WO2011083523A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2011083523A1
WO2011083523A1 PCT/JP2010/005117 JP2010005117W WO2011083523A1 WO 2011083523 A1 WO2011083523 A1 WO 2011083523A1 JP 2010005117 W JP2010005117 W JP 2010005117W WO 2011083523 A1 WO2011083523 A1 WO 2011083523A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
sidewall
stress
region
gate electrode
Prior art date
Application number
PCT/JP2010/005117
Other languages
English (en)
French (fr)
Inventor
伊藤理
久都内知恵
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011083523A1 publication Critical patent/WO2011083523A1/ja
Priority to US13/528,526 priority Critical patent/US8907425B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823871Complementary field-effect transistors, e.g. CMOS interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823864Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device including a MISFET (Metal-Insulator-Semiconductor Field-Effect Transistor) having a source / drain region including a silicon mixed crystal layer and a manufacturing method thereof.
  • MISFET Metal-Insulator-Semiconductor Field-Effect Transistor
  • a distortion technique is used to improve the driving capability of the MIS transistor by applying stress to the channel region of the MISFET (hereinafter referred to as “MIS transistor”). Yes.
  • MIS transistor stress to the channel region of the MISFET
  • a compressive stress in the channel length direction in the channel region carrier mobility is improved and the driving capability of the p-type MIS transistor is improved.
  • a method for applying compressive stress in the gate length direction in the channel region for example, there is a method in which a SiGe layer having a lattice constant larger than that of a silicon substrate is formed in a source / drain region (for example, Patent Document 1 and Non-patent Document 1 and 2).
  • FIGS. 8A to 10C are cross-sectional views in the gate length direction showing a conventional method of manufacturing a semiconductor device in the order of steps.
  • pMIS region on the left side refers to a region where a p-type MIS transistor is formed.
  • nMIS region shown on the right side refers to a region where an n-type MIS transistor is formed.
  • a device isolation region 101 is selectively formed on the semiconductor substrate 100.
  • a first active region 100 a surrounded by the element isolation region 101 is formed in the pMIS region of the semiconductor substrate 100.
  • a second active region 100 b surrounded by the element isolation region 101 is formed in the nMIS region of the semiconductor substrate 100.
  • an n-type well region 102 a is formed in the pMIS region in the semiconductor substrate 100.
  • a p-type well region 102 b is formed in the nMIS region in the semiconductor substrate 100.
  • first and second gate insulating films 103a and 103b, the first and second gate electrodes 104a and 104b, and the first and second protective insulations are formed on the first and second active regions 100a and 100b.
  • First and second gate electrode forming portions 105A and 105B having films 105a and 105b are formed.
  • first and second offset spacers 106a and 106b are formed on the side surfaces of the first and second gate electrode forming portions 105A and 105B. Thereafter, a p-type extension implantation region 107a is formed below the first gate electrode formation portion 105A in the first active region 100a. On the other hand, an n-type extension implantation region 107b is formed below the second gate electrode formation portion 105B in the second active region 100b.
  • First and second side walls 109A and 109B having two inner side walls 108a and 108b and first and second outer side walls 109a and 109b are formed.
  • the second gate electrode forming portion 105B, the second offset spacer 106b, the second sidewall 109B, and the n-type extension implantation region are formed on the second active region 100b.
  • a protective insulating film 110 covering 107b is formed.
  • etching is performed on the first active region 100a using the first sidewall 109A and the protective insulating film 110 as a mask. As a result, a trench 111 is formed in the first active region 100a on the outer side of the first sidewall 109A.
  • a SiGe layer 112 doped with p-type impurities is formed in the trench 111. Since the SiGe layer 112 is doped with p-type impurities, the region of the SiGe layer 112 is a p-type impurity introduction region.
  • the protective insulating film 110 and the first and second protective insulating films 105a and 105b are removed.
  • an n-type source / drain implantation region 113 is formed in the second active region 100b on the outer side of the second sidewall 109B.
  • the p-type and n-type impurities contained in the p-type and n-type extension implantation regions 107a and 107b are activated by heat treatment, and the p-type and n-type extension regions 114a and 114b are activated.
  • the p-type impurity contained in the region (p-type impurity introduction region) of the SiGe layer 112 is activated to form the p-type source / drain region 115a.
  • an n-type impurity contained in the n-type source / drain implantation region 113 is activated to form an n-type source / drain region 115b.
  • first and third silicide layers 116a and 116b are formed on the first and second gate electrodes 104a and 104b.
  • second and fourth silicide layers 117a and 117b are formed on the p-type and n-type source / drain regions 115a and 115b.
  • a stress insulating film 118 that generates a tensile stress in the gate length direction of the channel region in the second active region 100b is formed on the entire surface of the semiconductor substrate 100.
  • a conventional semiconductor device is manufactured as described above.
  • the conventional semiconductor device has the following problems.
  • the driving capability of the n-type MIS transistor is improved, but the driving capability of the p-type MIS transistor is deteriorated.
  • an object of the present invention is to prevent a driving capability of a MIS transistor from being deteriorated by a stress insulating film in a semiconductor device including a MIS transistor having a source / drain region including a silicon mixed crystal layer. It is.
  • a semiconductor device is a semiconductor device including a first MIS transistor, wherein the first MIS transistor is formed on a first active region in a semiconductor substrate.
  • the first gate insulating film, the first gate electrode formed on the first gate insulating film, the first sidewall formed on the side surface of the first gate electrode, and the first active A first conductive layer including a silicon mixed crystal layer formed in a trench provided outside the first sidewall in the region and generating a first stress in the gate length direction of the channel region in the first active region;
  • a first source / drain region of a type, and a first gate electrode, a first sidewall, and a first source / drain region are formed on the first active region and are opposite to the first stress.
  • the uppermost surface of the silicon mixed crystal layer is formed higher than the surface of the semiconductor substrate located immediately below the first gate electrode.
  • a first stress relaxation film is formed in a gap with the sidewall.
  • the uppermost surface of the silicon mixed crystal layer is formed to be higher than the surface of the semiconductor substrate located immediately below the first gate electrode.
  • a silicon mixed crystal layer having a portion formed in the trench and a protruding portion formed on the portion is formed.
  • a gap is provided between the silicon mixed crystal layer and the first sidewall, and the first stress relaxation film can be formed in the gap.
  • the protruding portion of the silicon mixed crystal layer and the first stress relaxation film can be interposed between the stress insulating film and the channel region in the first active region.
  • the stress insulating film can be separated from the channel region in the first active region by the protruding portion in the silicon mixed crystal layer and the first stress relaxation film. For this reason, application of the second stress due to the stress insulating film in the gate length direction of the channel region in the first active region can be mitigated. Therefore, it is possible to prevent the electron mobility from being lowered and the driving capability of the first MIS transistor from being deteriorated.
  • the first stress caused by the silicon mixed crystal layer can be applied in the gate length direction of the channel region in the first active region. For this reason, the drive capability of the first MIS transistor can be improved.
  • a silicon mixed crystal layer having a portion formed in the trench and a protruding portion formed on the portion is formed. Accordingly, since the silicon mixed crystal layer can be thickened only in the protruding portion in the silicon mixed crystal layer, the first stress is effectively applied in the gate length direction of the channel region in the first active region. Can do. For this reason, the drive capability of the first MIS transistor can be further improved.
  • the semiconductor device preferably further includes a first offset spacer having an I-shaped cross section formed between the first gate electrode and the first sidewall.
  • the first silicide layer formed on the first gate electrode and the second silicide layer formed on the first source / drain region including the silicon mixed crystal layer It is preferable to further comprise.
  • the first stress relaxation film is preferably formed on the side surface of the silicon mixed crystal layer.
  • the first sidewall is formed on the inner sidewall having an L-shaped cross section formed on the side surface of the first gate electrode and the inner sidewall. It is preferable to have an outer side wall.
  • the first sidewall has an inner sidewall having an L-shaped cross section, and the stress insulating film is in contact with the L-shaped curved surface of the inner sidewall. It is preferable to be formed.
  • the first MIS transistor is a p-type MIS transistor
  • the first stress is a compressive stress
  • the second stress is a tensile stress
  • the silicon mixed crystal layer is preferably a SiGe layer
  • the stress insulating film is a silicon nitride film
  • the first stress relaxation film is preferably a silicon oxide film.
  • the first MIS transistor is an n-type MIS transistor
  • the first stress is a tensile stress
  • the second stress is a compressive stress
  • an element isolation region formed on the semiconductor substrate so as to surround the first active region, a gate wiring formed on the element isolation region, and formed on a side surface of the gate wiring Wiring sidewalls, a second stress relieving film formed on the side surface of the recess provided outside the wiring sidewall in the element isolation region, and gate wiring and wiring on the element isolation region It is preferable to include a stress insulating film formed so as to cover the side wall and the second stress relaxation film.
  • the semiconductor device further includes a second MIS transistor, and the second MIS transistor is a second gate insulating film formed on the second active region in the semiconductor substrate.
  • a second gate electrode formed on the second gate insulating film, a second sidewall formed on the side surface of the second gate electrode, and a second sidewall in the second active region
  • a second source / drain region of the second conductivity type formed on the outer side of the gate electrode, and the second gate electrode, the second sidewall, and the second source / drain region over the second active region. It is preferable to include a formed stress insulating film.
  • the second stress due to the stress insulating film can be applied in the gate length direction of the channel region in the second active region. For this reason, the mobility of electrons can be improved and the driving capability of the second MIS transistor can be improved.
  • the first stress relaxation film is not formed on the second active region.
  • the semiconductor device further includes a third MIS transistor, and the third MIS transistor is a third gate insulating film formed on the third active region in the semiconductor substrate.
  • a third gate electrode formed on the third gate insulating film, a third sidewall formed on the side surface of the third gate electrode, and a third sidewall in the third active region
  • a protective film is formed on the third active region so as to cover the third gate electrode, the third sidewall, and the third source / drain region.
  • a protective film can be interposed between the stress insulating film and the channel region in the third active region.
  • the stress insulating film can be separated from the channel region in the third active region by the protective film.
  • no silicide layer is formed on the third gate electrode and the third source / drain region.
  • the first stress relaxation film and the protective film are preferably made of the same insulating material.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device having a first MIS transistor formed on a first active region in a semiconductor substrate.
  • A forming a first gate electrode forming portion having a first gate insulating film and a first gate electrode on the first active region; and after the step (a), the first gate electrode Forming the first sidewall on the side surface of the formation portion; and after the step (b), forming a trench outside the first sidewall in the first active region;
  • the uppermost surface of the silicon mixed crystal layer is formed to be higher than the surface of the semiconductor substrate located immediately below the first gate electrode.
  • a silicon mixed crystal layer having a portion formed in the trench and a protruding portion formed on the portion is formed.
  • a gap is provided between the silicon mixed crystal layer and the first sidewall, and the first stress relaxation film can be formed in the gap.
  • the protruding portion of the silicon mixed crystal layer and the first stress relaxation film can be interposed between the stress insulating film and the channel region in the first active region.
  • the stress insulating film can be separated from the channel region in the first active region by the protruding portion in the silicon mixed crystal layer and the first stress relaxation film. For this reason, application of the second stress due to the stress insulating film in the gate length direction of the channel region in the first active region can be mitigated. Therefore, it is possible to prevent the electron mobility from being lowered and the driving capability of the first MIS transistor from being deteriorated.
  • the first stress caused by the silicon mixed crystal layer can be applied in the gate length direction of the channel region in the first active region. For this reason, the drive capability of the first MIS transistor can be improved.
  • a silicon mixed crystal layer having a portion formed in the trench and a protruding portion formed on the portion is formed. Accordingly, since the silicon mixed crystal layer can be thickened only in the protruding portion in the silicon mixed crystal layer, the first stress is effectively applied in the gate length direction of the channel region in the first active region. Can do. For this reason, the drive capability of the first MIS transistor can be further improved.
  • the uppermost surface of the silicon mixed crystal layer is preferably formed higher than the surface of the semiconductor substrate located immediately below the first gate electrode.
  • the method further includes a step (f) of forming an element isolation region surrounding the first active region in the semiconductor substrate before the step (a).
  • a step of forming a gate wiring forming portion having a gate wiring on the element isolation region includes a step of forming a wiring sidewall on the side surface of the gate wiring forming portion
  • the step (d ) includes a step of forming a second stress relaxation film on the side surface of the recessed portion provided on the outer side of the wiring sidewall in the element isolation region
  • the step (e) includes forming a gate on the element isolation region. It is preferable to include a step of forming a stress insulating film so as to cover the wiring, the wiring sidewall, and the second stress relaxation film.
  • the semiconductor device includes a second MIS transistor formed on the second active region in the semiconductor substrate, and the step (a) includes the second active Forming a second gate electrode formation portion having a second gate insulating film and a second gate electrode on the region, wherein step (b) includes forming a second gate electrode on the side surface of the second gate electrode formation portion; Forming a second sidewall of the second conductivity type after the step (c) and before the step (d), outside the second sidewall in the second active region.
  • a step (g) of forming a drain region wherein the step (e) includes stress insulation so as to cover the second gate electrode, the second sidewall, and the second source / drain region on the second active region; It is preferable to include a step of forming a film
  • the second stress due to the stress insulating film can be applied in the gate length direction of the channel region in the second active region. For this reason, the mobility of electrons can be improved and the driving capability of the second MIS transistor can be improved.
  • the semiconductor device has a third MIS transistor formed on a third active region in the semiconductor substrate, and the step (a) includes the third active Forming a third gate electrode formation portion having a third gate insulating film and a third gate electrode on the region, wherein the step (b) includes forming a third gate electrode on the side surface of the third gate electrode formation portion; A third source of the first conductivity type below the third sidewall in the third active region after the step (c) and before the step (d).
  • the method further includes a step (h) of forming a drain region, and the step (d) includes a protective film so as to cover the third gate electrode, the third sidewall, and the third source / drain region on the third active region.
  • the step (e) includes a step of forming Preferably includes the step of forming a stress insulating film on the membrane.
  • a protective film is formed on the third active region so as to cover the third gate electrode, the third sidewall, and the third source / drain region.
  • a protective film can be interposed between the stress insulating film and the channel region in the third active region.
  • the stress insulating film can be separated from the channel region in the third active region by the protective film.
  • the uppermost surface of the silicon mixed crystal layer is formed to be higher than the surface of the semiconductor substrate located immediately below the first gate electrode.
  • a silicon mixed crystal layer having a portion formed in the trench and a protruding portion formed on the portion is formed.
  • a gap is provided between the silicon mixed crystal layer and the first sidewall, and the first stress relaxation film can be formed in the gap.
  • the protruding portion of the silicon mixed crystal layer and the first stress relaxation film can be interposed between the stress insulating film and the channel region in the first active region.
  • the stress insulating film can be separated from the channel region in the first active region by the protruding portion in the silicon mixed crystal layer and the first stress relaxation film. For this reason, application of the second stress due to the stress insulating film in the gate length direction of the channel region in the first active region can be mitigated. Therefore, it is possible to prevent the electron mobility from being lowered and the driving capability of the first MIS transistor from being deteriorated.
  • FIGS. 1A to 1B are cross-sectional views in the gate length direction showing a method of manufacturing a semiconductor device according to an embodiment of the present invention in the order of steps.
  • 2A to 2B are cross-sectional views in the gate length direction showing a method of manufacturing a semiconductor device according to an embodiment of the present invention in the order of steps.
  • FIGS. 3A to 3B are cross-sectional views in the gate length direction showing the method of manufacturing the semiconductor device according to the embodiment of the present invention in the order of steps.
  • 4A to 4B are cross-sectional views in the gate length direction showing the method of manufacturing the semiconductor device according to the embodiment of the present invention in the order of steps.
  • FIGS. 5A to 5B are cross-sectional views in the gate length direction showing the method of manufacturing the semiconductor device according to the embodiment of the present invention in the order of steps.
  • FIGS. 6A to 6B are cross-sectional views in the gate length direction showing the method of manufacturing the semiconductor device according to the embodiment of the present invention in the order of steps.
  • FIGS. 7A to 7B are cross-sectional views in the gate length direction showing a method of manufacturing a semiconductor device according to a modification of the embodiment of the present invention in the order of steps.
  • 8A to 8C are cross-sectional views in the gate length direction showing a conventional method of manufacturing a semiconductor device in the order of steps.
  • 9A to 9C are cross-sectional views in the gate length direction showing a conventional method of manufacturing a semiconductor device in the order of steps.
  • 10A to 10C are cross-sectional views in the gate length direction showing a conventional method of manufacturing a semiconductor device in the order of steps.
  • FIGS. 1A to FIG. 6B are cross-sectional views in the gate length direction showing the method of manufacturing a semiconductor device according to one embodiment of the present invention in the order of steps. 1A to 6B, a first pMIS region, a wiring region, an nMIS region, and a second pMIS region are shown in order from the left side.
  • the “first pMIS region” refers to a region where the first MIS transistor is formed.
  • “Wiring region” refers to a region where a gate wiring is formed.
  • the “nMIS region” refers to a region where the second MIS transistor is formed.
  • the “second pMIS region” refers to a region where a third MIS transistor is formed.
  • the “first MIS transistor” refers to a MIS transistor having a source / drain region including a silicon mixed crystal layer.
  • the first MIS transistor is used for a logic circuit or an internal circuit, for example.
  • the “third MIS transistor” refers to a MIS transistor that does not have a silicide layer formed on the source / drain region.
  • the third MIS transistor is used for an analog circuit or a peripheral circuit, for example.
  • an element isolation region 11 made of, for example, a silicon oxide film is formed on an upper portion of a semiconductor substrate 10 made of, for example, p-type silicon by, for example, an embedded element isolation (Shallow Trench Isolation: STI) method. Selectively form.
  • a semiconductor substrate 10 made of, for example, p-type silicon by, for example, an embedded element isolation (Shallow Trench Isolation: STI) method.
  • STI Shallow Trench Isolation
  • n-type impurities such as phosphorus (P) are implanted into the first and second pMIS regions in the semiconductor substrate 10 by ion implantation.
  • a p-type impurity such as boron (B) is implanted into the nMIS region in the semiconductor substrate 10 by ion implantation.
  • first and second n-type well regions 12 a and 12 c are formed in the first and second pMIS regions in the semiconductor substrate 10 by heat treatment.
  • a p-type well region 12 b is formed in the nMIS region of the semiconductor substrate 10.
  • gate insulation made of a silicon oxide film having a thickness of, for example, 1.8 nm is formed on the first, second, and third active regions 10a, 10b, and 10c by, for example, an ISSG (In-Situ Steam Steam Generation) oxidation method.
  • a film-forming film is deposited.
  • a gate electrode forming film made of, for example, a polysilicon film having a thickness of 50 nm is deposited on the gate insulating film forming film by, eg, CVD (Chemical Vapor Deposition).
  • a protective insulating film forming film made of, for example, a silicon oxide film having a thickness of 30 nm is deposited on the gate electrode forming film by, eg, CVD.
  • a resist pattern (not shown) is formed on the protective insulating film forming film by lithography.
  • the protective insulating film forming film, the gate electrode forming film, and the gate insulating film forming film are sequentially patterned by dry etching using the resist pattern as a mask.
  • the first, second and third gate insulating films 13a, 13b and 13c, the first, second and third gates are formed on the first, second and third active regions 10a, 10b and 10c.
  • First, second, and third gate electrode forming portions 15A, 15B, and 15C having electrodes 14a, 14b, and 14c and first, second, and third protective insulating films 15a, 15b, and 15c are formed.
  • the gate wiring forming portion 15X having the gate wiring 14x and the wiring protective insulating film 15x is formed on the element isolation region 11 interposed between the first active region 10a and the second active region 10b.
  • an offset spacer film made of, for example, a silicon nitride film having a thickness of 5 nm is deposited on the entire surface of the semiconductor substrate 10 by, eg, CVD. Thereafter, for example, anisotropic dry etching is performed on the offset spacer film. Thereby, the first, second and third offset spacers 16a, 16b and 16c having an I-shaped cross section are formed on the side surfaces of the first, second and third gate electrode forming portions 15A, 15B and 15C. Form. At the same time, a wiring offset spacer 16x having an I-shaped cross section is formed on the side surface of the gate wiring forming portion 15X.
  • a p-type impurity such as B is implanted into the first active region 10a by the first implantation dose amount by the ion implantation method using the first gate electrode forming portion 15A as a mask.
  • the first p-type extension implantation region 17a is formed in a self-aligned manner below the side of the first gate electrode formation portion 15A in the first active region 10a.
  • an n-type impurity such as arsenic (As) is implanted into the second active region 10b by ion implantation using the second gate electrode formation portion 15B as a mask.
  • the n-type extension implantation region 17b is formed in a self-aligned manner in the second active region 10b below the second gate electrode forming portion 15B. Thereafter, by ion implantation, the third gate electrode forming portion 15C is used as a mask, and the third active region 10c is doped with a second implantation dose smaller than the first implantation dose, for example, p-type such as B Impurities are implanted. As a result, the second p-type extension implantation region 17c is formed in a self-aligned manner below the side of the third gate electrode formation portion 15C in the third active region 10c.
  • the p-type impurity concentration in the second p-type extension implantation region 17c is set to the p-type in the first p-type extension implantation region 17a. It becomes lower than the impurity concentration.
  • the order in which the first and second p-type extension implantation regions 17a and 17c and the n-type extension implantation region 17b are formed is not specified.
  • an inner sidewall film made of, for example, a 5 nm-thickness silicon oxide film and a silicon film having a thickness of, for example, 15 nm are formed on the entire surface of the semiconductor substrate 10 by, eg, CVD.
  • An outer sidewall film made of a nitride film is sequentially deposited. Thereafter, for example, anisotropic etching is sequentially performed on the outer sidewall film and the inner sidewall film. Accordingly, the cross-sectional shape is L on the side surfaces of the first, second, and third gate electrode forming portions 15A, 15B, and 15C via the first, second, and third offset spacers 16a, 16b, and 16c.
  • First, second, and third sides having letter-shaped first, second, and third inner sidewalls 18a, 18b, 18c and first, second, and third outer sidewalls 19a, 19b, 19c Walls 19A, 19B and 19C are formed.
  • a wiring side wall 19X having a wiring inner side wall 18x and a wiring outer side wall 19x having an L-shaped cross section is provided via a wiring offset spacer 16x.
  • a protective insulating film forming film made of a silicon oxide film having a thickness of, for example, 10 nm is formed on the entire surface of the semiconductor substrate 10 by, eg, CVD.
  • a resist pattern (not shown) that opens the first pMIS region and the wiring region and covers the nMIS region and the second pMIS region is formed on the protective insulating film formation film by lithography.
  • portions formed in the first pMIS region and the wiring region in the protective insulating film formation film are removed by etching using the resist pattern as a mask. As a result, the surface of the region formed outside the first sidewall 19A in the first active region 10a is exposed.
  • second and third gate electrode forming portions 15B and 15C, second and third offset spacers 16b and 16c, and second and third sidewalls are formed on the second and third active regions 10b and 10c.
  • a protective insulating film 21 is formed to cover 19B, 19C and the n-type and second p-type extension implantation regions 17b and 17c. Thereafter, the resist pattern is removed.
  • the element isolation region 11 (silicon oxide film) is etched. For this reason, as shown in FIG. 2A, a recess 20 is formed in the element isolation region 11 below the wiring sidewall 19X.
  • etching is performed on the first active region 10a using the first sidewall 19A and the protective insulating film 21 as a mask.
  • a trench 22 having a depth of 60 nm, for example, is formed below the first sidewall 19A in the first active region 10a.
  • the element isolation region 11 (silicon oxide film) is etched. For this reason, as shown in FIG. 2B, a recess 20 is formed in the element isolation region 11 below the wiring sidewall 19X.
  • the depth of the dent 20 shown in FIG. 2 (b) is larger than the depth of the dent 20 shown in FIG. 2 (a).
  • a p-type impurity gas such as silane gas (SiH 4 gas) and germane gas (GeH 4 gas), for example, diborane gas (B 2 H 6 gas) is formed by, eg, CVD. Supply with.
  • a silicon mixed crystal layer 23 made of, for example, SiGe having a thickness of 90 nm is formed in the trench 22. Since the silicon mixed crystal layer 23 is doped with a p-type impurity such as B, the region of the silicon mixed crystal layer 23 is a p-type impurity introduction region.
  • the p-type impurity concentration of the silicon mixed crystal layer 23 is, for example, 1 ⁇ 10 20 cm 2 .
  • the silicon mixed crystal layer 23 generates a compressive stress in the gate length direction of the channel region in the first active region 10a.
  • the uppermost surface of the silicon mixed crystal layer 23 is formed to be higher than the surface of the semiconductor substrate 10 located immediately below the first gate electrode 14a. As a result, a gap 24 is formed between the silicon mixed crystal layer 23 and the first sidewall 19A.
  • the silicon mixed crystal layer 23 is grown so that the germanium concentration and the p-type impurity concentration gradually increase. In this way, the germanium concentration and the p-type impurity concentration in the portion of the silicon mixed crystal layer 23 in contact with the semiconductor substrate 10 can be lowered. For this reason, since the difference between the lattice constant of the silicon mixed crystal layer 23 in contact with the semiconductor substrate 10 and the lattice constant of the semiconductor substrate 10 can be reduced, the occurrence of crystal defects can be prevented.
  • a silicon mixed crystal layer (in other words, a silicon mixed crystal layer having a high germanium concentration and a high p-type impurity concentration) that is significantly different from the lattice constant of the semiconductor substrate 10 is formed in contact with the semiconductor substrate 10 exposed in the trench 22.
  • the occurrence of crystal defects can be prevented.
  • the protective insulating film 21, the first, second and third protective insulating films 15a, 15b and 15c and the wiring protective insulating film 15x are formed by, for example, wet etching. Remove. As a result, the surfaces of the n-type and second p-type extension implantation regions 17b and 17c and the upper surfaces of the first, second and third gate electrodes 14a, 14b and 14c and the gate wiring 14x are exposed.
  • the upper ends of the first offset spacer 16a and the wiring offset spacer 16x and the first inner side wall 18a and the inner wiring side wall 18x before etching are exposed. ing.
  • the upper ends of the second and third offset spacers 16 b and 16 c and the second and third inner side walls 18 b and 18 c before etching are covered with the protective insulating film 21. Therefore, the first offset spacer 16a and the wiring offset spacer 16x are exposed to etching longer than the second and third offset spacers 16b and 16c. Therefore, as shown in FIG.
  • the upper end heights of the first offset spacer 16a and the wiring offset spacer 16x after etching are higher than the upper end heights of the second and third offset spacers 16b and 16c. Low.
  • the first inner sidewall 18a and the wiring inner sidewall 18x are exposed to etching longer than the second and third inner sidewalls 18b and 18c.
  • the heights of the upper ends of the first inner side wall 18a and the inner side wall 18x for wiring after etching are the upper ends of the second and third inner side walls 18b and 18c. Lower than height.
  • the “upper end height” of the offset spacer or the inner sidewall refers to the height from the surface of the semiconductor substrate located immediately below the gate electrode (or gate wiring) to the upper end of the offset spacer or the inner sidewall. .
  • an n-type impurity such as As is formed in the second active region 10b by ion implantation using the second gate electrode 14b and the second sidewall 19B as a mask. Inject. As a result, the n-type source / drain implantation region 25b is formed in a self-aligned manner in the second active region 10b, outside the second sidewall 19B.
  • a p-type impurity such as B is implanted into the third active region 10c using the third gate electrode 14c and the third sidewall 19C as a mask. As a result, the p-type source / drain implantation region 25c is formed in a self-aligned manner in the third active region 10c, on the outer side of the third sidewall 19C.
  • heat treatment is performed at 950 ° C. for 1 second, for example.
  • the p-type impurities contained in the first and second p-type extension implantation regions 17a and 17c are activated to form the first and second p-type extension regions 26a and 26c.
  • the n-type impurity contained in the n-type extension implantation region 17b is activated to form the n-type extension region 26b.
  • the first p-type source / drain region 27a including the silicon mixed crystal layer 23 is formed by activating the p-type impurity included in the region (p-type impurity introduction region) of the silicon mixed crystal layer 23 by heat treatment.
  • an n-type impurity contained in the n-type source / drain implantation region 25b is activated to form an n-type source / drain region 27b.
  • the p-type impurity contained in the p-type source / drain implantation region 25c is activated to form the second p-type source / drain region 27c.
  • an insulating film 28 made of a silicon oxide film having a thickness of, for example, 16 nm is deposited on the entire surface of the semiconductor substrate 10 by, eg, CVD.
  • a resist pattern (not shown) that opens the first pMIS region, the wiring region, and the nMIS region and covers the second pMIS region on the insulating film 28 by lithography. ). Thereafter, for example, anisotropic dry etching and wet etching are sequentially performed on the insulating film 28 using the resist pattern as a mask. As a result, the upper surfaces of the first and second gate electrodes 14a and 14b and the gate wiring 14x and the surfaces of the first p-type and n-type source / drain regions 27a and 27b are exposed. On the other hand, the first stress relaxation film 28a is formed in the gap 24 formed between the silicon mixed crystal layer 23 and the first sidewall 19A.
  • the second stress relaxation film 28x is formed on the side surface of the recess 20 provided outside the wiring sidewall 19X in the element isolation region 11.
  • a protective film 28b is formed on the side surface of the n-type source / drain region 27b (in other words, the surface exposed in the recess 20).
  • a protective film 28c is formed on the third active region 10c to cover the third gate electrode 14c, the third offset spacer 16c, the third sidewall 19C, and the second p-type source / drain region 27c. . Thereafter, the resist pattern is removed.
  • a silicide metal film (not shown) made of nickel (Ni) with a thickness of 10 nm, for example, is formed on the entire surface of the semiconductor substrate 10 by, eg, sputtering.
  • Si contained in the first p-type source / drain region 27a and the n-type source / drain region 27b including the first and second gate electrodes 14a and 14b, the gate wiring 14x, and the silicon mixed crystal layer 23 are formed. And reacting with Ni contained in the silicide metal film.
  • first and third silicide layers 29a and 29b made of nickel silicide having a thickness of 15 nm are formed on the first and second gate electrodes 14a and 14b.
  • a wiring silicide layer 29x made of nickel silicide having a thickness of 15 nm is formed on the gate wiring 14x.
  • second and fourth silicide layers 30a and 30b made of nickel silicide having a thickness of 15 nm are formed on the first p-type and n-type source / drain regions 27a and 27b.
  • the second silicide layer 30a may contain germanium (Ge) contained in the silicon mixed crystal layer 23.
  • the side surface of the n-type source / drain region 27b (in other words, the surface exposed in the recess 20) is covered with the protective film 28b. Therefore, the silicide metal film is not formed in contact with the side surface of the n-type source / drain region 27b, and the silicide metal film can be formed only in contact with the surface of the n-type source / drain region 27b. .
  • the cross-sectional shape formed along the surface and the side surface of the n-type source / drain region 27b is not an L-shaped fourth silicide layer but an n-type source / drain region 27b as shown in FIG.
  • a fourth silicide layer 30b having an I-shaped cross section formed along the surface can be formed.
  • portions remaining on the element isolation region 11, the first and second sidewalls 19A and 19B, the wiring sidewall 19X, the protective film 28c, etc. in the silicide metal film remove. Thereafter, the silicide composition ratios of the first and third silicide layers 29a and 29b, the wiring silicide layer 29x, and the second and fourth silicide layers 30a and 30b are stabilized by heat treatment.
  • a stress insulating film 31 that generates a tensile stress in the gate length direction of the channel region in the second active region 10b is formed on the entire surface of the semiconductor substrate 10 by, eg, CVD. accumulate.
  • the semiconductor device according to this embodiment can be manufactured.
  • the semiconductor device according to this embodiment is formed in the first MIS transistor pTr1 formed in the first pMIS region in the semiconductor substrate 10 and in the nMIS region in the semiconductor substrate 10.
  • a second MIS transistor nTr and a third MIS transistor pTr2 formed in the second pMIS region of the semiconductor substrate 10 are provided.
  • the conductivity types of the first and third MIS transistors pTr1 and pTr2 are p-type.
  • the conductivity type of the second MIS transistor nTr is n-type.
  • the first MIS transistor pTr1 includes a first gate insulating film 13a formed on the first active region 10a, a first gate electrode 14a formed on the first gate insulating film 13a, The first offset spacer 16a having an I-shaped cross-section formed on the side surface of the gate electrode 14a and the first offset region 16a formed on the first active region 10a below the side of the first gate electrode 14a.
  • the p-type extension region 26a, the first sidewall 19A formed on the side surface of the first gate electrode 14a via the first offset spacer 16a, and the first sidewall 19A in the first active region 10a A first p-type source / drain region 27a including a silicon mixed crystal layer 23, and a first gate electrode 14a.
  • the silicon mixed crystal layer 23 generates a compressive stress in the gate length direction of the channel region in the first active region 10a.
  • the uppermost surface of the silicon mixed crystal layer 23 is formed higher than the surface of the semiconductor substrate 10 located immediately below the first gate electrode 14a.
  • the silicon mixed crystal layer 23 has a portion formed in the trench 22 and a protruding portion formed on the portion.
  • a first stress relaxation film 28a is formed in the gap 24 between the silicon mixed crystal layer 23 and the first sidewall 19A. In other words, the first stress relaxation film 28 a is formed on the side surface of the silicon mixed crystal layer 23.
  • the semiconductor device includes an element isolation region 11 formed on the semiconductor substrate 10 so as to surround the first, second, and third active regions 10a, 10b, and 10c, the first active region 10a, and the first active region 10a.
  • Wiring sidewalls 19X formed via the offset spacers 16x, and second stress relaxation formed on the side surfaces of the recessed portions 20 provided on the outer sides of the wiring sidewalls 19X in the element isolation region 11 The film 28x, the wiring silicide layer 29x formed on the gate wiring 14x, the gate wiring 14x and the wiring offsets on the element isolation region 11 P o 16x, and a stress insulating film 31 formed to cover the wiring sidewall 19X and the second stress relieving layer 28x.
  • the second MIS transistor nTr includes a second gate insulating film 13b formed on the second active region 10b, a second gate electrode 14b formed on the second gate insulating film 13b, A second offset spacer 16b having an I-shaped cross-section formed on the side surface of the gate electrode 14b, and an n-type extension formed laterally below the second gate electrode 14b in the second active region 10b.
  • the third MIS transistor pTr2 includes a third gate insulating film 13c formed on the third active region 10c, a third gate electrode 14c formed on the third gate insulating film 13c, A third offset spacer 16c having an I-shaped cross-section formed on the side surface of the gate electrode 14c and a second side formed on the side of the third gate electrode 14c in the third active region 10c.
  • the p-type extension region 26c, the third sidewall 19C formed on the side surface of the third gate electrode 14c via the third offset spacer 16c, and the third sidewall 19C in the third active region 10c The second p-type source / drain region 27c formed on the outer side of the third gate electrode 14c, the third gate electrode 14c and the third offset spacer 1 on the third active region 10c. c, and includes a third side wall 19C and the second p-type source drain region 27c protective film 28c formed so as to cover the, and a stress insulating film 31 formed on the protective film 28c.
  • the first, second, and third sidewalls 19A, 19B, and 19C are first L-shaped cross sections formed on the side surfaces of the first, second, and third gate electrodes 14a, 14b, and 14c. , Second and third inner side walls 18a, 18b and 18c, and first, second and third outer sides formed on the first, second and third inner side walls 18a, 18b and 18c. Walls 19a, 19b, and 19c are provided.
  • the wiring sidewall 19X includes a wiring inner sidewall 18x having an L-shaped cross section formed on the side surface of the gate wiring 14x, and a wiring outer sidewall 19x formed on the wiring inner sidewall 18x. have.
  • the first stress relaxation film 28a, the second stress relaxation film 28x, the protective film 28b, and the protective film 28c are made of the same insulating material.
  • the uppermost surface of the silicon mixed crystal layer 23 is formed to be higher than the surface of the semiconductor substrate 10 located immediately below the first gate electrode 14a.
  • the silicon mixed crystal layer 23 having a portion formed in the trench 22 and a protruding portion formed on the portion is formed.
  • a gap 24 is provided between the silicon mixed crystal layer 23 and the first side wall 19A, and as shown in FIG.
  • the first stress relaxation film 28a can be formed.
  • the protruding portion of the silicon mixed crystal layer 23 and the first stress relaxation film 28a are interposed between the stress insulating film 31 and the channel region in the first active region 10a. Can be made.
  • the stress insulating film 31 can be separated from the channel region in the first active region 10a by the protruding portion of the silicon mixed crystal layer 23 and the first stress relaxation film 28a. For this reason, it is possible to mitigate the application of tensile stress due to the stress insulating film 31 in the gate length direction of the channel region in the first active region 10a. Therefore, it is possible to prevent the hole mobility from being lowered and the driving capability of the first MIS transistor pTr1 from being deteriorated.
  • compressive stress due to the silicon mixed crystal layer 23 can be applied in the gate length direction of the channel region in the first active region 10a. For this reason, the drive capability of the first MIS transistor pTr1 can be improved.
  • a silicon mixed crystal layer 23 having a portion formed in the trench 22 and a protruding portion formed on the portion is formed. Thereby, since the silicon mixed crystal layer 23 can be thickened only in the protruding portion in the silicon mixed crystal layer 23, a compressive stress is effectively applied in the gate length direction of the channel region in the first active region 10a. be able to. For this reason, the driving capability of the first MIS transistor pTr1 can be further improved.
  • a tensile stress due to the stress insulating film 31 can be applied in the gate length direction of the channel region in the second active region 10b. For this reason, the mobility of electrons can be improved and the driving capability of the second MIS transistor nTr can be improved.
  • a protective film 28b is formed on the side surface of the n-type source / drain region 27b (in other words, the surface exposed in the recess 20), and the n-type source / drain region 27b The side surface can be covered with the protective film 28b. Therefore, the silicide metal film is not formed in contact with the side surface of the n-type source / drain region 27b, so that the cross-sectional shape is not L-shaped but I-shaped as shown in FIG.
  • a fourth silicide layer 30b having a shape can be formed.
  • the fourth silicide layer 30b can be formed away from the bottom surface (junction surface) of the n-type source / drain region 27b, the occurrence of leakage current in the n-type source / drain region 27b is prevented. Can do.
  • the third gate electrode 14c, the third offset spacer 16c, the third sidewall 19C, and the second p-type source / drain region are formed on the third active region 10c.
  • a protective film 28c is formed so as to cover 27c.
  • the protective film 28c can be interposed between the stress insulating film 31 and the channel region in the third active region 10c.
  • the stress insulating film 31 can be separated from the channel region in the third active region 10c by the amount of the protective film 28c.
  • the protective film 28c not only functions as a film that prevents the silicide layer from being formed, but also functions as a film that relieves the tensile stress caused by the stress insulating film 31.
  • the “uppermost surface” of the silicon mixed crystal layer 23 in this specification refers to a trapezoid when the cross-sectional shape of the protruding portion of the silicon mixed crystal layer 23 is trapezoidal as shown in FIG. The top of the bottom.
  • the cross-sectional shape of the protrusion part in a silicon mixed crystal layer is a mountain shape, for example, it means the peak (top point) of the mountain.
  • the first and second p-type extension implantation regions 17a and 17c are formed in separate steps.
  • the first and second p-type impurity concentrations of the first and second p-type extension implantation regions 17a and 17c are made different from each other has been described as a specific example, but the present invention is not limited to this.
  • the first and second p-type extension implantation regions may be formed in the same process, and the first and second p-type extension implantation regions may have the same p-type impurity concentration.
  • the trench 22 is formed by performing, for example, dry etching on the first active region 10a has been described as a specific example.
  • the present invention is not limited to this.
  • a trench including a ⁇ 111> plane on the side surface may be formed by performing anisotropic wet etching on the first active region. In this way, since the side surface of the trench can be brought close to the channel region in the first active region, the compressive stress due to the silicon mixed crystal layer formed in the trench can be reduced by the gate of the channel region in the first active region. It can be applied effectively in the long direction.
  • the ISSG oxidation method is used as a method for forming the gate insulating film forming film, and the gate insulating film forming film is formed only on the first, second, and third active regions 10a, 10b, and 10c.
  • the case where no wiring gate insulating film is interposed between the element isolation region 11 and the gate wiring 14x has been described as a specific example, but the present invention is not limited to this.
  • a CVD method is used as a method for forming a gate insulating film, a gate insulating film forming film is formed on a semiconductor substrate, and a gate insulating film for wiring is interposed between the element isolation region and the gate wiring. May be.
  • the first, second, and third gate electrodes 14a made of, for example, a polysilicon film are formed on the first, second, and third gate insulating films 13a, 13b, and 13c made of, for example, a silicon oxide film.
  • 14b, and 14c have been described as specific examples, but the present invention is not limited to this.
  • a metal film and a silicon film formed on the metal film are formed on the first, second, and third gate insulating films having a base film and a high dielectric constant film formed on the base film.
  • First, second, and third gate electrodes may be formed.
  • the base film is made of, for example, a silicon oxide film or a silicon oxynitride film.
  • the high dielectric constant film is made of, for example, a hafnium oxide film or a zirconium oxide film having a relative dielectric constant of 8 or more.
  • the metal film is made of, for example, TiN (titanium nitride) or TaN (tantalum nitride).
  • the silicon film is made of, for example, a polysilicon film. In this case, a base film and a high dielectric constant film or a high dielectric constant film are interposed between the element isolation region and the gate wiring.
  • Ni is used as the material for the silicide metal film to form the first, third, second, and fourth silicide layers 29a, 29b, 30a, and 30b made of nickel silicide.
  • the present invention is not limited to this.
  • the first, third, second, and fourth silicide layers made of platinum silicide or cobalt silicide may be formed using platinum or cobalt instead of Ni as the material for the silicide metal film.
  • the conductivity type of the first MIS transistor pTr1 is p-type and the conductivity type of the second MIS transistor nTr is n-type has been described as a specific example. It is not limited to.
  • the conductivity type of the first MIS transistor may be n-type
  • the conductivity type of the second MIS transistor may be p-type.
  • the extension region and the source / drain region of each of the first and second MIS transistors have a conductivity type opposite to that in the present embodiment.
  • a layer for example, a SiC layer
  • a film that generates compressive stress in the gate length direction of the channel region in the second active region is used as the stress insulating film.
  • FIGS. 7 (a) to (b) are cross-sectional views in the gate length direction showing the method of manufacturing the semiconductor device according to the modification of the embodiment of the present invention in the order of steps.
  • FIGS. 7A to 7B the same reference numerals as those shown in FIGS. 1A to 6B are assigned to the same components as those in the first embodiment. Therefore, in this modification, the description similar to that of the first embodiment is omitted as appropriate.
  • steps similar to those shown in FIGS. 1 (a) to 5 (b) are sequentially performed to obtain a configuration similar to that shown in FIG. 5 (b).
  • the first and second outer sidewalls 19a, 19B in the first and second sidewalls 19A, 19B are formed by a wet etching method using hot phosphoric acid at 160 ° C., for example.
  • the wiring outer side wall 19x (silicon nitride film) 19b (silicon nitride film) and the wiring side wall 19X are removed.
  • the L-shaped curved surfaces of the first and second inner side walls 18a and 18b (silicon oxide film) and the wiring inner side wall 18x (silicon oxide film) are exposed.
  • first and third silicide layers 29a and 29b are formed on the first and second gate electrodes 14a and 14b.
  • a wiring silicide layer 29x is formed on the gate wiring 14x.
  • second and fourth silicide layers 30a and 30b are formed on the first p-type and n-type source / drain regions 27a and 27b.
  • a stress insulating film 31 is formed on the entire surface of the semiconductor substrate 10. In other words, a process similar to the process shown in FIG. At this time, the stress insulating film 31 is formed in contact with the L-shaped surfaces of the first and second inner sidewalls 18a and 18b and the wiring inner sidewall 18x.
  • the semiconductor device according to this modification can be manufactured.
  • the first and second sidewalls 19A and 19B include the first and second inner sidewalls 18a and 18b, and the first and second sidewalls. It has outer side walls 19a, 19b.
  • the wiring sidewall 19X includes a wiring inner side wall 18x and a wiring outer side wall 19x.
  • the stress insulating film 31 includes side surfaces of the first and second outer sidewalls 19a and 19b and the wiring outer sidewall 19x, and upper ends of the first and second inner sidewalls 18a and 18b and the wiring inner sidewall 18x. It is formed in contact with.
  • the first and second sidewalls 19A and 19B have only the first and second inner sidewalls 18a and 18b.
  • the wiring sidewall 19X has only the wiring inner sidewall 18x.
  • the stress insulating film 31 is formed in contact with the L-shaped curved surfaces of the first and second inner sidewalls 18a and 18b and the wiring inner sidewall 18x.
  • the stress insulating film 31 in order to form the stress insulating film 31 after removing the second outer side wall 19b, as shown in FIG. It can be formed in contact with the L-shaped surface of the second inner sidewall 18b. Therefore, the stress insulating film 31 can be formed as close to the channel region in the second active region 10b as the second outer side wall 19b is removed, so that the channel region in the second active region 10b can be formed. A tensile stress can be effectively applied in the gate length direction.
  • the stress insulating film 31 can be formed as thick as the second outer side wall 19b is removed, a tensile stress is effectively applied in the gate length direction of the channel region in the second active region 10b. can do.
  • the present invention can prevent the drive capability of the MIS transistor from deteriorating, and is useful for a semiconductor device including a MIS transistor having a source / drain region including a silicon mixed crystal layer and a method for manufacturing the same. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 半導体装置は、第1のMISトランジスタpTr1を備えている。第1のMISトランジスタpTr1は、第1の活性領域10aにおける第1のサイドウォール19Aの外側方下に設けられたトレンチ22内に形成され、第1の活性領域10aにおけるチャネル領域のゲート長方向に第1の応力を生じさせるシリコン混晶層23を含む第1導電型の第1のソースドレイン領域27aと、第1の活性領域10a上に第1のゲート電極14a、第1のサイドウォール19A及び第1のソースドレイン領域27aを覆うように形成され、第1の応力とは反対の第2の応力を生じさせる応力絶縁膜31とを備えている。シリコン混晶層23の最上面は、第1のゲート電極14a直下に位置する半導体基板10の表面よりも高く形成されている。シリコン混晶層23と第1のサイドウォール19Aとの隙間24には、第1の応力緩和膜28aが形成されている。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関し、特に、シリコン混晶層を含むソースドレイン領域を有するMISFET(Metal-Insulator-Semiconductor Field-Effect Transistor)を備えた半導体装置及びその製造方法に関する。
 半導体集積回路装置の高性能化を実現する為に、MISFET(以下、「MISトランジスタ」と称す)のチャネル領域に応力を印加することで、MISトランジスタの駆動能力を向上させる歪技術が用いられている。p型MISトランジスタの場合、チャネル領域におけるゲート長方向に圧縮応力を印加することで、キャリアの移動度が向上し、p型MISトランジスタの駆動能力が向上することが知られている。チャネル領域におけるゲート長方向に圧縮応力を印加する方法として、例えば、シリコン基板よりも大きな格子定数を有するSiGe層を、ソースドレイン領域に形成する方法が挙げられる(例えば、特許文献1及び非特許文献1,2を参照)。
 以下に、ソースドレイン領域に形成されたSiGe層を有するp型MISトランジスタと、n型MISトランジスタとが同一の半導体基板に形成された半導体装置について、図8(a) ~(c) 、図9(a) ~(c) 及び図10(a) ~(c) を参照しながら説明する。図8(a) ~図10(c) は、従来の半導体装置の製造方法を工程順に示すゲート長方向の断面図である。図8(a) ~図10(c) において、左側に示す「pMIS領域」とは、p型MISトランジスタが形成される領域をいう。一方、右側に示す「nMIS領域」とは、n型MISトランジスタが形成される領域をいう。
 まず、図8(a) に示すように、半導体基板100の上部に、素子分離領域101を選択的に形成する。これにより、半導体基板100におけるpMIS領域に、素子分離領域101に囲まれた第1の活性領域100aが形成される。それと共に、半導体基板100におけるnMIS領域に、素子分離領域101に囲まれた第2の活性領域100bが形成される。その後、半導体基板100におけるpMIS領域に、n型ウェル領域102aを形成する。一方、半導体基板100におけるnMIS領域に、p型ウェル領域102bを形成する。
 次に、第1,第2の活性領域100a,100b上に、第1,第2のゲート絶縁膜103a,103b、第1,第2のゲート電極104a,104b及び第1,第2の保護絶縁膜105a,105bを有する第1,第2のゲート電極形成部105A,105Bを形成する。
 次に、第1,第2のゲート電極形成部105A,105Bの側面上に、第1,第2のオフセットスペーサ106a,106bを形成する。その後、第1の活性領域100aにおける第1のゲート電極形成部105Aの側方下に、p型エクステンション注入領域107aを形成する。一方、第2の活性領域100bにおける第2のゲート電極形成部105Bの側方下に、n型エクステンション注入領域107bを形成する。
 次に、図8(b) に示すように、第1,第2のゲート電極形成部105A,105Bの側面上に、第1,第2のオフセットスペーサ106a,106bを介して、第1,第2の内側サイドウォール108a,108b及び第1,第2の外側サイドウォール109a,109bを有する第1,第2のサイドウォール109A,109Bを形成する。
 次に、図8(c) に示すように、第2の活性領域100b上に、第2のゲート電極形成部105B、第2のオフセットスペーサ106b、第2のサイドウォール109B及びn型エクステンション注入領域107bを覆う保護絶縁膜110を形成する。
 次に、第1のサイドウォール109A及び保護絶縁膜110をマスクとして、第1の活性領域100aに対して、エッチングを行う。これにより、第1の活性領域100aにおける第1のサイドウォール109Aの外側方下に、トレンチ111を形成する。
 次に、図9(a) に示すように、トレンチ111内に、p型不純物がドーピングされたSiGe層112を形成する。SiGe層112は、p型不純物がドーピングされているため、SiGe層112の領域は、p型不純物導入領域である。
 次に、図9(b) に示すように、保護絶縁膜110及び第1,第2の保護絶縁膜105a,105bを除去する。
 次に、図9(c) に示すように、第2の活性領域100bにおける第2のサイドウォール109Bの外側方下に、n型ソースドレイン注入領域113を形成する。
 次に、図10(a) に示すように、熱処理により、p型,n型エクステンション注入領域107a,107bに含まれるp型,n型不純物を活性化し、p型,n型エクステンション領域114a,114bを形成する。それと共に、SiGe層112の領域(p型不純物導入領域)に含まれるp型不純物を活性化し、p型ソースドレイン領域115aを形成する。それと共に、n型ソースドレイン注入領域113に含まれるn型不純物を活性化し、n型ソースドレイン領域115bを形成する。
 次に、図10(b) に示すように、第1,第2のゲート電極104a,104b上に、第1,第3のシリサイド層116a,116bを形成する。それと共に、p型,n型ソースドレイン領域115a,115b上に、第2,第4のシリサイド層117a,117bを形成する。
 次に、図10(c) に示すように、半導体基板100上の全面に、第2の活性領域100bにおけるチャネル領域のゲート長方向に引っ張り応力を生じさせる応力絶縁膜118を形成する。
 以上のようにして、従来の半導体装置を製造する。
US patent 6621131(米国特許出願公開第2003/0080361号明細書)
 しかしながら、従来の半導体装置では、以下に示す問題がある。
 一般に、活性領域におけるチャネル領域のゲート長方向に引っ張り応力が印加された場合、n型MISトランジスタの駆動能力は向上するものの、p型MISトランジスタの駆動能力は劣化する。
 従来では、応力絶縁膜118により、第2の活性領域100bにおけるチャネル領域のゲート長方向に引っ張り応力を印加して、n型MISトランジスタの駆動能力を向上させることは可能である。しかしながら、応力絶縁膜118により、第1の活性領域100aにおけるチャネル領域のゲート長方向に引っ張り応力が印加されるため、p型MISトランジスタの駆動能力を劣化させるという問題がある。
 前記の問題に鑑み、本発明の目的は、シリコン混晶層を含むソースドレイン領域を有するMISトランジスタを備えた半導体装置において、応力絶縁膜により、MISトランジスタの駆動能力が劣化することを防止することである。
 前記の目的を達成するため、本発明の一側面に係る半導体装置は、第1のMISトランジスタを備えた半導体装置において、第1のMISトランジスタは、半導体基板における第1の活性領域上に形成された第1のゲート絶縁膜と、第1のゲート絶縁膜上に形成された第1のゲート電極と、第1のゲート電極の側面上に形成された第1のサイドウォールと、第1の活性領域における第1のサイドウォールの外側方下に設けられたトレンチ内に形成され、第1の活性領域におけるチャネル領域のゲート長方向に第1の応力を生じさせるシリコン混晶層を含む第1導電型の第1のソースドレイン領域と、第1の活性領域上に第1のゲート電極、第1のサイドウォール及び第1のソースドレイン領域を覆うように形成され、第1の応力とは反対の第2の応力を生じさせる応力絶縁膜とを備え、シリコン混晶層の最上面は、第1のゲート電極直下に位置する半導体基板の表面よりも高く形成されており、シリコン混晶層と第1のサイドウォールとの隙間には、第1の応力緩和膜が形成されていることを特徴とする。
 本発明の一側面に係る半導体装置によると、シリコン混晶層の最上面を、第1のゲート電極直下に位置する半導体基板の表面よりも高く形成する。言い換えれば、トレンチ内に形成された部分と、該部分上に形成された突出部分とを有するシリコン混晶層を形成する。これにより、シリコン混晶層と第1のサイドウォールとの間に、隙間を設けて、隙間に、第1の応力緩和膜を形成することができる。これにより、応力絶縁膜と第1の活性領域におけるチャネル領域との間に、シリコン混晶層における突出部分及び第1の応力緩和膜を介在させることができる。このため、シリコン混晶層における突出部分及び第1の応力緩和膜の分だけ、応力絶縁膜を、第1の活性領域におけるチャネル領域から離すことができる。このため、応力絶縁膜による第2の応力が、第1の活性領域におけるチャネル領域のゲート長方向に印加されることを緩和することができる。従って、電子の移動度が低下し、第1のMISトランジスタの駆動能力が劣化することを防止することができる。
 加えて、シリコン混晶層による第1の応力を、第1の活性領域におけるチャネル領域のゲート長方向に印加することができる。このため、第1のMISトランジスタの駆動能力を向上させることができる。さらに、上述の通り、トレンチ内に形成された部分と、該部分上に形成された突出部分とを有するシリコン混晶層を形成する。これにより、シリコン混晶層における突出部分だけ、シリコン混晶層を厚膜化することができるため、第1の活性領域におけるチャネル領域のゲート長方向に第1の応力を効果的に印加することができる。このため、第1のMISトランジスタの駆動能力をさらに向上させることができる。
 本発明の一側面に係る半導体装置において、第1のゲート電極と第1のサイドウォールとの間に形成された断面形状がI字状の第1のオフセットスペーサをさらに備えていることが好ましい。
 本発明の一側面に係る半導体装置において、第1のゲート電極上に形成された第1のシリサイド層と、シリコン混晶層を含む第1のソースドレイン領域上に形成された第2のシリサイド層とをさらに備えていることが好ましい。
 本発明の一側面に係る半導体装置において、第1の応力緩和膜は、シリコン混晶層の側面上に形成されていることが好ましい。
 本発明の一側面に係る半導体装置において、第1のサイドウォールは、第1のゲート電極の側面上に形成された断面形状がL字状の内側サイドウォールと、内側サイドウォール上に形成された外側サイドウォールとを有していることが好ましい。
 本発明の一側面に係る半導体装置において、第1のサイドウォールは、断面形状がL字状の内側サイドウォールを有し、応力絶縁膜は、内側サイドウォールのL字状に湾曲した表面に接して形成されていることが好ましい。
 本発明の一側面に係る半導体装置において、第1のMISトランジスタは、p型MISトランジスタであり、第1の応力は、圧縮応力であり、第2の応力は、引っ張り応力であることが好ましい。
 本発明の一側面に係る半導体装置において、シリコン混晶層は、SiGe層であり、応力絶縁膜は、シリコン窒化膜であり、第1の応力緩和膜は、シリコン酸化膜であることが好ましい。
 本発明の一側面に係る半導体装置において、第1のMISトランジスタは、n型MISトランジスタであり、第1の応力は、引っ張り応力であり、第2の応力は、圧縮応力であることが好ましい。
 本発明の一側面に係る半導体装置において、半導体基板に第1の活性領域を取り囲むように形成された素子分離領域と、素子分離領域上に形成されたゲート配線と、ゲート配線の側面上に形成された配線用サイドウォールと、素子分離領域における配線用サイドウォールの外側方下に設けられた窪み部の側面上に形成された第2の応力緩和膜と、素子分離領域上にゲート配線、配線用サイドウォール及び第2の応力緩和膜を覆うように形成された応力絶縁膜とを備えていることが好ましい。
 本発明の一側面に係る半導体装置において、半導体装置は、第2のMISトランジスタをさらに備え、第2のMISトランジスタは、半導体基板における第2の活性領域上に形成された第2のゲート絶縁膜と、第2のゲート絶縁膜上に形成された第2のゲート電極と、第2のゲート電極の側面上に形成された第2のサイドウォールと、第2の活性領域における第2のサイドウォールの外側方下に形成された第2導電型の第2のソースドレイン領域と、第2の活性領域上に第2のゲート電極、第2のサイドウォール及び第2のソースドレイン領域を覆うように形成された応力絶縁膜とを備えていることが好ましい。
 このようにすると、応力絶縁膜による第2の応力を、第2の活性領域におけるチャネル領域のゲート長方向に印加することができる。このため、電子の移動度を向上させて、第2のMISトランジスタの駆動能力を向上させることができる。
 本発明の一側面に係る半導体装置において、第2の活性領域上には、第1の応力緩和膜は形成されていないことが好ましい。
 本発明の一側面に係る半導体装置において、半導体装置は、第3のMISトランジスタをさらに備え、第3のMISトランジスタは、半導体基板における第3の活性領域上に形成された第3のゲート絶縁膜と、第3のゲート絶縁膜上に形成された第3のゲート電極と、第3のゲート電極の側面上に形成された第3のサイドウォールと、第3の活性領域における第3のサイドウォールの外側方下に形成された第1導電型の第3のソースドレイン領域と、第3の活性領域上に第3のゲート電極、第3のサイドウォール及び第3のソースドレイン領域を覆うように形成された保護膜と、保護膜上に形成された応力絶縁膜とを備えていることが好ましい。
 このようにすると、第3の活性領域上に、第3のゲート電極、第3のサイドウォール及び第3のソースドレイン領域を覆うように保護膜を形成する。これにより、応力絶縁膜と第3の活性領域におけるチャネル領域との間に、保護膜を介在させることができる。このため、保護膜の分だけ、応力絶縁膜を、第3の活性領域におけるチャネル領域から離すことができる。このため、応力絶縁膜による第2の応力が、第3の活性領域におけるチャネル領域のゲート長方向に印加されることを緩和することができる。このため、電子の移動度が低下し、第3のMISトランジスタの駆動能力が劣化することを防止することができる。
 本発明の一側面に係る半導体装置において、第3のゲート電極上及び第3のソースドレイン領域上には、シリサイド層は形成されていないことが好ましい。
 本発明の一側面に係る半導体装置において、第1の応力緩和膜と保護膜とは、同一の絶縁材料からなることが好ましい。
 前記の目的を達成するため、本発明の一側面に係る半導体装置の製造方法は、半導体基板における第1の活性領域上に形成された第1のMISトランジスタを有する半導体装置の製造方法であって、第1の活性領域上に第1のゲート絶縁膜及び第1のゲート電極を有する第1のゲート電極形成部を形成する工程(a)と、工程(a)の後に、第1のゲート電極形成部の側面上に第1のサイドウォールを形成する工程(b)と、工程(b)の後に、第1の活性領域における第1のサイドウォールの外側方下にトレンチを形成した後、トレンチ内に第1の活性領域におけるチャネル領域のゲート長方向に第1の応力を生じさせるシリコン混晶層を含む第1導電型の第1のソースドレイン領域を形成する工程(c)と、工程(c)の後に、シリコン混晶層と第1のサイドウォールとの隙間に第1の応力緩和膜を形成する工程(d)と、工程(d)の後に、第1の活性領域上に第1のゲート電極、第1のサイドウォール、第1のソースドレイン領域及び第1の応力緩和膜を覆い、第1の応力とは反対の第2の応力を生じさせる応力絶縁膜を形成する工程(e)とを備えていることを特徴とする。
 本発明の一側面に係る半導体装置の製造方法によると、シリコン混晶層の最上面を、第1のゲート電極直下に位置する半導体基板の表面よりも高く形成する。言い換えれば、トレンチ内に形成された部分と、該部分上に形成された突出部分とを有するシリコン混晶層を形成する。これにより、シリコン混晶層と第1のサイドウォールとの間に、隙間を設けて、隙間に、第1の応力緩和膜を形成することができる。これにより、応力絶縁膜と第1の活性領域におけるチャネル領域との間に、シリコン混晶層における突出部分及び第1の応力緩和膜を介在させることができる。このため、シリコン混晶層における突出部分及び第1の応力緩和膜の分だけ、応力絶縁膜を、第1の活性領域におけるチャネル領域から離すことができる。このため、応力絶縁膜による第2の応力が、第1の活性領域におけるチャネル領域のゲート長方向に印加されることを緩和することができる。従って、電子の移動度が低下し、第1のMISトランジスタの駆動能力が劣化することを防止することができる。
 加えて、シリコン混晶層による第1の応力を、第1の活性領域におけるチャネル領域のゲート長方向に印加することができる。このため、第1のMISトランジスタの駆動能力を向上させることができる。さらに、上述の通り、トレンチ内に形成された部分と、該部分上に形成された突出部分とを有するシリコン混晶層を形成する。これにより、シリコン混晶層における突出部分だけ、シリコン混晶層を厚膜化することができるため、第1の活性領域におけるチャネル領域のゲート長方向に第1の応力を効果的に印加することができる。このため、第1のMISトランジスタの駆動能力をさらに向上させることができる。
 本発明の一側面に係る半導体装置の製造方法において、工程(c)において、シリコン混晶層の最上面を、第1のゲート電極直下に位置する半導体基板の表面よりも高く形成することが好ましい。
 本発明の一側面に係る半導体装置の製造方法において、工程(a)の前に、半導体基板に第1の活性領域を取り囲む素子分離領域を形成する工程(f)をさらに備え、工程(a)は、素子分離領域上にゲート配線を有するゲート配線形成部を形成する工程を含み、工程(b)は、ゲート配線形成部の側面上に配線用サイドウォールを形成する工程を含み、工程(d)は、素子分離領域における配線用サイドウォールの外側方下に設けられた窪み部の側面上に第2の応力緩和膜を形成する工程を含み、工程(e)は、素子分離領域上にゲート配線、配線用サイドウォール及び第2の応力緩和膜を覆うように応力絶縁膜を形成する工程を含むことが好ましい。
 本発明の一側面に係る半導体装置の製造方法において、半導体装置は、半導体基板における第2の活性領域上に形成された第2のMISトランジスタを有し、工程(a)は、第2の活性領域上に第2のゲート絶縁膜及び第2のゲート電極を有する第2のゲート電極形成部を形成する工程を含み、工程(b)は、第2のゲート電極形成部の側面上に第2のサイドウォールを形成する工程を含み、工程(c)の後で工程(d)の前に、第2の活性領域における第2のサイドウォールの外側方下に第2導電型の第2のソースドレイン領域を形成する工程(g)をさらに備え、工程(e)は、第2の活性領域上に第2のゲート電極、第2のサイドウォール及び第2のソースドレイン領域を覆うように応力絶縁膜を形成する工程を含むことが好ましい。
 このようにすると、応力絶縁膜による第2の応力を、第2の活性領域におけるチャネル領域のゲート長方向に印加することができる。このため、電子の移動度を向上させて、第2のMISトランジスタの駆動能力を向上させることができる。
 本発明の一側面に係る半導体装置の製造方法において、半導体装置は、半導体基板における第3の活性領域上に形成された第3のMISトランジスタを有し、工程(a)は、第3の活性領域上に第3のゲート絶縁膜及び第3のゲート電極を有する第3のゲート電極形成部を形成する工程を含み、工程(b)は、第3のゲート電極形成部の側面上に第3のサイドウォールを形成する工程を含み、工程(c)の後で工程(d)の前に、第3の活性領域における第3のサイドウォールの外側方下に第1導電型の第3のソースドレイン領域を形成する工程(h)をさらに備え、工程(d)は、第3の活性領域上に第3のゲート電極、第3のサイドウォール及び第3のソースドレイン領域を覆うように保護膜を形成する工程を含み、工程(e)は、保護膜上に応力絶縁膜を形成する工程を含むことが好ましい。
 このようにすると、第3の活性領域上に、第3のゲート電極、第3のサイドウォール及び第3のソースドレイン領域を覆うように保護膜を形成する。これにより、応力絶縁膜と第3の活性領域におけるチャネル領域との間に、保護膜を介在させることができる。このため、保護膜の分だけ、応力絶縁膜を、第3の活性領域におけるチャネル領域から離すことができる。このため、応力絶縁膜による第2の応力が、第3の活性領域におけるチャネル領域のゲート長方向に印加されることを緩和することができる。このため、電子の移動度が低下し、第3のMISトランジスタの駆動能力が劣化することを防止することができる。
 本発明の一側面に係る半導体装置及びその製造方法によると、シリコン混晶層の最上面を、第1のゲート電極直下に位置する半導体基板の表面よりも高く形成する。言い換えれば、トレンチ内に形成された部分と、該部分上に形成された突出部分とを有するシリコン混晶層を形成する。これにより、シリコン混晶層と第1のサイドウォールとの間に、隙間を設けて、隙間に、第1の応力緩和膜を形成することができる。これにより、応力絶縁膜と第1の活性領域におけるチャネル領域との間に、シリコン混晶層における突出部分及び第1の応力緩和膜を介在させることができる。このため、シリコン混晶層における突出部分及び第1の応力緩和膜の分だけ、応力絶縁膜を、第1の活性領域におけるチャネル領域から離すことができる。このため、応力絶縁膜による第2の応力が、第1の活性領域におけるチャネル領域のゲート長方向に印加されることを緩和することができる。従って、電子の移動度が低下し、第1のMISトランジスタの駆動能力が劣化することを防止することができる。
図1(a) ~(b) は、本発明の一実施形態に係る半導体装置の製造方法を工程順に示すゲート長方向の断面図である。 図2(a) ~(b) は、本発明の一実施形態に係る半導体装置の製造方法を工程順に示すゲート長方向の断面図である。 図3(a) ~(b) は、本発明の一実施形態に係る半導体装置の製造方法を工程順に示すゲート長方向の断面図である。 図4(a) ~(b) は、本発明の一実施形態に係る半導体装置の製造方法を工程順に示すゲート長方向の断面図である。 図5(a) ~(b) は、本発明の一実施形態に係る半導体装置の製造方法を工程順に示すゲート長方向の断面図である。 図6(a) ~(b) は、本発明の一実施形態に係る半導体装置の製造方法を工程順に示すゲート長方向の断面図である。 図7(a) ~(b) は、本発明の一実施形態の変形例に係る半導体装置の製造方法を工程順に示すゲート長方向の断面図である。 図8(a) ~(c) は、従来の半導体装置の製造方法を工程順に示すゲート長方向の断面図である。 図9(a) ~(c) は、従来の半導体装置の製造方法を工程順に示すゲート長方向の断面図である。 図10(a) ~(c) は、従来の半導体装置の製造方法を工程順に示すゲート長方向の断面図である。
 以下に、本発明の実施形態について図面を参照しながら説明する。
 (一実施形態)
 以下に、本発明の一実施形態に係る半導体装置の製造方法について、図1(a) ~(b) 、図2(a) ~(b) 、図3(a) ~(b) 、図4(a) ~(b) 、図5(a) ~(b) 及び図6(a) ~(b) を参照しながら説明する。図1(a) ~図6(b) は、本発明の一実施形態に係る半導体装置の製造方法を工程順に示すゲート長方向の断面図である。図1(a) ~図6(b) において、左側から順に、第1のpMIS領域、配線領域、nMIS領域、第2のpMIS領域を示す。「第1のpMIS領域」とは、第1のMISトランジスタが形成される領域をいう。「配線領域」とは、ゲート配線が形成される領域をいう。「nMIS領域」とは、第2のMISトランジスタが形成される領域をいう。「第2のpMIS領域」とは、第3のMISトランジスタが形成される領域をいう。「第1のMISトランジスタ」とは、シリコン混晶層を含むソースドレイン領域を有するMISトランジスタをいう。第1のMISトランジスタは、例えばロジック回路又は内部回路に用いられる。「第3のMISトランジスタ」とは、ソースドレイン領域上に形成されたシリサイド層を有さないMISトランジスタをいう。第3のMISトランジスタは、例えばアナログ回路又は周辺回路に用いられる。
 まず、図1(a) に示すように、例えば埋め込み素子分離(Shallow Trench Isolation:STI)法により、例えばp型シリコンからなる半導体基板10の上部に、例えばシリコン酸化膜からなる素子分離領域11を選択的に形成する。これにより、半導体基板10における第1,第2のpMIS領域に、素子分離領域11に囲まれた第1,第3の活性領域10a,10cが形成される。それと共に、半導体基板10におけるnMIS領域に、素子分離領域11に囲まれた第2の活性領域10bが形成される。
 その後、イオン注入法により、半導体基板10における第1,第2のpMIS領域に、例えばリン(P)等のn型不純物を注入する。一方、イオン注入法により、半導体基板10におけるnMIS領域に、例えばボロン(B)等のp型不純物を注入する。その後、熱処理により、半導体基板10における第1,第2のpMIS領域に、第1,第2のn型ウェル領域12a,12cを形成する。それと共に、半導体基板10におけるnMIS領域に、p型ウェル領域12bを形成する。
 次に、例えばISSG(In-Situ Steam Generation)酸化法により、第1,第2,第3の活性領域10a,10b,10c上に、例えば膜厚が1.8nmのシリコン酸化膜からなるゲート絶縁膜形成膜を堆積する。その後、例えばCVD(Chemical Vapor Deposition)法により、ゲート絶縁膜形成膜上に、例えば膜厚が50nmのポリシリコン膜からなるゲート電極形成膜を堆積する。その後、例えばCVD法により、ゲート電極形成膜上に、例えば膜厚が30nmのシリコン酸化膜からなる保護絶縁膜形成膜を堆積する。その後、リソグラフィ法により、保護絶縁膜形成膜上に、レジストパターン(図示省略)を形成する。その後、ドライエッチング法により、レジストパターンをマスクとして、保護絶縁膜形成膜、ゲート電極形成膜及びゲート絶縁膜形成膜を順次パターニングする。これにより、第1,第2,第3の活性領域10a,10b,10c上に、第1,第2,第3のゲート絶縁膜13a,13b,13c、第1,第2,第3のゲート電極14a,14b,14c及び第1,第2,第3の保護絶縁膜15a,15b,15cを有する第1,第2,第3のゲート電極形成部15A,15B,15Cを形成する。それと共に、第1の活性領域10aと第2の活性領域10bとの間に介在する素子分離領域11上に、ゲート配線14x及び配線用保護絶縁膜15xを有するゲート配線形成部15Xを形成する。
 次に、例えばCVD法により、半導体基板10上の全面に、例えば膜厚が5nmのシリコン窒化膜からなるオフセットスペーサ用膜を堆積する。その後、オフセットスペーサ用膜に対して、例えば異方性ドライエッチングを行う。これにより、第1,第2,第3のゲート電極形成部15A,15B,15Cの側面上に、断面形状がI字状の第1,第2,第3のオフセットスペーサ16a,16b,16cを形成する。それと共に、ゲート配線形成部15Xの側面上に、断面形状がI字状の配線用オフセットスペーサ16xを形成する。
 その後、イオン注入法により、第1のゲート電極形成部15Aをマスクとして、第1の活性領域10aに、第1の注入ドーズ量で、例えばB等のp型不純物を注入する。これにより、第1の活性領域10aにおける第1のゲート電極形成部15Aの側方下に、第1のp型エクステンション注入領域17aを自己整合的に形成する。その後、イオン注入法により、第2のゲート電極形成部15Bをマスクとして、第2の活性領域10bに、例えば砒素(As)等のn型不純物を注入する。これにより、第2の活性領域10bにおける第2のゲート電極形成部15Bの側方下に、n型エクステンション注入領域17bを自己整合的に形成する。その後、イオン注入法により、第3のゲート電極形成部15Cをマスクとして、第3の活性領域10cに、第1の注入ドーズ量よりも少ない第2の注入ドーズ量で、例えばB等のp型不純物を注入する。これにより、第3の活性領域10cにおける第3のゲート電極形成部15Cの側方下に、第2のp型エクステンション注入領域17cを自己整合的に形成する。このとき、第2の注入ドーズ量は、第1の注入ドーズ量よりも少ないため、第2のp型エクステンション注入領域17cのp型不純物濃度は、第1のp型エクステンション注入領域17aのp型不純物濃度よりも低くなる。なお、第1,第2のp型エクステンション注入領域17a,17c及びn型エクステンション注入領域17bの形成順は、順不同である。
 次に、図1(b) に示すように、例えばCVD法により、半導体基板10上の全面に、例えば膜厚が5nmのシリコン酸化膜からなる内側サイドウォール用膜及び例えば膜厚が15nmのシリコン窒化膜からなる外側サイドウォール用膜を順次堆積する。その後、外側サイドウォール用膜及び内側サイドウォール用膜に対して、例えば異方性エッチングを順次行う。これにより、第1,第2,第3のゲート電極形成部15A,15B,15Cの側面上に、第1,第2,第3のオフセットスペーサ16a,16b,16cを介して、断面形状がL字状の第1,第2,第3の内側サイドウォール18a,18b,18c及び第1,第2,第3の外側サイドウォール19a,19b,19cを有する第1,第2,第3のサイドウォール19A,19B,19Cを形成する。それと共に、ゲート配線形成部15Xの側面上に、配線用オフセットスペーサ16xを介して、断面形状がL字状の配線用内側サイドウォール18x及び配線用外側サイドウォール19xを有する配線用サイドウォール19Xを形成する。
 次に、図2(a) に示すように、例えばCVD法により、半導体基板10上の全面に、例えば膜厚が10nmのシリコン酸化膜からなる保護絶縁膜形成膜を形成する。その後、リソグラフィ法により、保護絶縁膜形成膜上に、第1のpMIS領域及び配線領域を開口し且つnMIS領域及び第2のpMIS領域を覆うレジストパターン(図示省略)を形成する。その後、エッチング法により、レジストパターンをマスクとして、保護絶縁膜形成膜における第1のpMIS領域及び配線領域に形成された部分を除去する。これにより、第1の活性領域10aにおける第1のサイドウォール19Aの外側方下に形成された領域の表面を露出させる。一方、第2,第3の活性領域10b,10c上に、第2,第3のゲート電極形成部15B,15C、第2,第3のオフセットスペーサ16b,16c、第2,第3のサイドウォール19B,19C及びn型,第2のp型エクステンション注入領域17b,17cを覆う保護絶縁膜21を形成する。その後、レジストパターンを除去する。
 このとき、素子分離領域11(シリコン酸化膜)にエッチングが施される。このため、図2(a) に示すように、素子分離領域11における配線用サイドウォール19Xの外側方下に、窪み部20が形成される。
 次に、図2(b) に示すように、第1のサイドウォール19A及び保護絶縁膜21をマスクとして、第1の活性領域10aに対して、例えばドライエッチングを行う。これにより、第1の活性領域10aにおける第1のサイドウォール19Aの外側方下に、例えば深さが60nmのトレンチ22を形成する。
 このとき、素子分離領域11(シリコン酸化膜)にエッチングが施される。このため、図2(b) に示すように、素子分離領域11における配線用サイドウォール19Xの外側方下に、窪み部20が形成される。図2(b) に示す窪み部20の深さは、図2(a) に示す窪み部20の深さよりも深い。
 次に、図3(a) に示すように、例えばCVD法により、例えばシランガス(SiH4ガス)及びゲルマンガス(GeH4ガス)を、例えばジボランガス(B26ガス)等のp型不純物ガスと共に供給する。これにより、トレンチ22内に、例えば膜厚が90nmのSiGeからなるシリコン混晶層23を形成する。シリコン混晶層23には、B等のp型不純物がドーピングされているため、シリコン混晶層23の領域は、p型不純物導入領域である。シリコン混晶層23のp型不純物濃度は、例えば1×1020cm2である。シリコン混晶層23は、第1の活性領域10aにおけるチャネル領域のゲート長方向に圧縮応力を生じさせる。
 このとき、シリコン混晶層23の最上面を、第1のゲート電極14aの直下に位置する半導体基板10の表面よりも高く形成する。これにより、シリコン混晶層23と第1のサイドウォール19Aとの間に、隙間24を形成する。
 またこのとき、ゲルマニウム濃度及びp型不純物濃度が、徐々に高くなるように、シリコン混晶層23を成長させる。このようにすると、シリコン混晶層23における半導体基板10と接触する部分のゲルマニウム濃度及びp型不純物濃度を低くすることができる。このため、シリコン混晶層23における半導体基板10と接触する部分の格子定数と、半導体基板10の格子定数との差を小さくすることができるため、結晶欠陥の発生を防止することができる。言い換えれば、トレンチ22内に露出する半導体基板10に、半導体基板10の格子定数と大きく異なるシリコン混晶層(言い換えれば、ゲルマニウム濃度及びp型不純物濃度が高いシリコン混晶層)が接して形成されて、結晶欠陥が発生することを防止することができる。また、p型不純物が、シリコン混晶層の周囲に拡散されて、MISトランジスタの動作に悪影響を及ぼすことを防止することができる。
 またこのとき、第1のゲート電極14aの上面は、第1の保護絶縁膜15aで覆われているため、第1のゲート電極14a上に、SiGe層が形成されることはない。ゲート配線14xの上面は、配線用保護絶縁膜15xで覆われているため、ゲート配線14x上に、SiGe層が形成されることはない。第2,第3のゲート電極14b,14cの上面は、第2,第3の保護絶縁膜15b,15c及び保護絶縁膜21で順次覆われているため、第2,第3のゲート電極14b,14c上に、SiGe層が形成されることはない。第2,第3の活性領域10b,10cの表面は、保護絶縁膜21で覆われているため、第2,第3の活性領域10b,10c上に、SiGe層が形成されることはない。
 次に、図3(b) に示すように、例えばウェットエッチング法により、保護絶縁膜21、並びに第1,第2,第3の保護絶縁膜15a,15b,15c及び配線用保護絶縁膜15xを除去する。これにより、n型,第2のp型エクステンション注入領域17b,17cの表面、並びに第1,第2,第3のゲート電極14a,14b,14c及びゲート配線14xの上面を露出させる。
 このとき、図3(a) に示すように、エッチング前の第1のオフセットスペーサ16a及び配線用オフセットスペーサ16x、並びに第1の内側サイドウォール18a及び配線用内側サイドウォール18xの上端は、露出している。これに対し、エッチング前の第2,第3のオフセットスペーサ16b,16c及び第2,第3の内側サイドウォール18b,18cの上端は、保護絶縁膜21で覆われている。このため、第1のオフセットスペーサ16a及び配線用オフセットスペーサ16xは、第2,第3のオフセットスペーサ16b,16cよりも、エッチングに晒される時間が長い。このため、図3(b) に示すように、エッチング後の第1のオフセットスペーサ16a及び配線用オフセットスペーサ16xの上端高さは、第2,第3のオフセットスペーサ16b,16cの上端高さよりも低い。同様に、第1の内側サイドウォール18a及び配線用内側サイドウォール18xは、第2,第3の内側サイドウォール18b,18cよりも、エッチングに晒される時間が長い。このため、図3(b) に示すように、エッチング後の第1の内側サイドウォール18a及び配線用内側サイドウォール18xの上端高さは、第2,第3の内側サイドウォール18b,18cの上端高さよりも低い。ここで、オフセットスペーサ又は内側サイドウォールの「上端高さ」とは、ゲート電極(又はゲート配線)の直下に位置する半導体基板の表面から、オフセットスペーサ又は内側サイドウォールの上端までの高さをいう。
 次に、図4(a) に示すように、イオン注入法により、第2のゲート電極14b及び第2のサイドウォール19Bをマスクとして、第2の活性領域10bに、例えばAs等のn型不純物を注入する。これにより、第2の活性領域10bにおける第2のサイドウォール19Bの外側方下に、n型ソースドレイン注入領域25bを自己整合的に形成する。一方、イオン注入法により、第3のゲート電極14c及び第3のサイドウォール19Cをマスクとして、第3の活性領域10cに、例えばB等のp型不純物を注入する。これにより、第3の活性領域10cにおける第3のサイドウォール19Cの外側方下に、p型ソースドレイン注入領域25cを自己整合的に形成する。
 次に、図4(b) に示すように、例えば950℃,1秒間の熱処理を行う。
 熱処理により、第1,第2のp型エクステンション注入領域17a,17cに含まれるp型不純物を活性化し、第1,第2のp型エクステンション領域26a,26cを形成する。それと共に、n型エクステンション注入領域17bに含まれるn型不純物を活性化し、n型エクステンション領域26bを形成する。
 熱処理により、シリコン混晶層23の領域(p型不純物導入領域)に含まれるp型不純物を活性化し、シリコン混晶層23を含む第1のp型ソースドレイン領域27aを形成する。それと共に、n型ソースドレイン注入領域25bに含まれるn型不純物を活性化し、n型ソースドレイン領域27bを形成する。それと共に、p型ソースドレイン注入領域25cに含まれるp型不純物を活性化し、第2のp型ソースドレイン領域27cを形成する。
 次に、図5(a) に示すように、例えばCVD法により、半導体基板10上の全面に、例えば膜厚が16nmのシリコン酸化膜からなる絶縁膜28を堆積する。
 次に、図5(b) に示すように、リソグラフィ法により、絶縁膜28上に、第1のpMIS領域、配線領域及びnMIS領域を開口し且つ第2のpMIS領域を覆うレジストパターン(図示省略)を形成する。その後、レジストパターンをマスクとして、絶縁膜28に対して、例えば異方性ドライエッチング及びウェットエッチングを順次行う。これにより、第1,第2のゲート電極14a,14b及びゲート配線14xの上面、並びに第1のp型,n型ソースドレイン領域27a,27bの表面を露出させる。一方、シリコン混晶層23と第1のサイドウォール19Aとの間に形成された隙間24に、第1の応力緩和膜28aを形成する。それと共に、素子分離領域11における配線用サイドウォール19Xの外側方下に設けられた窪み部20の側面上に、第2の応力緩和膜28xを形成する。それと共に、n型ソースドレイン領域27bの側面(言い換えれば、窪み部20内に露出する面)上に、保護膜28bを形成する。それと共に、第3の活性領域10c上に、第3のゲート電極14c、第3のオフセットスペーサ16c、第3のサイドウォール19C及び第2のp型ソースドレイン領域27cを覆う保護膜28cを形成する。その後、レジストパターンを除去する。
 次に、図6(a) に示すように、例えばスパッタ法により、半導体基板10上の全面に、例えば膜厚が10nmのニッケル(Ni)からなるシリサイド用金属膜(図示省略)を形成する。その後、熱処理により、第1,第2のゲート電極14a,14b及びゲート配線14x、並びにシリコン混晶層23を含む第1のp型ソースドレイン領域27a及びn型ソースドレイン領域27bに含まれるSiと、シリサイド用金属膜に含まれるNiとを反応させる。これにより、第1,第2のゲート電極14a,14b上に、膜厚が15nmのニッケルシリサイドからなる第1,第3のシリサイド層29a,29bを形成する。それと共に、ゲート配線14x上に、膜厚が15nmのニッケルシリサイドからなる配線用シリサイド層29xを形成する。それと共に、第1のp型,n型ソースドレイン領域27a,27b上に、膜厚が15nmのニッケルシリサイドからなる第2,第4のシリサイド層30a,30bを形成する。なお、第2のシリサイド層30aは、シリコン混晶層23に含まれるゲルマニウム(Ge)を含む可能性がある。
 このとき、n型ソースドレイン領域27bの側面(言い換えれば、窪み部20内に露出する面)は、保護膜28bで覆われている。このため、シリサイド用金属膜が、n型ソースドレイン領域27bの側面に接して形成されることがなく、シリサイド用金属膜を、n型ソースドレイン領域27bの表面にのみ接して形成することができる。このため、n型ソースドレイン領域27bの表面及び側面に沿って形成された断面形状がL字状の第4のシリサイド層ではなく、図6(a) に示すように、n型ソースドレイン領域27bの表面に沿って形成された断面形状がI字状の第4のシリサイド層30bを形成することができる。
 またこのとき、第3のゲート電極14cの上面は、保護膜28cで覆われているため、第3のゲート電極14c上に、シリサイド層が形成されることはない。またこのとき、第2のp型ソースドレイン領域27cの表面は、保護膜28cで覆われているため、第2のp型ソースドレイン領域27c上に、シリサイド層が形成されることはない。
 その後、シリサイド用金属膜における素子分離領域11、第1,第2のサイドウォール19A,19B及び配線用サイドウォール19X、並びに保護膜28c等の上に残存する部分(言い換えれば、未反応の部分)を除去する。その後、熱処理により、第1,第3のシリサイド層29a,29b及び配線用シリサイド層29x、並びに第2,第4のシリサイド層30a,30bのシリサイド組成比を安定化させる。
 次に、図6(b) に示すように、例えばCVD法により、半導体基板10上の全面に、第2の活性領域10bにおけるチャネル領域のゲート長方向に引っ張り応力を生じさせる応力絶縁膜31を堆積する。
 その後、図示を省略するが、応力絶縁膜31上に、層間絶縁膜を形成した後、応力絶縁膜31及び層間絶縁膜に、コンタクトプラグを形成する。その後、層間絶縁膜上に、コンタクトプラグと接続する配線を形成する。
 以上のようにして、本実施形態に係る半導体装置を製造することができる。
 以下に、本発明の一実施形態に係る半導体装置の構成について、図6(b) を参照しながら説明する。
 図6(b) に示すように、本実施形態に係る半導体装置は、半導体基板10における第1のpMIS領域に形成された第1のMISトランジスタpTr1と、半導体基板10におけるnMIS領域に形成された第2のMISトランジスタnTrと、半導体基板10における第2のpMIS領域に形成された第3のMISトランジスタpTr2とを備えている。第1,第3のMISトランジスタpTr1,pTr2の導電型は、p型である。第2のMISトランジスタnTrの導電型は、n型である。
 第1のMISトランジスタpTr1は、第1の活性領域10a上に形成された第1のゲート絶縁膜13aと、第1のゲート絶縁膜13a上に形成された第1のゲート電極14aと、第1のゲート電極14aの側面上に形成された断面形状がI字状の第1のオフセットスペーサ16aと、第1の活性領域10aにおける第1のゲート電極14aの側方下に形成された第1のp型エクステンション領域26aと、第1のゲート電極14aの側面上に第1のオフセットスペーサ16aを介して形成された第1のサイドウォール19Aと、第1の活性領域10aにおける第1のサイドウォール19Aの外側方下に設けられたトレンチ22内に形成され、シリコン混晶層23を含む第1のp型ソースドレイン領域27aと、第1のゲート電極14a上に形成された第1のシリサイド層29aと、シリコン混晶層23を含む第1のp型ソースドレイン領域27a上に形成された第2のシリサイド層30aと、第1の活性領域10a上に第1のゲート電極14a、第1のオフセットスペーサ16a、第1のサイドウォール19A及び第1のp型ソースドレイン領域27aを覆うように形成された応力絶縁膜31とを備えている。
 シリコン混晶層23は、第1の活性領域10aにおけるチャネル領域のゲート長方向に圧縮応力を生じさせる。シリコン混晶層23の最上面は、第1のゲート電極14aの直下に位置する半導体基板10の表面よりも高く形成されている。言い換えれば、シリコン混晶層23は、トレンチ22内に形成された部分と、該部分上に形成された突出部分とを有している。シリコン混晶層23と第1のサイドウォール19Aとの隙間24には、第1の応力緩和膜28aが形成されている。言い換えれば、第1の応力緩和膜28aは、シリコン混晶層23の側面上に形成されている。
 本実施形態に係る半導体装置は、半導体基板10に第1,第2,第3の活性領域10a,10b,10cを取り囲むように形成された素子分離領域11と、第1の活性領域10aと第2の活性領域10bとの間に介在する素子分離領域11上に形成されたゲート配線14xと、ゲート配線14xの側面上に形成された配線用オフセットスペーサ16xと、ゲート配線14xの側面上に配線用オフセットスペーサ16xを介して形成された配線用サイドウォール19Xと、素子分離領域11における配線用サイドウォール19Xの外側方下に設けられた窪み部20の側面上に形成された第2の応力緩和膜28xと、ゲート配線14x上に形成された配線用シリサイド層29xと、素子分離領域11上にゲート配線14x、配線用オフセットスペーサ16x、配線用サイドウォール19X及び第2の応力緩和膜28xを覆うように形成された応力絶縁膜31とを備えている。
 第2のMISトランジスタnTrは、第2の活性領域10b上に形成された第2のゲート絶縁膜13bと、第2のゲート絶縁膜13b上に形成された第2のゲート電極14bと、第2のゲート電極14bの側面上に形成された断面形状がI字状の第2のオフセットスペーサ16bと、第2の活性領域10bにおける第2のゲート電極14bの側方下に形成されたn型エクステンション領域26bと、第2のゲート電極14bの側面上に第2のオフセットスペーサ16bを介して形成された第2のサイドウォール19Bと、第2の活性領域10bにおける第2のサイドウォール19Bの外側方下に形成されたn型ソースドレイン領域27bと、第2のゲート電極14b上に形成された第3のシリサイド層29bと、n型ソースドレイン領域27b上に形成された第4のシリサイド層30bと、第2の活性領域10b上に第2のゲート電極14b、第2のオフセットスペーサ16b、第2のサイドウォール19B及びn型ソースドレイン領域27bを覆うように形成された応力絶縁膜31とを備えている。
 第3のMISトランジスタpTr2は、第3の活性領域10c上に形成された第3のゲート絶縁膜13cと、第3のゲート絶縁膜13c上に形成された第3のゲート電極14cと、第3のゲート電極14cの側面上に形成された断面形状がI字状の第3のオフセットスペーサ16cと、第3の活性領域10cにおける第3のゲート電極14cの側方下に形成された第2のp型エクステンション領域26cと、第3のゲート電極14cの側面上に第3のオフセットスペーサ16cを介して形成された第3のサイドウォール19Cと、第3の活性領域10cにおける第3のサイドウォール19Cの外側方下に形成された第2のp型ソースドレイン領域27cと、第3の活性領域10c上に第3のゲート電極14c、第3のオフセットスペーサ16c、第3のサイドウォール19C及び第2のp型ソースドレイン領域27cを覆うように形成された保護膜28cと、保護膜28c上に形成された応力絶縁膜31とを備えている。
 第1,第2,第3のサイドウォール19A,19B,19Cは、第1,第2,第3のゲート電極14a,14b,14cの側面上に形成された断面形状がL字状の第1,第2,第3の内側サイドウォール18a,18b,18cと、第1,第2,第3の内側サイドウォール18a,18b,18c上に形成された第1,第2,第3の外側サイドウォール19a,19b,19cとを有している。配線用サイドウォール19Xは、ゲート配線14xの側面上に形成された断面形状がL字状の配線用内側サイドウォール18xと、配線用内側サイドウォール18x上に形成された配線用外側サイドウォール19xとを有している。
 第1の応力緩和膜28a、第2の応力緩和膜28x、保護膜28b及び保護膜28cは、同一の絶縁材料からなる。
 本実施形態によると、図3(a) に示すように、シリコン混晶層23の最上面を、第1のゲート電極14a直下に位置する半導体基板10の表面よりも高く形成する。言い換えれば、トレンチ22内に形成された部分と、該部分上に形成された突出部分とを有するシリコン混晶層23を形成する。これにより、図3(a) に示すように、シリコン混晶層23と第1のサイドウォール19Aとの間に、隙間24を設けて、図5(b) に示すように、隙間24に、第1の応力緩和膜28aを形成することができる。これにより、図6(b) に示すように、応力絶縁膜31と第1の活性領域10aにおけるチャネル領域との間に、シリコン混晶層23における突出部分及び第1の応力緩和膜28aを介在させることができる。このため、シリコン混晶層23における突出部分及び第1の応力緩和膜28aの分だけ、応力絶縁膜31を、第1の活性領域10aにおけるチャネル領域から離すことができる。このため、応力絶縁膜31による引っ張り応力が、第1の活性領域10aにおけるチャネル領域のゲート長方向に印加されることを緩和することができる。従って、ホールの移動度が低下し、第1のMISトランジスタpTr1の駆動能力が劣化することを防止することができる。
 加えて、シリコン混晶層23による圧縮応力を、第1の活性領域10aにおけるチャネル領域のゲート長方向に印加することができる。このため、第1のMISトランジスタpTr1の駆動能力を向上させることができる。さらに、上述の通り、図3(a) に示すように、トレンチ22内に形成された部分と、該部分上に形成された突出部分とを有するシリコン混晶層23を形成する。これにより、シリコン混晶層23における突出部分だけ、シリコン混晶層23を厚膜化することができるため、第1の活性領域10aにおけるチャネル領域のゲート長方向に圧縮応力を効果的に印加することができる。このため、第1のMISトランジスタpTr1の駆動能力をさらに向上させることができる。
 さらに、応力絶縁膜31による引っ張り応力を、第2の活性領域10bにおけるチャネル領域のゲート長方向に印加することができる。このため、電子の移動度を向上させて、第2のMISトランジスタnTrの駆動能力を向上させることができる。
 さらに、図5(b) に示すように、n型ソースドレイン領域27bの側面(言い換えれば、窪み部20内に露出する面)上に、保護膜28bを形成し、n型ソースドレイン領域27bの側面を、保護膜28bで覆うことができる。このため、シリサイド用金属膜が、n型ソースドレイン領域27bの側面に接して形成されることがないため、図6(a) に示すように、断面形状が、L字状ではなく、I字状の第4のシリサイド層30bを形成することができる。これにより、第4のシリサイド層30bを、n型ソースドレイン領域27bの底面(接合面)から離して形成することができるため、n型ソースドレイン領域27bにおいてリーク電流が発生することを防止することができる。
 さらに、図5(b) に示すように、第3の活性領域10c上に、第3のゲート電極14c、第3のオフセットスペーサ16c、第3のサイドウォール19C及び第2のp型ソースドレイン領域27cを覆うように保護膜28cを形成する。これにより、図6(b) に示すように、応力絶縁膜31と第3の活性領域10cにおけるチャネル領域との間に、保護膜28cを介在させることができる。このため、保護膜28cの分だけ、応力絶縁膜31を、第3の活性領域10cにおけるチャネル領域から離すことができる。このため、応力絶縁膜31による引っ張り応力が、第3の活性領域10cにおけるチャネル領域のゲート長方向に印加されることを緩和することができる。このため、ホールの移動度が低下し、第3のMISトランジスタpTr2の駆動能力が劣化することを防止することができる。保護膜28cは、図6(a) に示すように、シリサイド層が形成されることを防止する膜として機能するだけでなく、応力絶縁膜31による引っ張り応力を緩和する膜としても機能する。
 ここで、本明細書におけるシリコン混晶層23の「最上面」とは、シリコン混晶層23における突出部分の断面形状が、図3(a) に示すように、台形状である場合、台形の上底をいう。また、シリコン混晶層における突出部分の断面形状が、例えば、山形状である場合、山の頂点(最上点)をいう。
 なお、本実施形態では、図1(a) に示すように、第1のp型エクステンション注入領域17aを形成した後、n型エクステンション注入領域17bを形成し、その後、第1のp型エクステンション注入領域17aよりも低いp型不純物濃度を有する第2のp型エクステンション注入領域17cを形成する場合、言い換えれば、第1,第2のp型エクステンション注入領域17a,17cを、別工程で形成し、第1,第2のp型エクステンション注入領域17a,17cのp型不純物濃度を、互いに異ならせる場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、第1,第2のp型エクステンション注入領域を、同一工程で形成し、第1,第2のp型エクステンション注入領域のp型不純物濃度を、互いに同一にしてもよい。
 また本実施形態では、図2(b) に示すように、第1の活性領域10aに対して、例えばドライエッチングを行うことにより、トレンチ22を形成する場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、第1の活性領域に対して、異方性ウェットエッチングを行うことにより、側面に<111>面を含むトレンチを形成してもよい。このようにすると、トレンチの側面を、第1の活性領域におけるチャネル領域に近付けることができるため、トレンチ内に形成されるシリコン混晶層による圧縮応力を、第1の活性領域におけるチャネル領域のゲート長方向に効果的に印加することができる。
 また本実施形態では、ゲート絶縁膜形成膜の形成方法として、ISSG酸化法を用い、第1,第2,第3の活性領域10a,10b,10c上にのみ、ゲート絶縁膜形成膜を形成し、素子分離領域11とゲート配線14xとの間に、配線用ゲート絶縁膜を介在させない場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、ゲート絶縁膜形成膜の形成方法として、CVD法を用い、半導体基板上に、ゲート絶縁膜形成膜を形成し、素子分離領域とゲート配線との間に、配線用ゲート絶縁膜を介在させてもよい。
 また本実施形態では、例えばシリコン酸化膜からなる第1,第2,第3のゲート絶縁膜13a,13b,13c上に、例えばポリシリコン膜からなる第1,第2,第3のゲート電極14a,14b,14cが形成されている場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、下地膜と、下地膜上に形成された高誘電率膜とを有する第1,第2,第3のゲート絶縁膜上に、金属膜と、金属膜上に形成されたシリコン膜とを有する第1,第2,第3のゲート電極が形成されていてもよい。下地膜は、例えばシリコン酸化膜又はシリコン酸窒化膜からなる。高誘電率膜は、例えば比誘電率が8以上のハフニウム酸化膜又はジルコニウム酸化膜からなる。金属膜は、例えばTiN(窒化チタン)又はTaN(窒化タンタル)からなる。シリコン膜は、例えばポリシリコン膜からなる。この場合、素子分離領域とゲート配線との間に、下地膜及び高誘電率膜、又は高誘電率膜が介在している。
 また本実施形態では、シリサイド用金属膜の材料として、Niを用いて、ニッケルシリサイドからなる第1,第3,第2,第4のシリサイド層29a,29b,30a,30bを形成する場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、シリサイド用金属膜の材料として、Niの代わりに、白金又はコバルトを用いて、白金シリサイド又はコバルトシリサイドからなる第1,第3,第2,第4のシリサイド層を形成してもよい。
 また本実施形態では、第1のMISトランジスタpTr1の導電型がp型であり、第2のMISトランジスタnTrの導電型がn型である場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、第1のMISトランジスタの導電型がn型であり、第2のMISトランジスタの導電型がp型であってもよい。この場合、第1,第2のMISトランジスタの各々が有するエクステンション領域及びソースドレイン領域は、導電型が、本実施形態における導電型とは反対の導電型である。またこの場合、シリコン混晶層として、第1の活性領域におけるチャネル領域のゲート長方向に引っ張り応力を生じさせる層(例えば、SiC層)を用いる。応力絶縁膜として、第2の活性領域におけるチャネル領域のゲート長方向に圧縮応力を生じさせる膜を用いる。
 <一実施形態の変形例>
 以下に、本発明の一実施形態の変形例に係る半導体装置の製造方法について、図7(a) ~(b) を参照しながら説明する。図7(a) ~(b) は、本発明の一実施形態の変形例に係る半導体装置の製造方法を工程順に示すゲート長方向の断面図である。図7(a) ~(b) において、第1の実施形態における構成要素と同一の構成要素には、図1(a) ~図6(b) に示す符号と同一の符号を付す。従って、本変形例では、第1の実施形態と同様の説明を適宜省略する。
 まず、図1(a) ~図5(b) に示す工程と同様の工程を順次行い、図5(b) に示す構成と同様の構成を得る。
 次に、図7(a) に示すように、例えば160℃の熱燐酸を用いたウェットエッチング法により、第1,第2のサイドウォール19A,19Bにおける第1,第2の外側サイドウォール19a,19b(シリコン窒化膜)及び配線用サイドウォール19Xにおける配線用外側サイドウォール19x(シリコン窒化膜)を除去する。これにより、第1,第2の内側サイドウォール18a,18b(シリコン酸化膜)及び配線用内側サイドウォール18x(シリコン酸化膜)のL字状に湾曲した表面を露出させる。
 次に、図7(b) に示すように、第1,第2のゲート電極14a,14b上に、第1,第3のシリサイド層29a,29bを形成する。それと共に、ゲート配線14x上に、配線用シリサイド層29xを形成する。それと共に、第1のp型,n型ソースドレイン領域27a,27b上に、第2,第4のシリサイド層30a,30bを形成する。言い換えれば、図6(a) に示す工程と同様の工程を行う。
 次に、半導体基板10上の全面に、応力絶縁膜31を形成する。言い換えれば、図6(b) に示す工程と同様の工程を行う。このとき、応力絶縁膜31を、第1,第2の内側サイドウォール18a,18b及び配線用内側サイドウォール18xのL字状に湾曲した表面に接して形成する。
 以上のようにして、本変形例に係る半導体装置を製造することができる。
 本変形例と第1の実施形態との構成上の相違点は、以下に示す点である。
 第1の実施形態では、図6(b) に示すように、第1,第2のサイドウォール19A,19Bは、第1,第2の内側サイドウォール18a,18bと、第1,第2の外側サイドウォール19a,19bとを有している。配線用サイドウォール19Xは、配線用内側サイドウォール18xと、配線用外側サイドウォール19xとを有している。応力絶縁膜31は、第1,第2の外側サイドウォール19a,19b及び配線用外側サイドウォール19xの側面、並びに第1,第2の内側サイドウォール18a,18b及び配線用内側サイドウォール18xの上端に接して形成されている。
 これに対し、本変形例では、図7(b) に示すように、第1,第2のサイドウォール19A,19Bは、第1,第2の内側サイドウォール18a,18bのみを有している。配線用サイドウォール19Xは、配線用内側サイドウォール18xのみを有している。応力絶縁膜31は、第1,第2の内側サイドウォール18a,18b及び配線用内側サイドウォール18xのL字状に湾曲した表面に接して形成されている。
 本変形例によると、第1の実施形態と同様の効果を得ることができる。
 加えて、図7(a) に示すように、第2の外側サイドウォール19bを除去した後、応力絶縁膜31を形成するため、図7(b) に示すように、応力絶縁膜31を、第2の内側サイドウォール18bのL字状に湾曲した表面に接して形成することができる。このため、応力絶縁膜31を、第2の外側サイドウォール19bの除去分だけ、第2の活性領域10bにおけるチャネル領域に近付けて形成することができるため、第2の活性領域10bにおけるチャネル領域のゲート長方向に、引っ張り応力を効果的に印加することができる。
 さらに、応力絶縁膜31を、第2の外側サイドウォール19bの除去分だけ、厚く形成することができるため、第2の活性領域10bにおけるチャネル領域のゲート長方向に、引っ張り応力を効果的に印加することができる。
 以上説明したように、本発明は、MISトランジスタの駆動能力が劣化することを防止することができ、シリコン混晶層を含むソースドレイン領域を有するMISトランジスタを備えた半導体装置及びその製造方法に有用である。
10  半導体基板
10a  第1の活性領域
10b  第2の活性領域
10c  第3の活性領域
11  素子分離領域
12a  第1のn型ウェル領域
12b  p型ウェル領域
12c  第2のn型ウェル領域
13a  第1のゲート絶縁膜
13b  第2のゲート絶縁膜
13c  第3のゲート絶縁膜
14a  第1のゲート電極
14b  第2のゲート電極
14c  第3のゲート電極
14x  ゲート配線
15a  第1の保護絶縁膜
15b  第2の保護絶縁膜
15c  第3の保護絶縁膜
15x  配線用保護絶縁膜
15A  第1のゲート電極形成部
15B  第2のゲート電極形成部
15C  第3のゲート電極形成部
15X  ゲート配線形成部
16a  第1のオフセットスペーサ
16b  第2のオフセットスペーサ
16c  第3のオフセットスペーサ
16x  配線用オフセットスペーサ
17a  第1のp型エクステンション注入領域
17b  n型エクステンション注入領域
17c  第2のp型エクステンション注入領域
18a  第1の内側サイドウォール
18b  第2の内側サイドウォール
18c  第3の内側サイドウォール
18x  配線用内側サイドウォール
19a  第1の外側サイドウォール
19b  第2の外側サイドウォール
19c  第3の外側サイドウォール
19x  配線用内側サイドウォール
20  窪み部
21  保護絶縁膜
22  トレンチ
23 シリコン混晶層
24  隙間
25b  n型ソースドレイン注入領域
25c  p型ソースドレイン注入領域
26a  第1のp型エクステンション領域
26b  n型エクステンション領域
26c  第2のp型エクステンション領域
27a  第1のp型ソースドレイン領域(第1導電型の第1のソースドレイン領域)
27b  n型ソースドレイン領域(第2導電型の第2のソースドレイン領域)
27c  第2のp型ソースドレイン領域(第1導電型の第3のソースドレイン領域)
28  絶縁膜
28a  第1の応力緩和膜
28x  第2の応力緩和膜
28b  保護膜
28c  保護膜
29a  第1のシリサイド層
29b  第3のシリサイド層
29x  配線用シリサイド層
30a  第2のシリサイド層
30b  第4のシリサイド層
31  応力絶縁膜
pTr1  第1のMISトランジスタ
nTr   第2のMISトランジスタ
pTr2  第3のMISトランジスタ

Claims (20)

  1.  第1のMISトランジスタを備えた半導体装置であって、
     前記第1のMISトランジスタは、
     半導体基板における第1の活性領域上に形成された第1のゲート絶縁膜と、
     前記第1のゲート絶縁膜上に形成された第1のゲート電極と、
     前記第1のゲート電極の側面上に形成された第1のサイドウォールと、
     前記第1の活性領域における前記第1のサイドウォールの外側方下に設けられたトレンチ内に形成され、前記第1の活性領域におけるチャネル領域のゲート長方向に第1の応力を生じさせるシリコン混晶層を含む第1導電型の第1のソースドレイン領域と、
     前記第1の活性領域上に前記第1のゲート電極、前記第1のサイドウォール及び前記第1のソースドレイン領域を覆うように形成され、前記第1の応力とは反対の第2の応力を生じさせる応力絶縁膜とを備え、
     前記シリコン混晶層の最上面は、前記第1のゲート電極直下に位置する前記半導体基板の表面よりも高く形成されており、
     前記シリコン混晶層と前記第1のサイドウォールとの隙間には、第1の応力緩和膜が形成されていることを特徴とする半導体装置。
  2.  請求項1に記載の半導体装置において、
     前記第1のゲート電極と前記第1のサイドウォールとの間に形成された断面形状がI字状の第1のオフセットスペーサをさらに備えていることを特徴とする半導体装置。
  3.  請求項2に記載の半導体装置において、
     前記第1のゲート電極上に形成された第1のシリサイド層と、
     前記シリコン混晶層を含む前記第1のソースドレイン領域上に形成された第2のシリサイド層とをさらに備えていることを特徴とする半導体装置。
  4.  請求項3に記載の半導体装置において、
     前記第1の応力緩和膜は、前記シリコン混晶層の側面上に形成されていることを特徴とする半導体装置。
  5.  請求項4に記載の半導体装置において、
     前記第1のサイドウォールは、前記第1のゲート電極の側面上に形成された断面形状がL字状の内側サイドウォールと、前記内側サイドウォール上に形成された外側サイドウォールとを有していることを特徴とする半導体装置。
  6.  請求項4に記載の半導体装置において、
     前記第1のサイドウォールは、断面形状がL字状の内側サイドウォールを有し、
     前記応力絶縁膜は、前記内側サイドウォールのL字状に湾曲した表面に接して形成されていることを特徴とする半導体装置。
  7.  請求項5に記載の半導体装置において、
     前記第1のMISトランジスタは、p型MISトランジスタであり、
     前記第1の応力は、圧縮応力であり、
     前記第2の応力は、引っ張り応力であることを特徴とする半導体装置。
  8.  請求項7に記載の半導体装置において、
     前記シリコン混晶層は、SiGe層であり、
     前記応力絶縁膜は、シリコン窒化膜であり、
     前記第1の応力緩和膜は、シリコン酸化膜であることを特徴とする半導体装置。
  9.  請求項5に記載の半導体装置において、
     前記第1のMISトランジスタは、n型MISトランジスタであり、
     前記第1の応力は、引っ張り応力であり、
     前記第2の応力は、圧縮応力であることを特徴とする半導体装置。
  10.  請求項8に記載の半導体装置において、
     前記半導体基板に前記第1の活性領域を取り囲むように形成された素子分離領域と、
     前記素子分離領域上に形成されたゲート配線と、
     前記ゲート配線の側面上に形成された配線用サイドウォールと、
     前記素子分離領域における前記配線用サイドウォールの外側方下に設けられた窪み部の側面上に形成された第2の応力緩和膜と、
     前記素子分離領域上に前記ゲート配線、前記配線用サイドウォール及び前記第2の応力緩和膜を覆うように形成された前記応力絶縁膜とを備えていることを特徴とする半導体装置。
  11.  請求項10に記載の半導体装置において、
     前記半導体装置は、第2のMISトランジスタをさらに備え、
     前記第2のMISトランジスタは、
     前記半導体基板における第2の活性領域上に形成された第2のゲート絶縁膜と、
     前記第2のゲート絶縁膜上に形成された第2のゲート電極と、
     前記第2のゲート電極の側面上に形成された第2のサイドウォールと、
     前記第2の活性領域における前記第2のサイドウォールの外側方下に形成された第2導電型の第2のソースドレイン領域と、
     前記第2の活性領域上に前記第2のゲート電極、前記第2のサイドウォール及び前記第2のソースドレイン領域を覆うように形成された前記応力絶縁膜とを備えていることを特徴とする半導体装置。
  12.  請求項11に記載の半導体装置において、
     前記第2の活性領域上には、前記第1の応力緩和膜は形成されていないことを特徴とする半導体装置。
  13.  請求項12に記載の半導体装置において、
     前記半導体装置は、第3のMISトランジスタをさらに備え、
     前記第3のMISトランジスタは、
     前記半導体基板における第3の活性領域上に形成された第3のゲート絶縁膜と、
     前記第3のゲート絶縁膜上に形成された第3のゲート電極と、
     前記第3のゲート電極の側面上に形成された第3のサイドウォールと、
     前記第3の活性領域における前記第3のサイドウォールの外側方下に形成された第1導電型の第3のソースドレイン領域と、
     前記第3の活性領域上に前記第3のゲート電極、前記第3のサイドウォール及び前記第3のソースドレイン領域を覆うように形成された保護膜と、
     前記保護膜上に形成された前記応力絶縁膜とを備えていることを特徴とする半導体装置。
  14.  請求項13に記載の半導体装置において、
     前記第3のゲート電極上及び前記第3のソースドレイン領域上には、シリサイド層は形成されていないことを特徴とする半導体装置。
  15.  請求項14に記載の半導体装置において、
     前記第1の応力緩和膜と前記保護膜とは、同一の絶縁材料からなることを特徴とする半導体装置。
  16.  半導体基板における第1の活性領域上に形成された第1のMISトランジスタを有する半導体装置の製造方法であって、
     前記第1の活性領域上に第1のゲート絶縁膜及び第1のゲート電極を有する第1のゲート電極形成部を形成する工程(a)と、
     前記工程(a)の後に、前記第1のゲート電極形成部の側面上に第1のサイドウォールを形成する工程(b)と、
     前記工程(b)の後に、前記第1の活性領域における前記第1のサイドウォールの外側方下にトレンチを形成した後、前記トレンチ内に前記第1の活性領域におけるチャネル領域のゲート長方向に第1の応力を生じさせるシリコン混晶層を含む第1導電型の第1のソースドレイン領域を形成する工程(c)と、
     前記工程(c)の後に、前記シリコン混晶層と前記第1のサイドウォールとの隙間に第1の応力緩和膜を形成する工程(d)と、
     前記工程(d)の後に、前記第1の活性領域上に前記第1のゲート電極、前記第1のサイドウォール、前記第1のソースドレイン領域及び前記第1の応力緩和膜を覆い、前記第1の応力とは反対の第2の応力を生じさせる応力絶縁膜を形成する工程(e)とを備えていることを特徴とする半導体装置の製造方法。
  17.  請求項16に記載の半導体装置の製造方法において、
     前記工程(c)において、前記シリコン混晶層の最上面を、前記第1のゲート電極直下に位置する前記半導体基板の表面よりも高く形成することを特徴とする半導体装置の製造方法。
  18.  請求項17に記載の半導体装置の製造方法において、
     前記工程(a)の前に、前記半導体基板に前記第1の活性領域を取り囲む素子分離領域を形成する工程(f)をさらに備え、
     前記工程(a)は、前記素子分離領域上にゲート配線を有するゲート配線形成部を形成する工程を含み、
     前記工程(b)は、前記ゲート配線形成部の側面上に配線用サイドウォールを形成する工程を含み、
     前記工程(d)は、前記素子分離領域における前記配線用サイドウォールの外側方下に設けられた窪み部の側面上に第2の応力緩和膜を形成する工程を含み、
     前記工程(e)は、前記素子分離領域上に前記ゲート配線、前記配線用サイドウォール及び前記第2の応力緩和膜を覆うように前記応力絶縁膜を形成する工程を含むことを特徴とする半導体装置の製造方法。
  19.  請求項18に記載の半導体装置の製造方法において、
     前記半導体装置は、前記半導体基板における第2の活性領域上に形成された第2のMISトランジスタを有し、
     前記工程(a)は、前記第2の活性領域上に第2のゲート絶縁膜及び第2のゲート電極を有する第2のゲート電極形成部を形成する工程を含み、
     前記工程(b)は、前記第2のゲート電極形成部の側面上に第2のサイドウォールを形成する工程を含み、
     前記工程(c)の後で前記工程(d)の前に、前記第2の活性領域における前記第2のサイドウォールの外側方下に第2導電型の第2のソースドレイン領域を形成する工程(g)をさらに備え、
     前記工程(e)は、前記第2の活性領域上に前記第2のゲート電極、前記第2のサイドウォール及び前記第2のソースドレイン領域を覆うように前記応力絶縁膜を形成する工程を含むことを特徴とする半導体装置の製造方法。
  20.  請求項19に記載の半導体装置の製造方法において、
     前記半導体装置は、前記半導体基板における第3の活性領域上に形成された第3のMISトランジスタを有し、
     前記工程(a)は、前記第3の活性領域上に第3のゲート絶縁膜及び第3のゲート電極を有する第3のゲート電極形成部を形成する工程を含み、
     前記工程(b)は、前記第3のゲート電極形成部の側面上に第3のサイドウォールを形成する工程を含み、
     前記工程(c)の後で前記工程(d)の前に、前記第3の活性領域における前記第3のサイドウォールの外側方下に第1導電型の第3のソースドレイン領域を形成する工程(h)をさらに備え、
     前記工程(d)は、前記第3の活性領域上に前記第3のゲート電極、前記第3のサイドウォール及び前記第3のソースドレイン領域を覆うように保護膜を形成する工程を含み、
     前記工程(e)は、前記保護膜上に前記応力絶縁膜を形成する工程を含むことを特徴とする半導体装置の製造方法。
PCT/JP2010/005117 2010-01-07 2010-08-19 半導体装置及びその製造方法 WO2011083523A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/528,526 US8907425B2 (en) 2010-01-07 2012-06-20 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-002225 2010-01-07
JP2010002225A JP5325125B2 (ja) 2010-01-07 2010-01-07 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/528,526 Continuation US8907425B2 (en) 2010-01-07 2012-06-20 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2011083523A1 true WO2011083523A1 (ja) 2011-07-14

Family

ID=44305270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005117 WO2011083523A1 (ja) 2010-01-07 2010-08-19 半導体装置及びその製造方法

Country Status (3)

Country Link
US (1) US8907425B2 (ja)
JP (1) JP5325125B2 (ja)
WO (1) WO2011083523A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561012B2 (ja) * 2010-08-11 2014-07-30 富士通セミコンダクター株式会社 半導体装置及びその製造方法
KR20140108960A (ko) 2013-03-04 2014-09-15 삼성전자주식회사 듀얼 금속 실리사이드층을 갖는 반도체 장치의 제조 방법
CN104217953B (zh) * 2013-06-05 2017-06-13 中芯国际集成电路制造(上海)有限公司 Pmos晶体管及其制作方法
FR3007196A1 (fr) * 2013-06-13 2014-12-19 St Microelectronics Rousset Transistor nmos a region active a contraintes en compression relachees
FR3007198B1 (fr) 2013-06-13 2015-06-19 St Microelectronics Rousset Composant, par exemple transistor nmos, a region active a contraintes en compression relachees, et procede de fabrication
KR102050779B1 (ko) * 2013-06-13 2019-12-02 삼성전자 주식회사 반도체 소자 및 이의 제조 방법
FR3018139B1 (fr) 2014-02-28 2018-04-27 Stmicroelectronics (Rousset) Sas Circuit integre a composants, par exemple transistors nmos, a regions actives a contraintes en compression relachees
FR3025335B1 (fr) 2014-08-29 2016-09-23 Stmicroelectronics Rousset Procede de fabrication d'un circuit integre rendant plus difficile une retro-conception du circuit integre et circuit integre correspondant
US20170141228A1 (en) * 2015-11-16 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Field effect transistor and manufacturing method thereof
JP6594261B2 (ja) * 2016-05-24 2019-10-23 ルネサスエレクトロニクス株式会社 半導体装置
US10079290B2 (en) * 2016-12-30 2018-09-18 United Microelectronics Corp. Semiconductor device having asymmetric spacer structures
KR20220085117A (ko) 2020-12-14 2022-06-22 삼성전자주식회사 반도체 소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172063A (ja) * 1995-12-19 1997-06-30 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2006237263A (ja) * 2005-02-24 2006-09-07 Fujitsu Ltd 半導体集積回路装置およびその製造方法
JP2008124171A (ja) * 2006-11-10 2008-05-29 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
WO2008102451A1 (ja) * 2007-02-22 2008-08-28 Fujitsu Microelectronics Limited 半導体装置及びその製造方法
JP2009065020A (ja) * 2007-09-07 2009-03-26 Panasonic Corp 半導体装置及びその製造方法
JP2009283586A (ja) * 2008-05-21 2009-12-03 Renesas Technology Corp 半導体装置の製造方法
JP2009283527A (ja) * 2008-05-20 2009-12-03 Renesas Technology Corp 半導体装置およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281562B1 (en) 1995-07-27 2001-08-28 Matsushita Electric Industrial Co., Ltd. Semiconductor device which reduces the minimum distance requirements between active areas
US7391087B2 (en) 1999-12-30 2008-06-24 Intel Corporation MOS transistor structure and method of fabrication
JP2003060076A (ja) * 2001-08-21 2003-02-28 Nec Corp 半導体装置及びその製造方法
US6621131B2 (en) 2001-11-01 2003-09-16 Intel Corporation Semiconductor transistor having a stressed channel
JP2005286341A (ja) * 2004-03-30 2005-10-13 Samsung Electronics Co Ltd 低ノイズ及び高性能のlsi素子、レイアウト及びその製造方法
KR101025761B1 (ko) 2004-03-30 2011-04-04 삼성전자주식회사 디지탈 회로 및 아날로그 회로를 가지는 반도체 집적회로및 그 제조 방법
JP4794838B2 (ja) * 2004-09-07 2011-10-19 富士通セミコンダクター株式会社 半導体装置およびその製造方法
US7687364B2 (en) * 2006-08-07 2010-03-30 Intel Corporation Low-k isolation spacers for conductive regions
JP2009032962A (ja) * 2007-07-27 2009-02-12 Panasonic Corp 半導体装置及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172063A (ja) * 1995-12-19 1997-06-30 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2006237263A (ja) * 2005-02-24 2006-09-07 Fujitsu Ltd 半導体集積回路装置およびその製造方法
JP2008124171A (ja) * 2006-11-10 2008-05-29 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
WO2008102451A1 (ja) * 2007-02-22 2008-08-28 Fujitsu Microelectronics Limited 半導体装置及びその製造方法
JP2009065020A (ja) * 2007-09-07 2009-03-26 Panasonic Corp 半導体装置及びその製造方法
JP2009283527A (ja) * 2008-05-20 2009-12-03 Renesas Technology Corp 半導体装置およびその製造方法
JP2009283586A (ja) * 2008-05-21 2009-12-03 Renesas Technology Corp 半導体装置の製造方法

Also Published As

Publication number Publication date
JP5325125B2 (ja) 2013-10-23
JP2011142224A (ja) 2011-07-21
US20120256266A1 (en) 2012-10-11
US8907425B2 (en) 2014-12-09

Similar Documents

Publication Publication Date Title
JP5325125B2 (ja) 半導体装置
JP4361880B2 (ja) 半導体集積回路装置の製造方法
JP5107680B2 (ja) 半導体装置
US7981750B2 (en) Methods of fabrication of channel-stressed semiconductor devices
US20090085123A1 (en) Semiconductor device and method for fabricating the same
JP5268859B2 (ja) 半導体装置
CN100583450C (zh) 半导体器件及其制造方法
US20080185661A1 (en) Semiconductor device and method for fabricating the same
KR100861835B1 (ko) 듀얼 게이트 cmos형 반도체 소자의 제조 방법
KR101033700B1 (ko) 동일 기판 상에 도전 타입이 같은 로우 및 하이 퍼포먼스장치를 갖는 반도체 장치 구조
JP2009065020A (ja) 半導体装置及びその製造方法
JP2007324391A (ja) 半導体装置及びその製造方法
JP4997752B2 (ja) 半導体装置の製造方法
WO2010079544A1 (ja) 半導体装置及びその製造方法
WO2007091316A1 (ja) pチャネルMOSトランジスタおよび半導体集積回路装置
JP2010245233A (ja) 半導体装置およびその製造方法
KR100936577B1 (ko) 반도체 소자 및 그 제조방법
JP2014067958A (ja) 半導体装置及びその製造方法
KR100724574B1 (ko) 식각저지막을 갖는 반도체 소자 및 그의 제조방법
JP2007305889A (ja) 半導体装置およびその製造方法
JP2011159690A (ja) 半導体装置及びその製造方法
KR20120007589A (ko) 반도체 장치의 제조 방법
TWI532086B (zh) 半導體元件及其製作方法
JP4770353B2 (ja) 半導体装置の製造方法
WO2010131312A1 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842044

Country of ref document: EP

Kind code of ref document: A1