WO2016194995A1 - リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2016194995A1
WO2016194995A1 PCT/JP2016/066335 JP2016066335W WO2016194995A1 WO 2016194995 A1 WO2016194995 A1 WO 2016194995A1 JP 2016066335 W JP2016066335 W JP 2016066335W WO 2016194995 A1 WO2016194995 A1 WO 2016194995A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
lithium ion
lithium
ion secondary
separator
Prior art date
Application number
PCT/JP2016/066335
Other languages
English (en)
French (fr)
Inventor
大野 康晴
聡子 安藤
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2017522233A priority Critical patent/JP6593440B2/ja
Priority to US15/578,479 priority patent/US20180166749A1/en
Priority to KR1020177036277A priority patent/KR102614833B1/ko
Priority to CN201680031802.6A priority patent/CN107636881B/zh
Publication of WO2016194995A1 publication Critical patent/WO2016194995A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/36Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/372Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/20Reformation or processes for removal of impurities, e.g. scavenging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an ion scavenger, an electrolytic solution, a separator, and a lithium ion secondary battery including these, which are suitable as components of a lithium ion secondary battery.
  • Lithium-ion secondary batteries are lighter and have higher input / output characteristics than other secondary batteries such as nickel metal hydride batteries and lead-acid batteries, so they are used for high input / output used in electric vehicles, hybrid electric vehicles, etc. It is attracting attention as a power source.
  • lithium metal is deposited on the negative electrode during charge and discharge. And when the lithium dendride deposited on the negative electrode breaks the separator and reaches the positive electrode, a short circuit may occur.
  • the temperature inside a vehicle may be 40 ° C. to 80 ° C. in some cases.
  • a metal such as manganese is eluted from the lithium-containing metal oxide, which is a constituent material of the positive electrode, and is deposited on the negative electrode, which may deteriorate battery characteristics (capacity).
  • Patent Document 1 discloses a lithium ion secondary having a trapping substance having a function of trapping impurities or by-products generated inside a lithium ion secondary battery by absorption, binding, or adsorption. A battery is described, and activated carbon, silica gel, zeolite and the like are mentioned as the trapping substance.
  • Patent Document 2 discloses a positive electrode using a lithium compound containing Fe or Mn as a metal element as a constituent element as a positive electrode active material, and a negative electrode using a carbon material capable of occluding and releasing lithium ions as a negative electrode active material.
  • Patent Documents 3 to 5 disclose aluminum silicates having a specific composition and structure, and lithium ion secondary batteries and members using the same.
  • An object of the present invention is to selectively capture an impurity metal ion generated from a component of a lithium ion secondary battery and to have a high adsorption capacity per unit mass, and an ion scavenger for a lithium ion secondary battery.
  • the inventors of the present invention provide that an ion scavenger containing a phosphate in which at least a part of ion exchange groups is substituted with lithium ions captures Ni 2+ ions and Mn 2+ ions with high selectivity, and a unit. It was found that the adsorption performance per mass was high.
  • the present inventors have found that a lithium ion secondary battery including a separator containing this ion scavenger is excellent in cycle characteristics and safety. That is, the present invention is as follows. 1. An ion scavenger for a lithium ion secondary battery, comprising a phosphate in which at least a part of an ion exchange group is substituted with lithium ions. 2.
  • the phosphate is (A) ⁇ -zirconium phosphate in which at least part of the ion exchange group is substituted with lithium ions, (B) ⁇ -titanium phosphate in which at least a part of the ion exchange group is substituted with lithium ions, and (C) The ion scavenger for a lithium ion secondary battery according to Item 1, which is at least one selected from aluminum dihydrogen tripolyphosphate in which at least a part of ion exchange groups is substituted with lithium ions. 3. 3.
  • the lithium ion secondary battery according to item 2 wherein the component (A) is ⁇ -zirconium phosphate in which 0.1 to 6.7 meq / g of the total ion exchange capacity is substituted with the lithium ion.
  • Ion scavenger. 4 The ion scavenger for a lithium ion secondary battery according to Item 2 or 3, wherein the ⁇ -zirconium phosphate before being substituted with lithium ions is a compound represented by the following formula (1).
  • the component (C) is aluminum dihydrogen phosphate tripolyphosphate in which 0.1 to 6.9 meq / g of the total ion exchange capacity is substituted with the lithium ion.
  • Ion scavenger. 8 The ion scavenger for a lithium ion secondary battery according to Item 2 or 7, wherein the aluminum dihydrogen tripolyphosphate before being substituted with the lithium ion is a compound represented by the following formula (3). AlH 2 P 3 O 10 ⁇ nH 2 O (3) (In the formula, n is a positive number.) 9. Item 9. The ion scavenger for a lithium ion secondary battery according to any one of Items 1 to 8, wherein the moisture content is 10% by mass or less. 10. 10. An electrolyte solution comprising the ion scavenger for a lithium ion secondary battery according to any one of items 1 to 9. 11.
  • a separator comprising the ion scavenger for a lithium ion secondary battery according to any one of Items 1 to 9. 12
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator, wherein at least one of the positive electrode, the negative electrode, the electrolytic solution, and the separator is lithium according to any one of Items 1 to 9
  • a lithium ion secondary battery comprising an ion scavenger for an ion secondary battery.
  • the ion scavenger for a lithium ion secondary battery of the present invention captures impurity metal ions generated from the components of the lithium ion secondary battery with high selectivity and has a high adsorbability per unit mass. Therefore, in a lithium ion secondary battery in which the ion scavenger is contained in a member that contacts the electrolytic solution, such as an electrolytic solution or a separator, occurrence of a short circuit due to impurities can be suppressed.
  • the ion scavenger for lithium ion secondary batteries of the present invention gives a neutral liquid, even when an electrolyte solution is prepared using this ion scavenger, there is almost no effect on the electrolyte solution, and a long life is achieved.
  • a lithium ion secondary battery can be provided.
  • the lithium ion secondary battery of the present invention is excellent in cycle characteristics due to charge and discharge, and is excellent in safety when subjected to an impact.
  • the ion scavenger for lithium ion secondary batteries of the present invention (hereinafter also simply referred to as “ion scavenger”) is a phosphate (hereinafter referred to as “lithium ion-containing”) in which at least part of the ion exchange group is replaced with lithium ions. (Referred to as “phosphate”).
  • the ion scavenger of the present invention may be composed only of a lithium ion-containing phosphate, or may be composed of a lithium ion-containing phosphate and another compound.
  • the ion scavenger of the present invention is unnecessary in lithium ion secondary batteries such as manganese ions (Mn 2+ ), nickel ions (Ni 2+ ), copper ions (Cu 2+ ), iron ions (Fe 2+ ), etc. While the metal ion scavenging property is excellent, the lithium ion scavenging property is low. Therefore, the metal ions that can cause a short circuit can be efficiently captured.
  • the said metal ion originates in the impurity which exists in the structural member of a lithium ion secondary battery, or the metal eluted from a positive electrode under high temperature.
  • ion-containing phosphate on which lithium ions are supported is also a layered compound.
  • manganese ions, nickel ions, etc. are selectively captured without capturing lithium ions in the electrolytic solution. be able to.
  • the ion scavenger of the present invention gives a neutral liquid, even when added to the electrolyte, its pH does not fluctuate greatly.
  • the ion scavenger of the present invention is an inorganic substance, it has excellent thermal stability and stability in an organic solvent. For this reason, when it is made to contain in the structural member of a lithium ion secondary battery, it can exist stably also during charging / discharging.
  • the lithium ion-containing phosphate is shown below.
  • the ion scavenger of the present invention may contain only one of these, or may contain two or more.
  • the component (A) is a substitution product of ⁇ -zirconium phosphate by lithium ions. Since the ion exchange group of the ⁇ -zirconium phosphate ( ⁇ -zirconium phosphate before substitution) is usually a proton, a part or all of the proton is substituted with a lithium ion, and the component (A) is It is formed.
  • the ⁇ -zirconium phosphate is preferably a compound represented by the following formula (1).
  • the amount of lithium ions substituted for the compound of the formula (1) is preferably 0.1 to 6.7 meq / g, more preferably 1.0 to 6.7 meq / g. From the viewpoint of ion trapping properties such as Mn 2+ ions and Ni 2+ ions, it is particularly preferably 2.0 to 6.7 meq / g.
  • x is preferably 0 ⁇ x ⁇ 0.1, more preferably 0 ⁇ x ⁇ 0.02, from the viewpoint of ion trapping properties such as Mn 2+ ions and Ni 2+ ions.
  • Hf ion trapping properties
  • it is preferably 0.005 ⁇ x ⁇ 0.1, more preferably 0.005 ⁇ x ⁇ 0.02.
  • x> 0.2 the ion exchange performance by lithium ions is improved, but since radioactive isotopes exist, when the components of the lithium ion secondary battery include electronic parts, there is a possibility of adverse effects.
  • the method for producing the component (A) is not particularly limited.
  • ⁇ -zirconium phosphate to an aqueous lithium hydroxide (LiOH) solution, stir for a certain time, and then filter, wash and dry.
  • the concentration of the LiOH aqueous solution is not particularly limited. When the concentration is high, the basicity of the reaction solution becomes high, and a part of ⁇ -zirconium phosphate may be eluted. Therefore, the concentration is preferably 1 mol / L or less, more preferably 0.1 mol / L or less.
  • the component (B) is a substitution product of ⁇ -titanium phosphate by lithium ions. Since the ion-exchange group of ⁇ -titanium phosphate ( ⁇ -titanium phosphate before substitution) is usually a proton, a part or all of this proton is substituted with lithium ions to form the component (B). Is done.
  • the amount of lithium ions substituted with respect to the compound of the above formula (2) is preferably 0.1 to 7.0 meq / g, more preferably 1.0 to 7.0 meq / g. From the viewpoint of ion trapping properties such as Mn 2+ ions and Ni 2+ ions, it is particularly preferably 2.0 to 7.0 meq / g.
  • the method for producing the component (B) is not particularly limited.
  • the concentration of the LiOH aqueous solution is not particularly limited. When the concentration is high, the basicity of the reaction solution becomes high, and a part of ⁇ -titanium phosphate may be eluted. Therefore, the concentration is preferably 1 mol / L or less, more preferably 0.1 mol / L or less.
  • the component (C) is a substitute of lithium dihydrogen tripolyphosphate with lithium ions. Since the ion exchange group of aluminum dihydrogen tripolyphosphate (aluminum dihydrogen phosphate before substitution) is usually a proton, a part or all of this proton is substituted with lithium ions to form the component (C). Is done.
  • the aluminum dihydrogen tripolyphosphate is a compound represented by the following formula (3). AlH 2 P 3 O 10 ⁇ nH 2 O (3) (In the formula, n is a positive number.)
  • the amount of lithium ion substituted for the compound of the above formula (3) is preferably 0.1 to 6.9 meq / g, more preferably 1.0 to 6.9 meq / g. From the viewpoint of the ability to trap ions such as Mn 2+ ions and Ni 2+ ions, it is particularly preferably 2.0 to 6.9 meq / g.
  • the lithium ion-containing phosphate usually has a layered structure, and the upper limit of the median particle size is preferably from the viewpoint of ion trapping properties such as Mn 2+ ions and Ni 2+ ions, and dispersibility in a liquid. It is 5.0 ⁇ m, more preferably 3.0 ⁇ m, more preferably 2.0 ⁇ m, still more preferably 1.0 ⁇ m, and the lower limit is usually 0.03 ⁇ m, preferably 0.05 ⁇ m. What is necessary is just to select a preferable particle size by the kind of structural member to which an ion trapping agent is applied.
  • the ion scavenger of the present invention may be composed of a lithium ion-containing phosphate and another compound.
  • other compounds other ion scavengers, water, organic solvents and the like can be used.
  • the water content of the ion scavenger of the present invention is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the moisture content is 10% by mass or less, in the case of a member constituting a lithium ion secondary battery, it is possible to suppress the generation of gas due to moisture electrolysis, and the expansion of the battery Can be suppressed.
  • the water content can be measured by the Karl Fischer method.
  • the method of setting the moisture content of the ion scavenger to 10% by mass or less is not particularly limited, and a powder drying method that is generally used can be applied. For example, a method of heating at 100 ° C. to 300 ° C. for about 6 to 24 hours under atmospheric pressure or reduced pressure can be mentioned.
  • the ion scavenger of this invention can be utilized for the positive electrode, negative electrode, electrolyte solution, or separator which comprise a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and at least one of the positive electrode, the negative electrode, the electrolytic solution, and the separator is an ion trap for the lithium ion secondary battery of the present invention. It contains an agent.
  • the lithium ion secondary battery of the present invention can further include other components.
  • the structure of the lithium ion secondary battery is not particularly limited, but a power storage element composed of a positive electrode, a negative electrode, and a separator is wound into a flat spiral to form a wound electrode group, or In general, after laminating these as a flat plate to form a laminated electrode plate group, the obtained electrode plate group is sealed in an exterior material.
  • FIG. 1 is an example of a lead storage element enclosed in an exterior material.
  • the power storage element 10 is a wound body in which a pair of electrodes (a positive electrode 30 and a negative electrode 40) are disposed so as to face each other with the separator 20 interposed therebetween.
  • the positive electrode 30 includes a positive electrode active material layer 34 on a positive electrode current collector 32, and the negative electrode 40 includes a negative electrode active material layer 44 on a negative electrode current collector 42.
  • the positive electrode active material layer 34 and the negative electrode active material layer 44 are in contact with both sides of the separator 20.
  • the positive electrode active material layer 34, the negative electrode active material layer 44, and the separator 20 contain an electrolytic solution.
  • aluminum leads 52 and 54 are connected to the ends of the positive electrode current collector 32 and the negative electrode current collector 42, respectively.
  • the lithium ion secondary battery of the present invention more preferably includes the ion scavenger of the present invention in at least one of the electrolytic solution and the separator.
  • the ion scavenger of the present invention when impurities are contained in the electrolytic solution, it may cause a short circuit.
  • an ion scavenger is included in at least one of the electrolytic solution and the separator. Unnecessary metal ions can be captured more effectively.
  • the positive electrode which comprises a lithium ion secondary battery is normally equipped with a positive electrode active material layer in at least one part of the positive electrode collector surface as mentioned above.
  • the positive electrode current collector it is possible to use a band-shaped material in which a metal or an alloy such as aluminum, titanium, copper, nickel, or stainless steel is formed into a foil shape, a mesh shape, or the like.
  • Examples of the positive electrode material used for the positive electrode active material layer include metal compounds, metal oxides, metal sulfides, and conductive polymer materials that can be doped or intercalated with lithium ions. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and composite materials thereof, as well as highly conductive materials such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, etc. A molecule
  • numerator etc. can be used individually or in combination of 2 or more types.
  • a positive electrode material-containing slurry is prepared using a dispersing device such as a stirrer together with an organic solvent with the positive electrode material, the ion scavenger and the binder, and this is applied to the current collector material.
  • a method of forming a positive electrode active material layer can be applied.
  • a paste-like positive electrode material-containing slurry may be formed into a sheet shape, a pellet shape, or the like, and integrated with the current collector material.
  • the concentration of the ion scavenger in the positive electrode material-containing slurry can be appropriately selected. For example, it can be 0.01 to 5.0% by mass, and preferably 0.1 to 2.0% by mass.
  • binder examples include polymer compounds such as styrene-butadiene copolymer, (meth) acrylic copolymer, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyimide, and polyamideimide.
  • the content ratio of the binder in the positive electrode active material layer is preferably 0.5 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass in total of the positive electrode material, the ion scavenger and the binder. .
  • the content ratio of the binder is in the range of 0.5 to 20 parts by mass, it is possible to sufficiently adhere to the current collector material and to prevent the electrode resistance from increasing.
  • a metal mask printing method As a method of applying the positive electrode material-containing slurry to the current collector material, a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, screen printing method Etc.
  • Negative electrode which comprises a lithium ion secondary battery is normally equipped with a negative electrode active material layer in at least one part of the negative electrode collector surface as mentioned above.
  • the constituent material of the negative electrode current collector can be the same as the constituent material of the positive electrode current collector, and may be made of a porous material such as foam metal or carbon paper.
  • Examples of the negative electrode material used for the negative electrode active material layer include carbon materials, metal compounds, metal oxides, metal sulfides, and conductive polymer materials that can be doped or intercalated with lithium ions.
  • natural graphite, artificial graphite, silicon, lithium titanate, or the like can be used alone or in combination of two or more.
  • the negative electrode material, ion scavenger and binder are kneaded together with an organic solvent by a dispersing device such as a stirrer, ball mill, super sand mill, pressure kneader, etc. to prepare a negative electrode material-containing slurry.
  • a dispersing device such as a stirrer, ball mill, super sand mill, pressure kneader, etc.
  • a method of applying this to a current collector material to form a negative electrode active material layer can be applied.
  • a paste-like negative electrode material-containing slurry may be formed into a sheet shape, a pellet shape, or the like, and integrated with the current collector material.
  • the ion scavenger and binder used in the negative electrode material-containing slurry can be the same as the positive electrode production raw material, and the content can be the same.
  • Electrolytic solution used for the lithium ion secondary battery of the present invention is not particularly limited, and a known one can be used.
  • a non-aqueous lithium ion secondary battery can be manufactured by using an electrolytic solution in which an electrolyte is dissolved in an organic solvent.
  • the concentration of the electrolyte is preferably 0.3 to 5 mol, more preferably 0.5 to 3 mol, and particularly preferably 0.8 to 1.5 mol with respect to 1 L of the electrolytic solution.
  • organic solvent examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl Carbonates such as carbonate, lactones such as ⁇ -butyrolactone, esters such as methyl acetate and ethyl acetate, chain ethers such as 1,2-dimethoxyethane, dimethyl ether and diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane Cyclic ethers such as 4-methyldioxolane, ketones such as cyclopentanone, sulfolane, 3 Sulfolanes such as methylsulfolane and 2,4-dimethylsulfolane
  • the electrolytic solution of the present invention contains at least one of the above ion scavengers.
  • the content ratio of the ion scavenger in the electrolytic solution of the present invention is preferably 0.01 to 50% by mass, more preferably 0.1 to 30% by mass, and still more preferably from the viewpoint of suppressing occurrence of short circuit and internal resistance. 0.5 to 10% by mass.
  • Examples of the method for adding an ion scavenger to the electrolytic solution include a method in which the ion scavenger is added to and mixed with a mixed solution of an electrolyte and an organic solvent in a solid state or a dispersion state. Among them, the method of adding in a solid state is preferable.
  • the solvent of the dispersion is not particularly limited. Of these, the same organic solvent as the electrolyte is preferred.
  • the concentration of the ion scavenger in the dispersion can be selected as appropriate. For example, it can be 0.01 to 50% by mass, and preferably 1 to 20% by mass.
  • the separator has a role of separating both electrodes so that the positive electrode and the negative electrode are not short-circuited. Further, when an excessive current flows through the battery, it melts due to heat generation and closes the micropores. , To cut off current and ensure safety.
  • the separator is preferably made of a substrate having a porous portion (hereinafter referred to as “porous substrate”), and the structure thereof is not particularly limited.
  • the porous substrate is not particularly limited as long as it has a large number of pores or voids inside and has a porous structure in which these pores are connected to each other.
  • a microporous film, a nonwoven fabric, a paper-like sheet, and other sheets having a three-dimensional network structure can be used.
  • a microporous membrane is preferable from the viewpoint of handling properties and strength.
  • the material constituting the porous substrate both organic materials and inorganic materials can be used, but thermoplastic resins such as polyolefin resins are preferred from the viewpoint of obtaining shutdown characteristics.
  • polystyrene resin examples include polyethylene, polypropylene, and polymethylpentene. Of these, a polymer containing 90% by mass or more of ethylene units is preferable from the viewpoint of obtaining good shutdown characteristics.
  • the polyethylene may be any of low density polyethylene, high density polyethylene and ultra high molecular weight polyethylene. In particular, at least one selected from high-density polyethylene and ultrahigh molecular weight polyethylene is preferable, and polyethylene including a mixture of high density polyethylene and ultrahigh molecular weight polyethylene is more preferable. Such polyethylene is excellent in strength and moldability.
  • the molecular weight of polyethylene is preferably 100,000 to 10,000,000 in terms of weight average molecular weight, and particularly preferably a polyethylene composition containing at least 1% by mass of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more.
  • the porous substrate may contain polyethylene and other polyolefins such as polypropylene and polymethylpentene, and is composed of a laminate of two or more layers comprising a polyethylene microporous membrane and a polypropylene microporous membrane. It may be.
  • the separator of the present invention contains at least one of the above ion scavengers.
  • a preferred separator includes a portion made of a porous substrate and an ion scavenger.
  • the content of the ion scavenger in the separator is preferably 0.01 to 50 g / m 2 , more preferably 0.1 to 20 g / m 2 from the viewpoint of suppressing the occurrence of short circuit.
  • a preferred structure of the separator of the present invention has a layer containing an ion scavenger at any part from one side to the other side, and is exemplified below.
  • S1 Separator including an ion scavenger 60 in the surface layer on the one surface side of the porous substrate 15 FIG. 2 shows a separator according to this embodiment, but the ion scavenger 60 is not limited to this. It may exist on the surface as well as inside 15.
  • FIG. 3 shows a separator of this embodiment, but the ion scavenger 60 is not limited to this. It may exist not only inside but also on the surface.
  • FIG. 4 shows a separator of this embodiment, but the ion scavenger 60 is not limited to this. In addition to the inside of the porous substrate 15, it may be present on the surface.
  • FIG. 5 shows a separator of this embodiment, but is not limited thereto, and contains an ion scavenger inside the porous substrate 15. There may be a plurality of layers.
  • the side containing the ion scavenger 60 may be arranged on either the positive electrode side or the negative electrode side.
  • the separator 20 of the aspect (S2) shown in 3 is also preferable.
  • the step of applying a dispersion containing an ion scavenger to the surface layer part of either the surface or both sides of the porous substrate, and the coating film is dried.
  • the method of sequentially forming the step of forming a layer containing an ion scavenger, or the surface layer part of either one surface or both surfaces of the porous substrate is immersed in a dispersion containing the ion scavenger.
  • the process and the process of drying a coating film and forming the layer containing an ion-trapping agent can be manufactured by the method of providing sequentially.
  • the separator of the above aspect (S3) is produced by a method comprising sequentially immersing the porous substrate in a dispersion containing an ion scavenger and drying the porous substrate with a coating liquid.
  • the separator of the above aspect (S4) is a step of applying a dispersion liquid containing an ion scavenger on the surface of one surface of a porous substrate, a step of drying a coating film to form a layer containing an ion scavenger, And the method of sequentially joining the step of bonding another porous substrate to the ion-trapping agent-containing layer, or the surface of the one surface side of the porous substrate is immersed in a dispersion containing the ion-trapping agent.
  • the step of drying the coating film to form a layer containing an ion scavenger and the step of joining another porous substrate to the ion scavenger-containing layer can be produced by a method comprising sequentially. .
  • the solvent of the dispersion containing the ion scavenger is not particularly limited. Examples thereof include water, N-methyl-2-pyrrolidone, and alcohols such as methanol, ethanol, 1-propanol.
  • the concentration of the ion scavenger in the dispersion can be appropriately selected. For example, it can be 0.01 to 50% by mass, and preferably 1 to 20% by mass.
  • the dispersion may further contain a binder.
  • the ion trapping agent-containing dispersion contains a binder, the ion trapping agent is reliably fixed to the porous substrate. For this reason, when producing a battery, an ion capture agent does not fall off, and unnecessary metal ions can be efficiently captured.
  • the binder is not particularly limited, but the binder can satisfactorily adhere to the lithium ion-containing phosphate and the porous substrate, is electrochemically stable, and is stable to the electrolytic solution. preferable.
  • binders include ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, and vinylidene fluoride.
  • Fluorine resin such as trichloroethylene copolymer, fluorine-based rubber, styrene-butadiene rubber, nitrile butadiene rubber, polybutadiene rubber, polyacrylonitrile, polyacrylic acid, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, cyanoethyl polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone , Poly N-vinylacetamide, Polyether, Polyamide, Polyimide, Polyamideimide, Polyaramid, Cross-linked acrylic resin, Polyureta , And epoxy resins.
  • Fluorine resin such as trichloroethylene copolymer, fluorine-based rubber, styrene-butadiene rubber, nitrile butadiene rubber, polybutadiene rubber, polyacrylonitrile, polyacrylic acid, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, cyan
  • polyvinyl alcohol polyvinylidene fluoride
  • styrene-butadiene rubber polyacrylic acid
  • carboxymethylcellulose carboxymethylcellulose and the like
  • the said binder is the same as the binder used for a positive electrode active material layer or a negative electrode active material layer from a viewpoint of a constituent material of a battery.
  • the usage amount (solid content) of the binder is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass with respect to 100 parts by mass in total of the ion scavenger and the binder.
  • the amount of the binder used is in the range of 0.1 to 20 parts by mass, the ion scavenger is effectively immobilized on the porous substrate, and the effect is continuously obtained. Moreover, the metal adsorption efficiency per mass can be improved.
  • the method for applying the dispersion to the porous substrate is not particularly limited.
  • Known methods such as a die coating method, a doctor blade method, a gravure coating method, and a screen printing method can be applied.
  • the separator of the present invention comprises a laminate in which an independent layer containing an ion scavenger is formed on one side or both sides of a porous substrate. What consists of a laminated body provided with the independent layer containing an ion trapping agent between the quality base materials etc. may be sufficient.
  • the thickness of the ion-trapping agent-containing layer is as follows.
  • the lower limit of the thickness is preferably 0.5 ⁇ m, more preferably 2 ⁇ m, still more preferably 3 ⁇ m, and particularly preferably 4 ⁇ m from the viewpoint of ion trapping properties.
  • the upper limit of the thickness is preferably 90 ⁇ m, more preferably 50 ⁇ m, still more preferably 30 ⁇ m, and particularly preferably 10 ⁇ m from the viewpoints of electrolyte permeability, battery capacity increase, and the like.
  • the number of separators included in the lithium ion secondary battery of the present invention is not particularly limited, and can be appropriately selected depending on the structure of the battery.
  • aspects (L3), (L5) and (L6) are preferred.
  • the ion-trapping agent-containing layer includes a separator disposed at least on the positive electrode side.
  • the ion trapping agent contained may be the same in each part, and may differ.
  • a lithium ion secondary battery having a positive electrode and a negative electrode but not having a separator can be obtained.
  • the positive electrode and the negative electrode are not in direct contact with each other, and a separator is unnecessary.
  • Metal ion scavenging ability of ion scavenger in aqueous solution containing metal ions was evaluated by ICP emission spectroscopic analysis.
  • the specific evaluation method is as follows. First, for Li + , Ni 2+ or Mn 2+ , a 100 ppm metal ion solution was prepared using each metal sulfate and pure water. The ion-trapping agent was added to the prepared solution so as to be 1.0% by mass, mixed well, and then allowed to stand. Then, each metal ion concentration 20 hours after adding the ion scavenger was measured with an ICP emission spectrometer “iCA7600 DUO” (model name) manufactured by Thermo Fisher Scientific.
  • Metal ion trapping ability in model electrolyte Solution assuming the application to a lithium ion secondary battery, metal ion trapping ability in model electrolyte solution was evaluated.
  • a solution in which diethyl carbonate (DEC) and ethylene carbonate (EC) were mixed as a solvent so that the volume ratio was DEC / EC 1/1 was used. Further, nickel tetrafluoroborate was used as a solute. First, a solute was added to a predetermined amount of a solvent so that the concentration of initial Ni 2+ ions was 100 ppm by mass to obtain a model electrolyte.
  • DEC diethyl carbonate
  • EC ethylene carbonate
  • ⁇ -zirconium phosphate (Z1) ⁇ -zirconium phosphate (H type) (hereinafter referred to as “ ⁇ -zirconium phosphate (Z1)”).
  • the ⁇ -zirconium phosphate (Z1) was dissolved by boiling in nitric acid to which hydrofluoric acid was added, and the following composition formula was obtained by ICP emission spectroscopic analysis.
  • ZrH 2.03 (PO 4 ) 2.01 ⁇ 0.05H 2 O
  • the median diameter of ⁇ -zirconium phosphate (Z1) was measured by a laser diffraction particle size distribution analyzer “LA-700” (model name) manufactured by Horiba, Ltd. As a result, it was 0.9 ⁇ m.
  • Example 1 100 g of ⁇ -zirconium phosphate (Z1) obtained in Synthesis Example 1 was added to 1000 mL of 0.1N-LiOH aqueous solution while stirring, and the mixture was stirred for 8 hours. Thereafter, the precipitate was washed with water and vacuum dried at 150 ° C. for 20 hours to produce lithium ion-substituted ⁇ -zirconium phosphate composed of ZrLi 0.3 H 1.73 (PO 4 ) 2.01 ⁇ 0.06H 2 O. The moisture content was 0.4%.
  • This lithium ion-substituted ⁇ -zirconium phosphate is obtained by replacing 1 meq / g of all cation exchange capacities with lithium ions.
  • Example 2 A lithium ion-substituted ⁇ -phosphorus composed of ZrLi 1.03 H 1.00 (PO 4 ) 2.01 ⁇ 0.1H 2 O was carried out in the same manner as in Example 1 except that the amount of 0.1N-LiOH aqueous solution used was 3000 mL. Zirconate acid was produced. The moisture content was 0.3%. Hereinafter, it was referred to as “3 meq-Li substituted ⁇ -zirconium phosphate (A1-2)”. Next, using the 3meq-Li-substituted ⁇ -zirconium phosphate (A1-2) as an ion scavenger, the above evaluations (3) and (4) were performed, and the results are shown in Table 1.
  • Example 3 A lithium ion-substituted ⁇ -zirconium phosphate composed of ZrLi 2.03 (PO 4 ) 2.01 ⁇ 0.2H 2 O was carried out in the same manner as in Example 1 except that the amount of 0.1N-LiOH aqueous solution used was 7000 mL. Manufactured. The moisture content was 0.3%.
  • This lithium ion-substituted ⁇ -zirconium phosphate has all cation exchange capacities (6.7 meq / g) replaced with lithium ions, and is hereinafter referred to as “all Li-substituted ⁇ -zirconium phosphate (A1 -3) ”. Then, using the total Li-substituted ⁇ -zirconium phosphate (A1-3) as an ion scavenger, the above evaluations (3) and (4) were performed. The results are shown in Table 1.
  • Synthesis example 2 405 g of 75% phosphoric acid was added to 400 mL of deionized water, and 137 g of titanyl sulfate (TiO 2 equivalent content: 33%) was added while stirring the aqueous solution. This was then refluxed at 100 ° C. for 48 hours with stirring. After cooling, the resulting precipitate was washed thoroughly with water and dried at 150 ° C. to obtain a powder composed of titanium phosphate. As a result of analyzing this titanium phosphate, it was confirmed that it was ⁇ -titanium phosphate (H type).
  • the ⁇ -titanium phosphate was boiled and dissolved in nitric acid to which hydrofluoric acid was added, and then subjected to ICP emission spectroscopic analysis to obtain the following composition formula.
  • the median diameter of ⁇ -titanium phosphate was measured and found to be 0.7 ⁇ m.
  • Example 4 100 g of ⁇ -titanium phosphate obtained in Synthesis Example 2 was added to 1000 mL of 0.1N-LiOH aqueous solution while stirring, and the mixture was stirred for 8 hours. Thereafter, the precipitate was washed with water and dried at 150 ° C. to produce lithium ion-substituted ⁇ -titanium phosphate composed of TiLi 0.3 H 1.73 (PO 4 ) 2.01 ⁇ 0.2H 2 O. The moisture content was 0.5%.
  • This lithium ion-substituted ⁇ -titanium phosphate is one in which 1 meq / g of all cation exchange capacities is replaced with lithium ions.
  • Example 5 Except that the amount of the 0.1N-LiOH aqueous solution used was changed to 3000 mL, the same operation as in Example 4 was performed, and a lithium ion substitution type ⁇ -comprising TiLi 1.00 H 1.03 (PO 4 ) 2.01 ⁇ 0.1H 2 O was used. Titanium phosphate was produced. The moisture content was 0.3%. Hereinafter, it was referred to as “3 meq-Li substituted ⁇ -titanium phosphate (B-2)”. Next, using the 3meq-Li-substituted ⁇ -titanium phosphate (B-2) as an ion scavenger, the above evaluations (3) and (4) were performed, and the results are shown in Table 1.
  • Example 6 Except that the amount of the 0.1N-LiOH aqueous solution used was changed to 7000 mL, the same operation as in Example 4 was performed, and a lithium ion-substituted ⁇ -phosphate composed of TiLi 2.03 (PO 4 ) 2.01 ⁇ 0.1H 2 O was used. Titanium was produced. The moisture content was 0.3%. This lithium ion-substituted ⁇ -titanium phosphate has all cation exchange capacities (7.0 meq / g) replaced with lithium ions. -3) ”. Next, using the total Li-substituted ⁇ -titanium phosphate (B-3) as an ion scavenger, the above evaluations (3) and (4) were performed. The results are shown in Table 1.
  • Synthesis example 3 After dissolving 0.272 mol of zirconium oxychloride octahydrate with Hf content of 0.18% in 850 mL of deionized water, 0.788 mol of oxalic acid dihydrate was added and dissolved. I let you. Subsequently, 0.57 mol of phosphoric acid was added while stirring this aqueous solution. The mixture was refluxed at 98 ° C. for 8 hours while stirring. After cooling, the resulting precipitate was washed well with water, and then dried at 150 ° C. to obtain a scaly powder composed of zirconium phosphate.
  • ⁇ -zirconium phosphate (Z2) ⁇ -zirconium phosphate
  • Z2 ⁇ -zirconium phosphate
  • the above ⁇ -zirconium phosphate (Z2) was boiled and dissolved in nitric acid to which hydrofluoric acid was added, and then subjected to ICP emission spectroscopic analysis to obtain the following composition formula.
  • Zr 0.99 Hf 0.01 H 2.03 (PO 4 ) 2.01 ⁇ 0.05H 2 O
  • the median diameter of ⁇ -zirconium phosphate (Z2) was 0.8 ⁇ m.
  • Example 7 100 g of ⁇ -zirconium phosphate (Z2) obtained in Synthesis Example 3 was added to 1000 mL of 0.1N-LiOH aqueous solution while stirring, and the mixture was stirred for 8 hours. Thereafter, the precipitate is washed with water and vacuum dried at 150 ° C. for 20 hours to produce a lithium ion-substituted ⁇ -zirconium phosphate composed of Zr 0.99 Hf 0.01 Li 0.3 H 1.73 (PO 4 ) 2.01 ⁇ 0.07H 2 O. did. The moisture content was 0.4%.
  • This lithium ion-substituted ⁇ -zirconium phosphate is one in which 1 meq / g of all cation exchange capacities is replaced with lithium ions.
  • Example 8 Lithium ion substitution consisting of Zr 0.99 Hf 0.01 Li 1.03 H 1.00 (PO 4 ) 2.01 ⁇ 0.1H 2 O was carried out in the same manner as in Example 7 except that the amount of 0.1N-LiOH aqueous solution was changed to 3000 mL. Type ⁇ -zirconium phosphate was produced. The moisture content was 0.3%. Hereinafter, it was referred to as “3 meq-Li substituted ⁇ -zirconium phosphate (A2-2)”. Next, using the 3meq-Li-substituted ⁇ -zirconium phosphate (A2-2) as an ion scavenger, the above evaluations (3) and (4) were performed. The results are shown in Table 1.
  • Example 9 Except that the amount of 0.1N-LiOH aqueous solution used was 7000 mL, the same operation as in Example 7 was performed, and a lithium ion substitution type ⁇ composed of Zr 0.99 Hf 0.01 Li 2.03 (PO 4 ) 2.01 ⁇ 0.2H 2 O -Zirconium phosphate was produced. The moisture content was 0.3%.
  • This lithium ion-substituted ⁇ -zirconium phosphate has all cation exchange capacities (6.7 meq / g) replaced with lithium ions, and is hereinafter referred to as “all Li-substituted ⁇ -zirconium phosphate (A2 -3) ”. Then, using the total Li-substituted ⁇ -zirconium phosphate (A2-3) as an ion scavenger, the above evaluations (3) and (4) were performed. The results are shown in Table 1.
  • Example 10 Aluminum trihydrogen phosphate “K-FRESH # 100P” (trade name) manufactured by Teica was pulverized with a bead mill to obtain a fine powder. Next, 100 g of fine powder was added to a 0.1 N-LiOH aqueous solution. The mixture was stirred for 8 hours, washed with water and filtered, and the residue was dried at 150 ° C., so that lithium ion-substituted aluminum dihydrogen tripolyphosphate composed of AlLi 2 P 3 O 10 .0.2H 2 O was obtained. Manufactured. The median diameter was 0.8 ⁇ m and the water content was 0.3%.
  • This lithium ion-substituted aluminum dihydrogen tripolyphosphate has all cation exchange capacities (6.9 meq / g) replaced with lithium ions. (C-1) ”.
  • C-1 This lithium ion-substituted aluminum dihydrogen tripolyphosphate has all cation exchange capacities (6.9 meq / g) replaced with lithium ions. (C-1) ”.
  • C-1 all-Li-substituted aluminum dihydrogen phosphate triphosphate
  • this dispersion was put into a drier and heated at 98 ° C. for 48 hours to obtain a dispersion having an aluminum silicate concentration of 47 g / L.
  • the aluminum silicate in the liquid was aggregated by adjusting the pH. Thereafter, this aggregate was precipitated by centrifugation for 5 minutes, and the supernatant was removed. And the desalting process of adding pure water to the collect
  • the gel-like precipitate obtained after the third desalting of the desalting treatment was dried at 60 ° C.
  • Comparative Example 5 50 g of commercially available Y-type zeolite “Mizuka Sieves Y-520” (manufactured by Mizusawa Chemical Co., Ltd.) was placed in 10 L of 0.05 M HNO 3 solution and stirred at room temperature for 8 hours. Thereafter, the precipitate was washed with water and dried at 150 ° C. for 20 hours to obtain a zeolite from which sodium was removed. Next, 10 g of this zeolite was placed in 1 L of a 0.1 M LiOH aqueous solution and stirred at room temperature for 8 hours. Thereafter, the precipitate was washed with water and dried at 150 ° C. for 20 hours to obtain “Li-substituted Y-type zeolite”. Next, using the Li-substituted Y-type zeolite as an ion scavenger, the above evaluations (3) and (4) were performed, and the results are shown in Table 1.
  • Comparative Example 2 Wako Pure Chemical Industries, Ltd., activated carbon (reagent) “crushed, 2 mm to 5 mm”
  • Comparative Example 3 Wako Pure Chemical Industries, Ltd. Silica gel (reagent) “Small granular (white)”
  • Comparative Example 4 Y-type zeolite “Mizuka Sieves Y-520” (trade name) manufactured by Mizusawa Chemical Co., Ltd.
  • Comparative Example 6 ⁇ -zirconium phosphate (Z1) synthesized in Synthesis Example 1
  • Comparative Example 7 ⁇ -titanium phosphate synthesized in Synthesis Example 2
  • Comparative Example 8 Hydrotalcite “DHT-4H” (trade name) manufactured by Kyowa Chemical Co., Ltd.
  • the ion scavengers of Examples 1 to 10 selectively capture Ni 2+ and Mn 2+ in water and are excellent in ion adsorption ability. Also in the test using the model electrolyte, the ion scavengers of Examples 1 to 10 showed high ion scavenging properties. From these results, the ion scavenger of the present invention captures Ni 2+ and Mn 2+ unnecessary for the lithium ion secondary battery, but does not capture Li + essential for charge and discharge. Generation
  • An ion scavenger working fluid is prepared using the above ion scavenger, polyvinyl alcohol, etc., and then the ion scavenger working fluid has a porosity of 50% to 60%, Was applied to a porous polyethylene film (porous substrate) having a thickness of 20 ⁇ m to obtain a separator containing an ion scavenger. And the capture
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Ni (BF 4 ) ⁇ 6H 2 O was dissolved in the non-aqueous electrolyte so that Ni 2+ was 100 ppm by mass to prepare a test solution.
  • a separator (50 mm ⁇ 50 mm) and 10 mL of the test solution were placed in a petri dish having a diameter of 9 cm, covered, and allowed to stand at 25 ° C.
  • Example 11 The total Li-substituted ⁇ -zirconium phosphate (A1-3) obtained in Example 3, polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more), and ion-exchanged water were each 5 masses. , 95 parts by mass and 100 parts by mass, and these were put together with zirconium oxide beads “Traceram” (registered trademark) with a diameter of 0.5 mm in a polypropylene container into a container made by Toyo Seiki Seisakusho “Paint Shaker” For 4 hours. Thereafter, the obtained dispersion was filtered through a filter having a filtration limit of 5 ⁇ m to obtain an ion scavenger processing liquid.
  • polyvinyl alcohol average polymerization degree 1700, saponification degree 99% or more
  • ion-exchanged water were each 5 masses. , 95 parts by mass and 100 parts by mass, and these were put together with zirconium oxide beads “Traceram” (register
  • an ion scavenger processing liquid was applied to one surface of the porous substrate (polyethylene film) by a gravure coating method to obtain a coating film having a thickness of 10 ⁇ m. And it was made to dry and fix by letting the inside of a 50 degreeC hot-air drying furnace pass for 10 second, and it had the cross-sectional structure of FIG. 2, and obtained the separator (S1) with a thickness of 25 micrometers.
  • This separator (S1) was calcined at 1000 ° C. for 2 hours, and the amount of all Li-substituted ⁇ -zirconium phosphate (A1-3) supported was calculated from the calcined residue and found to be 1.0 mg / cm 2 .
  • Example 12 All Li-substituted ⁇ -zirconium phosphate (A1-3) obtained in Example 3 was heated in vacuum at 150 ° C. for 20 hours and then at 350 ° C. for 4 hours to obtain a fired product.
  • the obtained fired product was represented by ZrLi 2.03 (PO 4 ) 2.01 and the median particle size was 0.9 ⁇ m.
  • the ion scavenger working fluid was prepared and the separator was produced in the same manner as in Example 11 except that this fired product was used in place of all Li-substituted ⁇ -zirconium phosphate (A1-3). It was.
  • the thickness of the obtained separator (S2) was 25 ⁇ m, and the supported amount of the fired product was 1.1 mg / cm 2 .
  • Example 13 Ion scavenger in the same manner as in Example 11 except that 3 meq-Li substituted ⁇ -zirconium phosphate (A1-2) was used instead of all Li substituted ⁇ -zirconium phosphate (A1-3). Preparation of a working fluid and manufacture of a separator were performed. The obtained separator (S3) had a thickness of 25 ⁇ m, and the supported amount of 3 meq-Li-substituted ⁇ -zirconium phosphate (A1-2) was 1.0 mg / cm 2 .
  • Example 14 Ion scavenger processing in the same manner as in Example 11 except that all Li-substituted ⁇ -titanium phosphate (B-3) was used instead of all Li-substituted ⁇ -zirconium phosphate (A1-3).
  • the liquid was prepared and the separator was manufactured.
  • the thickness of the obtained separator (S4) was 25 ⁇ m, and the amount of all Li-substituted ⁇ -titanium phosphate (B-3) supported was 0.8 mg / cm 2 .
  • Example 15 Ion scavenger in the same manner as in Example 11 except that 3 meq-Li substituted ⁇ -titanium phosphate (B-2) was used instead of all Li substituted ⁇ -zirconium phosphate (A1-3). Preparation of a working fluid and manufacture of a separator were performed.
  • the obtained separator (S5) had a thickness of 25 ⁇ m, and the supported amount of 3 meq-Li-substituted ⁇ -titanium phosphate (B-2) was 0.8 mg / cm 2 .
  • Example 16 Ion scavenger processing in the same manner as in Example 11 except that instead of all Li-substituted ⁇ -zirconium phosphate (A1-3), all Li-substituted aluminum dihydrogen tripolyphosphate (C-1) was used. The liquid was prepared and the separator was manufactured. The thickness of the obtained separator (S6) was 25 ⁇ m, and the supported amount of all Li-substituted aluminum dihydrogen tripolyphosphate (C-1) was 1.1 mg / cm 2 .
  • Example 17 Except that the ion scavenger processing liquid prepared in Example 11 was applied to both surfaces of the porous substrate (polyethylene film), the same operation as in Example 11 was performed to support the ion scavenger on both surfaces. A separator (S7) was obtained. The thickness of the obtained separator (S7) was 30 ⁇ m, and the total amount of Li-substituted ⁇ -zirconium phosphate (A1-3) supported was 2.0 mg / cm 2 .
  • Example 18 A separator (S8) having the cross-sectional structure of FIG. 2 was obtained by performing the same operation as in Example 11 except that the coating amount of the ion scavenger processing liquid prepared in Example 11 was reduced.
  • the thickness of the obtained separator (S8) was 23 ⁇ m, and the amount of all Li-substituted ⁇ -zirconium phosphate (A1-3) supported was 0.5 mg / cm 2 .
  • Example 19 A separator (S9) having the cross-sectional structure of FIG. 2 was obtained by performing the same operation as in Example 11 except that the amount of the ion scavenger processing liquid prepared in Example 11 was increased.
  • the thickness of the obtained separator (S9) was 35 ⁇ m, and the supported amount of all Li-substituted ⁇ -zirconium phosphate (A1-3) was 3.0 mg / cm 2 .
  • Example 20 The total Li-substituted ⁇ -zirconium phosphate (A1-3) obtained in Example 3, polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more), and ion-exchanged water were each 85 masses. 2 except that the ion scavenger processing liquid obtained in the same manner as in Example 11 was used in the ratio of 15 parts by mass, 15 parts by mass and 100 parts by mass. A separator (S10) having a cross-sectional structure was obtained. The thickness of the resulting separator (S10), a 25 [mu] m, the supported amount of the total Li substituted ⁇ - zirconium phosphate (A1-3) was 0.9 mg / cm 2.
  • Comparative Example 10 In the same manner as in Example 11, except that alumina particles having a median diameter of 0.8 ⁇ m were used instead of all Li-substituted ⁇ -zirconium phosphate (A1-3), the preparation of the ion scavenger processing liquid and the separator Manufactured.
  • the obtained separator (S12) had a thickness of 25 ⁇ m, and the supported amount of alumina particles was 1.6 mg / cm 2 .
  • Comparative Example 11 Ion scavenger processing in the same manner as in Example 11 except that ⁇ -zirconium phosphate (Z1) prepared in Synthesis Example 1 was used instead of all Li-substituted ⁇ -zirconium phosphate (A1-3). The liquid was prepared and the separator was manufactured. The thickness of the obtained separator (S13) was 25 ⁇ m, and the supported amount of ⁇ -zirconium phosphate (Z1) was 1.0 mg / cm 2 .
  • Comparative Example 12 An ion scavenger in the same manner as in Example 11 except that ⁇ -titanium phosphate (H type) prepared in Synthesis Example 2 was used instead of all Li-substituted ⁇ -zirconium phosphate (A1-3). Preparation of a working fluid and manufacture of a separator were performed. The thickness of the obtained separator (S14) was 25 ⁇ m, and the supported amount of ⁇ -titanium phosphate (H type) was 0.8 mg / cm 2 .
  • Comparative Example 13 Instead of all Li-substituted ⁇ -zirconium phosphate (A1-3), fine powder (median) obtained by grinding aluminum dihydrogen phosphate “K-FRESH # 100P” (trade name) manufactured by Teika with a bead mill An ion scavenger processing liquid was prepared and a separator was manufactured in the same manner as in Example 11 except that the particle size was 20 ⁇ m. The thickness of the obtained separator (S15) was 25 ⁇ m, and the supported amount of aluminum dihydrogen triphosphate was 1.1 mg / cm 2 .
  • Lithium Ion Secondary Battery Example 21 First, a positive electrode and a negative electrode were prepared, and then, using these positive electrode and negative electrode, the separator (S1) obtained in Example 11, and the non-aqueous electrolyte manufactured by Kishida Chemical Co., A secondary battery was manufactured.
  • negative electrode 90 parts by mass of amorphous carbon (negative electrode active material), 7 parts by mass of carbon black (conductive aid), 3 parts by mass of polyvinylidene fluoride (binder), and 100 parts by mass of N-methyl-2-pyrrolidone (solvent) was mixed and dispersed to obtain a negative electrode material-containing slurry.
  • this negative electrode material-containing slurry is applied to the surface of a copper foil (negative electrode current collector) having a thickness of 20 ⁇ m by a doctor blade method so that the thickness of the coating film becomes 30 ⁇ m, and dried to obtain a negative electrode active material. A layer was formed.
  • compression molding by a roll press machine and cutting to a predetermined size (35 mm ⁇ 70 mm) were performed to obtain a negative electrode for a lithium ion secondary battery.
  • the lithium ion secondary battery (L1) was initialized by the following method, and initial capacity and cycle characteristics were measured and a safety test was performed. The results are shown in Table 3. (Initialization) From the open circuit state, the lithium ion secondary battery (L1) was charged with a constant current corresponding to a 3-hour rate until the battery voltage reached 4.2V. After the battery voltage reached 4.2 V, 4.2 V was maintained until the current value became equivalent to 0.1 hour rate. These two charging steps are called “charging under standard conditions”, and the charged state is called “full charging”. The charge was then stopped and paused for 30 minutes. This process is called “pause”.
  • discharge under standard conditions Thereafter, the discharge was stopped and “pause” was performed. Thereafter, the cycle of “charging under standard conditions”, “pause”, “discharging under standard conditions” and “pause” was repeated three times. Further, “charging under standard conditions” and “pause” were performed, and discharging of a constant current corresponding to a 3-hour rate was started, and discharging was performed until the battery voltage reached 3.8V. This state is called “half-charge”. Thereafter, aging was performed for 1 week to complete initialization.
  • the “time rate” is defined as a current value for discharging the design discharge capacity of the battery in a predetermined time.
  • the 3-hour rate is a current value for discharging the design capacity of the battery in 3 hours.
  • the current value at the 3-hour rate is C / 3 (unit: A).
  • Example 22 Ramice-type lithium ion secondary battery in the same manner as in Example 21, except that the negative electrode, the separator (S1), and the positive electrode were laminated so that the ion-trapping agent-containing layer side of the separator (S1) faces the negative electrode. (L2) was obtained. Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Example 23 A lamellar lithium ion secondary battery (L3) was obtained in the same manner as in Example 21 except that the separator (S2) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Example 24 A lamellar lithium ion secondary battery (L4) was obtained in the same manner as in Example 21 except that the separator (S3) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Example 25 A lamellar lithium ion secondary battery (L5) was obtained in the same manner as in Example 21 except that the separator (S4) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Example 26 A lamellar lithium ion secondary battery (L6) was obtained in the same manner as in Example 21 except that the separator (S5) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Example 27 A lamellar lithium ion secondary battery (L7) was obtained in the same manner as in Example 21 except that the separator (S6) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Example 28 A lamicelle type lithium ion secondary battery (L4) was obtained in the same manner as in Example 21 except that instead of the separator (S1), a separator (S7) having an ion scavenger-containing layer on both sides was used. Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Example 29 A lamellar lithium ion secondary battery (L9) was obtained in the same manner as in Example 21 except that the separator (S8) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Example 30 A lamellar lithium ion secondary battery (L10) was obtained in the same manner as in Example 21 except that the separator (S9) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Example 31 A lamellar lithium ion secondary battery (L11) was obtained in the same manner as in Example 21 except that the separator (S10) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Comparative Example 14 A lamellar lithium ion secondary battery (L12) was obtained in the same manner as in Example 21 except that the separator (S11) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. The above results are shown in Table 3.
  • the safety test the battery voltage dropped rapidly immediately after the nail penetrated the battery and short-circuited. Then, the battery temperature and the battery surface temperature in the vicinity of the penetrating portion rose rapidly, and became a thermal runaway state, and reached a maximum of 400 ° C. or more about 40 seconds after the nail was pulled out. In addition, after the thermal runaway, sparks were generated from the penetrating part, and hot smoke erupted.
  • Comparative Example 15 A lamellar lithium ion secondary battery (L13) was obtained in the same manner as in Example 21 except that the separator (S12) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Comparative Example 16 A lamellar lithium ion secondary battery (L14) was obtained in the same manner as in Example 21 except that the separator (S13) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Comparative Example 17 A lamellar lithium ion secondary battery (L15) was obtained in the same manner as in Example 21 except that the separator (S14) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • Comparative Example 18 A lamellar lithium ion secondary battery (L16) was obtained in the same manner as in Example 21 except that the separator (S15) was used instead of the separator (S1). Thereafter, in the same manner as in Example 21, the initial capacity and cycle characteristics were evaluated and the safety test was performed. In the safety test, the same behavior as the lithium ion secondary battery (L1) was shown. The above results are shown in Table 3.
  • the lithium ion secondary battery including a separator containing a phosphate (an ion scavenger of the present invention) in which at least a part of the ion exchange groups is substituted with lithium ions has cycle characteristics and safety. Excellent in properties.
  • the ion scavenger of this invention can be used for the structural member of lithium ion secondary batteries, such as electrolyte solution and a separator.
  • the separator of the present invention has a lithium ion secondary battery other than a lithium ion secondary battery, such as a lithium ion capacitor (hybrid capacitor) in which the anode is an electric double layer and the cathode is a lithium ion secondary battery structure. It can also be applied to electrochemical devices.
  • the lithium ion secondary battery of the present invention is a paper type battery, button type battery, coin type battery, stacked type battery, cylindrical type battery, square type battery, etc., such as a mobile phone, tablet computer, laptop computer, game machine, etc. It can be used for portable equipment; automobiles such as electric cars and hybrid electric cars;
  • 10 lead storage element
  • 15 porous substrate
  • 20 separator
  • 30 positive electrode
  • 32 positive electrode current collector
  • 34 positive electrode active material layer
  • 40 negative electrode
  • 42 negative electrode current collector
  • 44 negative electrode Active material layer
  • 52, 54 Lead
  • 60 Ion scavenger

Abstract

本発明は、リチウムイオン二次電池の構成部品から生じる不純物金属イオンを高選択的に捕捉し、かつ、単位質量あたりの吸着能が高く、不純物に起因する短絡の発生を抑制するとともに、中性の液体を与えるため電解液に与える影響がほとんどなく、長寿命のリチウムイオン二次電池を与えることができるリチウムイオン二次電池用イオン捕捉剤を提供する。本発明のリチウムイオン二次電池用イオン捕捉剤は、(A)所定範囲のイオン交換基がリチウムイオンに置換された特定組成のα-リン酸ジルコニウム、(B)所定範囲のイオン交換基がリチウムイオンに置換された特定組成のα-リン酸チタン、及び、(C)所定範囲のイオン交換基がリチウムイオンに置換された特定組成のトリポリリン酸二水素アルミニウムから選ばれた少なくとも1種であるリン酸塩を含有する。

Description

リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池の構成要素として好適なイオン捕捉剤、電解液及びセパレーター並びにこれらを備えるリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、ニッケル水素電池、鉛蓄電池等の他の二次電池に比べて軽量で、高い入出力特性を有することから、電気自動車、ハイブリッド型電気自動車等に用いられる高入出力用電源として注目されている。
 しかし、リチウムイオン二次電池を構成する部品の中に不純物(例えば、鉄、ニッケル、マンガン、銅等を含む磁性不純物又はそのイオン)が存在すると、充放電時にリチウム金属が負極上に析出する。そして、負極上に析出したリチウムデンドライドがセパレーターを破って正極に到達することにより、短絡する場合がある。
 また、リチウムイオン二次電池は、さまざまな場所で用いられているため、例えば、車内等の温度が40℃~80℃となる場合がある。このとき、正極の構成材料であるリチウム含有金属酸化物からマンガン等の金属が溶出して負極に析出し、電池の特性(容量)を低下させる場合がある。
 このような問題に対して、例えば、特許文献1には、リチウムイオン二次電池内部に発生する不純物又は副生成物を吸収、結合あるいは吸着によって捕捉する機能を有する捕捉物質を有するリチウムイオン二次電池が記載されており、捕捉物質として、活性炭、シリカゲル、ゼオライト等が挙げられている。
 また、特許文献2には、構成元素に金属元素としてFe又はMnを含むリチウム化合物を正極活物質とする正極と、リチウムイオンを吸蔵・放出可能な炭素材料を負極活物質とする負極とを、非水電解液内に分離して配置した非水系リチウムイオン二次電池であって、正極は、正極活物質に対して0.5~5wt%のゼオライトを含有し、該ゼオライトは、有効細孔径が上記金属元素のイオン半径より大きく0.5nm(5Å)以下の非水系リチウムイオン二次電池が開示されている。
 更に、特許文献3~5には、特定の組成、構造のアルミニウムケイ酸塩、それを使用したリチウムイオン二次電池及び部材が開示されている。
特開2000-77103号公報 特開2010-129430号公報 国際公開第2012/124222号 特開2013-127955号公報 特開2013-127955号公報
 しかしながら、上記の特許文献に開示されたイオン吸着剤は、不純物を高選択的に捕捉できない場合があり、また、単位質量あたりの吸着能も不十分で、要求される寿命特性が得られない場合があった。更に、イオン吸着能が十分な場合でも、イオン捕捉剤がアルカリ性を示すために、電解液の分解が生じ、抵抗の上昇が起こるという問題があった。
 本発明の目的は、リチウムイオン二次電池の構成部品から生じる不純物金属イオンを高選択的に捕捉し、かつ、単位質量あたりの吸着能が高いリチウムイオン二次電池用イオン捕捉剤、及び、このイオン捕捉剤を含み、サイクル特性及び安全性に優れたリチウムイオン二次電池を提供することである。また、他の目的は、イオン捕捉剤が中性で、電解液に与える影響が小さいリチウムイオン二次電池用イオン捕捉剤を提供することである。更に他の目的は、不純物に起因する短絡の発生や、抵抗の上昇を抑制し、長寿命なリチウムイオン二次電池を与える電解液及びセパレーターを提供することである。
 本発明者らは、イオン交換基の少なくとも一部がリチウムイオンに置換されたリン酸塩を含むイオン捕捉剤が、Ni2+イオン及びMn2+イオンを高選択的に捕捉し、かつ、単位質量あたりの吸着性能が高いことを見い出した。また、本発明者らは、このイオン捕捉剤を含むセパレーターを備えるリチウムイオン二次電池が、サイクル特性及び安全性に優れることを見い出した。
 即ち、本発明は、以下の通りである。
1.イオン交換基の少なくとも一部がリチウムイオンに置換されたリン酸塩を含有することを特徴とするリチウムイオン二次電池用イオン捕捉剤。
2.上記リン酸塩が、
(A)イオン交換基の少なくとも一部がリチウムイオンに置換されたα-リン酸ジルコニウム、
(B)イオン交換基の少なくとも一部がリチウムイオンに置換されたα-リン酸チタン、及び、
(C)イオン交換基の少なくとも一部がリチウムイオンに置換されたトリポリリン酸二水素アルミニウム
から選ばれた少なくとも1種である上記項1に記載のリチウムイオン二次電池用イオン捕捉剤。
3.上記成分(A)は、全イオン交換容量のうち、0.1~6.7meq/gが上記リチウムイオンに置換されたα-リン酸ジルコニウムである上記項2に記載のリチウムイオン二次電池用イオン捕捉剤。
4.上記リチウムイオンに置換される前のα-リン酸ジルコニウムが、下記式(1)で表される化合物である上記項2又は3に記載のリチウムイオン二次電池用イオン捕捉剤。
   Zr1-xHfxa(PO4b・nH2O   (1)
(式中、a及びbは3b-a=4を満たす正数であり、bは2<b≦2.1であり、xは0≦x≦0.2であり、nは0≦n≦2である。)
5.上記成分(B)は、全イオン交換容量のうち、0.1~7.0meq/gが上記リチウムイオンに置換されたα-リン酸チタンである上記項2に記載のリチウムイオン二次電池用イオン捕捉剤。
6.上記リチウムイオンに置換される前のα-リン酸チタンが、下記式(2)で表される化合物である上記項2又は5に記載のリチウムイオン二次電池用イオン捕捉剤。
   TiHs(PO4t・nH2O   (2)
(式中、s及びtは3t-s=4を満たす正数であり、tは2<t≦2.1であり、nは0≦n≦2である。)
7.上記成分(C)は、全イオン交換容量のうち、0.1~6.9meq/gが上記リチウムイオンに置換されたトリポリリン酸二水素アルミニウムである上記項2に記載のリチウムイオン二次電池用イオン捕捉剤。
8.上記リチウムイオンに置換される前のトリポリリン酸二水素アルミニウムが、下記式(3)で表される化合物である上記項2又は7に記載のリチウムイオン二次電池用イオン捕捉剤。
   AlH2310・nH2O   (3)
(式中、nは正数である。)
9.水分含有率が10質量%以下である上記項1乃至8のいずれか一項に記載のリチウムイオン二次電池用イオン捕捉剤。
10.上記項1乃至9のいずれか一項に記載のリチウムイオン二次電池用イオン捕捉剤を含有することを特徴とする電解液。
11.上記項1乃至9のいずれか一項に記載のリチウムイオン二次電池用イオン捕捉剤を含有することを特徴とするセパレーター。
12.正極、負極、電解液及びセパレーターを備えるリチウムイオン二次電池であって、上記正極、上記負極、上記電解液及び上記セパレーターの少なくとも1つが、上記項1乃至9のいずれか一項に記載のリチウムイオン二次電池用イオン捕捉剤を含有することを特徴とするリチウムイオン二次電池。
 本発明のリチウムイオン二次電池用イオン捕捉剤は、リチウムイオン二次電池の構成部品から生じる不純物金属イオンを高選択的に捕捉し、かつ、単位質量あたりの吸着能が高い。そのため、このイオン捕捉剤を、電解液、又は、セパレーター等、電解液が接触する部材に含有させたリチウムイオン二次電池において、不純物に起因する短絡の発生を抑制することができる。また、本発明のリチウムイオン二次電池用イオン捕捉剤は中性の液体を与えるため、このイオン捕捉剤を用いて電解液を調製した場合でも、電解液に与える影響がほとんどなく、長寿命のリチウムイオン二次電池を与えることができる。
 本発明のリチウムイオン二次電池は、充放電によるサイクル特性に優れ、衝撃を受けた場合の安全性にも優れる。
本発明のリチウムイオン二次電池を構成するリード付き蓄電要素の1例を示す概略図である。 態様(S1)のセパレーターの断面構造を示す概略図である。 態様(S2)のセパレーターの断面構造を示す概略図である。 態様(S3)のセパレーターの断面構造を示す概略図である。 態様(S4)のセパレーターの断面構造を示す概略図である。
 以下、本発明を詳細に説明する。
 本発明のリチウムイオン二次電池用イオン捕捉剤(以下、単に「イオン捕捉剤」ともいう)は、イオン交換基の少なくとも一部がリチウムイオンに置換されたリン酸塩(以下、「リチウムイオン含有リン酸塩」という)を含有することを特徴とする。本発明のイオン捕捉剤は、リチウムイオン含有リン酸塩のみからなるものであってよいし、リチウムイオン含有リン酸塩と、他の化合物とからなるものであってもよい。
 本発明のイオン捕捉剤は、マンガンイオン(Mn2+)、ニッケルイオン(Ni2+)、銅イオン(Cu2+)、鉄イオン(Fe2+)等の、リチウムイオン二次電池において不要な金属イオンの捕捉性が優れる一方、リチウムイオンに対する捕捉性が低い。そのため、短絡の発生原因となりうる上記金属イオンを効率的に捕捉することができる。上記金属イオンは、リチウムイオン二次電池の構成部材に存在する不純物や、高温下で正極から溶出する金属に由来するものである。
 また、イオン交換基がリチウムイオンに置換される前のリン酸塩は、いずれも、層状化合物であり、層内にOH基が多く存在する。リチウムイオンを担持させたリチウムイオン含有リン酸塩もまた、層状化合物である。このリチウムイオン含有リン酸塩を含むイオン捕捉剤を、例えば、電解液又はセパレーターに含有させることにより、電解液中のリチウムイオンを捕捉することなく、マンガンイオン、ニッケルイオン等を選択的に捕捉することができる。
 更に、本発明のイオン捕捉剤は中性の液体を与えるため、電解液に添加した場合でも、そのpHを大きく変動させることはない。具体的には、電解液にアルカリ性物質が含まれると、pH上昇に伴い、電解液が分解して炭酸リチウムが生成し易くなり、抵抗が上昇する不具合があるが、本発明のイオン捕捉剤は、このような問題を招くことはない。また、本発明のイオン捕捉剤は、無機物であるため、熱安定性や、有機溶剤中での安定性に優れている。このため、リチウムイオン二次電池の構成部材に含有させた場合、充放電中でも安定に存在できる。
 上記リチウムイオン含有リン酸塩は、以下に示される。
(A)イオン交換基の少なくとも一部がリチウムイオンに置換されたα-リン酸ジルコニウム
(B)イオン交換基の少なくとも一部がリチウムイオンに置換されたα-リン酸チタン
(C)イオン交換基の少なくとも一部がリチウムイオンに置換されたトリポリリン酸二水素アルミニウム
 本発明のイオン捕捉剤は、これらの1種のみを含むものであってよいし、2種以上を含むものであってもよい。
 上記成分(A)は、α-リン酸ジルコニウムのリチウムイオンによる置換体である。
 上記α-リン酸ジルコニウム(置換前のα-リン酸ジルコニウム)のイオン交換基は、通常、プロトンであるので、このプロトンの一部又は全てがリチウムイオンに置換されて、上記成分(A)が形成される。
 上記α-リン酸ジルコニウムは、好ましくは、下記式(1)で示される化合物である。
   Zr1-xHfxa(PO4b・nH2O   (1)
(式中、0≦x≦0.2であり、2<b≦2.1であり、aは、3b-a=4を満たす数であり、0≦n≦2である。)
 上記式(1)の化合物に対して置換されているリチウムイオンの量は、好ましくは0.1~6.7meq/g、より好ましくは1.0~6.7meq/gである。Mn2+イオン、Ni2+イオン等のイオン捕捉性の観点から、特に好ましくは2.0~6.7meq/gである。
 上記式(1)におけるxは、Mn2+イオン、Ni2+イオン等のイオン捕捉性の観点から、好ましくは0≦x≦0.1、より好ましくは0≦x≦0.02である。また、Hfを含む場合、好ましくは0.005≦x≦0.1、より好ましくは0.005≦x≦0.02である。x>0.2の場合、リチウムイオンによるイオン交換性能は向上するが、放射性の同位体が存在するため、リチウムイオン二次電池の構成部品が電子部品を含む場合、悪影響を及ぼすことがある。
 上記成分(A)を製造する方法は、特に限定されない。例えば、水酸化リチウム(LiOH)水溶液にα-リン酸ジルコニウムを添加し、一定時間撹拌した後、ろ過、洗浄及び乾燥する方法とすることができる。LiOH水溶液の濃度は、特に限定されない。高濃度の場合、反応液の塩基性が高くなり、α-リン酸ジルコニウムの一部が溶出することがあるため、好ましくは1mol/L以下、更に好ましくは0.1mol/L以下である。
 上記成分(B)は、α-リン酸チタンのリチウムイオンによる置換体である。
 α-リン酸チタン(置換前のα-リン酸チタン)のイオン交換基は、通常、プロトンであるので、このプロトンの一部又はすべてがリチウムイオンに置換されて、上記成分(B)が形成される。
 上記α-リン酸チタンは、下記式(2)で示される化合物である。
   TiHs(PO4t・nH2O   (2)
(式中、2<t≦2.1であり、sは、3t-s=4を満たす数であり、0≦n≦2である。)
 上記式(2)の化合物に対して置換されているリチウムイオンの量は、好ましくは0.1~7.0meq/g、より好ましくは1.0~7.0meq/gである。Mn2+イオン、Ni2+イオン等のイオン捕捉性の観点から、特に好ましくは2.0~7.0meq/gである。
 上記成分(B)を製造する方法は、特に限定されない。例えば、LiOH水溶液にα-リン酸チタンを添加し、一定時間撹拌した後、ろ過、洗浄及び乾燥する方法とすることができる。LiOH水溶液の濃度は、特に限定されない。高濃度の場合、反応液の塩基性が高くなり、α-リン酸チタンの一部が溶出することがあるため、好ましくは1mol/L以下、更に好ましくは0.1mol/L以下である。
 上記成分(C)は、トリポリリン酸二水素アルミニウムのリチウムイオンによる置換体である。
 トリポリリン酸二水素アルミニウム(置換前のトリポリリン酸二水素アルミニウム)のイオン交換基は、通常、プロトンであるので、このプロトンの一部又はすべてがリチウムイオンに置換されて、上記成分(C)が形成される。
 上記トリポリリン酸二水素アルミニウムは、下記式(3)で示される化合物である。
   AlH2310・nH2O   (3)
(式中、nは正数である。)
 上記式(3)の化合物に対して置換されているリチウムイオンの量は、好ましくは0.1~6.9meq/g、より好ましくは1.0~6.9meq/gである。Mn2+イオン、Ni2+イオン等のイオン捕捉性の観点から、特に好ましくは2.0~6.9meq/gである。
 上記リチウムイオン含有リン酸塩は、通常、層状構造を有し、Mn2+イオン、Ni2+イオン等のイオン捕捉性、液体中における分散性の観点から、メジアン粒径の上限は、好ましくは5.0μm、より好ましくは3.0μm、より好ましくは2.0μm、更に好ましくは1.0μmであり、下限は、通常、0.03μm、好ましくは0.05μmである。イオン捕捉剤を適用する構成部材の種類によって、好ましい粒径を選択すればよい。
 上記のように、本発明のイオン捕捉剤は、リチウムイオン含有リン酸塩と、他の化合物とからなるものであってもよい。他の化合物としては、他のイオン捕捉剤、水、有機溶媒等とすることができる。
 本発明のイオン捕捉剤の水分含有率は、好ましくは10質量%以下、より好ましくは5質量%以下である。水分含有率が10質量%以下であると、リチウムイオン二次電池を構成する部材とした場合に、水分が電気分解を起こすことに起因するガスの発生を抑制することができ、電池の膨張を抑制することができる。尚、水分含有率は、カールフィッシャー法にて測定することができる。
 イオン捕捉剤の水分含有率を10質量%以下とする方法は、特に限定されず、通常、用いられる粉体の乾燥方法を適用することができる。例えば、大気圧又は減圧下で、100℃~300℃で、6~24時間程度の加熱を行う方法が挙げられる。
 本発明のイオン捕捉剤は、リチウムイオン二次電池を構成する正極、負極、電解液又はセパレーターに利用することができる。これらのうち、特に、正極、電解液又はセパレーターに利用することが好ましい。
 本発明のリチウムイオン二次電池は、正極、負極、電解液及びセパレーターを備え、上記正極、上記負極、上記電解液及び上記セパレーターの少なくとも1つが、上記本発明のリチウムイオン二次電池用イオン捕捉剤を含有することを特徴とする。本発明のリチウムイオン二次電池は、更に、他の構成部品を備えることができる。
(1)構造
 リチウムイオン二次電池の構造は、特に限定されないが、正極と、負極と、セパレーターとからなる蓄電要素を、扁平渦巻状に巻回して巻回式極板群とする、あるいは、これらを平板状として積層して積層式極板群とした後、得られた極板群を外装材中に封入した構造とするのが一般的である。
 図1は、外装材に封入されるリード付き蓄電要素の1例である。この蓄電要素10は、一対の電極(正極30、負極40)がセパレーター20を挟んで対向配置されたものを巻回した巻回体である。正極30は、正極集電体32上に正極活物質層34を備え、負極40は、負極集電体42上に負極活物質層44を備える。正極活物質層34及び負極活物質層44は、セパレーター20の両面側にそれぞれ接触している。正極活物質層34、負極活物質層44及びセパレーター20の内部には、電解液が含有されている。図1は、正極集電体32及び負極集電体42の端部に、それぞれ、例えば、アルミニウム製のリード52、54が接続されたものとしている。
 本発明のリチウムイオン二次電池は、上記のように、本発明のイオン捕捉剤を、電解液及びセパレーターの少なくとも一方に含むことがより好ましい。
 一般に、電解液に不純物が含まれると、短絡の原因となり得る。充放電の過程で、特に不純物金属イオンが、例えば、セパレーター内を通過して、正極及び負極間を双方向に移動するため、イオン捕捉剤が電解液及びセパレーターの少なくとも一方に含まれていると、より効果的に不要な金属イオンを捕捉することができる。
(2)正極
 リチウムイオン二次電池を構成する正極は、上記のように、通常、正極集電体表面の少なくとも一部に正極活物質層を備える。正極集電体としては、アルミニウム、チタン、銅、ニッケル、ステンレス鋼等の金属や合金を、箔状、メッシュ状等にした帯状のものを用いることができる。
 上記正極活物質層に用いる正極材としては、リチウムイオンをドーピング又はインターカレーション可能な金属化合物、金属酸化物、金属硫化物、導電性高分子材料等が挙げられる。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、及びこれらの複合材料、並びにポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性高分子等を、単独で又は2種以上を組み合わせて使用することができる。
 イオン捕捉剤を含有する正極を作製する場合、正極材、イオン捕捉剤及びバインダーを有機溶剤とともに撹拌機等の分散装置を用いて、正極材含有スラリーを調製し、これを集電体材料に塗布して正極活物質層を形成する方法を適用することができる。また、ペースト状の正極材含有スラリーを、シート状、ペレット状等の形状に成形し、これを集電体材料と一体化する方法を適用することもできる。
 上記正極材含有スラリーにおけるイオン捕捉剤の濃度は、適宜、選択することができる。例えば、0.01~5.0質量%とすることができ、0.1~2.0質量%であることが好ましい。
 上記バインダーとしては、スチレン-ブタジエン共重合体、(メタ)アクリル系共重合体、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリホスファゼン、ポリイミド、ポリアミドイミド等の高分子化合物が挙げられる。
 上記正極活物質層中のバインダーの含有割合は、正極材、イオン捕捉剤及びバインダーの合計100質量部に対して、好ましくは0.5~20質量部、より好ましくは1~10質量部である。バインダーの含有比率が0.5~20質量部の範囲内であれば、集電体材料に十分密着し、また、電極抵抗が大きくなることを抑制することもできる。
 上記正極材含有スラリーを集電体材料に塗布する方法としては、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が挙げられる。
(3)負極
 リチウムイオン二次電池を構成する負極は、上記のように、通常、負極集電体表面の少なくとも一部に負極活物質層を備える。負極集電体の構成材料は、上記正極集電体の構成材料と同じとすることができ、発泡メタル、カーボンペーパー等の多孔性材料からなるものであってもよい。
 上記負極活物質層に用いる負極材としては、リチウムイオンをドーピング又はインターカレーション可能な炭素材料、金属化合物、金属酸化物、金属硫化物、導電性高分子材料等が挙げられる。具体的には、天然黒鉛、人造黒鉛、ケイ素、チタン酸リチウム等を、単独で又は2種以上を組み合わせて使用することができる。
 イオン捕捉剤を含有する負極を作製する場合、負極材、イオン捕捉剤及びバインダーを有機溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置により混練して、負極材含有スラリーを調製し、これを集電体材料に塗布して負極活物質層を形成する方法を適用することができる。また、ペースト状の負極材含有スラリーを、シート状、ペレット状等の形状に成形し、これを集電体材料と一体化する方法を適用することもできる。
 負極材含有スラリーに用いるイオン捕捉剤及びバインダーは、上記正極の製造原料と同じものを使用することができ、その含有量も同様にすることができる。
 上記負極材含有スラリーを集電体材料に塗布する場合、正極と同様に、公知の方法を適用することができる。
(4)電解液
 本発明のリチウムイオン二次電池に用いられる電解液は、特に制限されず、公知のものを用いることができる。例えば、電解質を有機溶剤に溶解させた電解液を用いることにより、非水系リチウムイオン二次電池を製造することができる。
 上記電解質としては、LiPF6、LiClO4、LiBF4、LiClF4、LiAsF6、LiSbF6、LiAlO4、LiAlCl4、LiN(CF3SO22、LiN(C25SO22、LiC(CF3SO23、LiCl、LiI等の、溶媒和しにくいアニオンを生成するリチウム塩が挙げられる。
 上記電解質の濃度は、電解液1Lに対して、好ましくは0.3~5モル、より好ましくは0.5~3モル、特に好ましくは0.8~1.5モルである。
 上記有機溶剤としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート等のカーボネート類、γ-ブチロラクトン等のラクトン類、酢酸メチル、酢酸エチル等のエステル類、1,2-ジメトキシエタン、ジメチルエーテル、ジエチルエーテル等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキソラン、4-メチルジオキソラン等の環状エーテル類、シクロペンタノン等のケトン類、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等のスルホラン類、ジメチルスルホキシド等のスルホキシド類、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、3-メチル-1,3-オキサゾリジン-2-オン等のウレタン類、ジエチレングリコール等のポリオキシアルキレングリコール類等の非プロトン性溶媒が挙げられる。これらの有機溶剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の電解液は、上記イオン捕捉剤の少なくとも1種を含む。
 本発明の電解液におけるイオン捕捉剤の含有割合は、短絡の発生及び内部抵抗を抑制する観点から、好ましくは0.01~50質量%、より好ましくは0.1~30質量%、更に好ましくは0.5~10質量%である。
 電解液にイオン捕捉剤を含有させる方法としては、イオン捕捉剤を固体状態又は分散液状態で、電解質及び有機溶剤の混合液に添加、混合する方法等を挙げることができる。中でも固体状態で添加する方法であることが好ましい。
 イオン捕捉剤を分散液状態で用いて、電解液を製造する場合、分散液の溶媒は、特に制限されない。中でも電解液を構成する有機溶剤と同一であることが好ましい。また、分散液におけるイオン捕捉剤の濃度は、適宜選択することができる。例えば、0.01~50質量%とすることができ、1~20質量%であることが好ましい。
(5)セパレーター
 セパレーターは、正極と負極が短絡することがないように両極を分離する役割があり、更に電池に過大な電流が流れたとき、発熱により溶融し、微細孔が閉鎖されることで、電流を遮断し、安全性を確保するものである。
 上記セパレーターは、好ましくは、多孔部を備える基材(以下、「多孔質基材」という)からなるものであり、その構造は、特に制限されない。上記多孔質基材は、内部に多数の空孔ないし空隙を有し、かつ、これら空孔等が互いに連結された多孔質構造を有したものであれば、特に限定されない。例えば、微多孔膜、不織布、紙状シート、その他、三次元ネットワーク構造を有するシート等を用いることができる。このうち、ハンドリング性や強度の観点から微多孔膜が好ましい。多孔質基材を構成する材料としては、有機材料及び無機材料のいずれも使用することができるが、シャットダウン特性が得られる観点から、ポリオレフィン樹脂等の熱可塑性樹脂が好ましい。
 上記ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン等が挙げられる。これらのうち、良好なシャットダウン特性が得られるという観点で、エチレン単位を90質量%以上含む重合体であることが好ましい。ポリエチレンは、低密度ポリエチレン、高密度ポリエチレン及び超高分子量ポリエチレンのいずれであってもよい。特に、高密度ポリエチレン及び超高分子量ポリエチレンから選ばれる少なくとも1種を含むことが好ましく、高密度ポリエチレンと超高分子量ポリエチレンの混合物を含むポリエチレンであることがより好ましい。かかるポリエチレンであると、強度と成形性に優れる。
 ポリエチレンの分子量は、重量平均分子量で10万~1000万のものが好適であり、特に重量平均分子量100万以上の超高分子量ポリエチレンを少なくとも1質量%以上含むポリエチレン組成物が好ましい。
 上記多孔質基材は、ポリエチレンと、ポリプロピレン、ポリメチルペンテン等の他のポリオレフィンとを含んでもよく、また、ポリエチレン微多孔膜とポリプロピレン微多孔膜とからなる、2層以上の積層体からなるものであってもよい。
 本発明のセパレーターは、上記イオン捕捉剤の少なくとも1種を含む。
 本発明において、好ましいセパレーターは、多孔質基材からなる部分と、イオン捕捉剤とを含む。
 上記セパレーターにおけるイオン捕捉剤の含有量は、短絡の発生を抑制する観点から、好ましくは0.01~50g/m2、より好ましくは0.1~20g/m2である。
 本発明のセパレーターの好ましい構造は、1面側から他面側までのいずれかの部位にイオン捕捉剤を含む層を有するものであり、以下に例示される。
(S1)多孔質基材15の1面側の表層にイオン捕捉剤60を含むセパレーター
 図2は、この態様のセパレーターを示すが、これに限定されず、イオン捕捉剤60は、多孔質基材15の内部だけでなく、表面に存在していてもよい。
(S2)多孔質基材15の両面の表層にイオン捕捉剤60を含むセパレーター
 図3は、この態様のセパレーターを示すが、これに限定されず、イオン捕捉剤60は、多孔質基材15の内部だけでなく、表面に存在していてもよい。
(S3)多孔質基材15の1面側から他面側への全体にイオン捕捉剤60を含むセパレーター
 図4は、この態様のセパレーターを示すが、これに限定されず、イオン捕捉剤60は、多孔質基材15の内部だけでなく、表面に存在していてもよい。
(S4)多孔質基材15の内部に層状にイオン捕捉剤60を含むセパレーター
 図5は、この態様のセパレーターを示すが、これに限定されず、多孔質基材15の内部におけるイオン捕捉剤含有層の数は複数でもよい。
 図2に示す態様(S1)のセパレーター20の場合、リチウムイオン二次電池において、イオン捕捉剤60を含む側を、正極側及び負極側のいずれの面に配置してもよい。正極から金属イオンが溶出することや、負極において金属イオンが還元されて金属が析出することに鑑みると、正極側の面に配置することが好ましく、イオン捕捉剤60を両面の表層に配置する図3に示す態様(S2)のセパレーター20も好ましい。
 上記態様(S1)及び(S2)のセパレーターは、多孔質基材の1面側の表面又は両面のいずれも表層部に、イオン捕捉剤を含む分散液を塗布する工程、及び、塗膜を乾燥してイオン捕捉剤を含む層を形成する工程を、順次、備える方法、又は、多孔質基材の1面側の表面又は両面のいずれも表層部を、イオン捕捉剤を含む分散液に浸漬する工程、及び、塗膜を乾燥してイオン捕捉剤を含む層を形成する工程を、順次、備える方法により製造することができる。
 上記態様(S3)のセパレーターは、多孔質基材を、イオン捕捉剤を含む分散液に浸漬する工程、及び、塗液付き多孔質基材を乾燥する工程を、順次、備える方法により製造することができる。
 上記態様(S4)のセパレーターは、多孔質基材の1面側の表面に、イオン捕捉剤を含む分散液を塗布する工程、塗膜を乾燥してイオン捕捉剤を含む層を形成する工程、及び、他の多孔質基材を、イオン捕捉剤含有層に接合する工程を、順次、備える方法、又は、多孔質基材の1面側の表面を、イオン捕捉剤を含む分散液に浸漬する工程、塗膜を乾燥してイオン捕捉剤を含む層を形成する工程、及び、他の多孔質基材を、イオン捕捉剤含有層に接合する工程を、順次、備える方法により製造することができる。
 上記イオン捕捉剤を含む分散液の溶媒は、特に制限されない。例えば、水、N-メチル-2-ピロリドン、並びにメタノール、エタノール、1-プロパノール等のアルコール類等を挙げることができる。
 また、分散液におけるイオン捕捉剤の濃度は、適宜、選択することができる。例えば、0.01~50質量%とすることができ、1~20質量%であることが好ましい。
 上記分散液は、更に、バインダーを含有することができる。イオン捕捉剤含有の分散液がバインダーを含有すると、イオン捕捉剤が多孔質基材に、確実に固定化される。このため、電池を作製する際にイオン捕捉剤が脱落することなく、効率よく不要な金属イオンを捕捉することができる。
 上記バインダーは、特に制限されないが、上記リチウムイオン含有リン酸塩及び多孔質基材を良好に接着することができ、電気化学的に安定であり、更に、電解液に対して安定であるものが好ましい。このようなバインダーとしては、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-アクリル酸共重合体、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-トリクロロエチレン共重合体等のフッ素樹脂、フッ素系ゴム、スチレン-ブタジエンゴム、ニトリルブタジエンゴム、ポリブタジエンゴム、ポリアクリロニトリル、ポリアクリル酸、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール、シアノエチルポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリN-ビニルアセトアミド、ポリエーテル、ポリアミド、ポリイミド、ポリアミドイミド、ポリアラミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂等が挙げられる。本発明においては、ポリビニルアルコール、ポリフッ化ビニリデン、スチレン-ブタジエンゴム、ポリアクリル酸、カルボキシメチルセルロース等が好ましい。尚、上記バインダーは、電池の構成材料という観点から、正極活物質層や負極活物質層に用いられるバインダーと同様であることが好ましい。
 バインダーの使用量(固形分)は、イオン捕捉剤及びバインダーの合計100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.3~10質量部である。バインダーの使用量が0.1~20質量部の範囲内であれば、イオン捕捉剤が効果的に多孔質基材に固定化され、効果が持続的に得られる。また、質量あたりの金属吸着効率を向上させることができる。
 上記分散液を多孔質基材に塗布する方法は、特に限定されない。メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、リバースロールコート法、トランスファロールコート法、キスコート法、ナイフコート法、ロッドコート法、スクイズコート法、キャストコート法、ダイコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等、公知の方法を適用することができる。
 尚、いずれも図示していないが、本発明のセパレーターは、多孔質基材の1面側又は両面に、イオン捕捉剤を含む独立した層が形成された積層体からなるもの、2体の多孔質基材の間にイオン捕捉剤を含む独立した層を備える積層体からなるもの等であってもよい。
 本発明において、上記いずれの態様のセパレーターにおいても、イオン捕捉剤含有層の厚さは、以下の通りである。厚さの下限は、イオン捕捉性の観点から、好ましくは0.5μm、より好ましくは2μm、更に好ましくは3μm、特に好ましくは4μmである。また、厚さの上限は、電解液の透過性、電池の高容量化等の観点から、好ましくは90μm、より好ましくは50μm、更に好ましくは30μm、特に好ましくは10μmである。
 本発明のリチウムイオン二次電池に含まれるセパレーターの数は、特に限定されず、電池の構造により、適宜、選択することができる。
 本発明のリチウムイオン二次電池の好ましい態様は、以下に例示される。
(L1)正極にのみ本発明のイオン捕捉剤を含む電池
(L2)電解液にのみ本発明のイオン捕捉剤を含む電池
(L3)セパレーターにのみ本発明のイオン捕捉剤を含む電池(本発明のセパレーターを含む電池)
(L4)正極及び電解液に本発明のイオン捕捉剤を含む電池
(L5)正極及びセパレーターに本発明のイオン捕捉剤を含む電池(本発明のセパレーターを含む電池)
(L6)電解液及びセパレーターに本発明のイオン捕捉剤を含む電池(本発明のセパレーターを含む電池)
(L7)正極、電解液及びセパレーターに本発明のイオン捕捉剤を含む電池(本発明のセパレーターを含む電池)
 これらのうち、態様(L3)、(L5)及び(L6)が好ましい。また、態様(L3)、(L5)、(L6)及び(L7)では、イオン捕捉剤含有層が少なくとも正極側に配されたセパレーターを備えることが特に好ましい。尚、上記態様(L4)、(L5)、(L6)及び(L7)においては、含まれるイオン捕捉剤は、各部において同一であってよいし、異なってもよい。
 本発明の電解液を用いて、正極及び負極を備えるものの、セパレーターを備えないリチウムイオン二次電池とすることができる。この場合、正極及び負極が、直接、接触しない構造としており、セパレーターを不要とするものである。
 以下、本発明を実施例に基づいて具体的に説明する。但し、本発明は、下記の実施例に限定されるものではない。
1.イオン捕捉剤の評価方法
(1)水分含有率
 イオン捕捉剤を150℃で20時間真空乾燥した後、水分含有率をカールフッシャー法で測定した。
(2)pH測定
 下記(3)でイオン捕捉剤を添加した後の液のpHを、堀場製作所社製ガラス電極式水素イオン濃度指示計「D-51」(型式名)によって測定した。測定は、JIS Z 8802「pH測定方法」に準拠し、測定温度は25℃で行った。
(3)金属イオン含有水溶液中におけるイオン捕捉剤の金属イオン捕捉能
 金属イオン捕捉能を、ICP発光分光分析法によって評価した。具体的な評価方法は、次の通りである。
 まず、Li+、Ni2+又はMn2+について、各々の金属硫酸塩及び純水を用いて100ppmの金属イオン溶液を調製した。その調製溶液に対し、イオン捕捉剤が1.0質量%となるように添加し、十分混合した後、静置した。そして、イオン捕捉剤を添加して20時間後の各々の金属イオン濃度を、サーモフィッシャーサイエンティフィック社製ICP発光分光装置「iCA7600 DUO」(型式名)にて測定した。
(4)モデル電解液中における金属イオン捕捉能
 リチウムイオン二次電池への適用を想定し、モデル電解液中における金属イオン捕捉能を評価した。溶媒としてジエチルカーボネート(DEC)とエチレンカーボネート(EC)とを、体積比でDEC/EC=1/1となるように混合した溶液を用いた。また、溶質としてテトラフルオロホウ酸ニッケルを用いた。
 先ず、所定量の溶媒に、溶質を、初期Ni2+イオンの濃度が100質量ppmとなるように加え、モデル電解液とした。
 次いで、このモデル電解液30mLをガラス瓶に入れ、ここにイオン捕捉剤を0.3g投入した。混合液を、25℃で約1分間撹拌した後、25℃で静置した。約20時間後のNi2+イオンの濃度をサーモフィッシャーサイエンティフィック社製ICP発光分光装置「iCA7600 DUO」(型式名)にて測定した。尚、測定試料の前処理には酸分解(マイクロウェーブ法)を行った。
2.イオン捕捉剤の製造及び評価
  合成例1
 脱イオン水850mLに、オキシ塩化ジルコニウム8水和物0.272モルを溶解後、シュウ酸2水和物0.788モルを添加して、これを溶解させた。次いで、この水溶液を撹拌しながら、リン酸0.57モルを加えた。そして、この混合液を撹拌しながら、103℃で8時間還流した。冷却後、得られた沈殿物をよく水で洗浄し、150℃で乾燥することにより、リン酸ジルコニウムからなる粉末を得た。この得られたリン酸ジルコニウムについて分析した結果、α-リン酸ジルコニウム(H型)(以下、「α-リン酸ジルコニウム(Z1)」という)であることを確認した。
 上記α-リン酸ジルコニウム(Z1)を、フッ酸を添加した硝酸で煮沸溶解した後、ICP発光分光分析法により、次の組成式を得た。
   ZrH2.03(PO42.01・0.05H2
 また、α-リン酸ジルコニウム(Z1)のメジアン径を、堀場製作所製レーザー回折式粒度分布計「LA-700」(型式名)により測定した結果、0.9μmであった。
  実施例1
 合成例1で得られたα-リン酸ジルコニウム(Z1)100gを、0.1N-LiOH水溶液1000mLを撹拌しながら、これに添加し、混合液を8時間撹拌した。その後、沈殿物を水洗し、150℃で20時間真空乾燥して、ZrLi0.31.73(PO42.01・0.06H2Oからなるリチウムイオン置換型α-リン酸ジルコニウムを製造した。水分含有率は0.4%であった。このリチウムイオン置換型α-リン酸ジルコニウムは、すべての陽イオン交換容量のうち、1meq/gをリチウムイオンに置換したものであり、以下、「1meq-Li置換型α-リン酸ジルコニウム(A1-1)」とした。
 次いで、この1meq-Li置換型α-リン酸ジルコニウム(A1-1)をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  実施例2
 0.1N-LiOH水溶液の使用量を3000mLとした以外は、実施例1と同様の操作を行い、ZrLi1.031.00(PO42.01・0.1H2Oからなるリチウムイオン置換型α-リン酸ジルコニウムを製造した。水分含有率は0.3%であった。以下、「3meq-Li置換型α-リン酸ジルコニウム(A1-2)」とした。
 次いで、この3meq-Li置換型α-リン酸ジルコニウム(A1-2)をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  実施例3
 0.1N-LiOH水溶液の使用量を7000mLとした以外は、実施例1と同様の操作を行い、ZrLi2.03(PO42.01・0.2H2Oからなるリチウムイオン置換型α-リン酸ジルコニウムを製造した。水分含有率は0.3%であった。このリチウムイオン置換型α-リン酸ジルコニウムは、全ての陽イオン交換容量(6.7meq/g)がリチウムイオンに置換されたものであり、以下、「全Li置換型α-リン酸ジルコニウム(A1-3)」とした。
 次いで、この全Li置換型α-リン酸ジルコニウム(A1-3)をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  合成例2
 脱イオン水400mLに、75%リン酸405gを加え、この水溶液を撹拌しながら、硫酸チタニル(TiO2換算含有量;33%)137gを添加した。次いで、これを撹拌しながら100℃で48時間還流した。冷却後、得られた沈殿物をよく水で洗浄し、150℃で乾燥することにより、リン酸チタンからなる粉末を得た。このリン酸チタンについて分析した結果、α-リン酸チタン(H型)であることを確認した。
 上記α-リン酸チタンを、フッ酸を添加した硝酸の中で煮沸溶解した後、ICP発光分光分析に供することにより、次の組成式を得た。
   TiH2.03(PO42.01・0.1H2
 また、α-リン酸チタンのメジアン径を測定した結果、0.7μmであった。
  実施例4
 合成例2で得られたα-リン酸チタン100gを、0.1N-LiOH水溶液1000mLを撹拌しながら、これに添加し、混合液を8時間撹拌した。その後、沈殿物を水洗し、150℃で乾燥して、TiLi0.31.73(PO42.01・0.2H2Oからなるリチウムイオン置換型α-リン酸チタンを製造した。水分含有率は0.5%であった。このリチウムイオン置換型α-リン酸チタンは、すべての陽イオン交換容量のうち、1meq/gがリチウムイオンに置換されたものである。以下、「1meq-Li置換型α-リン酸チタン(B-1)」とした。
 次いで、この1meq-Li置換型α-リン酸チタン(B-1)をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  実施例5
 0.1N-LiOH水溶液の使用量を3000mLに代えた以外は、実施例4と同様の操作を行い、TiLi1.001.03(PO42.01・0.1H2Oからなるリチウムイオン置換型α-リン酸チタンを製造した。水分含有率は0.3%であった。以下、「3meq-Li置換型α-リン酸チタン(B-2)」とした。
 次いで、この3meq-Li置換型α-リン酸チタン(B-2)をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  実施例6
 0.1N-LiOH水溶液の使用量を7000mLに代えた以外は、実施例4と同様の操作を行い、TiLi2.03(PO42.01・0.1H2Oからなるリチウムイオン置換型α-リン酸チタンを製造した。水分含有率は0.3%であった。このリチウムイオン置換型α-リン酸チタンは、全ての陽イオン交換容量(7.0meq/g)がリチウムイオンに置換されたものであり、以下、「全Li置換型α-リン酸チタン(B-3)」とした。
 次いで、この全Li置換型α-リン酸チタン(B-3)をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  合成例3
 脱イオン水850mLに、Hfの含有量が0.18%であるオキシ塩化ジルコニウム8水和物0.272モルを溶解後、シュウ酸2水和物0.788モルを添加して、これを溶解させた。次いで、この水溶液を撹拌しながら、リン酸0.57モルを加えた。そして、この混合液を撹拌しながら、98℃で8時間還流した。冷却後、得られた沈殿物をよく水で洗浄した後、150℃で乾燥することにより、リン酸ジルコニウムからなる鱗片状粉末を得た。このリン酸ジルコニウムについて分析した結果、α-リン酸ジルコニウム(H型)(以下、「α-リン酸ジルコニウム(Z2)」という)であることを確認した。
 上記α-リン酸ジルコニウム(Z2)を、フッ酸を添加した硝酸の中で煮沸溶解した後、ICP発光分光分析に供することにより、次の組成式を得た。
   Zr0.99Hf0.012.03(PO42.01・0.05H2
 また、α-リン酸ジルコニウム(Z2)のメジアン径は、0.8μmであった。
  実施例7
 合成例3で得られたα-リン酸ジルコニウム(Z2)100gを、0.1N-LiOH水溶液1000mLを撹拌しながら、これに添加し、混合液を8時間撹拌した。その後、沈殿物を水洗し、150℃で20時間真空乾燥して、Zr0.99Hf0.01Li0.31.73(PO42.01・0.07H2Oからなるリチウムイオン置換型α-リン酸ジルコニウムを製造した。水分含有率は0.4%であった。このリチウムイオン置換型α-リン酸ジルコニウムは、すべての陽イオン交換容量のうち、1meq/gをリチウムイオンに置換したものであり、「1meq-Li置換型α-リン酸ジルコニウム(A2-1)」とした。
 次いで、この1meq-Li置換型α-リン酸ジルコニウム(A2-1)をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  実施例8
 0.1N-LiOH水溶液の使用量を3000mLとした以外は、実施例7と同様の操作を行い、Zr0.99Hf0.01Li1.031.00(PO42.01・0.1H2Oからなるリチウムイオン置換型α-リン酸ジルコニウムを製造した。水分含有率は0.3%であった。以下、「3meq-Li置換型α-リン酸ジルコニウム(A2-2)」とした。
 次いで、この3meq-Li置換型α-リン酸ジルコニウム(A2-2)をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  実施例9
 0.1N-LiOH水溶液の使用量を7000mLとした以外は、実施例7と同様の操作を行い、Zr0.99Hf0.01Li2.03(PO42.01・0.2H2Oからなるリチウムイオン置換型α-リン酸ジルコニウムを製造した。水分含有率は0.3%であった。このリチウムイオン置換型α-リン酸ジルコニウムは、全ての陽イオン交換容量(6.7meq/g)がリチウムイオンに置換されたものであり、以下、「全Li置換型α-リン酸ジルコニウム(A2-3)」とした。
 次いで、この全Li置換型α-リン酸ジルコニウム(A2-3)をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  実施例10
 テイカ社製トリポリリン酸二水素アルミニウム「K-FRESH #100P」(商品名)をビーズミルで粉砕し、微粉末を得た。次いで、100gの微粉末を、0.1N-LiOH水溶液に加えた。この混合物を8時間撹拌した後、水洗及び濾別を行い、残渣を150℃で乾燥することにより、AlLi2310・0.2H2Oからなるリチウムイオン置換型トリポリリン酸二水素アルミニウムを製造した。メジアン径は0.8μm、水分含有率は0.3%であった。このリチウムイオン置換型トリポリリン酸二水素アルミニウムは、全ての陽イオン交換容量(6.9meq/g)がリチウムイオンに置換されたものであり、以下、「全Li置換型トリポリリン酸リン酸二水素アルミニウム(C-1)」とした。
 次いで、この全Li置換型トリポリリン酸リン酸二水素アルミニウム(C-1)をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  比較例1
 700mmol/Lの塩化アルミニウム水溶液500mLに、350mmol/Lのオルトケイ酸ナトリウム水溶液500mLを加え、30分間撹拌した。次いで、この混合液に、1mol/Lの水酸化ナトリウム水溶液330mLを加え、pH6.1に調整した。
 pH調整した液を30分間撹拌後、5分間の遠心分離を行った。遠心分離後、上澄み液を除去した。そして、回収したゲル状沈殿物に純水を添加して、これを再分散させ、遠心分離前の容積とした。この遠心分離による脱塩処理を3回行った。
 次に、この分散液を乾燥器に入れ、98℃で48時間加熱し、アルミニウムケイ酸塩濃度が47g/Lの分散液を得た。そして、この分散液に、1mol/Lの水酸化ナトリウム水溶液を188mL添加し、pH=9.1に調整した。pH調整により液中のアルミニウムケイ酸塩を凝集させた。その後、5分間の遠心分離でこの凝集物を沈殿させ、上澄み液を除去した。そして、回収した凝集物に純水を添加して、遠心分離前の容積とする、という脱塩処理を3回行った。
 脱塩処理3回目の上澄み排出後に得たゲル状沈殿物を、60℃で16時間乾燥して30gの粉末を得た。以下、この粉末を「アルミニウムケイ酸塩」とした。
 次いで、このアルミニウムケイ酸塩をイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
  比較例5
 市販のY型ゼオライト「ミズカシーブス Y-520」(水澤化学社製)50gを0.05M-HNO3溶液10Lに入れ、室温で8時間撹拌した。その後、沈殿物を水洗し、150℃で20時間乾燥して、ナトリウムが除去されたゼオライトを得た。次に、このゼオライト10gを0.1M-LiOH水溶液1Lに入れ、室温で8時間撹拌した。その後、沈殿物を水洗し、150℃で20時間乾燥して、「Li置換Y型ゼオライト」を得た。
 次いで、このLi置換Y型ゼオライトをイオン捕捉剤として用いて、上記の評価(3)及び(4)を行い、その結果を表1に示した。
 上記以外の比較例では、次の材料をイオン捕捉剤として使用した。これらのイオン捕捉剤は、150℃で20時間乾燥した後、使用した。
 比較例2:和光純薬工業社製 活性炭素(試薬)「破砕状、2mm~5mm」
 比較例3:和光純薬工業社製 シリカゲル(試薬)「小粒状(白色)」
 比較例4:水澤化学社製 Y型ゼオライト「ミズカシーブス Y-520」(商品名)
 比較例6:合成例1で合成したα-リン酸ジルコニウム(Z1)
 比較例7:合成例2で合成したα-リン酸チタン
 比較例8:協和化学社製 ハイドロタルサイト「DHT-4H」(商品名)
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~10のイオン捕捉剤は、水中におけるNi2+及びMn2+を選択的に捕捉し、イオン吸着能に優れることが分かる。また、モデル電解液を用いた試験においても、実施例1~10のイオン捕捉剤は、高いイオン捕捉性を示した。これらの結果より、本発明のイオン捕捉剤は、リチウムイオン二次電池に不要なNi2+及びMn2+を捕捉する一方で、充放電に必須なLi+は捕捉しないため、リチウムイオン二次電池の性能を阻害することなく、短絡の発生を抑えることができる。
 また、実施例1~10のイオン捕捉剤を含む液は中性であったので、電解液に配合した場合でも抵抗の上昇が起こることはない。
3.セパレーターの製造及び評価
 上記のイオン捕捉剤、ポリビニルアルコール等を用いて、イオン捕捉剤加工液を調製し、その後、このイオン捕捉剤加工液を、空孔率が50%~60%であり、厚さが20μmである多孔性のポリエチレンフィルム(多孔質基材)に塗布し、イオン捕捉剤を含むセパレーターを得た。
 そして、得られたセパレーターと、キシダ化学社製非水電解液とを用いて、Ni2+イオンの捕捉試験を行った。尚、上記非水電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、体積比でEC/EMC=3/7となるように混合した溶媒に、支持電解質として1M-LiBF4を含むものである。
 初めに、上記非水電解液に、Ni2+が100質量ppmとなるように、Ni(BF4)・6H2Oを溶解させ、試験溶液を調製した。直径9cmのシャーレに、セパレーター(50mm×50mm)、及び、試験溶液10mLを入れて蓋をして、25℃で静置した。20時間後、セパレーターを取り出して、試験溶液を回収し、これをイオン交換水で100倍に希釈した。次いで、この希釈液におけるNi2+イオンの濃度を、サーモフィッシャーサイエンティフィック社製ICP発光分光装置「iCA7600 DUO」(型式名)にて測定した。得られた結果を表2に示した。
  実施例11
 実施例3で得られた全Li置換型α-リン酸ジルコニウム(A1-3)と、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)と、イオン交換水とを、それぞれ、5質量部、95質量部及び100質量部の割合で用い、これらを、直径0.5mmの東レ社製酸化ジルコニウムビーズ「トレセラム」(登録商標)とともにポリプロピレン製の容器に入れ、東洋精機製作所製「ペイントシェーカー」により4時間分散させた。その後、得られた分散液を、濾過限界5μmのフィルターで濾過し、イオン捕捉剤加工液を得た。
 次に、上記多孔質基材(ポリエチレンフィルム)の片面に、イオン捕捉剤加工液をグラビアコート法にて塗布し、厚さ10μmの塗膜を得た。そして、50℃の熱風乾燥炉内を10秒間通過させることにより、乾燥及び定着させ、図2の断面構造を有し、厚さが25μmのセパレーター(S1)を得た。このセパレーター(S1)を、1000℃で2時間焼成し、焼成残渣から全Li置換型α-リン酸ジルコニウム(A1-3)の担持量を計算したところ、1.0mg/cm2であった。
  実施例12
 実施例3で得られた全Li置換型α-リン酸ジルコニウム(A1-3)を、真空中、150℃で20時間、その後、350℃で4時間加熱し、焼成物を得た。得られた焼成物は、ZrLi2.03(PO42.01で示され、メジアン粒径は、0.9μmであった。
 その後、この焼成物を、全Li置換型α-リン酸ジルコニウム(A1-3)に代えて用いた以外は、実施例11と同様にして、イオン捕捉剤加工液の調製及びセパレーターの製造を行った。得られたセパレーター(S2)の厚さは、25μmであり、焼成物の担持量は、1.1mg/cm2であった。
  実施例13
 全Li置換型α-リン酸ジルコニウム(A1-3)に代えて、3meq-Li置換型α-リン酸ジルコニウム(A1-2)を用いた以外は、実施例11と同様にして、イオン捕捉剤加工液の調製及びセパレーターの製造を行った。得られたセパレーター(S3)の厚さは、25μmであり、3meq-Li置換型α-リン酸ジルコニウム(A1-2)の担持量は、1.0mg/cm2であった。
  実施例14
 全Li置換型α-リン酸ジルコニウム(A1-3)に代えて、全Li置換型α-リン酸チタン(B-3)を用いた以外は、実施例11と同様にして、イオン捕捉剤加工液の調製及びセパレーターの製造を行った。得られたセパレーター(S4)の厚さは、25μmであり、全Li置換型α-リン酸チタン(B-3)の担持量は、0.8mg/cm2であった。
  実施例15
 全Li置換型α-リン酸ジルコニウム(A1-3)に代えて、3meq-Li置換型α-リン酸チタン(B-2)を用いた以外は、実施例11と同様にして、イオン捕捉剤加工液の調製及びセパレーターの製造を行った。得られたセパレーター(S5)の厚さは、25μmであり、3meq-Li置換型α-リン酸チタン(B-2)の担持量は、0.8mg/cm2であった。
  実施例16
 全Li置換型α-リン酸ジルコニウム(A1-3)に代えて、全Li置換型トリポリリン酸二水素アルミニウム(C-1)を用いた以外は、実施例11と同様にして、イオン捕捉剤加工液の調製及びセパレーターの製造を行った。得られたセパレーター(S6)の厚さは、25μmであり、全Li置換型トリポリリン酸二水素アルミニウム(C-1)の担持量は、1.1mg/cm2であった。
  実施例17
 実施例11で調製したイオン捕捉剤加工液を、上記多孔質基材(ポリエチレンフィルム)の両面に塗布した以外は、実施例11と同様の操作を行って、イオン捕捉剤を両面に担持させたセパレーター(S7)を得た。得られたセパレーター(S7)の厚さは、30μmであり、全Li置換型α-リン酸ジルコニウム(A1-3)の担持量は、合計2.0mg/cm2であった。
  実施例18
 実施例11で調製したイオン捕捉剤加工液の塗布量を減量した以外は、実施例11と同様の操作を行って、図2の断面構造を有するセパレーター(S8)を得た。得られたセパレーター(S8)の厚さは、23μmであり、全Li置換型α-リン酸ジルコニウム(A1-3)の担持量は、0.5mg/cm2であった。
  実施例19
 実施例11で調製したイオン捕捉剤加工液の塗布量を増量した以外は、実施例11と同様の操作を行って、図2の断面構造を有するセパレーター(S9)を得た。得られたセパレーター(S9)の厚さは、35μmであり、全Li置換型α-リン酸ジルコニウム(A1-3)の担持量は、3.0mg/cm2であった。
  実施例20
 実施例3で得られた全Li置換型α-リン酸ジルコニウム(A1-3)と、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)と、イオン交換水とを、それぞれ、85質量部、15質量部及び100質量部の割合で用いて、実施例11と同様にして得られたイオン捕捉剤加工液を用いた以外は、実施例11と同様の操作を行って、図2の断面構造を有するセパレーター(S10)を得た。得られたセパレーター(S10)の厚さは、25μmであり、全Li置換型α-リン酸ジルコニウム(A1-3)の担持量は、0.9mg/cm2であった。
  比較例9
 上記多孔質基材(ポリエチレンフィルム)のみをセパレーター(S11)として評価した。
  比較例10
 全Li置換型α-リン酸ジルコニウム(A1-3)に代えて、メジアン径0.8μmのアルミナ粒子を用いた以外は、実施例11と同様にして、イオン捕捉剤加工液の調製及びセパレーターの製造を行った。得られたセパレーター(S12)の厚さは、25μmであり、アルミナ粒子の担持量は、1.6mg/cm2であった。
  比較例11
 全Li置換型α-リン酸ジルコニウム(A1-3)に代えて、合成例1で調製したα-リン酸ジルコニウム(Z1)を用いた以外は、実施例11と同様にして、イオン捕捉剤加工液の調製及びセパレーターの製造を行った。得られたセパレーター(S13)の厚さは、25μmであり、α-リン酸ジルコニウム(Z1)の担持量は、1.0mg/cm2であった。
  比較例12
 全Li置換型α-リン酸ジルコニウム(A1-3)に代えて、合成例2で調製したα-リン酸チタン(H型)を用いた以外は、実施例11と同様にして、イオン捕捉剤加工液の調製及びセパレーターの製造を行った。得られたセパレーター(S14)の厚さは、25μmであり、α-リン酸チタン(H型)の担持量は、0.8mg/cm2であった。
  比較例13
 全Li置換型α-リン酸ジルコニウム(A1-3)に代えて、テイカ社製トリポリリン酸二水素アルミニウム「K-FRESH #100P」(商品名)をビーズミルで粉砕して得られた微粉末(メジアン粒径20μm)を用いた以外は、実施例11と同様にして、イオン捕捉剤加工液の調製及びセパレーターの製造を行った。得られたセパレーター(S15)の厚さは、25μmであり、トリポリリン酸二水素アルミニウムの担持量は、1.1mg/cm2であった。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、比較例9~13のセパレーターは、Ni2+イオンの捕捉が不十分であるのに対し、実施例11~20のセパレーターは、5質量ppm以下に低減することができた。
4.リチウムイオン二次電池の製造及び評価
  実施例21
 初めに、正極及び負極を作製し、その後、これらの正極及び負極と、実施例11で得られたセパレーター(S1)と、上記のキシダ化学社製非水電解液とを用いて、リチウムイオン二次電池を製造した。
(1)正極の作製
 90質量部のLi(Ni1/3Mn1/3Co1/3)O2(正極活物質)と、7質量部のアセチレンブラック(導電助剤)と、3質量部のポリフッ化ビニリデン(バインダー)と、100質量部のN-メチル-2-ピロリドン(溶媒)とを混合分散し、正極材含有スラリーを得た。
 次いで、この正極材含有スラリーを、ドクターブレード法により、厚さ20μmのアルミニウム箔(正極集電体)の表面に、塗膜の厚さが30μmとなるように塗布し、乾燥させて正極活物質層を形成した。その後、ロールプレス機による圧縮成形、及び、所定の大きさ(35mm×70mm)への裁断を行って、リチウムイオン二次電池用正極を得た。
(2)負極の作製
 90質量部の非晶質炭素(負極活物質)と、7質量部のカーボンブラック(導電助剤)と、3質量部のポリフッ化ビニリデン(バインダー)と、100質量部のN-メチル-2-ピロリドン(溶媒)とを混合分散し、負極材含有スラリーを得た。
 次いで、この負極材含有スラリーを、ドクターブレード法により、厚さ20μmの銅箔(負極集電体)の表面に、塗膜の厚さが30μmとなるように塗布し、乾燥させて負極活物質層を形成した。その後、ロールプレス機による圧縮成形、及び、所定の大きさ(35mm×70mm)への裁断を行って、リチウムイオン二次電池用負極を得た。
(3)リチウムイオン二次電池の製造
 負極と、40mm×80mmのセパレーター(S1)と、正極とを、セパレーター(S1)のイオン捕捉剤含有層側を正極に面するようにして、この順に積層し、これらを、アルミニウム包装材(電池の外装材)の中に収納した。次いで、キシダ化学社製非水電解液を、空気が混入しないように注入した。その後、内容物を密封するために、アルミニウム包装材の開口部に150℃のヒートシールを行って、50mm×80mm×6mmのアルミニウムラミネート外装のリチウムイオン二次電池(L1)を得た。尚、上記非水電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、体積比でEC/EMC=3/7となるように混合した溶媒に、支持電解質として1M-LiPF6を含むものである。
 次に、以下の方法で、リチウムイオン二次電池(L1)を初期化し、初期容量及びサイクル特性の測定並びに安全性試験を行った。その結果を表3に示す。
(初期化)
 開回路の状態から、電池電圧が4.2Vになるまで、3時間率相当の定電流でリチウムイオン二次電池(L1)を充電した。電池電圧が4.2Vに達した後、電流値が0.1時間率相当になるまで4.2Vを保持した。この2つの充電工程を「標準条件での充電」といい、充電されたその状態を「満充電」という。
 次いで、充電を停止し、30分間休止した。この工程を「休止」という。そして、3時間率相当の定電流の放電を開始し、電池電圧が3.0Vに達するまで放電させた。この工程を「標準条件での放電」という。その後、放電を停止し、「休止」を行った。
 この後、「標準条件での充電」、「休止」、「標準条件での放電」及び「休止」のサイクルを3回繰り返した。そして、更に、「標準条件での充電」及び「休止」を行い、3時間率相当の定電流の放電を開始し、電池電圧が3.8Vに達するまで放電させた。この状態を「半充電」という。その後、1週間のエージングを行って、初期化を完了した。
 尚、上記「時間率」は、電池の設計放電容量を所定の時間で放電する電流値と定義する。例えば、3時間率とは、電池の設計容量を3時間で放電する電流値である。更に、電池の容量をC(単位:Ah)とすると、3時間率の電流値はC/3(単位:A)となる。
(A)初期容量の測定
 初期化後のリチウムイオン二次電池(L1)を用いて、「標準条件での充電」、「休止」、「標準条件での放電」及び「休止」のサイクルを3回繰り返し、各回の放電容量を測定し、その平均値を「初期容量」とした。尚、表3に示す値は、イオン捕捉剤を含まないセパレーター(S11)を用いた比較例14における放電容量の平均値を「1.00」として規格化したものである。
(B)サイクル特性の評価
 初期容量を測定したリチウムイオン二次電池(L1)を40℃の恒温槽に入れ、二次電池の表面温度が40℃になった後、この状態を12時間保持した。次いで、「休止」を設けずに、「標準条件での充電」及び「標準条件での放電」のサイクルを200回繰り返した。この後、二次電池の放電容量を、「初期容量」と同様にして測定した。尚、表3に示す「試験後容量」は、イオン捕捉剤を含まないセパレーター(S11)を用いた比較例14における放電容量の平均値を「1.00」としたときの値である。この「試験後容量」により、サイクル特性(サイクル試験による劣化の程度)を評価した。
(C)安全性試験
 初期化後のリチウムイオン二次電池(L1)を4.2Vで充電をして満充電とした後、直径20mmの孔を有する拘束板の上に載置した。そして、この拘束板を、上部にφ3mmの鋼鉄製の釘が取り付けられたプレス機に配置した。プレス機を駆動させて、外装材に対して釘刺しを行い、強制的に内部短絡を発生させた。即ち、釘がリチウムイオン二次電池(L1)を貫通して、釘の先端部が拘束板の孔内に達するまで、釘を上方から80mm/秒の速度で移動させた。釘を抜いた後の電池を、室温、大気条件で観察した。1時間経過するまでに、発火及び破裂が発生しなかったものを合格として、表3に「○」で表記した。また、1時間以内に火花が発生したものを「×」で表記した。
 リチウムイオン二次電池(L1)では、釘が電池を貫通して短絡した後、すぐに、電池電圧が急激に低下した。短絡により発生したジュール熱により、貫通部付近の電池温度及び電池表面温度は、徐々に上昇し、最高で150℃付近まで上昇したが、それ以上の著しい発熱はなく、熱暴走には至らなかった。
  実施例22
 負極、セパレーター(S1)及び正極を、セパレーター(S1)のイオン捕捉剤含有層側を負極に面するようにして積層した以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L2)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  実施例23
 セパレーター(S1)に代えて、セパレーター(S2)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L3)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  実施例24
 セパレーター(S1)に代えて、セパレーター(S3)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L4)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  実施例25
 セパレーター(S1)に代えて、セパレーター(S4)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L5)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  実施例26
 セパレーター(S1)に代えて、セパレーター(S5)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L6)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  実施例27
 セパレーター(S1)に代えて、セパレーター(S6)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L7)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  実施例28
 セパレーター(S1)に代えて、両面にイオン捕捉剤含有層を有するセパレーター(S7)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L4)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  実施例29
 セパレーター(S1)に代えて、セパレーター(S8)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L9)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  実施例30
 セパレーター(S1)に代えて、セパレーター(S9)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L10)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  実施例31
 セパレーター(S1)に代えて、セパレーター(S10)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L11)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  比較例14
 セパレーター(S1)に代えて、セパレーター(S11)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L12)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。以上の結果を表3に示す。
 安全性試験では、釘が電池を貫通して短絡した後、すぐに、電池電圧が急激に低下した。そして、貫通部付近の電池温度及び電池表面温度は、急上昇し、熱暴走状態となって、釘を抜いてから約40秒後に、最高で400℃以上になった。また,熱暴走後に貫通部から火花が発生し、高温の煙が噴出した。
  比較例15
 セパレーター(S1)に代えて、セパレーター(S12)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L13)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  比較例16
 セパレーター(S1)に代えて、セパレーター(S13)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L14)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  比較例17
 セパレーター(S1)に代えて、セパレーター(S14)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L15)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
  比較例18
 セパレーター(S1)に代えて、セパレーター(S15)を用いた以外は、実施例21と同様にして、ラミセル型のリチウムイオン二次電池(L16)を得た。その後、実施例21と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。安全性試験では、リチウムイオン二次電池(L1)と同じ挙動を示した。以上の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、イオン交換基の少なくとも一部がリチウムイオンに置換されたリン酸塩(本発明のイオン捕捉剤)を含有するセパレーターを備えるリチウムイオン二次電池は、サイクル特性及び安全性に優れる。
 本発明のイオン捕捉剤は、電解液、セパレーター等の、リチウムイオン二次電池の構成部材に使用することができる。例えば、本発明のセパレーターは、陽極が電気二重層、陰極がリチウムイオン二次電池の構造をしたリチウムイオン・キャパシタ(ハイブリッド・キャパシタ)、金属リチウム二次電池等の、リチウムイオン二次電池以外の電気化学素子にも応用することができる。
 本発明のリチウムイオン二次電池は、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等として、携帯電話、タブレットコンピュータ、ラップトップコンピュータ、ゲーム機等のポータブル機器;電気自動車、ハイブリッド電気自動車等の自動車;電力貯蔵等に利用することができる。
 10:リード付き蓄電要素、15:多孔質基材、20:セパレーター、30:正極、32:正極集電体、34:正極活物質層、40:負極、42:負極集電体、44:負極活物質層、52,54:リード、60:イオン捕捉剤

Claims (12)

  1.  イオン交換基の少なくとも一部がリチウムイオンに置換されたリン酸塩を含有することを特徴とするリチウムイオン二次電池用イオン捕捉剤。
  2.  上記リン酸塩が、
    (A)イオン交換基の少なくとも一部がリチウムイオンに置換されたα-リン酸ジルコニウム、
    (B)イオン交換基の少なくとも一部がリチウムイオンに置換されたα-リン酸チタン、及び、
    (C)イオン交換基の少なくとも一部がリチウムイオンに置換されたトリポリリン酸二水素アルミニウム
    から選ばれた少なくとも1種である請求項1に記載のリチウムイオン二次電池用イオン捕捉剤。
  3.  上記成分(A)は、全ての陽イオン交換容量のうち、0.1~6.7meq/gが上記リチウムイオンに置換されたα-リン酸ジルコニウムである請求項2に記載のリチウムイオン二次電池用イオン捕捉剤。
  4.  上記リチウムイオンに置換される前のα-リン酸ジルコニウムが、下記式(1)で表される化合物である請求項2又は3に記載のリチウムイオン二次電池用イオン捕捉剤。
       Zr1-xHfxa(PO4b・nH2O   (1)
    (式中、a及びbは3b-a=4を満たす正数であり、bは2<b≦2.1であり、xは0≦x≦0.2であり、nは0≦n≦2である。)
  5.  上記成分(B)は、全ての陽イオン交換容量のうち、0.1~7.0meq/gが上記リチウムイオンに置換されたα-リン酸チタンである請求項2に記載のリチウムイオン二次電池用イオン捕捉剤。
  6.  上記リチウムイオンに置換される前のα-リン酸チタンが、下記式(2)で表される化合物である請求項2又は5に記載のリチウムイオン二次電池用イオン捕捉剤。
       TiHs(PO4t・nH2O   (2)
    (式中、s及びtは3t-s=4を満たす正数であり、tは2<t≦2.1であり、nは0≦n≦2である。)
  7.  上記成分(C)は、全ての陽イオン交換容量のうち、0.1~6.9meq/gが上記リチウムイオンに置換されたトリポリリン酸二水素アルミニウムである請求項2に記載のリチウムイオン二次電池用イオン捕捉剤。
  8.  上記リチウムイオンに置換される前のトリポリリン酸二水素アルミニウムが、下記式(3)で表される化合物である請求項2又は7に記載のリチウムイオン二次電池用イオン捕捉剤。
       AlH2310・nH2O   (3)
    (式中、nは正数である。)
  9.  水分含有率が10質量%以下である請求項1乃至8のいずれか一項に記載のリチウムイオン二次電池用イオン捕捉剤。
  10.  請求項1乃至9のいずれか一項に記載のリチウムイオン二次電池用イオン捕捉剤を含有することを特徴とする電解液。
  11.  請求項1乃至9のいずれか一項に記載のリチウムイオン二次電池用イオン捕捉剤を含有することを特徴とするセパレーター。
  12.  正極、負極、電解液及びセパレーターを備えるリチウムイオン二次電池であって、上記正極、上記負極、上記電解液及び上記セパレーターの少なくとも1つが、請求項1乃至9のいずれか一項に記載のリチウムイオン二次電池用イオン捕捉剤を含有することを特徴とするリチウムイオン二次電池。
PCT/JP2016/066335 2015-06-04 2016-06-02 リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池 WO2016194995A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017522233A JP6593440B2 (ja) 2015-06-04 2016-06-02 リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池
US15/578,479 US20180166749A1 (en) 2015-06-04 2016-06-02 Ion-trapping agent, electrolyte solution, and separator for lithium-ion rechargeable battery, and lithium-ion rechargeable battery
KR1020177036277A KR102614833B1 (ko) 2015-06-04 2016-06-02 리튬 이온 2 차 전지용 이온 포착제, 전해액, 세퍼레이터 및 리튬 이온 2 차 전지
CN201680031802.6A CN107636881B (zh) 2015-06-04 2016-06-02 锂离子二次电池用离子捕捉剂、电解液、间隔件和锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015114246 2015-06-04
JP2015-114246 2015-06-04

Publications (1)

Publication Number Publication Date
WO2016194995A1 true WO2016194995A1 (ja) 2016-12-08

Family

ID=57441394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066335 WO2016194995A1 (ja) 2015-06-04 2016-06-02 リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20180166749A1 (ja)
JP (1) JP6593440B2 (ja)
KR (1) KR102614833B1 (ja)
CN (1) CN107636881B (ja)
TW (1) TWI705592B (ja)
WO (1) WO2016194995A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146237A1 (ja) * 2016-02-25 2017-08-31 旭化成株式会社 非水電解質電池用無機粒子及び非水電解質電池
JP2018200795A (ja) * 2017-05-26 2018-12-20 旭化成株式会社 非水電解質電池用無機粒子及び非水電解質電池
WO2019116959A1 (ja) * 2017-12-15 2019-06-20 東亞合成株式会社 イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池
EP3509155A4 (en) * 2017-07-14 2019-11-06 LG Chem, Ltd. ADDITIVE WITH A WATER-FREE ELECTROLYTE SOLUTION, WATER-FREE ELECTROLYTE SOLUTION FOR LITHIUM CERTAIN BATTERY AND LITHIUM CERTAIN BATTERY WITH ADDITIVE WITH A WATER-FREE ELECTROLYTE SOLUTION
WO2019220580A1 (ja) * 2018-05-16 2019-11-21 東亞合成株式会社 微粒子状繊維用消臭剤
CN110869450A (zh) * 2017-10-12 2020-03-06 惠普印迪戈股份公司 电子照相墨水组合物
TWI803493B (zh) * 2018-05-21 2023-06-01 日商東亞合成股份有限公司 微粒子狀纖維用除臭劑

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102311985B1 (ko) * 2016-04-05 2021-10-14 도아고세이가부시키가이샤 태양 전지용 이온 포착제 및 그것을 포함하는 태양 전지용 밀봉제 조성물 그리고 태양 전지 모듈
CN109935771B (zh) * 2019-03-27 2022-11-04 宁德新能源科技有限公司 隔离膜与包含其的电化学装置及电子装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011996A (ja) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077103A (ja) 1998-08-31 2000-03-14 Hitachi Ltd リチウム二次電池および機器
DE10240032A1 (de) * 2002-08-27 2004-03-11 Creavis Gesellschaft Für Technologie Und Innovation Mbh Ionenleitender Batterieseparator für Lithiumbatterien, Verfahren zu deren Herstellung und die Verwendung derselben
CN1688063A (zh) * 2005-04-27 2005-10-26 惠州Tcl金能电池有限公司 一种高比容量二次锂离子电池
KR100907624B1 (ko) * 2005-10-26 2009-07-15 주식회사 엘지화학 금속이온의 제거에 의해 수명 특성이 향상된 이차전지
JP5157911B2 (ja) * 2006-10-27 2013-03-06 東亞合成株式会社 電子部品封止用樹脂組成物
JP5309927B2 (ja) 2008-11-28 2013-10-09 株式会社豊田中央研究所 非水系リチウムイオン二次電池
MX2011010546A (es) * 2009-04-09 2011-10-19 Nissan Motor Colector para bateria secundaria y bateria secundaria que utiliza el mismo.
WO2012105510A1 (ja) * 2011-01-31 2012-08-09 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
US9782749B2 (en) 2011-03-11 2017-10-10 Hitachi Chemical Company, Ltd. Aluminum silicate, metal ion adsorbent, and method for producing same
JP6094163B2 (ja) 2011-11-15 2017-03-15 日立化成株式会社 リチウムイオン二次電池用セパレータ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011996A (ja) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLEARFIELD,ABRAHAM ET AL.: "On the mechanism of ion exchange in zirconium phosphates XVII. Dehydration behavior of lithum ion exchanged phases.", J. INORG. NUCL. CHEM., vol. 39, no. 8, 1977, pages 1437 - 1442, XP055332415 *
TAKAGUCHI, KAZUNORI ET AL.: "Lithium ion exchange on alpha-titanium phosphate", JOURNAL OF CHROMATOGRAPHY A, vol. 118, no. 2, 1976, pages 263 - 267, XP026487150 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146237A1 (ja) * 2016-02-25 2017-08-31 旭化成株式会社 非水電解質電池用無機粒子及び非水電解質電池
US10680291B2 (en) 2016-02-25 2020-06-09 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte battery inorganic particles and nonaqueous electrolyte battery
JP2018200795A (ja) * 2017-05-26 2018-12-20 旭化成株式会社 非水電解質電池用無機粒子及び非水電解質電池
EP3509155A4 (en) * 2017-07-14 2019-11-06 LG Chem, Ltd. ADDITIVE WITH A WATER-FREE ELECTROLYTE SOLUTION, WATER-FREE ELECTROLYTE SOLUTION FOR LITHIUM CERTAIN BATTERY AND LITHIUM CERTAIN BATTERY WITH ADDITIVE WITH A WATER-FREE ELECTROLYTE SOLUTION
US11081728B2 (en) 2017-07-14 2021-08-03 Lg Chem, Ltd. Non-aqueous electrolyte solution additive, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same
CN110869450A (zh) * 2017-10-12 2020-03-06 惠普印迪戈股份公司 电子照相墨水组合物
US11281121B2 (en) * 2017-10-12 2022-03-22 Hp Indigo B.V. Electrophotographic ink composition including copolymer of olefin and (meth) acrylic acid and charge adjuvant
WO2019116959A1 (ja) * 2017-12-15 2019-06-20 東亞合成株式会社 イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池
CN111432921A (zh) * 2017-12-15 2020-07-17 东亚合成株式会社 离子捕捉剂、锂离子电池用间隔件及锂离子二次电池
JPWO2019116959A1 (ja) * 2017-12-15 2020-12-24 東亞合成株式会社 イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池
JP7088212B2 (ja) 2017-12-15 2022-06-21 東亞合成株式会社 イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池
US11641045B2 (en) 2017-12-15 2023-05-02 Toagosei Co., Ltd. Ion trapping agent, separator for lithium ion battery, and lithium ion secondary battery
WO2019220580A1 (ja) * 2018-05-16 2019-11-21 東亞合成株式会社 微粒子状繊維用消臭剤
TWI803493B (zh) * 2018-05-21 2023-06-01 日商東亞合成股份有限公司 微粒子狀纖維用除臭劑

Also Published As

Publication number Publication date
US20180166749A1 (en) 2018-06-14
KR102614833B1 (ko) 2023-12-15
KR20180014733A (ko) 2018-02-09
JP6593440B2 (ja) 2019-10-23
JPWO2016194995A1 (ja) 2018-03-22
TWI705592B (zh) 2020-09-21
CN107636881A (zh) 2018-01-26
CN107636881B (zh) 2020-11-27
TW201717470A (zh) 2017-05-16

Similar Documents

Publication Publication Date Title
JP6593440B2 (ja) リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池
Zhou et al. SiO 2-coated LiNi 0.915 Co 0.075 Al 0.01 O 2 cathode material for rechargeable Li-ion batteries
KR101510510B1 (ko) 전극 활물질의 제조 방법
JP6112213B2 (ja) リチウムイオン二次電池
JP5940529B2 (ja) チタン酸リチウム凝集体及びこれを用いたリチウムイオン二次電池、リチウムイオンキャパシタ
US10312544B2 (en) Method for manufacturing electrode active material
JP6096985B1 (ja) 非水電解質電池及び電池パック
CN104011917A (zh) 锂离子二次电池用材料及其应用
JP2015118782A (ja) リチウムイオン二次電池
JP6058444B2 (ja) 負極、非水電解質電池、電池パック及び自動車
JP2011204564A (ja) 電極活物質の製造方法
JP7088212B2 (ja) イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池
JP2016201268A (ja) ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、およびナトリウム二次電池
JP5879943B2 (ja) リチウムイオン二次電池
JP2017004627A (ja) リチウムイオン二次電池用イオン捕捉剤、及びそれを用いたリチウムイオン二次電池
JP2019061782A (ja) 非水電解質二次電池及びその製造方法
JP2002033102A (ja) 二次電源及び二次電源用負極の製造方法
KR101102654B1 (ko) 고출력 및 고에너지를 발휘할 수 있는 복합 전극 활물질
KR20180007592A (ko) 리튬 이온 이차 전지용 이온 포착제 및 그것을 사용한 리튬 이온 이차 전지
JP6135980B2 (ja) 正極活物質及び蓄電素子
JP2022156236A (ja) 非水電解質二次電池用負極の製造方法、非水電解質二次電池の負極作製用スラリー、及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522233

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15578479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177036277

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16803429

Country of ref document: EP

Kind code of ref document: A1