WO2019116959A1 - イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池 - Google Patents

イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019116959A1
WO2019116959A1 PCT/JP2018/044497 JP2018044497W WO2019116959A1 WO 2019116959 A1 WO2019116959 A1 WO 2019116959A1 JP 2018044497 W JP2018044497 W JP 2018044497W WO 2019116959 A1 WO2019116959 A1 WO 2019116959A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
calcined
substituted
separator
zirconium phosphate
Prior art date
Application number
PCT/JP2018/044497
Other languages
English (en)
French (fr)
Inventor
大野 康晴
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to CN201880078254.1A priority Critical patent/CN111432921B/zh
Priority to KR1020207016155A priority patent/KR102612759B1/ko
Priority to US16/770,407 priority patent/US11641045B2/en
Priority to JP2019559562A priority patent/JP7088212B2/ja
Publication of WO2019116959A1 publication Critical patent/WO2019116959A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an ion capturing agent, a separator for lithium ion batteries, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are lighter in weight than other secondary batteries such as nickel hydrogen batteries and lead storage batteries, and have high input / output characteristics. Therefore, lithium ion secondary batteries are used for high input / output used in electric vehicles, hybrid electric vehicles, etc. It is noted as a power source.
  • lithium constituting the positive electrode may be deposited on the negative electrode during charge and discharge.
  • impurities for example, magnetic impurities such as Fe, Ni, Mg, and Cu or ions thereof
  • lithium dendrite deposited on the negative electrode may break the separator and reach the positive electrode, which may cause a short circuit.
  • the lithium ion secondary battery may have an operating temperature of 40 ° C. to 80 ° C., such as in a car in summer.
  • a metal such as manganese is eluted from the lithium-containing metal oxide which is a constituent material of the positive electrode, and is deposited on the negative electrode, which may lower the characteristics (such as capacity) of the battery.
  • Patent Document 1 discloses a lithium ion secondary battery having a capture material having a function of capturing, by absorption, bonding or adsorption, an impurity or by-product generated inside the lithium ion secondary battery.
  • a capture material having a function of capturing, by absorption, bonding or adsorption, an impurity or by-product generated inside the lithium ion secondary battery.
  • activated carbon, silica gel, zeolite and the like are mentioned as the capture substance.
  • a positive electrode having as a positive electrode active material a lithium compound containing Fe or Mn as a metal element as a constituent element, and a negative electrode having a carbon material capable of inserting and extracting lithium ions as a negative electrode active material A non-aqueous lithium ion secondary battery separately disposed in a non-aqueous electrolytic solution, wherein the positive electrode contains 0.5 to 5 wt% of zeolite with respect to the positive electrode active material, and the zeolite is effective.
  • a non-aqueous lithium ion secondary battery having a pore diameter of 0.5 nm (5 ⁇ ) or less larger than the ion radius of the metal element is disclosed.
  • Patent Documents 3 to 5 disclose an aluminum silicate having a specific composition and structure, a lithium ion secondary battery using the same, and a member.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-77103 Patent Document 2: Japanese Patent Application Laid-Open No. 2010-129430 Patent Document 3: International Publication No. 2012/124222 Patent Document 4: Japanese Patent Application Laid-Open No. 2013-105673 Patent Document 5: Japanese Patent Application Laid-Open No. 2013-127955 gazette
  • the problem to be solved by one embodiment of the present invention is to provide an ion capturing agent that captures impurities generated inside the battery with high efficiency.
  • another problem to be solved by the other embodiments of the present invention is a lithium ion battery separator or a lithium ion secondary battery, which contains this ion capturing agent, suppresses deterioration of battery characteristics with time and suppresses a decrease in battery capacity. To provide.
  • the inventors of the present invention conducted various studies with the aim of improving the adsorption rate of impurities, and supported lithium ions exceeding the theoretical exchange capacity of the layered phosphate compound having protons as ion exchange groups, and crystals. It has been found that an ion scavenger for lithium ion secondary batteries, which is a layered phosphate compound having no water, can trap impurities at high speed. According to the present specification, the following means are provided based on such findings.
  • the ion-trapping agent which is a layered phosphate compound which carry
  • Ion scavenger according to ⁇ 2> the mass ratio of the lithium atom and a phosphorus acid group PO 4 contained in the layered phosphate compound (Li / PO 4) is 0.07 or more ⁇ 1>.
  • the specific surface area of the layered phosphate compound is 15 m 2 / g or more, ion-trapping agent according to ⁇ 1> or ⁇ 2>.
  • ⁇ 5> The ion scavenger according to any one of ⁇ 1> to ⁇ 4>, wherein the layered phosphate compound is ⁇ -zirconium phosphate or ⁇ -titanium phosphate.
  • the separator for lithium ion batteries which has an ion trapping layer containing the ion trapping agent in any one of ⁇ 6> ⁇ 1> to ⁇ 5>.
  • an ion capturing agent that captures impurities generated inside the battery with high efficiency.
  • a lithium ion battery separator or a lithium ion secondary battery which contains this ion capturing agent, suppresses the deterioration of battery characteristics with time and suppresses the decrease in battery capacity.
  • the ion capturing agent of the present embodiment is a layered phosphate compound that supports lithium ions exceeding the theoretical exchange capacity of the layered phosphate compound having a proton as an ion exchange group and does not have crystallization water.
  • the ion trapping material of the present embodiment is made of only a layered phosphate compound that supports lithium ions exceeding the theoretical exchange capacity of the layered phosphate compound having a proton as an ion exchange group and does not have water of crystallization. It may be or may be composed of this layered phosphate compound and another compound.
  • the said metal ion originates in the impurity which exists in the structural member of a lithium ion secondary battery, and the metal eluted from a positive electrode under high temperature.
  • the ion trapping material of the present embodiment is a secondary lithium ion such as manganese ion (Mn 2+ ), nickel ion (Ni 2+ ), copper ion (Cu 2+ ), iron ion (Fe 2+ ), etc.
  • the trapping speed of unnecessary metal ions in the battery is high, and therefore, the metal ions that can cause short circuit can be efficiently trapped.
  • the layered phosphate compounds before the ion exchange group is substituted with lithium ions are all layered compounds, and many OH groups are present in the layer.
  • a layered phosphate compound that carries lithium ions exceeding the theoretical exchange capacity of a layered phosphate compound having a proton as an ion exchange group and does not have crystallization water is also a layered compound.
  • the ion scavenger of the present embodiment provides a neutral liquid, even when added to the electrolytic solution, the pH does not greatly fluctuate. Specifically, when the alkaline solution is contained in the electrolytic solution, the electrolytic solution is easily decomposed to generate lithium carbonate as the pH rises, and the resistance is increased. However, the ion capturing agent of the present embodiment is There is no such problem. Further, since the ion scavenger of the present embodiment is an inorganic substance, it is excellent in thermal stability and stability in an organic solvent. For this reason, when it is made to contain in the structural member of a lithium ion secondary battery, it can exist stably also in charge / discharge.
  • the present embodiment is as follows.
  • An ion scavenger which is a layered phosphate compound which carries lithium ions exceeding the theoretical exchange capacity of a layered phosphate compound having a proton as an ion exchange group and has no crystal water.
  • the lithium ion-containing phosphate compound is shown below.
  • (A) Alpha phosphoric acid on which all of the ion exchange groups are substituted by lithium ions, lithium ions exceeding the theoretical exchange capacity of the layered phosphate compound having protons as ion exchange groups are supported, and water of crystallization is removed
  • Acid Titanium The ion scavenger of the present embodiment may contain only one of them, or may contain two or more of them.
  • the said component (A) is a substitution body by the lithium ion of (alpha) zirconium phosphate.
  • the ion exchange group of the above-mentioned alpha zirconium phosphate (alpha zirconium phosphate Zr (HPO 4 ) 2 ⁇ H 2 O before substitution) is usually a proton, and the theoretical ion exchange capacity is 6.64 meq / g. All of these protons are substituted by lithium ions, lithium ions exceeding the theoretical exchange capacity of the layered phosphate compound having protons as ion exchange groups are supported, and crystal water is removed, and the component (A) is It is formed.
  • the above-mentioned ⁇ -zirconium phosphate is preferably a compound represented by the following formula (1).
  • ZrO 2 ⁇ nP 2 O 5 ⁇ x Li 2 O (1) (In the formula (1), n is a positive number of 0.5 ⁇ n ⁇ 1.5, x is a positive number of 0.8 ⁇ x ⁇ 2.2, and n ⁇ x.)
  • the amount of lithium ion substituted to the compound of the above formula (1) is preferably 6.7 meq / g or more, more preferably 7.5 to 15 meq / g. It is particularly preferably 8 to 12 meq / g from the viewpoint of capturing ability of Co 2+ ion, Mn 2+ ion and the like.
  • the formula (1) of the mass of the lithium atoms which is substituted for the compound was determined in terms of PO 4 by the number of atoms of phosphorus contained in the compounds of the phosphate groups (
  • the ratio (Li / PO 4 ) to the mass with PO 4 ) is preferably 0.07 or more, more preferably 0.073 to 0.34. Moreover, it is preferable that an upper limit is 0.35 or less.
  • the mass ratio (Li / PO 4 ) is particularly preferably 0.10 to 0.33 from the viewpoint of the balance between the trapping properties such as Co 2+ ion and Mn 2+ ion and other physical properties.
  • the method for producing the above component (A) is not particularly limited. For example, after adding ⁇ -zirconium phosphate to an aqueous solution of lithium hydroxide and stirring for a certain period of time, it is filtered, washed and dried, and then fired at high temperature to crystallize It can be a method of removing water.
  • the concentration of the LiOH aqueous solution is not particularly limited. When the concentration is high, the basicity of the reaction solution becomes high, and a part of the ⁇ -zirconium phosphate may be eluted, so it is preferably 1 mol / L or less.
  • the firing temperature is preferably 350 ° C. or more and 550 ° C. or less. If the temperature is 350 ° C. or more, no crystal water which may adversely affect the battery remains, and if the temperature is 550 ° C. or less, the zirconium phosphate is not decomposed.
  • the said component (B) is a substituted body by the lithium ion of (alpha) titanium phosphate.
  • the ion exchange group of the above ⁇ titanium phosphate ( ⁇ titanium titanium titanium (HPO 4 ) 2 ⁇ H 2 O before substitution) is usually a proton, and the theoretical ion exchange capacity is 7.76 meq / g. All of the protons are substituted by lithium ions, lithium ions exceeding the theoretical exchange capacity of the layered phosphate compound having protons as ion exchange groups are supported, and crystal water is removed, and the component (B) is It is formed.
  • the ⁇ -titanium phosphate is preferably a compound represented by the following formula (2).
  • n is a positive number of 0.5 ⁇ n ⁇ 1.5
  • x is a positive number of 0.8 ⁇ x ⁇ 2.2
  • the amount of lithium ion substituted to the compound of the above formula (2) is preferably 7.4 meq / g or more, more preferably 7.5 to 15 meq / g. It is particularly preferably 8 to 12 meq / g from the viewpoint of capturing ability of Co 2+ ion, Mn 2+ ion and the like.
  • the ratio (Li / PO 4 ) to the mass with 4 ) is preferably 0.07 or more, more preferably 0.073 to 0.34. Moreover, it is preferable that an upper limit is 0.35 or less.
  • the mass ratio (Li / PO 4 ) is particularly preferably 0.10 to 0.33 from the viewpoint of the capture property of Co 2+ ion, Mn 2+ ion and the like.
  • the method for producing the component (B) is not particularly limited. For example, after adding alpha titanium phosphate to an aqueous solution of lithium hydroxide and stirring for a certain period of time, it is filtered, washed and dried, and then fired at high temperature to crystallize It can be a method of removing water.
  • the concentration of the LiOH aqueous solution is not particularly limited. When the concentration is high, the basicity of the reaction solution becomes high, and a part of alpha titanium phosphate may elute, so it is preferably 1 mol / L or less.
  • the firing temperature is preferably 350 ° C. or more and 550 ° C. or less. If the temperature is 350 ° C. or more, no crystal water which may adversely affect the battery remains, and if the temperature is 550 ° C. or less, the zirconium phosphate is not decomposed.
  • the lithium ion-containing layered phosphate compound generally has a layered structure, and from the viewpoint of the ion capturing property of Co 2+ ion, Mn 2+ ion, etc., and the dispersibility in liquid, the upper limit of the median particle diameter is It is preferably 5.0 ⁇ m, more preferably 3.0 ⁇ m, more preferably 2.0 ⁇ m, still more preferably 1.0 ⁇ m, and the lower limit is preferably 0.03 ⁇ m, more preferably 0.05 ⁇ m.
  • the preferred particle size may be selected according to the type of component to which the ion scavenger is applied.
  • the BET specific surface area of the lithium ion-containing layered phosphate compound is preferably 15 m 2 / g or more from the viewpoint of ion capturing properties such as Co 2+ ions and Mn 2+ ions, and dispersibility in a liquid, 15 m 2 / g or more and 200 m 2 / g or less is preferable, and 30 m 2 / g or more and 150 m 2 / g or less is more preferable.
  • the BET specific surface area of the lithium ion-containing layered phosphate compound is measured by "AUTOSORB-1" (model name) manufactured by Quantachrome by JIS R1626 "Measurement of specific surface area of fine ceramic powder by gas adsorption BET method". Do.
  • the ion scavenger of the present embodiment may be composed of a lithium ion-containing layered phosphate compound and another compound.
  • Other compounds may be other ion scavengers, binders such as resins, water, organic solvents and the like.
  • the water content of the ion scavenger of the present embodiment is preferably 1% by mass or less, more preferably 0.5% by mass or less.
  • the water content can be measured by the Karl Fischer method.
  • the method for setting the water content of the ion scavenger to 10% by mass or less is not particularly limited, and the drying method of the powder to be used can be applied. For example, a method of heating at 100 ° C. to 300 ° C. for about 6 to 24 hours under atmospheric pressure or reduced pressure may be mentioned.
  • the ion capturing agent of the present embodiment can be used for a positive electrode, a negative electrode, an electrolytic solution or a separator that constitutes a lithium ion secondary battery.
  • a positive electrode an electrolyte solution, or a separator.
  • the lithium ion secondary battery of the present embodiment comprises a positive electrode, a negative electrode, an electrolytic solution and a separator, and at least one of the positive electrode, the negative electrode, the electrolytic solution and the separator is for the lithium ion secondary battery of the present embodiment It is characterized by containing an ion scavenger.
  • the lithium ion secondary battery of the present embodiment can further include other components.
  • the structure of the lithium ion secondary battery is not particularly limited, but a storage element consisting of a positive electrode, a negative electrode and a separator is wound in a flat spiral shape to form a wound type electrode plate group, or these are flat It is general to make it the structure which enclosed the obtained electrode group in the exterior material, after laminating
  • FIG. 1 is an example of a leaded storage element enclosed in an exterior material.
  • the storage element 10 is a wound body in which a pair of electrodes (a positive electrode 30 and a negative electrode 40) face each other with the separator 20 interposed therebetween is wound.
  • the positive electrode 30 includes the positive electrode active material layer 34 on the positive electrode current collector 32
  • the negative electrode 40 includes the negative electrode active material layer 44 on the negative electrode current collector 42.
  • the positive electrode active material layer 34 and the negative electrode active material layer 44 are in contact with both sides of the separator 20, respectively.
  • An electrolytic solution is contained in the positive electrode active material layer 34, the negative electrode active material layer 44, and the separator 20.
  • leads 52 and 54 made of, for example, aluminum are connected to the end portions of the positive electrode current collector 32 and the negative electrode current collector 42, respectively.
  • the lithium ion secondary battery of the present embodiment more preferably contains the ion scavenger of the present embodiment in at least one of the electrolytic solution and the separator.
  • the electrolyte contains impurities, it may cause a short circuit.
  • at least one of the electrolytic solution and the separator contains an ion-trapping agent in order to move impurity metal ions, for example, in the separator and bi-directionally between the positive electrode and the negative electrode in the process of charge and discharge. It is possible to capture unnecessary metal ions more effectively.
  • the positive electrode constituting the lithium ion secondary battery is usually provided with a positive electrode active material layer on at least a part of the surface of the positive electrode current collector.
  • a positive electrode current collector it is possible to use a strip-shaped one in which a metal or alloy such as aluminum, titanium, copper, nickel or stainless steel is made into a foil shape, a mesh shape or the like.
  • Examples of the positive electrode material used for the positive electrode active material layer include metal compounds capable of doping or intercalating lithium ions, metal oxides, metal sulfides, conductive polymer materials, and the like. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and composite materials thereof, and conductive materials such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, etc. A molecule etc. can be used individually or in combination of 2 or more types.
  • a positive electrode material-containing slurry is prepared using a positive electrode material, an ion capturing agent and a binder together with an organic solvent and a dispersing device such as a stirrer, and this is applied to a current collector material Then, a method of forming a positive electrode active material layer can be applied.
  • the paste-like positive electrode material-containing slurry may be formed into a sheet, a pellet, or the like, and may be integrated with the current collector material.
  • the concentration of the ion scavenger in the positive electrode material-containing slurry can be appropriately selected, and is preferably 0.01 to 5.0% by mass, and more preferably 0.1 to 2.0% by mass. preferable.
  • binder examples include polymer compounds such as styrene-butadiene copolymer, (meth) acrylic copolymer, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyimide and polyamideimide.
  • the content ratio of the binder in the positive electrode active material layer is preferably 0.5 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to a total of 100 parts by mass of the positive electrode material, the ion capturing agent and the binder. .
  • the content ratio of the binder is in the range of 0.5 to 20 parts by mass, the binder can be sufficiently adhered to the current collector material, and the increase in electrode resistance can be suppressed.
  • metal mask printing method electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, screen printing method Etc.
  • the negative electrode constituting the lithium ion secondary battery usually has a negative electrode active material layer on at least a part of the surface of the negative electrode current collector.
  • the constituent material of the negative electrode current collector can be the same as the constituent material of the positive electrode current collector, and may be made of a porous material such as a foam metal or carbon paper.
  • Examples of the negative electrode material used for the negative electrode active material layer include carbon materials capable of doping or intercalating lithium ions, metal compounds, metal oxides, metal sulfides, conductive polymer materials and the like. Specifically, natural graphite, artificial graphite, silicon, lithium titanate and the like can be used alone or in combination of two or more.
  • the negative electrode material, the ion capturing agent and the binder are kneaded with an organic solvent by a dispersing device such as a stirrer, ball mill, super sand mill, pressure kneader, etc. to prepare a negative electrode material containing slurry
  • a dispersing device such as a stirrer, ball mill, super sand mill, pressure kneader, etc.
  • a method of applying this to a current collector material to form a negative electrode active material layer.
  • a method of forming the paste-like negative electrode material-containing slurry into a sheet shape, a pellet shape, or the like and integrating it with the current collector material can also be applied.
  • the same raw materials for producing the above positive electrode can be used, and the contents can be made the same.
  • coating the said negative electrode material containing slurry to collector material a well-known method is applicable like a positive electrode.
  • the electrolyte solution used for the lithium ion secondary battery of the present embodiment is not particularly limited, and a known one can be used.
  • a non-aqueous lithium ion secondary battery can be manufactured by using an electrolytic solution in which an electrolyte is dissolved in an organic solvent.
  • LiPF 2 LiClO 4, LiBF 4, LiClF 4, LiAsF 6, LiSbF 6, LiAlO 2, LiAlCl 4, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiC Examples include lithium salts that form poorly solvated anions such as (CF 3 SO 2 ) 3 , LiCl, LiI and the like.
  • the concentration of the electrolyte is preferably 0.3 to 5 moles, more preferably 0.5 to 3 moles, and particularly preferably 0.8 to 1.5 moles relative to 1 L of the electrolyte.
  • the electrolyte solution of the present embodiment contains at least one of the above-mentioned ion scavengers.
  • the content of the ion scavenger in the electrolytic solution of the present embodiment is preferably 0.01 to 50% by mass, more preferably 0.1 to 30% by mass, and further preferably, from the viewpoint of suppressing the occurrence of short circuits and internal resistance. Is 0.5 to 10% by mass.
  • Examples of a method of adding an ion capturing agent to the electrolytic solution include a method of adding and mixing the ion capturing agent in a solid state or a dispersion state to a mixed solution of an electrolyte and an organic solvent. Among them, the method of adding in a solid state is preferable.
  • the solvent of the dispersion is not particularly limited. Among them, the same as the organic solvent constituting the electrolytic solution is preferable.
  • the concentration of the ion scavenger in the dispersion can be selected appropriately. The content is preferably 0.01 to 50% by mass, and more preferably 1 to 20% by mass.
  • the separator has the role of separating the two electrodes so that the positive and negative electrodes do not short circuit, and when an excessive current flows in the battery, the separator is melted by heat generation and the pores are closed. , Shut off the current to ensure safety.
  • the separator is preferably made of a substrate having a porous portion (hereinafter, referred to as "porous substrate"), and the structure thereof is not particularly limited.
  • the porous substrate is not particularly limited as long as it has a porous structure in which a large number of pores or voids are provided inside and the pores and the like are connected to each other.
  • porous membranes, non-woven fabrics, paper-like sheets, and other sheets having a three-dimensional network structure can be used.
  • a microporous membrane is preferable from the viewpoint of handling property and strength.
  • a material which comprises a porous base material although both an organic material and an inorganic material can be used, thermoplastic resins, such as polyolefin resin, are preferable from a viewpoint from which a shutdown characteristic is acquired.
  • polyethylene polyethylene, a polypropylene, polymethyl pentene etc. are mentioned.
  • a polymer containing 90% by mass or more of an ethylene unit is preferable.
  • the polyethylene may be any of low density polyethylene, high density polyethylene and ultra high molecular weight polyethylene.
  • it is such polyethylene it is excellent in strength and moldability.
  • the molecular weight of the polyethylene is preferably 100,000 to 10,000,000 in weight average molecular weight, and particularly preferably a polyethylene composition containing at least 1% by mass or more of ultra high molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more.
  • the porous substrate may contain polyethylene and other polyolefins such as polypropylene and polymethylpentene, and is a laminate of two or more layers comprising a polyethylene porous membrane and a polypropylene porous membrane. May be
  • the separator of the present embodiment contains at least one of the above ion scavengers.
  • a preferred separator includes a portion made of a porous substrate and an ion capturing agent.
  • the content of the ion scavenger in the separator is preferably 0.01 to 50 g / m 2 , more preferably 0.1 to 20 g / m 2 from the viewpoint of suppressing the occurrence of short circuit.
  • a preferred structure of the separator of the present embodiment is one having a layer containing an ion capturing agent at any site from one side to the other side, and is exemplified below.
  • S1 Separator Containing Ion Scavenger 60 in Surface Layer on One Side of Porous Substrate 15 FIG. 2 shows the separator of this embodiment, but the present invention is not limited to this, and the ion scavenger 60 is a porous substrate It may exist on the surface as well as the inside of the fifteen.
  • FIG. 3 shows a separator of this embodiment, but the present invention is not limited thereto.
  • FIG. 4 shows a separator of this embodiment, but the present invention is not limited to this. , And may be present on the surface as well as the inside of the porous substrate 15.
  • S4 Separator Containing Ion Scavenger 60 Layered Inside Porous Substrate 15 FIG. 5 shows the separator of this embodiment, but the present invention is not limited thereto. The number of layers may be more than one.
  • the side containing the ion capturing agent 60 may be disposed on any of the positive electrode side and the negative electrode side.
  • the separator 20 of the embodiment (S2) shown in 3 is also preferable.
  • the process and the process of drying a coating film and forming the layer containing an ion capturing agent can be manufactured by the method of providing sequentially.
  • the separator of the above aspect (S3) is produced by a method comprising sequentially immersing the porous substrate in a dispersion containing an ion capturing agent and drying the porous substrate with a coating liquid.
  • the process may be manufactured by a method comprising sequentially drying the coated film to form a layer containing an ion scavenger, and bonding another porous substrate to the ion scavenger containing layer. .
  • the solvent of the dispersion containing the above ion scavenger is not particularly limited.
  • water, N-methyl-2-pyrrolidone, and alcohols such as methanol, ethanol, 1-propanol and the like can be mentioned.
  • the concentration of the ion scavenger in the dispersion can be appropriately selected, and is preferably 0.01 to 50% by mass, and more preferably 1 to 20% by mass.
  • the dispersion may further contain a binder.
  • the ion scavenger-containing dispersion contains a binder, the ion scavenger is reliably immobilized on the porous substrate. Therefore, when the battery is manufactured, unnecessary metal ions can be efficiently captured without dropping the ion capturing agent.
  • the binder is not particularly limited, it can adhere well to the lithium ion-containing layered phosphate compound and the porous substrate, is electrochemically stable, and is stable to an electrolytic solution. Is preferred.
  • a binder ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride- Fluorine resin such as trichloroethylene copolymer, fluorine-based rubber, styrene-butadiene rubber, nitrile butadiene rubber, polybutadiene rubber, polyacrylonitrile, polyacrylic acid, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, cyanoethyl polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidon
  • polyvinyl alcohol polyvinylidene fluoride
  • styrene-butadiene rubber polyacrylic acid
  • carboxymethyl cellulose carboxymethyl cellulose and the like are preferable.
  • the binder is preferably the same as the binder used for the positive electrode active material layer or the negative electrode active material layer, from the viewpoint of the constituent material of the battery.
  • the amount of binder used (solid content) is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass, with respect to 100 parts by mass in total of the ion scavenger and the binder.
  • the amount of binder used is in the range of 0.1 to 20 parts by mass, the ion capturing agent is effectively immobilized on the porous substrate, and the effect is continuously obtained.
  • the metal adsorption efficiency per mass can be improved.
  • the method for applying the above dispersion to the porous substrate is not particularly limited.
  • Known methods such as die coating method, doctor blade method, gravure coating method and screen printing method can be applied.
  • the separator of this embodiment is composed of a laminate in which an independent layer containing an ion capturing agent is formed on one side or both sides of a porous substrate, It may be a laminate comprising a separate layer containing an ion scavenger between porous substrates.
  • the thickness of the ion scavenger-containing layer in any of the above-mentioned separators is as follows.
  • the lower limit of the thickness is preferably 0.5 ⁇ m, more preferably 2 ⁇ m, still more preferably 3 ⁇ m, and particularly preferably 4 ⁇ m from the viewpoint of ion trapping property.
  • the upper limit of the thickness is preferably 90 ⁇ m, more preferably 50 ⁇ m, still more preferably 30 ⁇ m, and particularly preferably 10 ⁇ m, from the viewpoint of permeability of the electrolyte solution, high capacity of the battery, and the like.
  • the number of separators included in the lithium ion secondary battery of the present embodiment is not particularly limited, and can be appropriately selected depending on the structure of the battery.
  • the preferable aspect of the lithium ion secondary battery of this embodiment is illustrated below.
  • (L1) Battery Containing Ion Scavenger of this Embodiment Only at Positive Electrode Battery (L2) Containing Ion Scavenger of Present Embodiment Only Battery (L3) Separator Containing Ion Scavenger of This Embodiment Battery Containing Ion Scavenger of This Embodiment Only (Battery) Battery including the separator of the present embodiment)
  • a battery containing the ion capturing agent of the present embodiment in the positive electrode and the separator (battery containing the separator of the present embodiment)
  • embodiments (L3), (L5) and (L6) are preferable.
  • the ion scavengers contained may be the same or different in each part.
  • a lithium ion secondary battery that includes the positive electrode and the negative electrode but does not include the separator can be formed using the electrolytic solution of the present embodiment.
  • the positive electrode and the negative electrode do not come in direct contact with each other, making the separator unnecessary.
  • ⁇ Evaluation method> Water content rate After vacuum drying the ion scavenger at 150 ° C. for 20 hours, according to JIS K 0113 “Potential difference, current, coulometric quantity, Karl Fischer titration method”, Karl Fischer moisture meter MKC- manufactured by Kyoto Denshi Kogyo Co., Ltd. 710, using a vaporizer ADP-611, the moisture content was measured by the Karl-Fuscher method.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the electrolyte was stirred at 25 ° C. for about 1 minute and then allowed to stand at 50 ° C. After that, the concentration of Mn 2+ ion after about 16 hours was measured using an ICP emission spectrometer “iCA7600 DUO” (model name) manufactured by Thermo Fisher Scientific.
  • the BET specific surface area of the ion capturing agent is measured with “AUTOSORB-1” (type name) manufactured by Quantachrome by JIS R 1626 “Measurement of specific surface area of fine ceramic powder by gas adsorption BET method”. did.
  • Powder X-ray diffraction (hereinafter abbreviated as “XRD”) measurement was performed using “D8 ADVANCE” manufactured by BRUKER. Using a Cu-encapsulated X-ray source, an X-ray diffraction pattern was obtained using CuK ⁇ generated at an applied voltage of 40 kv and a current value of 40 mA. Detailed measurement conditions are described in Table 1.
  • composition of zirconium phosphate is added to 20 mL of a concentrated nitric acid solution obtained by diluting 0.1 g of the obtained zirconium phosphate with pure water, heated, 0.5 mL of hydrofluoric acid is dropped and dissolved, and each component The quantitative analysis was conducted to estimate the content ratio of each component. Further, the ratio of Li ion to phosphate group PO 4 in the estimated composition is shown in Table 2. Further, the compositions other than zirconium phosphate shown in the following Examples and Comparative Examples were all determined by the same method.
  • Production Example 2 Synthesis of calcined Li-substituted ⁇ -zirconate zirconium (1)
  • 70 g of the ⁇ -zirconium phosphate (1) obtained in Production Example 1 is stirred in 7000 ml of a 0.1 N (mol / L) aqueous solution of LiOH. While adding. The mixture was further stirred for 8 hours and filtered and washed with a filter until the conductivity of the filtrate became 500 ⁇ S / cm or less. After washing with water, vacuum drying was carried out at 150 ° C. for 20 hours, and further firing was carried out at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconate zirconium phosphate (1).
  • the median diameter was 0.9 ⁇ m.
  • the calcined Li-substituted ⁇ -zirconate zirconium phosphate (1) was ZrO 2 ⁇ P 2 O 5 ⁇ Li 2 O in which the introduced amount of Li ions was 6.78 meq / g.
  • the mass ratio (Li / PO 4 ) of lithium atom to phosphoric acid group PO 4 in this composition is 0.073.
  • the mass ratio (Li / PO 4 ) between the lithium atom and the phosphate group PO 4 contained in the Li-substituted layered phosphate compound is the PO of the number of P atoms contained in the molecule. Calculated as including four .
  • Preparation Example 4 Synthesis of calcined Li-substituted ⁇ -zirconium phosphate (3)
  • a calcined Li-substituted type was prepared in the same manner as in Preparation Example 2 except that Li-substituted ⁇ -zirconium phosphate (3) was calcined at 400 ° C. for 4 hours. Alpha zirconium phosphate (3) was obtained. The median diameter was 0.9 ⁇ m.
  • the composition of the calcined Li-substituted ⁇ -zirconate ⁇ -phosphate (3) was ZrO 2 .0.6P 2 O 5 .1.8Li 2 O in which the introduced amount of Li ions is 13.73 meq / g.
  • the mass ratio of the lithium atom and a phosphorus acid group PO 4 in this composition (Li / PO 4) is 0.22. (Example 3)
  • Production Example 5 Synthesis of calcined Li-substituted ⁇ -zirconate zirconium phosphate (4) 20 g of the ⁇ -zirconium phosphate obtained in Production Example 1 was mixed with 5.87 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further fired at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium zirconium phosphate (4).
  • the composition of the calcined Li-substituted ⁇ -zirconate zirconium phosphate (4) was ZrO 2 ⁇ P 2 O 5 ⁇ Li 2 O in which the introduced amount of Li ions is 6.78 meq / g. Further, the mass ratio (Li / PO 4 ) of lithium atom to phosphoric acid group PO 4 in this composition is 0.073. (Example 4)
  • Production Example 6 Synthesis of calcined Li-substituted ⁇ -zirconate zirconium phosphate (5) 20 g of the ⁇ -zirconium phosphate obtained in Production Example 1 was mixed with 8.39 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further calcined at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (5).
  • composition of this calcined Li-substituted ⁇ -zirconate ⁇ -phosphate (5) was ZrO 2 ⁇ P 2 O 5 ⁇ 1.4 Li 2 O in which the introduced amount of Li ions is 9. 12 meq / g.
  • the mass ratio of the lithium atom and a phosphorus acid group PO 4 in this composition (Li / PO 4) is 0.104. (Example 5)
  • Production Example 7 Synthesis of calcined Li-substituted ⁇ -zirconate zirconium (6) 20 g of the ⁇ -zirconium phosphate obtained in Production Example 1 was mixed with 12.59 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further fired at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (6).
  • composition of this calcined Li-substituted ⁇ -zirconate ⁇ -phosphate (6) was ZrO 2 ⁇ P 2 O 5 ⁇ 2.1Li 2 O in which the introduced amount of Li ions was 12.80 meq / g. Further, the mass ratio (Li / PO 4 ) of lithium atom to phosphoric acid group PO 4 in this composition is 0.156. (Example 6)
  • Preparation Example 8 Synthesis of calcined Li-substituted ⁇ -zirconium phosphate (11) 20 g of the ⁇ -zirconium phosphate obtained in Preparation Example 1 was mixed with 16.78 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further fired at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (11).
  • the composition of the calcined Li-substituted ⁇ -zirconate zirconium phosphate (11) was ZrO 2 ⁇ P 2 O 5 ⁇ 2.8 Li 2 O in which the amount of Li ions introduced is 18.24 meq / g.
  • the mass ratio of the lithium ion and a phosphate group PO 4 in this composition (Li / PO 4) is 0.22. (Example 7)
  • Preparation Example 9 Synthesis of calcined Li-substituted ⁇ -zirconium phosphate (12) 20 g of the ⁇ -zirconium phosphate obtained in Preparation Example 1 was mixed with 20.98 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further calcined at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (12).
  • the composition of the calcined Li-substituted ⁇ -zirconate zirconium phosphate (12) was ZrO 2 ⁇ P 2 O 5 ⁇ 3.5 Li 2 O in which the introduced amount of Li ions is 21.94 meq / g.
  • the mass ratio of the lithium ion and a phosphate group PO 4 in this composition (Li / PO 4) is 0.27. (Example 8)
  • Preparation Example 10 Synthesis of calcined Li-substituted ⁇ -zirconium phosphate (13) 20 g of the ⁇ -zirconium phosphate obtained in Preparation Example 1 was mixed with 25.18 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further fired at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (13).
  • the composition of the calcined Li-substituted ⁇ -zirconate zirconium phosphate (13) was ZrO 2 ⁇ P 2 O 5 ⁇ 4.2 Li 2 O in which the introduced amount of Li ions is 25.18 meq / g.
  • the mass ratio of the lithium ion and a phosphate group PO 4 in this composition (Li / PO 4) is 0.33. (Example 9)
  • zirconium phosphate The resultant was disintegrated using a rotor speed mill (16000 rpm, sieve 80 ⁇ m). As a result of measuring the obtained zirconium phosphate, it was confirmed to be ⁇ -zirconium phosphate (2). Further, it was 0.3 ⁇ m as a result of measuring a median diameter of ⁇ -zirconium phosphate (a laser diffraction type particle size distribution analyzer “LA-950” manufactured by Horiba, Ltd. (model name)).
  • Preparation Example 12 Synthesis of Calcined Li-Substituted Zirconium Phosphate (7) 70 g of the zirconium zirconium phosphate (2) obtained in Preparation Example 11 was added to 7000 ml of a 0.1 N aqueous solution of LiOH with stirring. The mixture was stirred for 8 hours, and filtered and washed with a filter until the conductivity of the filtrate became 500 ⁇ S / cm or less. Vacuum drying was performed at 150 ° C. for 20 hours to obtain lithium ion substituted ⁇ -zirconium phosphate (4). The lithium ion substituted ⁇ -zirconate zirconium (4) was calcined at 400 ° C.
  • Preparation Example 13 Synthesis of Calcined Li-Substituted Zirconium Phosphate (8) 70 g of the zirconium zirconium phosphate (2) obtained in Preparation Example 11 was added to 7000 ml of a 0.15 N LiOH aqueous solution while stirring. The mixture was stirred for 8 hours, and filtered and washed with a filter until the conductivity of the filtrate became 500 ⁇ S / cm or less. It was vacuum dried at 150 ° C. for 20 hours to obtain lithium ion substituted ⁇ -zirconium zirconium phosphate (5). The lithium ion substituted alpha zirconium phosphate (5) was calcined at 400 ° C.
  • Production Example 14 Synthesis of calcined Li-substituted ⁇ -zirconium phosphate (9) 20 g of the ⁇ -zirconium phosphate (2) obtained in Production Example 11 was mixed with 5.87 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further fired at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (9).
  • composition of the calcined Li-substituted ⁇ -zirconate zirconium phosphate (9) was ZrO 2 ⁇ P 2 O 5 ⁇ Li 2 O in which the introduced amount of Li ions is 6.78 meq / g. Further, the mass ratio (Li / PO 4 ) of lithium atom to phosphoric acid group PO 4 in this composition is 0.073. (Example 12)
  • Production Example 15 Synthesis of calcined Li-substituted ⁇ -zirconium phosphate (10) 20 g of the ⁇ -zirconium phosphate (2) obtained in Production Example 11 was mixed with 8.39 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further calcined at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (10).
  • composition of the calcined Li-substituted ⁇ -zirconate ⁇ -phosphate (10) was ZrO 2 ⁇ P 2 O 5 ⁇ 1.4Li 2 O in which the introduced amount of Li ions is 9.12 meq / g.
  • the mass ratio of the lithium atom and a phosphorus acid group PO 4 in this composition (Li / PO 4) is 0.104.
  • Preparation Example 16 Synthesis of ⁇ -Titanium Phosphate 405 g of 75% phosphoric acid was added to 400 ml of deionized water, and 137 g of titanyl sulfate (TiO 2 content: 33%) was added while stirring this solution. This was refluxed at 100 ° C. for 48 hours. After cooling, the obtained precipitate was thoroughly washed with water and then dried at 150 ° C. to obtain titanium phosphate. As a result of analyzing this obtained titanium phosphate, it was confirmed that it was ⁇ -titanium phosphate containing 7.76 mmol of H + ions per 1 g, that is, the introduced amount of Li ions is 7.76 meq / g. The median diameter was 1.2 ⁇ m.
  • Production Example 17 Synthesis of calcined Li-substituted ⁇ -titanium phosphate (1) 80.8 g of ⁇ -titanium phosphate obtained in Production Example 16 was added to 10000 mL of a 0.1 N aqueous solution of LiOH with stirring. The mixture was stirred for 8 hours, washed with water, and dried at 150 ° C. to obtain Li-substituted ⁇ titanium phosphate. Furthermore, this was calcined at 400 ° C. for 4 hours to obtain calcined Li-substituted ⁇ -titanium phosphate (1). The median diameter was 1.2 ⁇ m.
  • the composition of the calcined Li-substituted ⁇ -titanium phosphate (1) was TiO 2 ⁇ P 2 O 5 ⁇ Li 2 O in which the introduced amount of Li ions is 7.94 meq / g. Further, the mass ratio (Li / PO 4 ) of lithium atom to phosphoric acid group PO 4 in this composition is 0.073. (Example 14)
  • Preparation Example 19 Synthesis of calcined Li-substituted alpha titanium phosphate (3) 16.2 g of alpha titanium phosphate obtained in Preparation Example 16 was mixed with 6.88 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further calcined at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ titanium phosphate (3).
  • the composition of this calcined Li-substituted ⁇ -titanium phosphate (3) was TiO 2 ⁇ P 2 O 5 ⁇ Li 2 O in which the introduced amount of Li ions is 7.94 meq / g. Further, the mass ratio (Li / PO 4 ) of lithium atom to phosphoric acid group PO 4 in this composition is 0.073. (Example 16)
  • Production Example 20 Synthesis of calcined Li-substituted ⁇ -titanium phosphate (4) 16.2 g of ⁇ -titanium phosphate obtained in Production Example 16 was mixed with 9.83 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further calcined at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ titanium phosphate (4).
  • the composition of the calcined Li-substituted ⁇ -titanium phosphate (4) was TiO 2 ⁇ P 2 O 5 ⁇ 1.4 Li 2 O in which the introduced amount of Li ions is 10.62 meq / g.
  • the mass ratio of the lithium atom and a phosphorus acid group PO 4 in this composition (Li / PO 4) is 0.104.
  • the resultant was disintegrated using a rotor speed mill (16000 rpm, sieve 80 ⁇ m). As a result of measuring this obtained zirconium phosphate, it was confirmed to be ⁇ -zirconium phosphate (A). In addition, it was 6.5 ⁇ m as a result of measuring a median diameter of ⁇ -zirconium phosphate (a laser diffraction type particle size distribution analyzer “LA-950” (type name) manufactured by Horiba, Ltd.).
  • Production Example 22 Synthesis of calcined Li-substituted ⁇ -zirconium phosphate (14) 20 g of the ⁇ -zirconium phosphate A obtained in Production Example 21 was mixed with 16.78 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further calcined at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (14).
  • the composition of the calcined Li-substituted ⁇ -zirconate zirconium phosphate (14) was ZrO 2 ⁇ P 2 O 5 ⁇ 2.8 Li 2 O in which the amount of Li ions introduced is 18.24 meq / g.
  • the mass ratio of the lithium ion and a phosphate group PO 4 in this composition (Li / PO 4) is 0.22.
  • Production Example 23 Synthesis of calcined Li-substituted ⁇ -zirconium phosphate (15) 20 g of the ⁇ -zirconium phosphate A obtained in Production Example 21 was mixed with 20.98 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further fired at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (15).
  • composition of the calcined Li-substituted ⁇ -zirconate ⁇ -phosphate was ZrO 2 ⁇ P 2 O 5 ⁇ 3.5 Li 2 O in which the introduced amount of Li ions is 21.94 meq / g.
  • the mass ratio of the lithium ion and a phosphate group PO 4 in this composition (Li / PO 4) is 0.27.
  • Preparation Example 24 Synthesis of Calcined Li-Substituted Zirconium Phosphate (16) 20 g of the zirconium zirconium phosphate A obtained in Preparation Example 21 was mixed with 25.18 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further fired at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (16).
  • the composition of the calcined Li-substituted ⁇ -zirconate zirconium phosphate (16) was ZrO 2 ⁇ P 2 O 5 ⁇ 4.2 Li 2 O in which the amount of Li ions introduced is 25.18 meq / g.
  • the mass ratio of the lithium ion and a phosphate group PO 4 in this composition (Li / PO 4) is 0.33.
  • Preparation Example 25 Synthesis of Calcined Li-Substituted Zirconium Phosphate (C1) 70 g of the ⁇ -zirconium phosphate (1) obtained in Preparation Example 1 was added to 2800 ml of a 0.1 N aqueous solution of LiOH with stirring. The mixture was stirred for 8 hours, and filtered and washed with a filter until the conductivity of the filtrate became 500 ⁇ S / cm or less. Vacuum drying was performed at 150 ° C. for 20 hours to obtain lithium ion substituted ⁇ -zirconium phosphate (6). The resultant was further calcined at 400 ° C.
  • the composition of the calcined Li-substituted zirconium phosphate (C1) was ZrO 2 ⁇ P 2 O 5 ⁇ 0.5 Li 2 O in which the introduced amount of Li ions is 3.57 meq / g.
  • the mass ratio of the lithium atom and a phosphorus acid group PO 4 in this composition is 0.037.
  • Preparation Example 26 Synthesis of Calcined Li-Substituted Zirconium Phosphate (C2) 70 g of the zirconium zirconium (1) obtained in Preparation Example 1 was added to 4900 ml of a 0.1 N aqueous solution of LiOH with stirring. The mixture was stirred for 8 hours, and filtered and washed with a filter until the conductivity of the filtrate became 500 ⁇ S / cm or less. It was vacuum dried at 150 ° C. for 20 hours to obtain lithium ion substituted ⁇ -zirconium phosphate (7). The mixture was further calcined at 400 ° C. for 4 hours to obtain a calcined Li-substituted zirconium phosphate (C2).
  • composition of the calcined Li-substituted zirconium phosphate (C2) was ZrO 2 ⁇ P 2 O 5 ⁇ 0.9 Li 2 O in which the introduced amount of Li ions is 6.16 meq / g. Further, the mass ratio (Li / PO 4 ) of lithium atom to phosphoric acid group PO 4 in this composition is 0.066. (Comparative example 2)
  • Production Example 28 Synthesis of calcined Li-substituted ⁇ -zirconium phosphate (C4) 20 g of the ⁇ -zirconium phosphate obtained in Production Example 1 was mixed with 5.28 g of LiOH in a mortar. To this, 25 g of pure water was added and mixed well. It was dried at 150 ° C. for 12 hours and further calcined at 400 ° C. for 4 hours to obtain a calcined Li-substituted ⁇ -zirconium phosphate (14).
  • composition of the calcined Li-substituted ⁇ -zirconate ⁇ phosphate (C4) was ZrO 2 ⁇ P 2 O 5 ⁇ 0.9Li 2 O in which the introduced amount of Li ions is 3.57 meq / g. Further, the mass ratio (Li / PO 4 ) of lithium atom to phosphoric acid group PO 4 in this composition is 0.066. (Comparative example 4)
  • Preparation Example 29 Synthesis of Li-Substituted Zirconium Phosphate 70 g of the zirconium (1) having been obtained in Preparation Example 1 was added to 7000 ml of a 0.1 N aqueous solution of LiOH with stirring. The mixture was further stirred for 8 hours and filtered and washed with a filter until the conductivity of the filtrate became 500 ⁇ S / cm or less. After washing with water, vacuum drying was carried out at 150 ° C. for 20 hours to obtain lithium ion substituted ⁇ -zirconate zirconium phosphate (1). The median diameter was 0.9 ⁇ m.
  • the lithium ion-substituted ⁇ -zirconate ⁇ phosphate (1) was Zr (LiPO 4 ) 2 .H 2 O in which the amount of Li ion introduced was 6.39 meq / g. Further, the mass ratio (Li / PO 4 ) of lithium atom to phosphoric acid group PO 4 in this composition is 0.073. (Comparative example 5)
  • Li-substituted ⁇ -zirconate zirconium phosphate (2) Li-substituted ⁇ -zirconium phosphate (2) was obtained in the same manner as in Production Example 29 except that the LiOH solution was changed to 0.15N. The median diameter was 0.9 ⁇ m.
  • the composition of the Li-substituted ⁇ zirconium phosphate (2), the introduction amount of Li ions were ZrO 2 ⁇ 0.75P 2 O 5 ⁇ 1.5Li 2 O ⁇ H 2 O is 10.25meq / g .
  • the mass ratio of the lithium atom and a phosphorus acid group PO 4 in this composition (Li / PO 4) is 0.147. (Comparative example 6)
  • Table 3 shows the water content (%), (1) metal ion capture capacity (meq / g) in the electrolyte, and (2) metal ion capture ratio (%) in the model electrolyte, specific surface area Show. While all of the examples fulfill the requirements of the ion scavenger of the present embodiment, those of the comparative example are inferior in either the water content or the ability to capture an ion.
  • the ion capturing agent of the present embodiment has an ion capturing capacity of 2.2 to 4. As large as 2 meq / g, it is understood that the ion capturing ability is excellent. Further, as apparent from Table 3, also in the test using the model electrolyte, the ion capturing agent of the present embodiment has an ion capturing ratio as compared with the conventional ion capturing agents (Comparative Examples 1 to 6). I understand that it is high. From these results, since the ion capturing agent of the present embodiment has a high ion capturing speed and a high ion capturing capacity, the occurrence of a short circuit can be suppressed.
  • Example 1 This is placed in a polypropylene container together with zirconium oxide beads (Toray Industries, Inc. “Treceram” (registered trademark) beads, diameter 0.5 mm), and the aqueous solution is placed on a paint shaker (made by Toyo Seiki Seisakusho Co., Ltd.) for 4 hours The mixture was mixed, and the calcined Li-substituted alpha zirconium phosphate (1) of Example 1 was dispersed in a binder. Next, it was filtered through a filter with a filtration limit of 5 ⁇ m to obtain an ion scavenger working fluid (a).
  • zirconium oxide beads Toray Industries, Inc. “Treceram” (registered trademark) beads, diameter 0.5 mm
  • a paint shaker made by Toyo Seiki Seisakusho Co., Ltd.
  • the ion capturing agent processing liquid (a) is coated on one side of the polyethylene film as a separator by a gravure coating method to a thickness of 10 ⁇ m, and dried by passing through a 50 ° C. hot air drying oven for 10 seconds.
  • the battery separator (S1) was obtained.
  • the final thickness of the separator was 25 ⁇ m.
  • the separator (S1) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -zirconium phosphate (1) was calculated from the calcined residue to be 1 mg / cm 2 .
  • Example 102 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -zirconate zirconium phosphate (2) of Example 2 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) of Example 1.
  • Preparation of agent processing liquid and manufacture of separator were performed.
  • the thickness of the obtained separator (S2) was 25 ⁇ m.
  • the separator (S2) was fired at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -zirconium phosphate (2) was calculated from the calcined residue, to be 1.1 mg / cm 2 .
  • Example 103 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -zirconate zirconium phosphate (3) of Example 3 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) of Example 1.
  • Preparation of agent processing liquid and manufacture of separator were performed.
  • the thickness of the obtained separator (S3) was 25 ⁇ m.
  • the separator (S3) was fired at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -zirconium phosphate (3) was calculated from the calcined residue to be 1.0 mg / cm 2 .
  • Example 104 The ion trapping is carried out in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -zirconate zirconium phosphate (4) of Example 4 is used in place of the calcined Li-substituted ⁇ -zirconium phosphate (1) in Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S4) was 25 ⁇ m. The separator (S4) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -zirconium phosphate (4) was calculated from the calcined residue to be 1.0 mg / cm 2 .
  • Example 105 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -zirconate zirconium phosphate (5) of Example 5 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) in Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S5) was 25 ⁇ m. The separator (S5) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted zirconium phosphate (5) was calculated from the calcined residue to be 1.0 mg / cm 2 .
  • Example 106 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -zirconate zirconium phosphate (6) of Example 6 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) in Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S6) was 25 ⁇ m. The separator (S6) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -zirconium phosphate (6) was calculated from the calcined residue to be 1.1 mg / cm 2 .
  • Example 107 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -zirconate zirconium phosphate (7) of Example 7 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) in Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S7) was 25 ⁇ m. The separator (S7) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -zirconium phosphate (7) was calculated from the calcined residue to be 1.0 mg / cm 2 .
  • Example 108 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted zirconium phosphate (8) of Example 8 is used in place of the calcined Li-substituted ⁇ zirconium phosphate (1) of Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S8) was 25 ⁇ m. The separator (S8) was fired at 1000 ° C. for 2 hours, and the basis weight of all the fired Li-substituted ⁇ -zirconium phosphate (8) was calculated from the fired residue to be 1.1 mg / cm 2 .
  • Example 109 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted zirconium phosphate (9) of Example 9 is used instead of the calcined Li-substituted alpha zirconium phosphate (1) of Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S9) was 25 ⁇ m. The separator (S9) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -zirconium phosphate (9) was calculated from the calcined residue to be 1.0 mg / cm 2 .
  • Example 110 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted zirconium phosphate (10) of Example 10 is used instead of the calcined Li-substituted alpha zirconium phosphate (1) of Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S10) was 25 ⁇ m. The separator (S10) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -zirconium phosphate (10) was calculated from the calcined residue to be 1.0 mg / cm 2 .
  • Example 111 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -titanium phosphate (1) of Example 11 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) of Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S11) was 25 ⁇ m. The separator (S11) was calcined at 1000 ° C. for 2 hours, and the basis weight of the calcined Li-substituted ⁇ -titanium phosphate (1) of all the examples 11 was calculated from the calcined residue to be 1.0 mg / cm 2 .
  • Example 112 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -titanium phosphate (2) of Example 12 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) of Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S12) was 25 ⁇ m. The separator (S12) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -titanium phosphate (2) was calculated from the calcined residue to be 1.0 mg / cm 2 .
  • Example 113 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -titanium phosphate (3) of Example 13 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) of Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S13) was 25 ⁇ m. The separator (S13) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -titanium phosphate (3) was calculated from the calcined residue to be 1.1 mg / cm 2 .
  • Example 114 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -titanium phosphate (4) of Example 14 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) of Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S14) was 25 ⁇ m. The separator (S14) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -titanium phosphate (4) was calculated from the calcined residue to be 1.1 mg / cm 2 .
  • Comparative Example 101 A separator (S15) containing no ion scavenger was prepared.
  • Comparative Example 102 Preparation of ion scavenger working fluid and manufacture of separator in the same manner as in Example 101 except that alumina particles having a median diameter of 1 ⁇ m are used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) of Example 1. Did. The thickness of the obtained separator (S16) was 25 ⁇ m. The separator (S16) was fired at 1000 ° C. for 2 hours, and the basis weight of the total alumina was calculated from the fired residue to be 1.6 mg / cm 2 .
  • Comparative Example 103 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -zirconate zirconium phosphate (C1) of Comparative Example 1 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) of Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S17) was 25 ⁇ m. The separator (S17) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -zirconium phosphate (C1) was calculated from the calcined residue, to be 1.0 mg / cm 2 .
  • Comparative Example 104 The ion trapping was carried out in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -zirconate zirconium phosphate (C2) of Comparative Example 2 was used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) in Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S18) was 25 ⁇ m. The separator (S18) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted ⁇ -zirconium phosphate (C2) was calculated from the calcined residue to be 0.9 mg / cm 2 .
  • Comparative Example 105 The ion trapping is performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -zirconate zirconium phosphate (C3) of Comparative Example 3 is used in place of the calcined Li-substituted ⁇ -zirconium phosphate (1) of Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S19) was 25 ⁇ m. The separator (S19) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted zirconium phosphate (C3) was calculated from the calcined residue to be 1.1 mg / cm 2 .
  • Comparative Example 106 The ion trapping was performed in the same manner as in Example 101 except that the calcined Li-substituted ⁇ -zirconate zirconium phosphate (C4) of Comparative Example 4 was used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) in Example 1. Preparation of agent processing liquid and manufacture of separator were performed. The thickness of the obtained separator (S20) was 25 ⁇ m. The separator (S20) was calcined at 1000 ° C. for 2 hours, and the basis weight of all the calcined Li-substituted zirconium phosphate (C4) was calculated from the calcined residue, to be 0.9 mg / cm 2 .
  • Comparative Example 107 An ion scavenger is prepared in the same manner as in Example 101 except that the Li-substituted ⁇ -zirconate zirconium phosphate (1) of Comparative Example 5 is used instead of the calcined Li-substituted ⁇ -zirconium phosphate (1) of Example 1. Preparation of working fluid and production of separator were performed. The thickness of the obtained separator (S21) was 25 ⁇ m. The separator (S21) was fired at 1000 ° C. for 2 hours, and the basis weight of the total Li-substituted ⁇ -zirconium phosphate (1) was calculated from the fired residue to be 1.0 mg / cm 2 .
  • Comparative Example 108 An ion scavenger is prepared in the same manner as in Example 101 except that the Li-substituted ⁇ -zirconate zirconium phosphate (2) of Comparative Example 6 is used instead of the calcined Li-substituted ⁇ -zirconate phosphate (1) of Example 1. Preparation of working fluid and production of separator were performed. The thickness of the obtained separator (S22) was 25 ⁇ m. The separator (S22) was fired at 1000 ° C. for 2 hours, and the basis weight of all Li-substituted ⁇ -zirconium phosphate (2) was calculated from the fired residue to be 1.1 mg / cm 2 .
  • this negative electrode mixture slurry is applied by a doctor blade method on one side of a 20 ⁇ m-thick negative electrode current collector (copper foil) so that the thickness of the coating film is 30 ⁇ m, and dried to obtain a negative electrode The agent layer was formed. Then, it compression-molded by the roll press machine, it cut
  • Nonaqueous Electrolyte included 1 M (mol / L) of LiPF 6 as an indicator electrolyte in a solvent prepared by blending ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at 3: 7 volume%.
  • An electrolytic solution manufactured by Kishida Chemical Co., Ltd. was used.
  • Example 201 A negative electrode, a 35 ⁇ 50 mm separator (S1), and a positive electrode are stacked in this order, with the ion scavenger-containing layer side of the separator (S1) facing the positive electrode, and these are laminated with an aluminum packaging material (battery The case was housed in Next, the non-aqueous electrolyte solution manufactured by Kishida Chemical Co., Ltd. was injected so that air did not enter. Thereafter, in order to seal the contents, the opening of the aluminum packaging material was heat sealed at 150 ° C. to obtain a 50 mm ⁇ 80 mm ⁇ 6 mm lithium-ion secondary battery (L1) with an aluminum laminate exterior.
  • an aluminum packaging material battery The case was housed in Next, the non-aqueous electrolyte solution manufactured by Kishida Chemical Co., Ltd. was injected so that air did not enter. Thereafter, in order to seal the contents, the opening of the aluminum packaging material was heat sealed at 150 ° C. to obtain a 50 mm
  • the lithium ion secondary battery prepared above was initialized by the following procedure. First, the lithium ion secondary battery (L1) was charged at a constant current equivalent to a 3-hour rate until the battery voltage became 4.2 V from the open circuit state. After the battery voltage reached 4.2 V, 4.2 V was maintained until the current value became equivalent to a 0.1 hour rate. These two charging processes are called “charging under standard conditions", and their charged state is called “full charge”. The charge was then stopped and rested for 30 minutes. This process is called “rest”. Then, discharge of a constant current corresponding to a 3-hour rate was started, and was discharged until the battery voltage reached 3.0V. This process is called “discharge under standard conditions”.
  • the “time rate” is defined as a current value that discharges the designed discharge capacity of the battery in a predetermined time. For example, a 3 hour rate is a current value that discharges the designed capacity of the battery in 3 hours. Further, assuming that the battery capacity is C (unit: Ah), the current value of the 3-hour rate is C / 3 (unit: A).
  • Examples 201 to 214 A lamicell type lithium ion secondary battery (L2 to L4) is prepared in the same manner as in Example 201 except that the separators (S2 to S14) of Examples 102 to 114 are used instead of the separator (S1) of Example 1, respectively. L14) was obtained. Thereafter, in the same manner as in Example 201, evaluation of initial capacity and cycle characteristics and safety test were performed. The results are shown in Table 4. In the safety test, the lithium ion secondary batteries (L2 to L14) of Examples 201 to 214 exhibited the same behavior as the lithium ion secondary battery (L1).
  • a lamicell-type lithium ion secondary battery (L15 to L22) is prepared in the same manner as in Example 201 except that the separators (S15 to S22) of Comparative Examples 102 to 108 are used instead of the separator (S1) of Example 1. Got). Thereafter, in the same manner as in Example 201, evaluation of initial capacity and cycle characteristics and safety test were performed. The results are shown in Table 4. In the safety test, the lithium ion secondary batteries (L2 to L14) of Comparative Examples 102 to 108 exhibited the same behavior as the lithium ion secondary battery (L1).
  • lithium ion di which is a layered phosphate compound that supports lithium ions exceeding the theoretical exchange capacity of the layered phosphate compound having a proton as an ion exchange group, and does not have water of crystallization.
  • the lithium ion secondary battery containing the ion trapping agent for the secondary battery has excellent battery characteristics without a decrease in battery capacity. It is also excellent in safety.
  • the ion capturing agent of the present embodiment can be used for a steel member of a lithium ion secondary battery such as an electrolytic solution and a separator.
  • the separator containing the ion capturing agent according to the present embodiment is a lithium ion secondary battery such as a lithium ion capacitor (hybrid capacitor), a metal lithium secondary battery, etc. in which the curvature is an electric double layer and the cathode is a lithium ion secondary battery structure.
  • the present invention can also be applied to electrochemical devices other than secondary batteries.
  • the lithium ion secondary battery of this embodiment is a paper type battery, a button type battery, a coin type battery, a laminated type battery, a cylindrical type battery, a square type battery, etc., such as a mobile phone, a tablet terminal, a laptop computer, a game machine Portable equipment; automobiles such as electric vehicles and hybrid electric vehicles; and can be used for power storage and the like.
  • 10 storage element with lead
  • 15 porous substrate
  • 20 separator
  • 30 positive electrode
  • 32 positive electrode current collector
  • 34 positive electrode active material layer
  • 40 negative electrode
  • 42 negative electrode current collector
  • 44 negative electrode Active material layer
  • 52, 54 lead
  • 60 ion scavenger

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンを担持させ、且つ結晶水を有さない層状リン酸塩化合物であるイオン捕捉剤、及び、このイオン捕捉剤を含有するリチウムイオン電池用セパレータ又はリチウムイオン二次電池。

Description

イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池
 本発明は、イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、ニッケル水素電池、鉛蓄電池等の他の二次電池に比べて軽量で、高い入出力特性を有することから、電気自動車、ハイブリッド型電気自動車等に用いられる高入出力用電源として注目されている。
 しかし、電池の構成材料中に不純物(例えばFe、Ni、Mg、Cu等の磁性不純物またはそのイオン)が存在すると、充放電時に、正極を構成するリチウムが負極上に析出してしまう場合がある。例えば、負極上に析出したリチウムデンドライドがセパレータを破って正極に到達することにより、短絡の原因となる場合がある。
 また、リチウムイオン二次電池は、夏場の車中など使用温度が40℃~80℃となる場合がある。このとき、正極の構成材料であるリチウム含有金属酸化物からマンガン等の金属が溶出して負極に析出し、電池の特性(容量など)を低下させるおそれがある。
 このような問題に対して、例えば特許文献1には、リチウムイオン二次電池内部に発生する不純物又は副生成物を吸収、結合あるいは吸着によって捕捉する機能を有する捕捉物質を有するリチウムイオン二次電池が記載されており、前記捕捉物質として活性炭、シリカゲル及びゼオライトなどが挙げられている。
 また例えば特許文献2には、構成元素に金属元素としてFe又はMnを含むリチウム化合物を正極活物質とする正極と、リチウムイオンを吸蔵・放出可能な炭素材料を負極活物質とする負極とを、非水電解液内に分離して配置した非水系リチウムイオン二次電池であって、前記正極は、前記正極活物質に対して0.5~5wt%のゼオライトを含有し、該ゼオライトは、有効細孔径が前記金属元素のイオン半径より大きく0.5nm(5Å)以下の非水系リチウムイオン二次電池が開示されている。
 さらに特許文献3~5には、特定の組成、構造のアルミニウムケイ酸塩、それを使用したリチウムイオン二次電池、及び部材が開示されている。
  特許文献1:特開2000-77103号公報
  特許文献2:特開2010-129430号公報
  特許文献3:国際公開第2012/124222号
  特許文献4:特開2013-105673号公報
  特許文献5:特開2013-127955号公報
 本発明の一実施形態が解決しようとする課題は、電池の内部に発生する不純物を高効率で捕捉するイオン捕捉剤を提供することである。
 また、本発明の他の実施形態が解決しようとする課題は、このイオン捕捉剤を含み、電池特性の経時劣化を抑え、電池容量の減少を抑えたリチウムイオン電池用セパレータ又はリチウムイオン二次電池を提供することである。
 本発明者は、不純物の吸着速度を向上させることを意図して、種々検討したところ、プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンを担持させ、且つ結晶水を有さない層状リン酸塩化合物であるリチウムイオン二次電池用イオン捕捉剤が、不純物を高速に捕捉することができるという知見を得た。本明細書によれば、かかる知見に基づいて、以下の手段が提供される。
<1> プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンを担持させ、且つ結晶水を有さない層状リン酸塩化合物であるイオン捕捉剤。
<2> 前記層状リン酸塩化合物に含まれるリチウム原子とリン酸基PO4との質量比(Li/PO4)が0.07以上である<1>に記載のイオン捕捉剤。
<3> 上記層状リン酸塩化合物の比表面積が、15m2/g以上である、<1>又は<2> に記載のイオン捕捉剤。
<4> 上記層状リン酸塩化合物の水分含有率が1質量%以下である、<1>から<3>のいずれかに記載のイオン捕捉剤。
<5> 上記層状リン酸塩化合物がαリン酸ジルコニウム、又はαリン酸チタンである<1>から<4>のいずれかに記載のイオン捕捉剤。
<6> <1>から<5>のいずれかに記載のイオン捕捉剤を含有するイオン捕捉層を有するリチウムイオン電池用セパレータ。
<7> 正極、負極及び電解液を備えるリチウムイオン二次電池であって、<1>から<5>のいずれかに記載のイオン捕捉剤を含有するリチウムイオン二次電池。
 本発明の一実施形態によれば、電池の内部に発生する不純物を高効率で捕捉するイオン捕捉剤を提供することができる。
 また、本発明の他の実施形態によれば、このイオン捕捉剤を含み、電池特性の経時劣化を抑え、電池容量の減少を抑えたリチウムイオン電池用セパレータ又はリチウムイオン二次電池を提供することができる。
本実施形態のリチウムイオン二次電池を構成するリード付き蓄電要素の一例を示す概略図である。 態様(S1)のセパレータの断面構造を示す概略図である。 態様(S2)のセパレータの断面構造を示す概略図である。 態様(S3)のセパレータの断面構造を示す概略図である。 態様(S4)のセパレータの断面構造を示す概略図である。
 以下、本実施形態について詳細に説明する。
 なお、「%」は特に明記しない限り「質量%」を意味し、「部」は「質量部」、「ppm」は「質量ppm」を意味する。また、本実施形態において、数値範囲を表す「下限~上限」の記載は、「下限以上、上限以下」を表し、「上限~下限」の記載は、「上限以下、下限以上」を表す。すなわち、上限及び下限を含む数値範囲を表す。更に、本実施形態においては、後述する好ましい態様の2以上の組み合わせもまた、好ましい態様である。
 本実施形態のイオン捕捉剤は、プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンを担持させ、且つ結晶水を有さない層状リン酸塩化合物である。本実施形態のイオン補捉材は、プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンを担持させ、且つ結晶水を有さない層状リン酸塩化合物のみからなるものであってもよいし、この層状リン酸塩化合物と、他の化合物とからなるものであってもよい。上記金属イオンは、リチウムイオン二次電池の構成部材に存在する不純物や、高温下で正極から溶出する金属に由来するものである。
 また、本実施形態のイオン補捉材は、マンガンイオン(Mn2+)、ニッケルイオン(Ni2+)、銅イオン(Cu2+)、鉄イオン(Fe2+)等の、リチウムイオン二次電池において不要な金属イオンの捕捉速度が高く、そのため、短絡の発生原因となりうる上記金属イオンを効率的に捕捉することができる。
 また、イオン交換基がリチウムイオンに置換される前の層状リン酸塩化合物は、いずれも、層状化合物であり、層内にOH基が多く存在する。プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンを担持させ、且つ結晶水を有さない層状リン酸塩化合物もまた、層状化合物である。このリチウムイオン含有リン酸塩化合物を含有するイオン捕捉剤を、例えば、電解液又はセパレータに含有させることにより、電解液中のリチウムイオンを捕捉することなく、マンガンイオン、ニッケルイオン等を選択的に捕捉することができる。
 更に、本実施形態のイオン捕捉剤は中性の液体を与えるため、電解液に添加した場合でも、そのpHを大きく変動させることはない。具体的には、電解液にアルカリ性物質が含まれると、pH上昇に伴い、電解液が分解して炭酸リチウムが生成し易くなり、抵抗が上昇する不具合があるが、本実施形態のイオン捕捉剤は、このような問題を招くことはない。また、本実施形態のイオン捕捉剤は、無機物であるため、熱安定性や、有機溶剤中での安定性に優れている。このため、リチウムイオン二次電池の構成部材に含有させた場合、充放電中でも安定に存在できる。
 本実施形態は、以下の通りである。
 プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンを担持させ、且つ結晶水を有さない層状リン酸塩化合物であるイオン捕捉剤。
 上記リチウムイオン含有リン酸塩化合物は、以下に示される。
(A)イオン交換基の全てがリチウムイオンに置換され、プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンが担持され、且つ結晶水が除かれたαリン酸ジルコニウム
(B)イオン交換基の全てがリチウムイオンに置換され、プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンが担持され、且つ結晶水が除かれたαリン酸チタン
本実施形態のイオン捕捉剤は、これらの1種のみを含むものであってよいし、2種以上を含むものであってもよい。
 上記成分(A)は、αリン酸ジルコニウムのリチウムイオンによる置換体である。
 上記αリン酸ジルコニウム(置換前のαリン酸ジルコニウムZr(HPO42・H2O)のイオン交換基は、通常プロトンであり、理論イオン交換容量は6.64meq/gである。このプロトンの全てがリチウムイオンに置換され、プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンが担持され、且つ結晶水が除かれて、上記成分(A)が形成される。
上記αリン酸ジルコニウムは、好ましくは、下記式(1)で示される化合物である。
 ZrO2・nP25・xLi2O (1)
(式(1)において、nは0.5≦n≦1.5の正数あり、xは0.8≦x≦2.2の正数であり、n≦xである。)
 上記式(1)の化合物に対して置換されているリチウムイオンの量は、好ましくは6.7meq/g以上、より好ましくは7.5~15meq/gである。Co2+イオン、Mn2+イオン等の捕捉性の観点から、特に好ましくは8~12meq/gである。
 上記式(1)の化合物に対して置換されているリチウム原子の質量と、上記式(1)の化合物に含まれるリンの原子数によりPO4に換算して求めたリチウム原子とリン酸基(PO4)との質量との比(Li/PO4)は、好ましくは0.07以上、より好ましくは0.073~0.34である。また、上限値は、0.35以下であることが好ましい。Co2+イオン、Mn2+イオン等の捕捉性と他の物性とのバランスの観点から、質量比(Li/PO4)は特に好ましくは0.10~0.33である。Liを過剰に付加することにより、αリン酸ジルコニウムのZrO6八面体とPO4四面体との結合の一部が外れ、そこにリチウムイオンを過剰に取り込めるようになり、Co2+イオン、Ni2+イオンなどの捕捉性が向上し、その結果イオン捕捉速度を向上させることができる。
 上記成分(A)を製造する方法は、特に限定されない、例えば、水酸化リチウム水溶液にαリン酸ジルコニウムを添加し、一定時間撹拌した後、ろ過、洗浄及び乾燥した後、高温で焼成して結晶水を取り除く方法とすることができる。LiOH水溶液の濃度は、特に限定されない。高濃度の場合、反応液の塩基性が高くなり、αリン酸ジルコニウムの一部が溶出することがあるため、好ましくは1mol/L以下である。また焼成温度は、350℃以上550℃以下であることが好ましい。350℃以上であれば電池に悪影響を及ぼすおそれのある結晶水が残らず、また、550℃以下だとリン酸ジルコニウムが分解しない。
 上記成分(B)は、αリン酸チタンのリチウムイオンによる置換体である。
上記αリン酸チタン(置換前のαリン酸チタンTi(HPO42・H2O)のイオン交換基は、通常プロトンであり、理論イオン交換容量は7.76meq/gである。このプロトンの全てがリチウムイオンに置換され、プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンが担持され、且つ結晶水が除かれて、上記成分(B)が形成される。
上記αリン酸チタンは、好ましくは、下記式(2)で示される化合物である。
 TiO2・xP25・nLi2O (2)
(式(2)において、nは0.5≦n≦1.5の正数あり、xは0.8≦x≦2.2の正数であり、n≦xである。)
 上記式(2)の化合物に対して置換されているリチウムイオンの量は、好ましくは7.4meq/g以上、より好ましくは7.5~15meq/gである。Co2+イオン、Mn2+イオン等の捕捉性の観点から、特に好ましくは8~12meq/gである。
 上記式(2)の化合物に対して置換されているリチウム原子の質量と、上記式(1)の化合物に含まれるリンの原子数によりPO4に換算して求めたリチウム原子と酸基(PO4)との質量との比(Li/PO4)は、好ましくは0.07以上、より好ましくは0.073~0.34である。また、上限値は、0.35以下であることが好ましい。Co2+イオン、Mn2+イオン等の捕捉性の観点から、質量比(Li/PO4)は特に好ましくは0.10~0.33である。Liを過剰に付加することにより、αリン酸チタンのTiO6八面体とPO4四面体との結合の一部が外れ、そこにリチウムイオンを過剰に取り込めるようになり、Co2+イオン、Ni2+イオンなどの捕捉性が向上し、その結果イオン捕捉速度を向上させることができる。
 上記成分(B)を製造する方法は、特に限定されない、例えば、水酸化リチウム水溶液にαリン酸チタンを添加し、一定時間撹拌した後、ろ過、洗浄及び乾燥した後、高温で焼成して結晶水を取り除く方法とすることができる。LiOH水溶液の濃度は、特に限定されない。高濃度の場合、反応液の塩基性が高くなり、αリン酸チタンの一部が溶出することがあるため、好ましくは1mol/L以下である。また焼成温度は、350℃以上550℃以下であることが好ましい。350℃以上であれば電池に悪影響を及ぼすおそれのある結晶水が残らず、また、550℃以下だとリン酸ジルコニウムが分解しない。
 上記リチウムイオン含有層状リン酸塩化合物は、通常、層状構造を有し、Co2+イオン、Mn2+イオン等のイオン捕捉性、液体中における分散性の観点から、メジアン粒径の上限は、好ましくは5.0μm、より好ましくは3.0μm、より好ましくは2.0μm、更に好ましくは1.0μmであり、下限は、好ましくは0.03μm、より好ましくは0.05μmである。イオン捕捉剤を適用する構成部材の種類によって、好ましい粒径を選択すればよい。
 上記リチウムイオン含有層状リン酸塩化合物のBET比表面積は、Co2+イオン、Mn2+イオン等のイオン捕捉性、液体中における分散性の観点から、15m2/g以上であることが好ましく、15m2/g以上200m2/g以下であることが好ましく、30m2/g以上150m2/g以下であることが更に好ましい。
 上記リチウムイオン含有層状リン酸塩化合物のBET比表面積は、JIS R1626「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」により、Quantachrome社製「AUTOSORB-1」(型式名)で測定する。
 上記のように、本実施形態のイオン捕捉剤は、リチウムイオン含有層状リン酸塩化合物と、他の化合物とからなるものであってもよい。他の化合物としては、他のイオン捕捉剤、樹脂等のバインダ、水、有機溶媒等とすることができる。
 本実施形態のイオン捕捉剤の水分含有率は、好ましくは1質量%以下、より好ましくは0.5質量%以下である。水分含有率が1質量%以下であると、電解液分解してガスを発生する恐れが少ない。また、上記水分含有率の下限値は、0質量%である。尚、水分含有率は、カールフィッシャー法にて測定することができる。
 イオン捕捉剤の水分含有率を10質量%以下とする方法は、特に限定されず、用いられる粉体の乾燥方法を適用することができる。例えば、大気圧又は減圧下で、100℃~300℃で、6~24時間程度の加熱を行う方法が挙げられる。
 本実施形態のイオン捕捉剤は、リチウムイオン二次電池を構成する正極、負極、電解液又はセパレータに利用することができる。これらのうち、特に、正極、電解液又はセパレータに利用することが好ましい。本実施形態のリチウムイオン二次電池は、正極、負極、電解液及びセパレータを備え、上記正極、上記負極、上記電解液及び上記セパレータの少なくとも1つが、上記本実施形態のリチウムイオン二次電池用イオン捕捉剤を含有することを特徴とする。本実施形態のリチウムイオン二次電池は、更に、他の構成部品を備えることができる。
 リチウムイオン二次電池の構造は、特に限定されないが、正極と、負極と、セパレータとからなる蓄電要素を、扁平渦巻状に巻回して巻回式極板群とする、あるいは、これらを平板状として積層して積層式極板群とした後、得られた極板群を外装材中に封入した構造とするのが一般的である。
 図1は、外装材に封入されるリード付き蓄電要素の1例である。この蓄電要素10は、一対の電極(正極30、負極40)がセパレータ20を挟んで対向配置されたものを巻回した巻回体である。正極30は、正極集電体32上に正極活物質層34を備え、負極40は、負極集電体42上に負極活物質層44を備える。正極活物質層34及び負極活物質層44は、セパレータ20の両面側にそれぞれ接触している。正極活物質層34、負極活物質層44及びセパレータ20の内部には、電解液が含有されている。図1は、正極集電体32及び負極集電体42の端部に、それぞれ、例えば、アルミニウム製のリード52、54が接続されたものとしている。
 本実施形態のリチウムイオン二次電池は、上記のように、本実施形態のイオン捕捉剤を、電解液及びセパレータの少なくとも一方に含有することがより好ましい。
 一般に、電解液に不純物が含まれると、短絡の原因となり得る。充放電の過程で、特に不純物金属イオンが、例えば、セパレータ内を通過して、正極及び負極間を双方向に移動するため、イオン捕捉剤が電解液及びセパレータの少なくとも一方に含まれていると、より効果的に不要な金属イオンを捕捉することができる。
 (2)正極
 リチウムイオン二次電池を構成する正極は、上記のように、通常、正極集電体表面の少なくとも一部に正極活物質層を備える。正極集電体としては、アルミニウム、チタン、銅、ニッケル、ステンレス鋼等の金属や合金を、箔状、メッシュ状等にした帯状のものを用いることができる。
 上記正極活物質層に用いる正極材としては、リチウムイオンをドーピング又はインターカレーション可能な金属化合物、金属酸化物、金属硫化物、導電性高分子材料等が挙げられる。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、及びこれらの複合材料、並びにポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性高分子等を、単独で又は2種以上を組み合わせて使用することができる。
 イオン捕捉剤を含有する正極を作製する場合、正極材、イオン捕捉剤及びバインダを有機溶剤とともに撹拌機等の分散装置を用いて、正極材含有スラリーを調製し、これを集電体材料に塗布して正極活物質層を形成する方法を適用することができる。また、ペースト状の正極材含有スラリーを、シート状、ペレット状等の形状に成形し、これを集電体材料と一体化する方法を適用することもできる。
 上記正極材含有スラリーにおけるイオン捕捉剤の濃度は、適宜、選択することができ、0.01~5.0質量%であることが好ましく、0.1~2.0質量%であることがより好ましい。
 上記バインダとしては、スチレン-ブタジエン共重合体、(メタ)アクリル系共重合体、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリホスファゼン、ポリイミド、ポリアミドイミド等の高分子化合物が挙げられる。
 上記正極活物質層中のバインダの含有割合は、正極材、イオン捕捉剤及びバインダの合計100質量部に対して、好ましくは0.5~20質量部、より好ましくは1~10質量部である。バインダの含有比率が0.5~20質量部の範囲内であれば、集電体材料に十分密着し、また、電極抵抗が大きくなることを抑制することもできる。
 上記正極材含有スラリーを集電体材料に塗布する方法としては、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が挙げられる。
 (3)負極
 リチウムイオン二次電池を構成する負極は、上記のように、通常、負極集電体表面の少なくとも一部に負極活物質層を備える。負極集電体の構成材料は、上記正極集電体の構成材料と同じとすることができ、発泡メタル、カーボンペーパー等の多孔性材料からなるものであってもよい。
 上記負極活物質層に用いる負極材としては、リチウムイオンをドーピング又はインターカレーション可能な炭素材料、金属化合物、金属酸化物、金属硫化物、導電性高分子材料等が挙げられる。具体的には、天然黒鉛、人造黒鉛、ケイ素、チタン酸リチウム等を、単独で又は2種以上を組み合わせて使用することができる。
 イオン捕捉剤を含有する負極を作製する場合、負極材、イオン捕捉剤及びバインダを有機溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置により混練して、負極材含有スラリーを調製し、これを集電体材料に塗布して負極活物質層を形成する方法を適用することができる。また、ペースト状の負極材含有スラリーを、シート状、ペレット状等の形状に成形し、これを集電体材料と一体化する方法を適用することもできる。
 極材含有スラリーに用いるイオン捕捉剤及びバインダは、上記正極の製造原料と同じものを使用することができ、その含有量も同様にすることができる。
 上記負極材含有スラリーを集電体材料に塗布する場合、正極と同様に、公知の方法を適用することができる。
 (4)電解液
 本実施形態のリチウムイオン二次電池に用いられる電解液は、特に制限されず、公知のものを用いることができる。例えば、電解質を有機溶剤に溶解させた電解液を用いることにより、非水系リチウムイオン二次電池を製造することができる。
 上記電解質としては、LiPF2、LiClO4、LiBF4、LiClF4、LiAsF6、LiSbF6、LiAlO2、LiAlCl4、LiN(CF3SO22、LiN(C25SO22、LiC(CF3SO23、LiCl、LiI等の、溶媒和しにくいアニオンを生成するリチウム塩が挙げられる。
 上記電解質の濃度は、電解液1Lに対して、好ましくは0.3~5モル、より好ましくは0.5~3モル、特に好ましくは0.8~1.5モルである。
 上記有機溶剤としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート等のカーボネート類、γ-ブチロラクトン等のラクトン類、酢酸メチル、酢酸エチル等のエステル類、1,2-ジメトキシエタン、ジメチルエーテル、ジエチルエーテル等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキソラン、4-メチルジオキソラン等の環状エーテル類、シクロペンタノン等のケトン類、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等のスルホラン類、ジメチルスルホキシド等のスルホキシド類、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、3-メチル-1,3-オキサゾリジン-2-オン等のウレタン類、ジエチレングリコール等のポリオキシアルキレングリコール類等の非プロトン性溶媒が挙げられる。これらの有機溶剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態の電解液は、上記イオン捕捉剤の少なくとも1種を含む。
 本実施形態の電解液におけるイオン捕捉剤の含有割合は、短絡の発生及び内部抵抗を抑制する観点から、好ましくは0.01~50質量%、より好ましくは0.1~30質量%、更に好ましくは0.5~10質量%である。
 電解液にイオン捕捉剤を含有させる方法としては、イオン捕捉剤を固体状態又は分散液状態で、電解質及び有機溶剤の混合液に添加、混合する方法等を挙げることができる。中でも固体状態で添加する方法であることが好ましい。
 イオン捕捉剤を分散液状態で用いて、電解液を製造する場合、分散液の溶媒は、特に制限されない。中でも電解液を構成する有機溶剤と同一であることが好ましい。また、分散液におけるイオン捕捉剤の濃度は、適宜選択することができる。0.01~50質量%であることが好ましく、1~20質量%であることがより好ましい。
 (5)セパレータ
 セパレータは、正極と負極が短絡することがないように両極を分離する役割があり、更に電池に過大な電流が流れたとき、発熱により溶融し、細孔が閉鎖されることで、電流を遮断し、安全性を確保するものである。
上記セパレータは、好ましくは、多孔部を備える基材(以下、「多孔質基材」という)からなるものであり、その構造は、特に制限されない。上記多孔質基材は、内部に多数の空孔ないし空隙を有し、かつ、これら空孔等が互いに連結された多孔質構造を有したものであれば、特に限定されない。例えば、多孔膜、不織布、紙状シート、その他、三次元ネットワーク構造を有するシート等を用いることができる。このうち、ハンドリング性や強度の観点から微多孔膜が好ましい。多孔質基材を構成する材料としては、有機材料及び無機材料のいずれも使用することができるが、シャットダウン特性が得られる観点から、ポリオレフィン樹脂等の熱可塑性樹脂が好ましい。
 上記ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン等が挙げられる。これらのうち、良好なシャットダウン特性が得られるという観点で、エチレン単位を90質量%以上含む重合体であることが好ましい。ポリエチレンは、低密度ポリエチレン、高密度ポリエチレン及び超高分子量ポリエチレンのいずれであってもよい。特に、高密度ポリエチレン及び超高分子量ポリエチレンから選ばれる少なくとも1種を含むことが好ましく、高密度ポリエチレンと超高分子量ポリエチレンの混合物を含むポリエチレンであることがより好ましい。かかるポリエチレンであると、強度と成形性に優れる。
 ポリエチレンの分子量は、重量平均分子量で10万~1000万のものが好適であり、特に重量平均分子量100万以上の超高分子量ポリエチレンを少なくとも1質量%以上含むポリエチレン組成物が好ましい。
 上記多孔質基材は、ポリエチレンと、ポリプロピレン、ポリメチルペンテン等の他のポリオレフィンとを含んでもよく、また、ポリエチレン多孔膜とポリプロピレン多孔膜とからなる、2層以上の積層体からなるものであってもよい。
 本実施形態のセパレータは、上記イオン捕捉剤の少なくとも1種を含む。
本実施形態において、好ましいセパレータは、多孔質基材からなる部分と、イオン捕捉剤とを含む。
 上記セパレータにおけるイオン捕捉剤の含有量は、短絡の発生を抑制する観点から、好ましくは0.01~50g/m2、より好ましくは0.1~20g/m2である。
 本実施形態のセパレータの好ましい構造は、1面側から他面側までのいずれかの部位にイオン捕捉剤を含む層を有するものであり、以下に例示される。
(S1)多孔質基材15の1面側の表層にイオン捕捉剤60を含むセパレータ
 図2は、この態様のセパレータを示すが、これに限定されず、イオン捕捉剤60は、多孔質基材15の内部だけでなく、表面に存在していてもよい。
(S2)多孔質基材15の両面の表層にイオン捕捉剤60を含むセパレータ
 図3は、この態様のセパレータを示すが、これに限定されず、イオン捕捉剤60は、多孔質基材15の内部だけでなく、表面に存在していてもよい。
(S3)多孔質基材15の1面側から他面側への全体にイオン捕捉剤60を含むセパレータ
 図4は、この態様のセパレータを示すが、これに限定されず、イオン捕捉剤60は、多孔質基材15の内部だけでなく、表面に存在していてもよい。
(S4)多孔質基材15の内部に層状にイオン捕捉剤60を含むセパレータ
 図5は、この態様のセパレータを示すが、これに限定されず、多孔質基材15の内部におけるイオン捕捉剤含有層の数は複数でもよい。
 図2に示す態様(S1)のセパレータ20の場合、リチウムイオン二次電池において、イオン捕捉剤60を含む側を、正極側及び負極側のいずれの面に配置してもよい。正極から金属イオンが溶出することや、負極において金属イオンが還元されて金属が析出することに鑑みると、正極側の面に配置することが好ましく、イオン捕捉剤60を両面の表層に配置する図3に示す態様(S2)のセパレータ20も好ましい。
 上記態様(S1)及び(S2)のセパレータは、多孔質基材の1面側の表面又は両面のいずれも表層部に、イオン捕捉剤を含む分散液を塗布する工程、及び、塗膜を乾燥してイオン捕捉剤を含む層を形成する工程を、順次、備える方法、又は、多孔質基材の1面側の表面又は両面のいずれも表層部を、イオン捕捉剤を含む分散液に浸漬する工程、及び、塗膜を乾燥してイオン捕捉剤を含む層を形成する工程を、順次、備える方法により製造することができる。
 上記態様(S3)のセパレータは、多孔質基材を、イオン捕捉剤を含む分散液に浸漬する工程、及び、塗液付き多孔質基材を乾燥する工程を、順次、備える方法により製造することができる。
 上記態様(S4)のセパレータは、多孔質基材の1面側の表面に、イオン捕捉剤を含む分散液を塗布する工程、塗膜を乾燥してイオン捕捉剤を含む層を形成する工程、及び、他の多孔質基材を、イオン捕捉剤含有層に接合する工程を、順次、備える方法、又は、多孔質基材の1面側の表面を、イオン捕捉剤を含む分散液に浸漬する工程、塗膜を乾燥してイオン捕捉剤を含む層を形成する工程、及び、他の多孔質基材を、イオン捕捉剤含有層に接合する工程を、順次、備える方法により製造することができる。
 上記イオン捕捉剤を含む分散液の溶媒は、特に制限されない。例えば、水、N-メチル-2-ピロリドン、並びにメタノール、エタノール、1-プロパノール等のアルコール類等を挙げることができる。
 また、分散液におけるイオン捕捉剤の濃度は、適宜、選択することができ、0.01~50質量%であることが好ましく、1~20質量%であることがより好ましい。
 上記分散液は、更に、バインダを含有することができる。イオン捕捉剤含有の分散液がバインダを含有すると、イオン捕捉剤が多孔質基材に、確実に固定化される。このため、電池を作製する際にイオン捕捉剤が脱落することなく、効率よく不要な金属イオンを捕捉することができる。
 上記バインダは、特に制限されないが、上記リチウムイオン含有層状リン酸塩化合物及び多孔質基材を良好に接着することができ、電気化学的に安定であり、更に、電解液に対して安定であるものが好ましい。このようなバインダとしては、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-アクリル酸共重合体、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-トリクロロエチレン共重合体等のフッ素樹脂、フッ素系ゴム、スチレン-ブタジエンゴム、ニトリルブタジエンゴム、ポリブタジエンゴム、ポリアクリロニトリル、ポリアクリル酸、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール、シアノエチルポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリN-ビニルアセトアミド、ポリエーテル、ポリアミド、ポリイミド、ポリアミドイミド、ポリアラミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂等が挙げられる。本実施形態においては、ポリビニルアルコール、ポリフッ化ビニリデン、スチレン-ブタジエンゴム、ポリアクリル酸、カルボキシメチルセルロース等が好ましい。尚、上記バインダは、電池の構成材料という観点から、正極活物質層や負極活物質層に用いられるバインダと同様であることが好ましい。
 バインダの使用量(固形分)は、イオン捕捉剤及びバインダの合計100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.3~10質量部である。バインダの使用量が0.1~20質量部の範囲内であれば、イオン捕捉剤が効果的に多孔質基材に固定化され、効果が持続的に得られる。また、質量あたりの金属吸着効率を向上させることができる。
 上記分散液を多孔質基材に塗布する方法は、特に限定されない。メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、リバースロールコート法、トランスファロールコート法、キスコート法、ナイフコート法、ロッドコート法、スクイズコート法、キャストコート法、ダイコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等、公知の方法を適用することができる。
 尚、いずれも図示していないが、本実施形態のセパレータは、多孔質基材の1面側又は両面に、イオン捕捉剤を含む独立した層が形成された積層体からなるもの、2体の多孔質基材の間にイオン捕捉剤を含む独立した層を備える積層体からなるもの等であってもよい。
 本実施形態において、上記いずれの態様のセパレータにおいても、イオン捕捉剤含有層の厚さは、以下の通りである。厚さの下限は、イオン捕捉性の観点から、好ましくは0.5μm、より好ましくは2μm、更に好ましくは3μm、特に好ましくは4μmである。また、厚さの上限は、電解液の透過性、電池の高容量化等の観点から、好ましくは90μm、より好ましくは50μm、更に好ましくは30μm、特に好ましくは10μmである。
 本実施形態のリチウムイオン二次電池に含まれるセパレータの数は、特に限定されず、電池の構造により、適宜、選択することができる。
 本実施形態のリチウムイオン二次電池の好ましい態様は、以下に例示される。
(L1)正極にのみ本実施形態のイオン捕捉剤を含む電池
(L2)電解液にのみ本実施形態のイオン捕捉剤を含む電池
(L3)セパレータにのみ本実施形態のイオン捕捉剤を含む電池(本実施形態のセパレータを含む電池)
(L4)正極及び電解液に本実施形態のイオン捕捉剤を含む電池
(L5)正極及びセパレータに本実施形態のイオン捕捉剤を含む電池(本実施形態のセパレータを含む電池)
(L6)電解液及びセパレータに本実施形態のイオン捕捉剤を含む電池(本実施形態のセパレータを含む電池)
(L7)正極、電解液及びセパレータに本実施形態のイオン捕捉剤を含む電池(本実施形態のセパレータを含む電池)
 これらのうち、態様(L3)、(L5)及び(L6)が好ましい。また、態様(L3)、(L5)、(L6)及び(L7)では、イオン捕捉剤含有層が少なくとも正極側に配されたセパレータを備えることが特に好ましい。尚、上記態様(L4)、(L5)、(L6)及び(L7)においては、含まれるイオン捕捉剤は、各部において同一であってよいし、異なってもよい。
 本実施形態の電解液を用いて、正極及び負極を備えるものの、セパレータを備えないリチウムイオン二次電池とすることができる。この場合、正極及び負極が、直接、接触しない構造としており、セパレータを不要とするものである。
 以下、本明細書の開示を実施例に基づいて具体的に説明する。但し、本実施形態は、下記の実施例に何ら限定されるものではない。なお、以下の実施例において%は質量%である。
<評価方法>
(1)水分含有率
 イオン捕捉剤を150℃で20時間真空乾燥した後、JIS K0113「電位差・電流・電量・カールフィッシャー滴定方法通則」により、京都電子工業(株)製カールフィッシャー水分計MKC-710、気化装置ADP-611を用いて、カールフッシャー法で水分含有率を測定した。
(2)電解液中における金属イオン捕捉容量
 リチウムイオン二次電池への適用を想定し、モデル電解液中における金属イオン捕捉容量を評価した。具体的な評価方法は、次の通りである。
[コバルトイオン捕捉容量の測定]
 試験溶液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(体積比EC:EMC=3:7)にCo(BF42・6H2Oを0.05mol/Lの濃度で溶解させたテトラフルオロホウ酸コバルト六水和物溶液を調製した。この溶液20mlをポリ瓶に入れ、ここにイオン捕捉剤を0.4g投入した。次に、この溶液を、25℃で約1分間撹拌した後、40℃で静置した。約50時間静置後にCo2+イオンの濃度をサーモフィッシャーサイエンティフィック社製ICP発光分光装置「iCA7600 DUO」(型式名)にて測定した。イオン捕捉容量は、イオン捕捉剤を投入する前と後の金属イオン濃度の差からイオン捕捉剤1gあたりのイオン捕捉容量(meq/g)を求めた。求めた値の単位はmeq/gである。
[マンガンイオン捕捉容量の測定]
 試験溶液として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(体積比EC:EMC=3:7)にMn(ClO42・6H2Oを0.05mol/Lの濃度で溶解させた過塩素酸マンガン六水和物溶液を用いる以外は、上記と同様の操作及び分析を行い、Mn2+イオン捕捉容量(meq/g)を求めた。
(3)モデル電解液中における金属イオン捕捉能の評価
 リチウムイオン二次電池への適用を想定し、モデル電解液中における金属イオン捕捉能を評価した。
[コバルトイオン捕捉能]
 LiBF4をエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(体積比EC:EMC=3:7)に濃度1mol/Lで溶解させたテトラフルオロホウ酸リチウム溶液(キシダ化学(株)製リチウムイオン電池用電解液・商品名LBG-00860)にCo(BF42・6H2Oを10ppm溶解させてモデル電解液とした。
 次いで、このモデル電解液30mLをポリ瓶に入れ、ここにイオン捕捉剤を0.03g投入し、密栓した。この電解液を、25℃で約1分間撹拌した後、50℃で静置した。その後、約16時間後のCo2+イオンの濃度をサーモフィッシャーサイエンティフィック社製ICP発光分光装置「iCA7600 DUO」(型式名)にて測定した。
[マンガンイオン捕捉能]
 LiBF4をエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(体積比EC:EMC=3:7)に濃度1mol/Lで溶解させたテトラフルオロホウ酸リチウム溶液(キシダ化学(株)製リチウムイオン電池用電解液・商品名LBG-00860)にMn(ClO42・6H2Oを10ppm溶解させてモデル電解液とした。
 次いで、このモデル電解液30mLをポリ瓶に入れ、ここにイオン捕捉剤を0.03g投入し、密栓した。この電解液を、25℃で約1分間撹拌した後、50℃で静置した。その後、約16時間後のMn2+イオンの濃度をサーモフィッシャーサイエンティフィック社製ICP発光分光装置「iCA7600 DUO」(型式名)にて測定した。
(4)BET比表面積
 イオン捕捉剤のBET比表面積は、JIS R1626「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」により、Quantachrome社製「AUTOSORB-1」(型式名)で測定した。
(5)粉末X線回折
 粉末X線回折(以下「XRD」と略す)測定は、BRUKER社製「D8 ADVANCE」を使用した。Cu封入型X線源を用い、印加電圧40kv,電流値40mAで発生するCuKαを用いてX線回折図を得た。詳細な測定条件を表1に記載した。
Figure JPOXMLDOC01-appb-T000001
1.イオン捕捉剤の製造
<製造例1>αリン酸ジルコニウムの合成
 脱イオン水850mlにオキシ塩化ジルコニウム8水和物(和光純薬工業(株)製)0.272モルを溶解後、シュウ酸2水和物(和光純薬工業(株)製)0.788モルを溶解させた。この溶液を撹拌しながら、リン酸0.57モルを加えた。これを8時間撹拌し還流した。冷却後、得られた沈殿物をよく水で洗浄した後に150℃で乾燥することにより、リン酸ジルコニウムを得た。このリン酸ジルコニウムについて分析した結果、1gあたり6.64mmolのH+イオンを含む、すなわちイオン交換基の理論交換容量が6.64meq/gであるαリン酸ジルコニウム(1)Zr(HPO42・H2Oであることを確認した。
 また、αリン酸ジルコニウムのメジアン径((株)堀場製作所製レーザー回折式粒度分布計「LA-950」(型式名))を測定した結果、0.9μmであった。
 なお、リン酸ジルコニウムの組成は、得られたリン酸ジルコニウム0.1gを純水で2倍希釈した濃硝酸溶液20mLに入れ加温し、フッ酸を0.5mL滴下して溶解させ、各成分の定量分析を行い、各成分の含有比率を求めることにより推定した。また、推定される組成におけるLiイオンとリン酸基PO4の比を表2に示した。また、以下の実施例および比較例に示すリン酸ジルコニウム以外の組成も全て同様の方法で求めた。
<製造例2>焼成Li置換型αリン酸ジルコニウム(1)の合成
 製造例1で得られたαリン酸ジルコニウム(1)70gを0.1N(mol/L)のLiOH水溶液7000mlに、撹拌しながら添加した。これをさらに8時間撹拌した後、濾液の伝導度が500μS/cm以下になるまでフィルターで濾過水洗した。水洗後、150℃で20時間真空乾燥した後、さらに400℃で4時間焼成して、焼成Li置換型αリン酸ジルコニウム(1)を得た。メジアン径は0.9μmであった。この焼成Li置換型αリン酸ジルコニウム(1)は、Liイオンの導入量が6.78meq/gであるZrO2・P25・Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.073である。(実施例1)
 なお、全ての実施例において、Li置換型層状リン酸塩化合物に含まれるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、分子中に含まれるP原子の数のPO4が含まれるとして計算した。
<製造例3>焼成Li置換型αリン酸ジルコニウム(2)の合成
 Li置換型αリン酸ジルコニウム(2)を400℃で4時間焼成した以外は、製造例2と同様にして焼成Li置換型αリン酸ジルコニウム(2)を得た。メジアン径は0.9μmであった。この焼成Li置換型αリン酸ジルコニウム(2)の組成は、Liイオンの導入量が10.93meq/gであるZrO2・0.75P25・1.5Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.147である。(実施例2)
<製造例4>焼成Li置換型αリン酸ジルコニウム(3)の合成
 Li置換型αリン酸ジルコニウム(3)を400℃で4時間焼成した以外は、製造例2と同様にして焼成Li置換型αリン酸ジルコニウム(3)を得た。メジアン径は0.9μmであった。この焼成Li置換型αリン酸ジルコニウム(3)の組成は、Liイオンの導入量が13.73meq/gであるZrO2・0.6P25・1.8Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.22である。(実施例3)
<製造例5>焼成Li置換αリン酸ジルコニウム(4)の合成
 製造例1で得られたαリン酸ジルコニウム20gを5.87gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(4)を得た。この焼成Li置換型αリン酸ジルコニウム(4)の組成は、Liイオンの導入量が6.78meq/gであるZrO2・P25・Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.073である。(実施例4)
<製造例6>焼成Li置換αリン酸ジルコニウム(5)の合成
 製造例1で得られたαリン酸ジルコニウム20gを8.39gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(5)を得た。この焼成Li置換型αリン酸ジルコニウム(5)の組成は、Liイオンの導入量が9.12meq/gであるZrO2・P25・1.4Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.104である。(実施例5)
<製造例7>焼成Li置換αリン酸ジルコニウム(6)の合成
 製造例1で得られたαリン酸ジルコニウム20gを12.59gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(6)を得た。この焼成Li置換型αリン酸ジルコニウム(6)の組成は、Liイオンの導入量が12.80meq/gであるZrO2・P25・2.1Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.156である。(実施例6)
<製造例8>焼成Li置換型αリン酸ジルコニウム(11)の合成
 製造例1で得られたαリン酸ジルコニウム20gを16.78gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(11)を得た。この焼成Li置換型αリン酸ジルコニウム(11)の組成は、Liイオンの導入量が18.24meq/gであるZrO2・P25・2.8Li2Oであった。また、この組成におけるリチウムイオンとリン酸基PO4との質量比(Li/PO4)は、0.22である。(実施例7)
<製造例9>焼成Li置換型αリン酸ジルコニウム(12)の合成
 製造例1で得られたαリン酸ジルコニウム20gを20.98gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(12)を得た。この焼成Li置換型αリン酸ジルコニウム(12)の組成は、Liイオンの導入量が21.94meq/gであるZrO2・P25・3.5Li2Oであった。また、この組成におけるリチウムイオンとリン酸基PO4との質量比(Li/PO4)は、0.27である。(実施例8)
<製造例10>焼成Li置換型αリン酸ジルコニウム(13)の合成
 製造例1で得られたαリン酸ジルコニウム20gを25.18gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(13)を得た。この焼成Li置換型αリン酸ジルコニウム(13)の組成は、Liイオンの導入量が25.18meq/gであるZrO2・P25・4.2Li2Oであった。また、この組成におけるリチウムイオンとリン酸基PO4との質量比(Li/PO4)は、0.33である。(実施例9)
<製造例11>微粒子αリン酸ジルコニウムの合成
 2L平底フラスコに脱イオン水1160mL及び35%塩酸173.4gを入れ、オキシ塩化ジルコニウム8水和物20%水溶液288.4gを追加後、シュウ酸2水和物119.2gを溶解させた。この溶液をよく撹拌しながら、75%リン酸134.4gを加えた。これを2時間で98℃に昇温し、12時間撹拌還流した。冷却後、得られた沈殿物をよく水洗浄した後、105℃で乾燥することにより、リン酸ジルコニウムを得た。これをロータースピードミル(16000rpm、篩い目80μm)で解砕した。この得られたリン酸ジルコニウムについて測定した結果、αリン酸ジルコニウム(2)であることを確認した。
 また、αリン酸ジルコニウムのメジアン径((株)堀場製作所製レーザー回折式粒度分布計「LA-950」(型式名))を測定した結果、0.3μmであった。
<製造例12>焼成Li置換型αリン酸ジルコニウム(7)の合成
 製造例11で得られたαリン酸ジルコニウム(2)70gを0.1NのLiOH水溶液7000mlに撹拌しながら、添加した。これを8時間撹拌した後、濾液の伝導度が500μS/cm以下になるまでフィルターで濾過水洗した。150℃で20時間真空乾燥し、リチウムイオン置換型αリン酸ジルコニウム(4)を得た。
 このリチウムイオン置換型αリン酸ジルコニウム(4)を400℃で4時間焼成し、焼成Li置換型αリン酸ジルコニウム(7)を得た。メジアン径は0.3μmであった。この焼成Li置換型αリン酸ジルコニウム(7)の組成は、ZrO2・0.8P25・0.8Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.073である。(実施例10)
<製造例13>焼成Li置換型αリン酸ジルコニウム(8)の合成
 製造例11で得られたαリン酸ジルコニウム(2)70gを0.15NのLiOH水溶液7000mlに撹拌しながら、添加した。これを8時間撹拌した後、濾液の伝導度が500μS/cm以下になるまでフィルターで濾過水洗した。150℃で20時間真空乾燥し、リチウムイオン置換型αリン酸ジルコニウム(5)を得た。
 このリチウムイオン置換型αリン酸ジルコニウム(5)を400℃で4時間焼成し、焼成Li置換型αリン酸ジルコニウム(8)を得た。メジアン径は0.3μmであった。この焼成Li置換型αリン酸ジルコニウム(8)の組成は、Liイオンの導入量が9.12meq/gであるZrO2・P25・1.4Li2Oであった。また、この組成におけるリリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.136である。(実施例11)
<製造例14>焼成Li置換型αリン酸ジルコニウム(9)の合成
 製造例11で得られたαリン酸ジルコニウム(2)20gを5.87gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(9)を得た。この焼成Li置換型αリン酸ジルコニウム(9)の組成は、Liイオンの導入量が6.78meq/gであるZrO2・P25・Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.073である。(実施例12)
<製造例15>焼成Li置換型αリン酸ジルコニウム(10)の合成
 製造例11で得られたαリン酸ジルコニウム(2)20gを8.39gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(10)を得た。この焼成Li置換型αリン酸ジルコニウム(10)の組成は、Liイオンの導入量が9.12meq/gであるZrO2・P25・1.4Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.104である。(実施例13)
<製造例16>αリン酸チタンの合成
 脱イオン水400mlに75%リン酸405gを加え、この溶液を撹拌しながら、硫酸チタニル(TiO2含有量;33%)137gを加えた。これを100℃で48時間還流した。冷却後、得られた沈殿物をよく水洗浄した後、150℃で乾燥することにより、リン酸チタンを得た。この得られたリン酸チタンについて分析した結果、1gあたり7.76mmolのH+イオンを含む、すなわちLiイオンの導入量が7.76meq/gであるαリン酸チタンであることを確認した。メジアン径は1.2μmであった。
<製造例17>焼成Li置換型αリン酸チタン(1)の合成
 製造例16で得られたαリン酸チタン80.8gを0.1NのLiOH水溶液10000mLに撹拌しながら、加えた。これを8時間撹拌した後、水洗し、150℃で乾燥して、Li置換型αリン酸チタンを得た。さらに、これを400℃で4時間焼成して、焼成Li置換型αリン酸チタン(1)を得た。メジアン径は1.2μmであった。この焼成Li置換型αリン酸チタン(1)の組成は、Liイオンの導入量が7.94meq/gであるTiO2・P25・Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.073である。(実施例14)
<製造例18>焼成Li置換型αリン酸チタン(2)の合成
 LiOH溶液を0.15Nとした以外は、製造例16と同様にして焼成Li置換型αリン酸チタン(2)を得た。この焼成Li置換型αリン酸チタン(2)の組成は、Liイオンの導入量が12.97meq/gであるTiO2・0.75P25・1.5Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.146である。(実施例15)
<製造例19>焼成Li置換型αリン酸チタン(3)の合成
 製造例16で得られたαリン酸チタン16.2gを6.88gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸チタン(3)を得た。この焼成Li置換型αリン酸チタン(3)の組成は、Liイオンの導入量が7.94meq/gであるTiO2・P25・Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.073である。(実施例16)
<製造例20>焼成Li置換型αリン酸チタン(4)の合成
 製造例16で得られたαリン酸チタン16.2gを9.83gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸チタン(4)を得た。この焼成Li置換型αリン酸チタン(4)の組成は、Liイオンの導入量が10.62meq/gであるTiO2・P25・1.4Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.104である。(実施例17)
<製造例21>低結晶性αリン酸ジルコニウムの合成
 脱イオン水850mlにオキシ塩化ジルコニウム8水和物(和光純薬工業(株)製)0.272モルを溶解後、シュウ酸2水和物(和光純薬工業(株)製)0.788モルを溶解させた。この溶液を撹拌しながら、リン酸0.57モルを加えた。これを室温で8時間撹拌した。その後、沈殿物をよく水で洗浄した後に150℃で乾燥することにより、リン酸ジルコニウムを得た。これをロータースピードミル(16000rpm、篩い目80μm)で解砕した。この得られたリン酸ジルコニウムについて測定した結果、αリン酸ジルコニウム(A)であることを確認した。
 また、αリン酸ジルコニウムのメジアン径((株)堀場製作所製レーザー回折式粒度分布計「LA-950」(型式名))を測定した結果、6.5μmであった。
<製造例22>焼成Li置換型αリン酸ジルコニウム(14)の合成
 製造例21で得られたαリン酸ジルコニウムA20gを16.78gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(14)を得た。この焼成Li置換型αリン酸ジルコニウム(14)の組成は、Liイオンの導入量が18.24meq/gであるZrO2・P25・2.8Li2Oであった。また、この組成におけるリチウムイオンとリン酸基PO4との質量比(Li/PO4)は、0.22である。(実施例18)
<製造例23>焼成Li置換型αリン酸ジルコニウム(15)の合成
 製造例21で得られたαリン酸ジルコニウムA20gを20.98gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(15)を得た。この焼成Li置換型αリン酸ジルコニウム(15)の組成は、Liイオンの導入量が21.94meq/gであるZrO2・P25・3.5Li2Oであった。また、この組成におけるリチウムイオンとリン酸基PO4との質量比(Li/PO4)は、0.27である。(実施例19)
<製造例24>焼成Li置換型αリン酸ジルコニウム(16)の合成
 製造例21で得られたαリン酸ジルコニウムA20gを25.18gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(16)を得た。この焼成Li置換型αリン酸ジルコニウム(16)の組成は、Liイオンの導入量が25.18meq/gであるZrO2・P25・4.2Li2Oであった。また、この組成におけるリチウムイオンとリン酸基PO4との質量比(Li/PO4)は、0.33である。(実施例20)
<製造例25>焼成Li置換型リン酸ジルコニウム(C1)の合成
 製造例1で得られたαリン酸ジルコニウム(1)70gを0.1NのLiOH水溶液2800mlに撹拌しながら、添加した。これを8時間撹拌した後、濾液の伝導度が500μS/cm以下になるまでフィルターで濾過水洗した。150℃で20時間真空乾燥して、リチウムイオン置換型αリン酸ジルコニウム(6)を得た。さらに400℃で4時間焼成して、焼成Li置換型リン酸ジルコニウム(C1)を得た。この焼成Li置換型リン酸ジルコニウム(C1)の組成は、Liイオンの導入量が3.57meq/gであるZrO2・P25・0.5Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.037である。(比較例1)
<製造例26>焼成Li置換型リン酸ジルコニウム(C2)の合成
 製造例1で得られたαリン酸ジルコニウム(1)70gを0.1NのLiOH水溶液4900mlに撹拌しながら、添加した。これを8時間撹拌した後、濾液の伝導度が500μS/cm以下になるまでフィルターで濾過水洗した。150℃で20時間真空乾燥して、リチウムイオン置換型αリン酸ジルコニウム(7)を得た。さらに400℃で4時間焼成して、焼成Li置換型リン酸ジルコニウム(C2)を得た。この焼成Li置換型リン酸ジルコニウム(C2)の組成は、Liイオンの導入量が6.16meq/gであるZrO2・P25・0.9Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.066である。(比較例2)
<製造例27>焼成Li置換型αリン酸ジルコニウム(C3)の合成
 製造例1で得られたαリン酸ジルコニウム20gを2.94gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(13)を得た。この焼成Li置換型αリン酸ジルコニウム(C3)の組成は、ZrO2・P25・0.5Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.037である。(比較例3)
<製造例28>焼成Li置換型αリン酸ジルコニウム(C4)の合成
 製造例1で得られたαリン酸ジルコニウム20gを5.28gのLiOHと乳鉢で混合した。そこへ、純水を25g添加してさらによく混合した。150℃で12時間乾燥し、さらに400℃で4時間焼成して焼成Li置換型αリン酸ジルコニウム(14)を得た。この焼成Li置換型αリン酸ジルコニウム(C4)の組成は、Liイオンの導入量が3.57meq/gであるZrO2・P2O5・0.9Li2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.066である。(比較例4)
<製造例29>Li置換αリン酸ジルコニウムの合成
 製造例1で得られたαリン酸ジルコニウム(1)70gを0.1NのLiOH水溶液7000mlに、撹拌しながら添加した。これをさらに8時間撹拌した後、濾液の伝導度が500μS/cm以下になるまでフィルターで濾過水洗した。水洗後、150℃で20時間真空乾燥し、リチウムイオン置換型αリン酸ジルコニウム(1)を得た。メジアン径は0.9μmであった。このリチウムイオン置換型αリン酸ジルコニウム(1)は、Liイオンの導入量が6.39meq/gであるZr(LiPO42・H2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.073である。(比較例5)
<製造例30>Li置換型αリン酸ジルコニウム(2)の合成
 LiOH溶液を0.15Nとした以外は、製造例29と同様にしてLi置換型αリン酸ジルコニウム(2)を得た。メジアン径は0.9μmであった。このLi置換型αリン酸ジルコニウム(2)の組成は、Liイオンの導入量が10.25meq/gであるZrO2・0.75P25・1.5Li2O・H2Oであった。また、この組成におけるリチウム原子とリン酸基PO4との質量比(Li/PO4)は、0.147である。(比較例6)
 下記表3にそれぞれの水分含有率(%)、(1)電解液中における金属イオン捕捉容量(meq/g)、および(2)モデル電解液中における金属イオン捕捉率(%)、比表面積を示す。
 実施例のものは、全て本実施形態のイオン捕捉剤のおける要件を満たしているのに対して、比較例のものは水分含有量、あるいはイオン捕捉能のいずれかの性能に劣っている。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2から明らかなように、従来の捕捉剤はイオン捕捉容量が0.4~1.7meq/gと小さいのに対し、本実施形態のイオン捕捉剤はイオン捕捉容量が2.2~4.2meq/gと大きく、イオン捕捉能に優れることが分かる。
 また、表3から明らかなように、モデル電解液を用いた試験においても、本実施形態のイオン捕捉剤は、従来のイオン捕捉剤(比較例1~6)に比較して、イオン捕捉率が高いことが分かる。これらの結果より、本実施形態のイオン捕捉剤は、イオン捕捉速度が速く、またイオン捕捉容量も高いため、短絡の発生を抑えることができる。
2.リチウムイオン二次電池の作製
<実施例101>
 初めに、セパレータ、正極及び負極を作製し、その後、これらの正極、負極及びセパレータと、電解液とを用いて、リチウムイオン二次電池を製造した。
(1)セパレータの作製
 セパレータには厚さ20μm、空孔率50%~60%の多孔性のポリエチレンフィルムを用いた。
 実施例1で得られた焼成Li置換型αリン酸ジルコニウム(1)と、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)と、イオン交換水とを、それぞれ5:95:100の質量比で配合した。これを、酸化ジルコニウムビーズ(東レ(株)製“トレセラム”(登録商標)ビーズ、直径0.5mm)と共にポリプロピレン製の容器に入れ、水溶液をペイントシェーカー((株)東洋精機製作所製)で4時間混合し、実施例1の焼成Li置換型αリン酸ジルコニウム(1)をバインダに分散させた。次いで、濾過限界5μmのフィルターで濾過し、イオン捕捉剤加工液(a)を得た。次に、イオン捕捉剤加工液(a)をセパレータである前記ポリエチレンフィルムの片面にグラビアコート法にて10μmの厚さに塗布し、50℃の熱風乾燥炉を10秒間通過させることで乾燥して、電池用セパレータ(S1)を得た。セパレータの最終厚みは25μmであった。このセパレータ(S1)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(1)の目付量を計算したところ、1mg/cm2であった。
<実施例102>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例2の焼成Li置換型αリン酸ジルコニウム(2)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S2)の厚さは25μmであった。このセパレータ(S2)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(2)の目付量を計算したところ、1.1mg/cm2であった。
<実施例103>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例3の焼成Li置換型αリン酸ジルコニウム(3)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S3)の厚さは25μmであった。このセパレータ(S3)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(3)の目付量を計算したところ、1.0mg/cm2であった。
<実施例104>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例4の焼成Li置換型αリン酸ジルコニウム(4)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S4)の厚さは25μmであった。このセパレータ(S4)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(4)の目付量を計算したところ、1.0mg/cm2であった。
<実施例105>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例5の焼成Li置換型αリン酸ジルコニウム(5)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S5)の厚さは25μmであった。このセパレータ(S5)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(5)の目付量を計算したところ、1.0mg/cm2であった。
<実施例106>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例6の焼成Li置換型αリン酸ジルコニウム(6)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S6)の厚さは25μmであった。このセパレータ(S6)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(6)の目付量を計算したところ、1.1mg/cm2であった。
<実施例107>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例7の焼成Li置換型αリン酸ジルコニウム(7)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S7)の厚さは25μmであった。このセパレータ(S7)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(7)の目付量を計算したところ、1.0mg/cm2であった。
<実施例108>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例8の焼成Li置換型αリン酸ジルコニウム(8)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S8)の厚さは25μmであった。このセパレータ(S8)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(8)の目付量を計算したところ、1.1mg/cm2であった。
<実施例109>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例9の焼成Li置換型αリン酸ジルコニウム(9)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S9)の厚さは25μmであった。このセパレータ(S9)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(9)の目付量を計算したところ、1.0mg/cm2であった。
<実施例110>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例10の焼成Li置換型αリン酸ジルコニウム(10)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S10)の厚さは25μmであった。このセパレータ(S10)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(10)の目付量を計算したところ、1.0mg/cm2であった。
<実施例111>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例11の焼成Li置換型αリン酸チタン(1)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S11)の厚さは25μmであった。このセパレータ(S11)を1000℃で2時間焼成し、焼成残渣から全実施例11の焼成Li置換型αリン酸チタン(1)の目付量を計算したところ、1.0mg/cm2であった。
<実施例112>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例12の焼成Li置換型αリン酸チタン(2)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S12)の厚さは25μmであった。このセパレータ(S12)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸チタン(2)の目付量を計算したところ、1.0mg/cm2であった。
<実施例113>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例13の焼成Li置換型αリン酸チタン(3)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S13)の厚さは25μmであった。このセパレータ(S13)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸チタン(3)の目付量を計算したところ、1.1mg/cm2であった。
<実施例114>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、実施例14の焼成Li置換型αリン酸チタン(4)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S14)の厚さは25μmであった。このセパレータ(S14)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸チタン(4)の目付量を計算したところ、1.1mg/cm2であった。
<比較例101>
 イオン捕捉剤を含まないセパレータ(S15)を用意した。
<比較例102>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、メジアン径1μmのアルミナ粒子を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S16)の厚さは25μmであった。このセパレータ(S16)を1000℃で2時間焼成し、焼成残渣から全アルミナの目付量を計算したところ、1.6mg/cm2であった。
<比較例103>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、比較例1の焼成Li置換型αリン酸ジルコニウム(C1)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S17)の厚さは25μmであった。このセパレータ(S17)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(C1)の目付量を計算したところ、1.0mg/cm2であった。
<比較例104>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、比較例2の焼成Li置換型αリン酸ジルコニウム(C2)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S18)の厚さは25μmであった。このセパレータ(S18)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(C2)の目付量を計算したところ、0.9mg/cm2であった。
<比較例105>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、比較例3の焼成Li置換型αリン酸ジルコニウム(C3)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S19)の厚さは25μmであった。このセパレータ(S19)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(C3)の目付量を計算したところ、1.1mg/cm2であった。
<比較例106>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、比較例4の焼成Li置換型αリン酸ジルコニウム(C4)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S20)の厚さは25μmであった。このセパレータ(S20)を1000℃で2時間焼成し、焼成残渣から全焼成Li置換型αリン酸ジルコニウム(C4)の目付量を計算したところ、0.9mg/cm2であった。
<比較例107>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、比較例5のLi置換型αリン酸ジルコニウム(1)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S21)の厚さは25μmであった。このセパレータ(S21)を1000℃で2時間焼成し、焼成残渣から全Li置換型αリン酸ジルコニウム(1)の目付量を計算したところ、1.0mg/cm2であった。
<比較例108>
 実施例1の焼成Li置換型αリン酸ジルコニウム(1)に代えて、比較例6のLi置換型αリン酸ジルコニウム(2)を用いた以外は、実施例101と同様にして、イオン捕捉剤加工液の調整及びセパレータの製造を行った。得られたセパレータ(S22)の厚さは25μmであった。このセパレータ(S22)を1000℃で2時間焼成し、焼成残渣から全Li置換型αリン酸ジルコニウム(2)の目付量を計算したところ、1.1mg/cm2であった。
(2)正極の作製
 まず、90質量部のLi(Ni1/3Mn1/3Co1/3)O2(正極活物質)と、7質量部のアセチレンブラック(導電助剤)、3質量部のポリフッ化ビニリデン(PVDF)(バインダ)と、100質量部の1-メチル-2-ピロリドン(バインダ)とを混合分散し、正極材含有スラリーを得た。
 次に、この正極合剤スラリーを、ドクターブレード法により、厚さ20μmの正極集電体(アルミニウム箔)の片面に塗膜の厚さが30μmとなるように塗布し、乾燥させて、正極合剤層を形成した。その後、ロールプレス機により圧縮成形し、所定の大きさ(30mm×45mm)に切断してリチウムイオン二次電池用正極を得た。
(3)負極の作製
 90質量部の非晶質炭素(負極活物質)と、3質量部のポリフッ化ビニリデン(PVDF)(バインダ)と、7質量部のカーボンブラック(株式会社クレハ製)(導電助剤)と、100質量部の1-メチル-2-ピロリドン(溶媒)を混合分散し、負極合剤スラリーを得た。
 次に、この負極合剤スラリーを、ドクターブレード法により、厚さ20μmの負極集電体(銅箔)の片面に塗膜の厚さが30μmとなるように塗布し、乾燥させて、負極合剤層を形成した。その後、ロールプレス機により圧縮成形し、所定の大きさ(31mm×46mm)に切断してリチウムイオン二次電池用負極を得た。
(4)非水電解液
 非水電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を3:7体積%で調合した溶媒に指示電解質として1M(mol/L)のLiPF6を含む電解液(キシダ化学(株)製)を用いた。
(5)リチウムイオン二次電池の製造
<実施例201>
 負極と、35×50mmのセパレータ(S1)と、正極とを、セパレータ(S1)のイオン捕捉剤含有層側を正極に面するようにして、この順に積層し、これらを、アルミニウム包装材(電池の外装材)の中に収納した。次いで、上記キシダ化学(株)製非水電解液を、空気が混入しないように注入した。その後、内容物を密封するために、アルミニウム包装材の開口部に150℃のヒートシールを行って、50mm×80mm×6mmのアルミニウムラミネート外装のリチウムイオン二次電池(L1)を得た。
(リチウムイオン二次電池の初期化)
上記で用意したリチウムイオン二次電池に対し、次の手順で初期化を行った。はじめに、開回路の状態から電池電圧が4.2Vになるまで、3時間率相当の定電流にてリチウムイオン二次電池(L1)を充電した。電池電圧が4.2Vに達した後、電流値が0.1時間率相当になるまで4.2Vを保持した。この2つの充電工程を「標準条件での充電」といい、充電されたその状態を「満充電」という。
次いで、充電を停止し、30分間休止した。この工程を「休止」という。
そして、3時間率相当の定電流の放電を開始し、電池電圧が3.0Vに達するまで放電させた。この工程を「標準条件での放電」という。
この後、放電を停止し、「休止」を行った。この後、「標準条件での充電」、「休止」、「標準条件での放電」及び「休止」のサイクルを3回繰り返した。そして、更に、「標準条件での充電」及び「休止」を行い、3時間率相当の定電流の放電を開始し、電池電圧が3.8Vに達するまで放電させた。この状態を「半充電」という。その後、1週間のエージング期間を設け、初期化を完了した。
 なお、上記「時間率」は、電池の設計放電容量を所定の時間で放電する電流値と定義する。例えば、3時間率とは、電池の設計容量を3時間で放電する電流値である。さらに、電池容量をC(単位:Ah)とすると、3時間率の電流値はC/3(単位:A)となる。
<評価方法>
(a)初期容量評価
 初期化後のリチウムイオン二次電池(L1)を用いて、「標準条件での充電」、「休止」、「標準条件での放電」及び「休止」のサイクルを3回繰り返し、各回の放電容量を測定し、その平均値を「初期容量」とした。なお、表4に示す値は、イオン捕捉剤を含まないセパレーター(S11)を用いた比較例14における放電容量の平均値を「1.00」として規格化したものである。
(b)サイクル特性評価
初期容量を測定したリチウムイオン二次電池(L1)を40℃の恒温槽に入れ、二次電池の表面温度が40℃になった後、この状態を12時間保持した。次いで、「休止」を設けずに、「標準条件での充電」及び「標準条件での放電」のサイクルを200回繰り返した。この後、二次電池の放電容量を、「初期容量」と同様にして測定した。なお、表4に示す「試験後容量」は、イオン捕捉剤を含まないセパレータ(S15)を用いた比較例101における放電容量の平均値を「1.00」としたときの値である。この「試験後容量」により、サイクル特性(サイクル試験による劣化の程度)を評価した。
(c)安全性評価
 初期化後のリチウムイオン二次電池(L1)を4.2Vで充電をして満充電とした後、直径20mmの孔を有する拘束板の上に載置した。そして、この拘束板を、上部にφ3mmの鋼鉄製の釘が取り付けられたプレス機に配置した。プレス機を駆動させて、外装材に対して釘刺しを行い、強制的に内部短絡を発生させた。即ち、釘がリチウムイオン二次電池(L1)を貫通して、釘の先端部が拘束板の孔内に達するまで、釘を上方から80mm/秒の速度で移動させた。釘を抜いた後の電池を、室温、大気条件で観察した。1時間経過するまでに、発火及び破裂が発生しなかったものを合格として、表4に「A」で表記した。また、1時間以内に火花が発生したものを「B」で表記した。
 リチウムイオン二次電池(L1)では、釘が電池を貫通して短絡した後、すぐに、電池電圧が急激に低下した。短絡により発生したジュール熱により、貫通部付近の電池温度及び電池表面温度は、徐々に上昇し、最高で150℃付近まで上昇したが、それ以上の著しい発熱はなく、熱暴走には至らなかった。
<実施例201~214>
 実施例1のセパレータ(S1)に代えて、実施例102~114のセパレータ(S2~S14)をそれぞれ用いた以外は、実施例201と同様にして、それぞれラミセル型リチウムイオン二次電池(L2~L14)を得た。その後、実施例201と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。以上の結果を表4に示す。
 なお、安全性試験では、実施例201~214のリチウムイオン二次電池(L2~L14)は、リチウムイオン二次電池(L1)と同様の挙動を示した。
<比較例201~208>
 実施例1のセパレータ(S1)に代えて、比較例102~108のセパレータ(S15~S22)をそれぞれ用いた以外は、実施例201と同様にして、ラミセル型リチウムイオン二次電池(L15~L22)を得た。その後、実施例201と同様にして、初期容量及びサイクル特性の評価並びに安全性試験を行った。以上の結果を表4に示す。
 なお、安全性試験では、比較例102~108のリチウムイオン二次電池(L2~L14)は、リチウムイオン二次電池(L1)と同様の挙動を示した。一方、比較例101のリチウムイオン二次電池(L15)は、安全性試験では、釘が電池を貫通して短絡した後、すぐに、電池電圧が急激に低下した。そして、貫通部付近の電池温度及び電池表面温度は、急上昇し、熱暴走状態となって、釘を抜いてから約40秒後に、最高で400℃以上になった。また,熱暴走後に貫通部から火花が発生し、高温の煙が噴出した。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンを担持させ、且つ結晶水を有さない層状リン酸塩化合物であるリチウムイオン二次電池用イオン捕捉剤を含有するリチウムイオン二次電池は、電池容量の減少がみられず、優れた電池特性を有する。また、安全性にも優れる。
 本実施形態のイオン捕捉剤は、電解液、セパレータ等のリチウムイオン二次電池の鋼製部材に使用することができる。例えば、本実施形態のイオン捕捉剤を含むセパレータは、謡曲が電気二重層、陰極がリチウムイオン二次電池の構造をしたリチウムイオンキャパシタ(ハイブリットキャパシタ)、金属リチウム二次電池等の、リチウムイオン二次電池以外の電気化学素子にも応用することができる。
 本実施形態のリチウムイオン二次電池は、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等として、携帯電話、タブレット端末、ラップトップコンピュータ、ゲーム機等のポータブル機器;電気自動車、ハイブリッド電気自動車等の自動車;電力貯蔵等に利用することができる。
 10:リード付き蓄電要素、15:多孔質基材、20:セパレータ、30:正極、32:正極集電体、34:正極活物質層、40:負極、42:負極集電体、44:負極活物質層、52,54:リード、60:イオン捕捉剤

Claims (7)

  1.  プロトンをイオン交換基とする層状リン酸塩化合物が備える理論交換容量を超えるリチウムイオンを担持させ、且つ結晶水を有さない層状リン酸塩化合物であるイオン捕捉剤。
  2.  前記層状リン酸塩化合物に含まれるリチウム原子とリン酸基PO4との質量比(Li/PO4)が0.07以上である請求項1に記載のイオン捕捉剤。
  3.  上記層状リン酸塩化合物の比表面積が15m2/g以上である、請求項1又は2に記載のイオン捕捉剤。
  4.  上記層状リン酸塩化合物の水分含有率が1質量%以下である、請求項1~3のいずれか一項に記載のイオン用捕捉剤。
  5.  上記層状リン酸塩化合物がαリン酸ジルコニウム、又はαリン酸チタンである請求項1~4のいずれか一項に記載のイオン捕捉剤。
  6.  請求項1~5のいずれか一項に記載のイオン捕捉剤を含有するイオン捕捉層を有するリチウムイオン電池用セパレータ。
  7.  正極、負極及び電解液を備えるリチウムイオン二次電池であって、請求項1~5のいずれか一項に記載のイオン捕捉剤を含有するリチウムイオン二次電池。
PCT/JP2018/044497 2017-12-15 2018-12-04 イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池 WO2019116959A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880078254.1A CN111432921B (zh) 2017-12-15 2018-12-04 离子捕捉剂、锂离子电池用间隔件及锂离子二次电池
KR1020207016155A KR102612759B1 (ko) 2017-12-15 2018-12-04 이온포착제, 리튬이온전지용 세퍼레이터 및 리튬이온 이차전지
US16/770,407 US11641045B2 (en) 2017-12-15 2018-12-04 Ion trapping agent, separator for lithium ion battery, and lithium ion secondary battery
JP2019559562A JP7088212B2 (ja) 2017-12-15 2018-12-04 イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017240140 2017-12-15
JP2017-240140 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019116959A1 true WO2019116959A1 (ja) 2019-06-20

Family

ID=66820264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044497 WO2019116959A1 (ja) 2017-12-15 2018-12-04 イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US11641045B2 (ja)
JP (1) JP7088212B2 (ja)
KR (1) KR102612759B1 (ja)
CN (1) CN111432921B (ja)
TW (1) TWI803543B (ja)
WO (1) WO2019116959A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI845118B (zh) * 2023-01-10 2024-06-11 亞福儲能股份有限公司 鋁電池隔離膜

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021066101A1 (ja) * 2019-10-02 2021-04-08

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105585A (ja) * 1996-06-27 1998-01-13 Toagosei Co Ltd リチウムイオン吸着剤
WO2008053694A1 (en) * 2006-10-27 2008-05-08 Toagosei Co., Ltd. Novel lamellar zirconium phosphate
WO2016194995A1 (ja) * 2015-06-04 2016-12-08 東亞合成株式会社 リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池
JP2017091698A (ja) * 2015-11-05 2017-05-25 トヨタ自動車株式会社 非水電解液二次電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077103A (ja) 1998-08-31 2000-03-14 Hitachi Ltd リチウム二次電池および機器
JP3643289B2 (ja) * 1999-04-30 2005-04-27 株式会社オハラ ガラスセラミックス複合電解質、及びリチウム二次電池
DE10240032A1 (de) * 2002-08-27 2004-03-11 Creavis Gesellschaft Für Technologie Und Innovation Mbh Ionenleitender Batterieseparator für Lithiumbatterien, Verfahren zu deren Herstellung und die Verwendung derselben
JP5176322B2 (ja) * 2005-01-11 2013-04-03 東亞合成株式会社 アルミニウム化合物による無機陰イオン交換体およびそれを用いた電子部品封止用樹脂組成物
CN101297377A (zh) * 2005-08-19 2008-10-29 国立大学法人东京大学 质子导电性杂化材料和使用其的用于燃料电池的催化剂层
JP5309927B2 (ja) 2008-11-28 2013-10-09 株式会社豊田中央研究所 非水系リチウムイオン二次電池
JP5958461B2 (ja) 2011-03-11 2016-08-02 日立化成株式会社 アルミニウムケイ酸塩、金属イオン吸着剤及びそれらの製造方法
JP6094163B2 (ja) 2011-11-15 2017-03-15 日立化成株式会社 リチウムイオン二次電池用セパレータ
JP5879943B2 (ja) 2011-11-15 2016-03-08 日立化成株式会社 リチウムイオン二次電池
JP2014150246A (ja) * 2013-01-08 2014-08-21 Sumitomo Chemical Co Ltd 太陽電池用封止シート
KR20140146517A (ko) * 2013-06-14 2014-12-26 한국전자통신연구원 리튬 포스페이트계 고체 전해질 제조방법
JP6264658B2 (ja) * 2014-08-06 2018-01-24 トヨタ自動車株式会社 非水電解質二次電池
JP6365889B2 (ja) * 2015-10-13 2018-08-01 トヨタ自動車株式会社 非水電解質二次電池
JP6658871B2 (ja) * 2016-04-05 2020-03-04 東亞合成株式会社 太陽電池用イオン捕捉剤及びそれを含む太陽電池用封止剤組成物並びに太陽電池モジュール
CN106276840B (zh) * 2016-08-01 2018-03-13 上海润河纳米材料科技有限公司 一种用于离子捕捉的磷酸锆的制备方法
CN106058219B (zh) * 2016-08-11 2018-05-22 湖南瑞翔新材料股份有限公司 复合包覆剂、高电压钴酸锂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105585A (ja) * 1996-06-27 1998-01-13 Toagosei Co Ltd リチウムイオン吸着剤
WO2008053694A1 (en) * 2006-10-27 2008-05-08 Toagosei Co., Ltd. Novel lamellar zirconium phosphate
WO2016194995A1 (ja) * 2015-06-04 2016-12-08 東亞合成株式会社 リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池
JP2017091698A (ja) * 2015-11-05 2017-05-25 トヨタ自動車株式会社 非水電解液二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI845118B (zh) * 2023-01-10 2024-06-11 亞福儲能股份有限公司 鋁電池隔離膜

Also Published As

Publication number Publication date
US11641045B2 (en) 2023-05-02
CN111432921A (zh) 2020-07-17
CN111432921B (zh) 2023-05-23
TW201929956A (zh) 2019-08-01
US20210143512A1 (en) 2021-05-13
TWI803543B (zh) 2023-06-01
JPWO2019116959A1 (ja) 2020-12-24
JP7088212B2 (ja) 2022-06-21
KR102612759B1 (ko) 2023-12-13
KR20200096768A (ko) 2020-08-13

Similar Documents

Publication Publication Date Title
JP6593440B2 (ja) リチウムイオン二次電池用イオン捕捉剤、電解液、セパレーター及びリチウムイオン二次電池
US11063257B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
JP5940529B2 (ja) チタン酸リチウム凝集体及びこれを用いたリチウムイオン二次電池、リチウムイオンキャパシタ
JP6733140B2 (ja) 非水系電解質二次電池用正極活物質の製造方法
JP2015118782A (ja) リチウムイオン二次電池
JP3654005B2 (ja) リチウムイオン二次電池用正極板の製造方法
JP6096985B1 (ja) 非水電解質電池及び電池パック
CN104011917A (zh) 锂离子二次电池用材料及其应用
JP2011204564A (ja) 電極活物質の製造方法
JP2004134236A (ja) 非水系二次電池
JP2008262859A (ja) 非水電解液及びリチウムイオン二次電池
JP2020115485A (ja) 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
JP7088212B2 (ja) イオン捕捉剤、リチウムイオン電池用セパレータ及びリチウムイオン二次電池
JP5968712B2 (ja) チタン酸リチウム粉体の製造方法、及び該チタン酸リチウム粉体を用いたリチウムイオン二次電池及びリチウムイオンキャパシタ
JP4649691B2 (ja) リチウム二次電池用正極
JP5879943B2 (ja) リチウムイオン二次電池
JP2017004627A (ja) リチウムイオン二次電池用イオン捕捉剤、及びそれを用いたリチウムイオン二次電池
JP6094163B2 (ja) リチウムイオン二次電池用セパレータ
JP2019046587A (ja) 非水電解質電池用吸着層並びにこれを用いた非水電解質電池用セパレータ及び非水電解質電池
WO2023032807A1 (ja) 二次電池用正極活物質および二次電池
JP6135980B2 (ja) 正極活物質及び蓄電素子
JP2022156236A (ja) 非水電解質二次電池用負極の製造方法、非水電解質二次電池の負極作製用スラリー、及び非水電解質二次電池
KR20180007592A (ko) 리튬 이온 이차 전지용 이온 포착제 및 그것을 사용한 리튬 이온 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887851

Country of ref document: EP

Kind code of ref document: A1