chemical Co., Ltd. Tada CTP) was added to 0.2 parts by weight were kneaded in an open roll of 50 ° C., to prepare an acrylic rubber composition. And using the obtained acrylic rubber composition, according to the said method, elongation change rate was measured as a test of a normal physical property, and a heat resistance test. The results are shown in Table 7.
  • Example 4-4 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 4-3 except that the amount of compound 1 (antiaging agent) was changed to 2.00 parts. The results are shown in Table 7.
  • Test pieces were prepared in the same manner as in Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-4, and in the same manner, tensile strength (strength), elongation at break (elongation), 100% tensile Stress and hardness were measured respectively.
  • Example 5-1 100 parts by weight of the carboxyl group- and chlorine atom-containing acrylic rubber C obtained in Production Example 3 of the above-mentioned acrylic rubber, 50 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and the above-mentioned compounds 1.00 parts by weight of the compound 1 (anti-aging agent) obtained in Production Example 1 was kneaded for 5 minutes at 50 ° C.
  • carbon black manufactured by Tokai Carbon Co., Ltd., Seast SO
  • 2 parts by weight of stearic acid 2 parts by weight of stearic acid
  • Example 5-2 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 5-1, except that the amount of compound 1 (antiaging agent) was changed to 2.00 parts. The results are shown in Table 8.
  • Example 5-3 Hexamethylenediamine carbamate (Dupont Dow Elastomer Japan, Diak No. 1) 0.2 parts by weight as a crosslinking agent, 1,3-di-o-tolylguanidine (Ouchi Shinsei Chemical Industries, Ltd.) as a crosslinking accelerator
  • 1,3-di-o-tolylguanidine (Ouchi Shinsei Chemical Industries, Ltd.) as a crosslinking accelerator
  • Examples 5-1 and 5-2 using the predetermined compound 1 of the present invention as an anti-aging agent had the same crosslinking even under severe conditions of 1000 hours under an environment of 175 ° C.
  • Comparative Example 5-1 in which the same amount of the agent is used but the anti-aging agent is a conventional compound, the rate of elongation change is close to 0 and the change in elongation is small.
  • Example 5-3 using the predetermined compound 1 of the present invention as an anti-aging agent also uses the same amount of the same crosslinking agent, but the anti-aging agent is used.
  • Test pieces were prepared in the same manner as in Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-4, and in the same manner, tensile strength (strength), elongation at break (elongation), 100% tensile Stress and hardness were measured respectively.
  • Example 6-1 In Production Example 1 of carboxyl group-containing ethylene-acrylate rubber a (DuPont, Vamac G) 100 parts by weight, carbon black (Tokai Carbon Co., Seast SO) 50 parts by weight, stearic acid 2 parts by weight After 1.00 parts by weight of the obtained compound 1 (anti-aging agent) was kneaded at 50 ° C. for 5 minutes using a 0.8 liter Banbury, 2,2-bis [4- (4-aminophenoxy) was used as a crosslinking agent.
  • DuPont, Vamac G 100 parts by weight, carbon black (Tokai Carbon Co., Seast SO) 50 parts by weight, stearic acid 2 parts by weight
  • antioxidant Tokai Carbon Co., Seast SO
  • Example 6-2 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 6-1 except that the compounding amount of Compound 1 (antiaging agent) was changed to 2.00 parts. The results are shown in Table 9.
  • Example 6-3 100 parts by weight of carboxyl group-containing ethylene-acrylate rubber b (manufactured by Denki Kagaku Kogyo Co., Ltd., Denka ER-A403), 55 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and the above compounds 1.00 parts by weight of Compound 1 (anti-aging agent) obtained in Production Example 1 was kneaded at 50 ° C.
  • Example 6-4 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 6-3, except that the amount of compound 1 (antiaging agent) was changed to 2.00 parts. The results are shown in Table 9.
  • Example 6-5 In Production Example 1 of carboxyl group-containing ethylene-acrylate rubber a (DuPont, Vamac G) 100 parts by weight, carbon black (Tokai Carbon Co., Seast SO) 45 parts by weight, stearic acid 2 parts by weight After kneading 1.00 parts by weight of the obtained compound 1 (anti-aging agent) at 50 ° C. for 5 minutes using a 0.8 liter Banbury, hexamethylenediamine carbamate (manufactured by DuPont Dow Elastomer Japan, Diak No.
  • Example 6-6 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 6-5 except that the compounding amount of Compound 1 (antiaging agent) was changed to 2.00 parts. The results are shown in Table 10.
  • Example 6-7 100 parts by weight of a carboxyl group-containing ethylene-acrylate rubber b (manufactured by Denki Kagaku Kogyo Co., Ltd., Denka ER-A403), 50 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and the above compounds 1.00 parts by weight of Compound 1 (anti-aging agent) obtained in Production Example 1 was kneaded at 50 ° C. for 5 minutes using a 0.8 liter Banbury, and then hexamethylenediamine carbamate (DuPont Dow Elastomer as a crosslinking agent). Add 0.6 parts by weight of Japan, Diak No.
  • Example 6-8 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 6-7 except that the compounding amount of Compound 1 (antiaging agent) was changed to 2.00 parts. The results are shown in Table 10.
  • Example 6-9 75 parts by weight of the carboxyl group-containing acrylic rubber A obtained in the above-mentioned acrylic rubber production example 1, and 25 parts by weight (carboxyl group-containing ethylene-acrylate rubber b (Denka ER-A403, manufactured by Denki Kagaku Kogyo) Acrylic rubber A and carboxyl group-containing ethylene-acrylate rubber b are combined to give 100 parts by weight as acrylic rubber), 60 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and the above-mentioned compounds 1.00 parts by weight of the compound 1 (anti-aging agent) obtained in Production Example 1 was kneaded at 50 ° C.
  • carboxyl group-containing acrylic rubber A obtained in the above-mentioned acrylic rubber production example 1 75 parts by weight of the carboxyl group-containing acrylic rubber A obtained in the above-mentioned acrylic rubber production example 1, and 25 parts by weight (carboxyl group-containing
  • Example 6-10 and 6-11 The acrylic rubber was blended into 50 parts by weight of carboxyl group-containing acrylic rubber A and 50 parts by weight of carboxyl group-containing ethylene-acrylate rubber b (Denka ER-A403, manufactured by Denki Kagaku Kogyo Co., Ltd.) (Example 6-10), carboxyl group Example 6-, except that the content was changed to 25 parts by weight of acrylic rubber A containing, and 75 parts by weight (Example 6-11) of carboxyl-containing ethylene-acrylate rubber b (Denka ER-A403, manufactured by Denki Kagaku Kogyo Co., Ltd.). In the same manner as in Example 9, an acrylic rubber composition was obtained and evaluated in the same manner. The results are shown in Table 11.
  • the rubber cross-linked product using the acrylic rubber composition of the present invention can also be used as a monomer constituting the acrylic rubber by using a mixture of those having and without ethylene as a heat resistance test. It was confirmed that the heat resistance was excellent.
  • Test pieces were prepared in the same manner as in Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-4, and in the same manner, tensile strength (strength), elongation at break (elongation), 100% tensile Stress and hardness were measured respectively.
  • Example 7-1 100 parts by weight of the carboxyl group-containing acrylic rubber A obtained in Production Example 1 of the acrylic rubber described above, 66 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and an anti-aging agent are described above. 1.00 parts by weight of the compound 1 obtained in Production Example 1 of the above compound and 2.00 parts by weight of 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine (Chemchura, Nowguard 445) After kneading for 5 minutes at 50 ° C.
  • Example 7-2 instead of 2.00 parts of 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, 2,2′-methylenebis (4-methyl-6-tert-butylphenol) (manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. NS-6)
  • Example 7-3 Instead of 2.00 parts of 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, 1.00 parts of 2-mercaptobenzimidazole (manufactured by Ouchi Shinsei Chemical Co., Ltd., Nocrack MB) was used, and the compound An acrylic rubber composition was obtained and evaluated in the same manner as in Example 7-1 except that 3.00 parts was used instead of 1.00 parts. The results are shown in Table 12.
  • Example 7-4 100 parts by weight of the carboxyl group-containing acrylic rubber B obtained in Production Example 2 of the acrylic rubber described above, 60 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., Seast SO), 2 parts by weight of stearic acid, and an anti-aging agent are described above. 1.00 parts by weight of the compound 1 obtained in Production Example 1 of the above compound and 1.00 parts by weight of 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine (Nechard 445, manufactured by Chemtura) After kneading for 5 minutes at 50 ° C.
  • Example 7-5 instead of 1.00 part of 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, 1.00 part of N, N′-di-2-naphthyl-p-phenylenediamine (manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) Nocrack White) (Example 7-5), 1.00 part of 2,2′-methylenebis (4-methyl-6-tert-butylphenol) (Nouchi NS-6 manufactured by Ouchi Shinsei Chemical Co., Ltd.) (Example) 7-6), 2,6-di-t-butyl-4-methylphenol 1.00 parts (Ouchi Shinsei Chemical Industry Co., Ltd., Nocrack 200) (Example 7-7), 2,6-di-t -Butyl-4-methylphenol 2.00 parts (Ouchi Shinsei Chemical Co., Ltd., Nocrack 200) (Example 7-8), 2-mercaptobenzimi
  • Nocrack MB) (Examples 7-9), Lith (nonylphenyl) phosphite 1.00 parts (manufactured by Ouchi Shinsei Chemical Industry Co., Ltd., Nocrack TNP) (Example 7-10), Tris (nonylphenyl) phosphite 1.00 parts (manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) Nocrack TNP) and 0.50 parts of 2-mercaptobenzimidazole (Nocrack MB, manufactured by Ouchi Shinsei Chemical Co., Ltd.) (Example 7-11), respectively.
  • An acrylic rubber composition was obtained and evaluated in the same manner. The results are shown in Table 13.
  • Example 7-4 (Comparative Example 7-2) Example 7-4, except that Compound 1 was not added and the amount of 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine was changed to 1.00 parts instead of 1.00 parts.
  • an acrylic rubber composition was obtained and evaluated in the same manner. The results are shown in Table 14.
  • Nocrack MB Nocrack MB
  • Comparative Example 7-6 1.00 parts of tris (nonylphenyl) phosphite (Nocrack TNP, manufactured by Ouchi Shinsei Chemical Co., Ltd.)
  • Comparative Example 7-7 1.00 parts of tris (nonylphenyl) phosphite (large Emerging Comparative Example 7-2 except that 0.50 parts (manufactured by Kogyo Co., Ltd., Nocrack TNP) and 0.50 parts 2-mercaptobenzimidazole (manufactured by Ouchi Shinsei Chemical Co., Ltd., Nocrack MB) (Comparative Example 7-8) were added respectively. Then, an acrylic rubber composition was obtained and evaluated in the same manner. The results are shown in Table 14.
  • Test pieces were prepared in the same manner as in Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-4, and the tensile strength (strength), elongation at break (elongation), and hardness were similarly measured. Each was measured.
  • the heat resistance test after immersion in the engine oil was carried out in accordance with the immersion test method of JIS K6258, and the prepared test piece was immersed in a commercially available engine oil at 150 ° C. (XLD-Diesel CE10W-30 manufactured by Castrol Co., Ltd.) for 168 hours. After air-drying in a draft for 24 hours at room temperature, the sample was further heat-aged by heating under conditions of 168 hours in an environment of 190 ° C. Specifically, first, the elongation before and after heating was measured according to JIS K6251, and the rate of change in elongation was measured by calculating the rate of change according to the following formula.
  • Elongation change rate (%) 100 ⁇ [(Elongation after heating (%)) ⁇ (Elongation before heating (%))] / (Elongation before heating (%))
  • Example 8-1 In the same manner as in Example 2-3, an acrylic rubber composition was prepared, and the obtained acrylic rubber composition was used to test normal physical properties, oil resistance test, and heat resistance test after engine oil immersion according to the above method. , And the content of the anti-aging agent content in the test piece were measured. The results are shown in Table 15.
  • Example 8-2 An acrylic rubber composition was obtained and evaluated in the same manner as in Example 8-1, except that the compounding amount of Compound 1 (antiaging agent) was changed to 2.00 parts. The results are shown in Table 15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 アクリルゴム100重量部に対し、下記一般式(1)で表される化合物0.1~50重量部、および架橋剤0.05~20重量部を含有するアクリルゴム組成物を提供する。(上記一般式(1)中、Yは化学的な単結合、または-SO-を表す。RおよびRはそれぞれ独立して、置換基を有していてもよい炭素数1~30の有機基を表す。ZおよびZはそれぞれ独立して、化学的な単結合または-SO-を表す。nおよびmはそれぞれ独立して、0または1であり、nおよびmの少なくとも一方は1である。)

Description

アクリルゴム組成物およびゴム架橋物
 本発明は、アクリルゴム組成物およびゴム架橋物に係り、さらに詳しくは、耐熱性に優れるゴム架橋物を与えるアクリルゴム組成物、および該アクリルゴム組成物を架橋してなるゴム架橋物に関する。
 アクリルゴムは、耐熱性、耐油性などに優れているため、自動車関連の分野などにおいて、ホース、シール、ガスケットなどのゴム部材に広く用いられている。
 一方、このような自動車用のゴム部材、特にエンジンルーム内のゴム部材については、エンジンの高出力化に伴う過給機(ターボチャージャー)の高性能化、および近年の排ガス規制の強化などにより、更なる耐熱性能の向上が求められている。
 ゴム部材の耐熱性を向上させるための方法として、従来より、アクリルゴムに老化防止剤を配合することが検討されている。このような老化防止剤としては、ジフェニルアミン系老化防止剤などが用いられており、ジフェニルアミン系老化防止剤の中でも、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミンは、耐熱性効果が高いことで知られている。しかしながら、従来から用いられている4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミンを単独で配合してなるゴムでは、近年における耐熱性に対する要求を満たすことができず、そのため、耐熱性のさらなる向上を図るために、種々の提案がなされている。
 例えば、特許文献1では、アクリルゴムに、2種類のジフェニルアミン系老化防止剤を併用して配合してなるアクリルゴム組成物が開示されている。しかしながら、特許文献1に記載の技術では、比較的短い時間での耐熱性試験における引張強さ変化率、伸び変化率、および圧縮永久歪率については改善しているものの、高温下、長時間における耐熱性試験においては、その改善効果は不十分であった。
 特許文献2では、アクリルゴムに配合する老化防止剤として、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミンに代えて、特定のスチレン化ジフェニルアミン化合物を用いる技術が開示されている。また、特許文献3では、カルボキシル基含有アクリルゴムに、2級ジアミン系老化防止剤と、2級モノアミン系老化防止剤とを併用して配合してなるアクリルゴム組成物が開示されている。しかしながら、特許文献2および特許文献3に記載の技術では、老化防止剤として、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミンを単独で用いた場合と比較して、比較的短い時間での耐熱性試験における引張強さ変化率については改善しているものの、伸び変化率や圧縮永久歪率の改善効果が不十分であった。
 さらに、特許文献4では、アクリルゴムに、多価1級アミン架橋剤と、老化防止剤としてp-アミノジフェニルアミンとを配合してなる架橋性アクリルゴム組成物が開示されている。特許文献4に記載の技術では、老化防止剤として、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミンを単独で用いた場合と比較して、耐熱性試験における伸び変化率が従来よりも改善している。しかしながら、近年におけるアクリルゴムの耐熱性に対する要求を十分に満たすためには、更なる改善が望まれていた。
特開平11-21411号公報 国際公開第2006/001299号 特開2009-7491号公報 特開2009-84514号公報
 本発明は、耐熱性が高く、特に、長時間高温条件下にさらされても、伸びなどの物性の低下を抑制可能なゴム架橋物を与えることのできるアクリルゴム組成物、および該アクリルゴム組成物を架橋してなるゴム架橋物を提供することを目的とする。
 本発明者等は、上記目的を達成するために鋭意研究した結果、アクリルゴムに、老化防止剤として特定の縮合複素環化合物と、架橋剤とを特定量配合することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、アクリルゴム100重量部に対し、下記一般式(1)で表される化合物0.1~50重量部、および架橋剤0.05~20重量部を含有するアクリルゴム組成物が提供される。
Figure JPOXMLDOC01-appb-C000002
 (上記一般式(1)中、Yは化学的な単結合、または-SO-を表す。RおよびRはそれぞれ独立して、置換基を有していてもよい炭素数1~30の有機基を表す。ZおよびZはそれぞれ独立して、化学的な単結合または-SO-を表す。nおよびmはそれぞれ独立して、0または1であり、nおよびmの少なくとも一方は1である。)
好ましくは、前記一般式(1)で表される化合物中のRおよびRが、それぞれ独立して、置換基を有していてもよい直鎖状または分岐状の炭素数2~8のアルキル基、または置換基を有していてもよいフェニル基である。
 好ましくは、前記一般式(1)で表される化合物中、Yは-SO-、RおよびRは、それぞれ独立して、置換基を有していてもよい直鎖状または分岐状の炭素数2~8のアルキル基、ならびにZおよびZは化学的な単結合であり、nおよびmが1である。
 好ましくは、前記アクリルゴム100重量部に対する、前記一般式(1)で表される化合物の含有量が、0.3~5重量部である。
 好ましくは、前記アクリルゴムが、カルボキシル基含有アクリルゴム、エポキシ基含有アクリルゴム、ハロゲン原子含有アクリルゴム、または、カルボキシル基およびハロゲン原子含有アクリルゴムである。
 好ましくは、前記アクリルゴムが、エチレン-アクリレートゴム0.1~100重量%を含むものである。
 好ましくは、さらに、前記一般式(1)で表される化合物以外のその他の老化防止剤を少なくとも1種含有し、前記アクリルゴム100重量部に対する、前記一般式(1)で表される化合物と前記その他の老化防止剤との合計の含有量が、0.1~50重量部である。
 また、本発明によれば、上記いずれかに記載のアクリルゴム組成物を架橋してなるゴム架橋物が提供される。
 本発明のゴム架橋物は、好ましくは、押出成形品またはシール部材である。
 本発明によれば、耐熱性が高く、特に、長時間高温条件下にさらされても、伸びなどの物性の低下を抑制可能なゴム架橋物を与えることのできるアクリルゴム組成物、および該アクリルゴム組成物を架橋してなるゴム架橋物を提供することができる。
 <アクリルゴム組成物>
 本発明のアクリルゴム組成物は、アクリルゴム100重量部に対し、老化防止剤として、後述する一般式(1)で表される化合物0.1~50重量部、および架橋剤0.05~20重量部を含有してなるアクリルゴムの組成物である。
 <アクリルゴム>
 本発明で用いるアクリルゴムは、分子中に、主成分(本願においては、ゴム全単量体単位中50重量%以上有するものを言う。)としての(メタ)アクリル酸エステル単量体〔アクリル酸エステル単量体および/またはメタクリル酸エステル単量体の意。以下、(メタ)アクリル酸メチルなど同様。〕単位を含有するものであればよく、特に限定されない。例えば、本発明で用いるアクリルゴムとしては、分子中に、主成分としての(メタ)アクリル酸エステル単量体単位50~100重量%、および架橋性単量体単位0~10重量%を含有する重合体などが挙げられる。
 本発明で用いるアクリルゴムの主成分として好適である(メタ)アクリル酸エステル単量体単位を形成する(メタ)アクリル酸エステル単量体としては、特に限定されないが、例えば、(メタ)アクリル酸アルキルエステル単量体、および(メタ)アクリル酸アルコキシアルキルエステル単量体などを挙げることができる。
 (メタ)アクリル酸アルキルエステル単量体としては、特に限定されないが、炭素数1~8のアルカノールと(メタ)アクリル酸とのエステルが好ましく、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、および(メタ)アクリル酸シクロヘキシルなどが挙げられる。これらの中でも、(メタ)アクリル酸エチル、および(メタ)アクリル酸n-ブチルが好ましく、アクリル酸エチル、およびアクリル酸n-ブチルが特に好ましい。これらは1種単独で、または2種以上を併せて使用することができる。
 (メタ)アクリル酸アルコキシアルキルエステル単量体としては、特に限定されないが、炭素数2~8のアルコキシアルキルアルコールと(メタ)アクリル酸とのエステルが好ましく、具体的には、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-プロポキシエチル、(メタ)アクリル酸2-ブトキシエチル、(メタ)アクリル酸3-メトキシプロピル、および(メタ)アクリル酸4-メトキシブチルなどが挙げられる。これらの中でも、(メタ)アクリル酸2-エトキシエチル、および(メタ)アクリル酸2-メトキシエチルが好ましく、アクリル酸2-エトキシエチル、およびアクリル酸2-メトキシエチルが特に好ましい。これらは1種単独で、または2種以上を併せて使用することができる。
 本発明で用いるアクリルゴム中における、(メタ)アクリル酸エステル単量体単位の含有量は、50~100重量%、好ましくは50~99.9重量%、より好ましくは60~99.5重量%、さらに好ましくは70~99.5重量%、特に好ましくは70~99重量%である。(メタ)アクリル酸エステル単量体単位の含有量が少なすぎると、得られるゴム架橋物の耐候性、耐熱性、および耐油性が低下するおそれがある。
 なお、本発明において、(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸アルキルエステル単量体単位30~100重量%、および(メタ)アクリル酸アルコキシアルキルエステル単量体単位70~0重量%からなるものとすることが好ましい。
 架橋性単量体単位を形成する架橋性単量体としては、特に限定されないが、例えば、α,β-エチレン性不飽和カルボン酸単量体;エポキシ基を有する単量体;ハロゲン原子を有する単量体;ジエン単量体;などが挙げられる。
 α,β-エチレン性不飽和カルボン酸単量体としては、特に限定されないが、例えば、炭素数3~12のα,β-エチレン性不飽和モノカルボン酸、炭素数4~12のα,β-エチレン性不飽和ジカルボン酸、および炭素数4~12のα,β-エチレン性不飽和ジカルボン酸と炭素数1~8のアルカノールとのモノエステルなどが挙げられる。
 炭素数3~12のα,β-エチレン性不飽和モノカルボン酸の具体例としては、アクリル酸、メタクリル酸、α-エチルアクリル酸、クロトン酸、およびケイ皮酸などが挙げられる。
 炭素数4~12のα,β-エチレン性不飽和ジカルボン酸の具体例としては、フマル酸、マレイン酸などのブテンジオン酸;イタコン酸;シトラコン酸;クロロマレイン酸;などが挙げられる。
 炭素数4~12のα,β-エチレン性不飽和ジカルボン酸と炭素数1~8のアルカノールとのモノエステルの具体例としては、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノn-ブチル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノn-ブチルなどのブテンジオン酸モノ鎖状アルキルエステル;フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘキセニル、マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシル、マレイン酸モノシクロヘキセニルなどの脂環構造を有するブテンジオン酸モノエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノn-ブチル、イタコン酸モノシクロヘキシルなどのイタコン酸モノエステル;などが挙げられる。
 これらの中でも、ブテンジオン酸モノ鎖状アルキルエステル、または脂環構造を有するブテンジオン酸モノエステルが好ましく、フマル酸モノn-ブチル、マレイン酸モノn-ブチル、フマル酸モノシクロヘキシル、およびマレイン酸モノシクロヘキシルがより好ましく、フマル酸モノn-ブチルがさらに好ましい。これらのα,β-エチレン性不飽和カルボン酸単量体は、1種単独で、または2種以上を併せて使用することができる。なお、上記単量体のうち、ジカルボン酸には、無水物として存在しているものも含まれる。
 本発明において、架橋性単量体として、α,β-エチレン性不飽和カルボン酸単量体を用いた場合には、アクリルゴムを、カルボキシル基含有アクリルゴムとすることができる。アクリルゴムを、カルボキシル基含有アクリルゴムとすると、アクリルゴムの耐熱老化性をより向上させることができる。
 本発明で用いるアクリルゴムが、カルボキシル基含有アクリルゴムである場合における、α,β-エチレン性不飽和カルボン酸単量体単位の含有量は、好ましくは0.1~10重量%、より好ましくは0.5~7重量%、さらに好ましくは1~5重量%である。α,β-エチレン性不飽和カルボン酸単量体単位の含有量が少なすぎると、架橋が不十分となり、得られるゴム架橋物の形状維持が困難になる場合があり、一方、α,β-エチレン性不飽和カルボン酸単量体単位の含有量が多すぎると、得られるゴム架橋物の伸びが低下したり、圧縮永久歪率が増大したりする可能性がある。
 また、本発明で用いるアクリルゴムが、カルボキシル基含有アクリルゴムである場合における、カルボキシル基の含有量、すなわち、アクリルゴム100g当たりのカルボキシル基のモル数(ephr)は、好ましくは4×10-4~4×10-1(ephr)、より好ましくは1×10-3~2×10-1(ephr)、さらに好ましくは5×10-3~1×10-1(ephr)である。カルボキシル基の含有量が少なすぎると、架橋が不十分となり、得られるゴム架橋物の機械的特性が不十分となったり、成形品の表面肌が滑らかさに欠けたりするおそれがある。一方、多すぎると、得られるゴム架橋物の伸びが低下したり、圧縮永久歪率が増大したりする可能性がある。
 エポキシ基を有する単量体としては、特に限定されないが、例えば、エポキシ基含有(メタ)アクリル酸エステル、エポキシ基含有エーテルなどが挙げられる。
 エポキシ基含有(メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸グリシジルなどが挙げられる。
 エポキシ基含有エーテルの具体例としては、アリルグリシジルエーテルおよびビニルグリシジルエーテルなどが挙げられる。これらの中でも、メタクリル酸グリシジルおよびアリルグリシジルエーテルが好ましい。これらエポキシ基を有する単量体は、1種単独で、または2種以上を併せて使用することができる。
 本発明において、架橋性単量体として、エポキシ基を有する単量体を用いた場合には、アクリルゴムを、エポキシ基含有アクリルゴムとすることができる。
 本発明で用いるアクリルゴムが、エポキシ基含有アクリルゴムである場合における、エポキシ基を有する単量体単位の含有量は、好ましくは0.1~10重量%、より好ましくは0.5~7重量%、さらに好ましくは0.5~5重量%である。エポキシ基を有する単量体単位の含有量が少なすぎると、架橋が不十分となり、得られるゴム架橋物の形状維持が困難になる場合があり、一方、エポキシ基を有する単量体単位の含有量が多すぎると、得られるゴム架橋物の伸びが低下したり、圧縮永久歪率が増大したりする可能性がある。
 ハロゲン原子を有する単量体としては、特に限定されないが、例えば、ハロゲン含有飽和カルボン酸の不飽和アルコールエステル、(メタ)アクリル酸ハロアルキルエステル、(メタ)アクリル酸ハロアシロキシアルキルエステル、(メタ)アクリル酸(ハロアセチルカルバモイルオキシ)アルキルエステル、ハロゲン含有不飽和エーテル、ハロゲン含有不飽和ケトン、ハロメチル基含有芳香族ビニル化合物、ハロゲン含有不飽和アミド、およびハロアセチル基含有不飽和単量体などが挙げられる。
 ハロゲン含有飽和カルボン酸の不飽和アルコールエステルの具体例としては、クロロ酢酸ビニル、2-クロロプロピオン酸ビニル、およびクロロ酢酸アリルなどが挙げられる。
 (メタ)アクリル酸ハロアルキルエステルの具体例としては、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸1-クロロエチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸1,2-ジクロロエチル、(メタ)アクリル酸2-クロロプロピル、(メタ)アクリル酸3-クロロプロピル、および(メタ)アクリル酸2,3-ジクロロプロピルなどが挙げられる。
 (メタ)アクリル酸ハロアシロキシアルキルエステルの具体例としては、(メタ)アクリル酸2-(クロロアセトキシ)エチル、(メタ)アクリル酸2-(クロロアセトキシ)プロピル、(メタ)アクリル酸3-(クロロアセトキシ)プロピル、および(メタ)アクリル酸3-(ヒドロキシクロロアセトキシ)プロピルなどが挙げられる。
 (メタ)アクリル酸(ハロアセチルカルバモイルオキシ)アルキルエステルの具体例としては、(メタ)アクリル酸2-(クロロアセチルカルバモイルオキシ)エチル、および(メタ)アクリル酸3-(クロロアセチルカルバモイルオキシ)プロピルなどが挙げられる。
 ハロゲン含有不飽和エーテルの具体例としては、クロロメチルビニルエーテル、2-クロロエチルビニルエーテル、3-クロロプロピルビニルエーテル、2-クロロエチルアリルエーテル、および3-クロロプロピルアリルエーテルなどが挙げられる。
 ハロゲン含有不飽和ケトンの具体例としては、2-クロロエチルビニルケトン、3-クロロプロピルビニルケトン、および2-クロロエチルアリルケトンなどが挙げられる。
 ハロメチル基含有芳香族ビニル化合物の具体例としては、p-クロロメチルスチレン、m-クロロメチルスチレン、o-クロロメチルスチレン、およびp-クロロメチル-α-メチルスチレンなどが挙げられる。
 ハロゲン含有不飽和アミドの具体例としては、N-クロロメチル(メタ)アクリルアミドなどが挙げられる。
 ハロアセチル基含有不飽和単量体の具体例としては、3-(ヒドロキシクロロアセトキシ)プロピルアリルエーテル、p-ビニルベンジルクロロ酢酸エステルなどが挙げられる。
 これらの中でも、ハロゲン含有飽和カルボン酸の不飽和アルコールエステル、およびハロゲン含有不飽和エーテルが好ましく、クロロ酢酸ビニル、および2-クロロエチルビニルエーテルがより好ましく、クロロ酢酸ビニルがさらに好ましい。これらハロゲン原子を有する単量体は、1種単独で、または2種以上を併せて使用することができる。
 本発明において、架橋性単量体として、ハロゲン原子を有する単量体を用いた場合には、アクリルゴムを、ハロゲン原子含有アクリルゴムとすることができる。
 本発明で用いるアクリルゴムが、ハロゲン原子含有アクリルゴムである場合における、ハロゲン原子を有する単量体単位の含有量は、好ましくは0.1~10重量%、より好ましくは0.5~7重量%、さらに好ましくは0.5~5重量%である。ハロゲン原子を有する単量体単位の含有量が少なすぎると、架橋が不十分となり、得られるゴム架橋物の形状維持が困難になる場合があり、一方、ハロゲン原子を有する単量体単位の含有量が多すぎると、得られるゴム架橋物の伸びが低下したり、圧縮永久歪率が増大したりする可能性がある。
 また、本発明において、架橋性単量体として、α,β-エチレン性不飽和カルボン酸単量体およびハロゲン原子を有する単量体を用いることにより、アクリルゴムを、カルボキシル基およびハロゲン原子含有アクリルゴムとすることができる。
 本発明で用いるアクリルゴムが、カルボキシル基およびハロゲン原子含有アクリルゴムである場合における、架橋性単量体の具体例としては、上述したカルボキシル基含有アクリルゴムおよびハロゲン原子含有アクリルゴムにおける架橋性単量体と同様なものを挙げられるが、これらのなかでも、メタクリル酸とp-クロロメチルスチレンとを併用することが好ましい。
 本発明で用いるアクリルゴムが、カルボキシル基およびハロゲン原子含有アクリルゴムである場合における、α,β-エチレン性不飽和カルボン酸単量体単位およびハロゲン原子を有する単量体単位の合計含有量は、好ましくは0.1~10重量%、より好ましくは0.5~7重量%、さらに好ましくは0.5~5重量%である。これらα,β-エチレン性不飽和カルボン酸単量体単位およびハロゲン原子を有する単量体単位の含有量が少なすぎると、架橋が不十分となり、得られるゴム架橋物の形状維持が困難になる場合があり、一方、α,β-エチレン性不飽和カルボン酸単量体単位およびハロゲン原子を有する単量体単位の合計含有量が多すぎると、得られるゴム架橋物の伸びが低下したり、圧縮永久歪率が増大したりする可能性がある。
 α,β-エチレン性不飽和カルボン酸単量体単位とハロゲン原子を有する単量体単位との含有比は、[α,β-エチレン性不飽和カルボン酸単量体単位:ハロゲン原子を有する単量体単位]の重量比で、[1:1.5~1:10]が好ましく、[1:2~1:8]がより好ましい。
 ジエン単量体としては、共役ジエン単量体、非共役ジエン単量体が挙げられる。
 共役ジエン単量体の具体例としては、1,3-ブタジエン、イソプレン、およびピペリレンなどを挙げることができる。
 非共役ジエン単量体の具体例としては、エチリデンノルボルネン、ジシクロペンタジエン、(メタ)アクリル酸ジシクロペンタジエニル、および(メタ)アクリル酸2-ジシクロペンタジエニルエチルなどを挙げることができる。
 なお、本発明で用いるアクリルゴムが、上述したカルボキシル基含有アクリルゴム、エポキシ基含有アクリルゴム、ハロゲン原子含有アクリルゴム、または、カルボキシル基およびハロゲン原子含有アクリルゴムである場合には、必要に応じて、その他の架橋性単量体単位を有していてもよい。その他の架橋性単量体単位を形成する架橋性単量体は、1種単独で、または2種以上を併せて使用することができる。本発明で用いるアクリルゴム中における、その他の架橋性単量体単位の含有量は、好ましくは0~9.9重量%、より好ましくは0~6.5重量%、さらに好ましくは0~4.5重量%、特に好ましくは0~4重量%である。(ただし、アクリルゴム中における、全ての架橋性単量体単位の合計量としては、好ましくは0.1~10重量%、より好ましくは0.5~7重量%、さらに好ましくは0.5~5重量%、特に好ましくは1~5重量%である。)これら架橋性単量体単位の含有量が多すぎると、得られるゴム架橋物の伸びが低下したり、圧縮永久歪率が増大したりする可能性がある。
 また、本発明で用いるアクリルゴムは、(メタ)アクリル酸エステル単量体単位、および架橋性単量体単位に加えて、必要に応じて、(メタ)アクリル酸エステル単量体や、架橋性単量体と共重合可能なその他の単量体の単位を有していてもよい。
 共重合可能なその他の単量体としては、特に限定されないが、例えば、芳香族ビニル単量体、α,β-エチレン性不飽和ニトリル単量体、アクリロイルオキシ基を2個以上有する単量体(以下、「多官能アクリル単量体」と言うことがある。)、オレフィン系単量体、およびビニルエーテル化合物などが挙げられる。
 芳香族ビニル単量体の具体例としては、スチレン、α-メチルスチレン、およびジビニルベンゼンなどが挙げられる。
 α,β-エチレン性不飽和ニトリル単量体の具体例としては、アクリロニトリル、メタクリロニトリルなどが挙げられる。
 多官能アクリル単量体の具体例としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレートなどが挙げられる。
 オレフィン系単量体の具体例としては、エチレン、プロピレン、1-ブテン、および1-オクテンなどが挙げられる。
 ビニルエーテル化合物の具体例としては、酢酸ビニル、エチルビニルエーテル、およびn-ブチルビニルエーテルなどが挙げられる。
 これらの中でも、スチレン、アクリロニトリル、メタクリロニトリル、エチレンおよび酢酸ビニルが好ましく、アクリロニトリル、メタクリロニトリル、エチレンおよび酢酸ビニルがより好ましい。
 共重合可能なその他の単量体は、1種単独で、または2種以上を併せて使用することができる。本発明で用いるアクリルゴム中における、その他の単量体の単位の含有量は、0~50重量%、好ましくは0~49.9重量%、より好ましくは0~39.5重量%、さらに好ましくは0~29.5重量%、特に好ましくは0~29重量%である。
 本発明で用いるアクリルゴムは、上記単量体を重合することにより得ることができる。重合反応の形態としては、乳化重合法、懸濁重合法、塊状重合法、および溶液重合法のいずれも用いることができるが、重合反応の制御の容易性などの点から、従来公知のアクリルゴムの製造法として一般的に用いられている常圧下での乳化重合法によるのが好ましい。
 乳化重合は、回分式、半回分式、連続式のいずれでもよい。重合は、通常、0~70℃、好ましくは5~50℃の温度範囲で行われる。
 このようにして製造される、本発明で用いるアクリルゴムのムーニー粘度(ML1+4、100℃)(ポリマームーニー)は、好ましくは10~80、より好ましくは20~70、さらに好ましくは25~60である。
 本発明においては、このように製造されるアクリルゴムを、1種単独で、または2種以上を併せて使用することができる。
 本発明においては、このように製造されるアクリルゴムとして、エチレン-アクリレートゴム0.1~100重量%を含むものを用いてもよい。
 アクリルゴムとして、エチレン-アクリレートゴム0.1~100重量%を含むものを用いる場合における、エチレン-アクリレートゴムと、エチレン-アクリレートゴム以外のアクリルゴムとの割合は、通常、「エチレン-アクリレートゴム:エチレン-アクリレートゴム以外のアクリルゴム」=0.1~100重量%:99.9~0重量%、好ましくは10~100重量%:90~0重量%、より好ましくは20~100重量%:80~0重量%である。エチレン-アクリレートゴムの割合が上記範囲内であると、アクリルゴムの加工性、ならびに得られるゴム架橋物の強度などの機械的特性、および耐熱性を優れたものとすることができる。
 エチレン-アクリレートゴムとしては、分子中に、主成分としての(メタ)アクリル酸エステル単量体単位50~99.9重量%、エチレン単量体単位0.1~50重量%、および架橋性単量体単位0~10重量%を含有する重合体であることが好ましい。
 また、エチレン-アクリレートゴム以外のアクリルゴムとしては、上述した、主成分としての(メタ)アクリル酸エステル単量体単位50~100重量%、および架橋性単量体単位0~10重量%を含有する重合体などを用いることができる。
 エチレン-アクリレートゴムの主成分として好適である(メタ)アクリル酸エステル単量体単位を形成する(メタ)アクリル酸エステル単量体としては、特に限定されないが、上述した(メタ)アクリル酸アルキルエステル単量体、および(メタ)アクリル酸アルコキシアルキルエステル単量体などを挙げることができる。
 エチレン-アクリレートゴム中における、(メタ)アクリル酸エステル単量体単位の含有量は、好ましくは50~99.9重量%、より好ましくは59.5~99重量%、さらに好ましくは69~98重量%である。(メタ)アクリル酸エステル単量体単位の含有量が少なすぎると、得られるゴム架橋物の耐候性、耐熱性、および耐油性が低下するおそれがある。
 なお、エチレン-アクリレートゴムにおいては、(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸アルキルエステル単量体単位30~100重量%、および(メタ)アクリル酸アルコキシアルキルエステル単量体単位70~0重量%からなるものとすることが好ましい。
 本発明で用いるエチレン-アクリレートゴムは、エチレン単量体単位を必須成分とし、エチレン単量体単位の含有量は、好ましくは0.1~50重量%、より好ましくは0.5~40重量%、さらに好ましくは1~30重量%である。エチレン単量体単位の含有量が上記範囲内にあると、得られるゴム架橋物の強度などの機械的特性、耐候性、耐熱性、および耐油性に優れる。
 エチレン-アクリレートゴムは、(メタ)アクリル酸エステル単量体単位およびエチレン単量体単位に加えて、架橋性単量体単位を含有していてもよい。なお、架橋性単量体単位としては、上述したものが挙げられる。エチレン-アクリレートゴム中における、架橋性単量体単位の含有量は、好ましくは0~10重量%、より好ましくは0.5~7重量%、さらに好ましくは1~5重量%である。架橋性単量体単位の含有量が多すぎると、得られるゴム架橋物の伸びが低下したり、圧縮永久歪率が増大したりする可能性がある。
 なお、上述した架橋性単量体のなかでも、本発明で用いるエチレン-アクリレートゴムを、カルボキシル基を架橋点として持つカルボキシル基含有エチレン-アクリレートゴムとすることができ、これにより、本発明で用いるアクリルゴムの耐熱老化性を向上させることができるという点より、エチレン-アクリレートゴムおよびエチレン-アクリレートゴム以外のアクリルゴムの一部の単量体単位を形成する架橋性単量体として、α,β-エチレン性不飽和カルボン酸単量体を用いることが好ましい。
 また、本発明で用いるエチレン-アクリレートゴムは、(メタ)アクリル酸エステル単量体単位、エチレン単量体単位、および架橋性単量体単位に加えて、必要に応じて、(メタ)アクリル酸エステル単量体、エチレン、および架橋性単量体と共重合可能なその他の単量体の単位を有していてもよい。共重合可能なその他の単量体としては、上述したものが挙げられる。本発明で用いるエチレン-アクリルゴム中における、その他の単量体の単位の含有量は、好ましくは0~49.9重量%、より好ましくは0~39.5重量%、さらに好ましくは0~29重量%である。
  本発明で用いるアクリルゴムを構成するエチレン-アクリレートゴムは、上記単量体を重合することにより得ることができる。重合反応の形態としては、上述したように、乳化重合法、懸濁重合法、塊状重合法、および溶液重合法のいずれも用いることができ、任意の重合法を選択することができる。
  本発明で用いるアクリルゴムが、エチレン-アクリレートゴムとエチレン-アクリレートゴム以外のアクリルゴムとを含む場合には、上述した方法により得られたエチレン-アクリレートゴムとエチレン-アクリレートゴム以外のアクリルゴムとを、公知の方法により混合して、本発明で用いるアクリルゴムを得ることができる。混合の方法は、特に限定されないが、それぞれのアクリルゴムを単離した後に、ドライブレンドを行う方法が好適である。
 <老化防止剤>
 本発明で用いる老化防止剤は、下記一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
 (上記一般式(1)中、Yは化学的な単結合、または-SO-を表す。RおよびRはそれぞれ独立して、置換基を有していてもよい炭素数1~30の有機基を表す。ZおよびZはそれぞれ独立して、化学的な単結合または-SO-を表す。nおよびmはそれぞれ独立して、0または1であり、nおよびmの少なくとも一方は1である。)
 上記一般式(1)中、Yは化学的な単結合、または-SO-であり、-SO-であることが好ましい。
 上記一般式(1)中、RおよびRはそれぞれ独立して、置換基を有していてもよい炭素数1~30の有機基を表す。
 RおよびRを構成する炭素数1~30の有機基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基などの炭素数1~30のアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などの炭素数3~30のシクロアルキル基;フェニル基、ビフェニル基、ナフチル基、アントラニル基などの炭素数6~30のアリール基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基などの炭素数1~30のアルコキシ基;などが挙げられる。
 また、上述したRおよびRを構成する有機基は、置換基を有していてもよく、該置換基の位置としては、任意の位置とすることができる。
 このような置換基としては、有機基がアルキル基である場合には、フッ素原子、塩素原子、臭素原子などのハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基などの炭素数1~10のアルコキシ基;ニトロ基;シアノ基;フェニル基、4-メチルフェニル基、2-クロロフェニル基などの置換基を有していてもよいフェニル基;などが挙げられる。
 また、有機基がシクロアルキル基またはアリール基である場合には、置換基としては、フッ素原子、塩素原子、臭素原子などのハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基などの炭素数1~10のアルコキシ基;ニトロ基;シアノ基;メチル基、エチル基、t-ブチル基などの炭素数1~10のアルキル基;などが挙げられる。
 さらに、有機基がアルコキシ基の場合には、置換基としては、フッ素原子、塩素原子、臭素原子などのハロゲン原子;ニトロ基;シアノ基;などが挙げられる。
 なお、本発明において、RおよびRを構成する有機基が、置換基を有する場合、有機基の炭素数には、該置換基の炭素数を含まないものとする。すなわち、RおよびRを構成する有機基は、置換基に含有される炭素原子を除いた炭素原子の数が、1~30の範囲にあればよい。たとえば、RおよびRを構成する有機基が、メトキシエチル基である場合には、該有機基の炭素数は2となる。すなわち、この場合においては、メトキシ基は置換基であるため、該有機基の炭素数は、置換基であるメトキシ基の炭素数を除いたものとなる。
 本発明では、RおよびRとしては、それぞれ独立して、置換基を有していてもよい炭素数2~20のアルキル基、または置換基を有していてもよい炭素数6~30のアリール基であることが好ましく、置換基を有していてもよい直鎖状または分岐状の炭素数2~20のアルキル基、もしくは置換基を有していてもよいフェニル基、または置換基を有していてもよいナフチル基であることがより好ましく、置換基を有していてもよい直鎖状または分岐状の炭素数2~8のアルキル基、または置換基を有していてもよいフェニル基であることがさらに好ましく、置換基を有していてもよい直鎖状または分岐状の炭素数2~8のアルキル基が特に好ましい。
 このようなRおよびRを構成する有機基の好ましい具体例としては、α-メチルベンジル基、α,α-ジメチルベンジル基、t-ブチル基、フェニル基、または4-メチルフェニル基などが挙げられ、これらのなかでも、α,α-ジメチルベンジル基、または4-メチルフェニル基がより好ましく、α,α-ジメチルベンジル基がさらに好ましい。なお、これらは、それぞれ独立したものとすることができる。
 また、上記一般式(1)中、ZおよびZはそれぞれ独立して、化学的な単結合または-SO-であり、化学的な単結合であることが好ましい。
 さらに、上記一般式(1)中、nおよびmはそれぞれ独立して、0または1であり、かつ、nおよびmの少なくとも一方は1である。なお、nおよびmは、いずれも1であることが好ましい。
 本発明においては、上記一般式(1)で表される化合物としては、下記一般式(2)~(8)で表される化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 (上記一般式(2)~(8)中、R、R、ZおよびZは、上記一般式(1)と同様である。)
 上記一般式(2)~(8)で表される化合物のなかでも、一般式(2)、(6)、(7)で表される化合物が好ましく、一般式(6)で表される化合物がより好ましい。
 また、上記一般式(2)~(8)中、-Z-R、-Z-Rがそれぞれ独立して、α-メチルベンジル基、α,α-ジメチルベンジル基、t-ブチル基、フェニルスルホニル基、または4-メチルフェニルスルホニル基であることが好ましく、α,α-ジメチルベンジル基、または4-メチルフェニルスルホニル基であることがより好ましく、α,α-ジメチルベンジル基であることがさらに好ましい。
 つまり、本発明においては、上記一般式(1)中、Yは-SO-、RおよびRは、それぞれ独立して、置換基を有していてもよい直鎖状または分岐状の炭素数2~8のアルキル基、ならびにZおよびZは化学的な単結合であり、nおよびmが1であることが好ましい。
 次いで、上記一般式(1)で表される化合物の製造方法について、説明する。
 上記一般式(1)で表される化合物が、Yが-SO-である化合物である場合には、公知のフェノチアジン系化合物の製造方法を適用することにより、上記一般式(1)において、YがSである化合物を得て、次いで、得られた化合物を酸化することにより、製造することができる。
 また、上記一般式(1)で表される化合物は、下記一般式(9)で表される化合物〔フェノチアジン(Y=S)およびカルバゾール(Y=化学的な単結合)〕を出発原料として、公知の反応方法により、一般式(9)における芳香環の、1位、3位、6位および/または8位に、置換基(-Z-R、-Z-R)を導入すること、およびY=Sの場合には、Yを-SO-にするために酸化すること、により得ることができる。
Figure JPOXMLDOC01-appb-C000005
 (上記一般式(9)中、Yは、Sまたは化学的な単結合である。)
 上記一般式(9)における芳香環の、1位、3位、6位および/または8位に、1または2の置換基(-Z-R、-Z-R)を導入する反応方法としては、例えば、一般式(9)における芳香環の、1位、3位、6位および/または8位の炭素原子に、炭素-炭素結合を生成させる反応(この反応方法を、「反応方法α」とする。)、一般式(9)における芳香環の、1位、3位、6位および/または8位の炭素原子に、炭素-SO結合を生成させる反応(この反応方法を、「反応方法β」とする。)、一般式(9)における芳香環の、1位、3位、6位および/または8位の炭素原子に、炭素-硫黄結合を生成させる反応(この反応方法を、「反応方法γ」とする。)などが挙げられる。
 以下、上記一般式(1)で表される化合物の製造方法について、上記一般式(9)で表される化合物を出発原料として用い、上述した反応方法α、反応方法β、および反応方法γの各方法を用いる場合を例示して、詳細に説明する。
 〔A.反応方法αを用いる製造方法(1)〕
 反応方法αを用いる製造方法(1)の反応式を下記に示す。なお、下記反応式においては、上記一般式(1)で表される化合物のうち、Yが化学的な単結合または-SO-であり、nまたはmが0であり、-Z-Rまたは-Z-Rが式:-C(CH)(r)-Ar(式中、rは水素原子またはアルキル基を表し、Arは置換基を有していてもよいフェニル基を表す。)で示される基である場合を例示している。
Figure JPOXMLDOC01-appb-C000006
 そして、上記反応式にしたがい、上記一般式(1)で表される化合物のうち、Yが化学的な単結合である化合物は、上記一般式(9)で表される化合物(Y=化学的な単結合であるカルバゾール)を出発原料に用いて、酸触媒の存在下、上記一般式(10)で表されるスチレン化合物を反応させることにより、上記一般式(11a)および/または(11b)に示す化合物として、得ることができる。
 また、上記反応式にしたがい、上記一般式(1)で表される化合物のうち、Yが-SO-である化合物は、上記一般式(9)で表される化合物(Y=Sであるフェノチアジン)を出発原料に用いて、酸触媒の存在下、上記一般式(10)で表されるスチレン化合物を反応させ、反応により得られた化合物(上記一般式(11a)および/または(11b)に示す化合物)を、酸化することにより、上記一般式(12a)および/または(12b)に示す化合物として、得ることができる。
 なお、上記反応に用いる一般式(10)で表される化合物の具体例としては、スチレン;4-メチルスチレン、α-メチルスチレン、4,α-ジメチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-t-ブチルスチレンなどのアルキル化スチレン;2-クロロスチレン、2,4-ジクロロスチレンなどのハロゲン化スチレン;などが挙げられる。また、上記一般式(10)で表される化合物の使用量は、上記一般式(9)で表される化合物1モルあたり、0.5~1.5モルである。
 上記反応に用いる酸触媒の具体例としては、メタンスルホン酸、フェニルスルホン酸、p-トルエンスルホン酸などのスルホン酸類;塩酸、硫酸などの無機酸;などが挙げられる。酸触媒は、通常、反応開始時に仕込んでおくが、反応の途中で追加することもできる。酸触媒の使用量は、上記一般式(9)で表される化合物1モルあたり、通常、0.005~0.5モルであり、好ましくは0.01~0.3モルであり、さらに好ましくは0.02~0.1モルである。
 上記反応は、適当な溶媒中で行うことができる。用いる溶媒としては、反応に不活性なものであれば特に制限されないが、たとえば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-オクタン、シクロペンタン、シクロヘキサンなどの脂肪族炭化水素系溶媒;1,2-ジクロロエタン、モノクロロベンゼンなどのハロゲン化炭化水素系溶媒;などが挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。溶媒の使用量は、反応規模などにも依存するが、上記一般式(9)で表される化合物1gあたり、1ml~100mlである。
 また、上記一般式(9)で表される化合物において、Y=Sである場合における、酸化に用いる酸化剤としては、特に制限されず、酢酸-過酸化水素、m-クロロ過安息香酸などの有機過酸化物が挙げられる。酸化剤の使用量は、上記一般式(11a)または(11b)で表される化合物1モルあたり、2~5モルである。
 このような酸化反応は、適当な溶媒中で行うことができる。用いる溶媒としては、反応に不活性なものであれば特に制限されないが、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-オクタン、シクロペンタン、シクロヘキサンなどの脂肪族炭化水素系溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、モノクロロベンゼンなどのハロゲン化炭化水素系溶媒;酢酸;などが挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。溶媒の使用量は、反応規模などにも依存するが、一般式(11a)または(11b)で表される化合物1gあたり、1ml~100mlである。
 さらに、このような酸化反応は、一般式(11a)および/または(11b)で表される化合物を含む反応液に、所定量の酢酸および過酸化水素を添加して、連続的に行なうこともできる。
 〔B.反応方法αを用いる製造方法(2)〕
 反応方法αを用いる製造方法(2)の反応式を下記に示す。なお、下記反応式においては、上記一般式(1)で表される化合物のうち、Yが化学的な単結合または-SO-であり、nおよびmが1であり、-Z-Rおよび-Z-Rが式:-C(CH)(r)-Ar(式中、rは水素原子またはアルキル基を表し、Arは置換基を有していてもよいフェニル基を表す。)で示される基である場合を例示している。
Figure JPOXMLDOC01-appb-C000007
 そして、上記反応式にしたがい、上記一般式(1)で表される化合物のうち、Yが化学的な単結合である化合物は、上記一般式(9)で表される化合物(Y=化学的な単結合であるカルバゾール)を出発原料に用いて、酸触媒の存在下、上記一般式(10)で表されるスチレン化合物を反応させることにより、上記一般式(11c)および/または(11d)に示す化合物として、得ることができる。
 また、上記反応式にしたがい、上記一般式(1)で表される化合物のうち、Yが-SO-である化合物は、上記一般式(9)で表される化合物(Y=Sであるフェノチアジン)を出発原料に用いて、酸触媒の存在下、上記一般式(10)で表されるスチレン化合物を反応させ、反応により得られた化合物(上記一般式(11c)および/または(11d)に示す化合物)を、酸化することにより、上記一般式(12c)および/または(12d)に示す化合物として、得ることができる。
 なお、上記反応においては、上記一般式(10)で表される化合物、酸触媒、溶媒、および酸化剤としては、上述した反応方法αを用いる製造方法(1)と同様のものを用いることができる。また、これらの使用量については、上記一般式(10)で表される化合物の使用量を、上記一般式(9)で表される化合物1モルに対し、2~3モルとし、酸化剤の使用量を上記一般式(11c)または(11d)に示す化合物1モルに対して、2~10モルとする以外は、上述した反応方法αを用いる製造方法(1)と同様とすることができる。
 〔C.反応方法βを用いる製造方法〕
 反応方法βを用いる製造方法の反応式を下記に示す。なお、下記反応式においては、上記一般式(1)で表される化合物のうち、Yが化学的な単結合または-SO-であり、nまたはmが0であり、-Z-Rまたは-Z-Rが式:-SO-Ar(式中、Arは置換基を有していてもよいフェニル基を表す。)で示される基である場合を例示している。
Figure JPOXMLDOC01-appb-C000008
 そして、上記反応式にしたがい、上記一般式(1)で表される化合物のうち、Yが化学的な単結合である化合物は、上記一般式(9)で表される化合物(Y=化学的な単結合であるカルバゾール)を出発原料に用いて、塩化第二鉄などのルイス酸および酢酸カリウムなどの酢酸塩の存在下、上記一般式(13)で表されるスルフィン酸塩(Mはナトリウムなどのアルカリ金属を表す。)を反応させることにより、上記一般式(11e)および/または(11f)に示す化合物として、得ることができる。
 また、上記反応式にしたがい、上記一般式(1)で表される化合物のうち、Yが-SO-である化合物は、上記一般式(9)で表される化合物(Y=Sであるフェノチアジン)を出発原料に用いて、塩化第二鉄などのルイス酸および酢酸カリウムなどの酢酸塩の存在下、上記一般式(13)で表されるスルフィン酸塩を反応させ、反応により得られた化合物(上記一般式(11e)および/または(11f)に示す化合物)を、酸化することにより、上記一般式(12e)および/または(12f)に示す化合物として、得ることができる。
 上記反応に用いる一般式(13)で表されるスルフィン酸塩としては、フェニルスルフィン酸ナトリウム、フェニルスルフィン酸カリウム、p-トルエンスルフィン酸ナトリウム、およびp-トルエンスルフィン酸カリウムなどが挙げられる。また、上記一般式(13)で表される化合物の使用量は、上記一般式(9)で表される化合物1モルあたり、0.5~1.5モルである。
 上記反応において、ルイス酸の使用量は、上記一般式(9)で表される化合物1モルあたり、通常5~10モルであり、酢酸塩の使用量は、上記一般式(9)で表される化合物1モルあたり、通常1~3モルである。
 上記反応は、適当な溶媒中で行うことができる。用いる溶媒としては、反応に不活性なものであれば特に制限されないが、例えば、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコールなどのアルコール系溶媒が挙げられる。用いる溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。溶媒の使用量は、反応規模などにも依存するが、上記一般式(9)で表される化合物1gあたり、1ml~100mlである。
 なお、上記一般式(9)で表される化合物において、Y=Sである場合における、酸化反応は、上述した反応方法αを用いる製造方法(1)と同様にして行なうことができる。
 〔D.反応方法γを用いる製造方法〕
 反応方法γを用いる製造方法の反応式を下記に示す。なお、下記反応式においては、上記一般式(1)で表される化合物のうち、Yが化学的な単結合であり、nおよびmが1であり、-Z-Rまたは-Z-Rが式:-SO-R(式中、Rは炭素数1~30の有機基を表す。)で示される基である場合を例示している。
Figure JPOXMLDOC01-appb-C000009
 そして、上記反応式にしたがい、上記一般式(9a)で表される化合物(カルバゾール)を出発原料に用いて、過ヨウ素酸塩および触媒量の硫酸の存在下に、ヨウ素を反応させることにより、上記一般式(14)で表されるジヨード体を得た後、得られたジヨード体に、塩基および触媒量のパラジウム(II)錯体の存在下、式:R-SH(式中、Rは炭素数1~30の有機基を表す。)で表されるメルカプタンを反応させることにより、上記一般式(15)で表される化合物を得て、次いで、得られた化合物を酸化することにより、上記一般式(16)で表される化合物として、得ることができる。
 なお、上記反応のうち、上記一般式(14)に示すジヨード体を得る反応に用いる過ヨウ素酸塩の具体例としては、過ヨウ素酸ナトリウム、過ヨウ素酸カリウムなどが挙げられる。過ヨウ素酸塩の使用量は、上記一般式(9a)で表される化合物1モルあたり、0.1モル~1モルである。また、ヨウ素の使用量は、上記一般式(9a)で表される化合物1モルあたり、1モル~3モルである。
 ジヨード体を得る反応は、適当な溶媒中で行うことができる。用いる溶媒としては、反応に不活性なものであれば特に制限されないが、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコールなどのアルコール系溶媒が挙げられる。用いる溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。溶媒の使用量は、反応規模などにも依存するが、上記一般式(9a)で表される化合物1gあたり、1ml~100mlである。
 また、上記反応のうち、上記一般式(15)で表される化合物を得る反応に用いるメルカプタンの具体例としては、チオフェノール、p-トルエンチオール、ベンジルメルカプタン、α-メチルベンジルメルカプタン、α,α-ジメチルメルカプタン、およびt-ブチルメルカプタンなどが挙げられる。メルカプタンの使用量は、上記一般式(14)で表される化合物1モルあたり、1モル~3モルである。
 上記一般式(15)で表される化合物を得る反応に用いる塩基としては、ナトリウムt-ブトキシド、カリウムt-ブトキシドなどの金属アルコキシド;DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)、DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)などの有機塩基;などが挙げられる。塩基の使用量は、上記一般式(14)で表される化合物1モルあたり、通常1モル~10モルである。
 上記一般式(15)で表される化合物を得る反応に用いるパラジウム(II)錯体の具体例としては、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物などが挙げられる。
 上記一般式(15)で表される化合物を得る反応は、適当な溶媒中で行うことができる。用いる溶媒としては、反応に不活性なものであれば特に制限されないが、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-オクタン、シクロペンタン、シクロヘキサンなどの脂肪族炭化水素系溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、モノクロロベンゼンなどのハロゲン化炭化水素系溶媒;などが挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。溶媒の使用量は、反応規模などにも依存するが、上記一般式(14)で表される化合物1gあたり、1ml~100mlである。
 上記一般式(16)で表される化合物を得るための酸化反応に用いる酸化剤としては、特に制限されず、酢酸-過酸化水素、m-クロロ過安息香酸などの有機過酸化物が挙げられる。酸化剤の使用量は、上記一般式(15)で表される化合物1モルあたり、2~10モルである。
 このような酸化反応を行う適当な溶媒としては、上述した反応方法αを用いる製造方法(1)の酸化反応で使用したものと同様の溶媒を使用することができる。
 さらに、このような酸化反応は、一般式(15)で表される化合物を含む反応液に、所定量の酢酸および過酸化水素を添加して、連続的に行なうこともできる。
 上記反応方法α、反応方法β、および反応方法γにおける、いずれの反応も、0℃から用いる溶媒の沸点までの温度範囲で円滑に進行する。反応時間は、通常数分から数時間である。また、いずれの反応方法においても、反応終了後は、有機合成化学における通常の後処理操作を行い、所望により、カラムクロマトグラフィー、再結晶法、蒸留法などの公知の分離・精製手段を施すことにより、目的物を単離することができる。目的物の構造は、NMRスペクトル、IRスペクトル、マススペクトルなどの測定、および元素分析などにより、同定することができる。
 本発明のアクリルゴム組成物中における、上記一般式(1)で表される化合物の含有量は、重量基準で、アクリルゴム100重量部に対して、0.1~50重量部であり、好ましくは0.3~15重量部、より好ましくは0.3~5重量部、さらに好ましくは0.4~4.5重量部、特に好ましくは0.5~2.5重量部である。上記一般式(1)で表される化合物の含有量が上記範囲内にあると、得られるゴム架橋物は、長時間高温条件下にさらされても、伸びなどの物性の低下を抑制可能であり、耐熱性に優れる。一方、上記一般式(1)で表される化合物の含有量が少なすぎると、得られるゴム架橋物の耐熱性が低下するおそれがあり、多すぎると、上記一般式(1)で表される化合物のブリードアウト、ゴム架橋物の物性低下、成形品の変色が生じる可能性がある。上記一般式(1)で表される化合物は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 また、本発明のアクリルゴム組成物においては、老化防止剤として、上記一般式(1)で表される化合物に加えて、上記一般式(1)で表される化合物以外の、その他の老化防止剤を少なくとも1種含有してもよい。
  本発明で用いるその他の老化防止剤としては、特に限定されないが、上記一般式(1)で表される化合物を除くアミン系老化防止剤、フェノール系老化防止剤、硫黄系老化防止剤、およびリン系老化防止剤が好ましく、本発明のアクリルゴム組成物は、上記その他の老化防止剤から選ばれる少なくとも1種の老化防止剤を含有することが好ましい。
  上記一般式(1)で表される化合物を除くアミン系老化防止剤としては、特に限定されないが、オクチル化ジフェニルアミン、ジオクチル化ジフェニルアミン、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、ジフェニルアミンとアセトンとの反応物、ジフェニルアミンとイソブチレンとの反応物、ジフェニルアミンとアセトンとアニリンとの反応物、アルキル化ジフェニルアミンなどのジフェニルアミン系老化防止剤;N,N’-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、N-シクロヘキシル-N’-フェニル-p-フェニレンジアミン、N-フェニル-N’-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミン、N,N’-ビス(1-メチルヘプチル)-p-フェニレンジアミン、N,N’-ビス(1,4-ジメチルペンチル)-p-フェニレンジアミン、N,N’-ビス(1-エチル-3-メチルペンチル)-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、ジアリル-p-フェニレンジアミンの混合品、フェニルヘキシル-p-フェニレンジアミンなどのp-フェニレンジアミン系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミンなどのナフチルアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリン、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;などが挙げられる。これらの中でも、ジフェニルアミン系老化防止剤およびp-フェニレンジアミン系老化防止剤が好ましい。
  フェノール系老化防止剤としては、特に限定されないが、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジ-t-ブチル-4-エチルフェノール、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-secブチルフェノール、2-(1-メチルシクロヘキシル)-4,6-ジメチルフェノール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、スチレン化フェノール、アルキル化フェノールなどのモノフェノール系老化防止剤;2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレンビス(6-α-メチルベンジル-p-クレゾール)、メチレン架橋した多価アルキルフェノール、4,4’-ブチリデンビス(6-t-ブチル-m-クレゾール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェノール)、1,1-ビス-(4-ヒドロキシフェニル)シクロヘキサン、2,2’-ジヒドロキシ-3,3’-(α-メチルシクロヘキシル)-5,5’-ジメチルジフェニルメタン、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、2,5-ジ-t-ブチルヒドロキノン、2,5-ジ-t-アミルヒドロキノンなどのビス、トリス、またはポリフェノール系老化防止剤;4,4’-チオビス(6-t-ブチル-m-クレゾール)、4,4’-チオビス(6-t-ブチル-o-クレゾール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィドなどのチオビスフェノール系老化防止剤:などが挙げられる。これらの中でも、モノフェノール系老化防止剤およびビスフェノール系老化防止剤が好ましい。
  硫黄系老化防止剤としては、特に限定されないが、ジラウリルチオジペロピオネート、ジステアリルチオジペロピオネートなどのジアルキルチオジプロピオネート老化防止剤;チオジプロピオン酸ジラウリル、イソプロピルキサントゲン酸ニッケルなどの有機チオ酸系老化防止剤;2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール、2-メルカプトベンズイミダゾールとフェノール縮合物の混合品、2-メルカプトベンズイミダゾールの亜鉛塩、2-メルカプトメチルベンズイミダゾールの亜鉛塩、4と5-メルカプトメチルベンズイミダゾールなどのベンズイミダゾール系老化防止剤;ジメチルジチオカルバミン酸ニッケル、ジエチルジチオカルバミン酸ニッケル、ジブチルジチオカルバミン酸ニッケル、ジイソブチルジチオカルバミン酸ニッケルなどのジチオカルバミン酸塩系老化防止剤;1,3-ビス(ジメチルアミノプロピル)-2-チオ尿素、トリブチルチオ尿素などのチオウレア系老化防止剤;などを挙げることができる。これらの中でも、ベンズイミダゾール系老化防止剤が好ましい。
  リン系老化防止剤としては、特に限定されないが、トリフェニルホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニルノニルフェニルホスファイト、トリイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、4,4’-ブチリデンビス(3-メチル-6-t-ブチルジトリデシルホスファイト)、2,2’-エチリデンビス(3-メチル-6-t-ブチルフェノール)フルオロホスファイト、4,4’-イソプロピリデンジフェノールアルキル(C12~C18)ホスファイトなどの亜リン酸エステル系老化防止剤;などを挙げることができる。これらの中でも、亜リン酸エステル系老化防止剤が好ましい。
 上記一般式(1)で表される化合物と、その他の老化防止剤とを併用する場合における、上記一般式(1)で表される化合物とその他の老化防止剤との合計含有量は、重量基準で、アクリルゴム100重量部に対して、0.1~50重量部であり、好ましくは0.3~15重量部、より好ましくは0.3~5重量部、さらに好ましくは0.4~4.5重量部である。上記一般式(1)で表される化合物とその他の老化防止剤との合計含有量は、上記範囲内で適宜組合わせることができる。上記一般式(1)で表される化合物とその他の老化防止剤との合計含有量が上記範囲内にあると、得られるゴム架橋物は、長時間高温条件下にさらされても、伸びなどの物性の低下を抑制可能であり、耐熱性に優れる。一方、上記一般式(1)で表される化合物とその他の老化防止剤との合計含有量が少なすぎると、得られるゴム架橋物の耐熱性が低下するおそれがあり、多すぎると、これら老化防止剤のブリードアウト、ゴム架橋物の物性低下、成形品の変色が生じる可能性がある。その他の老化防止剤は、上記一般式(1)で表される化合物同様、1種単独で、あるいは2種以上を組み合わせて用いることができる。
  上記一般式(1)で表される化合物とその他の老化防止剤とを併用する場合、その含有比は、[上記一般式(1)で表される化合物:その他の老化防止剤]の重量比で、[1:0.1~1:30]が好ましく、[1:0.2~1:10]がより好ましい。
 <架橋剤>
 本発明で用いる架橋剤としては、上述したアクリルゴムに含有される架橋性単量体の種類、およびアクリルゴム組成物の成形用途により適宜選択すればよいが、上述したアクリルゴムを架橋可能なものであれば、特に限定されない。このような架橋剤としては、例えば、ジアミン化合物などの多価アミン化合物、およびその炭酸塩;硫黄;硫黄供与体;トリアジンチオール化合物;多価エポキシ化合物;有機カルボン酸アンモニウム塩;ジチオカルバミン酸金属塩;多価カルボン酸;四級オニウム塩;イミダゾール化合物;イソシアヌル酸化合物;有機過酸化物;などの従来公知の架橋剤を用いることができる。これらの架橋剤は、1種、または2種以上を併せて使用することができる。
 これらのなかでも、本発明で用いるアクリルゴムが、カルボキシル基含有アクリルゴムである場合には、架橋剤として、多価アミン化合物、およびその炭酸塩を用いることが好ましい。
 多価アミン化合物、およびその炭酸塩としては、特に限定されないが、炭素数4~30の多価アミン化合物、およびその炭酸塩が好ましい。このような多価アミン化合物、およびその炭酸塩の例としては、脂肪族多価アミン化合物、およびその炭酸塩、ならびに芳香族多価アミン化合物などが挙げられる。一方、グアニジン化合物のように非共役の窒素-炭素二重結合を有するものは含まれない。
 脂肪族多価アミン化合物、およびその炭酸塩としては、特に限定されないが、例えば、ヘキサメチレンジアミン、ヘキサメチレンジアミンカーバメート、およびN,N’-ジシンナミリデン-1,6-ヘキサンジアミンなどが挙げられる。これらの中でも、ヘキサメチレンジアミンカーバメートが好ましい。
 芳香族多価アミン化合物としては、特に限定されないが、例えば、4,4’-メチレンジアニリン、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-(m-フェニレンジイソプロピリデン)ジアニリン、4,4’-(p-フェニレンジイソプロピリデン)ジアニリン、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4’-ジアミノベンズアニリド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、および1,3,5-ベンゼントリアミンなどが挙げられる。これらの中でも、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンが好ましい。
 本発明で用いるアクリルゴムが、エポキシ基含有アクリルゴムである場合には、架橋剤として、ヘキサメチレンジアミン、ヘキサメチレンジアミンカーバメ-トなどの脂肪族多価アミン化合物、およびその炭酸塩;4,4’-メチレンジアニリンなどの芳香族多価アミン化合物;安息香酸アンモニウム、アジピン酸アンモニウムなどのカルボン酸アンモニウム塩;ジメチルジチオカルバミン酸亜鉛などのジチオカルバミン酸金属塩;テトラデカンニ酸などの多価カルボン酸;セチルトリメチルアンモニウムブロマイドなどの四級オニウム塩;2-メチルイミダゾールなどのイミダゾール化合物;イソシアヌル酸アンモニウムなどのイソシアヌル酸化合物;などを用いることができ、これらの中でも、カルボン酸アンモニウム塩およびジチオカルバミン酸金属塩が好ましく、安息香酸アンモニウムがより好ましい。
 本発明で用いるアクリルゴムが、ハロゲン原子含有アクリルゴムである場合には、架橋剤として、硫黄、硫黄供与体、またはトリアジンチオール化合物を用いることが好ましい。
  硫黄供与体の具体例としては、ジペンタメチレンチウラムヘキササルファイド、トリエチルチウラムジサルファイドなどが挙げられる。
  トリアジンチオール化合物の具体例としては、1,3,5-トリアジン-2,4,6-トリチオール、6-アニリノ-1,3,5-トリアジン-2,4-ジチオール、6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ジアリルアミノ-1,3,5-トリアジン-2,4-ジチオール、および6-オクチルアミノ-1,3,5-トリアジン-2,4-ジチオールなどが挙げられるが、これらの中でも、1,3,5-トリアジン-2,4,6-トリチオールが好ましい。
 さらに、本発明で用いるアクリルゴムが、カルボキシル基およびハロゲン原子含有アクリルゴムである場合には、カルボキシル基を架橋点とする際には、多価アミン化合物、およびその炭酸塩が好ましく、また、ハロゲン原子を架橋点とする際には、硫黄、硫黄供与体、またはトリアジンチオール化合物が好ましい。これらの架橋剤は、1種単独で、または2種以上を併せて使用することができ、カルボキシル基を架橋点とする際に好適な架橋剤と、ハロゲン原子を架橋点とする際に好適な架橋剤とを、併用することができる。なお、多価アミン化合物、およびその炭酸塩、硫黄供与体、ならびにトリアジンチオール化合物の具体例としては、上述したものが挙げられる。
 また、本発明で用いるアクリルゴムが、エチレン-アクリレートゴム0.1~100重量%を含むものであり、かつ、該エチレン-アクリレートゴムを含むアクリルゴムが、カルボキシル基を架橋点として持つ場合には、架橋剤として、上述したカルボキシル基含有アクリルゴムである場合と同様のものを用いることができる。
 本発明のアクリルゴム組成物中における、架橋剤の含有量は、アクリルゴム100重量部に対し、0.05~20重量部であり、好ましくは0.1~15重量部、より好ましくは0.3~12重量部である。架橋剤の含有量が上記範囲内であると、架橋が十分に行われ、得られるゴム架橋物の機械的特性が優れる。一方、架橋剤の含有量が少なすぎる場合には、架橋が不十分となり、得られるゴム架橋物の形状維持が困難になる場合があり、多すぎると、得られるゴム架橋物が硬くなりすぎる場合がある。
 <架橋促進剤>
 また、本発明のアクリルゴム組成物は、さらに架橋促進剤を含有していることが好ましい。
 架橋促進剤としては、特に限定されないが、上述したアクリルゴムがカルボキシル基含有アクリルゴムであり、かつ、架橋剤が多価アミン化合物、またはその炭酸塩である場合には、脂肪族1価2級アミン化合物、脂肪族1価3級アミン化合物、グアニジン化合物、イミダゾール化合物、第4級オニウム塩、第3級ホスフィン化合物、弱酸のアルカリ金属塩、およびジアザビシクロアルケン化合物などが好ましく用いられる。これらの架橋促進剤は、1種、または2種以上を併せて使用することができる。
 本発明で用いるアクリルゴムが、エポキシ基含有アクリルゴムであり、かつ、架橋剤がジチオカルバミン酸金属塩である場合には、架橋促進剤としては、架橋剤として用いたジチオカルバミン酸金属塩以外のその他のジチオカルバミン酸金属塩などが好ましく用いられる。これらの架橋促進剤は、1種、または2種以上を併せて使用することができる。
 本発明で用いるアクリルゴムが、ハロゲン原子含有アクリルゴムであり、かつ、架橋剤が硫黄または硫黄供与体である場合には、架橋促進剤としては、脂肪酸金属石鹸などが好ましく用いられる。また、本発明で用いるアクリルゴムが、ハロゲン原子含有アクリルゴムであり、かつ、架橋剤がトリアジンチオール化合物である場合には、架橋促進剤としては、ジチオカルバミン酸塩およびその誘導体、チオ尿素化合物、ならびにチウラムスルフィド化合物などが好ましく用いられる。これらの架橋促進剤は、1種、または2種以上を併せて使用することができる。
 さらに、本発明で用いるアクリルゴムが、カルボキシル基およびハロゲン原子含有アクリルゴムであり、かつ、架橋剤が多価アミン化合物、またはその炭酸塩である場合には、架橋促進剤としては、脂肪族1価2級アミン化合物、脂肪族1価3級アミン化合物、グアニジン化合物、イミダゾール化合物、第4級オニウム塩、第3級ホスフィン化合物、弱酸のアルカリ金属塩、およびジアザビシクロアルケン化合物などが好ましく用いられる。本発明で用いるアクリルゴムが、カルボキシル基およびハロゲン原子含有アクリルゴムであり、かつ、架橋剤が硫黄または硫黄供与体である場合には、架橋促進剤としては、脂肪酸金属石鹸などが好ましく用いられる。さらに、本発明で用いるアクリルゴムが、カルボキシル基およびハロゲン原子含有アクリルゴムであり、かつ、架橋剤がトリアジンチオール化合物である場合は、架橋促進剤としては、ジチオカルバミン酸塩およびその誘導体、チオ尿素化合物、ならびにチウラムスルフィド化合物などが好ましく用いられる。これらの架橋促進剤は、1種単独で、または2種以上を併せて使用することができ、カルボキシル基を架橋点とする際に好適な架橋剤促進剤と、ハロゲン原子を架橋点とする際に好適な架橋促進剤とを、併用することができる。
 また、本発明で用いるアクリルゴムが、エチレン-アクリレートゴム0.1~100重量%を含むものであり、かつ、該エチレン-アクリレートゴムを含むアクリルゴムが、カルボキシル基を架橋点として持つ場合において、架橋剤が多価アミン化合物、およびその炭酸塩である際には、脂肪族1価2級アミン化合物、脂肪族1価3級アミン化合物、グアニジン化合物、イミダゾール化合物、第4級オニウム塩、第3級ホスフィン化合物、弱酸のアルカリ金属塩、およびジアザビシクロアルケン化合物などが好ましく用いられる。これらの架橋促進剤は、1種、または2種以上を併せて使用することができる。
 脂肪族1価2級アミン化合物は、アンモニアの水素原子の2つを脂肪族炭化水素基で置換した化合物である。水素原子と置換する脂肪族炭化水素基は、好ましくは炭素数1~30のものであり、より好ましくは炭素数8~20のものである。脂肪族一価二級アミン化合物の具体例としては、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジアリルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジ-t-ブチルアミン、ジ-sec-ブチルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジウンデシルアミン、ジドデシルアミン、ジトリデシルアミン、ジテトラデシルアミン、ジペンタデシルアミン、ジセチルアミン、ジ-2-エチルヘキシルアミン、ジオクタデシルアミン、ジ-シス-9-オクタデセニルアミン、およびジノナデシルアミンなどが挙げられる。これらの中でも、ジオクチルアミン、ジデシルアミン、ジドデシルアミン、ジテトラデシルアミン、ジセチルアミン、ジオクタデシルアミン、ジ-シス-9-オクタデセニルアミン、およびジノナデシルアミン、などが好ましい。
 脂肪族1価3級アミン化合物は、アンモニアの3つの水素原子全てを脂肪族炭化水素基で置換した化合物である。水素原子と置換する脂肪族炭化水素基は、好ましくは炭素数1~30のものであり、より好ましくは炭素数1~22のものである。脂肪族一価三級アミン化合物の具体例としては、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリアリルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリ-t-ブチルアミン、トリ-sec-ブチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリウンデシルアミン、トリドデシルアミン、トリトリデシルアミン、トリテトラデシルアミン、トリペンタデシルアミン、トリセチルアミン、トリ-2-エチルヘキシルアミン、トリオクタデシルアミン、トリ-シス-9-オクタデセニルアミン、トリノナデシルアミン、N,N-ジメチルデシルアミン、N,N-ジメチルドデシルアミン、N,N-ジメチルテトラデシルアミン、N,N-ジメチルセチルアミン、N,N-ジメチルオクタデシルアミン、N,N-ジメチルベヘニルアミン、N-メチルジデシルアミン、N-メチルジドデシルアミン、N-メチルジテトラデシルアミン、N-メチルジセチルアミン、N-メチルジオクタデシルアミン、N-メチルジベヘニルアミン、およびジメチルシクロヘキシルアミンなどが挙げられる。これらの中でも、N,N-ジメチルドデシルアミン、N,N-ジメチルテトラデシルアミン、N,N-ジメチルセチルアミン、N,N-ジメチルオクタデシルアミン、およびN,N-ジメチルベヘニルアミンなどが好ましい。
 グアニジン化合物の具体例としては、1,3-ジ-o-トリルグアニジン、1,3-ジフェニルグアニジンなどが挙げられ、1,3-ジ-o-トリルグアニジンが好ましい。
 イミダゾール化合物の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾールなどが挙げられる。
 第4級オニウム塩の具体例としては、テトラn-ブチルアンモニウムブロマイド、オクタデシルトリn-ブチルアンモニウムブロマイドなどが挙げられる。
 第3級ホスフィン化合物の具体例としては、トリフェニルホスフィン、トリ-p-トリルホスフィンなどが挙げられる。
 弱酸のアルカリ金属塩の具体例としては、ナトリウム、カリウムのリン酸塩、炭酸塩などの無機弱酸塩、およびナトリウム、カリウムのステアリン酸塩、ラウリン酸塩などの有機弱酸塩が挙げられる。
 ジアザビシクロアルケン化合物の具体例としては、1,8-ジアザビシクロ[5.4.0]ウンデ-7-セン、1,5-ジアザビシクロ[4.3.0]ノ-5-ネンなどが挙げられる。
 脂肪酸金属石鹸の具体例としては、ステアリン酸ナトリウム、ステアリン酸カリウム、オレイン酸カリウム、ラウリン酸ナトリウム、および2-エチルヘキサン酸ナトリウムなどが挙げられる。
  ジチオカルバミン酸塩およびその誘導体の具体例としては、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジ-n-ブチルジチオカルバミン酸亜鉛、メチルベンジルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、メチルシクロヘキシルジチオカルバミン酸亜鉛、N-ペンタメチレンジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジメチルジチオカルバミン酸鉛、ジメチルジチオカルバミン酸カドミウム、ジメチルジチオカルバミン酸ビスマス、ジメチルジチオカルバミン酸第二鉄、ジメチルジチオカルバミン酸テルル、ジメチルジチオカルバミン酸セレンなどのジチオカルバミン酸金属塩;ジチオカルバミン酸金属塩と、ジブチルアミン、シクロヘキシルエチルアミンなどのアミンとの錯塩あるいは複塩;などが挙げられる。これらの中でも、アクリルゴムがハロゲン原子含有アクリルゴム、またはカルボキシル基およびハロゲン原子含有アクリルゴムであり、かつ、架橋剤としてトリアジンチオール化合物を用いる場合には、亜鉛を用いたジチオカルバミン酸金属塩が好ましく、ジ-n-ブチルジチオカルバミン酸亜鉛がより好ましい。一方、アクリルゴムがエポキシ基含有アクリルゴムであり、かつ、架橋剤としてジチオカルバミン酸亜鉛を用いる場合には、ジメチルジチオカルバミン酸第二鉄が好ましい。
  チオ尿素化合物の具体例としては、N,N’-ジフェニルチオ尿素、N,N’-ジエチルチオ尿素、N,N’-ジブチルチオ尿素、N,N’-ジオルトトリルチオ尿素トリメチルチオ尿素、およびエチレンチオ尿素などが挙げられる。これらの中でも、N,N’-ジエチルチオ尿素が好ましい。
  チウラムスルフィド化合物の具体例としては、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラ-n-ブチルチウラムジスルフィド、およびジペンタメチレンチウラムテトラスルフィドなどが挙げられる。
 本発明のアクリルゴム組成物中における、架橋促進剤の含有量は、アクリゴム100重量部に対して、好ましくは0.1~20重量部であり、より好ましくは0.2~15重量部、さらに好ましくは0.3~10重量部である。架橋剤促進剤の含有量が上記範囲内であると、架橋が十分に行われ、得られるゴム架橋物の機械的特性が優れる。一方、架橋促進剤が少なすぎると、架橋が十分に進行せずに得られるゴム架橋物の機械的特性が劣る可能性があり、架橋促進剤が多すぎると、架橋時に架橋速度が早くなりすぎたり、得られるゴム架橋物表面ヘの架橋促進剤のブルームが生じたり、ゴム架橋物が硬くなりすぎたりするおそれがある。
 <その他の配合剤>
 本発明のアクリルゴム組成物には、アクリルゴム、上記一般式(1)で表される化合物、架橋剤、必要に応じて使用される架橋促進剤、および必要に応じて使用される、上記一般式(1)で表される化合物以外の老化防止剤の他に、ゴム加工分野において通常使用される配合剤を配合することができる。このような配合剤としては、たとえば、カーボンブラック、シリカなどの補強性充填剤;炭酸カルシウムやクレーなどの非補強性充填材;光安定剤;スコーチ防止剤;可塑剤;加工助剤;滑剤;粘着剤;潤滑剤;難燃剤;防黴剤;帯電防止剤;着色剤;シランカップリング剤;架橋遅延剤;などが挙げられる。これらの配合剤の配合量は、本発明の目的や効果を阻害しない範囲であれば特に限定されず、配合目的に応じた量を適宜配合することができる。
 さらに、本発明のアクリルゴム組成物には、本発明の効果を損なわない範囲で、本発明で用いるアクリルゴム以外のゴム、エラストマー、樹脂などをさらに配合してもよい。例えば、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、シリコンゴム、フッ素ゴムなどのゴム;オレフィン系エラストマー、スチレン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリシロキサン系エラストマーなどのエラストマー;ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアクリル系樹脂、ポリフェニレンエーテル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド樹脂、塩化ビニル樹脂、フッ素樹脂などの樹脂;などを配合することができる。なお、アクリルゴム以外のゴム、エラストマー、および樹脂の合計配合量は、本発明で用いるアクリルゴム100重量部に対して、好ましくは50重量部以下、より好ましくは10重量部以下、さらに好ましくは1重量部以下である。
 <アクリルゴム組成物の調製方法>
 本発明のアクリルゴム組成物は、前記アクリルゴムに、上記一般式(1)で表される化合物、架橋剤、必要に応じて使用される架橋促進剤、および必要に応じて使用されるその他の老化防止剤やその他の配合剤などを配合し、バンバリーミキサーやニーダーなどで混合、混練し、次いで、混練ロールを用いて、さらに混練することにより調製される。
 各成分の配合順序は、特に限定されないが、熱で反応や分解しにくい成分を充分に混合した後、熱で反応や分解しやすい成分である架橋剤や架橋促進剤などを、反応や分解が起こらない温度で短時間に混合することが好ましい。
 また、上記各成分のうち、上記一般式(1)で表される化合物および必要に応じて使用されるその他の老化防止剤については、例えば、ポリマーラテックス中やポリマー溶液中に予め添加して、上記一般式(1)で表される化合物および必要に応じて使用されるその他の老化防止剤を添加したポリマーラテックスやポリマー溶液を凝固するような構成としてもよい。あるいは、上記一般式(1)で表される化合物および必要に応じて使用されるその他の老化防止剤は、最終製品を製造する工程までの任意の段階で配合してもよい。具体的には、ポリマーペレット製造の段階、あるいは、混練りの段階、さらには、成形機に投入する段階のいずれの段階で配合してもよく、ポリマー中に十分均一に分散させることができるような配合時期を適宜選択することができる。
 本発明のアクリルゴム組成物のムーニー粘度(ML1+4、100℃)(コンパウンドムーニー)は、好ましくは10~100、より好ましくは20~90、さらに好ましくは25~80である。
 <ゴム架橋物>
 本発明のゴム架橋物は、上述した本発明のアクリルゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明のアクリルゴム組成物を用い、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、およびロールなどにより成形を行い、加熱することにより架橋反応を行い、ゴム架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、130~220℃、好ましくは150~190℃であり、架橋時間は、通常、2分~10時間、好ましくは3分~5時間である。加熱方法としては、プレス加熱、蒸気加熱、オーブン加熱、および熱風加熱などのゴムの架橋に用いられる方法を適宜選択すればよい。
  また、ゴム架橋物の形状、大きさなどによっては、本発明のゴム架橋物は、さらに加熱して二次架橋を行ってもよい。二次架橋は、加熱方法、架橋温度、形状などにより異なるが、好ましくは1~48時間行う。加熱方法、加熱温度は適宜選択すればよい。
 このようにして得られる本発明のゴム架橋物は、上述した本発明のアクリルゴム組成物を用いて得られるものであるため、耐熱性に優れ、長時間高温条件下にさらされても、伸びや圧縮永久歪などの物性の低下を抑制可能なものである。
 そのため、本発明のゴム架橋物は、その特性を活かして、O-リング、パッキン、ダイアフラム、オイルシール、シャフトシール、ベアリングシール、メカニカルシール、ウェルヘッドシール、電気・電子機器用シール、空気圧機器用シールなどの各種シール;シリンダブロックとシリンダヘッドとの連接部に装着されるシリンダヘッドガスケット、ロッカーカバーとシリンダヘッドとの連接部に装着されるロッカーカバーガスケット、オイルパンとシリンダブロックあるいはトランスミッションケースとの連接部に装着されるオイルパンガスケット、正極、電解質板および負極を備えた単位セルを挟み込む一対のハウジング間に装着される燃料電池セパレーター用ガスケット、ハードディスクドライブのトップカバー用ガスケットなどの各種ガスケット;各種ベルト;燃料ホース、ターボエアーホース、オイルホース、ラジエーターホース、ヒーターホース、ウォーターホース、バキュームブレーキホース、コントロールホース、エアコンホース、ブレーキホース、パワーステアリングホース、エアーホース、マリンホース、ライザー、フローラインなどの各種ホース;CVJブーツ、プロペラシャフトブーツ、等速ジョイントブーツ、ラックアンドピニオンブーツなどの各種ブーツ;クッション材、ダイナミックダンパ、ゴムカップリング、空気バネ、防振材などの減衰材ゴム部品;などとして好適に用いられ、特に、過酷な高温下で使用されるホースなどの押出成形品、およびガスケット、シールなどのシール部材用途に、好適に用いられる。
 以下に、化合物の製造例、アクリルゴムの製造例、ならびに実施例、および比較例を挙げて、本発明についてより具体的に説明するが、本発明はこれら製造例、および実施例に限定されるものではない。なお、各例中の「部」、および「%」は、特に断りのない限り、重量基準である。
(製造例1)化合物1の合成
 以下の方法に従い、下記式(17)に示す化合物1を合成した。
Figure JPOXMLDOC01-appb-C000010
 すなわち、まず、温度計を備えた3つ口反応器に窒素気流中、フェノチアジン50.0g(250.92mmol)を加えて、トルエン200mlに溶解させた。次いで、この溶液にα-メチルスチレン59.31g(501.83mmol)とp-トルエンスルホン酸1水和物1.19g(6.27mmol)を加えて80℃にて1時間反応させた。その後、反応液を室温に戻して酢酸48ml、30%過酸化水素水85.34g(752.7mmol)を加えて、さらに80℃にて2時間反応させた。反応液を室温に戻した後、メタノール630mlに投入した。そして、析出した結晶をろ過し、320mlのメタノールでリンスすることで、白色結晶の化合物1を85.7g、収率73%で得た。得られた化合物1の構造はH-NMRで同定した。H-NMR(500MHz、DMSO-d6、TMS、δppm):1.67(s,12H),7.15-7.32(m,12H),7.43(dd,2H,J=9.0, 2.0Hz),7.68(d,2H,J=1.5Hz),10.84(s,1H)。 
(製造例2)化合物2の合成
 以下の方法に従い、下記式(18)に示す化合物2を合成した。なお、化合物2を合成する際には、まず、下記式(19)で示される中間体Aを得て、得られた中間体Aを酸化することにより合成した。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 まず、次の方法により、中間体Aを製造した。すなわち、2つ口反応器に、フェノチアジン13.34g(66.94mmol)、p-トルエンスルフィン酸ナトリウム13.12g(73.63mmol)を加えて、メタノール500mlに溶解させた。次いで、この溶液に、酢酸カリウム13.14g(133.9mmol)、および三塩化鉄86.87g(538.6mmol)を加えて、全容を還流条件下で3時間反応させた。その後、反応液をエバポレーターで50ml程度まで濃縮した後、0.2N塩酸水溶液300ml、飽和食塩水500mlを加え、酢酸エチル800mlで抽出した。抽出した有機層をさらに0.1N水酸化ナトリウム水溶液200mlで洗浄し、無水硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮した。濃縮物をテトラヒドロフラン(THF)に溶解させ、メタノールを加えて再沈殿を行うことで、白色結晶の中間体Aを12.07g(収率51%)得た。得られた中間体Aの構造はH-NMRで同定した。H-NMR(500MHz、DMSO-d6、TMS、δppm):2.36(s,3H),6.66(d,1H,J=7.5 Hz),6.72(d,1H,J=8.5Hz),6.80(t,1H,J=7.5Hz),6.90(d,1H,J=7.5 Hz),7.00(t,1H,J=7.5Hz),7.37(d,1H,J=1.5 Hz), 7.39(d,2H,J=8.0 Hz),7.48(dd,1H,J=8.5,1.5Hz),7.77(d,2H,J=8.0 Hz),9.17(s,1H)。
 次いで、得られた中間体Aを用いて、次の方法に従い、化合物2を得た。すなわち、まず、2つ口反応器に、上記にて得られた中間体A11.0g(31.12mmol)を加えて、THF800mlに溶解させた。次いで、この溶液に、酢酸600ml、および30%過酸化水素水21.17g(186.7mmol)を加え、全容を80℃にて2時間反応させた。反応液を室温に戻した後、蒸留水4リットル中に投入した。析出した結晶をろ過した。得られた結晶をTHFに溶解させ、n-ヘキサンを加えることにより再沈殿させて、白色結晶の化合物2を11.05g、収率93%で得た。得られた化合物2の構造はH-NMRで同定した。H-NMR(500MHz、DMSO-d6、TMS、δppm):δ 2.37(s,3H),7.36(t,1H,J =7.5Hz),7.41(d,1H,J=8.5Hz),7.44(d,2H,J=8.0Hz),7.51(d,1 H,J=9.0Hz),7.73(t,1H,J=8.0Hz),7.84(d,2H,J=8.0Hz), 7.99(d,1H,J=8.0Hz),8.12(dd,1H,J=9.0,1.5Hz),8.34(d,1H,J=1.5 Hz),11.53(s,1H)。
(製造例3)化合物3の合成
 以下の方法に従い、下記式(20)に示す化合物3を合成した。なお、化合物3を合成する際には、まず、下記式(21)で示される中間体Bを得て、次いで、得られた中間体Bから、下記式(22)で示される中間体Cを得て、最後に、得られた中間体Cを酸化することにより合成した。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 まず、次の方法により中間体Bを製造した。すなわち、2つ口反応器に、カルバゾール25.0g(149.5mmol)、ヨウ素30.36g(239.2mmol)をエタノール600mlに溶解させた。次いで、この溶液に、過ヨウ素酸ナトリウム12.8g(59.80mmol)を加え、さらに、濃硫酸1gをゆっくりと滴下した後、全容を65℃で3時間反応させた。その後、反応液を室温に戻し、ロータリーエバポレーターで150ml程度まで濃縮した後、濃縮液に蒸留水500ml、および飽和食塩水300mlを加え、クロロホルム1000mlで抽出した。有機層を無水硫酸ナトリウムで乾燥させ、ロータリーエバポレーターで濃縮した後、濃縮物にn-ヘキサンを加えて再結晶することで、中間体Bを34.4g、収率55%で得た。得られた中間体Bの構造はH-NMRで同定した。H-NMR(500MHz、DMSO-d6、TMS、δppm):7.35(d,2H,J=8.5Hz),7.66(dd,2H,J=8.5,1.5Hz),8.57(d,2H,J=1.5Hz),11.54(s,1H)。
  次いで、得られた中間体Bを用いて、次の方法に従い、中間体Cを得た。すなわち、まず、2つ口反応器に、窒素気流中、上記にて得られた中間体B15.0g(35.80mmol)、および、p-トルエンチオール9.34g(75.18mmol)を加え、トルエン350mlに溶解させた。次いで、この溶液に、ナトリウム tert-ブトキシド17.20g(179.0mmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物0.73g(0.895mmol)を加え、全容を80℃にて4時間反応させた。その後、反応液を室温に戻して、蒸留水1000ml、および飽和食塩水500mlを加え、酢酸エチル500mlで抽出した。有機層を無水硫酸ナトリウムで乾燥させ、ロータリーエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィー(n-ヘキサン:テトラヒドロフラン =3:1(体積比))により精製することで、中間体Cを9.14g、収率62%で得た。得られた中間体Cの構造はH-NMRで同定した。H-NMR(500MHz、CDCl3、TMS、δppm):2.29(s,6H),7.05(d,4H,J=8.0Hz),7.15(d,4H,J=8.0Hz),  7.37(d,2H,J=8.5 Hz),7.51(dd,2H,J=8.5,1.5Hz),8.12(d,2H,J=1.5 Hz),8.18(s,1H)。
 次いで、得られた中間体Cを用いて、次の方法に従い、化合物3を得た。すなわち、まず、2つ口反応器に、中間体C 8.00g(19.44mmol)を加えて、THF160mlに溶解させた。次いで、この溶液に、酢酸240mlおよび30%過酸化水素水13.22g(116.6mmol)を加え、全容を80℃にて10時間反応させた。反応液を室温に戻した後、蒸留水1.5リットル中に投入した。析出した結晶をろ過し、THFに溶解させ、メタノールを加えて再沈殿を行うことで、白色結晶の化合物3を8.04g、収率87%で得た。得られた化合物3の構造はH-NMRで同定した。H-NMR(500MHz、DMSO-d6、TMS、δppm): 2.34(s,6H),7.40(d,4H,J=8.0Hz),7.71(d,2H,J=8.5Hz),7.89(d,4H,J=8.0Hz),7.99(dd,2H,J=8.5,1.5Hz),9.11(d,2H,J=1.5Hz),12.33(s,1 H)。
 以上の各製造例で合成した化合物1~3、および比較例で使用した、従来から老化防止剤として使用されている4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,6-ジ-t-ブチル-4-メチルフェノール、2-メルカプトベンズイミダゾール、トリス(ノニルフェニル)ホスファイトの化学構造と分子量を表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000016
(アクリルゴムの製造例1)
 温度計、攪拌装置を備えた重合反応器に、水200部、ラウリル硫酸ナトリウム3部、アクリル酸エチル58部、アクリル酸n-ブチル40部、およびフマル酸モノn-ブチル2部を仕込んだ。その後、減圧脱気および窒素置換を2度行って酸素を十分除去した後、クメンハイドロパーオキシド0.005部、およびホルムアルデヒドスルホキシル酸ナトリウム0.002部を加えて常圧下、温度30℃で乳化重合を開始し、重合転化率が95%に達するまで反応させた。得られた乳化重合液を塩化カルシウム水溶液で凝固し、水洗、乾燥してカルボキシル基含有アクリルゴムAを得た。得られたカルボキシル基含有アクリルゴムAのムーニー粘度(ML1+4、100℃)は45であった。なお、上記得られたカルボキシル基含有アクリルゴムAの組成は、アクリル酸エチル単位58重量%、アクリル酸n-ブチル単位40重量%、およびフマル酸モノn-ブチル単位2重量%であった。
(アクリルゴムの製造例2)
 温度計、攪拌装置を備えた重合反応器に、水200部、ラウリル硫酸ナトリウム3部、アクリル酸エチル49部、アクリル酸n-ブチル49部、およびフマル酸モノn-ブチル2部を仕込んだ。その後、減圧脱気および窒素置換を2度行って酸素を十分除去した後、クメンハイドロパーオキシド0.005部、およびホルムアルデヒドスルホキシル酸ナトリウム0.002部を加えて常圧下、温度30℃で乳化重合を開始し、重合転化率が95%に達するまで反応させた。得られた乳化重合液を塩化カルシウム水溶液で凝固し、水洗、乾燥してカルボキシル基含有アクリルゴムBを得た。得られたカルボキシル基含有アクリルゴムBのムーニー粘度(ML1+4、100℃)は35であった。なお、上記得られたカルボキシル基含有アクリルゴムBの組成は、アクリル酸エチル単位49重量%、アクリル酸n-ブチル単位49重量%、およびフマル酸モノn-ブチル単位2重量%であった。
(アクリルゴムの製造例3)
  温度計、攪拌装置を備えた重合反応器に、水200部、ラウリル硫酸ナトリウム3部、アクリル酸エチル98.0部、メタクリル酸0.5部、およびp-クロロメチルスチレン1.5部を仕込んだ。その後、減圧脱気および窒素置換を2度行って酸素を十分除去した後、クメンハイドロパーオキシド0.005部、およびホルムアルデヒドスルホキシル酸ナトリウム0.002部を加えて常圧下、温度30℃で乳化重合を開始し、重合転化率が95%に達するまで反応させた。得られた乳化重合液を塩化カルシウム水溶液で凝固し、水洗、乾燥してカルボキシル基および塩素原子含有アクリルゴムCを得た。得られたカルボキシル基および塩素原子含有アクリルゴムCのムーニー粘度(ML1+4、100℃)は50であった。なお、上記得られたカルボキシル基および塩素原子含有アクリルゴムCの組成は、アクリル酸エチル単位98.0重量%、メタクリル酸単位0.5重量%、およびp-クロロメチルスチレン単位1.5重量%であった。
(実施例1-1~1-8、比較例1-1~1-4における評価方法)
 実施例1-1~1-8、比較例1-1~1-4における各種の物性の試験は、以下の方法に従って行った。
(常態物性の試験)
 アクリルゴム組成物を170℃、10MPaで、20分間のプレスによって成形、架橋して、15cm×15cm×2mmのシートを作製し、これを170℃にて4時間加熱して二次架橋させ、二次架橋後のシートからダンベル状3号形の試験片を作製した。そして、得られた試験片を用いて、常温での機械的特性として、JIS  K6251の引張試験に従って引張強さ(強度)、破断伸び(伸び)、100%引張応力をそれぞれ測定した。また、JIS  K6253の硬さ試験に従って硬度を測定した。
(耐熱性試験)
 <押出成形品用途の耐熱性試験>
 耐熱性試験は、上記常態物性の試験と同様にして作製した試験片を180℃の環境下で、1000時間の条件で加熱することにより耐熱老化させたものを使用することにより行った。
 具体的には、まず、JIS  K6251に従って加熱前後における伸びを測定し、下記式に従い、その変化率を計算することにより、伸び変化率を測定した。伸び変化率がゼロに近いほど耐熱性が高いと判断され、好ましい結果となる。
 伸び変化率(%)=100×[(加熱後の伸び(%))-(加熱前の伸び(%))]/(加熱前の伸び(%))
 また、耐熱老化後の試験片を用い、JIS  K6251に従い100%引張応力を測定した。試験途中で試験片がちぎれてしまうものをBO(ベンティングアウト)として評価した。
 さらに、折り曲げ試験として、耐熱老化後の試験片を180°折曲げ、亀裂の発生や折れなどの異常がないかどうかを外観評価した。亀裂の発生や折れなどの異常がないものを「○」、亀裂の発生や折れなどの異常があるものを「×」として評価した。
 <シール部材用途の耐熱性試験>
 アクリルゴム組成物を170℃、10MPaで、20分間のプレスによって成形、架橋して、直径29mm、厚さ12.5mmの円柱型試験片を作製し、更に、170℃にて4時間加熱して二次架橋させた。そして、二次架橋後の試験片について、JIS  K6262に従い、上記試験片を25%圧縮させたまま、180℃の環境下で168時間放置した後、圧縮を解放して圧縮永久歪率を測定した。
(実施例1-1)
 上述したアクリルゴムの製造例1で得られたカルボキシル基含有アクリルゴムA 100重量部、カーボンブラック(東海カーボン社製、シーストSO)60重量部、ステアリン酸2重量部、および上述した製造例1で得られた化合物1(老化防止剤)2.30重量部(ゴム100gに対して、4.93mmol)を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤として2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(和歌山精化工業社製  BAPP)1重量部、および架橋促進剤としてジアルキル(C8~18)アミン(ライオン・アクゾ社製  アーミン2C)2重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法にしたがい、常態物性の試験、ならびに、押出成形品用途の耐熱性試験として伸び変化率、100%引張応力、および折り曲げ試験を行った。結果を表2に示す。
(実施例1-2)
 化合物1(老化防止剤)の配合量を、5.95部(ゴム100gに対して、12.73mmol)に変更した以外は、実施例1-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表2に示す。
(実施例1-3,1-4、比較例1-1,1-2)
 化合物1(老化防止剤)の代わりに、それぞれ、上述した製造例2で得られた化合物2(老化防止剤)(実施例1-3)、上述した製造例3で得られた化合物3(老化防止剤)(実施例1-4)、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製  ナウガード445)(比較例1-1,1-2)を用い、これらの配合量を表2に示す量とした以外は、実施例1-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000017
(実施例1-1~1-4、比較例1-1,1-2の評価)
  表2に示すように、老化防止剤として本発明所定の化合物(化合物1~3)を使用した実施例1-1~1-4においては、180℃の環境下で1000時間という過酷な条件を経ても、比較例1-1,1-2に比べ、伸び変化率が0に近く、伸びの変化が小さい。また、100%引張応力でも、比較例1-1,1-2がベンティングアウト(BO)するのに対し、実施例1-1~1-4では、試験片がちぎれることはなかった。さらに、折り曲げ試験では、比較例1-1,1-2が途中で折れてしまうのに対し、実施例1-1~1-4では、180°折り曲げても、亀裂が発生したり折れたりすることはなく、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、押出成形品用途の耐熱性試験において、耐熱性が向上していることが確認された。
(実施例1-5)
 上述したアクリルゴムの製造例2で得られたカルボキシル基含有アクリルゴムB 100重量部、カーボンブラック(東海カーボン社製、シーストSO)60重量部、ステアリン酸2重量部、および上述した製造例1で得られた化合物1(老化防止剤)2.30重量部(ゴム100gに対して、4.93mmol)を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤としてヘキサメチレンジアミンカーバーメート(デュポンダウエラストマージャパン社製  Diak No.1)0.6重量部、および架橋促進剤として1,3-ジ-o-トリルグアニジン(大内新興化学工業社製  ノクセラーDT)2重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法にしたがい、常態物性の試験、およびシール部材用途の耐熱性試験として圧縮永久歪率の測定を行った。結果を表3に示す。
(実施例1-6)
 化合物1(老化防止剤)の配合量を、5.95部(ゴム100gに対して、12.73mmol)に変更した以外は、実施例1-5と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表3に示す。
(実施例1-7,1-8、比較例1-3,1-4)
 化合物1(老化防止剤)の代わりに、それぞれ、上述した製造例2で得られた化合物2(老化防止剤)(実施例1-7)、上述した製造例3で得られた化合物3(老化防止剤)(実施例1-8)、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製  ナウガード445)(比較例1-3,1-4)を用い、これらの配合量を表3に示す量とした以外は、実施例1-5と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000018
(実施例1-5~1-8、比較例1-3,1-4の評価)
 表3に示すように、老化防止剤として本発明所定の化合物(化合物1~3)を使用した実施例1-5~1-8においては、180℃の環境下で168時間という過酷な条件を経ても、比較例1-3,1-4に比べ、圧縮永久歪率が小さく、本発明のアクリルゴム組成物を用いてなる架橋物は、シール部材用途の耐熱性試験においても、耐熱性が向上していることが確認された。
(実施例2-1~2-9、比較例2-1~2-4における評価方法)
 実施例2-1~2-9、比較例2-1~2-4における各種の物性の試験は、以下の方法に従って行った。
(常態物性の試験)
  実施例1-1~1-8、比較例1-1~1-4と同様にして、試験片を作製し、同様にして、引張強さ(強度)、破断伸び(伸び)および硬度をそれぞれ測定した。
(耐熱性試験)
  耐熱性試験は、上記常態物性の試験と同様にして作製した試験片を190℃の環境下で、500時間の条件で加熱することにより耐熱老化させたものを使用することにより行った。具体的には、まず、JIS  K6251に従って、加熱前後における伸びを測定し、下記式に従い、その変化率を計算することにより、伸び変化率を測定した。伸び変化率がゼロに近いほど耐熱性が高いと判断され、好ましい結果となる。
  伸び変化率(%)=100×[(加熱後の伸び(%))-(加熱前の伸び(%))]/(加熱前の伸び(%))
  また、JIS  K6251の引張試験に従って、加熱前後における引張強さを測定し、下記式に従い、その変化率を計算することにより、強度変化率を測定した。強度変化率がゼロに近いほど耐熱性が高いと判断され、好ましい結果となる。
  強度変化率(%)=100×[(加熱後の引張強さ(MPa))-(加熱前の引張強さ(MPa))]/(加熱前の引張強さ(MPa))
(実施例2-1)
  上述したアクリルゴムの製造例1で得られたカルボキシル基含有アクリルゴムA 100重量部、カーボンブラック(東海カーボン社製、シーストSO)60重量部、ステアリン酸2重量部、および上述した化合物の製造例1で得られた化合物1(老化防止剤)0.50重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤として2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(和歌山精化工業社製、BAPP)1重量部、および架橋促進剤としてジアルキル(C8~18)アミン(ライオン・アクゾ社製、アーミン2C)2重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、ならびに耐熱性試験として伸び変化率、および強度変化率を測定した。結果を表4に示す。
(実施例2-2~2-5)
  化合物1(老化防止剤)の配合量を、0.75部(実施例2-2)、1.00部(実施例2-3)、2.00部(実施例2-4)、4.00部(実施例2-5)に変更した以外は、実施例2-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表4に示す。
(比較例2-1~2-3)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を、1.00部(比較例2-1)、2.00部(比較例2-2)、4.00部(比較例2-3)とした以外は、実施例2-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000019
(実施例2-1~2-5、比較例2-1~2-3の評価)
  表4に示すように、老化防止剤として本発明所定の化合物1を使用した実施例2-1~2-5においては、190℃の環境下で500時間という過酷な条件を経ても、比較例2-1~2-3に比べ、伸び変化率が0に近く、伸びの変化が小さい。また、強度変化率でも、絶対値が70%よりも小さく、長時間高温条件下にさらされても、一定以上の強度が維持されていた。よって、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、耐熱性試験において、伸びと強度との物性バランスに優れており、耐熱性が向上していることが確認された。なお、比較例2-1~2-3のゴム架橋物は、耐熱性に劣ることから、長時間高温条件下にさらされることにより、硬化劣化がより生じていると考えられ、数値の上では、一定以上の強度が維持されていた。
(実施例2-6)
  上述したアクリルゴムの製造例2で得られたカルボキシル基含有アクリルゴムB  100重量部、カーボンブラック(東海カーボン社製、シーストSO)60重量部、ステアリン酸2重量部、および上述した化合物の製造例1で得られた化合物1(老化防止剤)0.50重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤としてヘキサメチレンジアミンカーバーメート(デュポンダウエラストマージャパン社製、Diak  No.1)0.6重量部、および架橋促進剤として1,3-ジ-o-トリルグアニジン(大内新興化学工業社製、ノクセラーDT)2重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、ならびに耐熱性試験として伸び変化率、および強度変化率を測定した。結果を表5に示す。
(実施例2-7~2-9)
  化合物1(老化防止剤)の配合量を、1.00部(実施例2-7)、2.00部(実施例2-8)、4.00部(実施例2-9)に変更した以外は、実施例2-6と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表5に示す。
(比較例2-4)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を2.00部とした以外は、実施例2-6と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000020
(実施例2-6~2-9、比較例2-4の評価)
  表5に示すように、老化防止剤として本発明所定の化合物1を使用した実施例2-6~2-9においては、190℃の環境下で500時間という過酷な条件を経ても、比較例2-4に比べ、伸び変化率が0に近く、伸びの変化が小さい。また、強度変化率でも、絶対値が70%よりも小さく、長時間高温条件下にさらされても、一定以上の強度が維持されていた。よって、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、架橋剤および架橋促進剤の種類に関わらず、耐熱性試験において、伸びと強度との物性バランスに優れており、耐熱性が向上していることが確認された。
(実施例3-1~3-4、比較例3-1,3-2における評価方法)
 実施例3-1~3-4、比較例3-1,3-2における各種の物性の試験は、以下の方法に従って行った。
(常態物性の試験)
  実施例1-1~1-8、比較例1-1~1-4と同様にして、試験片を作製し、同様にして、引張強さ(強度)、破断伸び(伸び)、100%引張応力および硬度をそれぞれ測定した。
(耐熱性試験)
  耐熱性試験は、上記常態物性の試験と同様にして作製した試験片を175℃の環境下で、500時間または1000時間の条件で加熱することにより耐熱老化させたものを使用することにより行った。具体的には、まず、JIS  K6251に従って、加熱前後における伸びを測定し、下記式に従い、その変化率を計算することにより、伸び変化率を測定した。伸び変化率がゼロに近いほど耐熱性が高いと判断され、好ましい結果となる。
  伸び変化率(%)=100×[(加熱後の伸び(%))-(加熱前の伸び(%))]/(加熱前の伸び(%))
(実施例3-1)
  エポキシ基含有アクリルゴム(日本ゼオン社製、Nipol  AR51)100重量部、カーボンブラック(東海カーボン社製、シーストSO)50重量部、ステアリン酸2重量部、および上述した製造例1で得られた化合物1(老化防止剤)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤としてジメチルジチオカルバミン酸亜鉛(大内新興化学工業社製、ノクセラーPZ)2.5重量部、架橋促進剤としてジメチルジチオカルバミン酸第二鉄(大内新興化学工業社製、ノクセラーTTFE)0.5重量部、およびスコーチ防止剤としてスルホンアミド誘導体(ランクセス社製、ブルカレントE/C)0.5重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験として伸び変化率を測定した。結果を表6に示す。
(実施例3-2)
  化合物1(老化防止剤)の配合量を、2.00部に変更した以外は、実施例3-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表6に示す。
(実施例3-3)
  エポキシ基含有アクリルゴム(日本ゼオン社製、Nipol  AR51)100重量部、カーボンブラック(東海カーボン社製、シーストSO)50重量部、ステアリン酸2重量部、および上述した製造例1で得られた化合物1(老化防止剤)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤として安息香酸アンモニウム(大内新興化学工業社製、バルノックAB-S)1.5重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験として伸び変化率を測定した。結果を表6に示す。
(実施例3-4)
  化合物1(老化防止剤)の配合量を、2.00部に変更した以外は、実施例3-3と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表6に示す。
(比較例3-1)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を、2.00部とした以外は、実施例3-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表6に示す。
(比較例3-2)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を、2.00部とした以外は、実施例3-3と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000021
(実施例3-1~3-4、比較例3-1,3-2の評価)
  表6に示すように、老化防止剤として本発明所定の化合物1を使用した実施例3-1~3-4においては、175℃の環境下で500時間、または1000時間という過酷な条件を経ても、比較例3-1,3-2に比べ、伸び変化率が0に近く、伸びの変化が小さい。よって、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、架橋剤の種類に関わらず、耐熱性試験において、耐熱性が向上していることが確認された。
(実施例4-1~4-4、比較例4-1,4-2における評価方法)
 実施例4-1~4-4、比較例4-1,4-2における各種の物性の試験は、以下の方法に従って行った。
(常態物性の試験)
  実施例1-1~1-8、比較例1-1~1-4と同様にして、試験片を作製し、同様にして、引張強さ(強度)、破断伸び(伸び)、100%引張応力および硬度をそれぞれ測定した。
(耐熱性試験)
  耐熱性試験は、上記常態物性の試験と同様にして作製した試験片を190℃の環境下で、500時間の条件で加熱することにより耐熱老化させたものを使用することにより行った。具体的には、まず、JIS  K6251に従って、加熱前後における伸びを測定し、下記式に従い、その変化率を計算することにより、伸び変化率を測定した。伸び変化率がゼロに近いほど耐熱性が高いと判断され、好ましい結果となる。
  伸び変化率(%)=100×[(加熱後の伸び(%))-(加熱前の伸び(%))]/(加熱前の伸び(%))
(実施例4-1)
  塩素原子含有アクリルゴム(日本ゼオン社製、Nipol  AR71)100重量部、カーボンブラック(東海カーボン社製、シーストSO)50重量部、ステアリン酸2重量部、および上述した製造例1で得られた化合物1(老化防止剤)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤として硫黄(鶴見化学工業社製、サルファックスPMC)0.3重量部、架橋促進剤として、ステアリン酸ナトリウム(花王社製、NSソープ)3重量部、およびステアリン酸カリウム(日本油脂社製、ノンサールSK-1)0.5重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験として伸び変化率を測定した。結果を表7に示す。
(実施例4-2)
  化合物1(老化防止剤)の配合量を、2.00部に変更した以外は、実施例4-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表7に示す。
(実施例4-3)
  塩素原子含有アクリルゴム(日本ゼオン社製、Nipol  AR71)100重量部、カーボンブラック(東海カーボン社製、シーストSO)50重量部、ステアリン酸2重量部、および上述した製造例1で得られた化合物1(老化防止剤)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤として2,4,6-トリメルカプト-s-トリアジン(三協化成社製、ZISNET  F)0.5重量部、架橋促進剤として、ジ-n-ブチルジチオカルバミン酸亜鉛(大内新興化学工業社製、ノクセラーBZ)1.5重量部、およびN,N’-ジエチルチオ尿素(大内新興化学工業社製、ノクセラーEUR)0.3重量部、スコーチ防止剤としてN-シクロヘキシルチオフタルイミド(大内振興化学工業社製、リターダーCTP)0.2重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験として伸び変化率を測定した。結果を表7に示す。
(実施例4-4)
  化合物1(老化防止剤)の配合量を、2.00部に変更した以外は、実施例4-3と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表7に示す。
(比較例4-1)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を、2.00部とした以外は、実施例4-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表7に示す。
(比較例4-2)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を、2.00部とした以外は、実施例4-3と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000022
(実施例4-1~4-4、比較例4-1,4-2の評価)
  表7に示すように、老化防止剤として本発明所定の化合物1を使用した実施例4-1~4-4においては、190℃の環境下で500時間という過酷な条件を経ても、比較例4-1,4-2に比べ、伸び変化率が0に近く、伸びの変化が小さい。よって、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、架橋剤および架橋促進剤の種類に関わらず、耐熱性試験において、耐熱性が向上していることが確認された。
(実施例5-1~5-3、比較例5-1,5-2における評価方法)
 実施例5-1~5-3、比較例5-1,5-2における各種の物性の試験は、以下の方法に従って行った。
(常態物性の試験)
  実施例1-1~1-8、比較例1-1~1-4と同様にして、試験片を作製し、同様にして、引張強さ(強度)、破断伸び(伸び)、100%引張応力および硬度をそれぞれ測定した。
(耐熱性試験)
  耐熱性試験は、上記常態物性の試験と同様にして作製した試験片を175℃の環境下で、1000時間の条件で加熱することにより耐熱老化させたものを使用することにより行った。具体的には、まず、JIS  K6251に従って、加熱前後における伸びを測定し、下記式に従い、その変化率を計算することにより、伸び変化率を測定した。伸び変化率がゼロに近いほど耐熱性が高いと判断され、好ましい結果となる。
  伸び変化率(%)=100×[(加熱後の伸び(%))-(加熱前の伸び(%))]/(加熱前の伸び(%))
(実施例5-1)
  上述したアクリルゴムの製造例3で得られたカルボキシル基および塩素原子含有アクリルゴムC  100重量部、カーボンブラック(東海カーボン社製、シーストSO)50重量部、ステアリン酸2重量部、および上述した化合物の製造例1で得られた化合物1(老化防止剤)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤として硫黄(鶴見化学工業社製、サルファックスPMC)0.3重量部、架橋促進剤として、ステアリン酸ナトリウム(花王社製、NSソープ)3重量部、およびステアリン酸カリウム(日本油脂社製、ノンサールSK-1)0.5重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験として伸び変化率を測定した。結果を表8に示す。
(実施例5-2)
  化合物1(老化防止剤)の配合量を、2.00部に変更した以外は、実施例5-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表8に示す。
(実施例5-3)
  架橋剤としてヘキサメチレンジアミンカーバーメート(デュポンダウエラストマージャパン社製、Diak  No.1)0.2重量部を、架橋促進剤として1,3-ジ-o-トリルグアニジン(大内新興化学工業社製、ノクセラーDT)0.5重量部を、それぞれさらに添加した以外は、実施例5-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表8に示す。
(比較例5-1)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を、2.00部とした以外は、実施例5-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表8に示す。
(比較例5-2)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を、2.00部とした以外は、実施例5-3と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000023
(実施例5-1~5-3、比較例5-1,5-2の評価)
  表8に示すように、老化防止剤として本発明所定の化合物1を使用した実施例5-1,5-2は、175℃の環境下で1000時間という過酷な条件を経ても、同様の架橋剤を同量用いているが老化防止剤が従来の化合物である比較例5-1に比べ、伸び変化率が0に近く、伸びの変化が小さい。また、実施例5-1,5-2と同様に、老化防止剤として本発明所定の化合物1を使用した実施例5-3も、同様の架橋剤を同量用いているが老化防止剤が従来の化合物である比較例5-2に比べ、伸び変化率が0に近く、伸びの変化が小さい。よって、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、架橋剤および架橋促進剤の種類に関わらず、耐熱性試験において、耐熱性が向上していることが確認された。
(実施例6-1~6-11、比較例6-1~6-4における評価方法)
 実施例6-1~6-11、比較例6-1~6-4における各種の物性の試験は、以下の方法に従って行った。
(常態物性の試験)
  実施例1-1~1-8、比較例1-1~1-4と同様にして、試験片を作製し、同様にして、引張強さ(強度)、破断伸び(伸び)、100%引張応力および硬度をそれぞれ測定した。
(耐熱性試験)
  耐熱性試験は、上記常態物性の試験と同様にして作製した試験片を、175℃、または190℃の環境下で、500時間の条件で加熱することにより耐熱老化させたものを使用することにより行った。具体的には、まず、JIS  K6251に従って、加熱前後における伸びを測定し、下記式に従い、その変化率を計算することにより、伸び変化率を測定した。伸び変化率がゼロに近いほど耐熱性が高いと判断され、好ましい結果となる。
  伸び変化率(%)=100×[(加熱後の伸び(%))-(加熱前の伸び(%))]/(加熱前の伸び(%))
(実施例6-1)
  カルボキシル基含有エチレン-アクリレートゴムa(デュポン社製、Vamac  G)100重量部、カーボンブラック(東海カーボン社製、シーストSO)50重量部、ステアリン酸2重量部、および上述した化合物の製造例1で得られた化合物1(老化防止剤)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤として2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(和歌山精化工業社製、BAPP)2.5重量部、および架橋促進剤としてジアルキル(C8~18)アミン(ライオン・アクゾ社製、アーミン2C)3重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験(175℃、500時間)として伸び変化率を測定した。結果を表9に示す。
(実施例6-2)
  化合物1(老化防止剤)の配合量を、2.00部に変更した以外は、実施例6-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表9に示す。
(実施例6-3)
  カルボキシル基含有エチレン-アクリレートゴムb(電気化学工業社製、デンカER-A403)100重量部、カーボンブラック(東海カーボン社製、シーストSO)55重量部、ステアリン酸2重量部、および上述した化合物の製造例1で得られた化合物1(老化防止剤)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤として2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(和歌山精化工業社製、BAPP)1重量部、および架橋促進剤としてジアルキル(C8~18)アミン(ライオン・アクゾ社製、アーミン2C)2重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験(190℃、500時間)として伸び変化率を測定した。結果を表9に示す。
(実施例6-4)
  化合物1(老化防止剤)の配合量を、2.00部に変更した以外は、実施例6-3と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表9に示す。
(比較例6-1)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を、2.00部とした以外は、実施例6-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表9に示す。
(比較例6-2)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を、2.00部とした以外は、実施例6-3と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000024
(実施例6-1~6-4、比較例6-1,6-2の評価)
  表9に示すように、老化防止剤として本発明所定の化合物1を使用した実施例6-1~6-4においては、175℃、または190℃の環境下で500時間という過酷な条件を経ても、比較例6-1または6-2に比べ、伸び変化率が0に近く、伸びの変化が小さい。よって、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、耐熱性試験において、耐熱性が向上していることが確認された。
(実施例6-5)
  カルボキシル基含有エチレン-アクリレートゴムa(デュポン社製、Vamac  G)100重量部、カーボンブラック(東海カーボン社製、シーストSO)45重量部、ステアリン酸2重量部、および上述した化合物の製造例1で得られた化合物1(老化防止剤)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤としてヘキサメチレンジアミンカーバーメート(デュポンダウエラストマージャパン社製、Diak  No.1)1.5重量部、および架橋促進剤として1,3-ジ-o-トリルグアニジン(大内新興化学工業社製、ノクセラーDT)4重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験(175℃、500時間)として伸び変化率を測定した。結果を表10に示す。
(実施例6-6)
  化合物1(老化防止剤)の配合量を、2.00部に変更した以外は、実施例6-5と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表10に示す。
(実施例6-7)
  カルボキシル基含有エチレン-アクリレートゴムb(電気化学工業社製、デンカER-A403)100重量部、カーボンブラック(東海カーボン社製、シーストSO)50重量部、ステアリン酸2重量部、および上述した化合物の製造例1で得られた化合物1(老化防止剤)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤としてヘキサメチレンジアミンカーバーメート(デュポンダウエラストマージャパン社製、Diak  No.1)0.6重量部、および架橋促進剤として1,3-ジ-o-トリルグアニジン(大内新興化学工業社製、ノクセラーDT)1.5重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験(190℃、500時間)として伸び変化率を測定した。結果を表10に示す。
(実施例6-8)
  化合物1(老化防止剤)の配合量を、2.00部に変更した以外は、実施例6-7と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表10に示す。
(比較例6-3)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を2.00部とした以外は、実施例6-5と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表10に示す。
(比較例6-4)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を2.00部とした以外は、実施例6-7と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000025
(実施例6-5~6-8、比較例6-3,6-4の評価)
  表10に示すように、老化防止剤として本発明所定の化合物1を使用した実施例6-5~6-8においては、175℃、または190℃の環境下で500時間という過酷な条件を経ても、比較例6-3または6-4に比べ、伸び変化率が0に近く、伸びの変化が小さい。よって、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、架橋剤および架橋促進剤の種類に関わらず、耐熱性試験において、耐熱性が向上していることが確認された。
(実施例6-9)
  上述したアクリルゴムの製造例1で得られたカルボキシル基含有アクリルゴムA  75重量部、およびカルボキシル基含有エチレン-アクリレートゴムb(電気化学工業社製、デンカER-A403)25重量部(カルボキシル基含有アクリルゴムAとカルボキシル基含有エチレン-アクリレートゴムbとを合わせて、アクリルゴムとして100重量部)、カーボンブラック(東海カーボン社製、シーストSO)60重量部、ステアリン酸2重量部、ならびに上述した化合物の製造例1で得られた化合物1(老化防止剤)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤として2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(和歌山精化工業社製、BAPP)1重量部、および架橋促進剤としてジアルキル(C8~18)アミン(ライオン・アクゾ社製、アーミン2C)2重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験(190℃、500時間)として伸び変化率を測定した。結果を表11に示す。
(実施例6-10,6-11)
  アクリルゴムの配合を、カルボキシル基含有アクリルゴムA  50重量部、およびカルボキシル基含有エチレン-アクリレートゴムb(電気化学工業社製、デンカER-A403)50重量部(実施例6-10)、カルボキシル基含有アクリルゴムA  25重量部、およびカルボキシル基含有エチレン-アクリレートゴムb(電気化学工業社製、デンカER-A403)75重量部(実施例6-11)に変更した以外は、それぞれ実施例6-9と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000026
  表11に示すように、老化防止剤として本発明所定の化合物1を使用した実施例6-9~6-11においては、190℃の環境下で500時間という過酷な条件を経ても、伸び変化率が抑制されており、伸びの変化が小さい。よって、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、アクリルゴムを構成する単量体として、エチレンを有するものと有しないものとを混合して使用することによっても、耐熱性試験において、耐熱性に優れていることが確認された。
(実施例7-1~7-11、比較例7-1~7-8における評価方法)
 実施例7-1~7-11、比較例7-1~7-8における各種の物性の試験は、以下の方法に従って行った。
(常態物性の試験)
  実施例1-1~1-8、比較例1-1~1-4と同様にして、試験片を作製し、同様にして、引張強さ(強度)、破断伸び(伸び)、100%引張応力および硬度をそれぞれ測定した。
(耐熱性試験)
  耐熱性試験は、上記常態特性の試験と同様にして作製した試験片を190℃の環境下で、500時間の条件で加熱することにより耐熱老化させたものを使用することにより行った。具体的には、まず、JIS  K6251に従って、加熱前後における伸びを測定し、下記式に従い、その変化率を計算することにより、伸び変化率を測定した。伸び変化率がゼロに近いほど耐熱性が高いと判断され、好ましい結果となる。
  伸び変化率(%)=100×[(加熱後の伸び(%))-(加熱前の伸び(%))]/(加熱前の伸び(%))
(実施例7-1)
  上述したアクリルゴムの製造例1で得られたカルボキシル基含有アクリルゴムA  100重量部、カーボンブラック(東海カーボン社製、シーストSO)66重量部、ステアリン酸2重量部、ならびに老化防止剤として、上述した化合物の製造例1で得られた化合物1  1.00重量部、および4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(ケムチュラ社製、ナウガード445)2.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤として2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(和歌山精化工業社製、BAPP)1重量部、および架橋促進剤としてジアルキル(C8~18)アミン(ライオン・アクゾ社製、アーミン2C)2重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験として伸び変化率を測定した。結果を表12に示す。
(実施例7-2)
  4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン2.00部に代えて、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)(大内新興化学工業社製、ノクラック  NS-6)1.00部を用い、また、化合物1の配合量を、1.00部に代えて3.00部用いた以外は、実施例7-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表12に示す。
(実施例7-3)
  4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン2.00部に代えて、2-メルカプトベンズイミダゾール(大内新興化学工業社製、ノクラック  MB)1.00部を用い、また、化合物1の配合量を、1.00部に代えて3.00部用いた以外は、実施例7-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表12に示す。
(比較例7-1)
  化合物1を添加しなかった以外は、実施例7-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000027
(実施例7-1~7-3、比較例7-1の評価)
  表12に示すように、本発明所定の化合物1とその他の老化防止剤とを併用した実施例7-1~7-3においては、190℃の環境下で500時間という過酷な条件を経ても、比較例7-1に比べ、伸び変化率が0に近く、伸びの変化が小さい。よって、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、耐熱性試験において、耐熱性が向上していることが確認された。
(実施例7-4)
  上述したアクリルゴムの製造例2で得られたカルボキシル基含有アクリルゴムB  100重量部、カーボンブラック(東海カーボン社製、シーストSO)60重量部、ステアリン酸2重量部、ならびに老化防止剤として、上述した化合物の製造例1で得られた化合物1  1.00重量部、および4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(ケムチュラ社製、ナウガード445)1.00重量部を、0.8リットルバンバリーを用いて50℃で5分間混練した後、架橋剤としてヘキサメチレンジアミンカーバーメート(デュポンダウエラストマージャパン社製、Diak  No.1)0.6重量部、および架橋促進剤として1,3-ジ-o-トリルグアニジン(大内新興化学工業社製、ノクセラーDT)2重量部を加えて、50℃のオープンロールで混練し、アクリルゴム組成物を調製した。そして、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、および耐熱性試験として伸び変化率を測定した。結果を表13に示す。
(実施例7-5~7-11)
  4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン1.00部に代えて、N,N’-ジ-2-ナフチル-p-フェニレンジアミン1.00部(大内新興化学工業社製、ノクラック  White)(実施例7-5)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)1.00部(大内新興化学工業社製、ノクラック  NS-6)(実施例7-6)、2,6-ジ-t-ブチル-4-メチルフェノール1.00部(大内新興化学工業社製、ノクラック  200)(実施例7-7)、2,6-ジ-t-ブチル-4-メチルフェノール2.00部(大内新興化学工業社製、ノクラック  200)(実施例7-8)、2-メルカプトベンズイミダゾール1.00部(大内新興化学工業社製、ノクラック  MB)(実施例7-9)、トリス(ノニルフェニル)ホスファイト1.00部(大内新興化学工業社製、ノクラック  TNP)(実施例7-10)、トリス(ノニルフェニル)ホスファイト1.00部(大内新興化学工業社製、ノクラック  TNP)および2-メルカプトベンズイミダゾール0.50部(大内新興化学工業社製、ノクラック  MB)(実施例7-11)にそれぞれ変更した以外は、実施例7-4と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000028
(比較例7-2)
  化合物1を添加せず、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミンの配合量を、1.00部に代えて、2.00部を用いた以外は、実施例7-4と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表14に示す。
(比較例7-3~7-8)
  老化防止剤として、さらに、N,N’-ジ-2-ナフチル-p-フェニレンジアミン1.00部(大内新興化学工業社製、ノクラック  White)(比較例7-3)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)1.00部(大内新興化学工業社製、ノクラック  NS-6)(比較例7-4)、2,6-ジ-t-ブチル-4-メチルフェノール1.00部(大内新興化学工業社製、ノクラック  200)(比較例7-5)、2-メルカプトベンズイミダゾール1.00部(大内新興化学工業社製、ノクラック  MB)(比較例7-6)、トリス(ノニルフェニル)ホスファイト1.00部(大内新興化学工業社製、ノクラック  TNP)(比較例7-7)、トリス(ノニルフェニル)ホスファイト1.00部(大内新興化学工業社製、ノクラック  TNP)および2-メルカプトベンズイミダゾール0.50部(大内新興化学工業社製、ノクラック  MB)(比較例7-8)をそれぞれ加えた以外は、比較例7-2と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表14に示す。
Figure JPOXMLDOC01-appb-T000029
(実施例7-4~7-11、比較例7-2~7-8の評価)
  表13および表14に示すように、老化防止剤として本発明所定の化合物1とその他の老化防止剤とを併用した実施例7-4~7-11においては、190℃の環境下で500時間という過酷な条件を経ても、比較例7-2~7-8に比べ、伸び変化率が0に近く、伸びの変化が小さい。よって、本発明のアクリルゴム組成物を用いてなるゴム架橋物は、架橋剤および架橋促進剤の種類に関わらず、耐熱性試験において、耐熱性が向上していることが確認された。また、老化防止剤として本発明所定の化合物1とその他の老化防止剤とを併用した場合、従来の老化防止剤同士を併用した場合に比べ、耐熱性が向上することが確認された。
(実施例8-1,8-2、比較例8-1~8-3における評価方法)
 実施例8-1,8-2、比較例8-1~8-3における各種の物性の試験は、以下の方法に従って行った。
(常態物性の試験)
  実施例1-1~1-8、比較例1-1~1-4と同様にして、試験片を作製し、同様にして、引張強さ(強度)、破断伸び(伸び)、および硬度をそれぞれ測定した。
(耐油性試験)
 JIS K6258の浸漬試験法に従って、作成した試験片を、150℃の市販のエンジンオイル(カストロール社製 XLD-Diesel CE10W-30)に168時間浸漬し、体積変化率、引張強さ(強度)、破断伸び(伸び)、および硬度をそれぞれ測定した。
(エンジンオイル浸漬後の耐熱性試験)
 エンジンオイル浸漬後の耐熱性試験は、JIS K6258の浸漬試験法に従い、作成した試験片を、150℃の市販のエンジンオイル(カストロール社製 XLD-Diesel CE10W-30)に168時間浸漬した後引き上げ、24時間ドラフト内で室温風乾した後、更に190℃の環境下で、168時間の条件で加熱することにより耐熱老化させたものを使用することにより行った。具体的には、まず、JIS  K6251に従って、加熱前後における伸びを測定し、下記式に従い、その変化率を計算することにより、伸び変化率を測定した。伸び変化率がゼロに近いほど耐熱性が高いと判断され、好ましい結果となる。
 伸び変化率(%)=100×[(加熱後の伸び(%))-(加熱前の伸び(%))]/(加熱前の伸び(%))
(試験片中の老化防止剤量の含有量)
 エンジンオイル浸漬前の試験片を細断した後、クロロホルムを溶媒として90℃で8時間ソックスレー抽出法を行い抽出物を得た。その抽出物を40℃で2時間真空乾燥後、テトラヒドロフラン5mlを加えて溶解させた。その溶液1mlを10mlメスフラスコに採取した後、テトラヒドロフランで10mlまでメスアップしたものを検液とした。作成した検液を高速液体クロマトグラフィーで測定し検量線法によって老化防止剤量を定量した。
 上述したエンジンオイル浸漬後の試験片においても同様に試験片中の老化防止剤量を定量し、下記式に従い、老化防止剤の残存率を求めた。残存率が高いほど老化防止剤のオイルへの抽出量が小さいとされ、好ましい結果となる。
 残存率(%)=100×(浸漬後の老化防止剤量)/(浸漬前の老化防止剤量)
(実施例8-1)
 実施例2-3と同様にして、アクリルゴム組成物を調製し、得られたアクリルゴム組成物を用いて、上記方法に従い、常態物性の試験、耐油性試験、エンジンオイル浸漬後の耐熱性試験、および試験片中の老化防止剤量の含有量の各測定を行なった。結果を表15に示す。
(実施例8-2)
 化合物1(老化防止剤)の配合量を、2.00部に変更した以外は、実施例8-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表15に示す。
(比較例8-1)
 化合物1(老化防止剤)を、添加しなかった以外は、実施例8-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表15に示す。
(比較例8-2,8-3)
  化合物1(老化防止剤)の代わりに、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(老化防止剤、ケムチュラ社製、ナウガード445)を用い、その配合量を、1.00部(比較例8-2)、2.00部(比較例8-3)とした以外は、実施例8-1と同様にして、アクリルゴム組成物を得て、同様に評価を行った。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000030
(実施例8-1,8-2、比較例8-1~8-3の評価)
  表15に示すように、老化防止剤として本発明所定の化合物1を使用した実施例8-1,8-2においては、耐油性試験後の常態物性が良好であり、また、エンジンオイル浸漬後においても、老化防止剤としての化合物1が、ゴム架橋物中に多く残存しており、伸び変化率が小さく、耐熱性に優れていた。一方、比較例8-1~8-3は、エンジンオイル浸漬後において、伸び変化率が大きく、耐熱性に劣る結果であった。特に、比較例8-2,8-3においては、ゴム架橋物中における、老化防止剤としての4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミンの残存量が少なくなる結果となった。

Claims (13)

  1.  アクリルゴム100重量部に対し、下記一般式(1)で表される化合物0.1~50重量部、および架橋剤0.05~20重量部を含有するアクリルゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式(1)中、Yは化学的な単結合、または-SO-を表す。RおよびRはそれぞれ独立して、置換基を有していてもよい炭素数1~30の有機基を表す。ZおよびZはそれぞれ独立して、化学的な単結合または-SO-を表す。nおよびmはそれぞれ独立して、0または1であり、nおよびmの少なくとも一方は1である。)
  2.  前記一般式(1)で表される化合物中のRおよびRが、それぞれ独立して、置換基を有していてもよい直鎖状または分岐状の炭素数2~8のアルキル基、または置換基を有していてもよいフェニル基である請求項1に記載のアクリルゴム組成物。
  3.  前記一般式(1)で表される化合物中、Yは-SO-、RおよびRは、それぞれ独立して、置換基を有していてもよい直鎖状または分岐状の炭素数2~8のアルキル基、ならびにZおよびZは化学的な単結合であり、nおよびmが1である請求項1に記載のアクリルゴム組成物。
  4.  前記アクリルゴム100重量部に対する、前記一般式(1)で表される化合物の含有量が、0.3~5重量部である請求項1~3のいずれかに記載のアクリルゴム組成物。
  5.  前記アクリルゴムが、カルボキシル基含有アクリルゴムである請求項1~4のいずれかに記載のアクリルゴム組成物。
  6.  前記アクリルゴムが、エポキシ基含有アクリルゴムである請求項1~4のいずれかに記載のアクリルゴム組成物。
  7.  前記アクリルゴムが、ハロゲン原子含有アクリルゴムである請求項1~4のいずれかに記載のアクリルゴム組成物。
  8.  前記アクリルゴムが、カルボキシル基およびハロゲン原子含有アクリルゴムである請求項1~4のいずれかに記載のアクリルゴム組成物。
  9.  前記アクリルゴムが、エチレン-アクリレートゴム0.1~100重量%を含むものである請求項1~8のいずれかに記載のアクリルゴム組成物。
  10.  さらに、前記一般式(1)で表される化合物以外のその他の老化防止剤を少なくとも1種含有し、前記アクリルゴム100重量部に対する、前記一般式(1)で表される化合物と前記その他の老化防止剤との合計の含有量が、0.1~50重量部である請求項1~9のいずれかに記載のアクリルゴム組成物。
  11.  請求項1~10のいずれかに記載のアクリルゴム組成物を架橋してなるゴム架橋物。
  12.  押出成形品である請求項11に記載のゴム架橋物。
  13.  シール部材である請求項11に記載のゴム架橋物。
PCT/JP2011/051741 2010-01-29 2011-01-28 アクリルゴム組成物およびゴム架橋物 WO2011093444A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011551930A JP5712937B2 (ja) 2010-01-29 2011-01-28 アクリルゴム組成物およびゴム架橋物
KR1020127022375A KR101718576B1 (ko) 2010-01-29 2011-01-28 아크릴 고무 조성물 및 고무 가교물
EP11737154.2A EP2530119B1 (en) 2010-01-29 2011-01-28 Acrylic rubber composition and rubber crosslinked product
US13/575,778 US8609753B2 (en) 2010-01-29 2011-01-28 Acrylic rubber composition and cross-linked rubber product
CN201180016803.0A CN102812083B (zh) 2010-01-29 2011-01-28 丙烯酸橡胶组合物及橡胶交联物

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2010-019346 2010-01-29
JP2010019346 2010-01-29
JP2010076843 2010-03-30
JP2010-076843 2010-03-30
JP2010-220695 2010-09-30
JP2010220695 2010-09-30
JP2010-220696 2010-09-30
JP2010220696 2010-09-30
JP2010-265633 2010-11-29
JP2010-265634 2010-11-29
JP2010265633 2010-11-29
JP2010265634 2010-11-29
JP2010-281976 2010-12-17
JP2010281975 2010-12-17
JP2010-281975 2010-12-17
JP2010281976 2010-12-17

Publications (1)

Publication Number Publication Date
WO2011093444A1 true WO2011093444A1 (ja) 2011-08-04

Family

ID=44319425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051741 WO2011093444A1 (ja) 2010-01-29 2011-01-28 アクリルゴム組成物およびゴム架橋物

Country Status (6)

Country Link
US (1) US8609753B2 (ja)
EP (1) EP2530119B1 (ja)
JP (1) JP5712937B2 (ja)
KR (1) KR101718576B1 (ja)
CN (1) CN102812083B (ja)
WO (1) WO2011093444A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180390A (ja) * 2011-02-28 2012-09-20 Nippon Zeon Co Ltd アクリルゴム組成物およびゴム架橋物
JP2012211239A (ja) * 2011-03-31 2012-11-01 Nippon Zeon Co Ltd アクリルゴム組成物およびゴム架橋物
JP2013028754A (ja) * 2011-07-29 2013-02-07 Nippon Zeon Co Ltd アクリルゴム組成物およびゴム架橋物
CN102993616A (zh) * 2011-08-09 2013-03-27 苏州东浦橡塑制品有限公司 一种汽车密封垫及其制备方法
JP2013136657A (ja) * 2011-12-28 2013-07-11 Swcc Showa Cable Systems Co Ltd ゴム組成物および免震・防振装置
JPWO2015098911A1 (ja) * 2013-12-25 2017-03-23 日本ゼオン株式会社 架橋性アクリルゴム組成物およびゴム架橋物
WO2020153173A1 (ja) * 2019-01-25 2020-07-30 日本ゼオン株式会社 アクリルゴム組成物およびゴム架橋物
JPWO2020262495A1 (ja) * 2019-06-28 2020-12-30
WO2021014791A1 (ja) * 2019-07-19 2021-01-28 日本ゼオン株式会社 保存安定性と加工性に優れるアクリルゴムシート
WO2022181621A1 (ja) * 2021-02-26 2022-09-01 日本ゼオン株式会社 縮合複素環化合物含有組成物および有機材料含有組成物
WO2023162754A1 (ja) * 2022-02-24 2023-08-31 日本ゼオン株式会社 架橋性ゴムおよびその製造方法、ならびに、ゴム架橋物

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530076B1 (en) * 2010-01-29 2016-11-09 Zeon Corporation Fused heterocyclic compound and composition
JP2015030819A (ja) * 2013-08-05 2015-02-16 株式会社ジェイテクト アクリルゴム組成物およびこれを備えたシール装置
CN104558999A (zh) * 2015-01-21 2015-04-29 山东美晨科技股份有限公司 一种抗焦烧性能优异的羧酸型丙烯酸酯橡胶原料配制
CN109563430B (zh) * 2016-05-24 2021-11-19 路博润公司 用于润滑组合物的密封溶胀剂
US11174449B2 (en) 2016-05-24 2021-11-16 The Lubrizol Corporation Seal swell agents for lubricating compositions
CN105911204A (zh) * 2016-06-23 2016-08-31 福清出入境检验检疫局综合技术服务中心 一种橡胶及其制品中亚乙基硫脲的检测方法
WO2018079785A1 (ja) * 2016-10-31 2018-05-03 日本ゼオン株式会社 アクリルゴムの製造方法
SG11201906761PA (en) * 2017-01-27 2019-08-27 Zeon Corp Method for producing acrylic rubber
WO2018159459A1 (ja) 2017-03-03 2018-09-07 日本ゼオン株式会社 ジアリールアミン系化合物、老化防止剤、およびポリマー組成物
EP3992236A4 (en) * 2019-06-28 2023-07-26 Zeon Corporation COMPOSITION OF ACRYLIC RUBBER AND CROSS-LINKED RUBBER PRODUCT
KR102516016B1 (ko) 2019-10-08 2023-03-30 주식회사 엘지화학 아크릴계 공중합체 조성물, 이의 제조방법 및 이를 포함하는 아크릴계 공중합체 배합물
CA3163816A1 (en) * 2020-01-06 2021-07-15 Stephen Duncan Substituted triazine compounds and uses thereof
KR20210106148A (ko) 2020-02-20 2021-08-30 주식회사 엘지화학 공중합체 라텍스 조성물, 이의 제조방법 및 이를 포함하는 고무 조성물
EP4130131A4 (en) * 2020-03-25 2024-04-24 Zeon Corporation ACRYLIC RUBBER COMPOSITION AND CROSS-LINKED RUBBER PRODUCT
CN116137865B (zh) * 2020-07-27 2024-09-24 Nok株式会社 丙烯酸橡胶组合物
CN113563682B (zh) * 2021-08-25 2023-01-17 山东海益橡胶科技有限公司 不含胍类促进剂的改性羧基丙烯酸酯橡胶及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569672A (en) * 1978-11-06 1980-05-26 Usm Corp Adhesive and its activating agent
JPS5817158A (ja) * 1981-07-23 1983-02-01 Dainippon Ink & Chem Inc 紫外線を遮断する樹脂組成物
JPH04174886A (ja) * 1990-11-08 1992-06-23 Canon Inc 染料ボレート錯体を含有するホログラム記録媒体及び記録方法
JPH1121411A (ja) 1997-07-04 1999-01-26 Nok Corp アクリルゴム用酸化防止剤
JP2006001299A (ja) 2004-06-15 2006-01-05 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2008031330A (ja) * 2006-07-31 2008-02-14 Kaneka Corp アクリルゴム組成物、該組成物からなる成形体及びそれを用いた自動車・電気・電子用部品
JP2008291083A (ja) * 2007-05-23 2008-12-04 Yokohama Rubber Co Ltd:The 放熱材用熱可塑性エラストマー組成物
JP2009007491A (ja) 2007-06-28 2009-01-15 Denki Kagaku Kogyo Kk アクリルゴム組成物
JP2009084514A (ja) 2007-10-02 2009-04-23 Nippon Zeon Co Ltd 架橋性アクリルゴム組成物およびその架橋物
JP2010174217A (ja) * 2009-02-02 2010-08-12 Denki Kagaku Kogyo Kk アクリルゴム組成物及びその用途
JP2011001428A (ja) * 2009-06-17 2011-01-06 Nippon Zeon Co Ltd アクリルゴム組成物およびその架橋物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2983731A (en) 1953-06-06 1961-05-09 Ruetgerswerke Ag Condensation product of carbazole with alpha-methyl-styrene
GB1140089A (en) * 1966-05-06 1969-01-15 Geigy Uk Ltd Alkyl substituted phenothiazines
US3822284A (en) * 1970-07-16 1974-07-02 Shell Oil Co 1-and 3-substituted (3,5-di-t-butyl-4-hydroxybenzyl)carbazole
US3803140A (en) * 1971-03-12 1974-04-09 Ciba Geigy Corp Substituted phenothiazines
US4155874A (en) * 1977-07-28 1979-05-22 West Laboratories, Inc. Phenothiazinyl sulfides
CS221000B1 (en) * 1981-09-09 1983-04-29 Antonin Humplik Method of stabilization of coloured vulcanizers from natural and synthetic rubbers against the thermooxidation ageing
EP0138481B1 (en) * 1983-10-05 1991-06-26 Merck Frosst Canada Inc. Leukotriene biosynthesis inhibitors
US4785095A (en) 1986-09-16 1988-11-15 The Lubrizol Corporation N-substituted thio alkyl phenothiazines
US4915873A (en) 1988-01-22 1990-04-10 Uniroyal Chemical Company, Inc. Polymerization inhibitor composition for vinyl aromatic compounds
JPH0953070A (ja) 1995-08-11 1997-02-25 Seiko Kagaku Kk ゴム用老化防止剤及び組成物
JPH10298551A (ja) 1997-04-23 1998-11-10 Seiko Kagaku Kk 酸化防止剤及び該酸化防止剤を含有してなる組成物
US6093853A (en) 1997-07-04 2000-07-25 Nok Corporation Phenylenediamine derivative, production method thereof and antioxidant for rubber using it as effective constituent
CN100406524C (zh) * 2001-04-06 2008-07-30 西巴特殊化学品控股有限公司 接枝于聚合物的亚砜或砜
KR20070032715A (ko) 2004-06-23 2007-03-22 제온 코포레이션 아크릴 고무 조성물 및 아크릴 고무 가교물
EP1915384B1 (en) 2005-08-19 2012-01-11 Dow Corning Toray Co., Ltd. A method of manufacturing an organic silicon compound that contains a methacryloxy group or an acryloxy group
EP2053089B1 (en) * 2006-06-16 2011-10-12 NOK Corporation Acrylic rubber composition
JP2008127518A (ja) * 2006-11-24 2008-06-05 Nippon Zeon Co Ltd 圧縮機用シール部材用アクリルゴム組成物、その架橋体及び圧縮機用シール部材
EP2530076B1 (en) * 2010-01-29 2016-11-09 Zeon Corporation Fused heterocyclic compound and composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569672A (en) * 1978-11-06 1980-05-26 Usm Corp Adhesive and its activating agent
JPS5817158A (ja) * 1981-07-23 1983-02-01 Dainippon Ink & Chem Inc 紫外線を遮断する樹脂組成物
JPH04174886A (ja) * 1990-11-08 1992-06-23 Canon Inc 染料ボレート錯体を含有するホログラム記録媒体及び記録方法
JPH1121411A (ja) 1997-07-04 1999-01-26 Nok Corp アクリルゴム用酸化防止剤
JP2006001299A (ja) 2004-06-15 2006-01-05 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2008031330A (ja) * 2006-07-31 2008-02-14 Kaneka Corp アクリルゴム組成物、該組成物からなる成形体及びそれを用いた自動車・電気・電子用部品
JP2008291083A (ja) * 2007-05-23 2008-12-04 Yokohama Rubber Co Ltd:The 放熱材用熱可塑性エラストマー組成物
JP2009007491A (ja) 2007-06-28 2009-01-15 Denki Kagaku Kogyo Kk アクリルゴム組成物
JP2009084514A (ja) 2007-10-02 2009-04-23 Nippon Zeon Co Ltd 架橋性アクリルゴム組成物およびその架橋物
JP2010174217A (ja) * 2009-02-02 2010-08-12 Denki Kagaku Kogyo Kk アクリルゴム組成物及びその用途
JP2011001428A (ja) * 2009-06-17 2011-01-06 Nippon Zeon Co Ltd アクリルゴム組成物およびその架橋物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530119A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180390A (ja) * 2011-02-28 2012-09-20 Nippon Zeon Co Ltd アクリルゴム組成物およびゴム架橋物
JP2012211239A (ja) * 2011-03-31 2012-11-01 Nippon Zeon Co Ltd アクリルゴム組成物およびゴム架橋物
JP2013028754A (ja) * 2011-07-29 2013-02-07 Nippon Zeon Co Ltd アクリルゴム組成物およびゴム架橋物
CN102993616A (zh) * 2011-08-09 2013-03-27 苏州东浦橡塑制品有限公司 一种汽车密封垫及其制备方法
JP2013136657A (ja) * 2011-12-28 2013-07-11 Swcc Showa Cable Systems Co Ltd ゴム組成物および免震・防振装置
JPWO2015098911A1 (ja) * 2013-12-25 2017-03-23 日本ゼオン株式会社 架橋性アクリルゴム組成物およびゴム架橋物
WO2020153173A1 (ja) * 2019-01-25 2020-07-30 日本ゼオン株式会社 アクリルゴム組成物およびゴム架橋物
JPWO2020262495A1 (ja) * 2019-06-28 2020-12-30
WO2020262495A1 (ja) * 2019-06-28 2020-12-30 日本ゼオン株式会社 アクリルゴム、アクリルゴム組成物、およびゴム架橋物
CN114080401A (zh) * 2019-06-28 2022-02-22 日本瑞翁株式会社 丙烯酸橡胶、丙烯酸橡胶组合物以及橡胶交联物
JP7480782B2 (ja) 2019-06-28 2024-05-10 日本ゼオン株式会社 アクリルゴム、アクリルゴム組成物、およびゴム架橋物
WO2021014791A1 (ja) * 2019-07-19 2021-01-28 日本ゼオン株式会社 保存安定性と加工性に優れるアクリルゴムシート
JP7567792B2 (ja) 2019-07-19 2024-10-16 日本ゼオン株式会社 保存安定性と加工性に優れるアクリルゴムシート
WO2022181621A1 (ja) * 2021-02-26 2022-09-01 日本ゼオン株式会社 縮合複素環化合物含有組成物および有機材料含有組成物
WO2023162754A1 (ja) * 2022-02-24 2023-08-31 日本ゼオン株式会社 架橋性ゴムおよびその製造方法、ならびに、ゴム架橋物

Also Published As

Publication number Publication date
EP2530119B1 (en) 2015-09-30
JPWO2011093444A1 (ja) 2013-06-06
CN102812083A (zh) 2012-12-05
KR20120108055A (ko) 2012-10-04
US8609753B2 (en) 2013-12-17
KR101718576B1 (ko) 2017-03-21
CN102812083B (zh) 2015-04-29
US20120302674A1 (en) 2012-11-29
JP5712937B2 (ja) 2015-05-07
EP2530119A1 (en) 2012-12-05
EP2530119A4 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5712937B2 (ja) アクリルゴム組成物およびゴム架橋物
JP6708316B2 (ja) アクリルゴムの製造方法、および、その製造方法により得られるアクリルゴム
JP5505353B2 (ja) アクリルゴム組成物およびゴム架橋物
WO2011093443A1 (ja) 縮合複素環化合物及び組成物
JP7036107B2 (ja) ジアリールアミン系化合物、老化防止剤、およびポリマー組成物
JP5541196B2 (ja) アクリルゴム組成物およびゴム架橋物
JP5716597B2 (ja) アクリルゴム組成物およびゴム架橋物
JP7480782B2 (ja) アクリルゴム、アクリルゴム組成物、およびゴム架橋物
JP2015137322A (ja) 架橋性アクリルゴム組成物およびゴム架橋物
JP6020254B2 (ja) アクリルゴム組成物の製造方法
JP7505492B2 (ja) アクリルゴム組成物およびゴム架橋物
JPWO2017170042A1 (ja) アクリル重合体組成物
WO2020153173A1 (ja) アクリルゴム組成物およびゴム架橋物
WO2017170043A1 (ja) アクリル重合体組成物
WO2021161838A1 (ja) ジアリールアミン系化合物、表面処理フィラー、およびポリマー組成物
WO2021192897A1 (ja) アクリルゴム組成物およびゴム架橋物
WO2017170041A1 (ja) アクリル重合体組成物
WO2017170044A1 (ja) アクリル重合体組成物
JP2024079857A (ja) 縮合複素環化合物含有組成物および有機材料含有組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016803.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551930

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13575778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011737154

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127022375

Country of ref document: KR

Kind code of ref document: A