WO2011087038A1 - 磁気メモリ、磁気メモリの製造方法、及び、磁気メモリの駆動方法 - Google Patents

磁気メモリ、磁気メモリの製造方法、及び、磁気メモリの駆動方法 Download PDF

Info

Publication number
WO2011087038A1
WO2011087038A1 PCT/JP2011/050404 JP2011050404W WO2011087038A1 WO 2011087038 A1 WO2011087038 A1 WO 2011087038A1 JP 2011050404 W JP2011050404 W JP 2011050404W WO 2011087038 A1 WO2011087038 A1 WO 2011087038A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic memory
magnetoresistive
magnetization
elements
memory cell
Prior art date
Application number
PCT/JP2011/050404
Other languages
English (en)
French (fr)
Inventor
石垣 隆士
河原 尊之
竹村 理一郎
和夫 小埜
伊藤 顕知
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2011549996A priority Critical patent/JP5756760B2/ja
Priority to US13/522,076 priority patent/US9257483B2/en
Publication of WO2011087038A1 publication Critical patent/WO2011087038A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5607Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using magnetic storage elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a storage device using a magnetoresistive effect element by spin injection, and more specifically to a storage device that enables multi-value recording.
  • a magnetic random access memory is expected to be a non-volatile memory that can achieve high speed, high integration, low power consumption, and high reliability.
  • a basic element of the MRAM is called a magnetic tunnel junction (MTJ) and has a structure in which an insulating layer used as a tunnel barrier is sandwiched between two ferromagnetic layers.
  • Information is recorded by utilizing a tunnel magnetoresistance (TMR) effect in which the magnetization directions of the two ferromagnetic layers are parallel and antiparallel and the resistance of the element is greatly different.
  • TMR tunnel magnetoresistance
  • the method of injecting different spin-polarized electrons by the magnetization of the ferromagnetic layer and rewriting the direction of magnetization (spin-injection magnetization reversal type) by flowing a current to the TMR element in both directions is miniaturized. Accordingly, since the write current can be reduced, high integration and low power consumption can be achieved along with scaling of the semiconductor device. Even in such a memory, in order to reduce the bit cost, multi-level storage capable of storing a large amount of information in one memory cell has been studied.
  • Patent Document 1 describes a magnetic memory that can be multi-valued by connecting a plurality of TMR elements in series.
  • Patent Documents 2 and 3 describe a magnetic memory that uses a spin-injection magnetization reversal element to arrange a plurality of TMR elements in parallel to serve as a memory cell storage element.
  • the memory cell shown in Patent Document 1 is composed of a TMR element that rewrites information with a magnetic field, and requires wiring for generating a write magnetic field in each of a plurality of TMR elements connected in series.
  • the operation is complicated because each wiring is driven.
  • the magnetic field required for rewriting has a drawback that it increases with the miniaturization of elements.
  • the combination of r 1 and r 2 may be a combination of low, low, high, low, and high, respectively, corresponding to R 1 , R 2 , R 3 , and R 4 , respectively.
  • the current of the element r 2 is The resistance state must not change.
  • both elements is actually because parallel connection, the current flowing through the element r 1 according to the resistance ratio changes. The same applies to other write information, and the required current increases by the amount of parallel connection.
  • FIG. 1A is configured by arranging a plurality of free layers having different film thicknesses on a tunnel insulating film which is a ferromagnetic fixed layer whose magnetization direction is fixed and a nonmagnetic separation layer. ing. Although the resistance of each element varies depending on the difference in film thickness, the above problem is not essentially solved. In addition, as a manufacturing method, it is necessary to repeat the formation and processing of the free layer a plurality of times, and it is difficult to form damage and fine shapes due to processing, and the manufacturing is complicated. Yes.
  • FIG. 1A is configured by providing a plurality of magnetization switching elements having different shapes in the same plane.
  • the magnetization reversal element generally characterizes the ease of magnetization using the anisotropy of the planar shape, the shape cannot be freely set.
  • the element resistance is almost inversely proportional to the element area, so that the current density flowing through each element is constant. Therefore, when the rewrite threshold current density is the same between the parallel connection elements, there arises a problem that rewriting occurs at the same time. Note that this configuration does not essentially solve the above problem.
  • the above-described problem includes two or more magnetoresistive elements electrically connected in series, and one of the elements connected in series depending on the direction, magnitude, and order of the current flowing through the series connected element. It is solved by selecting and writing. For example, the magnetoresistive effect elements having the same film configuration are made different in plane area from each other, so that the resistance change amount by each magnetization reversal and the threshold current value necessary for the magnetization reversal are made different from each other.
  • the present invention it is possible to realize a magnetic memory that is easy to manufacture, easy to rewrite information, and capable of multilevel recording and reading.
  • FIG. 7 is a cross-sectional view of the main part of the magnetic memory taken along the line A-A ′ of FIG. 6.
  • FIG. 9 is a modification of the magnetoresistive effect element in FIGS. 9 is a modification of the magnetoresistive effect element in FIGS. 9 is a modification of the magnetoresistive effect element in FIGS. It is principal part sectional drawing of the magnetic memory which is another Example of this invention. It is a principal part circuit diagram based on the cell structure of FIG.
  • FIG. 2A shows the basic configuration of the magnetic memory of the present invention
  • FIG. 2B shows its current-resistance characteristics. Magnetoresistive elements 1 and 2 are electrically connected in series. Therefore, this characteristic can be obtained from the single current-resistance characteristics of the elements 1 and 2 (FIGS. 3A and 3B) as shown below.
  • Each magnetoresistive element 1, 2 has ferromagnetic fixed layers 1 a, 2 a with fixed magnetization, nonmagnetic tunnel insulating films 1 b, 2 b, and free layers 1 c, 2 c with variable magnetization.
  • each layer is made of the same material and film structure, and if necessary, films are formed simultaneously, a uniform film thickness and characteristics can be secured.
  • the shape of the surface perpendicular to the current direction for example, the aspect ratio is the same, even if the two planar areas S 1 and S 2 are different, the effect of the shape anisotropy of both can be made the same. .
  • the resistance ratio (TMR ratio) of the resistance Rp when the magnetization is in the parallel state and the resistance Rap when the magnetization is in the antiparallel state, and the threshold current density required for rewriting are constant in the elements 1 and 2. Therefore, threshold current values I + 1 and I + 2 in which resistance changes when a current flows in the positive (+) direction of elements 1 and 2 and a threshold current value I ⁇ 1 in the negative ( ⁇ ) direction. , I - 2, as follows, and the following relation depending on the device area.
  • Rp 2 Rp 1 x S 1 / S 2 It can be expressed as.
  • the negative direction of the horizontal axis is the direction in which electrons flow from the fixed layer to the free layer, electrons spin-polarized by the fixed layer are injected into the free layer, and the magnetizations are in a parallel state.
  • the positive direction of the horizontal axis is the direction in which the magnetization is in an antiparallel state, and the element resistance is increased.
  • the resistance-current relationship is as follows. First, when the magnetizations of the free layers of both magnetoresistance effect elements are in a parallel state, the resistance value is Rp 1 + Rp 2 When electrons flow from the layer to the fixed layer (positive direction in the horizontal axis in FIG. 2B), the magnetization of the magnetoresistive effect element 1 having an initially small area (S 1 ) and a low threshold current (I + 1 ) is antiparallel. Thus, the resistance becomes Rap 1 + Rp 2 (resistance change ⁇ R 1 ).
  • the two magnetoresistive elements in order to connect the two magnetoresistive elements and construct the characteristic of FIG. 2B, the two magnetoresistive elements must not be rewritten simultaneously by the current injected into the element. That is, the threshold currents of the magnetoresistive elements need to be different (I + ⁇ 1 ⁇ I + ⁇ 2 ).
  • the stored information is discriminated based on the resistance of the entire connected elements, so that the amount of resistance change due to rewriting of each element needs to be different ( ⁇ R 1) so that it can be understood which element is being rewritten. ⁇ ⁇ R 2 ).
  • 2-bit information can be stored in one memory cell including two elements, and writing and reading operations can be performed as follows.
  • An example of a write sequence in this memory cell is shown in FIG.
  • the element is “0” as the parallel state information
  • “1” is the anti-parallel state
  • both are in the parallel state “00”
  • one of elements 1 and 2 is in the anti-parallel state
  • the state immediately after manufacturing is “00” because the magnetic state of all elements is uniformized in a parallel state in the annealing process in a magnetic field, but it is “00”.
  • the state of each element is indefinite.
  • FIG. 5 shows a basic memory cell configuration of the magnetic memory of the present invention.
  • One of the magnetoresistive elements 1 and 2 connected in series is connected to the bit line BL, and the other is connected to the source line SL via a transistor Tr which is a selection element of the memory cell.
  • the memory cell is selected by applying a bias to the bit line BL or source line SL and the word line WL which is the gate electrode of the transistor Tr, and injects a current into the magnetoresistive effect element connected in series.
  • a memory element having 2 N values can be similarly achieved by using N (three or more) magnetoresistive elements. Even in this case, it is necessary that each resistance change amount and the threshold current value are different from each other.
  • a magnetoresistive element is generally composed of a fixed layer whose magnetization is fixed in one direction, a tunnel insulating layer, and a free layer whose magnetization direction can be switched by spin injection magnetization reversal.
  • the material of the tunnel barrier layer aluminum oxide, magnesium oxide, or the like is used. Magnesium oxide that exhibits a greater resistance change is desirable.
  • the ferromagnetic layer serving as the fixed layer and the free layer for example, Co, Fe, Ni, and a laminated film of these alloys or alloys are used as materials whose magnetization directions are in-plane.
  • a large resistance change can be obtained by using CoFeB in which about 20% B is added to the CoFe alloy.
  • the easy axis of stable magnetization is the major axis direction of the free layer of the tunnel magnetoresistive effect element, so that the stability of the magnetization is increased. It is desirable that the ratio L / W of the length L of the major axis to the length W of the minor axis is about 1.5 to 3.
  • a perpendicular magnetization film whose magnetization direction is in the perpendicular direction can also be used.
  • an L10 ordered alloy film such as CoPt, FePt, CoPd, or FePd, and a film to which a specific magnetic metal such as Cu, Sn, Pb, Sb, or Bi is added, or Co or Fe, and Pt
  • a film in which Pd is alternately stacked, a film in which Co is used as a base element, and Cr and Pt are added thereto can be used.
  • the drain of the transistor is connected to the lower electrode 10 through the contact hole 7, the wiring 8 and the interlayer plug 9.
  • the first magnetoresistance effect element 1 is arranged, and the upper end thereof is connected to the second lower electrode 11.
  • the second magnetoresistive effect element 2 is disposed on the second lower electrode 11, and the upper end thereof is connected to the bit line BL.
  • the bit line BL extends in the X direction and is shared among a plurality of memory cells.
  • the first magnetoresistive effect element 1 and the second magnetoresistive effect element 2 have ferromagnetic layers 1a and 2a, nonmagnetic layers 1b and 2b, and ferromagnetic layers 1c and 2c, respectively.
  • FIG. 8 is a diagram for explaining the operation of the memory cell, and only eight memory cells are shown for simplicity.
  • the magnetoresistive effect element is described as a variable resistance in which the resistance in the two ferromagnetic layers changes in parallel and antiparallel.
  • 1V is applied to WL2 and 0.2V is applied to BL1
  • the memory cell Cell21 is selected, and the series resistance of the magnetoresistive elements 1 and 2 connected in series is determined.
  • 0 V is applied to the other WL, BL, and SL, and the other memory cells are not selected.
  • 1V is applied to WL2, 1V is applied to BL1, and 0V is applied to SL1, and the other WL, BL, and SL are 0V, or 1V is applied to WL2, 0V is applied to BL1, and 1V is applied to SL1.
  • the other WL and SL are applied with 0V, and the other BL is applied with 1V.
  • the memory cell Cell21 is selected, and the direction of magnetization is changed by flowing a current through the magnetoresistive elements 1 and 2 connected in series.
  • FIG. 9A is a cross-sectional view of the main part of the magnetoresistive effect element according to Embodiment 3 of the present invention.
  • the manufacturing process is simplified, and the shapes of the two magnetoresistive effect elements are proportionally multiplied.
  • the characteristics can be set with high accuracy.
  • Transistors, wiring, electric circuit diagrams, and memory cell operations are the same as those in the second embodiment.
  • the magnetoresistive effect element 2 and the intermediate conductor layer 12 are formed on the lower electrode 10 from the drain of the transistor through the contact hole 7, the wiring 8 and the interlayer plug 9, as in the second embodiment.
  • the magnetoresistive effect element 1, the intermediate conductor layer 12, and the magnetoresistive effect element 2 are formed on the lower electrode 10.
  • a uniform film can be formed with good quality without being damaged by impurities or processing by forming the film in a consistent vacuum using a sputtering method.
  • the magnetoresistive element 1 is patterned by lithography (photoresist 14) and ion beam etching or plasma etching technology (FIG. 9B).
  • a sidewall 13 is formed around the magnetoresistive effect element 1 by depositing a silicon oxide film, a silicon nitride film, or the like by, for example, sputtering or CVD (Chemical Vapor Deposition) and etching back (FIG. 9C).
  • the laminated magnetoresistive effect element shown in FIG. 9 is formed.
  • the relative position and area ratio of the magnetoresistive effect element 1 and the magnetoresistive effect element 2 can be controlled with high accuracy, and lithography for patterning the magnetoresistive effect element 2 can be omitted. It becomes.
  • a plurality of magnetoresistive elements are provided in series at one end of the transistor.
  • the resistance of the magnetoresistive element is the source. It becomes a resistance and becomes a source follower in which the effective gate voltage is lowered and the driving capability of the transistor is lowered.
  • FIG. 10 and FIG. 11 show another embodiment for solving such a problem.
  • Each shows a cross-sectional view of the main part of the memory cell and an electric circuit diagram of the main part of the memory array.
  • the magnetoresistive effect element 1 is formed on the lower electrode 10 from one end of the transistor via the contact hole 7, the wiring 8 and the interlayer plug 9. Is connected to the bit line BL1.
  • the other end of the transistor is connected to the upper end of the magnetoresistive effect element 2 through the contact hole 7, the wiring 8 and the interlayer plug 9.
  • the magnetoresistive effect element 2 is formed on the lower electrode 10 and connected to the source line SL1 through the interlayer plug 9.
  • This embodiment is different from the second to third embodiments in that magnetoresistive elements are provided at both ends of the transistor.
  • the magnetoresistive effect elements 1 and 2 have ferromagnetic layers 1a and 2a, nonmagnetic layers 1b and 2b, and ferromagnetic layers 1c and 2c in the same layer, and each is the same. It is desirable to have a film configuration and different element areas.
  • the magnetoresistive effect element 1 has a ferromagnetic layer 1a connected thereto, and the magnetoresistive effect element 2 has a ferromagnetic layer 2c connected to the transistor side. With this configuration, it is possible to form the magnetoresistive effect element 1 and the magnetoresistive effect element 2 by forming the magnetoresistive effect element once and performing lithography once in the same layer, and the manufacturing process can be simplified.
  • Transistors, wiring, electric circuit diagrams, and memory cell operations are the same as those in the second embodiment, and the contents described in the second embodiment can be applied to this embodiment unless there are special circumstances.
  • Examples 1 to 4 described above an example in which multi-value is realized by using two or more magnetoresistive effect elements having different areas has been described.
  • a magnetoresistive effect element having a larger integration degree of memory cells is described. It may be determined by the area or the area of the transistor. If the current value required for rewriting the magnetoresistive effect element is high and the transistor area is sufficiently large, there is no problem with this configuration, but if the transistor area is sufficiently small, for high integration, the following is required. A method is desired. Requirements for multilevel, as shown in FIG.
  • the change in resistance [Delta] R 1 of each element, [Delta] R 2, the threshold current value I + 1 and I + 2, and, I - 1 and I - 2 It only has to be different. Accordingly, even under the same element area, for example, the element resistance and the TMR ratio are changed by changing the element film thickness of the tunnel insulating film or the like for each magnetoresistive effect element, or the aspect ratio or elliptical element of the rectangular element, etc.
  • the shape of the present invention can be changed by changing the element shape, changing the threshold current due to the effect of shape anisotropy, further optimizing for each element from the material and film configuration, and using a perpendicular magnetization film. Multi-value can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 スピン注入磁化反転型磁気抵抗変化素子を用いた、多値動作が可能であり、かつ、製造および動作が簡易な磁気メモリを提供する。この目的は、電気的に直列接続された磁気抵抗効果素子を2つ以上具備し、該直列接続素子に流す電流の向き、大きさ、その順序によって、該直列接続された素子の内の一つを選択し書き込みを行うことによって解決される。たとえば、同じ膜構成からなる各磁気抵抗効果素子の平面面積を互いに異ならしめることで、各々の磁化反転による抵抗変化量および磁化反転に必要なしきい電流値を互いに相違させることによって解決される。

Description

磁気メモリ、磁気メモリの製造方法、及び、磁気メモリの駆動方法
 本発明は、スピン注入による磁気抵抗効果素子を用いた記憶装置に関し、より具体的には、多値記録を可能とする記憶装置に関する。
 近年、磁気ランダムアクセスメモリ(MRAM:Magnetoresistive Random Access Memory)は、不揮発性を有し、かつ、高速、高集積、低消費電力、高信頼を成し得るメモリとして期待が高まっている。MRAMの基本素子は、磁気トンネル接合(MTJ:Magnetic Tunnel Junction)と呼ばれ、2つの強磁性層の間にトンネル障壁として用いられる絶縁層を挟んだ構造からなる。この2つの強磁性層の磁化の向きが、平行・反平行で素子の抵抗が大きく異なるトンネル磁気抵抗(TMR:Tunnel Magneto-Resistance)効果を利用して、情報が記録される。特に、TMR素子に双方向に電流を流すことによって、強磁性層の磁化により相異なるスピン偏極された電子を注入し、磁化の向きを書き換える方式(スピン注入磁化反転型)は、微細化に伴って書き込み電流を低減できることから、半導体装置のスケーリングに沿って高集積化、低消費電力化が可能となる。このようなメモリにおいても、低ビットコスト化のために、1個のメモリセルに多数の情報を記憶できる多値化が研究されている。
 ここで、特許文献1には、複数のTMR素子を直列に接続することで多値化を可能とする磁気メモリが記載されている。また、特許文献2と特許文献3には、スピン注入磁化反転素子を用いて、複数個のTMR素子を並列に並べてメモリセルの記憶素子とする磁気メモリが記載されている。
特開2003-78114号公報 特開2007-281334号公報 特開2008-243933号公報
 しかしながら、先行技術文献に示される構造では次に示すような課題がある。
 まず、特許文献1に示されるメモリセルは、情報を磁界で書き換える型のTMR素子で構成されており、直列に接続された複数のTMR素子のそれぞれに書き込み磁界を発生させるための配線が必要であり、製造工程が増加する以外にそれぞれの配線を駆動するために動作が複雑となる。また、書き換えに必要な磁界は、素子の微細化に伴って増大する欠点がある。
 また、特許文献2、及び、特許文献3に示されるメモリセルは、たとえば2個のTMR素子を可変抵抗(r、r)で表した場合(図1A)、図1Bに示すように、rとrで決まる4値の抵抗値(R、R、R、R)の組み合わせで2ビットの記憶情報が記憶される。rとrのそれぞれは、高い値と低い値がとれるから、これらの高低の組み合わせで4値の抵抗値が実現されるからである。たとえば、rとrの組み合わせが、それぞれ低低、低高、高低、高高の組み合わせを、それぞれR、R、R、Rに対応させよう。このような素子では、たとえばRの状態で、並列状態の素子に電流(I )を流し、素子rを高い抵抗にしてRの状態に書き込む場合、その電流によって素子rの抵抗状態が変化してはならない。しかし、実際には両素子は並列接続なので、抵抗比に応じて素子rに流れる電流は変化してしまう。他の書き込み情報の場合にも同様であり、所要電流も並列接続の分だけ増大することになる。
 特許文献2においては、磁化の向きが固定された強磁性固定層と非磁性の分離層であるトンネル絶縁膜上に、複数個の膜厚が異なる自由層を配置することで図1Aを構成している。膜厚の違いにより各素子の抵抗は変化するが、上記の問題は本質的に解決されない。また、製造方法としては、自由層の形成とその加工を複数回繰り返すことが必要であり、加工によるダメージや微細な形状を形成することが困難、かつ、製造が複雑となる問題を有している。
 特許文献3においては、同一平面内に形状の異なる磁化反転素子を複数設けて図1Aを構成している。しかし、磁化反転素子においては、一般的に平面形状の異方性を利用して磁化の向き易さを特徴付けているため、その形状は自由に設定できない。また、同じ膜構成の素子の場合、その素子抵抗はほぼその素子面積に反比例するため、各素子に流れる電流密度は一定となる。従って、並列接続素子間で書き換えのしきい電流密度が同じ場合、同時に書き変わってしまう問題が生じる。なお、本構成においても、上記の問題を本質的に解決するものではない。
 スピン注入磁化反転型素子を用いた多値磁気メモリにおいては、上述のような複雑なメモリ動作や高集積・低価格化上の諸問題点を解決する必要がある。
 上記課題は、電気的に直列接続された磁気抵抗効果素子を2つ以上具備し、該直列接続素子に流す電流の向き、大きさ、その順序によって、該直列接続された素子の内の一つを選択し書き込みを行うことによって解決される。たとえば、同じ膜構成からなる各磁気抵抗効果素子の平面面積を互いに異ならしめることで、各々の磁化反転による抵抗変化量および磁化反転に必要なしきい電流値を互いに相違させることによって解決される。
 本発明によって、製造が容易で、情報の書き換えが簡潔で、多値記録と読み出しが可能な磁気メモリが実現できる。
先行技術文献の磁気メモリの構成を説明する図である。 先行技術文献の磁気メモリの多値動作を説明する図である。 本発明の磁気メモリの基本構成を説明する図である。 本発明の磁気メモリの動作を説明する図である。 本発明の磁気メモリに用いられる磁気抵抗効果素子の例を示す図である。 本発明の磁気メモリに用いられる磁気抵抗効果素子の例を示す図である。 本発明の磁気メモリの書き込みシーケンスを説明する図である。 本発明の磁気メモリセルの基本構成である。 本発明の磁気メモリセルの俯瞰図である。 本発明の一実施例である磁気メモリのアレイ構成を示す要部平面図である。 本発明の一実施例である磁気メモリのアレイ構成を示す要部平面図である。 本発明の一実施例である磁気メモリのアレイ構成を示す要部平面図である。 図6のA-A’線に沿った磁気メモリの要部断面図である。 本発明の一実施例である磁気メモリの要部回路図である。 図6~8における磁気抵抗効果素子の変形例である。 図6~8における磁気抵抗効果素子の変形例である。 図6~8における磁気抵抗効果素子の変形例である。 本発明の別の実施例である磁気メモリの要部断面図である。 図10のセル構成を基にした要部回路図である。
 図2Aに本発明の磁気メモリの基本構成を、図2Bにその電流-抵抗特性を示す。磁気抵抗効果素子1および2は電気的に直列に接続されている。したがってこの特性は、以下に示すように、素子1と2の単独の電流-抵抗特性(図3A、図3B)から求めることができる。
 各磁気抵抗効果素子1、2は、それぞれ磁化が固定された強磁性固定層1a、2a、非磁性のトンネル絶縁膜1b、2b、磁化が可変の自由層1c、2cを有している。ここで、素子1と2において、各層を同じ材料と膜構成にする、必要なら同時に成膜すると、均質な膜厚や特性を確保できる。さらに、電流方向に垂直な面の形状、例えば縦横比を同じにすると、両者の平面面積S、Sが異なっても、両者の形状異方性の効果を同じにすることが可能となる。このようにすると、磁化が平行状態での抵抗Rpと反平行状態での抵抗Rapの抵抗比(TMR比)、および、書き換えに必要なしきい電流密度が、素子1と2において一定となる。よって、素子1と2の正(+)方向に電流を流した際に抵抗が変化するしきい電流値I 、I 、および、負(-)方向のしきい電流値I 、I は、以下のように、素子面積に依存して下記の関係となる。
  Rap/Rp = Rap/Rp
  I  = I  x S/S
  I  = I  x S/S
また、素子抵抗は面積に反比例するので、
  Rp = Rp x S/S
と表すことができる。
 従って、素子面積S、Sを異なる値に選ぶことで、各素子のしきい電流値I+- 、I+- 、および、抵抗変化量ΔR(=Rap-Rp)、ΔR(=Rap-Rp)を簡易に互いに異なる値に設定することができる。なお、図に示す素子特性において、横軸負方向は電子が固定層から自由層に流れる向きとなるので、固定層によりスピン分極された電子が自由層に注入され、磁化が平行状態となる。横軸正方向は逆に磁化が反平行状態となる方向であり、素子抵抗が高くなる方向である。
 図2Bに示すこれらの素子を直列接続した場合の抵抗対電流の関係は、まず、両磁気抵抗効果素子の自由層の磁化が平行状態の時、その抵抗値はRp+Rpであり、自由層から固定層の向きに電子を流すと(図2Bの横軸正方向)、最初に面積が小さく(S)しきい電流(I )が低い磁気抵抗効果素子1の磁化が反平行状態となり、抵抗はRap+Rp(抵抗変化量ΔR)となる。更に電流を増やしてゆき磁気抵抗効果素子2のしきい電流値I に達すると、磁気抵抗効果素子2の磁化も反平行状態となり、抵抗はRap+Rap(抵抗変化量+ΔR)となる。更には、この両者が反平行の状態から逆方向(図2Bの横軸負方向)に電流を流すと、電流値I において磁気抵抗効果素子1の磁化が平行状態となり、抵抗はRp+Rap(抵抗変化量-ΔR)となる。さらに逆方向の電流をI まで増やすと、磁気抵抗効果素子2も平行状態となり、抵抗はRp+Rp(抵抗変化量-ΔR)に戻る。
 以上で述べたように、2つの磁気抵抗効果素子を接続して図2Bの特性を構築するためには、素子に注入される電流によって2つの磁気抵抗効果素子が同時に書き換わってはならない。すなわち、各磁気抵抗効果素子のしきい電流が異なっていることが必要となる(I+- ≠I+- )。加えて、読み出しにおいては接続された素子全体の抵抗により記憶情報を判別するため、どの素子が書き換わっているかわかるよう、それぞれの素子の書き換えによる抵抗変化量が異なっている必要がある(ΔR≠ΔR)。
 このような特性を用いれば、素子2個から成る1個のメモリセルに2ビットの情報を記憶でき、以下のように、書き込みならびに読み出し動作をさせることができる。本メモリセルにおける書き込みシーケンスの例を図4に示す。素子が平行状態の情報として“0”、反平行状態を“1”とし、直列接続素子が両方とも平行状態の場合を“00”、素子1、2のうち一方が反平行状態となった場合をそれぞれ“10”、“01”、両者が反平行状態となった場合を“11”としている。一般的に、製造直後の状態は、磁場中アニールの工程において全素子の磁気状態が平行状態に均一化されており“00”となっているが、書き換え動作を経たり、熱的なゆらぎによって、各素子の状態は不定となる。この場合においても、“00”と“11”は各々I 、I の電流を注入することにより、前状態に拘わらず情報を書き換えることができる。一方で、“01”の場合は、最初にI の電流を注入し“11”を書き込んだ上で、逆方向のI の電流を注入する2段階のシーケンスが必要となる。読み出し動作の場合は、書き換え電流以下の少ない電流により抵抗値を読み取ることで達成できる。このように、素子構造が同じで面積の異なる2つの磁気抵抗効果素子を直列に接続することにより、素子間の抵抗変化量と書き換えしきい電流値を異ならしめ、直列接続素子の抵抗値が、Rp+Rp<Rp+Rap<Rap+Rp<Rap+Rapとなる4値のメモリ素子を簡易に実現できる。
 図5には、本発明の磁気メモリの基本メモリセル構成を示す。直列接続された磁気抵抗効果素子1および2の一方はビット線BLに接続されており、もう一方はメモリセルの選択素子であるトランジスタTrを介して、ソース線SLに接続される。メモリセルは、ビット線BLあるいはソース線SL、およびトランジスタTrのゲート電極であるワード線WLにバイアスを印加することにより選択され、直列接続の磁気抵抗効果素子に電流を注入する。
 以上、2つの磁気抵抗効果素子を用いて4値メモリの例を記載したが、N個(3つ以上)の磁気抵抗効果素子を用いることで2値のメモリ素子を同様に達成できる。その場合においても、各抵抗変化量、しきい電流値はお互いに異なっていることが必要である。
 磁気抵抗効果素子は、一般的に、磁化が一方向に固定された固定層、トンネル絶縁層、磁化方向がスピン注入磁化反転により切りかえられる自由層からなる。トンネル障壁層の材料として、酸化アルミニウム、酸化マグネシウムなどが用いられるが、抵抗変化がより大きくなる酸化マグネシウムが望ましい。固定層、自由層となる強磁性層については、磁化方向が面内を向いている材料として例えば、Co、Fe、Ni、およびこれらの合金や合金の積層膜が用いられる。特に酸化マグネシウムをトンネル障壁層に用いる場合には、CoFe合金に約20%のBを添加したCoFeBを用いると、大きな抵抗変化を得ることができる。さらに抵抗変化を大きくするためには、電子スピンの分極率が大きいハーフメタル材料、たとえばホイスラー合金などを用いることが望ましい。磁化方向が面内を向いている磁気抵抗効果素子では、磁化の安定な磁化容易軸はトンネル磁気抵抗効果素子の自由層の長軸方向となるため、磁化の安定性を増すため、自由層の長軸の長さLと短軸の長さWの比L/Wを1.5から3程度にすることが望ましい。
 また固定層、自由層となる強磁性層としては、磁化方向が面直方向に向いている垂直磁化膜を用いることもできる。具体的には、CoPt、FePt、CoPd、あるいはFePdなどのL10規則化合金膜、およびそれにCu、Sn、Pb、SbあるいはBi等の比磁性金属が添加された膜、またはCoないしFeと、PtないしPdを交互に積層した膜、Coを基元素とし、それにCr、Ptが添加された膜等を用いることができる。垂直磁化膜は結晶固有の磁気異方性エネルギーが大きいので、トンネル磁気抵抗化素子が微小な面積になっても、不揮発性を保つための熱安定性指数を保つことができる。45nm世代以降の線幅に対して十分の不揮発性を保つためには、前記垂直磁化材料群の一軸磁気異方性エネルギーは、5x10erg/cm以上であることが望ましい。また、垂直磁化膜を用いる場合は、トンネル磁気抵抗効果素子の形状で磁気異方性を保証する必要がないため、トンネル磁気抵抗効果素子の形状を円形として、よりサイズの微細化を図ることができる。
 実際のメモリセルは、上記の磁気抵抗効果素子にトランジスタが接続されてメモリセルが構成され、選択されたメモリセル内の磁気抵抗効果素子に電流が流れる。図6~7に、このようなメモリセルで構成されたメモリアレイの一部を示す。図6は、メモリアレイ構成の要部平面図である。図7は、図6のA-A’線に沿った要部断面図、図8は対応する要部電気回路図である。尚、図6A~Cは、それぞれの層をわかりやすいように分解した平面図で、図7のA~C部と主に対応している。図6、7とも、図を見やすくするために、絶縁膜など一部の部材を省略してある。
 本実施形態の磁気メモリは、半導体基板活性領域3上に形成されMOSFET(トランジスタ)と積層された面積の異なる複数の磁気抵抗効果素子からなるメモリセルによって構成される。メモリセルを構成するトランジスタは、ゲート絶縁膜5、ゲート電極を有し、ゲート電極は図6AのY方向に延在して複数のメモリセルで共有し、ワード線WLを構成している。トランジスタのソースは、メモリセル面積縮小のためX方向に隣接するメモリセルと共有され、コンタクト孔7を介してソース線SLに接続されている。ソース線SLは、図6に示すように、Y方向に延在して複数のメモリセル間で共有される。トランジスタのドレインは、コンタクト孔7、配線8および層間プラグ9を介して、下部電極10に接続されている。下部電極10上には、第1磁気抵抗効果素子1が配置され、その上端は第2の下部電極11に接続されている。同様に、第2の下部電極11上には、第2磁気抵抗効果素子2が配置され、その上端はビット線BLに接続されている。ビット線BLはX方向に延在して複数のメモリセル間で共有される。前記、第1磁気抵抗効果素子1、および、第2磁気抵抗効果素子2は、それぞれ強磁性層1a、2a、非磁性層1b、2b、強磁性層1c、2cを有する。ここで、磁気抵抗効果素子1と2が同じ膜構成であり、かつ、互いに素子面積が異なるよう形成されていることが望ましい。このとき、成膜、製造が容易となり、信頼性を確保の上、書き換えしきい電流や素子抵抗を素子面積に依存して決めることが可能となる。また、図6~8においては2つの磁気抵抗効果素子であって、第1磁気抵抗効果素子1より第2磁気抵抗効果素子2の面積が大きい例を記載しているが、磁気抵抗効果素子を3つ以上積層してもよく、順序に関係なく互いの面積が異なっていれさえすればよい。
 図8は上記メモリセルの動作を説明する図で、簡単のため8個のメモリセルのみを示している。磁気抵抗効果素子は、その2つの強磁性層における磁化が平行と反並行で抵抗が変化する可変抵抗として記載している。読み出し動作の場合、例えばWL2に1V、BL1に0.2V印加してメモリセルCell21を選択し、直列に接続された磁気抵抗効果素子1と2の直列抵抗を判定する。このとき、他のWL、BL、および、SLは0Vを印加し、他のメモリセルは非選択となっている。一方、書き込み動作の場合、例えばWL2に1V、BL1に1V、SL1に0V印加し、他のWL、BL、および、SLは0V、または、WL2に1V,BL1に0V、SL1に1V印加し、他のWL、SLは0V、他のBLは1V印加することでメモリセルCell21を選択し、直列に接続された磁気抵抗効果素子1と2に双方向に電流を流すことで磁化の向きを変化させる。
 実施例2においては、2つの磁気抵抗効果素子を各々形成するために、成膜、リソグラフィ、加工、保護絶縁膜形成、平坦化をそれぞれの上下素子に対して繰り返し行う必要があった。このため、製造工程が多く、それぞれの工程が十分均一に再現できないと素子特性のばらつきが問題となりうる。
 本実施の形態においては、1度に上下2つ分の素子の膜を成膜し、1回のリソグラフィにて上方の素子のみを加工する。下方の素子は、上方の素子とその周辺に形成した保護膜をパターンとして加工することで、リソグラフィなしで上方素子の形状を比例倍した面積で形成することを特徴とする。
 図9Aは、本発明の実施の形態3である磁気抵抗効果素子の要部断面図である。下層の磁気抵抗効果素子2を、上層の磁気抵抗効果素子1およびサイドウォール13をマスクとして形成することにより、製造工程を簡略し、および、2つの磁気抵抗効果素子の形状が比例倍となるので、特性を高精度に設定できる。トランジスタ、配線、および、電気回路図、メモリセル動作は、実施例2と同じである。本実施の形態の磁気メモリは、実施例2同様、トランジスタのドレインから、コンタクト孔7、配線8および層間プラグ9を介した下部電極10上に、磁気抵抗効果素子2、中間部の導体層12、磁気効果素子1が積層されており、磁気抵抗効果素子1の上端はビット線BLに接続している。前記、第1磁気抵抗効果素子1、および、第2磁気抵抗効果素子2は、強磁性層1a、2a、非磁性層1b、2b、強磁性層1c、2cを有し、磁気効果素子1のサイドウォール13によって、下層の磁気抵抗効果素子2は上層の磁気抵抗効果素子1の形状に比例して、かつ、より面積が大きく形成されている。ここで、図9においては2つの磁気抵抗効果素子を積層した例を記載しているが、磁気抵抗効果素子を3つ以上積層してもよく、互いの面積が異なっていれさえすればよい。また、実施例2同様、磁気抵抗効果素子1と2が同じ膜構成が望ましい。このとき、信頼性を確保の上、書き換えしきい電流や素子抵抗を高精度に制御された素子面積に依存して決めることが可能となる。
 次に、上記のように構成された磁気メモリの製造方法の一例を説明する。前記実施例2と同様に、トランジスタ、配線層、下部電極10が形成された後、下部電極10上に磁気抵抗効果素子1、中間部導体層12、磁気抵抗効果素子2を成膜する。例えば、スパッタ法を用いて真空一貫で成膜することにより、不純物や加工などのダメージを受けることなく、良質で均一な膜を形成できる。
 続いて、リソグラフィ(フォトレジスト14)とイオンビームエッチングあるいはプラズマエッチング技術により前記磁気抵抗効果素子1をパターニングする(図9B)。次に、例えばスパッタ法あるいはCVD(Chemical Vapor Deposition)法により、酸化シリコン膜あるいは窒化シリコン膜などを堆積し、エッチバックすることで、磁気抵抗効果素子1の周囲にサイドウォール13を形成する(図9C)。さらには、前記磁気抵抗効果素子1および前記サイドウォール13をマスクとして、中間部導体層12および磁気抵抗効果素子2をパターニングすることで、図9に示す積層した磁気抵抗効果素子が形成される。以上のようにして、磁気抵抗効果素子1と磁気抵抗効果素子2の相対位置と面積比を高精度に制御でき、かつ、磁気抵抗効果素子2をパターニングするためのリソグラフィなどを省略することが可能となる。
 実施例2および3においてはトランジスタの片端に複数の磁気抵抗効果素子を直列に設けていたが、この構成ではトランジスタから磁気抵抗効果素子の方向に電流を流す場合、磁気抵抗効果素子の抵抗がソース抵抗となり、実効的なゲート電圧が低下しトランジスタの駆動能力が低下するソースフォロワとなる。
 図10ならびに図11は、このような問題を解決する他の実施例である。それぞれには、そのメモリセルの要部断面図ならびにメモリアレイの要部電気回路図が示されている。本実施の形態の磁気メモリは、トランジスタの片端から、コンタクト孔7、配線8および層間プラグ9を介した下部電極10上に磁気抵抗効果素子1が形成されており、磁気抵抗効果素子1の上端はビット線BL1と接続している。トランジスタのもう一端からは、コンタクト孔7、配線8および層間プラグ9を介し、磁気抵抗効果素子2の上端に接続されている。磁気抵抗効果素子2は下部電極10上に形成されており、層間プラグ9を介してソース線SL1に接続している。前記実施例2~3とは、トランジスタの両端に磁気抵抗効果素子を設けている点で相違する。本構成により、ソースフォロワとなる場合のソース抵抗を減少させ、トランジスタの双方向の電流を確保することが可能となる。更には、磁気抵抗効果素子1および2は、図10に示すように、同一のレイヤに強磁性層1a、2a、非磁性層1b、2b、強磁性層1c、2cを有し、各々が同じ膜構成であり、かつ、素子面積が異なるよう形成されていることが望ましい。ここで、磁気抵抗効果素子1は強磁性層1aが、磁気抵抗効果素子2は強磁性層2cがトランジスタ側に接続されている。本構成により、同一レイヤにおいて、一度の磁気抵抗効果素子の成膜と一度のリソグラフィにより、磁気抵抗効果素子1と磁気抵抗効果素子2の形成が可能となり、製造工程の簡略化が実現できる。
 トランジスタ、配線、および、電気回路図、メモリセル動作は、実施例2と同じであり、実施例2に記載の内容は特段の事情がない限り、本実施例にも適用できる。
 以上の実施例1~4においては、2つ以上の互いに面積の異なる磁気抵抗効果素子を用いて多値化を実現する例を記載したが、メモリセルの集積度は大きい方の磁気抵抗効果素子面積、あるいは、トランジスタの面積で決まる場合がある。磁気抵抗効果素子の書き換えに必要な電流値が高く、トランジスタ面積の方が十分大きい場合は、本構成でも問題ないが、トランジスタ面積が十分小さい場合、高集積化のためには、以下のような方法が望まれる。多値化のための必要条件は、図2に示すように、各素子の抵抗変化量ΔR、ΔR、しきい電流値I とI 、および、I とI 各々が異なってさえすればよい。したがって、同じ素子面積のもとでも、例えば磁気抵抗効果素子毎にトンネル絶縁膜などの素子膜厚を変えて素子抵抗、および、TMR比を変える、あるいは、長方形素子の縦横比や楕円形素子などのように素子形状を変え、形状異方性の効果によりしきい電流を変える、さらには、材料や膜構成、から素子毎に最適化する、垂直磁化膜を用いるなどの手法によっても本発明の多値化は実現できる。
 1:磁気抵抗効果素子、1a:強磁性層、1b:非磁性層、1c:強磁性層、2:磁気抵抗効果素子、2a:強磁性層、2b:非磁性層、2c:強磁性層、3:半導体基板活性領域、4:素子分離絶縁領域、5:ゲート絶縁膜、6:ゲートサイドウォール、7:コンタクト孔、8:配線、9:層間プラグ、10:下部電極、11:下部電極、12:導体層、13:サイドウォール、14:フォトレジスト、SL:ソース線、WL:ワード線、BL:ビット線、Tr:トランジスタ、Cell:メモリセル。
 
 

Claims (12)

  1.  スピン注入磁化反転型の磁気抵抗効果素子を用いたメモリであって、
     該磁気抵抗効果素子は、磁化が実質的に固定された第1強磁性層と、磁化の向きがスピン注入によって可変となる第2強磁性層と、前記第1及び第2強磁性層の間に設けられた非磁性層とを有し、
     1つのメモリセルは、複数個の該磁気抵抗効果素子を有し、
     前記1つのメモリセル内の複数個の磁気抵抗効果素子の各々の磁化反転に必要なしきい電流量が互いに相違することを特徴とする磁気メモリ。
  2.  請求項1記載の磁気メモリであって、
     前記1つのメモリセル内の複数個の磁気抵抗効果素子の磁化反転による抵抗変化量が互いに相違することを特徴とする磁気メモリ。
  3.  請求項1記載の磁気メモリであって、
     前記1つのメモリセル内の複数個の磁気抵抗効果素子が電気的に直列に接続されていることを特徴とする磁気メモリ。
  4.  請求項1記載の磁気メモリであって、
     前記1つのメモリセル内の複数個の磁気抵抗効果素子に含まれる前記第1強磁性層、前記第2強磁性層、及び、前記非磁性層は、各々同一の材料、膜厚であり、素子面積が互いに相違することを特徴とする磁気メモリ。
  5.  請求項4記載の磁気メモリであって、
     前記1つのメモリセル内の複数個の磁気抵抗効果素子はその素子平面形状が相似形であることを特徴とする磁気メモリ。
  6.  請求項5記載の磁気メモリであって、
     前記1つのメモリセル内の複数個の磁気抵抗効果素子が層の厚さ方向に積層され、上層の磁気抵抗効果素子より下層の磁気抵抗効果素子の素子面積が大きく平面形状が相似形であることを特徴とする磁気メモリ。
  7.  請求項1記載の磁気メモリであって、
     前記複数の磁気抵抗効果素子と電気的に接続された双方向に電流を駆動できる双方向電流駆動素子を有することを特徴とする磁気メモリ。
  8.  請求項7記載の磁気メモリであって、
     前記双方向電流駆動素子の両側に、各々一個以上の磁気抵抗効果素子が電気的に接続されていることを特徴とする磁気メモリ。
  9.  磁化が実質的に固定された第1強磁性層と、磁化の向きがスピン注入によって可変となる第2強磁性層と、前記第1及び第2強磁性層の間に設けられた非磁性層とを夫々が有する複数個の磁気抵抗素子を1つのメモリセル内に有し、前記1つのメモリセル内の複数個の磁気抵抗効果素子の各々の磁化反転に必要なしきい電流量が互いに相違するとともに、前記1つのメモリセル内の複数個の磁気抵抗効果素子が層の厚さ方向に積層され、上層の磁気抵抗効果素子より下層の磁気抵抗効果素子の素子面積が大きく平面形状が相似形である磁気メモリの製造方法であって、
     前記2以上の磁気抵抗効果素子を一貫して成膜する第一の工程と、
     前記2以上の磁気抵抗効果素子の上層の磁気抵抗効果素子をパターニングする第二の工程と、
     前記上層の磁気抵抗効果素子の側壁にサイドウォールを形成する第三の工程と、
     前記上層の磁気抵抗効果素子およびサイドウォールをマスクにして、下層の磁気抵抗効果素子をパターニングする第四の工程と、を有し、
     最下層の磁気抵抗効果素子のパターニングまで第3と第四の工程を繰り返すことを特徴とする磁気メモリの製造方法。
  10.  磁化が実質的に固定された第1強磁性層と、磁化の向きがスピン注入によって可変となる第2強磁性層と、前記第1及び第2強磁性層の間に設けられた非磁性層とを夫々が有する複数個の磁気抵抗素子を1つのメモリセル内に有し、前記1つのメモリセル内の複数個の磁気抵抗効果素子の各々の磁化反転に必要なしきい電流量が互いに相違するとともに、前記1つのメモリセル内の複数個の磁気抵抗効果素子が電気的に直列に接続されている磁気メモリの駆動方法であって、
     前記複数の直列接続された磁気抵抗効果素子に流す電流量を双方向に制御することで、前記複数の磁気抵抗効果素子を、磁化反転に必要なしきい電流量が低い順に磁化を反転させることを特徴とする磁気メモリの駆動方法。
  11.  磁化が実質的に固定された第1強磁性層と、磁化の向きがスピン注入によって可変となる第2強磁性層と、前記第1及び第2強磁性層の間に設けられた非磁性層とを夫々が有する複数個の磁気抵抗素子を1つのメモリセル内に有し、前記1つのメモリセル内の複数個の磁気抵抗効果素子の各々の磁化反転に必要なしきい電流量が互いに相違する磁気メモリの駆動方法であって、
     前記複数の磁気抵抗効果素子の内の最大のしきい電流値を注入してすべての素子の磁化状態を揃える書き込み動作と、前記最大のしきい電流注入後に、次にしきい電流が大きい素子のしきい電流値を逆方向に注入してその素子の磁化状態を反転させる書き込み手順を有することを特徴とする磁気メモリの駆動方法。
  12.  請求項11記載の磁気メモリの駆動方法であって、
     前記1つのメモリセル内の複数個の磁気抵抗効果素子が電気的に直列に接続されていることを特徴とする磁気メモリの駆動方法。
PCT/JP2011/050404 2010-01-13 2011-01-13 磁気メモリ、磁気メモリの製造方法、及び、磁気メモリの駆動方法 WO2011087038A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011549996A JP5756760B2 (ja) 2010-01-13 2011-01-13 磁気メモリ、磁気メモリの製造方法、及び、磁気メモリの駆動方法
US13/522,076 US9257483B2 (en) 2010-01-13 2011-01-13 Magnetic memory, method of manufacturing the same, and method of driving the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-004523 2010-01-13
JP2010004523 2010-01-13

Publications (1)

Publication Number Publication Date
WO2011087038A1 true WO2011087038A1 (ja) 2011-07-21

Family

ID=44304311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050404 WO2011087038A1 (ja) 2010-01-13 2011-01-13 磁気メモリ、磁気メモリの製造方法、及び、磁気メモリの駆動方法

Country Status (3)

Country Link
US (1) US9257483B2 (ja)
JP (1) JP5756760B2 (ja)
WO (1) WO2011087038A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983148A (zh) * 2011-09-07 2013-03-20 株式会社东芝 存储装置及其制造方法
JP2013055088A (ja) * 2011-08-31 2013-03-21 Fujitsu Ltd 磁気抵抗素子及び磁気記憶装置
JP2013058522A (ja) * 2011-09-07 2013-03-28 Toshiba Corp 記憶装置及びその製造方法
CN103023501A (zh) * 2011-09-22 2013-04-03 株式会社东芝 模数转换器
JP2013070215A (ja) * 2011-09-22 2013-04-18 Toshiba Corp アナログ/デジタル変換器
JP2013143516A (ja) * 2012-01-12 2013-07-22 Fujitsu Semiconductor Ltd 多値磁気抵抗メモリおよび多値磁気抵抗メモリの製造方法
JP2013530479A (ja) * 2010-05-06 2013-07-25 クアルコム,インコーポレイテッド 双安定素子のクラスタ状態にあるマルチレベルメモリの確率的なプログラミングの方法および装置
CN109564767A (zh) * 2016-08-08 2019-04-02 美光科技公司 包含多电平存储器单元的设备及其操作方法
WO2019188252A1 (ja) * 2018-03-30 2019-10-03 国立大学法人東北大学 集積回路装置
US11018190B2 (en) 2015-11-04 2021-05-25 Micron Technology, Inc. Three-dimensional memory apparatuses and methods of use
US11074971B2 (en) 2015-11-04 2021-07-27 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
KR20230062920A (ko) * 2021-11-01 2023-05-09 한국과학기술연구원 뉴로모픽 장치 및 이의 구동 방법
KR20230071986A (ko) * 2021-11-17 2023-05-24 한국과학기술연구원 뉴로모픽 장치

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102175471B1 (ko) * 2014-04-04 2020-11-06 삼성전자주식회사 자기 저항 메모리 장치 및 그 제조 방법
US9437272B1 (en) * 2015-03-11 2016-09-06 Qualcomm Incorporated Multi-bit spin torque transfer magnetoresistive random access memory with sub-arrays
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
KR20170034961A (ko) 2015-09-21 2017-03-30 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
KR102590306B1 (ko) * 2016-09-06 2023-10-19 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10439130B2 (en) * 2016-10-27 2019-10-08 Tdk Corporation Spin-orbit torque type magnetoresistance effect element, and method for producing spin-orbit torque type magnetoresistance effect element
US10296824B2 (en) * 2017-04-03 2019-05-21 Gyrfalcon Technology Inc. Fabrication methods of memory subsystem used in CNN based digital IC for AI
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10438995B2 (en) * 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
WO2019140082A1 (en) 2018-01-10 2019-07-18 Epicypher, Inc. Methods for quantification of nucleosome modifications and mutations at genomic loci and clinical applications thereof
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US10529915B2 (en) 2018-03-23 2020-01-07 Spin Memory, Inc. Bit line structures for three-dimensional arrays with magnetic tunnel junction devices including an annular free magnetic layer and a planar reference magnetic layer
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US11024372B2 (en) 2018-08-13 2021-06-01 Micron Technology, Inc. Segregation-based memory
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
CN110323247B (zh) * 2019-07-04 2021-08-31 中国科学院微电子研究所 Mram器件及其制造方法及包括mram的电子设备
US11462282B2 (en) * 2020-04-01 2022-10-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor memory structure
WO2022041278A1 (zh) * 2020-08-31 2022-03-03 华为技术有限公司 一种存储器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128229A (ja) * 2002-10-02 2004-04-22 Nec Corp 磁性メモリ及びその製造方法
JP2005310829A (ja) * 2004-04-16 2005-11-04 Sony Corp 磁気メモリ及びその記録方法
JP2006516360A (ja) * 2003-01-10 2006-06-29 グランディス インコーポレイテッド スピン・トランスファおよび磁気素子を使用するmramデバイスを利用する静磁結合磁気素子
JP2009094226A (ja) * 2007-10-05 2009-04-30 Fujitsu Ltd 半導体装置およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002230965A (ja) * 2001-01-24 2002-08-16 Internatl Business Mach Corp <Ibm> 不揮発性メモリ装置
WO2002103798A1 (fr) 2001-06-19 2002-12-27 Matsushita Electric Industrial Co., Ltd. Memoire magnetique et procede de commande associe, ainsi qu'appareil de memoire magnetique comprenant celle-ci
JP3527230B2 (ja) 2001-06-19 2004-05-17 松下電器産業株式会社 磁気メモリの駆動方法
JP4661230B2 (ja) 2005-01-21 2011-03-30 ソニー株式会社 記憶素子及びメモリ
US7285836B2 (en) * 2005-03-09 2007-10-23 Maglabs, Inc. Magnetic random access memory with stacked memory cells having oppositely-directed hard-axis biasing
JP2007281334A (ja) 2006-04-11 2007-10-25 Fuji Electric Holdings Co Ltd スピン注入磁化反転素子、その製造方法、およびそれを用いた磁気記録装置
JP2008243933A (ja) 2007-03-26 2008-10-09 Nippon Hoso Kyokai <Nhk> 磁気ランダムアクセスメモリおよびこれを備えた記録装置
JP2009259316A (ja) * 2008-04-14 2009-11-05 Toshiba Corp 半導体記憶装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128229A (ja) * 2002-10-02 2004-04-22 Nec Corp 磁性メモリ及びその製造方法
JP2006516360A (ja) * 2003-01-10 2006-06-29 グランディス インコーポレイテッド スピン・トランスファおよび磁気素子を使用するmramデバイスを利用する静磁結合磁気素子
JP2005310829A (ja) * 2004-04-16 2005-11-04 Sony Corp 磁気メモリ及びその記録方法
JP2009094226A (ja) * 2007-10-05 2009-04-30 Fujitsu Ltd 半導体装置およびその製造方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530479A (ja) * 2010-05-06 2013-07-25 クアルコム,インコーポレイテッド 双安定素子のクラスタ状態にあるマルチレベルメモリの確率的なプログラミングの方法および装置
US9135976B2 (en) 2010-05-06 2015-09-15 Qualcomm Incorporated Method and apparatus of probabilistic programming multi-level memory in cluster states of bi-stable elements
JP2013055088A (ja) * 2011-08-31 2013-03-21 Fujitsu Ltd 磁気抵抗素子及び磁気記憶装置
JP2013058522A (ja) * 2011-09-07 2013-03-28 Toshiba Corp 記憶装置及びその製造方法
CN102983148A (zh) * 2011-09-07 2013-03-20 株式会社东芝 存储装置及其制造方法
US8885396B2 (en) 2011-09-07 2014-11-11 Kabushiki Kaisha Toshiba Memory device and method for manufacturing the same
US8724377B2 (en) 2011-09-07 2014-05-13 Kabushiki Kaisha Toshiba Memory device and method for manufacturing the same
CN103023501A (zh) * 2011-09-22 2013-04-03 株式会社东芝 模数转换器
JP2013070275A (ja) * 2011-09-22 2013-04-18 Toshiba Corp アナログ/デジタル変換器
JP2013070215A (ja) * 2011-09-22 2013-04-18 Toshiba Corp アナログ/デジタル変換器
JP2013143516A (ja) * 2012-01-12 2013-07-22 Fujitsu Semiconductor Ltd 多値磁気抵抗メモリおよび多値磁気抵抗メモリの製造方法
US11615844B2 (en) 2015-11-04 2023-03-28 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
US11018190B2 (en) 2015-11-04 2021-05-25 Micron Technology, Inc. Three-dimensional memory apparatuses and methods of use
US11074971B2 (en) 2015-11-04 2021-07-27 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
US11482280B2 (en) 2016-08-08 2022-10-25 Micron Technology, Inc. Apparatuses including multi-level memory cells and methods of operation of same
JP2019532453A (ja) * 2016-08-08 2019-11-07 マイクロン テクノロジー,インク. マルチレベルメモリセルを含む装置およびその動作方法
CN109564767B (zh) * 2016-08-08 2023-03-21 美光科技公司 包含多电平存储器单元的设备及其操作方法
CN109564767A (zh) * 2016-08-08 2019-04-02 美光科技公司 包含多电平存储器单元的设备及其操作方法
US11798620B2 (en) 2016-08-08 2023-10-24 Micron Technology, Inc. Apparatuses including multi-level memory cells and methods of operation of same
JPWO2019188252A1 (ja) * 2018-03-30 2021-04-08 国立大学法人東北大学 集積回路装置
US11417378B2 (en) 2018-03-30 2022-08-16 Tohoku University Integrated circuit device
WO2019188252A1 (ja) * 2018-03-30 2019-10-03 国立大学法人東北大学 集積回路装置
JP7168241B2 (ja) 2018-03-30 2022-11-09 国立大学法人東北大学 集積回路装置
KR20230062920A (ko) * 2021-11-01 2023-05-09 한국과학기술연구원 뉴로모픽 장치 및 이의 구동 방법
KR102571115B1 (ko) * 2021-11-01 2023-08-25 한국과학기술연구원 뉴로모픽 장치 및 이의 구동 방법
KR20230071986A (ko) * 2021-11-17 2023-05-24 한국과학기술연구원 뉴로모픽 장치
KR102571118B1 (ko) * 2021-11-17 2023-08-25 한국과학기술연구원 뉴로모픽 장치

Also Published As

Publication number Publication date
US20130044537A1 (en) 2013-02-21
JPWO2011087038A1 (ja) 2013-05-20
US9257483B2 (en) 2016-02-09
JP5756760B2 (ja) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5756760B2 (ja) 磁気メモリ、磁気メモリの製造方法、及び、磁気メモリの駆動方法
KR102353406B1 (ko) 스핀 궤도 토크를 이용하여 강화된 감쇠 프로그램 및 경사진 자화 용이축을 갖는 자기 접합부를 포함하는 자기 소자
US9666793B2 (en) Method of manufacturing magnetoresistive element(s)
US10953319B2 (en) Spin transfer MRAM element having a voltage bias control
JP6290487B1 (ja) 磁気メモリ
JP4575136B2 (ja) 磁気記録素子、磁気記録装置、および情報の記録方法
US7714399B2 (en) Magnetic memory element and magnetic memory apparatus
US7149105B2 (en) Magnetic tunnel junctions for MRAM devices
US20160149124A1 (en) Mram having spin hall effect writing and method of making the same
JP5961785B2 (ja) スイッチングが改良されたハイブリッド磁気トンネル接合要素を提供するための方法およびシステム
US9099188B2 (en) Magnetoresistive element
JP2019036596A (ja) 磁気メモリ
US10608170B2 (en) Electric field assisted perpendicular STT-MRAM
US11257862B2 (en) MRAM having spin hall effect writing and method of making the same
CN106953005B (zh) 磁性元件和存储装置
EP1653475A1 (en) Multi-bit magnetic random access memory device and method for writing the same
KR20100089860A (ko) 전류-유도성 스핀-운동량 전달을 기반으로 하는 고속의 저전력 자기 장치
KR20080070597A (ko) 자기 저항 소자 및 자기 메모리
KR20090113327A (ko) 등급화된 층을 갖는 비휘발성 자기 메모리 소자
KR20060071955A (ko) 전압제어 자화반전 기록방식의 mram 소자 및 이를이용한 정보의 기록 및 판독 방법
KR20120080532A (ko) 기억 소자 및 기억 장치
US9379312B2 (en) Magnetoresistive effect element and magnetic random access memory using the same
US10783943B2 (en) MRAM having novel self-referenced read method
US11854589B2 (en) STT-SOT hybrid magnetoresistive element and manufacture thereof
JP5723311B2 (ja) 磁気トンネル接合素子および磁気メモリ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011549996

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13522076

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11732908

Country of ref document: EP

Kind code of ref document: A1