WO2011080835A1 - 車両用フード構造 - Google Patents

車両用フード構造 Download PDF

Info

Publication number
WO2011080835A1
WO2011080835A1 PCT/JP2009/071801 JP2009071801W WO2011080835A1 WO 2011080835 A1 WO2011080835 A1 WO 2011080835A1 JP 2009071801 W JP2009071801 W JP 2009071801W WO 2011080835 A1 WO2011080835 A1 WO 2011080835A1
Authority
WO
WIPO (PCT)
Prior art keywords
hood
inner panel
hole
vehicle
collision
Prior art date
Application number
PCT/JP2009/071801
Other languages
English (en)
French (fr)
Inventor
光希 池田
成豊 米澤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/071801 priority Critical patent/WO2011080835A1/ja
Priority to EP09852813.6A priority patent/EP2529998B1/en
Priority to CN200980163202.5A priority patent/CN102695643B/zh
Priority to KR1020127019822A priority patent/KR20120093450A/ko
Priority to AU2009357432A priority patent/AU2009357432B2/en
Priority to JP2011547218A priority patent/JP5382140B2/ja
Priority to US13/519,420 priority patent/US8991908B2/en
Publication of WO2011080835A1 publication Critical patent/WO2011080835A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/10Bonnets or lids, e.g. for trucks, tractors, busses, work vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/10Bonnets or lids, e.g. for trucks, tractors, busses, work vehicles
    • B62D25/105Bonnets or lids, e.g. for trucks, tractors, busses, work vehicles for motor cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/34Protecting non-occupants of a vehicle, e.g. pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/10Bonnets or lids, e.g. for trucks, tractors, busses, work vehicles
    • B62D25/12Parts or details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/34Protecting non-occupants of a vehicle, e.g. pedestrians
    • B60R2021/343Protecting non-occupants of a vehicle, e.g. pedestrians using deformable body panel, bodywork or components

Definitions

  • the present invention relates to a vehicle hood structure applied to a vehicle such as an automobile.
  • a structure in which a hood inner panel is coupled to a hood outer panel is known (see, for example, Patent Document 1), and a predetermined hood rigidity is ensured from the viewpoint of pedestrian protection.
  • the hood of the hood inner panel in order to deform the hood in a convex bent state toward the vehicle upper side when viewed from the side of the vehicle in a frontal collision (hereinafter referred to as “front collision”), the hood of the hood inner panel There is a case where a bead is formed along the hood width direction at a substantially central portion in the front-rear direction.
  • the present invention provides a vehicle hood structure that can achieve both improvement in energy absorption performance when a collision object collides with the hood and improvement in deformation performance of the hood during a front collision. Is the purpose.
  • a hood structure for a vehicle includes a hood outer panel that constitutes an outer plate of a hood, a hood outer panel that is disposed below the hood outer panel, and is coupled to the hood outer panel.
  • a hood inner panel constituting the plate and a central region excluding an outer peripheral edge of the hood inner panel are formed, and a plurality of recessed portions recessed in the opposite direction to the hood outer panel side are formed, and the hood front-rear direction
  • the hood inner panel constituting the inner plate of the hood is arranged on the hood lower side with respect to the hood outer panel constituting the outer plate of the hood.
  • the skeleton forming portion constituting the central region excluding the outer peripheral edge portion of the hood inner panel is formed with a plurality of concave portions that are recessed in the opposite direction to the hood outer panel side, and at the substantially central portion in the hood front-rear direction.
  • a plurality of through-holes or a plurality of thin-walled portions (portions where the plate thickness is thinner than other portions) arranged side by side along the hood width direction are formed.
  • the hood inner panel maintains a relatively high rigidity because the cross-sectional height of the hood inner panel is not reduced unlike the contrast structure in which a bead is formed. And absorbs energy required for plastic deformation and the like. Further, at the time of a front collision, bending deformation is performed in a predetermined folding mode with a through hole or a thin portion formed in the hood inner panel as a bending start point.
  • the through hole or the thin portion is formed at the bottom of the recess.
  • the through hole or the thin portion in the hood inner panel is formed at the bottom of the recess. For this reason, if the hood tries to bend downward when the colliding body collides with the hood, a tensile load acts on the bottom of the recess, so the buckling of the hood inner panel starting from the through hole or thin wall portion Deformation is suppressed. Further, if the hood tries to bend upward in the front impact, a compressive load acts on the bottom of the recess, so that the hood inner panel is buckled and deformed relatively easily starting from the through hole or the thin portion.
  • both sides in the hood width direction of the outer peripheral edge portion of the hood inner panel are compared with the skeleton forming portion.
  • a weak body part that is set to have high rigidity and is set to be lower in rigidity than the other parts on both sides is formed in the part where the through hole or the thin part and the hood front-rear direction are aligned on both sides. Has been.
  • both sides in the hood width direction at the outer peripheral edge portion of the hood inner panel are set to be higher in rigidity than the skeleton forming portion.
  • the weak body parts formed on both sides in the hood width direction of the part are set to be lower in rigidity than the other parts on both sides in the hood width direction of the outer peripheral edge part. For this reason, at the time of the front collision, the hood inner panel is first bent from the weak body portion of the outer peripheral edge.
  • the weak body part is formed in a portion where the through hole or the thin part in the skeleton forming part and the position in the hood front-rear direction are aligned. For this reason, when bending occurs in the weak body portion of the hood inner panel at the time of the front collision, the bending propagates along the through hole or the thin wall portion starting from the weak body portion, and the entire hood inner panel is bent.
  • the recess is formed to extend along the hood front-rear direction.
  • the recess is formed so as to extend along the hood front-rear direction.
  • the hood inner panel ensures relatively high rigidity even when the plate thickness is set thin, and absorbs energy required for plastic deformation or the like when the collision body collides with the hood.
  • bending deformation is performed in a predetermined folding mode with a through hole or a thin portion formed in the hood inner panel as a bending start point.
  • the energy absorption performance when the collision body collides with the hood, and the deformation performance of the hood during the front collision are improved. It has the outstanding effect that both can be made compatible.
  • a further improvement in the energy absorption performance when the collision body collides with the hood and a further improvement in the deformation performance of the hood at the time of the front collision are achieved. It has an excellent effect of being able to be made.
  • the vehicle hood structure according to the third aspect of the present invention has an excellent effect that the deformation performance of the hood at the time of a front collision can be further improved.
  • the vehicle hood structure according to the fourth aspect of the present invention has an excellent effect that it is possible to further improve the energy absorption performance when the collision body collides with the hood.
  • FIG. 1 is a plan view showing a hood to which a vehicle hood structure according to a first embodiment of the present invention is applied (shown in a state where a hood outer panel is seen through). It is a perspective view which shows a part of frame
  • FIG. 6 is a schematic plan view showing a hood inner panel in a state in which a bend propagates along a through hole starting from a bead at the time of a front collision.
  • FIG. 13B is a cross-sectional view taken along line 13B-13B in FIG. 13A.
  • FIG. 6 is a cross-sectional view showing a modification in which a skeleton forming portion of a hood inner panel includes a substantially sine-curved wavy portion, and a through hole is formed through a bottom portion of a concave portion having an arcuate curved surface shape.
  • It is sectional drawing which shows the modification in which the frame
  • an arrow FR appropriately shown indicates the vehicle front side
  • an arrow UP indicates the vehicle upper side
  • an arrow W indicates the vehicle width direction.
  • the hood longitudinal direction is the same direction as the vehicle longitudinal direction
  • the hood vertical direction is the same direction as the vehicle vertical direction
  • the hood width direction is the same direction as the vehicle width direction.
  • FIG. 1 is a plan view showing a vehicle front portion to which the vehicle hood structure according to this embodiment is applied.
  • a hood (engine hood) 14 that covers the engine room 12 in an openable and closable manner is disposed in a vehicle front portion 10 ⁇ / b> A of an automobile (vehicle) 10.
  • a built-in engine compartment such as a power unit is disposed inside the engine room 12 covered with the hood 14.
  • the hood 14 is made of metal (in this embodiment, made of an aluminum alloy). Further, hinges (not shown) are disposed on both sides of the rear end portion of the hood 14 in the front-rear direction of the hood 14, so that the hood 14 has a shaft 15 ⁇ / b> X in the hood width direction of the hinge (see FIG. 4A). ) It can be rotated around, that is, it can be opened and closed.
  • the hood 14 is locally reinforced by a reinforcing member (an element grasped as a “hood attachment member” in a broad sense). That is, the hood 14 is provided with a hinge reinforcement (not shown) provided on the hinge side, a strike reinforcement 15B, a dental reinforcement 15C, etc. provided on the hood striker 15A side of the front end shown in FIG. 4A.
  • FIG. 2 shows a plan view of the hood 14 in a state where the hood outer panel 16 (see an imaginary line) is seen through.
  • the hood 14 shown in this figure constitutes the outer plate of the hood 14 and extends along the vehicle front-rear direction.
  • the hood 14 is disposed on the lower side of the hood with respect to the hood outer panel 16 and the hood.
  • a hood inner panel 18 that is coupled to the outer panel 16 and constitutes an inner plate of the hood 14 is included.
  • Both the hood outer panel 16 and the hood inner panel 18 are formed by press-molding an aluminum alloy plate.
  • the plate thickness of the hood outer panel 16 and the plate thickness of the hood inner panel 18 are set from a plurality of viewpoints such as weight reduction and pedestrian protection performance.
  • the outer periphery of the hood outer panel 16 is coupled to the outer periphery of the hood inner panel 18 by hemming. In the state where the hood outer panel 16 and the hood inner panel 18 are assembled, both form a closed cross-sectional structure, and a gap in the hood vertical direction is formed between the two.
  • the outer peripheral edge portion 20 of the hood inner panel 18 includes a front end edge portion 20A on the front end side in the hood front-rear direction, a rear end edge portion 20B on the rear end side in the hood front-rear direction, and both end edges in the hood width direction on both sides in the hood width direction.
  • the inner region of the outer peripheral edge 20 (that is, the portion excluding the outer peripheral edge 20 in the hood inner panel 18) is a central region 24.
  • Both end edges 20C and 20D in the hood width direction have a large cross-sectional height in order to increase the torsional rigidity of the hood 14, and are set to be higher in rigidity than the skeleton forming part 26 constituting the central region 24. It is a highly rigid part.
  • the hood hinge reinforcement (illustration omitted) arrange
  • positioned along the hood front-back direction is being fixed to the lower surface side of this hood width direction both-ends edge part 20C, 20D.
  • the hood hinge reinforcement is a long, high-strength, high-rigidity member for reinforcing the hinge attachment portion of the hood 14.
  • the bead 22 as a weak body part is formed in the hood width direction both-ends edge part 20C, 20D in the hood front-back direction substantially center part.
  • the bead 22 protrudes in a hood outer panel 16 side (the hood upper side) in a sectional view along the hood front-rear direction and is formed in a convex shape, and is formed along the hood width direction in the hood plan view.
  • the bead 22 is set to have lower rigidity with respect to the load in the hood front-rear direction than the other portions of the hood width direction both end edges 20C, 20D.
  • the configuration in which the bead 22 having low rigidity is provided at the hood width direction both end edges 20C and 20D is as follows. It can be said that it is a generally advantageous configuration (or a configuration that is not disadvantageous) from the viewpoint of setting the collision object acceleration in a more preferable range when the collision object collides with the hood 14.
  • a plurality of beads 30 are formed in the central region 24 of the hood inner panel 18 so as to extend along the hood front-rear direction in the hood plan view.
  • Each bead 30 is formed in a convex shape in which a panel (hood inner panel 18) in the central region 24 protrudes toward the hood outer panel 16 in a cross-sectional view along a plane orthogonal to the longitudinal direction, and is shown in FIGS. 3A and 3B.
  • the top 30A is flat.
  • a part of the top portion 30 ⁇ / b> A of the bead 30 is joined to the back surface 16 ⁇ / b> A of the hood outer panel 16 via a mastic 17 that is an adhesive.
  • each bead 30 reaches the vicinity of the front end edge 20 ⁇ / b> A of the hood inner panel 18, and the rear end 30 ⁇ / b> C of each bead 30 is behind the hood inner panel 18. It reaches the vicinity of the edge 20B.
  • These beads 30 constitute a skeleton that improves the bending rigidity in the hood front-rear direction in the central region 24 of the hood inner panel 18.
  • concave portions 32 are formed between the top portions 30A of the adjacent beads 30 so as to be recessed in the direction opposite to the hood outer panel 16 side.
  • the plurality of recesses 32 are formed so as to extend along the hood front-rear direction, and as shown in FIGS. 3A and 3B, the bottom 32A of the recess 32 is formed in a curved shape in sectional view. That is, as shown in FIG. 2, the bead 30 and the recess 32 are alternately provided in the central region 24 along the hood width direction, and the corrugated shape (generally a hat shape is continuously formed in a cross-sectional view).
  • the wavy portion 28 having such a shape is formed almost all over.
  • the wavy portion 28 is formed at a position facing a built-in engine compartment (not shown) inside the engine room 12.
  • the skeleton forming portion 26 is formed with a plurality of through-holes 34 arranged in parallel in the hood width direction at a substantially central portion in the hood front-rear direction. These through-holes 34 and the beads 22 at both edges 20C and 20D in the hood width direction are set to positions where the positions in the hood front-rear direction are aligned. This is a part for bending and deforming.
  • the through hole 34 is a circular hole (see FIG. 3A) in the present embodiment, and is formed in the bottom 32 ⁇ / b> A of each recess 32 (lower part of the hood inner panel 18). Yes. Since the through-hole 34 is formed in the hood inner panel 18, the electrodeposition coating (ED coating) is sequentially formed from a position close to the through-hole 34. Therefore, the electrodeposition coating (ED coating) The throwing power of can be improved.
  • FIG. 4A shows the state of the hood 14 at the time of collision of the collision object C (head impactor), and FIG. 5A shows the state of the hood 14 at the time of front collision.
  • the state after deformation is shown. Is indicated by an imaginary line (two-dot chain line).
  • the skeleton forming portion 26 constituting the central region 24 in the hood inner panel 18 is provided with a wave-shaped portion 28, and is arranged in parallel along the hood width direction at a substantially central portion in the hood front-rear direction.
  • a plurality of through holes 34 are formed. Even if these through holes 34 are formed, unlike the contrast structure in which beads are formed, as shown in FIG. 3B, the cross-sectional height of the hood inner panel 18 is not reduced. Relatively high rigidity is maintained. Therefore, the hood inner panel 18 absorbs energy required for its plastic deformation or the like when the collision body C shown in FIG. 4A collides. Further, at the time of the front collision, as shown in FIG. 5A, the bending deformation is performed in a predetermined folding mode with the through hole 34 formed in the hood inner panel 18 as a bending start point. In FIG. 5A, the input direction of the front collision load is indicated by an arrow F.
  • the recess 32 is formed so as to extend along the hood front-rear direction, and as shown in FIGS. 3A and 3B, the through hole 34 in the hood inner panel 18. Is formed at the bottom 32 ⁇ / b> A of the recess 32.
  • FIG. 4A if the hood 14 tries to bend downward when the collision body C collides with the hood 14, the bottom 32A of the recess 32 is pulled as shown in FIG. 4B.
  • a load f1 acts, and a compressive load f2 acts on the top 30A of the bead 30. Since the end portion of the through hole 34 in the bottom portion 32A has relatively high rigidity with respect to the tensile load f1, buckling deformation (folding deformation) of the hood inner panel 18 starting from the through hole 34 is suppressed. Thereby, high energy absorption efficiency at the time of the collision with the hood 14 of the collision body C shown in FIG. 4A is maintained (pedestrian protection measure).
  • FIG. 8 is a GS diagram (CAE (Computer Aided Engineering) result) showing the relationship between the collision object acceleration and the collision object displacement amount (intrusion amount) when the collision object collides with the hood.
  • CAE Computer Aided Engineering
  • the horizontal axis (S) indicates the amount of displacement of the collision object that has collided with the hood
  • the vertical axis (G) indicates the acceleration received by the collision object.
  • the solid line shows a GS diagram in the vehicle hood structure according to the present embodiment, and the two-dot chain line is the same as that of the present embodiment except that the through hole 34 of the present embodiment is not formed.
  • the GS diagram in the structure is shown.
  • the vehicle hood structure according to the present embodiment has a collision body (C) compared to a structure in which the through hole (34) is not formed even though the through hole (34) is formed.
  • the collision body (C) It is possible to avoid a collision with the engine compartment built-in through the hood (14).
  • the end portion of the through hole 34 in the bottom portion 32A remains against the tensile load f1.
  • the positions of the hood 14 and the collision body C immediately after the collision of the collision body C are indicated by solid lines, and the positions of the hood 14 and the collision body C in a state where the collision body C is displaced by a predetermined amount after the collision of the collision body C. Is indicated by a two-dot chain line.
  • FIG. 5A showing the state of the hood 14 at the time of the front collision
  • the hood 14 tries to bend toward the upper side of the hood.
  • FIG. A compression load f3 acts on 32A
  • a tensile load f4 acts on the top 30A of the bead 30. That is, when the collision body C (see FIG. 4A) collides with the hood 14 and when the front collision occurs, the direction in which the hood 14 tends to bend and deform is different, and the direction of the load acting on the bottom 32A of the recess 32 is also different.
  • the compressive load f3 acts on the bottom portion 32A of the recess 32, so that stress concentrates on the end portion of the through hole 34 of the bottom portion 32A shown in FIG. That is, the bottom 32A is buckled and deformed relatively easily starting from the weakened through hole 34.
  • both edge portions 20C and 20D in the hood width direction in the outer peripheral edge portion 20 of the hood inner panel 18 shown in FIG. 2 are compared with the skeleton forming portion 26 in the central region 24.
  • the rigidity is set to be high, and the bead 22 formed in the hood width direction both end edges 20C and 20D is set to be lower in rigidity than the other parts in the hood width direction both end edges 20C and 20D.
  • FIGS. 7A to 7E schematically showing the deformation state of the hood inner panel 18 at the time of the front collision in plan view
  • the hood inner panel 18 at the time of the front collision is first shown in FIG. 7A.
  • the bead 22 is formed in a portion where the through hole 34 in the skeleton forming portion 26 and the position in the hood front-rear direction are aligned, when the bead 22 of the hood inner panel 18 is bent at the time of the front collision, FIG. As shown, the bend propagates along the through hole 34 starting from the bead 22. That is, in the skeleton forming portion 26, since the through holes 34 are the weakest portions, stress concentrates on the end portions of these through holes 34, and the cross-sectional deformation in the vicinity of the through holes 34 is promoted. And since these through holes 34 are arranged side by side along the hood width direction, the bending propagates toward the inside of the hood width direction.
  • the bending position of the hood 14 is determined by the position of the through hole 34, and finally, as shown in FIG. 7E, the entire hood inner panel 18 (hood 14) bends along the through hole 34 (stable). Bending mode). Thereby, the displacement amount to the vehicle rear side at the rear end of the hood 14 can be suppressed at the time of a front collision.
  • FIG. 10 is an FS diagram (CAE (Computer Aided Engineering) result) showing the relationship between the deformation load and the displacement amount of the hood at the time of the front collision.
  • CAE Computer Aided Engineering
  • the horizontal axis (S) indicates the amount of displacement of the hood
  • the vertical axis (G) indicates the deformation load of the hood.
  • a solid line indicates an FS diagram in the vehicle hood structure according to the present embodiment
  • a two-dot chain line indicates a hood front-rear direction substantially central portion along the hood width direction instead of the through hole 34 of the present embodiment.
  • FIG. 5 shows an FS diagram of a contrast structure in which a bead having a convex shape is formed on the hood outer panel side.
  • the vehicle hood structure according to the present embodiment has a reduced deformation load (folding load) compared to a structure in which a bead is formed instead of the through hole (34). .
  • FIGS. 11A to 11E show the state in which the hood inner panel 18 is deformed at the time of the front collision in the order of FIGS. 11A, 11B, 11C, 11D, and 11E in a schematic side view.
  • a solid line indicates a deformation state of the hood 14 to which the vehicle hood structure according to the present embodiment is applied
  • a two-dot chain line X indicates the contrast structure in which the bead is formed instead of the through hole 34 of the present embodiment.
  • the deformation state of the hood is shown.
  • the hood to which the vehicle hood structure according to the present embodiment is applied has a deformation performance (folding performance) equal to or higher than that of the hood having the comparison structure.
  • the energy absorption performance when the collision body C shown in FIG. 4A collides with the hood 14 and the front collision shown in FIG. 5A are improved.
  • the deformation performance of the hood 14 can be improved at the same time.
  • the through hole 34 formed in the bottom 32A of the recess 32 is a circular hole, but the through hole formed in the bottom of the recess is shown in FIG. 12A.
  • Through holes of other shapes such as an elliptical through hole 34A as shown in FIG. 12, a rectangular through hole 34B as shown in FIG. 12B, a diamond shaped through hole 34C as shown in FIG. 12C, etc. It may be a hole.
  • one through hole 34 is formed in each bottom 32A.
  • a plurality of through holes 34D are formed in each bottom 32A. It may be formed so as to be juxtaposed in the hood width direction.
  • FIG. 13A shows a plan view (a view corresponding to FIG. 2 of the first embodiment) of the hood 40 in a state where the hood outer panel 16 (see an imaginary line) is seen through.
  • FIG. 13B shows a cross-sectional view taken along line 13B-13B in FIG. 13A.
  • the hood 40 has a structure in which a plurality of beams 46 are provided on a hood inner panel 42, and is different from the hood 14 according to the first embodiment (see FIG. 2). Different. Other configurations are substantially the same as those of the first embodiment. Therefore, components that are substantially the same as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the hood inner panel 42 in the hood 40 includes a skeleton forming portion 44 in the central region 24.
  • the skeleton forming portion 44 includes a plurality of (in this embodiment, five) beams 46 formed so as to extend along the hood front-rear direction, and these beams 46 are predetermined in the hood width direction. Arranged at intervals.
  • both edge portions 20C and 20D in the hood width direction are set to have high rigidity.
  • the beam 46 has a cross-sectional hat shape in which the hood outer panel 16 side is opened in a front view of the vehicle. That is, these beams 46 are formed such that a recessed portion 50 that is recessed in a direction opposite to the hood outer panel 16 side extends along the hood front-rear direction (see FIG. 13A), and the recessed portion 50 is opened.
  • a pair of flanges 48 bent in a direction away from each other on the end side are coupled to the hood outer panel 16 via a mastic (not shown). Further, the bottom 50A of the recess 50 is formed in a curved shape in a sectional view.
  • a plurality of through holes 52 that are arranged in parallel along the hood width direction are formed in the skeleton forming portion 44 including the beam 46 in a substantially central portion in the hood front-rear direction.
  • the through hole 52 and the bead 22 are set to positions where the positions in the hood front-rear direction are aligned.
  • the through hole 52 is formed in the bottom 50A of the recess 50, and as shown in FIG. 13A, the through hole 52 is a circular hole in this embodiment.
  • the skeleton forming portion 26A of the hood inner panel 18A includes a concave portion 62 that is formed in a concave shape that is recessed in a circular arc shape in a direction opposite to the hood outer panel 16 side.
  • a configuration provided with a curved wavy portion 28A may also be used.
  • a through hole 34E is formed through the bottom 62A of the recess 62 shown in FIG. 14A at the same position (substantially central portion in the hood front-rear direction) as the through hole 34 (see FIG. 2 etc.) of the first embodiment. Yes.
  • the through-holes 34 and 52 are penetrated and formed in bottom part 32A, 50A of the recessed parts 32 and 50, for example, as FIG. 14B, FIG. 14C, and FIG. 14D show, the recessed parts 62 and 32 are shown.
  • 50 may be formed with thin wall portions 60A, 60B, and 60C instead of the through holes 34E, 34, and 52 (see FIGS. 14A, 3B, and 13B). As shown in FIGS.
  • the thin-walled portions 60A, 60B, and 60C are portions that are thinner than other portions in the skeleton forming portions 26A, 26, and 44, and the first and second portions It is formed at the same position (substantially central portion in the hood front-rear direction) as the through holes 34 and 52 (see FIGS. 2 and 13A) of the embodiment.
  • the through holes 34, 34A to 34E, 52 and the thin-walled portions 60A to 60C are formed in the bottom portions 32A, 50A, and 62A of the recesses 32, 50, and 62.
  • the through-hole or the thin-walled portion may be formed, for example, on the top portion on the hood outer panel side in the wavy portion of the skeleton forming portion of the hood inner panel.
  • the recessed parts 32 and 50 are formed so that it may extend along the food
  • Such a structure is more preferable,
  • it may be a recess whose longitudinal direction is another direction such as a recess formed so as to extend obliquely with respect to the hood front-rear direction.
  • the extending direction (longitudinal direction) of the plurality of recesses may be set in a direction that intersects each other.
  • the bead 22 as the weak body portion is formed in the hood width direction both ends 20C and 20D at the substantially center portion in the hood front-rear direction, and such a configuration is more preferable. It is good also as a structure in which such a weak body part is not formed in the both sides of the food
  • the hood 14 (the hood outer panel 16 and the hood inner panels 18 and 42) is made of an aluminum alloy, but the hood (the hood outer panel and the hood inner panel) is made of, for example, steel. Other metal hoods and resin hoods may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Superstructure Of Vehicle (AREA)

Abstract

 衝突体がフードに衝突した際のエネルギー吸収性能の向上と、前突時におけるフードの変形性能の向上とを両立させることができる車両用フード構造を得る。 フードインナパネル(18)において中央領域(24)を構成する骨格形成部(26)は、フード前後方向に沿って延在するように形成されたビード(30)及び凹部(32)を備えると共に、フード前後方向略中央部にフード幅方向に沿って並設された複数の貫通孔(34)が形成されている。貫通孔(34)は、凹部(32)の底部(32A)に形成されている。また、フード幅方向両端縁部(20C、20D)には、貫通孔(34)とフード前後方向の位置を揃えた位置にビード(22)が形成されている。

Description

車両用フード構造
 本発明は、自動車等の車両に適用される車両用フード構造に関する。
 車両用フード構造においては、フードアウタパネルにフードインナパネルを結合した構造が知られており(例えば、特許文献1参照)、歩行者保護の観点から所定のフード剛性が確保されている。また、このような構造では、例えば、前面衝突時(以下、「前突時」という。)にフードを車両側面視で車両上方側に凸の折れ状態で変形させるために、フードインナパネルのフード前後方向略中央部にフード幅方向に沿ってビードを形成している場合がある。
特開2005-75163公報
 しかしながら、衝突体がフードに衝突した際のエネルギー吸収性能の向上と、前突時におけるフードの変形性能の向上との両立という観点からは改善の余地がある。
 本発明は、上記事実を考慮して、衝突体がフードに衝突した際のエネルギー吸収性能の向上と、前突時におけるフードの変形性能の向上とを両立させることができる車両用フード構造を得ることが目的である。
 本発明の第1の態様に係る車両用フード構造は、フードの外板を構成するフードアウタパネルと、前記フードアウタパネルに対してフード下方側に配置されると共に前記フードアウタパネルに結合され、フードの内板を構成するフードインナパネルと、前記フードインナパネルにおける外周縁部を除く中央領域を構成し、前記フードアウタパネル側と反対方向へ凹む凹形状とされた凹部が複数形成されると共に、フード前後方向略中央部にフード幅方向に沿って並設された複数の貫通孔又は複数の薄肉部が形成された骨格形成部と、を有する。
 本発明の第1の態様に係る車両用フード構造によれば、フードの外板を構成するフードアウタパネルに対して、フードの内板を構成するフードインナパネルは、フード下方側に配置されると共にフードアウタパネルに結合されている。ここで、フードインナパネルにおける外周縁部を除く中央領域を構成する骨格形成部は、フードアウタパネル側と反対方向へ凹む凹形状とされた凹部が複数形成されると共に、フード前後方向略中央部にフード幅方向に沿って並設された複数の貫通孔又は複数の薄肉部(他の部位よりも板厚が薄い部位)が形成されている。このような貫通孔又は薄肉部が形成されても、ビードが形成されるような対比構造とは異なり、フードインナパネルの断面高さは縮小しないので、フードインナパネルは、比較的高い剛性が維持され、その塑性変形等に要するエネルギーを吸収する。また、前突時には、フードインナパネルに形成された貫通孔又は薄肉部を曲げ起点として、所定の折れモードで曲げ変形する。
 本発明の第2の態様は、第1の態様に係る車両用フード構造において、前記貫通孔又は前記薄肉部は、前記凹部の底部に形成されている。
 本発明の第2の態様に係る車両用フード構造によれば、フードインナパネルにおける貫通孔又は薄肉部は、凹部の底部に形成されている。このため、衝突体がフードに衝突した際にフードがフード下方側に撓もうとすると、凹部の底部には引っ張り荷重が作用するので、貫通孔又は薄肉部を起点としたフードインナパネルの座屈変形が抑えられる。また、前突時にフードがフード上方側に撓もうとすると、凹部の底部には圧縮荷重が作用するので、フードインナパネルは、貫通孔又は薄肉部を起点として比較的容易に座屈変形する。
 本発明の第3の態様は、第1の態様又は第2の態様に係る車両用フード構造において、前記フードインナパネルの外周縁部におけるフード幅方向の両サイドは、前記骨格形成部に比べて剛性が高く設定され、前記両サイドにおいて前記貫通孔又は前記薄肉部とフード前後方向の位置を揃えた部位には、前記両サイドにおける他の部位に比べて剛性が低く設定された弱体部が形成されている。
 本発明の第3の態様に係る車両用フード構造によれば、フードインナパネルの外周縁部におけるフード幅方向の両サイドは、骨格形成部に比べて剛性が高く設定されており、この外周縁部のフード幅方向の両サイドに形成された弱体部は、当該外周縁部のフード幅方向の両サイドにおける他の部位に比べて剛性が低く設定されている。このため、前突時にフードインナパネルは、まず、外周縁部の弱体部から折れ曲がりが生じる。
 ここで、弱体部は、骨格形成部における貫通孔又は薄肉部とフード前後方向の位置を揃えた部位に形成されている。このため、前突時にフードインナパネルの弱体部で折れ曲がりが生じると、弱体部を起点として貫通孔又は薄肉部に沿って折れ曲がりが伝播していき、フードインナパネル全体が折れ曲がる。
 本発明の第4の態様は、第1の態様~第3の態様のいずれか1態様に係る車両用フード構造において、前記凹部がフード前後方向に沿って延在するように形成されている。
 本発明の第4の態様に係る車両用フード構造によれば、凹部がフード前後方向に沿って延在するように形成されている。このため、フードインナパネルは、板厚を薄く設定しても比較的高い剛性が確保され、衝突体がフードへ衝突した際には塑性変形等に要するエネルギーを吸収する。また、前突時には、フードインナパネルに形成された貫通孔又は薄肉部を曲げ起点として、所定の折れモードで曲げ変形する。
 以上説明したように、本発明の第1の態様に係る車両用フード構造によれば、衝突体がフードに衝突した際のエネルギー吸収性能の向上と、前突時におけるフードの変形性能の向上とを両立させることができるという優れた効果を有する。
 本発明の第2の態様に係る車両用フード構造によれば、衝突体がフードに衝突した際のエネルギー吸収性能の一層の向上と、前突時におけるフードの変形性能の一層の向上とを両立させることができるという優れた効果を有する。
 本発明の第3の態様に係る車両用フード構造によれば、前突時におけるフードの変形性能の一層の向上を図ることができるという優れた効果を有する。
 本発明の第4の態様に係る車両用フード構造によれば、衝突体がフードに衝突した際のエネルギー吸収性能の一層の向上を図ることができるという優れた効果を有する。
本発明の第1の実施形態に係る車両用フード構造が適用された車両前部を示す平面図である。 本発明の第1の実施形態に係る車両用フード構造が適用されたフードを示す平面図である(フードアウタパネルを透視した状態で示す。)。 本発明の第1の実施形態における骨格形成部の一部を示す斜視図である。 本発明の第1の実施形態における骨格形成部の一部をフード幅方向に沿って切断した状態で示す断面図である。 本発明の第1の実施形態に係る車両用フード構造が適用されたフードに衝突体が衝突した状態を示す側断面図である(変形後の状態を想像線にて示す。)。 図4Aで4B線矢視部として囲った範囲のフードインナパネルを示す模式的な斜視図である。 本発明の第1の実施形態に係る車両用フード構造が適用されたフードの車両前突時の状態を示す側断面図である(変形後の状態を想像線にて示す。)。 図5Aで5B線矢視部として囲った範囲のフードインナパネルを示す模式的な斜視図である。 貫通孔の端部に応力が集中して断面崩れした状態を模式的に示す斜視図である。 前突前の初期状態のフードインナパネルを示す模式的な平面図である。 前突時に外周縁部のビードへ応力集中した状態のフードインナパネルを示す模式的な平面図である。 前突時に外周縁部のビードから折れ曲がりが生じた状態のフードインナパネルを示す模式的な平面図である。 前突時にビードを起点として貫通孔に沿って折れ曲がりが伝播している状態のフードインナパネルを示す模式的な平面図である。 前突時に貫通孔に沿って折れ曲がった状態のフードインナパネルを示す模式的な平面図である。 衝突体がフードに衝突した際の衝突体加速度と衝突体変位量との関係を示すG-S線図である。 衝突体がフードに衝突した状態を示す側断面図である。 前突時におけるフードの変形荷重と変位量との関係を示すF-S線図である。 前突前の初期状態のフードインナパネルを示す模式的な側面図である。 前突時に図11Aの状態から変形した状態のフードインナパネルを示す模式的な側面図である。 前突時に図11Bの状態からさらに変形した状態のフードインナパネルを示す模式的な側面図である。 前突時に図11Cの状態からさらに変形した状態のフードインナパネルを示す模式的な側面図である。 前突時に図11Dの状態からさらに変形した状態のフードインナパネルを示す模式的な側面図である。 凹部の底部に形成された貫通孔が楕円孔とされた変形例を示す斜視図である。 凹部の底部に形成された貫通孔が矩形孔とされた変形例を示す斜視図である。 凹部の底部に形成された貫通孔が菱形形状の孔とされた変形例を示す斜視図である。 凹部の各底部に複数の貫通孔が形成された変形例を示す斜視図である。 本発明の第2の実施形態に係る車両用フード構造が適用されたフードを示す平面図である(フードアウタパネルを透視した状態で示す。)。 図13Aの13B-13B線に沿って切断した状態で示す断面図である。 フードインナパネルの骨格形成部が略サイン曲線状の波状部を備え、円弧曲面状の凹部の底部に貫通孔が貫通形成された変形例を示す断面図である。 フードインナパネルの骨格形成部が略サイン曲線状の波状部を備え、円弧曲面状の凹部の底部に薄肉部が形成された変形例を示す断面図である。 第1の実施形態における貫通孔に代えて薄肉部が形成された変形例を示す断面図である。 第2の実施形態における貫通孔に代えて薄肉部が形成された変形例を示す断面図である。
 [第1実施形態]
 本発明の第1の実施形態に係る車両用フード構造について図1~図11を用いて説明する。なお、これらの図において適宜示される矢印FRは車両前方側を示しており、矢印UPは車両上方側を示しており、矢印Wは車両幅方向を示している。また、フード閉止状態においては、フード前後方向は車両前後方向と同じ方向とし、フード上下方向は車両上下方向と同じ方向とし、フード幅方向は車両幅方向と同じ方向とする。
 図1には、本実施形態に係る車両用フード構造が適用された車両前部が平面図にて示されている。図1に示されるように、自動車(車両)10における車両前部10Aには、エンジンルーム12を開閉可能に覆うフード(エンジンフード)14が配設されている。フード14に覆われるエンジンルーム12の内部には、パワーユニット等のエンジンコンパートメント内蔵物(図示省略)が配設されている。
 フード14は、金属製(本実施形態ではアルミニウム合金製)とされている。また、フード14のフード前後方向における後端部の両サイドには、ヒンジ(図示省略)が配設されており、これによって、フード14は、前記ヒンジにおけるフード幅方向の軸15X(図4A参照)回りに回転移動可能、すなわち開閉可能となっている。なお、フード14は、補強部材(広義には「フード付属部材」として把握される要素である。)によって、局部補強されている。すなわち、フード14には、前記ヒンジ側に設けられるヒンジリインフォース(図示省略)や、図4Aに示される前端のフードストライカ15A側に設けられるストライカリインフォース15Bやデントリインフォース15C等が配設されている。
 図2には、フードアウタパネル16(想像線参照)を透視した状態のフード14が平面図にて示されている。この図に示されるフード14は、フード14の外板を構成すると共に略車両前後方向に沿って延在されるフードアウタパネル16と、このフードアウタパネル16に対してフード下方側に配置されると共にフードアウタパネル16に結合されてフード14の内板を構成するフードインナパネル18と、を含んで構成されている。
 フードアウタパネル16及びフードインナパネル18は、いずれもアルミニウム合金板をプレス成形することにより形成されている。フードアウタパネル16の板厚及びフードインナパネル18の板厚は、軽量化や歩行者保護性能等の複数の観点から設定されている。フードアウタパネル16の外周部は、フードインナパネル18の外周部にヘミング加工によって結合されている。フードアウタパネル16とフードインナパネル18とが組付けられた状態では、両者は閉断面構造を形成しており、両者の間にはフード上下方向の隙間が形成されている。
 フードインナパネル18における外周縁部20は、フード前後方向の前端側の前端縁部20A、フード前後方向の後端側の後端縁部20B、及びフード幅方向の両サイドのフード幅方向両端縁部20C、20Dで構成されており、外周縁部20の内側(すなわち、フードインナパネル18において外周縁部20を除く部分)が中央領域24となっている。
 フード幅方向両端縁部20C、20Dは、フード14の捩り剛性を高めるために、断面高さ寸法が大きくなっており、中央領域24を構成する骨格形成部26に比べて剛性が高く設定された高剛性部とされている。また、このフード幅方向両端縁部20C、20Dの下面側には、フード前後方向に沿って配置されたフードヒンジリインフォース(図示省略)が固定されている。なお、フードヒンジリインフォースは、フード14におけるヒンジの取付部位を補強するための長尺状の高強度・高剛性部材である。
 フード幅方向両端縁部20C、20Dには、フード前後方向略中央部に弱体部としてのビード22が形成されている。ビード22は、フード前後方向に沿う断面視でフードアウタパネル16側(フード上方側)に隆起して凸形状に形成されており、フード平面視でフード幅方向に沿って形成されている。このビード22は、フード幅方向両端縁部20C、20Dにおける他の部位に比べて、フード前後方向の荷重に対する剛性が低く設定されている。なお、フード幅方向両端縁部20C、20Dは骨格形成部26に比べて剛性が高く設定されているので、フード幅方向両端縁部20C、20Dに剛性が低いビード22が設けられた構成は、衝突体がフード14に衝突する場合における衝突体加速度をより好ましい範囲に設定する観点で一般に有利な構成(又は不利にならない構成)といえる。
 また、フードインナパネル18の中央領域24には、複数のビード30がフード平面視でフード前後方向に沿って延在するように形成されている。各ビード30は、長手方向との直交面に沿う断面視で、中央領域24におけるパネル(フードインナパネル18)がフードアウタパネル16側に隆起して凸形状に形成され、図3A及び図3Bに示されるように、頂部30Aが平坦状とされている。図3Bに示されるように、ビード30における頂部30Aの一部は、フードアウタパネル16の裏面16Aに接着剤であるマスチック17を介して接合されている。
 また、図2に示されるように、各ビード30の前端部30Bは、フードインナパネル18の前端縁部20Aの近傍に至っており、各ビード30の後端部30Cは、フードインナパネル18の後端縁部20Bの近傍に至っている。これらのビード30は、フードインナパネル18の中央領域24においてフード前後方向の曲げ剛性を向上する骨格を構成している。
 複数のビード30が並列したフードインナパネル18の中央領域24には、隣り合うビード30の頂部30A間にフードアウタパネル16側と反対方向へ凹む凹形状とされた凹部32がそれぞれ形成されている。複数の凹部32は、フード前後方向に沿って延在するように形成されており、図3A及び図3Bに示されるように、凹部32の底部32Aは断面視で曲線状に形成されている。すなわち、図2に示されるように、中央領域24には、ビード30と凹部32とがフード幅方向に沿って交互に設けられて断面視で波形形状(概ねハット形状が連続的に形成されたような形状)とされた波状部28がほぼ全域に形成されている。この波状部28は、エンジンルーム12の内部のエンジンコンパートメント内蔵物(図示省略)と対面する位置に形成されている。
 骨格形成部26には、フード前後方向略中央部にフード幅方向に沿って並設された複数の貫通孔34が貫通形成されている。これらの貫通孔34とフード幅方向両端縁部20C、20Dのビード22とは、フード前後方向の位置を揃えた位置に設定されており、前突時にフード前後方向略中央部でフードインナパネル18を折り曲げ変形させるための部位とされている。図3Aおよび図3Bに示されるように、貫通孔34は、本実施形態では、円孔(図3A参照)とされ、各凹部32の底部32A(フードインナパネル18の下部)にそれぞれ形成されている。なお、フードインナパネル18に貫通孔34が形成されることで、電着塗膜(ED塗膜)は貫通孔34に近い位置から順次形成されることになるため、電着塗料(ED塗料)のつきまわり性を良化させることができる。
 (作用・効果)
 次に、上記実施形態の作用及び効果について説明する。なお、図4Aは、衝突体C(頭部インパクタ)の衝突時におけるフード14の状態を示し、図5Aは前突時におけるフード14の状態を示しており、これらの図では、変形後の状態を想像線(二点鎖線)にて示している。
 図2に示されるように、フードインナパネル18において中央領域24を構成する骨格形成部26は、波状部28が形成されると共に、フード前後方向略中央部にフード幅方向に沿って並設された複数の貫通孔34が形成されている。これらの貫通孔34が形成されても、ビードが形成されるような対比構造とは異なり、図3Bに示されるように、フードインナパネル18の断面高さは縮小しないので、フードインナパネル18は、比較的高い剛性が維持される。よって、図4Aに示される衝突体Cの衝突時にフードインナパネル18は、その塑性変形等に要するエネルギーを吸収する。また、前突時には、図5Aに示されるように、フードインナパネル18に形成された貫通孔34を曲げ起点として、所定の折れモードで曲げ変形する。なお、図5Aでは、前突荷重の入力方向を矢印Fで示している。
 ここで、図2に示されるように、凹部32は、フード前後方向に沿って延在するように形成されると共に、図3A及び図3Bに示されるように、フードインナパネル18における貫通孔34は、凹部32の底部32Aに形成されている。
 このため、図4Aに示されるように、衝突体Cがフード14に衝突した際にフード14がフード下方側に撓もうとすると、図4Bに示されるように、凹部32の底部32Aには引っ張り荷重f1が作用し、ビード30の頂部30Aには、圧縮荷重f2が作用する。底部32Aにおける貫通孔34の端部は、引っ張り荷重f1に対しては比較的剛性が高いので、貫通孔34を起点としたフードインナパネル18の座屈変形(折れ変形)が抑えられる。これによって、図4Aに示される衝突体Cのフード14への衝突時における高いエネルギー吸収効率が維持される(歩行者保護対策)。
 ここで、衝突体Cの衝突時における作用について、図8及び図9を参照しながら補足説明する。図8は、衝突体がフードに衝突した際の衝突体加速度と衝突体変位量(侵入量)との関係を示すG-S線図(CAE(Computer Aided Engineering)結果)である。ここで、横軸(S)は、フードに衝突した衝突体の変位量を示し、縦軸(G)は、衝突体が受ける加速度を示す。また、実線は、本実施形態に係る車両用フード構造におけるG-S線図を示し、二点鎖線は、本実施形態の貫通孔34が形成されていない点を除いて本実施形態と同様の構造におけるG-S線図を示す。
 図8に示されるように、本実施形態に係る車両用フード構造は、貫通孔(34)が形成されても、貫通孔(34)が形成されない構造と比較して、衝突体(C)に発生する加速度に大きな減少はなく、(換言すれば、ほぼ同等のエネルギー吸収量を確保でき、)衝突体の変位量もほとんど変わらない。このため、フード(14)とエンジンルーム(12)の内部のエンジンコンパートメント内蔵物との間の隙間を、貫通孔(34)が形成されない場合と同様に設定しても、衝突体(C)のフード(14)を介してのエンジンコンパートメント内蔵物への衝突を避けることが可能となる。
 また、図9に示されるように、衝突体Cのフード14への衝突によってフードインナパネル18がフード下方側へ撓んでも、底部32Aにおける貫通孔34の端部は、引っ張り荷重f1に対しては比較的剛性が高いので、貫通孔34からの折れ変形が抑えられる。なお、図9では、衝突体Cの衝突直後のフード14及び衝突体Cの位置を実線で示し、衝突体Cの衝突後に衝突体Cが所定量変位した状態のフード14及び衝突体Cの位置を二点鎖線で示している。
 一方、前突時におけるフード14の状態を示す図5Aに示されるように、前突時には、フード14はフード上方側に撓もうとし、このとき、図5Bに示されるように、凹部32の底部32Aには圧縮荷重f3が作用し、ビード30の頂部30Aには、引っ張り荷重f4が作用する。つまり、衝突体C(図4A参照)のフード14への衝突時と前突時とでは、フード14が撓み変形しようとする方向が異なり、凹部32の底部32Aに作用する荷重方向も異なる。前突時には、凹部32の底部32Aに圧縮荷重f3が作用することによって、図6に示される底部32Aの貫通孔34の端部に応力が集中して貫通孔34の周囲が断面変形する。つまり、底部32Aは、弱体化された貫通孔34を起点として比較的容易に座屈変形する。
 また、本実施形態に係る車両用フード構造では、図2に示されるフードインナパネル18の外周縁部20におけるフード幅方向両端縁部20C、20Dは、中央領域24の骨格形成部26に比べて剛性が高く設定されており、このフード幅方向両端縁部20C、20Dに形成されたビード22は、フード幅方向両端縁部20C、20Dにおける他の部位に比べて剛性が低く設定されている。このため、前突時におけるフードインナパネル18の変形状態を平面視にて模式的に示す図7A~図7Eに示されるように、前突時におけるフードインナパネル18は、まず、図7Aに示される初期状態から、図7Bに示される外周縁部20のビード22への応力集中状態を経て、図7Cに示されるように、外周縁部20のビード22から折れ曲がりが生じる。すなわち、高剛性部のフード幅方向両端縁部20C、20Dに形成された弱体化用のビード22から安定的に折れ曲がり始める。
 ここで、ビード22は、骨格形成部26における貫通孔34とフード前後方向の位置を揃えた部位に形成されているので、前突時にフードインナパネル18のビード22で折れ曲がりが生じると、図7Dに示されるように、ビード22を起点として貫通孔34に沿って折れ曲がりが伝播していく。すなわち、骨格形成部26においては、貫通孔34が最弱部位となるため、これらの貫通孔34の端部に応力が集中し、貫通孔34の近傍における断面変形が促進されることになる。そして、これらの貫通孔34は、フード幅方向に沿って並設されているので、フード幅方向内側へ向けて折れ曲がりが伝播していくことになる。つまり、フード14の折れ曲がり位置は、貫通孔34の位置で決定され、最終的には、図7Eに示されるように、フードインナパネル18(フード14)全体が貫通孔34に沿って折れ曲がる(安定的な折り曲げモード)。これにより、前突時にはフード14の後端における車両後方側への変位量を抑えることができる。
 次に、前突時における作用について、図10及び図11A~図11Eを参照しながら補足説明する。図10は、前突時におけるフードの変形荷重と変位量との関係を示すF-S線図(CAE(Computer Aided Engineering)結果)である。ここで、横軸(S)は、フードの変位量を示し、縦軸(G)は、フードの変形荷重を示す。また、実線は、本実施形態に係る車両用フード構造におけるF-S線図を示し、二点鎖線は、本実施形態の貫通孔34に代えてフード前後方向略中央部にフード幅方向に沿ってかつフードアウタパネル側に凸形状とされたビードが形成された対比構造におけるF-S線図を示す。図10に示されるように、本実施形態に係る車両用フード構造は、貫通孔(34)に代えてビードが形成された構造に比べて変形荷重(折れ荷重)が低減されていることが分かる。
 図11A~図11Eには、前突時におけるフードインナパネル18が変形していく状態が、模式的な側面視にて図11A、図11B、図11C、図11D、図11Eの順で示されている。実線は、本実施形態に係る車両用フード構造が適用されたフード14の変形状態を示し、二点鎖線Xは、本実施形態の貫通孔34に代えて前記ビードが形成された前記対比構造のフードの変形状態を示す。図11A~図11Eに示されるように、本実施形態に係る車両用フード構造が適用されたフードは、前記対比構造のフードと比べて同等以上の変形性能(折れ性能)が確保されている。
 以上説明したように、本実施形態に係る車両用フード構造によれば、図4Aに示される衝突体Cがフード14に衝突した際のエネルギー吸収性能の向上と、図5Aに示される前突時におけるフード14の変形性能の向上とを両立させることができる。
 なお、上記実施形態では、図3A等に示されるように、凹部32の底部32Aに形成された貫通孔34が円孔とされているが、凹部の底部に形成された貫通孔は、図12Aに示されるような楕円孔の貫通孔34Aや、図12Bに示されるような矩形孔の貫通孔34Bや、図12Cに示されるような菱形形状の貫通孔34C等のような他の形状の貫通孔であってもよい。また、上記実施形態では、図3A等に示されるように、各底部32Aに1つの貫通孔34が形成されているが、図12Dに示されるように、各底部32Aに複数の貫通孔34Dがフード幅方向に並設されるように形成されてもよい。
 [第2実施形態]
 次に、本発明の第2の実施形態に係る車両用フード構造について、図13A及び図13Bを用いて説明する。図13Aには、フードアウタパネル16(想像線参照)を透視した状態のフード40が平面図(第1の実施形態の図2に相当する図)にて示されている。図13Bには、図13Aの13B-13B線に沿って切断した状態の断面図が示されている。
 これらの図に示されるように、フード40は、フードインナパネル42に複数本のビーム46を備えた構造となっている点で、第1の実施形態に係るフード14(図2参照)とは異なる。他の構成は、第1の実施形態とほぼ同様の構成となっている。よって、第1の実施形態と実質的に同様の構成部については、同一符号を付して説明を省略する。
 図13Aに示されるように、フード40におけるフードインナパネル42は、中央領域24に骨格形成部44を備えている。骨格形成部44は、フード前後方向に沿って延在するように形成された複数本(本実施形態では五本)のビーム46を備えており、これらのビーム46は、フード幅方向に所定の間隔で配列されている。この骨格形成部44に比べてフード幅方向両端縁部20C、20Dは剛性が高く設定されている。
 図13Bに示されるように、ビーム46は、車両正面視で、フードアウタパネル16側が開放された断面ハット形状とされている。すなわち、これらのビーム46は、フードアウタパネル16側と反対方向へ凹む凹形状とされた凹部50がフード前後方向に沿って延在するように形成される(図13A参照)と共に、凹部50の開放端側で互いに離間する方向へ屈曲された一対のフランジ48がマスチック(図示省略)を介してフードアウタパネル16に結合されている。また、凹部50の底部50Aは断面視で曲線状に形成されている。
 図13Aに示されるように、ビーム46を備えた骨格形成部44には、フード前後方向略中央部にフード幅方向に沿って並設された複数の貫通孔52が貫通形成されている。貫通孔52とビード22とは、フード前後方向の位置を揃えた位置に設定されている。図13Bに示されるように、貫通孔52は、凹部50の底部50Aに形成されており、図13Aに示されるように、本実施形態では、円孔とされている。
 以上説明した本実施形態の構成によっても、前述した第1の実施形態と同様の作用及び効果が得られる。
 [実施形態の補足説明]
 図14A及び図14Bに示されるように、フードインナパネル18Aの骨格形成部26Aは、フードアウタパネル16側と反対方向へ円弧曲面状に凹む凹形状とされた凹部62を含んで構成された略サイン曲線状の波状部28Aを備えた構成でもよい。なお、図14Aに示される凹部62の底部62Aには、第1実施形態の貫通孔34(図2等参照)と同様の位置(フード前後方向略中央部)に貫通孔34Eが貫通形成されている。
 また、上記実施形態では、凹部32、50の底部32A、50Aに貫通孔34、52が貫通形成されているが、例えば、図14B、図14C及び図14Dに示されるように、凹部62、32、50の底部62A、32A、50Aには、貫通孔34E、34、52(図14A、図3B、図13B参照)に代えて薄肉部60A、60B、60Cが形成されてもよい。なお、薄肉部60A、60B、60Cは、図14B~図14Dに示されるように、骨格形成部26A、26、44における他の部位よりも板厚が薄い部位であり、第1、第2の実施形態の貫通孔34、52(図2、図13A参照)と同様の位置(フード前後方向略中央部)に形成されている。
 また、上記実施形態やその変形例では、貫通孔34、34A~34E、52や薄肉部60A~60Cは、凹部32、50、62の底部32A、50A、62Aに形成されており、そのような構成がより好ましいが、貫通孔や薄肉部は、例えば、フードインナパネルの骨格形成部の波状部においてフードアウタパネル側の頂部に形成されてもよい。
 さらに、上記実施形態では、図2及び図13Aに示されるように、凹部32、50がフード前後方向に沿って延在するように形成されており、そのような構成がより好ましいが、凹部は、例えば、フード前後方向に対して斜めに延在するように形成された凹部等のような他の方向を長手方向とする凹部であってもよい。また、複数の凹部の延在方向(長手方向)が互いに交差する方向に設定されてもよい。
 さらにまた、上記実施形態では、フード幅方向両端縁部20C、20Dにはフード前後方向略中央部に弱体部としてのビード22が形成されており、このような構成がより好ましいが、フードインナパネルの外周縁部におけるフード幅方向の両サイドにこのような弱体部が形成されていない構成としてもよい。また、上記実施形態におけるビード22に代えて弱体部としての貫通孔や薄肉部を形成する構成としてもよい。
 なお、上記実施形態では、フード14(フードアウタパネル16及びフードインナパネル18、42)は、アルミニウム合金製とされているが、フード(フードアウタパネル及びフードインナパネル)は、例えば、鉄鋼製等のような他の金属製のフードや樹脂製のフードであってもよい。

Claims (4)

  1.  フードの外板を構成するフードアウタパネルと、
     前記フードアウタパネルに対してフード下方側に配置されると共に前記フードアウタパネルに結合され、フードの内板を構成するフードインナパネルと、
     前記フードインナパネルにおける外周縁部を除く中央領域を構成し、前記フードアウタパネル側と反対方向へ凹む凹形状とされた凹部が複数形成されると共に、フード前後方向略中央部にフード幅方向に沿って並設された複数の貫通孔又は複数の薄肉部が形成された骨格形成部と、
     を有する車両用フード構造。
  2.  前記貫通孔又は前記薄肉部は、前記凹部の底部に形成されている請求項1記載の車両用フード構造。
  3.  前記フードインナパネルの外周縁部におけるフード幅方向の両サイドは、前記骨格形成部に比べて剛性が高く設定され、前記両サイドにおいて前記貫通孔又は前記薄肉部とフード前後方向の位置を揃えた部位には、前記両サイドにおける他の部位に比べて剛性が低く設定された弱体部が形成されている請求項1又は請求項2に記載の車両用フード構造。
  4.  前記凹部がフード前後方向に沿って延在するように形成されている請求項1~請求項3のいずれか1項に記載の車両用フード構造。
PCT/JP2009/071801 2009-12-28 2009-12-28 車両用フード構造 WO2011080835A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2009/071801 WO2011080835A1 (ja) 2009-12-28 2009-12-28 車両用フード構造
EP09852813.6A EP2529998B1 (en) 2009-12-28 2009-12-28 Hood structure of vehicle
CN200980163202.5A CN102695643B (zh) 2009-12-28 2009-12-28 车辆用机罩结构
KR1020127019822A KR20120093450A (ko) 2009-12-28 2009-12-28 차량용 후드 구조
AU2009357432A AU2009357432B2 (en) 2009-12-28 2009-12-28 Hood structure of vehicle
JP2011547218A JP5382140B2 (ja) 2009-12-28 2009-12-28 車両用フード構造
US13/519,420 US8991908B2 (en) 2009-12-28 2009-12-28 Vehicle hood structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071801 WO2011080835A1 (ja) 2009-12-28 2009-12-28 車両用フード構造

Publications (1)

Publication Number Publication Date
WO2011080835A1 true WO2011080835A1 (ja) 2011-07-07

Family

ID=44226270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071801 WO2011080835A1 (ja) 2009-12-28 2009-12-28 車両用フード構造

Country Status (7)

Country Link
US (1) US8991908B2 (ja)
EP (1) EP2529998B1 (ja)
JP (1) JP5382140B2 (ja)
KR (1) KR20120093450A (ja)
CN (1) CN102695643B (ja)
AU (1) AU2009357432B2 (ja)
WO (1) WO2011080835A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146479A1 (ja) * 2014-03-26 2015-10-01 株式会社神戸製鋼所 自動車用フード構造およびそのフードインナパネル
JP2020006909A (ja) * 2018-07-12 2020-01-16 いすゞ自動車株式会社 エンジンフードのインナーパネル

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD730257S1 (en) * 2013-03-04 2015-05-26 Jaguar Land Rover Limited Vehicle component
KR101323647B1 (ko) * 2013-03-18 2013-11-08 주식회사 예일전자 자동차용 외부 음향출력장치
US9102361B2 (en) 2014-01-08 2015-08-11 Ford Global Technologies, Llc Vehicle hood fold initiator free of structural reinforcement
JP6258108B2 (ja) * 2014-04-09 2018-01-10 株式会社神戸製鋼所 車輌用フード
US9248866B2 (en) * 2014-06-13 2016-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. Hood assembly
US9381879B2 (en) * 2014-11-12 2016-07-05 GM Global Technology Operations LLC Local energy absorber
JP6409566B2 (ja) * 2014-12-25 2018-10-24 トヨタ自動車株式会社 車両用フード構造
US9663149B2 (en) 2015-03-27 2017-05-30 Ford Global Technologies, Llc Vehicle hood stiffener
JP2017047699A (ja) * 2015-08-31 2017-03-09 イスズモータースカンパニー(タイランド)リミテッド エンジンフード
US9783236B1 (en) * 2015-12-14 2017-10-10 Waymo Llc Vehicle bonnet constructions for reducing impact forces
US10092055B2 (en) 2016-01-06 2018-10-09 GM Global Technology Operations LLC Local energy absorber
JP6718726B2 (ja) * 2016-03-31 2020-07-08 株式会社神戸製鋼所 車両用フード
US11400885B2 (en) * 2019-03-29 2022-08-02 GM Global Technology Operations LLC Compact, lightweight and reusable local energy absorbers
JP7360628B2 (ja) * 2020-03-31 2023-10-13 マツダ株式会社 車両の前部車体構造
CN115535089B (zh) * 2022-09-14 2024-05-17 阿维塔科技(重庆)有限公司 一种后地板边梁结构及车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161084U (ja) * 1987-04-10 1988-10-20
JP2005075163A (ja) 2003-09-01 2005-03-24 Toyota Motor Corp 車両用フード構造
JP2008030574A (ja) * 2006-07-07 2008-02-14 Kobe Steel Ltd 自動車用フード

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8629535D0 (en) 1986-12-10 1987-01-21 Unilever Plc Enzymatic detergent composition
JPH081180Y2 (ja) * 1989-07-26 1996-01-17 マツダ株式会社 車両のボンネット構造
JP3871744B2 (ja) 1996-10-25 2007-01-24 本田技研工業株式会社 自動車用合成樹脂製パネル
JP2001233248A (ja) 2000-02-23 2001-08-28 Fuji Heavy Ind Ltd 車両用フロントフード構造
DE60126673T2 (de) * 2000-12-13 2007-10-31 Kabushiki Kaisha Kobe Seiko Sho, Kobe Verkleidungskonstruktion für motorhaube eines personenwagenaufbaus
JP3674918B2 (ja) 2000-12-13 2005-07-27 株式会社神戸製鋼所 車体フード用パネル構造体
JP2005075176A (ja) * 2003-09-01 2005-03-24 Toyota Motor Corp 車両用フード構造
JP2005239092A (ja) * 2004-02-27 2005-09-08 Kanto Auto Works Ltd 自動車のフード構造
DE102005015057A1 (de) * 2005-03-31 2006-10-19 Benteler Automobiltechnik Gmbh Fronthaube für ein Kraftfahrzeug
CN100503340C (zh) * 2006-07-07 2009-06-24 株式会社神户制钢所 机动车用发动机罩
JP4733581B2 (ja) * 2006-07-21 2011-07-27 株式会社神戸製鋼所 自動車用フード
US7635157B2 (en) * 2007-09-11 2009-12-22 GM Global Technology Operation, INC Vehicle hood assembly with rippled cushion support
JP4407755B2 (ja) * 2008-02-04 2010-02-03 トヨタ自動車株式会社 車両用フード構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161084U (ja) * 1987-04-10 1988-10-20
JP2005075163A (ja) 2003-09-01 2005-03-24 Toyota Motor Corp 車両用フード構造
JP2008030574A (ja) * 2006-07-07 2008-02-14 Kobe Steel Ltd 自動車用フード

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2529998A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146479A1 (ja) * 2014-03-26 2015-10-01 株式会社神戸製鋼所 自動車用フード構造およびそのフードインナパネル
US10407108B2 (en) 2014-03-26 2019-09-10 Kobe Steel, Ltd. Automobile hood structure and hood inner panel thereof
JP2020006909A (ja) * 2018-07-12 2020-01-16 いすゞ自動車株式会社 エンジンフードのインナーパネル
WO2020013181A1 (ja) * 2018-07-12 2020-01-16 いすゞ自動車株式会社 エンジンフードのインナーパネル
JP7070179B2 (ja) 2018-07-12 2022-05-18 いすゞ自動車株式会社 エンジンフードのインナーパネル

Also Published As

Publication number Publication date
AU2009357432A1 (en) 2012-07-19
EP2529998A1 (en) 2012-12-05
CN102695643A (zh) 2012-09-26
AU2009357432B2 (en) 2013-10-31
JP5382140B2 (ja) 2014-01-08
CN102695643B (zh) 2015-06-10
EP2529998B1 (en) 2016-03-30
JPWO2011080835A1 (ja) 2013-05-09
EP2529998A4 (en) 2013-10-16
US8991908B2 (en) 2015-03-31
KR20120093450A (ko) 2012-08-22
US20120285759A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5382140B2 (ja) 車両用フード構造
KR100925091B1 (ko) 자동차용 후드
JP4407755B2 (ja) 車両用フード構造
JP4059187B2 (ja) 車両用フード構造
JP5408336B2 (ja) 車両用フード構造
JP6724990B2 (ja) 自動車の外装パネル
JP5316714B2 (ja) 車両用フード構造
JP2011143762A (ja) 車両骨格構造
KR20090118086A (ko) 측면 충돌 성능을 강화시킨 자동차용 도어
JPWO2018021422A1 (ja) 衝撃吸収部材
JP6681912B2 (ja) 自動車のロッカ及びそのようなロッカを備える自動車
JP5692033B2 (ja) 車両用フード構造
JP6237171B2 (ja) 車両用フード構造
JP4728899B2 (ja) 自動車用フード
JP2009143252A (ja) 車両補強構造
EP4253114A1 (en) Automotive battery case and method for manufacturing same
JP5533128B2 (ja) 自動車の衝突エネルギー吸収部材の補強構造
JP6733849B1 (ja) フロアトンネル
JP2008114758A (ja) 車両用フード構造
JP2016120862A (ja) 車両用フード構造
WO2018101197A1 (ja) 車両用バックドアインナパネル
JP5772522B2 (ja) 車両用フード構造
JP7252443B2 (ja) 車体部材、および、車体構造
JP2008238881A (ja) 車両用フード構造
WO2022210127A1 (ja) 自動車用フード構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547218

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009357432

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13519420

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009852813

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009357432

Country of ref document: AU

Date of ref document: 20091228

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127019822

Country of ref document: KR

Kind code of ref document: A