JP2009283527A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2009283527A
JP2009283527A JP2008131636A JP2008131636A JP2009283527A JP 2009283527 A JP2009283527 A JP 2009283527A JP 2008131636 A JP2008131636 A JP 2008131636A JP 2008131636 A JP2008131636 A JP 2008131636A JP 2009283527 A JP2009283527 A JP 2009283527A
Authority
JP
Japan
Prior art keywords
film
gate electrode
liner
semiconductor device
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008131636A
Other languages
English (en)
Inventor
Yoshihiro Miyagawa
義弘 宮河
Toshiaki Tsutsumi
聡明 堤
Kazuhito Ichinose
一仁 一之瀬
Tomoshi Yamamoto
智志 山本
Masahiko Azuma
雅彦 東
Tomohiro Yamashita
朋弘 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2008131636A priority Critical patent/JP2009283527A/ja
Publication of JP2009283527A publication Critical patent/JP2009283527A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】「ひずみシリコン」技術を用いて形成された半導体装置において、NMOSトランジスタの電流駆動能力の向上を達成できるとともに、PMOSトランジスタの電流駆動能力の低下を抑制した半導体装置およびその製造方法を提供する。
【解決手段】シリコン基板1の全面に、例えばPECVD法(プラズマ化学気相成長法)を用いて、厚さ20〜80nmのシリコン窒化膜を形成してライナー膜18とする。なお、ライナー膜18の成膜条件としては、成膜温度400℃以下で、Tensileストレスが0〜800MPaとなるように条件を設定する。そして、紫外線照射およびまたは300〜500℃の熱処理を行うことにより膜収縮させ、PMOS領域におけるライナー膜18では、ゲート電極4のサイドウォール窒化膜14の側面外方において、サイドウォール窒化膜14に沿って連続的、あるいは断続的にクラックCRを発生させる。
【選択図】図19

Description

本発明は、半導体装置およびその製造方法に関し、特に、ひずみシリコン技術を用いた半導体装置およびその製造方法に関する。
シリコン基板上に形成されるMOSFET(Metal Oxide Semiconductor Field Effect Transistor:MOSトランジスタとも呼称)に対する高駆動力化と低消費電力化の要求は、ロジックLSIを中心に近年ますます高まっている。
MOSFETの電流駆動力を高める手段として、これまではチャネル長の縮小化、ゲート酸化膜の薄膜化が用いられてきたが、微細化の進んだ90nmノード以降のテクノロジーでは、これらのスケーリングによる性能向上が難しくなってきた。そこで、性能向上が期待できる技術として、MOSFETのチャネル部分にひずみを与える、いわゆる「ひずみシリコン」技術が注目を集めている。
すなわち、シリコン基板に応力を加えてシリコンの結晶格子を歪ませると、等方的であったシリコン結晶のバンド構造の対称性が崩れ、エネルギー準位の分裂が生じる。バンド構造変化の結果、格子振動によるキャリア散乱の減少や有効質量の低減により、電子と正孔の移動度が向上する。特に、NチャネルMOSトランジスタ(NMOSトランジスタ)には引張り応力(Tensileストレス)が、PチャネルMOSトランジスタ(PMOSトランジスタ)には圧縮応力(Compressiveストレス)が有効であることが確認されている。
歪みを導入する代表的な方法としては、高い応力を有するシリコン窒化膜(SiN膜)をライナー膜として利用する方法がある。しかし、NMOSトランジスタの電流駆動能力向上を優先するためにNMOSトランジスタの形成領域(NMOS領域)およびPMOSトランジスタの形成領域(PMOS領域)に、高引張り応力(Tensileストレス)のシリコン窒化膜を形成すると、PMOSトランジスタの電流駆動能力が低下してしまう問題があった。
これを解決するために、NMOS領域には引張り応力を有するシリコン窒化膜を、PMOS領域には圧縮応力を有するシリコン窒化膜を形成し、NMOSトランジスタおよびPMOSトランジスタの両方共に電流駆動能力を向上させる技術も検討されているが、性質の異なるシリコン窒化膜を作り分けるには、工程数の増加、熱負荷の影響と、それに伴うプロセスの複雑化などの問題もあり適用が難しい。
また、特許文献1には、PMOSトランジスタの動作速度の低下を防止するために、引張り応力膜のうち、PチャネルMOSトランジスタを覆う部分の少なくともゲート電極基部近傍に、Geを斜め方向からイオン注入して、Geイオンが側壁絶縁膜表面近傍にまで到達させることで引張り応力を軽減する技術が開示されている。また、引張り応力膜を、Ge濃度の高い部分において選択エッチングして(図7)、PチャネルMOSトランジスタのゲート電極側壁面を覆う引張り応力膜の引張り応力が、ゲート電極直下のチャネル領域に及ぶことを防止する技術が開示されている。
特開2006−237263号公報
以上説明したように、「ひずみシリコン」技術を用いて形成された半導体装置においては、引張り応力のシリコン窒化膜がPMOS領域に形成されることによるPMOSトランジスタの電流駆動能力(動作速度)の低下を防ぐことが課題として認識されている。
本発明は、上記のような問題点を解決するためになされたものであり、「ひずみシリコン」技術を用いて形成された半導体装置において、NMOSトランジスタの電流駆動能力の向上を達成できるとともに、PMOSトランジスタの電流駆動能力の低下を抑制した半導体装置およびその製造方法を提供することを目的とする。
本発明に係る1の実施の形態においては、NMOSトランジスタおよびPMOSトランジスタを形成した後、シリコン基板の全面に、プラズマCVD法により厚さ20〜80nmのシリコン窒化膜を形成してライナー膜とする。このライナー膜は、Tensileストレスが0〜800MPaとなるように条件を設定する。その後、紫外線照射およびまたは300〜500℃の熱処理を行うことにより膜収縮させ、PMOS領域におけるライナー膜では、ゲート電極のサイドウォール窒化膜の側面外方において、サイドウォール窒化膜に沿って連続的、あるいは断続的にクラックを発生させる。
上記実施の形態によれば、NMOS領域ではライナー膜にクラックを発生させず、PMOS領域ではライナー膜にクラックを発生させることができ、NMOS領域とPMOS領域とで、ライナー膜を作り分けることなくNMOSトランジスタの特性を向上できる。また、PMOSトランジスタにおいてはクラックの存在により、ライナー膜における応力の伝達経路がクラックによって遮断され、TensileストレスがPMOSトランジスタのチャネル部に加わることを防止して、電流駆動能力が低下することを防止できる。
「MOS」という用語は、古くは金属/酸化物/半導体の積層構造に用いられており、Metal-Oxide-Semiconductorの頭文字を採ったものとされている。しかしながら、特にMOS構造を有する電界効果トランジスタ(以下、単に「MOSトランジスタ」と称す)においては、近年の集積化や製造プロセスの改善などの観点からゲート絶縁膜やゲート電極の材料が改善されている。
例えばMOSトランジスタにおいては、主としてソース・ドレインを自己整合的に形成する観点から、ゲート電極の材料として金属の代わりに多結晶シリコンが採用されてきている。また電気的特性を改善する観点から、ゲート絶縁膜の材料として高誘電率の材料が採用されるが、当該材料は必ずしも酸化物には限定されない。
従って「MOS」という用語は必ずしも金属/酸化物/半導体の積層構造のみに限定されて採用されているわけではなく、本明細書でもそのような限定を前提としない。すなわち、技術常識に鑑みて、ここでは「MOS」とはその語源に起因した略語としてのみならず、広く導電体/絶縁体/半導体の積層構造をも含む意義を有する。
<本発明の技術思想>
まず、実施の形態の説明に先立って、本発明の技術思想について説明する。
NMOSトランジスタの電流駆動能力向上のためにNMOS領域およびPMOS領域に、高引張り応力(Tensileストレス)のシリコン窒化膜を形成すると、PMOSトランジスタの電流駆動能力が低下することは先に説明したが、図1には、引張り応力が増加した場合に、PMOSトランジスタの電流駆動能力が低下する一例を示す。
図1においては、横軸に応力(GPa)を示し、縦軸には規格化されたオン電流を示すが、これは応力を変えた複数のサンプルに対してオフ電流を5nA/μmに統一して得たデータであり、PMOSトランジスタのゲート長は50nmである。
図1に示すように、PMOSトランジスタにおいては、応力が負の値をとる場合、すなわち圧縮応力である場合は、応力の増加とともにオン電流が増加するが、応力が正の値をとる場合、すなわち引張り応力である場合は、応力の増加とともにオン電流が低下することが判る。
NMOSトランジスタの場合は、この特性が逆になり、引張り応力である場合は、引張り応力の増加とともにオン電流が増加し、圧縮応力の低下とともにオン電流が低下することになる。
ゲート長45nm世代のSoC(System On a Chip)デバイスでは、更なるNMOSトランジスタの性能向上が要求されるため、シリコン窒化膜にUV(紫外線)照射を施すことにより引張り応力を向上させる技術が採用されている。この技術では、ライナー膜としてのシリコン窒化膜の膜厚が厚くなり、かつUVキュアによる膜収縮が大きい場合には、クラックが発生することが問題となっている。
一方で、PMOSトランジスタの性能向上においては、ソース・ドレイン領域にSiGe層を形成し、当該SiGe層によりチャネル部に圧縮歪みを与える技術が開発されている。
すなわち、シリコン基板のソース・ドレイン領域となるべき領域を掘り下げて、そこにSiGe層を、エピタキシャル成長により選択的に成長させることで圧縮歪みを誘起する。SiGe結晶の格子間隔はシリコンに比べて大きいため、ソース・ドレイン領域間に圧縮歪みが発生し、これによってチャネル部に圧縮歪みが発生するというものである。
そこで、発明者達は、NMOS領域だけでなくPMOS領域にも引張り応力のシリコン窒化膜を形成した場合でも、PMOSトランジスタでは、ソース・ドレイン領域にSiGe層を形成することで圧縮歪みを与え、引張り応力のシリコン窒化膜による影響をキャンセルするという第1の技術思想にまず到達した。
また、発明者達はライナー膜の膜厚が厚くなると、クラックが発生するという現象に着目し、ライナー膜の膜厚と、クラック発生との関係を調べた。
図2には、横軸に引張り応力を有するライナー膜の厚さ(nm)を示し、縦軸にオン電流の変化率(%)を示し、ライナー膜の厚さと、NMOSトランジスタのオン電流の変化との関係を示す。
図2に示すように、膜厚が25nmよりも薄く、クラックが発生していない膜厚領域では、オン電流はライナー膜の厚さに比例して上昇するが、膜厚が25nm以上となり、クラックが発生している膜厚領域ではオン電流が変化していない。これは、PMOSトランジスタに適用した場合、Tensileストレスを有するライナー膜の厚さが増加すればオン電流は減少することを示し、クラックが発生する膜厚領域では、オン電流の減少が抑制されることを示している。
この結果と、クラックが、ゲート電極のサイドウォール絶縁膜の側面外方において、サイドウォール絶縁膜に沿って連続的、あるいは断続的に発生するという知見とから、ライナー膜にクラックが発生すると、当該ライナー膜による応力の伝達経路がクラックによって遮断されるという推測に達し、クラックを利用することで、PMOSトランジスタのチャネル領域に、引張り応力が加わることを抑制するという第2の技術思想に到達した。
そして、第1および第2の技術思想を組み合わせることで、NMOSトランジスタの電流駆動能力の向上を達成できるとともに、PMOSトランジスタの電流駆動能力の低下を抑制できるという本発明に到達した。
<実施の形態>
以下、本発明に係る半導体装置およびその製造方法の実施の形態について、図3〜図20を用いて説明する。なお、図3〜図20は、実施の形態に係る半導体装置100の製造工程を順に示す断面図であり、半導体装置100の構成は図20に示される。
<製造方法>
図3〜図20を用いて実施の形態に係る半導体装置100の製造方法について説明する。
まず、図3に示す工程において、シリコン基板1を準備し、その主面内に周知の技術を用いてSTI(Shallow Trench Isolation)構造の素子分離絶縁膜2を選択的に形成し、半導体素子を形成する活性領域を規定する。この活性領域には、NMOSトランジスタを形成するNMOS領域(第1の領域)およびPMOSトランジスタを形成するPMOS領域(第2の領域)が含まれている。なお、NMOS領域およびPMOS領域は図面中ではNMOSおよびPMOSと表記する。
続いて、シリコン基板1上に、厚さ1.5〜3.5nmのシリコン酸化膜3を、例えばCVD(Chemical Vapor Deposition)法で形成する。これが後にゲート絶縁膜3(第1、第2のゲート絶縁膜)となる。
次に、シリコン酸化膜3上に、例えばCVD法を用いて厚さ100〜140nmのポリシリコン層4を形成する。これが後にゲート電極4(第1、第2のゲート電極)となる。
次に、図4に示す工程において、ポリシリコン層4上に、例えばCVD法を用いて厚さ2〜8nmのシリコン酸化膜5を形成する。これが後にキャップ酸化膜5(第1、第2のキャップ酸化膜)となる。続いて、シリコン酸化膜5上に、例えばCVD法を用いて厚さ10〜60nmのシリコン窒化膜6を形成する。これが後にキャップ窒化膜6(第1、第2のキャップ窒化膜)となる。
次に、図5に示す工程において、フォトリソグラフィーおよびドライエッチングを用いて、シリコン窒化膜6、シリコン酸化膜5、ポリシリコン層4およびシリコン酸化膜3を順次選択的に除去する。これにより、シリコン基板1上のNMOS領域においては、ゲート絶縁膜3、ゲート電極4、キャップ酸化膜5およびキャップ窒化膜6の積層膜LF1(第1の積層膜)が形成され、PMOS領域においては、ゲート絶縁膜3、ゲート電極4、キャップ酸化膜5およびキャップ窒化膜6の積層膜LF2(第2の積層膜)が形成される。
次に、図6に示す工程において、熱酸化によりシリコン基板1の全面に、厚さ4〜20nmのシリコン酸化膜7を形成する。シリコン酸化膜7はシリコン基板1の表面およびゲート電極4の側面に形成され、この側面に形成された部分が後にオフセットスペーサ7となる。なお、積層膜LF1およびLF2にはオフセットスペーサ7を含めるものとする。
次に、図7に示す工程において、シリコン基板1の全面に、例えばCVD法を用いて厚さ40〜60nmのシリコン窒化膜8を形成する。これが後にプレサイドウォール窒化膜8となる。なお、プレサイドウォール窒化膜8は、SiGeエピタキシャル層10の形成のために使用されるもので、後の工程で除去される。
次に、図8に示す工程において、NMOS領域上を覆うようにレジストマスクRM1をパターニングし、異方性ドライエッチングによりPMOS領域のシリコン窒化膜8をエッチングし、積層膜LFの側面にプレサイドウォール窒化膜8を形成する。その後、積層膜LFおよびプレサイドウォール窒化膜8をエッチングマスクとして、シリコン基板1表面のシリコン酸化膜7を異方性ドライエッチングにより除去し、プレサイドウォール窒化膜8とシリコン基板1との間およびゲート電極4の側面にのみシリコン酸化膜7を残して、オフセットスペーサ7を形成する。
次に、図9に示す工程において、レジストマスクRM1を除去した後、プレサイドウォール窒化膜8およびシリコン窒化膜8に覆われないシリコン基板1を、例えばフッ酸、フッ酸と硝酸の混合液など用いたウエットエッチングにより所定深さに達するまで除去して、基板リセス部9を形成する。
この場合、基板リセス部9は、プレサイドウォール窒化膜8の外方においてプレサイドウォール窒化膜8を囲むようにシリコン基板1の表面内に形成され、プレサイドウォール窒化膜8の下部も若干抉るように形成される。なお、基板リセス部9の深さは、40〜100nmとなるように設定される。
次に、図10に示す工程において、ゲルマニウム(Ge)、シリコン(Si)を含む材料ガスを用いてシリコンゲルマニウム(SiGe)のエピタキシャル成長を行い、基板リセス部9内にSiGeエピタキシャル層10を形成する。SiGeエピタキシャル層10は、基板リセス部9を埋め込むとともに、シリコン基板1の主面よりも1nm程度高く突出するように、40〜100nmの厚さに成長させる。
SiGeエピタキシャル層10の形成後、図11に示す工程において、シリコンを含む材料ガスを用いてシリコンのエピタキシャル成長を行い、SiGeエピタキシャル層10の上に、厚さ5〜20nmのSiエピタキシャル層11を形成する。さらに、Siエピタキシャル層11上に、例えばCVD法により、厚さ1〜4nmのシリコン酸化膜12を形成する。
次に、図12に示す工程において、熱リン酸を用いてプレサイドウォール窒化膜8、キャップ窒化膜6およびシリコン窒化膜8を除去する。
その後、図13に示す工程において、異方性ドライエッチングにより、シリコン基板1上のシリコン酸化膜4、キャップ酸化膜5およびシリコン酸化膜12を除去し、ゲート電極4の側面にオフセットスペーサ7を形成する。
そして、ゲート電極6およびオフセットスペーサ7を注入マスクとして、NMOS領域においては、例えばヒ素等のN型不純物をイオン注入して、ゲート電極6の側面外方のシリコン基板1の表面内にソース・ドレインエクステンション層13(第1のソース・ドレインエクステンション層)を形成する。PMOS領域においては、例えばボロン等のP型不純物をイオン注入して、ゲート電極6の側面外方のシリコン基板1の表面内にソース・ドレインエクステンション層14(第2のソース・ドレインエクステンション層)を形成する。もちろん、それぞれのイオン注入を行う場合は、他方の領域にはレジストマスクを形成するが、図示は省略する。
ここで、ソース・ドレインエクステンション層13および14は、ソース・ドレイン層よりも浅い接合となるように形成される不純物層であり、ソース・ドレイン層と同一導電型であり、ソース・ドレイン層と一体となってソース・ドレイン層として機能するが、単独でソース・ドレイン層として機能する場合もある。
次に、図14に示す工程において、シリコン基板1の全面に、例えばCVD法を用いて、厚さ40〜60nmのシリコン窒化膜15を形成する。これが後にサイドウォール窒化膜15(第1、第2のサイドウォール窒化膜)となる。
次に、図15に示す工程において、異方性ドライエッチングによりシリコン窒化膜15をエッチングし、オフセットスペーサ7の側面にサイドウォール窒化膜15を形成する。その後、NMOS領域においてはゲート電極4およびサイドウォール窒化膜15を注入マスクとして、例えばヒ素等のN型不純物をイオン注入して、サイドウォール窒化膜15の側面外方のシリコン基板1の表面内にソース・ドレインエクステンション層13よりも深い接合を有するソース・ドレイン層131を形成する。
次に、図16に示す工程において、シリコン基板1の全面に、スパッタリング法により、厚さ10〜20nmのニッケル(Ni)膜16を形成する。
次に、図17に示す工程において、300℃で数百秒程度の熱処理を加えることで、ポリシリコンのゲート電極4の露出面、SiGeエピタキシャル層10上のSiエピタキシャル層11およびソース・ドレイン層131の表面にNi2Si層を形成する。
その後、未反応のニッケル膜を、リン酸と硝酸の混合液などを用いてエッチングで除去し、500℃で数十秒程度の熱処理を加えることで、Ni2SiがNiSiとなった、厚さ5〜15nmのシリサイド膜17が形成される。
なお、シリサイド膜17は、後に形成されるコンタクト部と、ソース・ドレイン層131、ゲート電極4およびSiGeエピタキシャル層10との接触抵抗を小さくすることを目的として設けられるが、シリサイド膜17を設けない構成であっても本発明の適用は可能である。
また、シリサイド膜17を設けない構成においてはオフセットスペーサ7を省略することも可能であり、またSiGeエピタキシャル層10上のSiエピタキシャル層11を省略することも可能である。
次に、図18に示す工程において、シリコン基板1の全面に、例えばPECVD法(プラズマ化学気相成長法)を用いて、厚さ20〜80nmのシリコン窒化膜を形成してライナー膜18とする。なお、ライナー膜18の成膜条件としては、成膜温度400℃以下で、Tensileストレスが0〜800MPaとなるように条件を設定する。なお、このストレスを与えることができるのであればシリコン窒化膜に限定されるものではなく、シリコン炭化窒素膜で形成しても良い。
次に、図19に示す工程において、紫外線(UV)照射およびまたは300〜500℃の熱処理を行うことにより膜収縮させ、PMOS領域におけるライナー膜18では、ゲート電極4のサイドウォール窒化膜14の側面外方において、サイドウォール窒化膜14に沿って連続的、あるいは断続的にクラックCRを発生させる。ここで、UVキュアの条件としては、処理温度500℃以下で、波長200〜500nmのブロードバンドの紫外線を使用し、処理時間は3〜30分とする。
ライナー膜18は、堆積を複数回繰り返すことで所望の膜厚に達するようにし、堆積ごとに紫外線照射およびまたは熱処理を繰り返すようにしても良い。
なお、紫外線照射や熱処理は、PECVD法によりライナー膜18を形成した段階でPMOS領域においてクラックCRが発生していない場合に特に有効である。
その後、自然酸化膜や不純物(Na、Clなど)除去を目的として、ライナー膜18の表面にフッ酸系のエッチング剤によりウエット処理を施す。この時に、クラックCRが拡張され、クラックCRの開口部の幅は3nm以上となる。
ここで、クラックCRは、SiGeエピタキシャル層10のせり上がり部分とサイドウォール窒化膜15の底部端縁部との境界部分に面して形成されやすく、この構造を採る場合、図2を用いて説明したように、ライナー膜18の厚さが25nmよりも薄くてもクラックCRが発生する。
なお、サイドウォール窒化膜14を有さずオフセットスペーサ7のみを有する、いわゆるディスポーザブル(Disposable)タイプのサイドウォール構造であってもクラックCRは発生する。
次に、図20に示す工程において、ライナー膜18上を含むシリコン基板1の全面に、例えばCVD法により、厚さ500〜1000nmのシリコン酸化膜(NSG(Non-doped Silicate Glass)でも良い)を形成してコンタクト層間膜19とする。コンタクト層間膜19はライナー膜18のクラックCR内を埋め込むように形成される。
コンタクト層間膜19によってクラックCR内が埋め込まれることで、クラックCR内にボイドが発生することが防止され、PMOSトランジスタの信頼性低下を防止できる。
その後、コンタクト層間膜19およびライナー膜18を貫通して、SiGeエピタキシャル層10およびソース・ドレイン層131に達するコンタクトホールならびにゲート電極4に達するコンタクトホールを形成し、当該コンタクトホール内面をバリアメタル膜で覆い、さらに導電体を充填することでコンタクト部を形成し、コンタクト層間膜19上に配線層をパターニングして所定のコンタクト部と接続することで半導体装置100を得る。なお、図20においては配線層およびコンタクト部は省略している。
<効果>
以上説明した半導体装置100においては、NMOSトランジスタではSiGeエピタキシャル層10を形成しないので、厚さ25nmよりも薄いライナー膜18を形成すれば、クラックの発生を防止することができ、引張り応力によりチャネル部に引張り歪みを与えてトランジスタの電流駆動力の向上が可能となる。一方、PMOSトランジスタにおいてもライナー膜18が形成されるが、ソース・ドレイン領域に対応する部分にSiGeエピタキシャル層10を形成することでチャネル部に圧縮歪みを与え、引張り応力のライナー膜18による影響をキャンセルすることができる。
さらに、SiGeエピタキシャル層10のせり上がり部分とサイドウォール窒化膜15の底部端縁部との境界部分に面して、サイドウォール窒化膜15に沿って連続的、あるいは断続的にクラックCRが形成されることで、ライナー膜18による応力の伝達経路がクラックCRによって遮断され、TensileストレスがPMOSトランジスタのチャネル部に加わることを防止できる。
そして、SiGeエピタキシャル層10を有するPMOSトランジスタでは、クラックCR形成されやすく、この構造を採る場合、シリコン窒化膜で構成されるライナー膜18であれば、その厚さが25nmよりも薄くてもクラックCRが発生する。
従って、シリコン窒化膜で構成されるライナー膜18であれば、その厚さを25nmよりも薄くすれば、NMOS領域ではクラックCRを発生させず、PMOS領域ではクラックCRを発生させることができるので、NMOS領域とPMOS領域とで、ライナー膜を作り分けることなくNMOSトランジスタの特性を向上できるとともに、PMOSトランジスタにおいては電流駆動能力が低下することを防止できる。
また、クラックを有するライナー膜18の形成後に、自然酸化膜や不純物(Na、Clなど)除去を目的として、ライナー膜18の表面にフッ酸系のウエット処理を施すことで、クラックCRを拡張することができ、PMOSトランジスタのチャネル部に印加される歪みを確実に緩和させることが可能となる。また、ライナー膜18の表面を清浄化することによりコンタクト層間膜19が、下地の種類や表面状態に依存して成膜状態が変わるという下地依存性を緩和して成膜できるという利点もある。
また、図18を用いて説明したように、シリコン基板1の全面にライナー膜18を成膜した段階においては、PMOS領域でもクラックCRが発生していないとしても、図19を用いて説明したように、ライナー膜18に対して、紫外線照射およびまたは熱処理を行うことにより膜収縮させ、Tensileストレスを向上させることで、クラックCRを発生させることができる。
なお、ライナー膜18の形成においては、堆積を複数回繰り返すことで所望の膜厚に達するようにし、堆積ごとに紫外線照射およびまたは熱処理を繰り返すことで、NMOS領域におけるライナー膜18にクラックCRが発生することを抑制できる。
<本発明の適用例>
本発明は、NMOSトランジスタとPMOSトランジスタとを有する半導体装置であって、チャネル部に歪みを与える目的でコンタクト層間膜のライナー膜を用いている半導体装置であれば適用可能であり、CMOS(Complementary MOS)デバイスはその一例である。
ライナー膜の応力とPMOSトランジスタのオン電流との関係を示す図である。 ライナー膜の厚さと、NMOSトランジスタのオン電流の変化との関係を示す図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。 本発明に係る実施の形態の半導体装置の製造工程を示す断面図である。
符号の説明
1 シリコン基板、3 ゲート絶縁膜、4 ゲート電極、5 キャップ酸化膜、6 キャップ窒化膜、8 プレサイドウォール窒化膜、9 基板リセス部、10 SiGeエピタキシャル層、13,14 ソース・ドレインエクステンション層、15 サイドウォール窒化膜、18 ライナー膜、19 コンタクト層間膜、CR クラック。

Claims (8)

  1. 半導体基板上の第1の領域に配設され、第1のゲート絶縁膜、第1のゲート電極および第1のゲート電極の側面に配設された第1のサイドウォール絶縁膜とを有するNチャネル型MOSトランジスタと、
    前記半導体基板上の第2の領域に配設され、第2のゲート絶縁膜、第2のゲート電極および第2のゲート電極の側面に配設された第2のサイドウォール絶縁膜と、前記第2のサイドウォール絶縁膜の側面外方の前記半導体基板の表面内に設けられ、前記半導体基板の主面からせり上がるSiGeエピタキシャル層を有するソース・ドレイン層とを有するPチャネル型MOSトランジスタと、
    前記Nチャネル型のMOSトランジスタ上および前記Pチャネル型MOSトランジスタ上を覆うように配設され、前記半導体基板に対して引張り応力を与える材質で構成されたライナー膜と、を備え、
    前記ライナー膜は、前記Pチャネル型MOSトランジスタの上部においては、前記第2のサイドウォール絶縁膜の側面外方において、前記第2のサイドウォール絶縁膜に沿って形成されたクラックを有し、前記Nチャネル型MOSトランジスタの上部においては前記クラックを有さない、半導体装置。
  2. 前記ライナー膜は、シリコン窒化膜で構成される、請求項1記載の半導体装置。
  3. 前記ライナー膜は、厚さ20〜80nmの厚さを有する、請求項2記載の半導体装置。
  4. 前記ライナー膜上を覆う絶縁性のコンタクト層間膜をさらに備え、
    前記コンタクト層間膜は、前記クラック内を埋め込む、請求項1記載の半導体装置。
  5. 半導体基板上の第1および第2の領域にそれぞれ配設されたNチャネル型MOSトランジスタおよびPチャネル型MOSトランジスタと、
    前記Nチャネル型のMOSトランジスタ上および前記Pチャネル型MOSトランジスタ上を覆うように配設されたライナー膜と、を備えた半導体装置の製造方法であって、
    (a)前記第1の領域に、第1のゲート絶縁膜、側面に第1の酸化膜が形成された第1のゲート電極、第1のゲート電極の上面に形成された第1のキャップ酸化膜および前記第1のキャップ酸化膜上に形成された第1のキャップ窒化膜を積層した第1の積層膜を形成するとともに、
    前記第2の領域に、第2のゲート絶縁膜、第2のゲート電極、側面に第2の酸化膜が形成された第2のゲート電極の上面に配設された第2のキャップ酸化膜、および前記第2のキャップ酸化膜上に形成された第2のキャップ窒化膜を積層した第2の積層膜を形成する工程と、
    (b)前記第2の領域において、前記第2の積層膜の側面にプレサイドウォール窒化膜を形成する工程と、
    (c)前記第2の領域において、前記プレサイドウォール窒化膜で覆われない前記半導体基板を、ウエットエッチングにより所定深さに達するまで除去して、前記プレサイドウォール窒化膜の周囲に基板リセス部を形成する工程と、
    (d)SiGeのエピタキシャル成長を行い、前記基板リセス部内および前記基板リセス部内からせり上がる部分を有するSiGeエピタキシャル層を形成する工程と、
    (e)前記プレサイドウォール窒化膜、前記第1および第2のキャップ窒化膜を除去した後、前記第1の領域においては、前記第1のゲート電極の側面外方の前記半導体基板の表面内に、N型の不純物を導入して対となった第1の不純物層を形成し、
    前記第2の領域においては、前記第2のゲート電極の側面と前記SiGeエピタキシャル層との間の前記半導体基板の表面内に、P型の不純物を導入して対となった第2の不純物層を形成する工程と、
    (f)前記第1のゲート電極の側面の前記第1の酸化膜の外側に第1のサイドウォール絶縁膜を形成するとともに、前記第2のゲート電極の側面の前記第2の酸化膜の外側に第2のサイドウォール絶縁膜を形成する工程と、
    (g)前記第1のゲート電極、前記第1の酸化膜および第1のサイドウォール絶縁膜の上部を覆うとともに、前記第2のゲート電極、前記第2の酸化膜および第2のサイドウォール絶縁膜の上部を覆うように前記ライナー膜を形成する工程と、を備え、
    前記工程(g)は、
    プラズマCVD法を用いて前記ライナー膜を堆積する工程を含み、
    前記ライナー膜の形成中あるいは形成後に、前記ライナー膜に対する紫外線照射およびまたは熱処理を施す工程を含む、半導体装置の製造方法。
  6. 前記工程(g)は、
    前記プラズマCVD法による堆積を複数回繰り返して、前記ライナー膜を所定の膜厚とする工程と、堆積ごとに前記紫外線照射およびまたは前記熱処理を繰り返す工程とを、含む、請求項5記載の半導体装置の製造方法。
  7. 前記工程(g)は、
    前記ライナー膜を、シリコン窒化膜で形成する工程を含む、請求項5記載の半導体装置の製造方法。
  8. 前記工程(g)の後に、
    前記ライナー膜の表面にフッ酸系のエッチング剤によるウエット処理を施す工程をさらに備える、請求項5記載の半導体装置の製造方法。
JP2008131636A 2008-05-20 2008-05-20 半導体装置およびその製造方法 Pending JP2009283527A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131636A JP2009283527A (ja) 2008-05-20 2008-05-20 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131636A JP2009283527A (ja) 2008-05-20 2008-05-20 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2009283527A true JP2009283527A (ja) 2009-12-03

Family

ID=41453718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131636A Pending JP2009283527A (ja) 2008-05-20 2008-05-20 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2009283527A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083523A1 (ja) * 2010-01-07 2011-07-14 パナソニック株式会社 半導体装置及びその製造方法
CN102299154A (zh) * 2010-06-22 2011-12-28 中国科学院微电子研究所 半导体结构及其制作方法
JP2012049248A (ja) * 2010-08-25 2012-03-08 Renesas Electronics Corp 半導体装置およびその製造方法
JP2013513945A (ja) * 2009-12-23 2013-04-22 インテル コーポレイション 集積回路デバイスに歪みを与える技術及び構成
US9269718B1 (en) 2014-09-05 2016-02-23 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor memory device
US9397196B2 (en) 2014-09-15 2016-07-19 Samsung Electronics Co., Ltd. Methods of manufacturing semiconductor devices that include performing hydrogen plasma treatment on insulating layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513945A (ja) * 2009-12-23 2013-04-22 インテル コーポレイション 集積回路デバイスに歪みを与える技術及び構成
WO2011083523A1 (ja) * 2010-01-07 2011-07-14 パナソニック株式会社 半導体装置及びその製造方法
US8907425B2 (en) 2010-01-07 2014-12-09 Panasonic Corporation Semiconductor device
CN102299154A (zh) * 2010-06-22 2011-12-28 中国科学院微电子研究所 半导体结构及其制作方法
CN102299154B (zh) * 2010-06-22 2013-06-12 中国科学院微电子研究所 半导体结构及其制作方法
JP2012049248A (ja) * 2010-08-25 2012-03-08 Renesas Electronics Corp 半導体装置およびその製造方法
US9269718B1 (en) 2014-09-05 2016-02-23 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor memory device
US9397196B2 (en) 2014-09-15 2016-07-19 Samsung Electronics Co., Ltd. Methods of manufacturing semiconductor devices that include performing hydrogen plasma treatment on insulating layer

Similar Documents

Publication Publication Date Title
US8071442B2 (en) Transistor with embedded Si/Ge material having reduced offset to the channel region
JP5206668B2 (ja) 半導体装置の製造方法
US6882025B2 (en) Strained-channel transistor and methods of manufacture
JP5091403B2 (ja) 半導体装置およびその製造方法
US20090289284A1 (en) High shrinkage stress silicon nitride (SiN) layer for NFET improvement
US20070023795A1 (en) Semiconductor device and method of fabricating the same
JP5605134B2 (ja) 半導体装置及びその製造方法
US8222100B2 (en) CMOS circuit with low-k spacer and stress liner
US20140246696A1 (en) Transistor with embedded strain-inducing material formed in cavities formed in a silicon/germanium substrate
US20100078735A1 (en) Cmos device comprising nmos transistors and pmos transistors having increased strain-inducing sources and closely spaced metal silicide regions
US9362402B2 (en) Semiconductor devices and fabrication method thereof
JP2011142224A (ja) 半導体装置及びその製造方法
US8129236B2 (en) Method for creating tensile strain by applying stress memorization techniques at close proximity to the gate electrode
KR101405311B1 (ko) 반도체 집적 회로 장치의 제조 방법 및 그에 의해 제조된반도체 집적 회로 장치
JP2009283527A (ja) 半導体装置およびその製造方法
JP2009065020A (ja) 半導体装置及びその製造方法
JP2009105233A (ja) 半導体装置およびその製造方法
KR101071787B1 (ko) 간단한 이중 응력 라이너 구성을 이용하여 향상된 성능을 갖는 반도체 구조체
KR20110135771A (ko) 반도체 집적 회로 장치의 제조 방법
JP5055846B2 (ja) 半導体装置およびその製造方法
JP4997752B2 (ja) 半導体装置の製造方法
US20080315317A1 (en) Semiconductor system having complementary strained channels
JP2011066042A (ja) 半導体装置とその製造方法
JP2010161223A (ja) 半導体装置及びその製造方法
CN102915971B (zh) 一种半导体器件的制造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100524