WO2011067955A1 - 鋼板の酸洗方法及び酸洗装置 - Google Patents
鋼板の酸洗方法及び酸洗装置 Download PDFInfo
- Publication number
- WO2011067955A1 WO2011067955A1 PCT/JP2010/059167 JP2010059167W WO2011067955A1 WO 2011067955 A1 WO2011067955 A1 WO 2011067955A1 JP 2010059167 W JP2010059167 W JP 2010059167W WO 2011067955 A1 WO2011067955 A1 WO 2011067955A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid cleaning
- microbubbles
- pickling
- ultrasonic waves
- frequency
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/08—Cleaning involving contact with liquid the liquid having chemical or dissolving effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
- B08B3/12—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G3/00—Apparatus for cleaning or pickling metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G3/00—Apparatus for cleaning or pickling metallic material
- C23G3/02—Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
- C23G3/021—Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously by dipping
Definitions
- the present invention relates to a steel plate pickling method and a pickling device, and more particularly, to a method and a device for efficiently removing oxide scale generated in a manufacturing process of a steel plate containing Si.
- the steel plate surface is cleaned for various purposes. For example, cleaning of the steel plate before plating or painting, oxide scale removal (descaling) by pickling hot-rolled steel plate, and the like can be mentioned.
- descaling since an oxide scale is usually formed on the surface of the steel sheet in the process of being heat-treated and rolled, the oxide scale must be removed. That is, since the oxide scale is often caught in a rolling roll during the subsequent cold rolling and causes damage to the steel sheet surface, scale removal is an indispensable process.
- conventional oxide scale removal the steel plate is often immersed in a plurality of acidic solutions and continuously passed through the plate to remove it by pickling.
- Patent Documents 4 and 5 the effect of applying ultrasonic waves is further promoted by dispersing solid particles in the cleaning liquid.
- Patent Document 6 describes that the addition of microbubbles can further improve the cleaning effect by adding ultrasonic waves. Compared with the case where only the ultrasonic waves are supplied to the cleaning liquid and the pickling liquid, when the microbubbles are used in combination, the ultrasonic wave propagates three-dimensionally, so that the object to be cleaned can be cleaned uniformly.
- the object to be cleaned is a glass substrate or a silicon wafer for semiconductors.
- a cleaning liquid containing microbubbles is supplied to an object to be cleaned and an ultrasonic wave combining a plurality of frequencies is irradiated.
- the reason for combining multiple frequencies is to crush the microbubbles with low frequency ultrasonic waves of 5 to 800 kHz to generate microbubble radicals and to effectively mix the microbubble radicals with high frequency ultrasonic waves of 1 MHz or higher. , This is said to be effective cleaning.
- a pickling solution in which sulfuric acid, hydrochloric acid, nitric acid, hydrofluoric acid, etc. are used alone or in combination of several kinds is used.
- an increase in the acid concentration and an increase in the pickling temperature have been attempted, but there are negative aspects such as an increase in chemicals and energy costs, and rough surface of the steel material after pickling. Therefore, there is a limit to improving the pickling speed, and ultrasonic waves are used in combination.
- JP-A-4-341588 JP 2003-313688 A Japanese Patent Laid-Open No. 5-125573 JP-A-61-235584 JP-A-10-251911 JP 2000-256886 A JP 2007-253120 A
- the additive element may concentrate at the interface between the oxide scale and the steel plate. When the concentrated layer of the additive element is formed, non-uniformity of oxide scale dissolution occurs during pickling.
- Si silicon
- the solubility of Si oxide in the pickling solution is small, and it has been empirically known that the dissolution rate becomes slow when treated by the conventional pickling method. It has been. Furthermore, it has also been observed that the Si oxide scale once dissolved changes into a gel and reattaches to the steel sheet surface.
- the oxide scale oxide scale Si oxide scale is gelled in the solution depending on the concentration of Si ions in the pickling solution, and may adhere to the surface of the steel sheet. Also from this viewpoint, complete dissolution removal of the Si oxide scale is required.
- the present invention solves such problems of the prior art, and efficiently and uniformly removes oxide scale (including Si oxide scale) generated in the production process of a steel sheet containing Si, and a pickling method for a steel sheet,
- An object is to provide a pickling apparatus.
- the present inventors applied ultrasonic waves of at least two types of frequencies to an acidic cleaning liquid containing microbubbles, so that high-frequency ultrasonic waves became low-frequency ultrasonic waves. Superposed on sound waves, high-frequency ultrasonic waves are easily propagated farther, and further, scattered by microbubbles, so that ultrasonic waves are uniformly and efficiently propagated to the steel sheet surface, leading to the present invention. It was. By superimposing two-frequency ultrasonic waves, the abdomen of ultrasonic waves is not fixed, and the uniformity of ultrasonic energy propagation is improved. It was also found that the effect of dissolving and removing oxide scales and Si oxide scales differs depending on the frequency of ultrasonic waves.
- the oxide scale and Si oxide scale of the steel sheet can be efficiently and effectively removed.
- the gist of the present invention is as follows.
- the acid cleaning liquid contains microbubbles, ultrasonic waves having at least two types of frequencies are applied to the acid cleaning liquid, and the frequency of the ultrasonic waves is 28.0 kHz or more.
- An acid cleaning apparatus for a steel plate comprising at least an acid cleaning tank, an ultrasonic application device for applying ultrasonic waves to the acid cleaning liquid in the acid cleaning tank, and an acid cleaning liquid supply device for supplying the acid cleaning liquid to the acid cleaning tank. And means for supplying microbubbles to the acid cleaning liquid supply device, wherein the ultrasonic wave application device can apply ultrasonic waves having at least two kinds of frequencies, and the frequency of the ultrasonic waves is 28.0 kHz or more.
- a steel plate acid cleaning apparatus characterized by being 1.0 MHz or less.
- the continuous acid cleaning apparatus for steel sheets according to (8), wherein the means for supplying the particles can mix two or more kinds of particles having different average particle diameters.
- a reflecting plate having a concave curved surface with respect to a steel plate passing through the pickling tank and reflecting the ultrasonic waves is installed in the pickling tank.
- the continuous acid cleaning apparatus for steel sheets according to any one of (10) to (10).
- oxide scale removal of a steel sheet containing silicon (Si) can be efficiently and effectively performed, and a clean surface without a descaling mark can be formed. Furthermore, the pickling speed is improved, so that the steel plate with good productivity can be pickled.
- FIG. 1 is an explanatory view showing an example in which a reflection plate having an ultrasonic vibrator and a curved surface is installed in a cleaning line for cleaning a running steel plate.
- FIG. 2 is an explanatory diagram showing an example in which an ultrasonic transducer and a flat reflector are installed in a cleaning line for cleaning a running steel plate.
- FIG. 3 is an explanatory view showing an example of a cleaning line for cleaning a steel plate during traveling.
- FIG. 4 is an explanatory diagram illustrating an example of a cleaning line that performs cleaning of a steel plate during traveling, which includes a cleaning tank and a rinse tank.
- FIG. 5 is an explanatory diagram showing an installation example of the ultrasonic vibrator and the reflector when the object to be cleaned is immersed in the cleaning liquid for cleaning.
- FIG. 6 is an explanatory diagram showing an installation example of the ultrasonic vibrator and the reflector when viewed from above the cleaning tank when the object to be cleaned is immersed in the cleaning liquid for cleaning.
- the inventors of the present invention are ultrasonic waves having a frequency of 28.0 kHz or more and less than 1.0 MHz, and adding two or more frequencies to the cleaning liquid within the frequency range, and adding microbubbles to the cleaning liquid.
- the cleaning liquid is extremely effective for descaling a steel sheet containing Si. That is, it is possible to easily and uniformly remove the oxide scale of the steel sheet containing Si, which has been difficult to remove.
- a physical scale concentrated layer of Si-based oxide
- the layer made of the Si-based oxide makes it difficult to remove the scale, but it is clear that it can be easily removed by using the cleaning liquid of the present invention. Became.
- the concentrated layer of the Si-based oxide is often in the form of a gel, and the gel-like Si-based oxide is separated from the surface of the steel plate, but is observed to float near the surface. Is done. Furthermore, a phenomenon in which some of them reattach to the surface of the steel sheet is also observed. However, it was confirmed that when the above-described cleaning method of the present invention was used, the phenomenon that the gel-like form as described above drifted in the vicinity of the surface was not observed, and therefore, the phenomenon of redeposition was almost eliminated. These effects are considered to be due to a synergistic action of microbubbles and two types of ultrasonic waves in a specific frequency range added to the cleaning liquid.
- the action of the microbubbles added to the cleaning liquid first scatters the ultrasonic waves from the ultrasonic generator so that the ultrasonic waves uniformly strike the surface of the steel plate that is the object to be cleaned. At this time, the scattering of ultrasonic waves by the microbubbles is less attenuated. That is, the microbubbles increase the efficiency of ultrasonic wave propagation to the cleaning object.
- Microbubbles also have the following effects.
- the oxide scale peeled from the surface of the steel sheet by the acid and ultrasonic wave of the cleaning liquid, especially Si-based oxide, etc. is taken into the gas-liquid interface of microbubbles and bubbles, and the cleaning action of the cleaning liquid and ultrasonic wave is maintained. That's it. Moreover, it also has a function of suppressing redeposition of the gel-like Si-based oxide.
- microbubbles having an average bubble diameter of 0.01 to 100 ⁇ m may be added to the cleaning liquid.
- the average bubble diameter refers to the diameter at which the number of samples is maximum in the number distribution of the microbubble diameters.
- the bubble generator becomes large, and it may be difficult to supply bubbles with the bubble diameter adjusted.
- the average bubble diameter is more than 100 ⁇ m, the bubble rising speed is increased, and the life of the bubbles in the cleaning liquid is shortened, so that realistic cleaning may not be possible.
- the average bubble diameter of the microbubbles is 0.01 to 100 ⁇ m in order to more effectively obtain the action of the microbubbles as described above. Further, it is preferably 0.1 to 80 ⁇ m.
- the concentration (density) of the microbubbles in the cleaning solution is preferably from 500 / ml to 500,000 / ml. If it is less than 5 hundred / ml, the above-mentioned action of microbubbles may not be sufficiently obtained. If it exceeds 500,000 / ml, the bubble generating device may become large, or the number of bubble generating devices may be increased, and supply of microbubbles may not be practical.
- the concentration of microbubbles is 5,000 / ml to 500,000 / ml in order to more effectively obtain the action of the microbubbles as described above. Is preferred. More preferably, the number is 10,000 / ml to 500,000 / ml.
- the average bubble diameter and concentration (density) of the microbubbles can be measured with a liquid particle counter, a bubble diameter distribution measuring device, or the like.
- a liquid particle counter for example, SALD-7100 (Shimadzu Corporation), Multisizer 4 (Beckman Coulter), Visizer system (Nippon Laser), acoustic bubble size distribution measuring device (ABS) (Nippon Fluid Technology Co., Ltd.), LiQuilaz-E20 / E20P (Sonak), KS- There are devices such as 42D (Lion).
- the bubble diameter and concentration of microbubbles are measured by the particle counter, the bubble diameter distribution measuring device, or a measuring device equivalent to the device.
- the average bubble diameter here is the number average bubble diameter.
- the basic mechanism of microbubble generation includes bubble shearing, bubble passage through micropores, gas pressure dissolution, ultrasonic waves, electrolysis, chemical reaction, and the like, and any method may be used in the present invention.
- a microbubble generation method in which the bubble diameter and concentration of the microbubbles can be easily controlled is preferable.
- the bubble diameter of the microbubbles can be controlled by passing the cleaning liquid through a filter having micropores of a predetermined size and used for cleaning.
- the frequency of the ultrasonic wave is preferably a frequency of 28 kHz to less than 1 MHz. Within this frequency range, when two or more types of ultrasonic waves having different frequencies (wavelengths) are added to the cleaning liquid together with the microbubbles, it is effective for descaling the steel sheet containing Si. The following actions are considered.
- the wavelength of the ultrasonic wave there is a specific relationship between the wavelength of the ultrasonic wave and the thickness of the scale that can be easily removed.
- the following relational expression holds empirically between the wavelength L (mm) of the ultrasonic wave and the thickness S ( ⁇ m) of the scale that can be easily removed.
- the wavelength L (mm) of the ultrasonic wave is obtained from the frequency F (Hz) of the ultrasonic wave when the sound speed is V (m / s).
- L 1000 ⁇ (V / F) Is required.
- V in water is 1444 m / s
- L 38 mm
- S 11 ⁇ m
- the ultrasonic wave generated from the ultrasonic wave transmitter is not attenuated as much as possible until it reaches the oxide scale that is the object to be removed.
- high-frequency ultrasonic waves are easily attenuated, and low-frequency ultrasonic waves are difficult to attenuate and reach far from the transmitter without significant attenuation.
- the transmission intensity is the same, the intensity is not attenuated by the low frequency ultrasonic wave and the oxide scale removability is maintained, but the intensity of the high frequency ultrasonic wave is attenuated. Problems arise in removability. In particular, when the distance from the transmitter to the steel plate is large, or when ultrasonic waves are scattered by microbubbles (substantial ultrasonic transmission distance increases), attenuation of high-frequency ultrasonic waves is significant. appear.
- the above-mentioned Si-based oxide can effectively remove oxide scale by irradiating cleaning liquid containing microbubbles with ultrasonic waves having a plurality of frequencies as described above for descaling steel sheets containing Si. It is presumed that this is because ultrasonic waves are effectively acting on the layer made of As described above, the high-frequency ultrasonic wave is superimposed on the low-frequency ultrasonic wave and irradiated to the oxide scale made of the Si-based oxide under the oxide scale made of the Fe-based oxide. It is thought that the ultrasonic wave acts effectively to facilitate descaling.
- the frequency of the ultrasonic wave needs to be in the range of 28.0 kHz to less than 1.0 MHz.
- bubbles of 500 ⁇ m or more are generated from the surface of the steel sheet due to the reaction between the steel sheet and the pickling solution, and the propagation of ultrasonic waves is hindered by the large bubbles, thereby reducing the effect of improving the solubility of ultrasonic waves. .
- the frequency is set in the range of 35 to 430 KHz, and more preferably 35 to 200 KHz.
- the pickling method according to the present invention can provide an excellent effect of improving descaling efficiency with a steel sheet having a Si content of 0.1 mass% to 7.00 mass%.
- the descaling efficiency improvement effect means that descaling can be completed in a shorter time (faster plate speed) under the same liquid conditions, and at the same time, the descaling can be performed at a lower temperature or acid. The effect is that descaling can be completed even under low concentration conditions.
- the steel plate with 0.75 mass% to 7.00 mass% can obtain a further excellent effect of improving the descaling efficiency, and the steel sheet with 1.0 to 3.5 mass% can improve the descaling efficiency more remarkably. An effect is obtained.
- the content of Si contained in the steel sheet is 0.75% by mass or more, a layer made of a Si-based oxide is easily generated, so that a remarkable improvement effect of descaling efficiency is obtained. As described above, the effect of improving the descaling efficiency can be surely obtained.
- the Si content in the steel sheet exceeds 7.00 mass%, the oxide scale structure does not change, so the effect of improving the descaling efficiency obtained does not change. It may be constant. In particular, when it is 3.5% by mass or more, the descaling property is gradually deteriorated, and it is difficult to descal even if ultrasonic waves and microbubbles are applied. Therefore, the effect is more remarkable at 1.0 to 3.5% by mass.
- Particles in the cleaning liquid for example, ceramic particles such as magnesia (MgO), alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), silica (SiO 2 ), iron oxide (Fe 2 O 3 , Fe 3 O 4) )
- MgO magnesia
- Al 2 O 3 aluminum oxide
- Si 3 N 4 silicon nitride
- SiO 2 silica
- Fe 2 O 3 , Fe 3 O 4 iron oxide
- the oxide scale can be removed more effectively by the impact force caused by the particles colliding with the surface of the cleaning object in addition to the improvement of the cleaning property by cavitation by ultrasonic waves.
- the particle size to about half the size of the microbubbles, the impact force due to particle collision is ensured without hindering the propagation of ultrasonic waves, and the descaling efficiency is further improved.
- the effect of improving descaling by the addition of the particles can be obtained even when irradiated with ultrasonic waves of one kind of frequency, but when two or more kinds of ultrasonic waves having different frequencies (wavelengths) are irradiated as described above. , Become even more prominent.
- the particle size (average particle diameter) to be used is 0.05 to 50 ⁇ m, more preferably 0.05 to 30 ⁇ m.
- the concentration of the particles in the liquid is preferably from several hundreds / ml to tens of thousands / ml. Further, the concentration in the liquid is preferably 5 hundred / ml to 5,000 / ml.
- the particles become large, microbubbles adhere to the particle surface, and the concentration of the effective microbubbles is substantially reduced, so that sufficient detergency cannot be obtained.
- the method of measuring a particle size distribution from the particle size distribution measuring apparatus using a laser diffraction scattering method or a pore electrical resistance method, or image analysis is mentioned, for example.
- the average particle diameter here means a number average particle diameter.
- the relationship between the coexisting microbubbles and the particles is more preferably that the average particle diameter Dp of the particles with respect to the average bubble diameter Dm of the microbubbles is Dm / 2 ⁇ Dp ⁇ 2 ⁇ Dm, and Dm / 2 ⁇ Dp. More preferably, ⁇ Dm.
- Dp ⁇ Dm / 2 the energy is reduced when the particles collide, so the effect is reduced.
- Dp> 2 ⁇ Dm the effect is reduced because the particles hinder the propagation of ultrasonic waves and the uniform distribution of microbubbles.
- the stability of the microbubbles is further improved, the microbubbles and the particles can effectively scatter the ultrasonic waves, and the collision of the particles with the surface of the cleaning object becomes effective. As a result, it is considered that an excellent descaling effect is obtained and uniform descaling can be performed.
- a mixture of two or more kinds of particles having different average particle sizes in the range of 0.05 to 50 ⁇ m is more preferable.
- the two types of average particle diameters it is more preferable to combine two or more of a range of 3 to 20 ⁇ m and a range of more than 20 ⁇ m and 50 ⁇ m or less.
- the size of the microbubble it is more preferable to mix two or more types of microbubbles having different average bubble diameters.
- the two types of average cell diameters it is more preferable to combine two or more types of a range of 0.1 to 35 ⁇ m and a range of more than 35 ⁇ m and 100 ⁇ m or less.
- the bubble diameter of the microbubbles needs to be selected according to the ultrasonic frequency, and 0.22 ⁇
- the acid cleaning solution (acid cleaning solution) may be a normal pickling solution for removing oxide scale.
- an aqueous hydrochloric acid solution, an aqueous sulfuric acid solution, an aqueous hydrofluoric acid solution (hydrofluoric acid), or an aqueous solution containing nitric acid, acetic acid, formic acid or the like in these solutions can be used.
- the acid concentration of the pickling solution is not particularly limited, but is in the range of 2% by mass to 20% by mass. If it is less than 2% by mass, a sufficient rate of dissolving the oxide scale may not be obtained. If it exceeds 20% by mass, corrosion of the pickling tank may become significant, or it may be necessary to enlarge the rinse tank.
- Fe 2+ ions may be added to the pickling solution.
- the Fe 2+ ion concentration is more preferably 30 to 150 g / L. If it is less than 30 g / L, stable pickling may not be possible. If it exceeds 150 g / L, the pickling speed may be slow. Further, Fe 3+ ions may be added to the pickling solution.
- the temperature of the pickling solution is not particularly limited, but it is more preferably from room temperature to 97 ° C. for reasons such as pickling efficiency and temperature control.
- the ultrasonic waves and microbubbles when ultrasonic waves and microbubbles are used in combination in the cleaning liquid, it is desirable that the ultrasonic waves be uniformly transmitted to the entire cleaning tank. This improves the uniformity of cleaning, but the ultrasonic wave propagates to objects other than the object to be cleaned, such as the wall of the cleaning tank, causing energy loss due to erosion, and the output applied to the vibrator may be wasted. Therefore, an ultrasonic wave can be effectively transmitted to the cleaning object by installing an ultrasonic reflector in the cleaning tank.
- the cleaning object has a concave curved surface with respect to the cleaning object as shown in FIG. An effect can also be expected by installing a flat reflector at a position as shown in FIG.
- the reflector is preferably made of a hard material having a high density.
- a steel plate, a SUS plate, ceramics, etc. can be considered.
- a ceramic member such as acid-resistant brick is conceivable.
- the pickling method for the steel sheet is generally a cleaning line including a pickling tank 1 as shown in FIG. 3 and an acid cleaning apparatus including a pickling tank 1 and a rinsing tank 8 as shown in FIG.
- the steel plate 2 is passed through these pickling apparatuses and descaling is performed.
- two or more pickling tanks 1 and two rinsing tanks 8 may be combined.
- a microbubble generator and a fine particle adding device are installed in the pickling solution supply line (device) of these pickling devices, and microbubbles and fine particles of a predetermined size are added to the pickling solution 4 and put into the pickling tank 1.
- the ultrasonic vibrator 3 As long as the ultrasonic vibrator 3 is installed in the pickling solution 4, it may be installed at any position regardless of the tank bottom face or side face. Further, the direction of the vibration surface is not limited. Furthermore, in the case of a cleaning line having the rinse tank 8, ultrasonic waves, microbubbles, and fine particles can be introduced into the rinse tank 8 as necessary. Thereby, the efficiency of rinse can also be improved.
- the steel plate pickling method can be applied to descaling by dipping the steel plate 2 in the pickling tank 1. Also in this case, the position of the ultrasonic transducer 3 is not limited as long as macro bubbles and fine particles are added to the pickling solution 4. Further, it is preferable to use a cylindrical plate 5 that surrounds the cleaning object 9 as shown in FIGS.
- Example 1 An oxide scale removal test (pickling) was performed using a hot rolled steel material using silicon (Si).
- the component oxide scale of the steel sheet is C: 0.061 mass%, Si: 0.89 mass%, Mn: 1.19 mass%, P: 0.018 mass%, S: 0.0018 mass%, Al: 0.04% by mass, Ni: 0.021% by mass, Cr: 0.084% by mass, Cu: 0.016% by mass, the balance Fe and inevitable impurities.
- a steel plate having an oxide scale of 3 to 15 ⁇ m was used for the test.
- a hydrochloric acid (HCl) aqueous solution was used as the pickling solution, and the hydrochloric acid was adjusted and controlled so as to be in the range of 6 to 9% by mass during the test. Further, FeCl 2 was added so that Fe 2+ in the solution was 80 g / L. Similarly, with respect to Fe 3+, as Fe 3+ in the solution is 1 g / L, FeCl 3 was also added.
- the pickling solution was heated to 85 ° C. ( ⁇ 5 ° C.).
- the ultrasonic generator has an output of 1200 W, and the vibrator was made of SUS and the surface was subjected to acid resistance processing. The test was performed at the frequencies shown in Table 1.
- microbubbles having the average cell diameter shown in Table 1 and MgO particles having the average particle diameter shown in Table 1 were dispersed and added in an aqueous HCl solution, and ultrasonic pickling was performed before applying the pickling test. It was. Microbubbles were generated using 2FKV-27M / MX-F13 manufactured by OHR Fluid Laboratory. The steel plate was run in a pickling tank at a speed of 100 m / min, and a descaling test was performed. The bubble diameter of the microbubbles was measured using a bubble diameter distribution measuring device. The particle diameter of the MgO particles was measured using a laser diffraction / scattering particle size distribution measuring device (KS-42D manufactured by Rion).
- KS-42D laser diffraction / scattering particle size distribution measuring device
- the oxide scale removal area ratio on the steel sheet surface after 30 seconds pickling is 100% or less to 95% or more: AA, less than 95% to 90% or more: A, less than 90% ⁇ 85% or more: BB, less than 85% to 80% or more: B, less than 80% to 70% or more: BC, less than 70% to 60% or more: C, less than 60% to 50% % Or more: CD, less than 50% to 40% or more: D, less than 40%: X.
- Table 1 shows the evaluation results.
- Example 2 Next, descaling was performed using a steel plate having the same steel oxide scale oxide scale as in Example 1 and having an oxide scale of 5 to 20 ⁇ m on the surface.
- the pickling solution, microbubbles, additive particles, and ultrasonic wave application device were the same as in Example 1, and as in Example 1, the oxide scale removal area ratio on the steel sheet surface after 30 seconds pickling was evaluated. .
- Table 2 shows the evaluation results.
- the pickling solution into which microbubbles are introduced is irradiated with ultrasonic waves at two different frequencies using ultrasonic waves having a frequency of 28.0 kHz or more and less than 1.0 kHz, the oxide scale can be removed in the same manner as in Example 1. It was confirmed that it could be effective.
- Example 3 an oxide scale removal test (pickling) was performed using steel materials having different Si contents.
- the Si content shown in Table 3 C: 0.061 mass%, Mn: 1.01 mass%, P: 0.015 mass%, S: 0.0017 mass%, Al: 0.0. 03 mass%, Ni: 0.020 mass%, Cr: 0.085 mass%, Cu: 0.015 mass%, the balance Fe and inevitable impurities.
- the test material used in the test had an oxide scale of 3 to 25 ⁇ m on the steel plate surface, and the average oxide scale thickness of the 24 test materials was 10 ⁇ m.
- aqueous HCl solution was used as the pickling solution, and the hydrochloric acid was adjusted and controlled so as to be in the range of 6 to 9% by mass during the test. Further, FeCl 2 was added so that Fe 2+ in the solution was 75 g / L. Similarly, with respect to Fe 3+, as Fe 3+ in the solution is 1.1 g / L, FeCl 3 was also added.
- the pickling solution was heated to 85 ° C. ( ⁇ 5 ° C.).
- the ultrasonic generator was the same as in Examples 1 and 2 and had an output of 1200 W.
- the vibrator was made of SUS and the surface was subjected to acid resistance processing, and tests were conducted at the frequencies shown in Table 3.
- the microbubbles having the average cell diameter shown in Table 3 and the alumina particles having the average particle diameter shown in Table 3 were dispersed in an aqueous HCl solution, and after applying ultrasonic waves, the pickling test was performed. went.
- the steel plate was run through the cleaning tank at a speed of 100 m / min, and a descaling test was performed.
- the bubble diameter of the microbubbles was measured using a bubble diameter distribution measuring device.
- the particle diameter of the alumina fine particles was measured using a laser diffraction / scattering particle size distribution measuring apparatus.
- the oxide scale removal area ratio on the steel sheet surface after 40 seconds pickling treatment is 100% or less to 95% or more: AA, less than 95% to 90% or more: A, less than 90% ⁇ 85% or more: BB, less than 85% to 80% or more: B, less than 80% to 70% or more: BC, less than 70% to 60% or more: C, less than 60% to 50% % Or more: CD, less than 50% to 40% or more: D, less than 40%: X.
- Table 3 shows the evaluation results. An excellent effect of improving descaling efficiency was obtained with a steel sheet having a Si content of 0.1 mass% to 7.00 mass%.
- the present invention can be used in acid cleaning of steel sheets in the steel manufacturing process.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Description
さらに、酸化物スケール除去の際に酸洗槽内で鋼板と酸の反応によって気泡が発生するため、低い周波数を使用した場合はこの気泡によって超音波伝播が阻害され、超音波による酸化物スケールの溶解性向上効果が低下するといった問題もある。
したがって、鋼板の酸洗において超音波照射を適用しようとしても、酸化物スケールの溶解速度向上を十分に達成することは難しい。
また、前述したように、酸化物スケール酸化物スケールSi酸化物スケールは酸洗溶液中のSiイオンの濃度によっては溶液中でゲル状になり、鋼板の表面に付着していることもあるため、この観点からも、Si酸化物スケールの完全な溶解除去が求められている。
例えば、特許文献4や5では、超音波洗浄の洗浄液に固体粒子を分散させるというような方法もあるが、鋼板の酸洗において超音波照射を適用し、更に、洗浄液に固体粒子を単に分散させるだけでは、上記問題を解決できない。なぜなら、Siを含有する鋼板の酸洗では、洗浄速度が向上せず、均一に洗浄もできないからである。
更に、洗浄液中に固体粒子とマイクロバブルの両方を分散させることも考えられるが、実際に本発明者らが検討した結果、単に固体粒子とマイクロバブルの両方を洗浄液に加えても、固体粒子によってマイクロバブルの安定化が損なわれたり(マイクロバブルの凝集が起こったり)、固体粒子がマイクロバブルの中や気液界面に捕えられて洗浄液中に効率よく分散しなかったりして、むしろ、洗浄力が低下し、効果的な洗浄や均一に洗浄できなかった。
また、酸化物スケールやSi酸化物スケールの溶解除去には、超音波の周波数によりその効果が異なることも見出した。特に、28.0kHz以上1.0MHz未満の周波数の範囲で、2種類以上の周波数の超音波を印加すると、鋼板の酸化物スケールやSi酸化物スケールを効率よく、効果的に除去できることを見出した。
即ち、本発明の要旨は次の通りである。
0.24≦|log(f1)−log(f2)|≦1.55
の関係にあることを特徴とする(1)記載の鋼板の酸洗浄方法。
図2は、走行中の鋼板の洗浄を行う洗浄ラインにおいて、超音波振動子及び平板の反射板を設置した例を示す説明図である。
図3は、走行中の鋼板の洗浄を行う洗浄ラインの例を示す説明図である。
図4は、洗浄槽とリンス槽からなる走行中の鋼板洗浄を行う洗浄ラインの例を示す説明図である。
図5は、洗浄対象物を洗浄液に浸漬して洗浄する場合の、超音波振動子及び反射板の設置例を示す説明図である。
図6は、洗浄対象物を洗浄液に浸漬して洗浄する場合の、洗浄槽の上から見た場合の超音波振動子及び反射板の設置例を示す説明図である。
Siを含有する鋼板における酸化物スケールが、酸洗液に溶解する過程を詳細に調べてみると、酸化物スケールが鋼板表面から徐々に溶解し、鋼板との界面付近に達する最終段階において、Si系酸化物が濃化している層が存在し、この層の部分で、残りの酸化物スケールが鋼板表面より離脱するのが遅いことが分かった。例えば、Fe2O3、Fe3O4、やFeO等のFe系酸化物からなる酸化物スケールと、その下層(地鉄との界面)にFe2SiO4等のSi系酸化物からなる酸化物スケール(Si系酸化物の濃化層)とが存在し、前記Si系酸化物からなる層がスケール除去を困難にしていたが、上記本発明の洗浄液を用いると、容易に除去できることが明らかになった。
しかしながら、上記本発明の洗浄方法を用いると、前記のようなゲル状の形態が表面近傍で漂っている現象は見られず、よって、再付着の現象も殆どなくなっていることが確認された。
これらの効果は、洗浄液に加えた、マイクロバブルと特定の周波数範囲の2種類の超音波との相乗的作用によるものと考えられる。
超音波の周波数は、上述のように、28kHz以上~1MHz未満の周波数が好ましい。この周波数の範囲内で、周波数(波長)の異なる2種類以上の超音波をマイクロバブルとともに洗浄液に加えると、Siを含有する鋼板の脱スケールに有効となる。以下のような作用によるものと考える。
S=1000×(L/3500)
また、超音波の波長L(mm)は、音速をV(m/s)とすると、超音波の周波数F(Hz)から、
L=1000×(V/F)
で求められる。水中での音速Vが1444m/sとすると、38kHzでは、L=38mmとなり、S=11μmと計算される。100kHzでは、L=14.4mmとなり、S=4μmと計算される。
また、超音波の発信器から発生する超音波は、除去対象物である酸化物スケールに達するまで出来るだけ減衰しないことが好ましい。一般的には、高周波数の超音波は減衰し易く、低周波数の超音波は減衰し難く発信器から遠くまで大きな減衰をせずに届く。したがって、同じ発信強度であれば、低い周波数の超音波ではその強度は減衰せず、酸化物スケール除去性は維持されるが、高い周波数の超音波では、その強度が減衰するために酸化物スケール除去性に問題が生じる。特に、発信器の位置から鋼板までの距離が大きい場合や、マイクロバブルで超音波を散乱さる場合(実質的な超音波伝達距離が大きくなる)には、高い周波数の超音波の減衰が顕著に現れる。
0.24≦|log(f1)−log(f2)|≦1.55 ・・・(式1)
即ち、式1の関係にあるf1の周波数の超音波とf2の周波数の超音波の2種類を少なくとも含む超音波を、マイクロバブルが含まれる洗浄液中に照射すると、前記洗浄液中に浸漬された珪素(Si)含有鋼板の酸化物スケールの除去が更に効率よく、均一に行われる。3以上の周波数を含む超音波の場合、最も低い周波数f1と最も高い周波数f2とが、式1を満たすようにするとよい。
ここで、超音波の周波数は、28.0kHz以上~1.0MHz未満の範囲である必要がある。28kHz未満の周波数を使用した場合、鋼板と酸洗液の反応により、鋼板表面から500μm以上の気泡が発生し、この大きな気泡によって超音波伝播が阻害され、超音波の溶解性向上効果が低下する。一方、1MHz以上の周波数を使用した場合、超音波の直進性が強くなり洗浄の均一性が低下する場合がある。1MHz以上の周波数の超音波では、マイクロバブルが存在しても、超音波が洗浄液中を散乱し難くなり、酸化物スケールを均一に洗浄できないからである。
より好ましくは、35~430KHz、更に好ましくは、35~200KHzの範囲で周波数を設定するとよい。
0.75質量%~7.00質量%である鋼板で更に優れた脱スケールの効率向上の効果が得られ、1.0~3.5質量%である鋼板ではより著しい脱スケールの効率向上の効果が得られる。鋼板中に含まれるSiの含有量が0.75質量%以上になると、Si系酸化物からなる層が生成しやすいため、顕著な脱スケールの効率の向上効果が得られ、1.0質量%以上では脱スケールの効率向上効果は確実に得られる。一方、鋼板中に含まれるSiの含有量が7.00質量%を超えると酸化物スケールの構造が変わらなくなるため、得られる脱スケールの効率の向上効果は変わらなくなり、それ以上では脱スケール効率が一定となる場合がある。特に3.5質量%以上になると、脱スケール性がしだいに悪くなり超音波とマイクロバブルを適用しても脱スケールし難くなる。従って、効果がより顕著に出るのは1.0~3.5質量%である。
使用する粒子サイズ(平均粒子径)は0.05~50μmであるが、より好ましくは、0.05~30μmである。粒子の液中の濃度としては数百個/ml~数万個/mlが好ましい。さらに、液中濃度としては、5百個/ml~5千個/mlが好ましい。平均粒子径が0.05μm未満の粒子を使用した場合、粒子が洗浄物表面に衝突する衝撃力が弱くなり、脱スケールの向上が期待できない場合がある。また、粒子径が小さ過ぎると、マイクロバブルの中や気液界面に粒子が捕獲されて、超音波を照射しても粒子が洗浄物表面に衝突できず、粒子添加による脱スケールの向上効果が得られない場合がある。平均粒子径が50μm超の粒子を使用した場合、超音波の伝播及びマイクロバブルの洗浄物表面への移動を阻害するため洗浄力の低下が起こる。また、大きな粒子になると、該粒子表面にマイクロバブルを付着させてしまい、実質的に有効なマイクロバブルの濃度が低下するので十分な洗浄力が得られなくなる。なお、本発明における粒子の粒子径の測定方法としては、例えば、レーザー回折散乱法や細孔電気抵抗法を用いた粒度分布測定装置や画像解析から粒度分布を測定する方法が挙げられる。また、ここでいう平均粒子径は数平均粒子径のことを意味する。
マイクロバブルの気泡径は超音波周波数に合わせて選定する必要があり、超音波の周波数が28KHz~1.0MHzでは
0.22≦|log(m1)−log(m2)|≦1.52
とすることが望ましい。
ここでm1.m2はマイクロバブルの気泡径(μm)である。
超音波周波数がより好ましい範である35~430kHzでは
0.28≦|log(m1)−log(m2)|≦1.08
が望ましい。
さらに好ましい超音波周波数範囲の35~200kHzでは
0.28≦|log(m1)−log(m2)|≦0.75
が望ましい。
酸洗液の温度は、特に限定されないが、酸洗効率や温度管理等の理由で常温から97℃であるのがより好ましい。
(実施例1)
珪素(Si)を用いた熱延鋼材を用いて酸化物スケールの除去試験(酸洗)を実施した。鋼板の成分酸化物スケールは、C:0.061質量%、Si:0.89質量%、Mn:1.19質量%、P:0.018質量%、S:0.0018質量%、Al:0.04質量%、Ni:0.021質量%、Cr:0.084質量%、Cu:0.016質量%、残部Fe及び不可避的不純物である。鋼板表面に酸化物スケールが3~15μmあるものを試験に用いた。酸洗液として塩酸(HCl)水溶液を用い、試験中、塩酸が6~9質量%の範囲内になるように調整、制御した。更に、溶液中のFe2+が80g/Lになるように、FeCl2を添加した。また、Fe3+に関しても同様に、溶液中のFe3+が1g/Lになるように、FeCl3も添加した。酸洗液の温度は、85℃(±5℃)になるように加温した。
超音波発生装置は出力1200Wであり、振動子はSUS製で表面を耐酸加工したものを用い、表1に示した周波数で試験を行った。酸洗試験前に、表1に示した平均気泡径のマイクロバブル、表1に示した平均粒子径のMgO粒子をHCl水溶液中に分散添加し、超音波を印加してから酸洗試験を行った。マイクロバブルの発生は、OHR流体研究所製 2FKV−27M/MX−F13を用いた。酸洗槽に鋼板を100m/minの速度で走行させ、脱スケール試験を行った。前記マイクロバブルの気泡径の測定は、気泡径分布計測装置を用いた。前記MgO粒子の粒子径の測定は、レーザー回折散乱型粒度分布測定装置(リオン製KS−42Dを用いた。
評価方法としては、30秒酸洗処理後の鋼板表面の酸化物スケール除去面積率が、100%以下~95%以上の場合:AA、95%未満~90%以上の場合:A、90%未満~85%以上の場合:BB、85%未満~80%以上の場合:B、80%未満~70%以上の場合:BC、70%未満~60%以上の場合:C、60%未満~50%以上の場合:CD、50%未満~40%以上の場合:D、40%未満の場合:Xとした。
表1に、評価結果を示す。マイクロバブルを導入した酸洗液に、28.0kHz以上1.0kHz未満の周波数の超音波を用いて、2種類の周波数で超音波を照射すると、酸化物スケールの除去が効果的にできた。
次に実施例1と同じ鋼材酸化物スケール酸化物スケールで、表面に酸化物スケールが5~20μmある鋼板を用いて脱スケール処理を行った。酸洗液、マイクロバブル、添加粒子、超音波印加装置は、実施例1と同じでとし、実施例1と同様に、30秒酸洗処理後の鋼板表面の酸化物スケール除去面積率で評価した。
表2に、評価結果を示す。マイクロバブルを導入した酸洗液に、28.0kHz以上1.0kHz未満の周波数の超音波を用いて、2種類の周波数で超音波を照射すると、実施例1と同様に酸化物スケールの除去が効果的にできることが確認された。
次にSiの含有量の異なる鋼材を用いて酸化物スケールの除去試験(酸洗)を実施した。鋼材としては、表3に示したSi含有量で、C:0.061質量%、Mn:1.01質量%、P:0.015質量%、S:0.0017質量%、Al:0.03質量%、Ni:0.020質量%、Cr:0.085質量%、Cu:0.015質量%、残部Fe及び不可避的不純物である。試験に用いた試験材は、鋼板表面に酸化物スケールが3~25μmあるもので、この試験材24枚の酸化物スケール厚さの平均は10μmであった。酸洗液としてHCl水溶液を用い、試験中、塩酸が6~9質量%の範囲内になるように調整、制御した。更に、溶液中のFe2+が75g/Lになるように、FeCl2を添加した。また、Fe3+に関しても同様に、溶液中のFe3+が1.1g/Lになるように、FeCl3も添加した。酸洗液の温度は、85℃(±5℃)になるように加温した。
超音波発生装置は、実施例1、2と同様で出力1200Wであり、振動子はSUS製で表面を耐酸加工したものを用い、表3に示した周波数で試験を行った。酸洗試験前に、表3に示した平均気泡径のマイクロバブル、及び、表3に示した平均粒子径のアルミナ粒子をHCl水溶液中に分散させ、超音波を印加してから酸洗試験を行った。洗浄槽に鋼板を100m/minの速度で走行させ、脱スケール試験を行った。前記マイクロバブルの気泡径の測定は、気泡径分布計測装置を用いた。前記アルミナ微粒子の粒子径の測定は、レーザー回折散乱型粒度分布測定装置を用いた。
表3に、評価結果を示す。Siの含有量が、0.1質量%~7.00質量%である鋼板で優れた脱スケールの効率向上の効果が得られた。
2 走行する鋼板
3 超音波振動子
4 マイクロバブルと微粒子を含んだ洗浄液
5 反射板
6 ロール
7 リンス液
8 リンス槽
9 洗浄物
Claims (11)
- 珪素を含有する鋼板の酸洗浄方法において、酸洗浄液がマイクロバブルを含有し、当該酸洗浄液に少なくとも2種類の周波数を有する超音波を印加し、当該超音波の周波数が28.0kHz以上1.0MHz未満の周波数であることを特徴とする鋼板の酸洗浄方法。
- 前記超音波の周波数のうち、最も低い周波数f1と最も高い周波数f2とが、
0.24≦|log(f1)−log(f2)|≦1.55
の関係にあることを特徴とする請求項1記載の鋼板の酸洗浄方法。 - 前記酸洗浄液に、平均粒子径0.05~50μmのセラミックスまたは酸化鉄の粒子が含まれることを特徴とする請求項1又は2に記載の鋼板の酸洗浄方法。
- 前記マイクロバブルが、平均気泡径の異なるマイクロバブルを2種類以上混合したものであることを特徴とする請求項1~3のいずれか1項に記載の鋼板の酸洗浄方法。
- 前記粒子が、平均粒子径の異なる粒子を2種類以上混合したものであることを特徴とする請求項3に記載の鋼板の酸洗浄方法。
- 前記鋼板に対して凹型となる曲面を有する反射板を用いて前記印加した超音波を反射させることを特徴とする請求項1~5のいずれか1項に記載の鋼板の酸洗浄方法。
- 少なくとも酸洗浄槽と当該酸洗浄槽中の酸洗浄液に超音波を印加する超音波印加装置と前記酸洗浄槽に酸洗浄液を供給する酸洗浄液供給装置を備える鋼板の酸洗浄装置であって、前記酸洗浄液供給装置にマイクロバブルを供給する手段を有し、前記超音波印加装置が少なくとも2種類の周波数を有する超音波を印加することができ、当該超音波の周波数が28.0kHz以上1.0MHz以下であることを特徴する鋼板の酸洗浄装置。
- 前記酸洗浄液供給装置に、さらに平均粒子径0.05~50μmのセラミックスまたは酸化鉄の粒子を供給する手段を有することを特徴とする請求項7記載の鋼板の連続酸洗浄装置。
- 前記マイクロバブルを供給する手段が、平均気泡径の異なるマイクロバブルを2種類以上混合することができることを特徴とする請求項7又は8に記載の鋼板の連続酸洗浄装置。
- 前記粒子を供給する手段が、平均粒子径の異なる粒子を2種類以上混合することができることを特徴とする請求項8に記載の鋼板の連続酸洗浄装置。
- 前記酸洗槽の中を通過する鋼板に対して凹型となる曲面を有し、前記超音波を反射する反射板が、前記酸洗槽の中に設置されていることを特徴とする請求項7~10のいずれか1項に記載の鋼板の連続酸洗浄装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112012013356-0A BR112012013356B1 (pt) | 2009-12-03 | 2010-05-25 | método e aparelho para limpeza ácida de chapa de aço |
CN201080054564.3A CN102639752B (zh) | 2009-12-03 | 2010-05-25 | 钢板的酸洗方法和酸洗装置 |
MX2012006142A MX2012006142A (es) | 2009-12-03 | 2010-05-25 | Metodo de decapado y sistema para decapado de placas de acero. |
EP10834408.6A EP2508649B1 (en) | 2009-12-03 | 2010-05-25 | Method for pickling steel plates and pickling device |
JP2011544206A JP4970623B2 (ja) | 2009-12-03 | 2010-05-25 | 鋼板の酸洗方法及び酸洗装置 |
KR1020127013248A KR101367472B1 (ko) | 2009-12-03 | 2010-05-25 | 강판의 산세 방법 및 산세 장치 |
US13/513,204 US9228266B2 (en) | 2009-12-03 | 2010-05-25 | Pickling method and pickling system of steel plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009275801 | 2009-12-03 | ||
JP2009-275801 | 2009-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011067955A1 true WO2011067955A1 (ja) | 2011-06-09 |
Family
ID=44114816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059167 WO2011067955A1 (ja) | 2009-12-03 | 2010-05-25 | 鋼板の酸洗方法及び酸洗装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9228266B2 (ja) |
EP (1) | EP2508649B1 (ja) |
JP (1) | JP4970623B2 (ja) |
KR (1) | KR101367472B1 (ja) |
CN (1) | CN102639752B (ja) |
BR (1) | BR112012013356B1 (ja) |
MX (1) | MX2012006142A (ja) |
WO (1) | WO2011067955A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016125100A (ja) * | 2015-01-05 | 2016-07-11 | 株式会社アサヒメッキ | アルミニウム合金の表面処理方法 |
JP2017150001A (ja) * | 2016-02-22 | 2017-08-31 | 三菱日立パワーシステムズ株式会社 | 化学洗浄方法および化学洗浄装置 |
WO2017204169A1 (ja) * | 2016-05-24 | 2017-11-30 | 大同メタル工業株式会社 | 洗浄液 |
JP2018068570A (ja) * | 2016-10-27 | 2018-05-10 | 三菱電機株式会社 | 洗浄装置 |
WO2018169050A1 (ja) | 2017-03-16 | 2018-09-20 | 新日鐵住金株式会社 | 超音波洗浄装置及び超音波洗浄方法 |
JP2020015941A (ja) * | 2018-07-24 | 2020-01-30 | 日本製鉄株式会社 | 超音波処理装置及びファインバブルの供給方法 |
JP2021137750A (ja) * | 2020-03-06 | 2021-09-16 | 日本製鉄株式会社 | 超音波洗浄装置及び超音波洗浄方法 |
JP2021147660A (ja) * | 2020-03-18 | 2021-09-27 | 日本ペイント・サーフケミカルズ株式会社 | スケールおよび/またはカーボン除去方法、および金属材の製造方法 |
JP2022517358A (ja) * | 2019-01-20 | 2022-03-08 | アプライド マテリアルズ インコーポレイテッド | 音波洗浄システムおよびワークピースを音波洗浄する方法 |
WO2022130565A1 (ja) * | 2020-12-17 | 2022-06-23 | 日本製鉄株式会社 | 超音波処理方法及び超音波処理装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL248172B2 (en) * | 2014-04-14 | 2023-04-01 | Ever Clean And Clear Tech Ltd | A method based on sound waves that involves the use of a particle suspension |
CN107537755A (zh) * | 2017-09-18 | 2018-01-05 | 杭州电子科技大学 | 应用于海水淡化传输及热交换管道的防除垢电路 |
CN111500963A (zh) * | 2020-04-30 | 2020-08-07 | 苏州鑫吴钢结构工程有限公司 | 改善钢管表面粗糙度的方法 |
CN112588639A (zh) * | 2020-12-21 | 2021-04-02 | 兰州科近泰基新技术有限责任公司 | 一种四翼型射频四极场直线加速器单翼清洗方法 |
CN112779547B (zh) * | 2021-02-01 | 2022-08-26 | 武文青 | 一种热轧镍基合金不锈钢中厚板用循环式酸洗装置 |
CN113567621B (zh) * | 2021-07-14 | 2022-11-15 | 燕山大学 | 表面酸洗智能测试平台及使用方法 |
CN114737198A (zh) * | 2022-04-21 | 2022-07-12 | 台山市东日金属科技有限公司 | 一种钢板酸洗加工处理工艺 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61235584A (ja) | 1985-04-10 | 1986-10-20 | Kawasaki Steel Corp | 鋼板の酸洗方法 |
JPH04341588A (ja) | 1991-05-17 | 1992-11-27 | Nkk Corp | 熱延鋼板の酸洗方法 |
JPH05125573A (ja) | 1991-10-31 | 1993-05-21 | Mitsubishi Heavy Ind Ltd | 鋼板の連続酸洗リンス方法及び装置 |
JPH10251911A (ja) | 1997-03-11 | 1998-09-22 | Kuraray Co Ltd | ノズルの洗浄方法 |
JP2000256886A (ja) | 1999-03-11 | 2000-09-19 | Nippon Steel Corp | 熱延鋼板の脱スケール方法 |
JP2003313688A (ja) | 2002-02-20 | 2003-11-06 | Nippon Steel Corp | 超音波式連続洗浄装置 |
JP2005200697A (ja) * | 2004-01-15 | 2005-07-28 | Mitsubishi-Hitachi Metals Machinery Inc | 連続酸洗設備 |
WO2006001293A1 (ja) * | 2004-06-29 | 2006-01-05 | Kagoshima Supersonic Technical Laboratory Co., Ltd. | 超音波洗浄方法および装置 |
JP2007253120A (ja) | 2006-03-24 | 2007-10-04 | Hitachi Plant Technologies Ltd | 超音波洗浄方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3336323B2 (ja) * | 1993-10-28 | 2002-10-21 | 本多電子株式会社 | 超音波洗浄方法及びその装置 |
JP2004050109A (ja) | 2002-07-23 | 2004-02-19 | Matsushita Electric Ind Co Ltd | 部品の洗浄方法及び洗浄装置 |
JP2005298937A (ja) * | 2004-04-15 | 2005-10-27 | Mitsubishi-Hitachi Metals Machinery Inc | 酸洗設備 |
JP4893426B2 (ja) | 2007-04-02 | 2012-03-07 | パナソニック株式会社 | 超音波洗浄装置および同装置を用いた食器洗い機 |
US8142532B2 (en) * | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Shaped abrasive particles with an opening |
JP5604970B2 (ja) * | 2009-05-20 | 2014-10-15 | 新日鐵住金株式会社 | 表面性状に優れた合金化溶融亜鉛めっき鋼板の製造方法 |
-
2010
- 2010-05-25 US US13/513,204 patent/US9228266B2/en active Active
- 2010-05-25 EP EP10834408.6A patent/EP2508649B1/en active Active
- 2010-05-25 JP JP2011544206A patent/JP4970623B2/ja active Active
- 2010-05-25 WO PCT/JP2010/059167 patent/WO2011067955A1/ja active Application Filing
- 2010-05-25 MX MX2012006142A patent/MX2012006142A/es active IP Right Grant
- 2010-05-25 BR BR112012013356-0A patent/BR112012013356B1/pt active IP Right Grant
- 2010-05-25 KR KR1020127013248A patent/KR101367472B1/ko active IP Right Grant
- 2010-05-25 CN CN201080054564.3A patent/CN102639752B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61235584A (ja) | 1985-04-10 | 1986-10-20 | Kawasaki Steel Corp | 鋼板の酸洗方法 |
JPH04341588A (ja) | 1991-05-17 | 1992-11-27 | Nkk Corp | 熱延鋼板の酸洗方法 |
JPH05125573A (ja) | 1991-10-31 | 1993-05-21 | Mitsubishi Heavy Ind Ltd | 鋼板の連続酸洗リンス方法及び装置 |
JPH10251911A (ja) | 1997-03-11 | 1998-09-22 | Kuraray Co Ltd | ノズルの洗浄方法 |
JP2000256886A (ja) | 1999-03-11 | 2000-09-19 | Nippon Steel Corp | 熱延鋼板の脱スケール方法 |
JP2003313688A (ja) | 2002-02-20 | 2003-11-06 | Nippon Steel Corp | 超音波式連続洗浄装置 |
JP2005200697A (ja) * | 2004-01-15 | 2005-07-28 | Mitsubishi-Hitachi Metals Machinery Inc | 連続酸洗設備 |
WO2006001293A1 (ja) * | 2004-06-29 | 2006-01-05 | Kagoshima Supersonic Technical Laboratory Co., Ltd. | 超音波洗浄方法および装置 |
JP2007253120A (ja) | 2006-03-24 | 2007-10-04 | Hitachi Plant Technologies Ltd | 超音波洗浄方法 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016125100A (ja) * | 2015-01-05 | 2016-07-11 | 株式会社アサヒメッキ | アルミニウム合金の表面処理方法 |
JP2017150001A (ja) * | 2016-02-22 | 2017-08-31 | 三菱日立パワーシステムズ株式会社 | 化学洗浄方法および化学洗浄装置 |
GB2565704A (en) * | 2016-05-24 | 2019-02-20 | Daido Metal Co | Cleaning liquid |
WO2017204169A1 (ja) * | 2016-05-24 | 2017-11-30 | 大同メタル工業株式会社 | 洗浄液 |
US10711222B2 (en) | 2016-05-24 | 2020-07-14 | Daido Metal Co., Ltd. | Cleaning liquid |
JP2018068570A (ja) * | 2016-10-27 | 2018-05-10 | 三菱電機株式会社 | 洗浄装置 |
JP7035307B2 (ja) | 2016-10-27 | 2022-03-15 | 三菱電機株式会社 | 洗浄装置 |
KR20190117616A (ko) | 2017-03-16 | 2019-10-16 | 닛폰세이테츠 가부시키가이샤 | 초음파 세정 장치 및 초음파 세정 방법 |
JPWO2018169050A1 (ja) * | 2017-03-16 | 2019-11-07 | 日本製鉄株式会社 | 超音波洗浄装置及び超音波洗浄方法 |
WO2018169050A1 (ja) | 2017-03-16 | 2018-09-20 | 新日鐵住金株式会社 | 超音波洗浄装置及び超音波洗浄方法 |
US11052433B2 (en) | 2017-03-16 | 2021-07-06 | Nippon Steel Corporation | Ultrasonic cleaning equipment and ultrasonic cleaning method |
JP2020015941A (ja) * | 2018-07-24 | 2020-01-30 | 日本製鉄株式会社 | 超音波処理装置及びファインバブルの供給方法 |
JP7024646B2 (ja) | 2018-07-24 | 2022-02-24 | 日本製鉄株式会社 | 超音波処理装置及びファインバブルの供給方法 |
US11602776B2 (en) | 2019-01-20 | 2023-03-14 | Applied Materials, Inc. | Sonic cleaning system and method of sonic cleaning a workpiece |
JP2022517358A (ja) * | 2019-01-20 | 2022-03-08 | アプライド マテリアルズ インコーポレイテッド | 音波洗浄システムおよびワークピースを音波洗浄する方法 |
TWI811519B (zh) * | 2019-01-20 | 2023-08-11 | 美商應用材料股份有限公司 | 聲波清潔系統及聲波清潔工件的方法 |
JP7326450B2 (ja) | 2019-01-20 | 2023-08-15 | アプライド マテリアルズ インコーポレイテッド | 音波洗浄システムおよびワークピースを音波洗浄する方法 |
JP2021137750A (ja) * | 2020-03-06 | 2021-09-16 | 日本製鉄株式会社 | 超音波洗浄装置及び超音波洗浄方法 |
JP7462435B2 (ja) | 2020-03-06 | 2024-04-05 | 日本製鉄株式会社 | 超音波洗浄装置及び超音波洗浄方法 |
JP2021147660A (ja) * | 2020-03-18 | 2021-09-27 | 日本ペイント・サーフケミカルズ株式会社 | スケールおよび/またはカーボン除去方法、および金属材の製造方法 |
JP7329472B2 (ja) | 2020-03-18 | 2023-08-18 | 日本ペイント・サーフケミカルズ株式会社 | スケールおよび/またはカーボン除去方法、および金属材の製造方法 |
WO2022130565A1 (ja) * | 2020-12-17 | 2022-06-23 | 日本製鉄株式会社 | 超音波処理方法及び超音波処理装置 |
JPWO2022130565A1 (ja) * | 2020-12-17 | 2022-06-23 | ||
JP7295490B2 (ja) | 2020-12-17 | 2023-06-21 | 日本製鉄株式会社 | 超音波処理方法及び超音波処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011067955A1 (ja) | 2013-04-18 |
MX2012006142A (es) | 2012-06-28 |
KR20120085842A (ko) | 2012-08-01 |
BR112012013356B1 (pt) | 2021-02-09 |
KR101367472B1 (ko) | 2014-02-25 |
EP2508649A1 (en) | 2012-10-10 |
EP2508649A4 (en) | 2013-11-13 |
JP4970623B2 (ja) | 2012-07-11 |
CN102639752B (zh) | 2014-01-15 |
EP2508649B1 (en) | 2017-10-04 |
BR112012013356A2 (pt) | 2016-03-01 |
US20120240956A1 (en) | 2012-09-27 |
CN102639752A (zh) | 2012-08-15 |
US9228266B2 (en) | 2016-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4970623B2 (ja) | 鋼板の酸洗方法及び酸洗装置 | |
KR101146853B1 (ko) | 강판의 세정 방법 및 강판의 연속 세정 장치 | |
JP6673527B2 (ja) | 超音波洗浄装置及び超音波洗浄方法 | |
CN201217016Y (zh) | 带钢表面清洗加工的超声波处理装置 | |
US20200346254A1 (en) | Ultrasonic concrete form cleaning method | |
WO2013139047A1 (zh) | Tft-lcd玻璃基板清洗方法 | |
KR20000005370A (ko) | 전기분해 및 캐비테이션 작용을 이용하여 금속 표면으로부터 피막을 제거하는 방법g | |
WO2007063987A1 (ja) | 超純水プラズマ泡による加工・洗浄方法及びその装置 | |
JP2003031535A (ja) | 半導体製造装置の超音波洗浄方法 | |
CN110113872A (zh) | 一种pcb退膜工艺、制造方法及系统 | |
JP7462435B2 (ja) | 超音波洗浄装置及び超音波洗浄方法 | |
JP5122497B2 (ja) | ハードディスク用基板用の洗浄剤組成物 | |
US6481449B1 (en) | Ultrasonic metal finishing | |
KR101639635B1 (ko) | 메가소닉 세정 방법 및 세정 장치 | |
JP7157168B2 (ja) | 金属管の製造方法及び洗浄方法 | |
CN103418571A (zh) | 一种金属板带表面超声波表面清洗装置及方法 | |
WO2013159943A1 (en) | Method for cleaning photomasks using megasonic energy | |
CN114958498A (zh) | 玻璃盖板清洁剂和清洁方法 | |
MIHIS et al. | The effect of alkali and surfactant concentration, temperature and stirring on the cleaning efficiency of the carbon steel surface | |
Thanu et al. | Use of Surfactants in Acoustic Cleaning | |
JP7295490B2 (ja) | 超音波処理方法及び超音波処理装置 | |
Leman et al. | Effect of low current density and low frequency on oxidation resistant and coating activity of coated FeCrAl substrate by γ-Al2O3 powder | |
TH125189A (th) | วิธีการการกัดด้วยกรดและระบบการกัดด้วยกรดของแผ่นเหล็ก | |
KR20090017198A (ko) | 인쇄회로기판 전처리용 세정장치 | |
JP2009163809A (ja) | ハードディスク用基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080054564.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10834408 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011544206 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127013248 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2010834408 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4646/DELNP/2012 Country of ref document: IN Ref document number: 2010834408 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/006142 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13513204 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201002586 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012013356 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012013356 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120601 |