WO2011074631A1 - 電解液中のフッ化水素を除去する精製器 - Google Patents

電解液中のフッ化水素を除去する精製器 Download PDF

Info

Publication number
WO2011074631A1
WO2011074631A1 PCT/JP2010/072638 JP2010072638W WO2011074631A1 WO 2011074631 A1 WO2011074631 A1 WO 2011074631A1 JP 2010072638 W JP2010072638 W JP 2010072638W WO 2011074631 A1 WO2011074631 A1 WO 2011074631A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen fluoride
purifier
water
moisture
electrolyte
Prior art date
Application number
PCT/JP2010/072638
Other languages
English (en)
French (fr)
Inventor
豊 島田
大屋敷 靖
Original Assignee
インテグリス・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インテグリス・インコーポレーテッド filed Critical インテグリス・インコーポレーテッド
Priority to JP2011546160A priority Critical patent/JP5759386B2/ja
Priority to US13/510,676 priority patent/US9023204B2/en
Priority to CN201080056990.0A priority patent/CN102656734B/zh
Priority to EP10837656.7A priority patent/EP2515371B1/en
Publication of WO2011074631A1 publication Critical patent/WO2011074631A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/18Carbon, coal or tar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/915Fluorine containing

Definitions

  • the present invention relates to a non-aqueous electrolyte manufacturing process for use in a lithium ion secondary battery and a purification apparatus used in the manufacturing process of a lithium ion secondary battery.
  • the present invention relates to a purification apparatus for removing hydrogen fluoride by passing a hydrogen fluoride-containing non-aqueous electrolyte and further removing moisture.
  • Lithium ion secondary battery has a positive electrode material applied to aluminum foil and a negative electrode material applied to copper foil facing each other through an insulating porous polyethylene film so that electrical contact does not occur.
  • the gap is filled with an electrolytic solution in which an electrolyte and an additive are dissolved in a non-aqueous solvent such as carbonate ester.
  • a fluoride-based electrolyte having good characteristics in terms of conductivity, potential window, interaction with metal, etc. is often used.
  • these fluorides have the property of liberating hydrogen fluoride by hydrolysis, and the resulting hydrogen fluoride causes problems such as dissolution of the electrode material and corrosion of the current collector, thereby lowering battery performance. Arise.
  • the electrolyte and / or the electrode material contain a compound that adsorbs hydrogen fluoride.
  • synthetic hydrotalcites known as intercalating substances (Patent Document 1) and organic synthetic hydrotalcites (Patent Document 2) have been proposed as excellent hydrogen fluoride removing substances.
  • These hydrotalcite compounds have a laminated structure, and have an action of adsorbing and fixing hydrogen fluoride molecules and possibly water molecules between layers.
  • the present invention improves the performance of the electrolyte charged in the lithium ion secondary battery and affects the properties such as the discharge capacity by sufficiently reducing not only the moisture in the electrolyte but also hydrogen fluoride in the production process.
  • An object of the present invention is to improve the life characteristics of a lithium secondary battery without adding a hydrogen fluoride-adsorbing substance that gives a hydrogen content to the battery.
  • the present invention provides a refining apparatus in which a purifier for removing hydrogen fluoride containing synthetic hydrotalcites and a purifier for removing water containing a water adsorbent are connected in this order from upstream to downstream. .
  • the reason for using the water purifier on the downstream side is to remove water generated when an exchange reaction between carbonate ions and hydrogen fluoride occurs by synthetic hydrotalcite.
  • the present invention also provides a purification apparatus according to (1), wherein a pre-water removal purifier containing a water adsorbent is connected upstream of the hydrogen fluoride removal purifier. To do.
  • the pre-water removal purifier is used on the upstream side to prevent the solvent in the electrolyte from being hydrolyzed when the electrolyte contains a lot of water. It is not necessary to use it when there are few.
  • individual purifiers may be piped, or instead, a single housing is partitioned and each of the adsorbents is sequentially accommodated therein. You may comprise the refiner
  • the concentration of hydrogen fluoride is 5 ppmw per 1 g of carbonated hydrotalcite, Preferably, it can be reduced to 1 ppmw, more preferably 0.5 ppmw or less, whereby an electrolyte solution (comprising a lithium compound electrolyte and a solvent) necessary for a lithium secondary battery can be prepared. Moreover, it becomes possible to reduce a water
  • the present invention can remove hydrogen fluoride in an electrolytic solution that has been difficult to reduce only by moisture management.
  • hydrogen fluoride can be removed at the final stage of the manufacturing process, the manufacturing cost can be reduced along with the reduction in moisture management.
  • a hydrogen fluoride removing and purifying device having the above-described configuration, or a purifying apparatus having a hydrogen fluoride removing and purifying device and a moisture removing and purifying device, sufficient hydrogen fluoride removal and moisture removal can be achieved, and lithium ions can be removed. It is not necessary to mix a hydrogen fluoride removing substance in the electrolyte solution of the secondary battery, and a long-life lithium ion secondary battery can be provided.
  • FIG. 1 is a sectional view showing an example of a purifier that can be used in the present invention.
  • FIG. 2 shows the configuration of a purification apparatus according to an embodiment of the present invention. (A) shows the first embodiment and (b) shows the second embodiment.
  • a fluorine-containing lithium salt is used as the electrolyte of the nonaqueous electrolytic solution containing water to be purified by the present invention.
  • the lithium salt such as described in the literature 2, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 2 F 5 SO 3, LiC 4 F 9 SO 3, Examples include LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , and LiPF 2 ⁇ (COO) 2 ⁇ 2 .
  • LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6, etc. are prone to hydrolysis. Therefore, the electrolytic solution containing these is purified by the purification apparatus of the present invention before being taken into the lithium battery, and in the presence of moisture. To remove hydrogen fluoride generated by hydrolysis.
  • organic solvent for dissolving the electrolyte examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethylene carbonate (EC), propylene carbonate (PC), and mixtures thereof.
  • the organic solvent for dissolving the electrolyte is preferably a mixture of the above carbonate esters.
  • adsorbents such as activated alumina and synthetic zeolite are known as adsorbents capable of adsorbing moisture in the electrolyte, and may be appropriately selected and employed.
  • Moisture is generated when hydrogen fluoride and metal hydroxide or metal oxide react to produce metal fluoride in the hydrogen fluoride removal purifier of the present invention, or fluoridation by synthetic hydrotalcite Since it also occurs by hydrogen / carbonate ion substitution reaction, it is necessary to immediately remove the by-product water in the water removal purifier after purifying the electrolyte with a hydrogen fluoride removal purifier containing synthetic hydrotalcites. . It is preferable to remove moisture using a similar adsorbent capable of adsorbing moisture in the non-aqueous electrolyte also upstream of the hydrogen fluoride removal purifier.
  • synthetic hydrotalcite used in the present invention one obtained by intercalating carbonate ions or one obtained by decarboxylation of carbonated hydrotalcite by firing at 500 ° C. or higher is employed. Both have good hydrogen fluoride adsorption ability, but the firing type is more preferable because there is little by-product of water.
  • Carbonated hydrotalcite has the structural formula [M 2+ 1 ⁇ x M 3+ x (OH) 2 ] x + [(CO 3 ) x / 2 ⁇ mH 2 O] x ⁇ (m ⁇ 0, m depends on treatment temperature ),
  • the firing type is structural formula M 2+ 1-x M 3+ x O 1 + x / 2 (where 0 ⁇ x ⁇ 0.33, M 2+ is divalent Mg, Mn, Fe, Co, Ni, Cu) , And Zn metal ions, M 3+ are trivalent Al, Fe, Cr, Co, and In metal ions), and in particular, the structural formula [Mg 1-x Al x (OH) 2 ] x + [(CO 3 ) x / 2 ⁇ mH 2 O] x ⁇ , or Mg 1-x Al x O 1 + x / 2 can be employed.
  • Mg 1-x Al x (OH) 2 is a metal hydroxide sheet
  • CO 3 is an interlayer ion.
  • KYOWARD 500 series manufactured by Kyowa Chemical Industry Co., Ltd.
  • KW2000 series manufactured by Kyowa Chemical Industry Co., Ltd.
  • Such synthetic hydrotalcites can immobilize hydrogen fluoride by exchanging carbonate ions and fluoride ions in the carbonate type, and by adsorption of hydrogen fluoride in the calcined type. This substance can also adsorb water molecules, but is less effective than hydrogen fluoride adsorption. Therefore, in the present invention, another moisture removing adsorbent is used for removing moisture.
  • the purifier for removing hydrogen fluoride has a mesh for preventing the adsorbent from flowing out at both ends of a cylindrical housing filled with granular hydrogen fluoride adsorbent, and screws as electrolyte inlet and outlet. It consists of a fitting attached. Any purifier for removing water can be used, but a purifier having the same structure as the purifier for removing hydrogen fluoride may be used.
  • FIG. 1 illustrates an adsorber.
  • adsorbent particles 2 of synthetic hydrotalcite which is a hydrogen fluoride adsorbent
  • the purifier 1 includes a cylindrical body 3 made of an inert material such as stainless steel and synthetic resin, disk-shaped end plates 5 and 7 provided at both ends of the body, It has an electrolyte inlet member 9 and an electrolyte outlet member 11 penetrating the end plate, and connecting portions 13 and 15 between the body 3 and the end plates 5 and 7 and a connecting portion between the end plate 7 and the outlet member 11.
  • Each 17 is welded and is in a completely liquid-tight state.
  • connection portion between the end plate 5 and the electrolyte inlet member 9 needs to form an opening that allows the adsorbent particles to be filled or exchanged
  • a female screw is provided on the inner peripheral surface of the opening portion 8 of the end plate 5 on the inlet side. 19 is formed, and an external thread 20 is formed on the outer peripheral surface of the inlet member 9.
  • An annular support member 21 is welded or screwed to the inner end of the inlet member 9.
  • a porous cylinder 23 made of ceramic, preferably metal, is screwed or welded to the support member 21 in advance, and the porous cylinder 23 is closed with a cap 25 by screwing or welding.
  • a porous ceramic, preferably metal, cylinder 27 is connected to the inner end of the outlet member 11 in advance by screw connection or welding, and the porous cylinder 27 is closed by a cap 29.
  • the cap can be fixed to the porous cylinder 27 by screws or any other method.
  • the porous cylinder 23 on the upstream side may be a porous body having relatively coarse pores, but the porous cylinder 27 on the downstream side needs to have fine pores that do not allow fine powder of purified material to pass through.
  • the inlet member 9 is closed by a threaded cap 33 and the outlet member 11 is closed by a threaded cap 35.
  • the same housing is divided into two or three with a perforated partition, and two or three kinds of adsorbents are inserted as described in the above paragraph [0007] to form an integrated structure It is also possible to make it.
  • FIG. 2A illustrates the purification apparatus according to the first embodiment of the present invention.
  • FIG. 1 illustrates the purification apparatus according to the first embodiment of the present invention.
  • FIG. 2B illustrates a purification apparatus according to a second embodiment of the present invention, in which an electrolyte inlet 200 from the upstream to the downstream, a pre-water removal purifier 201 containing a moisture adsorbent, a connection pipe line 202,
  • the purification apparatus which connected the refiner
  • Example Removal of moisture An experiment was conducted to demonstrate the effect of the present invention.
  • a moisture (water) removal experiment was conducted using dimethyl carbonate, which is used as a solvent for an electrolyte for a lithium secondary battery, and toluene.
  • Experiment 1 Put 10 g of dimethyl carbonate (DMC) and 1 g of granular activated alumina (AA fine product AA-300 series, particle size 8 ⁇ 14 mesh, manufactured by DK Fine Co., Ltd.) into a brown bottle with a lid, and further variable amount of deionized water (ultra pure water) was added. After standing for 19 hours, the moisture concentration in dimethyl carbonate was measured using a Karl Fischer moisture meter (CA-06, manufactured by Mitsubishi Chemical Corporation).
  • Table 1 shows the composition of the sample and the measurement results.
  • Experiment 2 10 g of dimethyl carbonate (DMC) and 1 g of granular zeolite (MS) (Molecular sieve 3A manufactured by Union Showa Co., Ltd., particle size 14 ⁇ 30 mesh) are placed in a brown bottle with a lid, and a variable amount of deionized water (ultra pure water) ) And left for 19 hours, and then the water concentration in dimethyl carbonate was measured using a Karl Fischer moisture meter.
  • Table 2 shows the composition of the sample and the measurement results.
  • Experiment 3 Put 10 g of toluene and 1 g of granular synthetic zeolite (MS) (Molecular sieve 3A manufactured by Union Showa Co., Ltd., particle size 14 ⁇ 30 mesh) into a brown bottle with a lid, and add a variable amount of deionized water (ultra pure water). After standing for 19 hours, the water concentration in dimethyl carbonate was measured using a Karl Fischer moisture meter. Table 3 shows the composition of the sample and the measurement results.
  • MS granular synthetic zeolite
  • a normal electrolyte solution (a solution containing a fluorine-containing electrolyte dissolved in an organic solvent) contains about 10-100 ppmw of water at the production stage. What is necessary is just to be able to reduce water to 100 ppmw or less with the pre-water removal purifier installed. In addition, it is sufficient that the moisture removing and purifying device disposed downstream of the hydrogen fluoride removing and purifying device can reduce the moisture to 10 ppmw or less. As shown in Tables 1 to 3, the results obtained in this experiment are sufficiently satisfactory.
  • Table 4 shows the results of adding 5 g of activated alumina A (AA-300 series, particle size 8 ⁇ 14 mesh, manufactured by DK Fine Co., Ltd.) to a DMC solution prepared in the same manner. Further, as Comparative Example 2, the measurement result of the fluoride ion concentration after leaving the DMC solution prepared in the same manner for 1 hour without adding the adsorbent is also shown.
  • activated alumina A AA-300 series, particle size 8 ⁇ 14 mesh, manufactured by DK Fine Co., Ltd.
  • Hydrogen fluoride removal experiment 5 A synthetic hydrotalcite (Kyowa Chemical Industry Co., Ltd. KW2000 series) 1.4 g was packed into a stainless steel column having an internal volume of 3.4 mL to prepare a test filter. Immediately after opening, an electrolyte for a lithium ion secondary battery (LBG-96533 manufactured by Kishida Chemical Co., Ltd.) having a hydrogen fluoride concentration of 26 ppmw was supplied at a flow rate of 1 mL per minute. The fluoride ion concentration in the electrolyte solution that passed through the filter was measured using an ion chromatograph analyzer (DX-120 manufactured by Dionex). Table 5 shows the measurement results.
  • the fluoride ion concentration in the electrolyte solution passed through the test filter was less than 10 ppmw.
  • the test filter showed a remarkable effect of removing hydrogen fluoride with respect to the electrolytic solution having a low initial fluoride ion concentration.
  • the hydrogen fluoride removal rate was calculated by the following formula. (1- (x / y)) ⁇ 100 x: Fluoride ion concentration (ppmw) in the electrolyte passing through the filter y: Fluoride ion concentration in the initial electrolyte (that is, 240 ppmw)
  • Experiment 7 2 g of synthetic zeolite (manufactured by Tosoh Corporation) was packed in a stainless steel column having an internal volume of 3.4 mL to prepare a test filter. Also, an electrolyte solution for lithium ion secondary batteries (Kishida Chemical Co., Ltd., LBG-96533) is supplied to the test filter at a flow rate of 1 mL / min. While gradually adding a small amount of water, the water concentration in the electrolyte at the inlet and outlet of the test filter was measured with a Karl Fischer moisture meter (Mitsubishi Chemical Corporation CA-06).
  • the present invention is a purifying apparatus in which a purifier for removing hydrogen fluoride and a purifier for removing water are connected in this order from upstream to downstream. From the results of Experiment 7, it can be seen that water can be effectively removed by the water purifier for downstream. Therefore, even if water by-product occurs in the hydrogen fluoride removing purifier, it can be said that according to the present invention, the water contained in the electrolytic solution at the outlet of the purifier can be reduced to less than 10 ppmw.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

 本願発明は、炭酸型ハイドロタルサイト類または焼成型ハイドロタルサイト類から選択されるフッ化水素吸着剤を収容したフッ化水素除去用精製器と、水分吸着材を収容した水分除去用精製器とを上流から下流にこの順に接続した、リチウムイオン二次電池用電解液からフッ化水素と水とを除去するための精製装置である。

Description

電解液中のフッ化水素を除去する精製器
 本発明は、リチウムイオン二次電池に使用するための非水電解液の製造工程およびリチウムイオン二次電池の製造工程に使用される精製装置に関し、より詳しくは、リチウムイオン二次電池用のフッ化水素含有非水電解液を通液することによりフッ化水素を除去し、さらに水分を除去するための精製装置に関する。
 本願は、2009年12月17日に、日本に出願された特願2009-286334号に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン二次電池は、アルミニウム箔に塗布された正極材および銅箔に塗布された負極材の双方を電気的接触が起こらないように絶縁性の多孔性ポリエチレンフィルムなどを介して対向させ、内部の空隙を炭酸エステルなどの非水溶剤に電解質および添加剤を溶解させた電解液によって満たした構造をとっている。このリチウムイオン二次電池に使用される電解質としては、伝導性、電位窓、金属との相互作用などの面で良好な特性を持つフッ化物系電解質が使用されることが多い。しかし、これらフッ化物には、加水分解によりフッ化水素を遊離させる性質があり、生じたフッ化水素が、電極材の溶解や集電体の腐食などを生じさせ、電池性能を低下させる問題が生じる。
 上記問題に対処するために、従来は製造過程での水分の混入を防ぎ、それによってフッ化物系電解質の加水分解を抑制する方法がとられてきた。しかしながら、従来の方法では製造過程における水分の混入を完全に防ぐことは困難であり、電解液中でのフッ化水素の発生を完全に抑制することはできなかった。また、電解液製造時のみならず、電解液の輸送や電池製造工程において水分が混入する場合もある。水分混入を低減するため、ドライルームのような湿度が低く管理された場所で製造作業を行なう必要があり、これが生産コストの増大につながっている。
 また、加水分解により発生したフッ化水素が非水電解液に悪影響を与えるのを防止するために、従来では電解液および/または電極材にフッ化水素を吸着する化合物を含有させることが提案されている。それらの中にはインターカレート物質として知られる合成ハイドロタルサイト類(特許文献1)および有機化した合成ハイドロタルサイト類(特許文献2)が優れたフッ化水素除去物質として提案されている。これらのハイドロタルサイト化合物は積層構造をなし、層間にフッ化水素分子や場合によりさらに水分子を吸着し固定する作用を有する。
特開平11-73999号公報 特開2008-262859号公報
 上記のように、従来のリチウムイオン二次電池では、製造工程において非水電解液への水分の混入を十分に抑制できないことから、電解液にフッ化水素を吸着する物質を混入していた。また、電極材にフッ化水素を吸着する物質を混入する場合には、その混入量だけ重量当りの電極活物質量が減少するため、リチウムイオン二次電池の初期放電容量が制限されていた。
 本発明は製造工程において電解液中の水分のみならずフッ化水素も充分に減少することにより、リチウムイオン二次電池内に装入される電解質の性能を高め、また放電容量等の性質に影響を与えるフッ化水素吸着物質を電池内に添加せずに、リチウム二次電池の寿命特性を改善することを目的とする。
 (1)本発明は、合成ハイドロタルサイト類を収容したフッ化水素除去用精製器と、水分吸着材を収容した水分除去用精製器とを上流から下流にこの順に接続した精製装置を提供する。
 下流側に水分除去用精製器を使用するのは、合成ハイドロタルサイトによる炭酸イオンとフッ化水素の交換反応が起きた際などに生成する水分を除去するためである。
 (2)本発明はまた、前記(1)の精製装置において、前記フッ化水素除去用精製器の上流側に、水分吸着材を収容した前置水分除去用精製器を接続した精製装置を提供する。
 上流側に前置水分除去用精製器を使用するのは、電解液が水分を多く含んでいる場合に電解液中の溶媒が加水分解されるのを防ぐためであり、電解液中の水分が少ない場合には使用する必要がない。
 上記(1)、(2)の精製装置は、個別の精製器を管路してもよいし、代わりに1つのハウジングを区画してその中に上記のそれぞれの吸着材を順に収容して複数の精製器が一体になった精製装置を構成してもよい。
 合成ハイドロタルサイト類としては炭酸型ハイドロタルサイト類、あるいは、炭酸型ハイドロタルサイトを500℃以上で焼成し、脱炭酸した焼成型ハイドロタルサイトを使用する。この型の合成ハイドロタルサイトを用いて電解液中のフッ化水素の初期の濃度を30ppmw(parts per million weight)としたとき、炭酸型ハイドロタルサイト類1gにつき、フッ化水素の濃度を5ppmw、好ましくは1ppmw、さらに好ましくは0.5ppmw以下に減少させることが可能であり、それによりリチウム二次電池に必要な電解液(リチウム化合物電解質と溶媒よりなる)を調製することが可能となる。また水分除去精製器を併用することで水分(水)を10ppmw以下に減少させることが可能となる。
 本発明は、水分管理のみでの低減が困難であった電解液中のフッ化水素を除去することができる。また、製造工程の最終段階においてフッ化水素を除去することができるため、水分管理の負担軽減にともなう製造コスト削減につながる。
 上記の構成を有するフッ化水素除去精製器、またはフッ化水素除去精製器と水分除去精製器とを有する精製装置を使用することにより、十分なフッ化水素除去及び水分除去が可能となり、リチウムイオン二次電池の電解液内にフッ化水素除去物質を混入する必要がなくなり、長寿命のリチウムイオン二次電池を提供することができる。
図1は本発明に使用できる精製器の1例を示す断面図である。 図2は本発明の実施例による精製装置の構成を示すもので、(a)は第1実施例を、(b)は第2実施例を示す。
 本発明が精製の対象とする水分を含有する非水電解液の電解質としてはフッ素含有リチウム塩が使用される。たとえば、上記リチウム塩としては、上記文献2に記載されているような、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCSO、LiN(CFSO、LiN(CSO、LiC(CFSO、及びLiPF{(COO)等がある。特に、LiPF6、LiBF4、LiAsF6、及びLiSbF6等が加水分解を起こし易いため、これらを含む電解液をリチウム電池内に取り込む前に本発明の精製装置により精製して、水分の存在下で加水分解により生じているフッ化水素を除去する。
 電解質を溶解する有機溶剤としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、それらの混合物などが使用できる。
 電解質を溶解する有機溶剤としては、上記の炭酸エステル類の混合物であることが好ましい。
 一方、電解液中の水分を吸着できる吸着材には活性アルミナ、合成ゼオライト等、多数の吸着材が知られているので、適宜選択して採用すればよい。水分は本発明のフッ化水素除去精製器において、フッ化水素と金属水酸化物あるいは金属酸化物とが反応して金属フッ化物を生成した際に生じるので、または合成ハイドロタルサイト類によるフッ化水素・炭酸イオン置換反応によっても生じるので、合成ハイドロタルサイト類を収容するフッ化水素除去精製器で電解液を精製したのちに、副生した水分を直ちに水分除去精製器において除去する必要がある。
 フッ化水素除去精製器の上流側でも非水電解液中の水分を吸着できる同様な吸着材を用いて水分を除去することが好ましい。
 本発明で使用する合成ハイドロタルサイト類としては、炭酸イオンをインターカレートしたもの、または、炭酸型ハイドロタルサイトを500℃以上の焼成により脱炭酸処理したものを採用する。どちらも良好なフッ化水素吸着能を有しているが、焼成型の方が、水の副生が少ないためより好ましい。炭酸型ハイドロタルサイトは、構造式[M2+ 1-x3+ (OH)x+[(COx/2・mHO]x-(m≧0、mは処理温度に依存)、焼成型は、構造式M2+ 1-x3+ 1+x/2、(ただし、0<x≦0.33、M2+は、2価のMg、Mn、Fe、Co、Ni、Cu、及びZnの金属イオン、M3+は、3価のAl、Fe、Cr、Co、及びInの金属イオン)であり、特に構造式[Mg1-xAl(OH)x+[(COx/2・mHO]x-、またはMg1-xAl1+x/2が採用できる。ここでMg1-xAlx(OH)2は金属水酸化物シートであり、CO3は層間イオンである。たとえば、炭酸型として、キョーワード500シリーズ(協和化学工業社製)、また、焼成型としてKW2000シリーズ(協和化学工業社製)などが使用できる。このような合成ハイドロタルサイト類は、炭酸型では、炭酸イオンとフッ化物イオンとの交換により、焼成型ではフッ化水素の吸着により、フッ化水素を固定化することができる。またこの物質は水分子も吸着できるがフッ化水素の吸着に比してあまり効果がない。そのため、本発明では水分除去のためには別の水分除去吸着材を使用する。
 フッ化水素除去のための精製器は、粒状のフッ化水素吸着材を充填した円筒形のハウジングの両端に吸着材の流出防止用のメッシュを配し、電解液の流入口および流出口としてネジ継手を取り付けたものからなる。水分除去のための精製器としては任意のものが使用できるが、フッ化水素除去のための精製器と同様な構造のものを使用してよい。
 図1は吸着器を例示する。簡単に述べると精製器1の内部にはフッ化水素吸着材である合成ハイドロタルサイト類の吸着材粒子2が収容される。精製器1は、材質がステンレス鋼、合成樹脂等の不活性な素材で作られた、円筒状胴部3と、この胴部の両端に設けた円盤状の端板5、7と、これらの端板を貫通する電解液入口部材9及び電解液出口部材11とを有し、胴部3と端板5、7との接続部13、15、及び端板7と出口部材11との接続部17はそれぞれ溶接されて完全な液密状態となっている。端板5と電解液入口部材9との接続部は吸着材粒子の充填又は交換を可能にする開口を形成する必要があるので入口側の端板5の開口部8の内周面には雌ねじ19が形成され、入口部材9の外周面には雄ねじ20が形成されている。入口部材9の内端には環状の支持部材21が溶接され又はねじ結合されている。支持部材21には予めセラミック製、好ましくは金属製の多孔質円筒23がねじ結合又は溶接されており、多孔質円筒23はキャップ25でねじ結合や溶接で閉鎖されている。同様に出口部材11の内端には予め多孔質のセラミック製、好ましくは金属製の円筒27がねじ結合や溶接で結合されており、多孔質円筒27はキャップ29で閉鎖されている。キャップはねじその他任意の方法で多孔質円筒27に固定できる。上流側となる多孔質円筒23は比較的粗い細孔を有する多孔体で良いが下流側となる多孔質円筒27は精製材の微粉末も通さない程度の細かい細孔を有する必要がある。使用前には、入口部材9はねじ付きキャップ33により、出口部材11はねじ付きキャップ35により閉鎖されている。
 また、上記の構造の代わりに、同じハウジング内を有孔隔壁で2つ又は3つに区画し、上記段落[0007]で述べたように二種又は三種の吸着材を装入して一体構造にすることも可能である。
 図2(a)は、本発明の第1実施例による精製装置を例示し、上流から下流に電解液入口100、合成ハイドロタルサイト類を収容したフッ化水素除去用精製器101、接続管路102、合成ゼオライト等の水分吸着材を収容した水分除去用精製器103、及び精製電解液出口104をこの順に接続した精製装置を提供する。
 図2(b)は、本発明の第2実施例による精製装置を例示し、上流から下流に電解液入口200、水分吸着材を収容した前置水分除去用精製器201、接続管路202、合成ハイドロタルサイト類を収容したフッ化水素除去用精製器203、接続管路204、水分吸着材を収容した水分除去用精製器205、及び精製電解液出口206をこの順に接続した精製装置を示す。
実施例
 水分の除去
 本発明の効果を実証するための実験を行った。リチウム二次電池用の電解質の溶媒として利用されている炭酸ジメチルと、トルエンとを用いて水分(水)の除去実験を行った。
 実験1
 炭酸ジメチル(DMC)10gと粒状活性アルミナ(株式会社デーケーファイン製AA-300シリーズ、粒径 8×14メッシュ)1gを蓋つき褐色瓶に入れ、さらに可変量の脱イオン水(超純水)を加えた。19時間放置したのち炭酸ジメチル中の水分濃度をカールフィッシャー水分計(三菱化学(株)製 CA-06)を用いて測定した。試料の配合と測定結果を表1に示す。
 実験2
 炭酸ジメチル(DMC)10gと粒状ゼオライト(MS)(ユニオン昭和(株)製 モレキュラーシーブ 3A、粒径 14×30メッシュ)1gを蓋つき褐色瓶に入れ、さらに可変量の脱イオン水(超純水)を加え、19時間放置したのち炭酸ジメチル中の水分濃度をカールフィッシャー水分計を用いて測定した。試料の配合と測定結果を表2に示す。
 実験3
 トルエン10gと粒状合成ゼオライト(MS)(ユニオン昭和(株)製 モレキュラーシーブ3A、粒径14×30メッシュ)1gを蓋つき褐色瓶に入れ、さらに可変量の脱イオン水(超純水)を加え、19時間放置したのち炭酸ジメチル中の水分濃度をカールフィッシャー水分計を用いて測定した。試料の配合と測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 通常の電解液(フッ素含有電解質を有機溶媒に溶解したもの)は製造段階で10-100ppmw程度の水分を含有するから、本発明の目的を達成するにはフッ化水素除去精製器の上流側に設置される前置水分除去精製器で水分を100ppmw以下に低減できればよい。またフッ化水素除去精製器の下流に配置される水分除去精製器では水分を10ppmw以下に低減できればよい。表1~3に示したように、本実験で得られた結果は充分に満足なものである。
 フッ化水素除去
 本発明の効果を実証するための実験を行った。
実験4
 炭酸ジメチル(DMC)10gに、フッ化物イオン濃度2000ppmwのフッ酸を50μL加え、フッ化物イオン濃度10ppmwのDMC溶液を調製した。これに吸着材として炭酸型ハイドロタルサイト(HTS)(キョーワード500 SNタイプ)1gを加えて振り混ぜた。
 吸着材添加の1時間後、この溶液を超純水によりそれぞれ100倍に希釈し、フッ化物イオン濃度をイオンクロマトグラフィーで測定した結果を表4に示す。比較例1として、同じ様に調製したDMC溶液に活性アルミナA(株式会社デーケーファイン製AA-300シリーズ、 粒径 8×14メッシュ)5gを添加した結果を表4に示した。また比較例2として、同じ様に調製したDMC溶液を吸着材を添加せずに1時間放置した後のフッ化物イオン濃度の測定結果も示した。
Figure JPOXMLDOC01-appb-T000004
 この実験から、吸着材として炭酸型ハイドロタルサイト類を使用すると、上記の条件下で0.5ppmw以下までフッ化水素濃度を減少させる効果が得られる。一方、活性アルミナでは約5gを使用しても約3ppmw程度までしか減少させることができなかった。
 次に、使用時に近い状況で本願発明の効果を確認するために、試験フィルタを用いてフッ化水素除去および水分除去に関する実験を行った。
 フッ化水素除去
 実験5
 合成ハイドロタルサイト(協和化学工業(株)製KW2000シリーズ)1.4gを内容積3.4mLのステンレス鋼製カラムに充填し、試験用フィルタを作製した。これに、開封直後で、フッ化水素濃度が26ppmwであるリチウムイオン2次電池用電解液(キシダ化学(株)製LBG-96533)を毎分1mLの流量で供給した。フィルタを通過した電解液中のフッ化物イオン濃度をイオンクロトマトグラフ分析計(ダイオネクス製 DX-120)を使用して測定した。測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 電解液を試験フィルタに供給しながら、通液量、すなわち試験フィルタを通過させた電解液の量が表5に示される各々の値に達する毎に、フッ化物イオン濃度を測定した。全ての実験結果において、試験用フィルタを通過させた電解液中のフッ化物イオン濃度は10ppmw未満であった。このように、初期のフッ化物イオン濃度が低い電解液に対して、上記試験フィルタは顕著なフッ化水素除去効果を示した。
 そこで次に、劣化によりフッ化水素濃度が増加した電解液を用いてフッ化水素除去実験を行った。
 実験6
 合成ハイドロタルサイト(協和化学工業(株)製KW2000シリーズ)1.4gを内容積3.4mLのステンレス鋼製カラムに充填し、試験用フィルタを作製した。これに、劣化によりフッ化水素濃度が240ppmwまで増加したリチウムイオン2次電池用電解液(キシダ化学(株)製LBG-96533)を毎分1mLの流量で供給した。フィルタを通過した電解液中のフッ化物イオン濃度をイオンクロトマトグラフ分析計(ダイオネクス製 DX-120)を使用して測定した。測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 このように、初期のフッ化物イオン濃度が高い電解液を用いた場合であっても、本願の試験フィルタに通液することにより90%を超えるフッ化水素除去率が得られた。ここで、フッ化水素除去率は下記式により算出された。
 (1-(x/y))×100
 x:フィルタを通過した電解液中のフッ化物イオン濃度(ppmw)
 y:初期の電解液中のフッ化物イオン濃度(すなわち、240ppmw)
 水分の除去
 上記実験5および6と同様に試験フィルタを用いて、水分除去実験を行った。
 実験7
 合成ゼオライト(東ソー(株)製)2gを内容積3.4mLのステンレス鋼製カラムに充填し、試験フィルタを作製した。また、リチウムイオン2次電池用電解液(キシダ化学(株)LBG-96533)を毎分1mLの流量で試験フィルタに供給し、電解液を供給し続けている状態で試験フィルタの直前で電解液に少量の水を徐々に加えながら、試験フィルタの入口および出口での電解液中の水分濃度をカールフィッシャー水分計(三菱化学(株)CA-06)で測定した。
Figure JPOXMLDOC01-appb-T000007
 電解液を試験フィルタに供給しながら、通液量が表7に示される各々の値に達する毎に入口水分濃度および出口水分濃度を測定した。全ての実験結果において電解液の出口水分濃度は10ppmw未満であり、電解液から良好に水が除去されることがわかった。
 前述したように、本願発明はフッ化水素除去用精製器と水分除去用精製器とを上流から下流にこの順に接続した精製装置である。実験7の結果から、下流に配置される水分除去用精製器により水を効果的に除去することができることがわかる。したがって、フッ化水素除去用精製器において水の副生が起こった場合であっても、本願発明によれば精製装置出口において電解液に含まれる水分を10ppmw未満に減少させることができるといえる。
1 精製器
2 吸着材粒子
3 円筒状胴部
5、7 端板
8 開口部
9 電解液入口部材
11 電解液出口部材
13、15、17 接続部
19 雌ねじ
20 雄ねじ
21 支持部材
23、27 多孔質円筒
25、29、33、35 キャップ
100 電解液入口
101 フッ化水素除去用精製器
102 接続管路
103 水分除去用精製器
104 精製電解液出口
200 電解液入口
201 前置水分除去用精製器
202 接続管路
203 フッ化水素除去用精製器
204 接続管路
205 水分除去用精製器
206 電解液出口

Claims (11)

  1.  リチウムイオン二次電池用電解液からフッ化水素と水分とを除去するための精製装置において、炭酸型ハイドロタルサイト類または焼成型ハイドロタルサイト類であるフッ化水素吸着材を収容したフッ化水素除去用精製器と、水分吸着材を収容した水分除去用精製器とを上流から下流にこの順に接続した精製装置。
  2.  1つのハウジングを有孔の壁で区画してそのそれぞれの区画中に上記のそれぞれの吸着材を順に収容した2個の精製器で構成した請求項1に記載の精製装置。
  3.  前記フッ化水素除去用精製器の上流側に、水分吸着材を収容した前置水分除去用精製器を設けた請求項1に記載の精製装置。
  4.  1つのハウジングを有孔の壁で区画してその中に上記のそれぞれの吸着材を順に収容した3個の精製器で構成した請求項3に記載の精製装置。
  5.  前記フッ化水素除去用精製器が、リチウムイオン二次電池用電解液に含まれるフッ化水素の濃度を10ppmw未満に減少させるものである、請求項1~4のいずれか1項に記載の精製装置。
  6.  前記フッ化水素除去用精製器が、フッ化水素除去率を90%以上とするものである、請求項1~4のいずれか1項に記載の精製装置。
  7.  前記水分除去用精製器が、水分を10ppmw以下に減少させるものである請求項1に記載の精製装置。
  8.  前記前置水分除去用精製器が、水分を100ppmw以下に減少させるものである請求項3に記載の精製装置。
  9.  前記フッ化水素吸着剤が、構造式[M2+ 1-x3+ (OH)x+[(COx/2・mHO]x-(m≧0)の炭酸型ハイドロタルサイト類(ただし、0<x≦0.33、M2+は、2価のMg、Mn、Fe、Co、Ni、Cu、及びZnの金属イオン、M3+は、3価のAl、Fe、Cr、Co、及びInの金属イオン)である、請求項1に記載の精製装置。
  10.  前記フッ化水素吸着剤が、構造式M2+ 1-x3+ 1+x/2の焼成型ハイドロタルサイト類(ただし、0<x≦0.33、M2+は、2価のMg、Mn、Fe、Co、Ni、Cu、及びZnの金属イオン、M3+は、3価のAl、Fe、Cr、Co、及びInの金属イオン)である、請求項1に記載の精製装置。
  11.  前記水分吸着材が合成ゼオライトまたは活性アルミナである、請求項1に記載の精製装置。
PCT/JP2010/072638 2009-12-17 2010-12-16 電解液中のフッ化水素を除去する精製器 WO2011074631A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011546160A JP5759386B2 (ja) 2009-12-17 2010-12-16 電解液中のフッ化水素を除去する精製器
US13/510,676 US9023204B2 (en) 2009-12-17 2010-12-16 Purifier for removing hydrogen fluoride from electrolytic solution
CN201080056990.0A CN102656734B (zh) 2009-12-17 2010-12-16 除去电解液中的氟化氢的精制器
EP10837656.7A EP2515371B1 (en) 2009-12-17 2010-12-16 Purifier for removing hydrogen fluoride from electrolytic solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009286334 2009-12-17
JP2009-286334 2009-12-17

Publications (1)

Publication Number Publication Date
WO2011074631A1 true WO2011074631A1 (ja) 2011-06-23

Family

ID=44167382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072638 WO2011074631A1 (ja) 2009-12-17 2010-12-16 電解液中のフッ化水素を除去する精製器

Country Status (7)

Country Link
US (1) US9023204B2 (ja)
EP (1) EP2515371B1 (ja)
JP (1) JP5759386B2 (ja)
KR (1) KR101621124B1 (ja)
CN (1) CN102656734B (ja)
TW (1) TWI530316B (ja)
WO (1) WO2011074631A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969158A (zh) * 2012-10-31 2013-03-13 安徽拓普森电池有限责任公司 一种含有改性水滑石粉的电容器浸渍剂及其制备方法
JP2016171080A (ja) * 2011-09-30 2016-09-23 株式会社日本触媒 電解液及びその製造方法、並びに、これを用いた蓄電デバイス
JP2017016813A (ja) * 2015-06-30 2017-01-19 信越化学工業株式会社 固体高分子型燃料電池セパレータ用シール材料、セパレータシール及びセパレータ
JPWO2017033431A1 (ja) * 2015-08-24 2018-06-14 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池
WO2019054220A1 (ja) * 2017-09-12 2019-03-21 オルガノ株式会社 電解液の精製装置および精製方法
JP2019053980A (ja) * 2017-09-12 2019-04-04 オルガノ株式会社 電解液の精製装置および精製方法
JP2020061288A (ja) * 2018-10-11 2020-04-16 オルガノ株式会社 非水電解液の製造装置および非水電解液の製造方法
WO2020085001A1 (ja) * 2018-10-24 2020-04-30 オルガノ株式会社 非水電解液の製造装置および非水電解液の製造方法
JP2020068107A (ja) * 2018-10-24 2020-04-30 オルガノ株式会社 非水電解液の製造装置および非水電解液の製造方法
JP2020068106A (ja) * 2018-10-24 2020-04-30 オルガノ株式会社 非水電解液の製造装置および非水電解液の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618104B (zh) * 2013-11-21 2016-04-06 骆军 锂离子电池用电解液
JP6562212B2 (ja) * 2015-12-19 2019-08-21 三菱マテリアル株式会社 リチウムイオン電池の熱分解処理方法および処理装置
CN106268613A (zh) * 2016-08-29 2017-01-04 江苏海普功能材料有限公司 一种除氟剂及其制备方法
WO2018180017A1 (ja) * 2017-03-31 2018-10-04 Necエナジーデバイス株式会社 電池用電極及びリチウムイオン二次電池
CN109212003A (zh) * 2018-09-30 2019-01-15 东北大学 一种测试氧化铝对氟化氢吸附性能的方法及装置
KR20200137844A (ko) * 2019-05-31 2020-12-09 에스케이케미칼 주식회사 이차전지용 전해액 및 이를 포함하는 이차전지
US11411260B2 (en) 2019-10-23 2022-08-09 Ford Global Technologies, Llc Lithium-ion cell containing solid adsorbent and method of producing the same
EP4088798A1 (en) * 2021-05-13 2022-11-16 Pacific Industrial Development Corporation Electrolyte treatment system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173999A (ja) 1997-08-28 1999-03-16 Showa Denko Kk 非水二次電池
JP2000505042A (ja) * 1996-11-26 2000-04-25 エフエムシー・コーポレイション リチウム塩溶液から酸を除去する方法
JP2001269664A (ja) * 2000-01-20 2001-10-02 Godo Shigen Sangyo Kk 汚染物質の難溶化処理方法
JP2008235255A (ja) * 2007-02-21 2008-10-02 Riken Technos Corp ラミネート外装材を用いたリチウム二次電池
JP2008262859A (ja) 2007-04-13 2008-10-30 Toyota Central R&D Labs Inc 非水電解液及びリチウムイオン二次電池
JP2009286334A (ja) 2008-05-30 2009-12-10 Sumitomo Metal Ind Ltd 補強部材、ピラー及び自動車車体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726818A (en) * 1984-12-20 1988-02-23 Union Carbide Corporation Bulk removal of water from organic liquids
US6358895B1 (en) * 1994-05-04 2002-03-19 Pabu Services, Inc. Fluid treatment process
JP2003323916A (ja) * 2002-04-30 2003-11-14 Japan Storage Battery Co Ltd 非水電解質二次電池
CN1588687A (zh) * 2004-06-30 2005-03-02 北京格林动力电源技术有限公司 提高尖晶石锰酸锂电池容量及循环性能的方法
US20080206636A1 (en) 2007-02-21 2008-08-28 Riken Technos Corporation Lithium secondary battery with a laminate housing material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505042A (ja) * 1996-11-26 2000-04-25 エフエムシー・コーポレイション リチウム塩溶液から酸を除去する方法
JPH1173999A (ja) 1997-08-28 1999-03-16 Showa Denko Kk 非水二次電池
JP2001269664A (ja) * 2000-01-20 2001-10-02 Godo Shigen Sangyo Kk 汚染物質の難溶化処理方法
JP2008235255A (ja) * 2007-02-21 2008-10-02 Riken Technos Corp ラミネート外装材を用いたリチウム二次電池
JP2008262859A (ja) 2007-04-13 2008-10-30 Toyota Central R&D Labs Inc 非水電解液及びリチウムイオン二次電池
JP2009286334A (ja) 2008-05-30 2009-12-10 Sumitomo Metal Ind Ltd 補強部材、ピラー及び自動車車体

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171080A (ja) * 2011-09-30 2016-09-23 株式会社日本触媒 電解液及びその製造方法、並びに、これを用いた蓄電デバイス
CN102969158A (zh) * 2012-10-31 2013-03-13 安徽拓普森电池有限责任公司 一种含有改性水滑石粉的电容器浸渍剂及其制备方法
JP2017016813A (ja) * 2015-06-30 2017-01-19 信越化学工業株式会社 固体高分子型燃料電池セパレータ用シール材料、セパレータシール及びセパレータ
JPWO2017033431A1 (ja) * 2015-08-24 2018-06-14 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池
KR20200040820A (ko) 2017-09-12 2020-04-20 오르가노 코포레이션 전해액의 정제장치 및 정제방법
WO2019054220A1 (ja) * 2017-09-12 2019-03-21 オルガノ株式会社 電解液の精製装置および精製方法
JP2019053980A (ja) * 2017-09-12 2019-04-04 オルガノ株式会社 電解液の精製装置および精製方法
JP7245012B2 (ja) 2017-09-12 2023-03-23 オルガノ株式会社 電解液の精製装置および精製方法
JP2020061288A (ja) * 2018-10-11 2020-04-16 オルガノ株式会社 非水電解液の製造装置および非水電解液の製造方法
EP3866247A4 (en) * 2018-10-11 2022-11-23 Organo Corporation APPARATUS FOR PRODUCING A NON-AQUEOUS ELECTROLYTIC SOLUTION AND METHOD FOR PRODUCING A NON-AQUEOUS ELECTROLYTIC SOLUTION
JP7203556B2 (ja) 2018-10-11 2023-01-13 オルガノ株式会社 非水電解液の製造装置および非水電解液の製造方法
WO2020075529A1 (ja) * 2018-10-11 2020-04-16 オルガノ株式会社 非水電解液の製造装置および非水電解液の製造方法
WO2020085001A1 (ja) * 2018-10-24 2020-04-30 オルガノ株式会社 非水電解液の製造装置および非水電解液の製造方法
JP2020068107A (ja) * 2018-10-24 2020-04-30 オルガノ株式会社 非水電解液の製造装置および非水電解液の製造方法
JP2020068106A (ja) * 2018-10-24 2020-04-30 オルガノ株式会社 非水電解液の製造装置および非水電解液の製造方法

Also Published As

Publication number Publication date
EP2515371A4 (en) 2014-09-17
TWI530316B (zh) 2016-04-21
TW201136646A (en) 2011-11-01
EP2515371A1 (en) 2012-10-24
KR101621124B1 (ko) 2016-05-13
EP2515371B1 (en) 2019-03-13
JP5759386B2 (ja) 2015-08-05
US9023204B2 (en) 2015-05-05
JPWO2011074631A1 (ja) 2013-04-25
US20120261328A1 (en) 2012-10-18
CN102656734A (zh) 2012-09-05
CN102656734B (zh) 2015-09-09
KR20120103640A (ko) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5759386B2 (ja) 電解液中のフッ化水素を除去する精製器
JP6723341B2 (ja) 非水電解質電池用無機粒子及び非水電解質電池
RU2488555C2 (ru) Пористый углеродный материал, способ его получения, адсорбенты, маски, впитывающие листы и носители
WO2020115948A1 (ja) リチウム含有溶液の製造方法
WO2016194995A1 (ja) リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池
WO2013073594A1 (ja) リチウムイオン二次電池用材料及びその使用
WO2018043431A1 (ja) リチウムイオン電池
WO2007083277A1 (en) Alkaline cell with improved anode
JP6252119B2 (ja) 非水電解液蓄電素子
WO2018012485A1 (ja) リチウムイオン電池
CN115974043B (zh) 一种电池级纳米硫酸亚铁钠的生产方法
JP5879943B2 (ja) リチウムイオン二次電池
JP5948888B2 (ja) 電気二重層キャパシタ
WO2021131124A1 (ja) 電極の製造方法、蓄電デバイスの製造方法、及び電極製造装置
JP2017004627A (ja) リチウムイオン二次電池用イオン捕捉剤、及びそれを用いたリチウムイオン二次電池
JPH11185810A (ja) リチウム電池用電解液及びその製造方法
CN110407303A (zh) 一种用于去除水溶液中氟离子的cdi模块及其应用
WO2022203055A1 (ja) 水酸化リチウムの製造方法
JP2021170525A (ja) リチウムイオン二次電池用電解液の精製方法およびリチウムイオン二次電池
JP2014216304A (ja) 蓄電デバイス用ガス吸収材及びこれを用いた蓄電デバイス、並びに当該蓄電デバイスを用いた電気機器及び電子機器
JP2001052741A (ja) リチウム二次電池用電解液及びそれを用いたリチウム二次電池
JPH10270074A (ja) リチウム二次電池用電解液
KR102336781B1 (ko) 이차전지용 양극 활물질 및 그 제조방법
JP2000299126A (ja) 二次電池用非水電解液の精製方法
WO2016024343A1 (ja) リチウムイオン電池、及びこれを用いた電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056990.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010837656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011546160

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127015497

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13510676

Country of ref document: US