WO2011070850A1 - Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット、Co若しくはCo合金相と酸化物相とからなる磁性体薄膜及び同磁性体薄膜を用いた磁気記録媒体 - Google Patents

Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット、Co若しくはCo合金相と酸化物相とからなる磁性体薄膜及び同磁性体薄膜を用いた磁気記録媒体 Download PDF

Info

Publication number
WO2011070850A1
WO2011070850A1 PCT/JP2010/067947 JP2010067947W WO2011070850A1 WO 2011070850 A1 WO2011070850 A1 WO 2011070850A1 JP 2010067947 W JP2010067947 W JP 2010067947W WO 2011070850 A1 WO2011070850 A1 WO 2011070850A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
oxide
mol
dispersed
oxide phase
Prior art date
Application number
PCT/JP2010/067947
Other languages
English (en)
French (fr)
Inventor
祐希 池田
祐一郎 中村
真一 荻野
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44145403&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011070850(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US13/513,898 priority Critical patent/US20120241317A1/en
Priority to CN201080056252.6A priority patent/CN102656290B/zh
Priority to JP2011513558A priority patent/JP4837801B2/ja
Publication of WO2011070850A1 publication Critical patent/WO2011070850A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Definitions

  • the present invention relates to a sputtering target in which an oxide phase is dispersed in a Co or Co alloy phase used for forming a magnetic thin film of a magnetic recording medium, particularly a granular magnetic recording film of a hard disk adopting a perpendicular magnetic recording method.
  • the present invention relates to the magnetic recording medium used.
  • a technique for improving magnetic characteristics by finely dispersing a nonmagnetic material in a magnetic thin film has been developed.
  • a hard disk recording medium employing a perpendicular magnetic recording system employs a granular film in which the magnetic interaction between the magnetic particles in the magnetic recording film is blocked or weakened by a non-magnetic material. Has improved various characteristics.
  • the Co-Cr-Pt-SiO 2 in granular film as one of the best materials are known, granular film of the Co-Cr-Pt-SiO 2 is generally ferromagnetic mainly composed of Co It is produced by sputtering a non-magnetic material particle-dispersed magnetic material target in which SiO 2 as a non-magnetic material is uniformly finely dispersed in a Co—Cr—Pt alloy substrate.
  • Such a non-magnetic material particle-dispersed magnetic material sputtering target cannot be uniformly and finely dispersed in the magnetic alloy substrate by the melting method, so that it can be manufactured by a powder metallurgy method.
  • a powder metallurgy method Widely known.
  • an alloy powder having an alloy phase produced by a rapid solidification method and a powder constituting the ceramic phase are mechanically alloyed, and the powder constituting the ceramic phase is uniformly dispersed in the alloy powder, and then molded by hot pressing and magnetically generated.
  • Patent Document 1 A method for obtaining a sputtering target for a recording medium has been proposed (Patent Document 1).
  • nonmagnetic material particle-dispersed magnetic material sputtering target can be produced by mixing by the above method and molding and sintering the mixed powder by hot pressing.
  • magnetron sputtering apparatuses are widely used in the above-described formation of magnetic recording films because of their high productivity.
  • a substrate serving as a positive electrode and a target serving as a negative electrode are opposed to each other, and an electric field is generated by applying a high voltage between the substrate and the target in an inert gas atmosphere.
  • the inert gas is ionized and a plasma composed of electrons and cations is formed.
  • the cations in the plasma collide with the surface of the target (negative electrode)
  • atoms constituting the target are knocked out.
  • the projected atoms adhere to the opposing substrate surface to form a film.
  • the principle that the material constituting the target is formed on the substrate by such a series of operations is used.
  • the magnetron sputtering device has a magnet on the back side of the target, and magnetic flux leaking from the magnet to the target surface (leakage magnetic flux) causes electrons to cycloidly move in the vicinity of the target surface to efficiently generate plasma. It is possible to generate.
  • Co, Cr when a magnetic material target containing an oxide of a metal and SiO 2 such as Pt, since there is no conductivity oxide such as SiO 2, the area of each particle of oxide phase is exposed to the target surface If the thickness is large, there is a problem that the generation of particles increases during sputtering, and in order to solve the problem, it is necessary to reduce the area of each particle of the oxide phase as much as possible.
  • Patent Document 2 describes that Cr is contained in the oxide phase, thereby suppressing the grain growth of the oxide phase and uniformly dispersing it, and obtaining a high-density target.
  • it is important to suppress the grain growth of the oxide phase by using an electric current sintering method in addition to containing chromium.
  • the chromium oxide content is as high as 1.2 to 12.0 mol%, and such a large amount of addition is a non-magnetic material particle-dispersed magnetic thin film and a magnetic recording medium using the same dispersed magnetic thin film. This is a problem because it will greatly change the characteristics.
  • the silicon oxide raw material powder having an average particle size of 0.5 ⁇ m is used, the particle size of the obtained oxide phase is about 2 to 2.5 ⁇ m, and the particle size is sufficiently refined. There is a problem that it cannot be said.
  • Patent Document 3 proposes that particle generation is suppressed by adding Cr oxide to the oxide phase.
  • Patent Literature 4 Patent Literature 5 and the like are cited, and it is described that the generation of particles cannot be suppressed only by miniaturization of the silica phase and cannot be solved as “adhesion between the alloy phase and the silica phase is bad”.
  • the quoted silica phase is 10 ⁇ m or less as “fine”, and the particle size of the raw material powder SiO 2 is 20 ⁇ m or less, and in the examples, 3 ⁇ m.
  • the physical phase is a structure having a particle size larger than that.
  • An object of the present invention is to provide a non-magnetic material particle-dispersed magnetic material sputtering target with reduced arcing, stable discharge obtained by a magnetron sputtering apparatus, and high density and fewer particles generated during sputtering. .
  • the present inventors have conducted intensive research and found that a target capable of reducing arcing can be obtained by adjusting the target structure. Further, the present inventors have found that the density can be sufficiently increased and particles generated during sputtering can be reduced. Based on such knowledge, the present invention provides the following inventions.
  • oxide phase a metal matrix phase containing Co and an oxide phase containing 6 to 14 mol% of SiO 2 that is dispersed in the form of particles (hereinafter referred to as “oxide phase”). It is a sputtering target and contains not less than 0.3 mol% and less than 1.0 mol% of Cr oxide scattered in or on the surface of the oxide phase in addition to the components constituting the metal matrix phase and the oxide phase.
  • the metal matrix phase is Co metal alone or Cr: 6 to 40 mol%, and the balance is a Co-based alloy made of Co, or Cr: 6 to 40 mol%, Pt: 8 to 20 mol%
  • These are typical Co-based nonmagnetic material particle-dispersed magnetic materials, and the present invention is suitable for these.
  • the present invention is characterized in that the oxide phase particles can be miniaturized and the relative density can be improved.
  • Nonmagnetic material particles comprising a metal matrix phase containing Co, an oxide phase containing 6 to 14 mol% of SiO 2 and a Cr oxide of 0.3 mol% or more and less than 1.0 mol% Dispersed magnetic thin film.
  • the non-magnetic material particle-dispersed magnetic thin film of the present invention is obtained by forming a film using the above sputtering target, but the component composition of the thin film formed by sputtering reflects the component composition of the target. Therefore, it has the same component composition.
  • the metal matrix phase is Co metal alone, Cr: 6 to 40 mol%, the balance is a Co-based alloy made of Co, or Cr: 6 to 40 mol%, Pt: 8 to 20 mol%
  • the sputtering target in which the oxide phase is dispersed in the Co or Co alloy phase of the present invention desirably has a relative density of 98% or more as described above.
  • the relative density is a value obtained by dividing the actually measured density of the target by the calculated density.
  • the calculation density is a density when it is assumed that the constituent components of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
  • a target in which fine SiO 2, which is a nonmagnetic material, is uniformly dispersed in a base material of Co or an alloy containing Co as a main component can be obtained. That is, in addition to the components constituting the metal matrix phase and the oxide phase, 0.3 mol% or more and less than 1.0 mol% of Cr oxide scattered in the oxide phase or on the surface thereof are contained, and the oxide phase A sputtering target in which an oxide phase is dispersed in a Co or Co alloy phase having an average area of each particle of 2.0 ⁇ m 2 or less can be provided.
  • the generation amount of particles can be greatly reduced by making the oxide particles of SiO 2 finer and densified. Furthermore, since it becomes a target with less arcing, stable discharge can be obtained, and there is an advantage that a magnetic thin film can be manufactured at low cost.
  • tissue image when the target surface of Example 1 is observed with a scanning electron microscope (SEM). It is a structure
  • the sputtering target in which the oxide phase is dispersed in the Co or Co alloy phase of the present invention comprises a magnetic metal matrix phase containing Co and 6 to 14 mol% of SiO 2 that is dispersed in the form of particles. It is a sputtering target composed of an oxide phase (hereinafter referred to as “oxide phase”). In addition to the components constituting the metal matrix phase and the oxide phase, it contains 0.3 mol% or more and less than 1.0 mol% of Cr oxide scattered in or on the surface of the oxide phase, The average area of each particle is 2.0 ⁇ m 2 or less. As described above, the present invention can be applied to Co or an alloy based on Co.
  • Co-based non-magnetic material particle-dispersed magnetic material Cr is 6 to 40 mol%, and the balance is Co-based alloy composed of Co, or Cr: 6 to 40 mol%, Pt: 8 to 20 mol%.
  • the balance is a Co-based alloy made of Co.
  • the present invention is suitable for these.
  • the conventional manufacturing method is on this extended line, and even when chromium oxide is added, sintering is performed at a high temperature for a long time for the purpose of improving the density, and as a result, per SiO 2 grain.
  • the average area is 3 ⁇ m 2 or more. This cannot be said to be the refinement of SiO 2 grains, and it can be said that the abnormal discharge (arcing) and the generation of particles during the sputtering were tolerated. Further, although attempts such as Patent Document 2 and Patent Document 3 aiming at particle reduction have been made, the oxide phase has not been sufficiently miniaturized without affecting the characteristics of the magnetic material.
  • the present invention solves this problem. That is, as a means for solving this problem, high-melting oxide fine particles having a much lower diffusion rate at the same temperature are interposed on the surface of the oxide containing SiO 2 or the gap between the oxide particles during sintering. It is proposed to suppress aggregation of oxides containing SiO 2 .
  • the oxide phase containing SiO 2 means an oxide phase in which the oxide is only SiO 2 or a combination of SiO 2 and another oxide.
  • the oxide may contain an oxide other than SiO 2 , for example, TiO 2 having similar characteristics, but means that the presence of the oxide is strongly influenced by SiO 2 .
  • the oxide containing SiO 2 is sintered while maintaining the same particle size as the raw material powder. As a result, the area of each particle of the oxide phase can be reduced, and the sintering conditions can be reduced. Although it depends, it became possible to suppress to 2.0 ⁇ m 2 or less.
  • the surface energy tends to agglomerate more easily as the particle size becomes smaller.
  • This particle size cannot be made the particle size of the raw material powder.
  • 0.3 mol% or more and less than 1.0 mol% of a high melting point oxide of Cr oxide is added. Further, the sintering conditions are moderately suppressed, and the growth of oxide particles containing SiO 2 is suppressed.
  • the added amount of the Cr oxide is less than 0.3 mol%, the SiO 2 particles are aggregated and an average particle area of SiO 2 of 2.0 ⁇ m 2 or less cannot be achieved. As a result, the generation of particles cannot be reduced.
  • the amount of Cr oxide added is 1.0 mol% or more, the magnetic characteristics change, and it becomes difficult to produce a magnetic film having predetermined characteristics. Further, to increase the density by adding 1.0 mol% or more, the sintering conditions become higher and longer, and diffusion / aggregation / growth during the sintering of SiO 2 is accelerated, which cannot be suppressed.
  • SiO 2 is an insulator, the conductivity as a sintered body can be lowered to a specific resistance of 3.5 ⁇ 10 16 ⁇ ⁇ cm or less by adding a Cr oxide. Even when Cr oxide is not added intentionally, when Cr is contained in the matrix phase, it may be oxidized during sintering, and Cr oxide (Cr 2 O 3 ) may be formed in an amount of about 0.1 to 0.2 mol%. is there.
  • the oxide-dispersed Co alloy sputtering target that has been conventionally produced would have been those containing Cr oxides about 0.1 ⁇ 0.2 mol% naturally this case, SiO 2 particle is It is coarse and no effect on the specific resistance and dielectric constant of the oxide phase can be obtained. This is an effect that remarkably appears when the content of Cr oxide is 0.3 mol% or more.
  • the magnetic metal for example, Co powder with an average particle diameter of 1 ⁇ m, Cr powder with an average particle diameter of 2 ⁇ m, Pt powder with an average particle diameter of 2 ⁇ m A SiO 2 powder having an average particle size of 1 ⁇ m is prepared, and this and Cr 2 O 3 powder are mixed with a mixer.
  • the average particle size of Cr 2 O 3 powder is preferably 0.6 ⁇ m or less.
  • the average particle diameter of the raw material SiO 2 is 1 ⁇ m or less.
  • the powder thus obtained is molded and sintered using a vacuum hot press apparatus, and is cut into a desired shape, whereby the oxide phase is dispersed in the Co or Co alloy phase of the present invention. Create a target. Molding / sintering is not limited to hot pressing, and plasma discharge sintering and hot isostatic pressing can also be used.
  • the holding temperature at the time of sintering is preferably set to the lowest temperature in a temperature range where the target is sufficiently densified. Depending on the composition of the target, it is often in the temperature range of 900 to 1200 ° C.
  • the average area per one SiO 2 particle can be obtained by image processing of a microscope observation image.
  • the density is best measured by the Archimedes method, but may be calculated from dimensional measurement and weight measurement.
  • the relative density can be calculated by using the calculated density obtained by calculating the absolute density measured in this manner assuming that each molecule is mixed in the composition ratio.
  • the addition of Cr oxide can be obtained by uniformly mixing Cr 2 O 3 with mixed powder constituting each element powder or alloy powder such as Co—Cr—Pt—SiO 2 .
  • Cr powder, Co—Cr powder and Co—Cr—Pt powder are appropriately naturally oxidized in the pulverization / mixing process, etc., and as a result, a part of Cr existing as a metal is changed to Cr oxide. It is also possible to add Cr oxide.
  • Example 1 Co powder having an average particle diameter of 1 ⁇ m, Cr powder having an average particle diameter of 2 ⁇ m, SiO 2 powder having an average particle diameter of 1 ⁇ m, and Cr 2 O 3 powder having an average particle diameter of 0.6 ⁇ m were prepared as raw material powders. . These powders are the target composition 12.00Cr-7.58SiO 2 -0.75Cr 2 O 3 - so that the balance Co (mol%), Co powder 79.73wt%, Cr powder 10.60wt%, SiO 2 powders 7.73 wt% and Cr 2 O 3 powder 1.94 wt% were weighed respectively.
  • Co powder, Cr powder, SiO 2 powder, and Cr 2 O 3 powder were enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours.
  • This mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under conditions of a temperature of 1150 ° C., a holding time of 90 minutes, and a pressure of 30 MPa to obtain a sintered body. Further, this was cut with a lathe to obtain a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm.
  • Example 1 a high-density target having a relative density exceeding 99% was obtained.
  • a structure image when the polished surface of the target of Example 1 is observed with a scanning electron microscope (SEM) is shown in FIG.
  • the characteristic feature of Example 1 is that the SiO 2 particles are finely dispersed in the matrix alloy phase.
  • SiO 2 particles are finely dispersed.
  • the average area of each particle of the oxide phase was 1.6 ⁇ m 2 .
  • Table 1 shows the average area of each particle of the oxide phase and the analysis results of the components constituting the target.
  • Comparative Example 1 Co powder having an average particle diameter of 1 ⁇ m, Cr powder having an average particle diameter of 2 ⁇ m, and SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders were composed of 81.45 wt% Co powder, 10.72 wt% Cr powder, 7.83 wt% SiO 2 powder so that the target composition would be 12.00 Cr-7.58 SiO 2 -balance Co (mol%). Each was weighed by weight ratio. The difference from Example 1 is that Cr 2 O 3 powder is not added.
  • this mixed powder was filled into a carbon mold and hot pressed under the conditions of a vacuum atmosphere, a temperature of 1150 ° C., a holding time of 90 minutes, and a pressure of 30 MPa. As a result, a sintered body was obtained. Further, this was cut with a lathe to obtain a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm.
  • Comparative Example 1 the relative density exceeded 99%, which was a high-density target as in Example 1.
  • SEM scanning electron microscope
  • the structural image of FIG. 2 it can be seen that in Comparative Example 1, the SiO 2 particles in the matrix alloy phase are coarser than in Example 1 described above.
  • the average area of each particle of the oxide phase was 2.4 ⁇ m 2 .
  • Table 1 shows the average area of each particle of the oxide phase and the analysis results of the components constituting the target.
  • Example 2 In Example 2, as raw material powder, Co powder having an average particle diameter of 1 ⁇ m, Cr powder having an average particle diameter of 2 ⁇ m, Pt powder having an average particle diameter of 2 ⁇ m, Ru powder having an average particle diameter of 2 ⁇ m, Ta 2 O 5 having an average particle diameter of 2 ⁇ m. Powder, SiO 2 powder having an average particle diameter of 1 ⁇ m, and Cr 2 O 3 powder having an average particle diameter of 0.6 ⁇ m were prepared. Next, these powders were weighed so that the composition of the target was 16Cr-18Pt-4Ru-1Ta 2 O5-6SiO 2 -0.75Cr 2 O 3 balance Co (mol%).
  • Co powder, Cr powder, Pt powder, Ru powder, SiO 2 powder, Ta 2 O 5 powder, and Cr 2 O 3 powder are enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium for 20 hours.
  • This mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under conditions of a temperature of 1150 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was processed into a disk-shaped target having a diameter of 180.0 mm and a thickness of 7.0 mm using a lathe.
  • Example 2 a high-density target having a relative density exceeding 99% was obtained.
  • a structure image when the polished surface of the target of Example 2 is observed with a scanning electron microscope (SEM) is shown in FIG.
  • the characteristic feature of Example 1 is that Ta 2 O 5 particles and SiO 2 particles are finely dispersed in the matrix alloy phase.
  • Ta 2 O 5 particles and SiO 2 particles are finely dispersed.
  • the average area of each particle of the oxide phase was 2.0 ⁇ m 2 .
  • Table 1 shows the average area of each particle of the oxide phase and the analysis results of the components constituting the target.
  • Comparative Example 2 In Comparative Example 2, as in Example 2, the raw material powder was Co powder having an average particle diameter of 1 ⁇ m, Cr powder having an average particle diameter of 2 ⁇ m, Pt powder having an average particle diameter of 2 ⁇ m, Ru powder having an average particle diameter of 2 ⁇ m, and average particles. A Ta 2 O 5 powder having a diameter of 2 ⁇ m and a SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared. Each target was weighed so that the composition of the target was 16Cr-18Pt-4Ru-1Ta 2 O 5 -6SiO 2 -balance Co (mol%). The difference from Example 2 is that Cr 2 O 3 powder is not added.
  • this mixed powder was filled in a carbon mold and hot pressed under the conditions of a vacuum atmosphere, a temperature of 1150 ° C., a holding time of 90 minutes, and a pressure of 30 MPa. As a result, a sintered body was obtained. Further, this was cut with a lathe to obtain a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm.
  • FIG. 4 shows a tissue image when the polished surface of the target of Comparative Example 3 was observed with a scanning electron microscope (SEM). As shown in the structure image of FIG. 4, it can be seen that in Comparative Example 2, Ta 2 O 5 grains and SiO 2 grains in the matrix alloy phase are coarser than in Example 2 described above. The average area of each particle of the oxide phase was 2.7 ⁇ m 2 . Table 1 shows the average area of each particle of the oxide phase and the analysis results of the components constituting the target.
  • the present invention is composed of a metal matrix phase containing Co and an oxide phase containing 6 to 14 mol% of SiO 2 that is dispersed in the form of particles (hereinafter referred to as “oxide phase”).
  • the sputtering target is 0.3 mol% or more and less than 1.0 mol% of Cr oxide scattered in or on the surface of the oxide phase.
  • a sputtering target in which an oxide phase is dispersed in a Co or Co alloy phase, wherein the average area of each particle of the oxide phase is 2.0 ⁇ m 2 or less, and an oxidation containing SiO 2 The generation amount of particles can be greatly reduced by miniaturization and densification of physical particles.
  • a sputtering target in which an oxide phase is dispersed in a Co or Co alloy phase by a magnetron sputtering apparatus can be realized. Furthermore, it becomes a target that can reduce arcing, and when used in a magnetron sputtering apparatus, the ionization promotion of inert gas proceeds efficiently, stable discharge is obtained, and it has an excellent effect of producing a magnetic thin film at low cost Therefore, it is useful as a sputtering target in which an oxide phase is dispersed in a Co or Co alloy phase used for forming a magnetic thin film of a magnetic recording medium, particularly a granular magnetic recording film of a hard disk adopting a perpendicular magnetic recording method. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

Coを含有する金属マトリックス相と、SiOを含有し、粒子を形成して分散して存在する6~14mol%の酸化物の相(以下、「酸化物相」という。)から構成されるスパッタリングターゲットであって、前記金属マトリックス相及び酸化物相を構成する成分以外に、前記酸化物相内又はその表面に点在する0.3mol%以上、1.0mol%未満のCr酸化物を含有し、酸化物相の各粒子の平均面積が2.0μm以下であることを特徴とするCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット。アーキングを低減させ、マグネトロンスパッタ装置で安定した放電が得られ、かつ、高密度でスパッタ時に発生するパーティクルの少ないCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲットを提供することを課題とする。

Description

Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット、Co若しくはCo合金相と酸化物相とからなる磁性体薄膜及び同磁性体薄膜を用いた磁気記録媒体
 本発明は、磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクのグラニュラー磁気記録膜の成膜に使用されるCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット等に関し、アーキングが少なくマグネトロンスパッタ装置でスパッタする際に安定した放電が得られ、かつ高密度で、スパッタ時に発生するパーティクルの少ないスパッタリングターゲット及び該ターゲットのスパッタリングによって製造できる磁性体薄膜並びに同磁性体薄膜を用いた磁気記録媒体に関する。
 磁気記録の分野では、磁性体薄膜中に非磁性材料を微細分散させることにより磁気特性を向上させる技術が開発されている。その一例として、垂直磁気記録方式を採用するハードディスクの記録媒体では、磁気記録膜中の磁性粒子間の磁気的相互作用を非磁性材料により遮断、または弱めたグラニュラー膜を採用し、磁気記録媒体としての各種特性を向上させている。
 このグラニュラー膜に最適な材料の一つとしてCo-Cr-Pt-SiOが知られており、このCo-Cr-Pt-SiOのグラニュラー膜は、一般に、Coを主成分とした強磁性のCo-Cr-Pt合金の素地中に非磁性材料であるSiOが均一に微細分散した非磁性材粒子分散型磁性材ターゲットをスパッタリングして作製される。
 このような非磁性材粒子分散型磁性材スパッタリングターゲットは、溶解法では非磁性材粒子を磁性合金素地中に均一に微細分散させることが不可能であるため、粉末冶金法で製造されることが広く知られている。
 例えば、急冷凝固法で作製した合金相を持つ合金粉末とセラミックス相を構成する粉末とをメカニカルアロイングし、セラミックス相を構成する粉末を合金粉末中に均一に分散させ、ホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている(特許文献1)。
 また、急冷凝固法で作製した合金粉末を用いなくても、ターゲットを構成する各成分について市販の原料粉末を用意し、それらの原料粉を所望の組成になるように秤量し、ボールミル等の公知の手法で混合し、混合粉末をホットプレスにより成型・焼結することによって、非磁性材粒子分散型磁性材スパッタリングターゲットは作製できる。
 また焼結後に密度の高い素材が得られれば、スパッタ時に問題となるパーティクルの発生量が少ないことが一般的に知られている。
 スパッタリング装置には様々な方式のものがあるが、上記の磁気記録膜の成膜では、生産性の高さからマグネトロンスパッタリング装置が広く用いられている。
 スパッタリング法とは、正の電極となる基板と負の電極となるターゲットを対向させ、不活性ガス雰囲気下で、該基板とターゲット間に高電圧を印加して電場を発生させるものである。
 この時、不活性ガスが電離し、電子と陽イオンからなるプラズマが形成されるが、このプラズマ中の陽イオンがターゲット(負の電極)の表面に衝突するとターゲットを構成する原子が叩き出されるが、この飛び出した原子が対向する基板表面に付着して膜が形成される。このような一連の動作により、ターゲットを構成する材料が基板上に成膜されるという原理を用いたものである。
 マグネトロンスパッタ装置の特徴は、ターゲットの裏面側に磁石を備えており、この磁石からターゲット表面に漏れ出てくる磁束(漏洩磁束)が、ターゲット表面近傍において電子をサイクロイド運動させて、効率良くプラズマを発生させることを可能としていることである。
 Co、Cr、Ptなどの金属とSiOなどの酸化物を含有する磁性材ターゲットの場合、SiOなどの酸化物に導電性がないので、ターゲット表面に露出する酸化物相の各粒子の面積が大きいと、スパッタリング時にパーティクル発生が増加するという問題があり、それを解決するために、酸化物相の各粒子の面積を出来るだけ小さくする必要があった。
 従来技術を見ると、特許文献2に、酸化物相にCrを含ませることにより、酸化物相の粒成長を抑制して均質に分散させるとともに、高密度ターゲットを得るという記載がなされている。この特許文献2では、酸化物相の粒成長抑制は、クロムを含有することに加え、通電焼結法を用いることが要点となっている。
 しかし、酸化クロム含有量が1.2~12.0mol%と多く、このような多量の添加は、非磁性材粒子分散型磁性体薄膜及び同分散型磁性体薄膜を用いた磁気記録媒体としての特性を大きく変えることになるので、問題である。また、平均粒径0.5μmの酸化ケイ素原料粉末を用いているにもかかわらず、得られた酸化物相の粒径が2~2.5μm程度であり、粒径が十分微細化されているとは言えないという問題がある。
 また、特許文献3には、酸化物相にCr酸化物を加えることにより、パーティクル発生を抑制するということが提案されている。また、特許文献4、特許文献5などを引用し、シリカ相の微細化だけではパーティクル発生は抑制できず、「合金相とシリカ相との密着性が悪い」と解決できないと記載している。この特許文献3では、引用のシリカ相が10μm以下であるのを「微細」と見做していること、原料粉末SiOの粒径を20μm以下とし、実施例で3μmであることから、酸化物相はその程度以上の粒径の組織であることを示唆している。
 また、同特許文献3の段落[0010]に、温度1200°C、3時間のホットプレスが行われている。このような高温、長時間のホットプレスが行われると、SiOの粗大化が当然発生するもので、このことからもSiOの十分な微細化は達成できていないことが分かる。パーティクル低減のためにCr含有量0.01~0.5質量%という添加を示しているが、酸化物相が粗大であると判断される。
特開平10-88333号公報 特開2009-215617号公報 特開2007-31808号公報 特開2001-236643号公報 特開2004-339586号公報
 一般に、上記のようなマグネトロンスパッタ装置で非磁性材粒子分散型磁性材スパッタリングターゲットをスパッタしようとすると、酸化物粒子を基点にアーキングを起こし、放電が安定しないという大きな問題が生じやすくなる。
 この問題を解決するには、SiOを均一に分散させることが有効である。
 本発明は、アーキングを低減し、マグネトロンスパッタ装置で安定した放電が得られ、かつ、高密度でスパッタ時に発生するパーティクルの少ない非磁性材粒子分散型磁性材スパッタリングターゲットを提供することを課題とする。
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、ターゲットの組織構造を調整することにより、アーキングを低減できるターゲットが得られることを見出した。また、このターゲットは、密度を十分高くすることができ、スパッタ時に発生するパーティクルを減少させることができるとの知見を得た。
 このような知見に基づき、本発明は、次の発明を提供する。
 1)Coを含有する金属マトリックス相と、粒子を形成して分散して存在する6~14mol%のSiOを含有する酸化物の相(以下、「酸化物相」という。)から構成されるスパッタリングターゲットであって、前記金属マトリックス相及び酸化物相を構成する成分以外に、前記酸化物相内又はその表面に点在する0.3mol%以上、1.0mol%未満のCr酸化物を含有し、酸化物相の各粒子の平均面積が2.0μm以下であることを特徴とするCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット。
 より好ましい酸化物相の各粒子の平均面積は1.5μm以下である。
 2)前記金属マトリックス相が、Co金属単独であるか、Cr:6~40mol%であり、残部がCoからなるCo基合金であるか、又はCr:6~40mol%、Pt:8~20mol%であり、残部がCoからなるCo基合金であることを特徴とする上記1)記載のCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット。
 これらは、代表的なCo系非磁性材粒子分散型磁性材であり、本願発明は、これらに好適である。
 3)酸化物相の比抵抗が3.5×1016Ω・cm以下であることを特徴とする上記1)又は2)記載のCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット。
 4)相対密度を98%以上であることを特徴とする上記1)~3)のいずれかに記載のCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット。
 本願発明は、酸化物相の粒子の微細化が可能であると共に、相対密度を向上させることができるという特徴を備えている。
 5)Coを含有する金属マトリックス相、6~14mol%のSiOを含有する酸化物相及び0.3mol%以上、1.0mol%未満のCr酸化物からなることを特徴とする非磁性材粒子分散型磁性体薄膜。
 本発明の非磁性材粒子分散型磁性体薄膜は、上記スパッタリングターゲットを用いて成膜することにより得られるものであるが、スパッタリングにより形成さられる薄膜の成分組成は、ターゲットの成分組成が反映されるので、同様の成分組成を備えている。
 6)前記金属マトリックス相が、Co金属単独であるか、Cr:6~40mol%であり、残部がCoからなるCo基合金であるか、又はCr:6~40mol%、Pt:8~20mol%であり、残部がCoからなるCo基合金であることを特徴とする上記5)記載の非磁性材粒子分散型磁性体薄膜。
 7)酸化物相の比抵抗が3.5×1016Ω・cm以下であることを特徴とする上記5)又は6)記載の非磁性材粒子分散型磁性体薄膜。
 8)上記5)~7)のいずれかに記載の非磁性材粒子分散型磁性体薄膜を用いた磁気記録媒体。
 本発明のCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲットは、上記の通り相対密度を98%以上とすることが望ましい。相対密度を98%以上とすることにより、合金と非磁性材粒子の密着性が高まるので、スパッタ時の非磁性材粒子の脱粒が抑制され、パーティクルの発生量を低減させることができる。
 ここでの相対密度とは、ターゲットの実測密度を計算密度で割り返して求めた値である。計算密度とはターゲットの構成成分が互いに拡散あるいは反応せずに混在していると仮定したときの密度で、次式で計算される。
 式:計算密度=Σ(構成成分の分子量×構成成分のモル比)/Σ(構成成分の分子量×構成成分のモル比/構成成分の文献値密度)
 ここでΣは、ターゲットの構成成分の全てについて、和をとることを意味する。
 Co又はCoを主成分とした合金の素地中に非磁性材料である微細なSiOが均一に分散したターゲットとすることができる。すなわち、金属マトリックス相及び酸化物相を構成する成分以外に、前記酸化物相内又はその表面に点在する0.3mol%以上、1.0mol%未満のCr酸化物を含有させ、酸化物相の各粒子の平均面積を2.0μm以下とするCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲットを提供できる。
 このように、SiOの酸化物粒子の微細化と高密度化により、パーティクルの発生量を大きく低減させることができる。さらに、アーキングの少ないターゲットとなることから安定した放電が得られ、低コストで磁性体薄膜を製造できるというメリットがある。
実施例1のターゲット面を走査型電子顕微鏡(SEM)で観察したときの組織画像である。 比較例1のターゲット面を走査型電子顕微鏡(SEM)で観察したときの組織画像である。 実施例2のターゲット面を走査型電子顕微鏡(SEM)で観察したときの組織画像である。 比較例2のターゲット面を走査型電子顕微鏡(SEM)で観察したときの組織画像である。
 本発明のCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲットは、Coを含有する磁性を有する金属マトリックス相と、粒子を形成して分散して存在する6~14mol%のSiOを含有する酸化物の相(以下、「酸化物相」という。)から構成されるスパッタリングターゲットである。
 前記金属マトリックス相及び酸化物相を構成する成分以外に、前記酸化物相内又はその表面に点在する0.3mol%以上、1.0mol%未満のCr酸化物を含有し、酸化物相の各粒子の平均面積が2.0μm以下であることを特徴とする。
 本願発明は、上記の通り、Co又はCoを基とする合金に適用できる。代表的なCo系非磁性材粒子分散型磁性材としては、Cr:6~40mol%であり、残部がCoからなるCo基合金、又はCr:6~40mol%、Pt:8~20mol%であり、残部がCoからなるCo基合金である。本願発明はこれらに好適である。
 一般に、単に微細なSiO焼結原料を添加して焼結しても、焼結の段階で凝集し、粗大化するのが常であった。特に、1200°C程度の焼結で、微細分散したスパッタリングターゲットが望まれていたが、従来の製造方法(混合方法、焼結条件)では、焼結後のターゲットのSiO粒の1つ当たりの平均面積が3μm以上(円と仮定すると粒径2μm以上)になっていた。この場合、焼結温度を下げあるいは焼結時間を短くすれば微細化していくが、それでも2.5μm程度が限界であって、この場合は、逆に焼結が十分でなく、密度不足(焼結不足)を招く結果、かえってスパッタリング中の異常放電(ア-キング)やパーティクル発生量が増加するという問題があった。
 従来の製造方法は、この延長線上にあり、酸化クロムを添加する場合でも、密度向上を目的とし、高温、長時間の焼結が行われており、この結果、SiO粒の1つ当たりの平均面積が3μm以上になるのである。これはSiO粒の微細化とは言えず、スパッタリング中のある程度の異常放電(ア-キング)やパーティクル発生は黙認されていたと言える。また、パーティクル低減を課題とした特許文献2、特許文献3などの試みはあるが、磁性材の特性に影響を与えることなく、かつ酸化物相を十分に微細化するまでには至っていない。
 本願発明は、これを解決するものである。すなわち、その解決手段として、焼結時に、SiOを含有する酸化物の表面、あるいは酸化物粒子の間隙に、同じ温度においては拡散速度がはるかに遅い高融点酸化物の微粒子を介在させることにより、SiOを含有する酸化物同士の凝集を抑えることを提案するものである。
 ここで「SiOを含有する酸化物相」とは、酸化物がSiOのみの場合及びSiOと他の酸化物とを組合せた酸化物相を意味する。酸化物としてはSiO以外の酸化物、例えば類似する特性のTiOを含有する場合もあるが、酸化物の存在がSiOの影響を強く受ける場合を意味するものである。
 これにより、SiOを含有する酸化物は原料粉体と同程度の粒子径を維持して焼結され、その結果、酸化物相の各粒子の面積を小さくすることができ、焼結条件にもよるが、2.0μm以下に抑えることが可能となった。
 なお、上記にも述べたように、単にSiOを含有する酸化物の原料粉体の粒径を小さいものを使用しても、粒子サイズが小さくなるほど表面エネルギーが高く凝集し易く、焼結後の粒径を原料粉体の粒径とすることは出来ない。
 以上を実現する手段として、Cr酸化物の高融点酸化物を0.3mol%以上、1.0mol%未満添加する。また、焼結条件を適度に抑制し、SiOを含有する酸化物粒子の成長を抑制するものである。上記Cr酸化物の添加量が0.3mol%未満であると、SiOの粒子が凝集し、SiOの平均粒子面積2.0μm以下を達成することができない。その結果パーティクルの発生が低減できない。
 他方、Cr酸化物の添加量が1.0mol%以上であると、磁性特性が変化し、所定の特性を有する磁性膜を作成することが困難となる。また、1.0mol%以上添加して密度を上げるには、より高温、長時間の焼結条件となり、SiOの焼結時の拡散・凝集・粒成長が加速されるので抑制しきれなくなる。
 SiOは絶縁体であるが、Cr酸化物を添加することにより、焼結体としての導電性を比抵抗3.5×1016Ω・cm以下に低くすることができる。
 Cr酸化物を敢えて添加しない場合でも、マトリックス相にCrを含んでいる場合、焼結時に酸化し、Cr酸化物(Cr)を0.1~0.2mol%程度形成される場合がある。
 この意味では、従来製造されている酸化物分散型Co合金スパッタリングターゲットは自然にCr酸化物0.1~0.2mol%程度含むものであったと思われるが、その場合は、SiOの粒は粗大であって、かつ酸化物相の比抵抗や誘電率についての効果は得られない。Cr酸化物の含有量が0.3mol%以上で顕著に現れる効果である。
 本発明のCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲットの製造に際し、磁性金属として、例えば平均粒径1μmのCo粉末、平均粒径2μmのCr粉末、平均粒径2μmのPt粉末、平均粒径1μmのSiO粉末を用意し、これとCr粉末をミキサーで混合する。
 上記の範囲でCr粉末を加える場合は、Cr粉末の平均粒径を0.6μm以下とすることが望ましい。また、同様に上記の範囲で、SiOを加える場合には、原料粉末のSiOの平均粒径を1μm以下とすることが望ましい。
 このようにして得られた粉末を、真空ホットプレス装置を用いて成型・焼結し、所望の形状へ切削加工することで、本発明のCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲットを作製する。
 成型・焼結は、ホットプレスに限らず、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度はターゲットが十分緻密化する温度域のうち最も低い温度に設定するのが好ましい。ターゲットの組成にもよるが、多くの場合、900~1200°Cの温度範囲にある。
 SiO粒子の1つあたりの平均面積は、顕微鏡観察画像を画像処理することで求めることができる。また、密度はアルキメデス法で測定するのが最もよいが、寸法測定と重量測定から計算してもよい。こうして測定された絶対密度を、各分子が組成比に混在しているとして計算した計算密度を用いて相対密度を計算することができる。
Cr酸化物の添加は、例えばCo-Cr-Pt-SiO等の、各要素粉末、あるいは合金粉末を構成する混合粉末にCrを均一に混合することにより得ることができる。また、粉砕・混合工程などで、Cr粉、Co-Cr粉やCo-Cr-Pt粉を適度に自然酸化させることで、結果として、金属として存在していたCrの一部をCr酸化物とすることによってもCr酸化物の添加は可能である。
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1)
 実施例1では、原料粉末として、平均粒径1μmのCo粉末、平均粒径2μmのCr粉、平均粒径1μmのSiO粉末、平均粒径を0.6μmのCr粉末を用意した。
 これらの粉末をターゲットの組成が12.00Cr-7.58SiO-0.75Cr-残部Co(mol%)となるように、Co粉末79.73wt%、Cr粉末10.60wt%、SiO粉末7.73wt%、Cr粉末1.94wt%、の重量比率でそれぞれ秤量した。
 次に、Co粉末、Cr粉末、SiO粉末、Cr粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1150°C、保持時間90分、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが7mmの円盤状のターゲットを得た。
 この実施例1では相対密度が99%を超える高密度なターゲットが得られた。実施例1のターゲットの研磨面を、走査型電子顕微鏡(SEM)で観察したときの組織画像を図1に示す。この図1の組織画像に示すように、上記実施例1において極めて特徴的なのは、マトリックス合金相の中に、SiO粒子が微細に分散していることである。図1において、細かく分散しているのがSiO粒子である。また、酸化物相の各粒子の平均面積は1.6μmであった。この酸化物相の各粒子の平均面積とターゲットを構成する成分の分析結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 比較例1では、実施例1と同様に、原料粉末として、平均粒径1μmのCo粉末、平均粒径2μmのCr粉、平均粒径1μmのSiO粉末を用意した。
 これらの粉末をターゲットの組成が12.00Cr-7.58SiO-残部Co(mol%)となるように、Co粉末81.45wt%、Cr粉末10.72wt%、SiO粉末7.83wt%の重量比率でそれぞれ秤量した。実施例1との差異点は、Cr粉末を添加していない点である。
 これらの粉末を実施例1と同様に混合した後、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1150°C、保持時間90分、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが7mmの円盤状のターゲットを得た。
  比較例1では相対密度が99%を超え、実施例1と同様に高密度なターゲットとなった。この比較例1のターゲットの研磨面を、走査型電子顕微鏡(SEM)で観察したときの組織画像を図2に示す。この図2の組織画像に示すように、比較例1では、上記実施例1に較べてマトリックス合金相の中のSiO粒子が粗大化しているのが分かる。また、酸化物相の各粒子の平均面積は2.4μmであった。この酸化物相の各粒子の平均面積とターゲットを構成する成分の分析結果を、表1に示す。
(実施例2)
 実施例2では、原料粉末として、平均粒径1μmのCo粉末、平均粒径2μmのCr粉末、平均粒径2μmのPt粉末、平均粒径2μmのRu粉末、平均粒径2μmのTa粉末、平均粒径1μmのSiO粉末、平均粒径を0.6μmのCr粉末を用意した。
 次に、これらの粉末をターゲットの組成が16Cr-18Pt-4Ru-1TaO5-6SiO-0.75Cr残部Co(mol%)となるように、それぞれ秤量した。
 次に、Co粉末、Cr粉末、Pt粉末、Ru粉末、SiO粉末、Ta粉末、Cr粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1150°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が180.0mm、厚さが7.0mmの円盤状のターゲットへ加工した。
 この実施例2では相対密度が99%を超える高密度なターゲットが得られた。実施例2のターゲットの研磨面を、走査型電子顕微鏡(SEM)で観察したときの組織画像を図3に示す。この図3の組織画像に示すように、上記実施例1において極めて特徴的なのは、マトリックス合金相の中に、Ta5粒子及びSiO粒子が微細に分散していることである。図3において、細かく分散しているのがTa5粒子及びSiO粒子である。また、酸化物相の各粒子の平均面積は2.0μmであった。この酸化物相の各粒子の平均面積とターゲットを構成する成分の分析結果を、表1に示す。
(比較例2)
 比較例2では、実施例2と同様に、原料粉末として、平均粒径1μmのCo粉末、平均粒径2μmのCr粉末、平均粒径2μmのPt粉末、平均粒径2μmのRu粉末、平均粒径2μmのTa粉末、平均粒径1μmのSiO粉末を用意した。ターゲットの組成が16Cr-18Pt-4Ru-1Ta-6SiO-残部Co(mol%)となるようにそれぞれ秤量した。実施例2との差異点は、Cr粉末を添加していない点である。
 これらの粉末を実施例2と同様に混合した後、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1150°C、保持時間90分、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが7mmの円盤状のターゲットを得た。
  比較例2では相対密度が99%を超え、実施例2と同様に高密度なターゲットとなった。この比較例3のターゲットの研磨面を、走査型電子顕微鏡(SEM)で観察したときの組織画像を図4に示す。この図4の組織画像に示すように、比較例2では、上記実施例2に較べてマトリックス合金相の中のTa粒とSiO粒子が粗大化しているのが分かる。また、酸化物相の各粒子の平均面積は2.7μmであった。この酸化物相の各粒子の平均面積とターゲットを構成する成分の分析結果を、表1に示す。
 なお、上記の実施例、比較例においては、代表的なCo基合金の例を示したが、本願発明は、そもそもCoを含有する金属マトリックス相にSiOの酸化物の相が存在する場合において、Cr酸化物が含有される場合の影響を調べるためのものであるから、金属マトリックス相がCo又はCo基合金であれば、同様の傾向を持つものであり、金属マトリックス相が、Co金属単独であるか、又は他のCo基合金に適用できることは容易に理解されるであろう。
 また、上記実施例及び比較例においては、金属マトリックス相にSiOの酸化物の相が存在する場合について説明したが、SiOにTiOが含まれる場合においても、TiOがSiOとほぼ類似の特性及び機能を有するものであるから、SiOと同等の結果が得られるものであることは当然理解されるべきものである。本願発明はこれらを包含するものである。
 本発明は、Coを含有する金属マトリックス相と、粒子を形成して分散して存在する6~14mol%のSiOを含有する酸化物の相(以下、「酸化物相」という。)から構成されるスパッタリングターゲットであって、前記金属マトリックス相及び酸化物相を構成する成分以外に、前記酸化物相内又はその表面に点在する0.3mol%以上、1.0mol%未満のCr酸化物を含有し、酸化物相の各粒子の平均面積が2.0μm以下であることを特徴とするCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲットであり、SiOを含有する酸化物粒子の微細化と高密度化により、パーティクルの発生量を大きく低減させることができる。
 したがって、マグネトロンスパッタリング装置による、Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲットの安定した、かつ生産性の高いスパッタリングを実現することができる。さらに、アーキングを低減できるターゲットとなり、マグネトロンスパッタ装置で使用したとき、不活性ガスの電離促進が効率的に進み、安定した放電が得られ、低コストで磁性体薄膜を製造できる優れた効果を有するので、磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクのグラニュラー磁気記録膜の成膜に使用されるCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲットとして有用である。

Claims (8)

  1.  Coを含有する金属マトリックス相と、SiOを含有し、粒子を形成して分散して存在する6~14mol%の酸化物の相(以下、「酸化物相」という。)から構成されるスパッタリングターゲットであって、前記金属マトリックス相及び酸化物相を構成する成分以外に、前記酸化物相内又はその表面に点在する0.3mol%以上、1.0mol%未満のCr酸化物を含有し、酸化物相の各粒子の平均面積が2.0μm以下であることを特徴とするCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット。
  2.  前記金属マトリックス相が、Co金属単独であるか、Cr:6~40mol%であり、残部がCoからなるCo基合金であるか、又はCr:6~40mol%、Pt:8~20mol%であり、残部がCoからなるCo基合金であることを特徴とする請求項1記載のCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット。
  3.  比抵抗が3.5×1016Ω・cm以下であることを特徴とする請求項1又は2記載のCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット。
  4.  相対密度を98%以上であることを特徴とする請求項1~3のいずれか一項に記載のCo若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット。
  5.  Coを含有する金属マトリックス相、6~14mol%のSiOを含有する酸化物相及び0.3mol%以上、1.0mol%未満のCr酸化物からなることを特徴とする非磁性材粒子分散型磁性体薄膜。
  6.  前記金属マトリックス相が、Co金属単独であるか、Cr:6~40mol%であり、残部がCoからなるCo基合金であるか、又はCr:6~40mol%、Pt:8~20mol%であり、残部がCoからなるCo基合金であることを特徴とする請求項5記載の非磁性材粒子分散型磁性体薄膜。
  7.  比抵抗が3.5×1016Ω・cm以下であることを特徴とする請求項5又は6記載の非磁性材粒子分散型磁性体薄膜。
  8.  請求項5~7のいずれか一項に記載の非磁性材粒子分散型磁性体薄膜を用いた磁気記録媒体。
PCT/JP2010/067947 2009-12-11 2010-10-13 Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット、Co若しくはCo合金相と酸化物相とからなる磁性体薄膜及び同磁性体薄膜を用いた磁気記録媒体 WO2011070850A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/513,898 US20120241317A1 (en) 2009-12-11 2010-10-13 Sputtering Target Comprising Oxide Phase Dispersed in Co or Co Alloy Phase, Magnetic Thin Film Made of Co or Co Alloy Phase and Oxide Phase, and Magnetic Recording Medium Using the Said Thin Film
CN201080056252.6A CN102656290B (zh) 2009-12-11 2010-10-13 在Co或Co合金相中分散有氧化物相的溅射靶、包含Co或Co合金相和氧化物相的磁性体薄膜及使用该磁性体薄膜的磁记录介质
JP2011513558A JP4837801B2 (ja) 2009-12-11 2010-10-13 Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009281470 2009-12-11
JP2009-281470 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011070850A1 true WO2011070850A1 (ja) 2011-06-16

Family

ID=44145403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067947 WO2011070850A1 (ja) 2009-12-11 2010-10-13 Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット、Co若しくはCo合金相と酸化物相とからなる磁性体薄膜及び同磁性体薄膜を用いた磁気記録媒体

Country Status (6)

Country Link
US (1) US20120241317A1 (ja)
JP (1) JP4837801B2 (ja)
CN (1) CN102656290B (ja)
MY (1) MY149640A (ja)
TW (1) TWI496905B (ja)
WO (1) WO2011070850A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125469A1 (ja) * 2012-02-22 2013-08-29 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
WO2013136962A1 (ja) * 2012-03-15 2013-09-19 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
US20140360870A1 (en) * 2012-02-23 2014-12-11 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target containing chromium oxide
CN104395497A (zh) * 2012-02-23 2015-03-04 吉坤日矿日石金属株式会社 含有铬氧化物的强磁性材料溅射靶
JP2016056392A (ja) * 2014-09-05 2016-04-21 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット
JPWO2014125897A1 (ja) * 2013-02-15 2017-02-02 Jx金属株式会社 Co又はFeを含有するスパッタリングターゲット
TWI601839B (zh) * 2012-09-18 2017-10-11 Jx Nippon Mining & Metals Corp Sputtering target
WO2020044573A1 (ja) * 2018-08-31 2020-03-05 Jx金属株式会社 安定的に放電可能なスパッタリングターゲット
WO2021014760A1 (ja) * 2019-07-23 2021-01-28 Jx金属株式会社 非磁性層形成用スパッタリングターゲット部材

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301531B2 (ja) * 2008-04-03 2013-09-25 Jx日鉱日石金属株式会社 パーティクルの発生の少ないスパッタリングターゲット
US9034155B2 (en) 2009-08-06 2015-05-19 Jx Nippon Mining & Metals Corporation Inorganic-particle-dispersed sputtering target
MY149437A (en) 2010-01-21 2013-08-30 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
CN102482765B (zh) 2010-07-20 2014-03-26 吉坤日矿日石金属株式会社 粉粒产生少的强磁性材料溅射靶
SG185768A1 (en) 2010-07-20 2013-01-30 Jx Nippon Mining & Metals Corp Sputtering target of ferromagnetic material with low generation of particles
CN104975264B (zh) 2010-07-29 2020-07-28 吉坤日矿日石金属株式会社 磁记录膜用溅射靶及其制造方法
CN104081458B (zh) 2012-01-18 2017-05-03 吉坤日矿日石金属株式会社 Co‑Cr‑Pt 系溅射靶及其制造方法
CN105026589B (zh) * 2013-04-30 2017-07-18 吉坤日矿日石金属株式会社 烧结体、包含该烧结体的磁记录膜形成用溅射靶
MY189794A (en) 2016-03-31 2022-03-08 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
TWI671418B (zh) * 2017-09-21 2019-09-11 日商Jx金屬股份有限公司 濺鍍靶、積層膜之製造方法、積層膜及磁記錄媒體

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031808A (ja) * 2005-07-29 2007-02-08 Mitsubishi Materials Corp パーティクル発生の少ない磁気記録膜形成用スパッタリングターゲット
JP2009215617A (ja) * 2008-03-11 2009-09-24 Mitsui Mining & Smelting Co Ltd コバルト、クロム、および白金からなるマトリックス相と酸化物相とを含有するスパッタリングターゲット材およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342908A (ja) * 2001-05-14 2002-11-29 Sony Corp 磁気記録媒体とその製造方法
US6759005B2 (en) * 2002-07-23 2004-07-06 Heraeus, Inc. Fabrication of B/C/N/O/Si doped sputtering targets
JP2006127588A (ja) * 2004-10-27 2006-05-18 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体
JP2006313584A (ja) * 2005-05-06 2006-11-16 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体の製造方法
CN101405429A (zh) * 2006-03-31 2009-04-08 三菱麻铁里亚尔株式会社 颗粒产生少的磁记录膜形成用Co基烧结合金溅射靶的制造方法、及磁记录膜形成用Co基烧结合金溅射靶
JP2008078496A (ja) * 2006-09-22 2008-04-03 Mitsui Mining & Smelting Co Ltd 酸化物含有Co系合金磁性膜、酸化物含有Co系合金ターゲットおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031808A (ja) * 2005-07-29 2007-02-08 Mitsubishi Materials Corp パーティクル発生の少ない磁気記録膜形成用スパッタリングターゲット
JP2009215617A (ja) * 2008-03-11 2009-09-24 Mitsui Mining & Smelting Co Ltd コバルト、クロム、および白金からなるマトリックス相と酸化物相とを含有するスパッタリングターゲット材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVID. E. LAUGHLIN ET AL.: "Topology and elemental distribution in Co alloy: oxide perpendicular media", JOURNAL OF APPLIED PHYSICS, vol. 105, 1 April 2009 (2009-04-01), pages 07B739 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125469A1 (ja) * 2012-02-22 2013-08-29 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
CN104145042A (zh) * 2012-02-22 2014-11-12 吉坤日矿日石金属株式会社 磁性材料溅射靶及其制造方法
CN104145042B (zh) * 2012-02-22 2016-08-24 吉坤日矿日石金属株式会社 磁性材料溅射靶及其制造方法
JPWO2013125469A1 (ja) * 2012-02-22 2015-07-30 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
US9773653B2 (en) * 2012-02-23 2017-09-26 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target containing chromium oxide
US20140360870A1 (en) * 2012-02-23 2014-12-11 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target containing chromium oxide
CN104395497A (zh) * 2012-02-23 2015-03-04 吉坤日矿日石金属株式会社 含有铬氧化物的强磁性材料溅射靶
JP2015172244A (ja) * 2012-03-15 2015-10-01 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
JPWO2013136962A1 (ja) * 2012-03-15 2015-08-03 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
CN104169457A (zh) * 2012-03-15 2014-11-26 吉坤日矿日石金属株式会社 磁性材料溅射靶及其制造方法
CN106048545A (zh) * 2012-03-15 2016-10-26 吉坤日矿日石金属株式会社 磁性材料溅射靶及其制造方法
WO2013136962A1 (ja) * 2012-03-15 2013-09-19 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
TWI601839B (zh) * 2012-09-18 2017-10-11 Jx Nippon Mining & Metals Corp Sputtering target
JPWO2014125897A1 (ja) * 2013-02-15 2017-02-02 Jx金属株式会社 Co又はFeを含有するスパッタリングターゲット
JP2017137570A (ja) * 2013-02-15 2017-08-10 Jx金属株式会社 Co又はFeを含有するスパッタリングターゲット
JP2016056392A (ja) * 2014-09-05 2016-04-21 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット
WO2020044573A1 (ja) * 2018-08-31 2020-03-05 Jx金属株式会社 安定的に放電可能なスパッタリングターゲット
WO2021014760A1 (ja) * 2019-07-23 2021-01-28 Jx金属株式会社 非磁性層形成用スパッタリングターゲット部材

Also Published As

Publication number Publication date
US20120241317A1 (en) 2012-09-27
JPWO2011070850A1 (ja) 2013-04-22
JP4837801B2 (ja) 2011-12-14
CN102656290B (zh) 2014-11-26
TWI496905B (zh) 2015-08-21
TW201125993A (en) 2011-08-01
MY149640A (en) 2013-09-13
CN102656290A (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4837801B2 (ja) Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット
US8679268B2 (en) Sputtering target of ferromagnetic material with low generation of particles
JP4975647B2 (ja) 非磁性材粒子分散型強磁性材スパッタリングターゲット
US9228251B2 (en) Ferromagnetic material sputtering target
JP4885333B1 (ja) 強磁性材スパッタリングターゲット
TWI510656B (zh) Particle dispersive sputtering target for inorganic particles
JP5763178B2 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP4970633B1 (ja) 強磁性材スパッタリングターゲット及びその製造方法
US20130220804A1 (en) Ferromagnetic Material Sputtering Target
WO2012011294A1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
WO2012081669A1 (ja) 強磁性材スパッタリングターゲット
WO2012086575A1 (ja) 強磁性材スパッタリングターゲット
JP4673453B1 (ja) 強磁性材スパッタリングターゲット
WO2012081668A1 (ja) 強磁性材スパッタリングターゲット
JP5888664B2 (ja) 強磁性材スパッタリングターゲット
WO2019187244A1 (ja) スパッタリングターゲット
JP4758522B1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP4819199B1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP2022166726A (ja) スパッタリングターゲット部材、スパッタリングターゲット組立品、及び成膜方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056252.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011513558

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13513898

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835772

Country of ref document: EP

Kind code of ref document: A1