WO2022130565A1 - 超音波処理方法及び超音波処理装置 - Google Patents

超音波処理方法及び超音波処理装置 Download PDF

Info

Publication number
WO2022130565A1
WO2022130565A1 PCT/JP2020/047147 JP2020047147W WO2022130565A1 WO 2022130565 A1 WO2022130565 A1 WO 2022130565A1 JP 2020047147 W JP2020047147 W JP 2020047147W WO 2022130565 A1 WO2022130565 A1 WO 2022130565A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflected
vibrating body
ultrasonic
treatment
processed
Prior art date
Application number
PCT/JP2020/047147
Other languages
English (en)
French (fr)
Inventor
英里 干場
博充 伊達
慎司 徳丸
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2020/047147 priority Critical patent/WO2022130565A1/ja
Priority to JP2022569423A priority patent/JP7295490B2/ja
Publication of WO2022130565A1 publication Critical patent/WO2022130565A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts

Definitions

  • the present invention relates to an ultrasonic processing method and an ultrasonic processing apparatus.
  • the vibrator is as shown in Patent Document 1 below.
  • the ultrasonic wave is applied while moving the ultrasonic wave, and the ultrasonic wave reflecting member is provided to the processing tank as in Patent Document 2 below.
  • an object of the present invention is to perform surface treatment on an aggregate composed of a plurality of objects to be treated. It is an object of the present invention to provide an ultrasonic processing apparatus and an ultrasonic processing method capable of more reliably propagating ultrasonic waves to the surface and further making the surface treatment uniform.
  • a reflective member for reflecting ultrasonic waves is provided inside an aggregate composed of a plurality of objects to be processed, and the number of such reflective members and the number thereof.
  • the idea was to bring the object to be contacted into contact with the object while maintaining an appropriate gap.
  • the present inventors have found a condition for bringing the reflective member and the object to be contacted into contact with each other while maintaining an appropriate gap.
  • the gist of the present invention completed based on such findings is as follows.
  • a treatment tank having a long axis having substantially the same cross-sectional shape and provided with an ultrasonic application mechanism is filled with a treatment liquid, and a plurality of objects to be treated extending in the longitudinal direction are contained in the treatment liquid.
  • An ultrasonic treatment method in which surface treatment is performed while applying ultrasonic waves to the object to be treated in a soaked state, and each of the objects to be treated is combined with one or a plurality of other objects to be treated.
  • One or a plurality of hollow reflected vibrating bodies extending in the longitudinal direction while being immersed in the treatment liquid are arranged in the treatment tank so as to be in contact with each other at at least two locations.
  • Each of the above is arranged so as to be in contact with the other object to be processed at at least two points, and the maximum value of the outer diameter in the cross section perpendicular to the longitudinal direction of the object to be processed is Ds, and the reflected vibrating body is of the reflected vibrating body.
  • the maximum value of the outer diameter in the cross section perpendicular to the longitudinal direction is Dr
  • the outer diameter ratio Dr / Ds is 0.2 to 6.0
  • the intrinsic acoustic impedance Zr of the reflected vibrating body is 1 ⁇ .
  • the treated liquid is filled with a liquid having a dissolved gas amount of 80% or more of the saturated dissolved gas amount and a hollow portion of the reflected vibrating body having a dissolved gas amount of less than 50% of the saturated dissolved gas amount.
  • the ultrasonic treatment method according to (1) (5) The ultrasonic treatment method according to (1), wherein the hollow portion of the reflected vibrating body is filled with the treatment liquid.
  • the ratio of lengths Lr / Ls is 0. .
  • the ultrasonic treatment method according to any one of (1) to (6) which satisfies the relationship of 7 ⁇ Lr / Ls ⁇ 3.0.
  • the ultrasonic treatment method according to any one of (1) to (7) wherein a flange portion is provided on the outer surface of the reflected vibrating body.
  • Df the size of the cross section of the reflected vibrating body in the portion where the flange portion is provided
  • Df the ratio Df / Dr of the size of the cross section is 1.1 ⁇ Df / Dr ⁇ 3.0.
  • the ultrasonic treatment method according to (8) which satisfies the above relationship.
  • the flange portion is provided so as to be in contact with the object to be processed at least one place within a range of a length of 5 m of the object to be processed along the longitudinal direction of the object to be processed.
  • a treatment tank having a long axis having substantially the same cross-sectional shape and containing a plurality of objects to be processed extending in the longitudinal direction and a treatment liquid for immersing the object to be processed, and the treatment.
  • An ultrasonic processing apparatus comprising an ultrasonic application mechanism for applying ultrasonic waves to a liquid, wherein each of the objects to be processed is one or a plurality of other objects to be processed at at least two places.
  • One or a plurality of hollow reflected vibrators extending in the longitudinal direction are arranged in the treatment tank so as to be in contact with each other and immersed in the treatment liquid, and each of the reflected vibrators is at least 2.
  • Ds is the maximum value of the outer diameter in a cross section perpendicular to the longitudinal direction of the object to be processed, which is arranged so as to be in contact with another object to be processed.
  • Dr the maximum value of the outer diameter in the above
  • Dr / Ds the outer diameter ratio Dr / Ds is 0.2 to 6.0
  • the intrinsic acoustic impedance Zi of the reflected vibrating body is 1 ⁇ 10 7 to 2 ⁇ 10.
  • An ultrasonic processing apparatus having a weight of 8 kg ⁇ m ⁇ 2 ⁇ sec -1 and having a hollow portion of the reflected vibrating body filled with a liquid or gas having an intrinsic acoustic impedance Zr different from that of the intrinsic acoustic impedance Zi.
  • ultrasonic waves are more reliably propagated to the plurality of objects to be treated to perform surface treatment. It is possible to achieve further uniformity.
  • FIGS. 1A and 1B are explanatory views schematically showing an example of the overall configuration of the ultrasonic processing apparatus according to the present embodiment.
  • the size of each member in the figure is appropriately emphasized for ease of explanation, and does not indicate the actual size or the ratio between the members.
  • ultrasonic waves are used in combination with a treatment liquid for performing a predetermined treatment on a plurality of objects to be treated, and the surface of the object to be treated (a portion in contact with the treatment liquid). It is a device that performs a predetermined process on the device.
  • the ultrasonic processing apparatus 1 performs various treatments such as cleaning on various metal bodies represented by steel materials and various non-metal bodies represented by plastic resin members and the like. It can be used when applying. For example, various metal bodies extending in a predetermined longitudinal direction such as steel pipes, shaped steels, steel bars, steel wires, etc. are used as objects to be treated, and by using the ultrasonic processing apparatus 1 according to the present embodiment, these metal bodies are used.
  • pickling treatment, degreasing treatment, and further cleaning treatment can be performed. Further, the ultrasonic treatment apparatus 1 according to the present embodiment can also be used when performing a water washing treatment after a pickling treatment.
  • the pickling treatment is a treatment for removing the oxide scale formed on the surface of the metal body by heat treatment or thermal processing using an acidic solution
  • the degreasing treatment is a treatment for removing an organic solvent and a surfactant.
  • This is a treatment for removing oils such as lubricants and processing oils used for processing and the like by using an aqueous solution containing the above or an alkaline degreasing liquid.
  • These pickling treatments and degreasing treatments are pretreatments that are carried out prior to applying a surface finishing treatment (metal coating treatment, chemical conversion treatment, coating treatment, etc.) to a metal body.
  • Such pickling treatment may dissolve a part of the ground metal.
  • the pickling treatment is also used for dissolving the metal body by etching to improve the surface finish quality.
  • a degreasing treatment may be provided before the pickling treatment, and the degreasing performance in the degreasing treatment may affect the removal of scale in the subsequent pickling treatment.
  • the degreasing treatment is also used to improve the wettability, which is an oil content control index as the finish quality of the final product.
  • the ultrasonic processing apparatus 1 includes used pipes, pipes that require regular or irregular stain removal, and the like, in addition to the cleaning process in the production line as described above. It can also be used for cleaning and the like.
  • the ultrasonic treatment apparatus 1 used in the ultrasonic treatment method according to the present embodiment can be applied to various surface treatments of an object to be treated such as a long body extending along a predetermined longitudinal direction. It is also possible to use a long body having a surface-treated film (for example, various oxide films and plating films, a coating film after surface treatment finishing treatment, etc.) formed on the surface as an object to be treated. Further, in the ultrasonic treatment apparatus 1 according to the present embodiment, in addition to the various films intentionally formed as described above, for example, unintended surface deposits such as oxide scale and oil are adhered in the form of a film. It is also possible to use a long body as the object to be treated.
  • a surface-treated film for example, various oxide films and plating films, a coating film after surface treatment finishing treatment, etc.
  • a treatment tank in which a treatment liquid is held exists and a plurality of long bodies are immersed as an aggregate inside the treatment tank.
  • the aggregate of the plurality of long bodies is immersed in the processing tank in which the processing liquid is held by a drive mechanism (not shown) capable of moving up and down such as a crane.
  • the aggregate of a plurality of long bodies may be immersed in a treatment tank in a state of being bundled by a wire, a net or the like (not shown).
  • the ultrasonic processing apparatus 1 includes a processing tank 10 in which an aggregate of a plurality of long bodies, which is an example of the object S to be processed, is housed, and an ultrasonic wave applying mechanism 20. And have.
  • the cross-sectional shape perpendicular to the long axis direction (y-axis direction) of the treatment tank 10 is substantially the same cross-sectional shape. As shown schematically in FIG.
  • each object to be treated S is a tubular body such as a steel pipe extending along the y-axis direction or a long object such as steel bar, and is one or a plurality of other objects. It is arranged so as to be in contact with the processed object S at at least two places. Further, in the ultrasonic processing apparatus 1 according to the present embodiment, as schematically shown in FIG. 1B, one or a plurality of reflections extending in the longitudinal direction so as to come into contact with the object S to be processed at at least two points. A vibrating body 30 is provided.
  • the reflected vibrating body 30 may be inside the aggregate of the object to be processed S as long as it is in contact with the object to be processed S at at least two places, or the reflected vibrating body 30 may be inside the aggregate of the object to be processed S. 30 may be exposed from the aggregate S of the object to be processed, that is, outside the aggregate S. Further, when there are a plurality of reflected vibrating bodies 30, a part of the reflected vibrating bodies 30 may be inside the aggregate and a part of the reflected vibrating bodies 30 may be outside the aggregate.
  • the number of objects S to be processed may be one.
  • the number of objects S to be treated is preferably 2 or more.
  • the upper limit of the number of objects S to be processed is naturally determined by the dimensions of the processing tank 10 and the dimensions of the object S to be processed.
  • the upper limit of the number of objects S to be processed may be 1000 or 100.
  • FIG. 1A six ultrasonic wave application mechanisms 20 are provided on each surface of the inner wall surface substantially parallel to the inner wall surface of the processing tank 10 in the y-axis direction, and the inner wall surface is substantially parallel to the x-axis direction.
  • the wall surface is provided with two ultrasonic wave application mechanisms 20 on each surface.
  • the number and installation state of the ultrasonic wave applying mechanisms 20 are not limited to the example shown in FIG. 1A.
  • the number of ultrasonic wave application mechanisms 20 may be appropriately set according to the shape, size, and the like of the processing tank 10.
  • the ultrasonic application mechanism 20 is installed so as to be symmetrical as much as possible, or the ultrasonic wave application mechanism 20 is arranged in a staggered manner. It is possible.
  • FIG. 1B illustrates the case where only one reflected vibrating body 30 is provided, the number of reflected vibrating bodies 30 used is not particularly limited.
  • the reflected vibrating body 30 may be appropriately set according to the number of objects S to be processed, and two or more reflected vibrating bodies 30 may be used.
  • the treatment tank 10 has a long axis (y-axis in the case of FIG. 1A) having substantially the same cross-sectional shape, and the treatment liquid 3 used for performing a predetermined treatment on the object S to be treated, and The object S itself to be processed and the reflected vibrating body 30 are accommodated. As a result, the object S to be treated contained in the treatment tank 10 is immersed in the treatment liquid 3.
  • the type of the treatment liquid 3 held in the treatment tank 10 is not particularly limited, and various treatment liquids can be used depending on the treatment to be performed on the object S to be treated.
  • Examples of such a treatment liquid 3 include pure water, distilled water, an aqueous solution containing various compounds, various organic solvents, and the like, and these treatment liquids include various substances removed from the object S to be treated and the like. Impurities may be present in various forms. Further, the treatment liquid 3 may or may not be degassed in order to increase the propagation efficiency of ultrasonic waves. Further, fine bubbles having a bubble diameter of 100 ⁇ m or less may be present in the treatment liquid 3. The presence of fine bubbles in the treatment liquid 3 makes it possible to further improve the treatment efficiency as well as increase the shock wave of ultrasonic waves.
  • the temperature of the treatment liquid 3 depends on the specific treatment content to be carried out using the treatment liquid 3, but is preferably about 20 ° C. to 85 ° C., for example.
  • the fact that the liquid is degassed means that the amount of dissolved gas in the liquid of interest is less than 50% of the amount of saturated dissolved gas determined by the temperature of the liquid, and the liquid is not degassed. Means that the amount of dissolved gas in the liquid of interest is 80% or more of the amount of saturated dissolved gas.
  • the material used to form the treatment tank 10 according to the present embodiment is not particularly limited, and may be various metal materials such as iron, steel, stainless steel plate, etc., and fiber reinforced plastic (FRP). ), Polypropylene (PP) and the like, and various bricks such as acid-resistant bricks and the like. That is, as the processing tank 10 constituting the ultrasonic processing apparatus 1 according to the present embodiment, it is possible to newly prepare a processing tank made of the above-mentioned material, and it is already installed in various production lines and the like. It is also possible to use the processing tank of.
  • FRP fiber reinforced plastic
  • PP Polypropylene
  • the size of the treatment tank 10 is not particularly limited, and even if it is a large treatment tank having various shapes such as a liquid level depth of about 1 to 2 m ⁇ a total length of about 3 to 25 m, the present embodiment It can be used as the processing tank 10 of the ultrasonic processing apparatus 1 according to the above.
  • the ultrasonic wave application mechanism 20 is provided in the processing tank 10, and applies ultrasonic waves having a predetermined frequency to the processing liquid 3, the object S to be processed, and the reflected vibrating body 30 housed in the processing tank 10.
  • the ultrasonic application mechanism 20 is not particularly limited, and various known ultrasonic oscillators such as an ultrasonic oscillator connected to an ultrasonic oscillator can be used. Further, in FIGS. 1A and 1B, the case where the ultrasonic wave application mechanism 20 is provided on the wall surface of the processing tank 10 is shown, but the installation position of the ultrasonic wave application mechanism 20 in the processing tank 10 is also particularly limited.
  • one or a plurality of ultrasonic transducers may be appropriately installed on the wall surface or the bottom surface of the processing tank 10. If the conditions are such that the ultrasonic waves are uniformly propagated to the entire processing tank 10, the balance of the oscillation load of each ultrasonic vibrator becomes uniform, so that the number of ultrasonic vibrators is plural. Even so, there is no interference between the generated ultrasonic waves.
  • FIGS. 2A and 2B are explanatory views schematically showing an example of the configuration of the ultrasonic wave applying mechanism 20 according to the present embodiment.
  • the ultrasonic wave applying mechanism 20 may be composed of, for example, an ultrasonic oscillator 201 and an ultrasonic oscillator 203.
  • the ultrasonic oscillator 201 is a device that supplies electric power to the ultrasonic oscillator 203 with a desired output.
  • the ultrasonic oscillator 203 converts the power output from the ultrasonic oscillator 201 into vibration, and oscillates an ultrasonic wave having a desired frequency from the oscillation surface.
  • the ultrasonic wave applying mechanism 20 may be composed of, for example, an ultrasonic oscillator 201 and a throw-in type oscillator 211.
  • the throw-in type oscillator 211 has a plurality of ultrasonic oscillators 203 arranged inside the housing 205 and then ultrasonic waves so as to cover the oscillation surface of each ultrasonic oscillator 203.
  • the housing 205 is sealed with a member made of a predetermined material that allows the housing 205 to pass through. In this case, the member provided so as to cover the oscillation surface of each ultrasonic oscillator 203 becomes the oscillation surface of the throw-in oscillator 211.
  • the interval and the number of the ultrasonic oscillator 203 and the size of the oscillation surface are determined in consideration of the output stability of the ultrasonic wave and the oscillation efficiency.
  • the frequency of the ultrasonic wave output from the ultrasonic wave applying mechanism 20 is preferably, for example, 20 kHz to 200 kHz.
  • the frequency of the ultrasonic wave output from the ultrasonic wave applying mechanism 20 is more preferably 20 kHz or more, still more preferably 25 kHz or more.
  • the frequency of the ultrasonic wave exceeds 200 kHz, the straightness of the ultrasonic wave when processing the object S to be processed becomes too strong, and the uniformity of the processing may decrease.
  • the frequency of the ultrasonic wave output from the ultrasonic wave applying mechanism 20 is more preferably 150 kHz or less, still more preferably 100 kHz or less.
  • the frequency of the ultrasonic wave to be applied it is preferable to select an appropriate value within the above range for the frequency of the ultrasonic wave to be applied according to the type of the object S to be processed and the like, and depending on the type of the object S to be processed, the frequency of two or more types of ultrasonic waves is superposed. Sound waves may be applied.
  • the ultrasonic wave application mechanism 20 may have a frequency sweep function capable of applying ultrasonic waves while sweeping the frequency within a predetermined range around the frequency of a certain selected ultrasonic wave. Such a frequency sweep function makes it possible to realize the following further effects.
  • the reflected vibrating body 30 is immersed in the treatment liquid 3 and is inside an aggregate of a plurality of objects S to be treated or immersed in the treatment liquid 3. It is provided outside.
  • the inside of the aggregate of the object S to be processed does not mean only a state in which all of the reflected vibrating body 30 is surrounded by the aggregate of the object S to be processed, but at least one of the reflected vibrating bodies 30. It also includes a state in which the portion is in contact with at least two objects S to be processed and is surrounded by the objects S to be processed.
  • the reflected vibrating body 30 may be buried inside an aggregate of a plurality of objects S to be processed. Further, the reflected vibrating body 30 may be located outside the aggregate of the object to be processed S as long as it is in contact with another object to be processed S at at least two places.
  • the reflected vibrating body 30 is a hollow member stretched along the longitudinal direction, and in the example shown in FIG. 1B, the reflected vibrating body 30 is stretched along the y-axis direction.
  • the reflected vibrating body 30 is formed by using a material capable of reflecting the applied ultrasonic waves.
  • FIGS. 3 to 7 are schematic views for explaining the reflected vibrating body 30 according to the present embodiment.
  • the ultrasonic waves which are longitudinal waves
  • the ultrasonic waves are reflected on the surface of the reflected vibrating body 30. Therefore, by using the reflected vibrating body 30 according to the present embodiment, the ultrasonic waves that have reached the inside of the aggregate of the plurality of objects S to be processed are reflected, and the ultrasonic waves are applied to more objects S to be processed. It becomes possible to do.
  • the ultrasonic processing apparatus 1 according to the present embodiment it is possible to more reliably propagate ultrasonic waves to a plurality of objects S to be processed to further make the surface treatment more uniform.
  • the reflected vibrating body 30 when the ultrasonic wave which is a longitudinal wave reaches the surface of the reflected vibrating body 30, the reflected vibrating body 30 generates a transverse wave as schematically shown in FIG.
  • the frequency of the ultrasonic wave applied in the ultrasonic processing apparatus 1 according to the present embodiment belongs to, for example, the kHz band, but the frequency of the transverse wave generated by the reflected vibrating body 30 is the ultrasonic wave. It is lower than the frequency of, for example, about several tens to several hundreds of Hz.
  • the generated transverse wave propagates in the reflected vibrating body 30, and the transverse wave propagates to the object S to be processed through the contact portion of the object S to be processed.
  • the transverse wave propagating in the object to be processed S propagates to the other object to be processed S via the contact portion with the other object to be processed S. Due to such propagation of transverse waves, the ultrasonic processing apparatus 1 according to the present embodiment can vibrate the object S to be processed by the transverse waves in addition to the ultrasonic cavitation. As a result, in the ultrasonic processing apparatus 1 according to the present embodiment, various surface treatments can be more reliably applied to the object S to be processed.
  • the reflected vibrating body 30 has an intrinsic acoustic impedance Zr of 1 ⁇ 10 7 kg ⁇ m -2 ⁇ sec -1 to 2 ⁇ 10 8 kg. -Formed from a material that is m -2 ⁇ sec -1 .
  • the reflected vibrating body 30 can reliably reflect ultrasonic waves.
  • the reflected vibrating body 30 is formed of the material having the intrinsic acoustic impedance Zr as described above, the hollow portion of the reflected vibrating body 30 is different from the intrinsic acoustic impedance Zr as described below. It will be filled with a liquid or gas having an acoustic impedance of Zi.
  • Materials having an inherent acoustic impedance of 1 ⁇ 10 7 kg ⁇ m -2 ⁇ sec -1 to 2 ⁇ 10 8 kg ⁇ m -2 ⁇ sec -1 include, for example, various metals or metal oxides, and non-oxidized materials.
  • Various ceramics including physical ceramics can be mentioned.
  • steel (inherent acoustic impedance [unit: kg ⁇ m -2 ⁇ sec -1 ]: 4.70 ⁇ 107 hereinafter, the numerical values in parentheses are similarly intrinsic acoustic impedance.
  • a material used for forming the reflected vibrating body 30 is appropriately used depending on the liquid property of the processing liquid 3 held in the processing tank 10 and the strength required for the reflected vibrating body 30. It may be selected, but it is preferable to use various metals or metal oxides having the above-mentioned intrinsic acoustic impedance.
  • the cross-sectional shape of the reflected vibrating body 30 may be a circular shape or an elliptical shape as illustrated in FIG. It may be a polygonal shape. However, the closer it is to the circular shape, the less anisotropy occurs in the traveling direction of the reflected wave, and the easier it is to make contact with the object S to be processed. Therefore, the cross-sectional shape of the reflected vibrating body 30 is circular. The shape is preferable.
  • the ultrasonic wave propagates through the processing liquid 3 which is a medium. Therefore, in order to ensure that the ultrasonic waves reach the surrounding object S to be processed, it is important that a gap exists around the reflected vibrating body 30.
  • the transverse wave as shown in FIG. 3 to the object to be processed S at least a part of the reflected vibrating body 30 and at least a part of the object to be processed S must be in contact with each other. is important.
  • the size of the cross section of the object to be processed S is used as a reference. It was possible to find a condition in which the size of the cross section of the reflected vibrating body 30 is satisfactory. Hereinafter, such conditions will be described.
  • the maximum value of the diameter is the maximum when the cross-sectional shape is circular as shown in the upper left of FIG. 4, and the maximum of the major axis is when the cross-sectional shape is elliptical as shown in the upper right of FIG.
  • the size of the longest diagonal line is defined as the maximum value Dr of the outer diameter of the reflected vibrating body 30.
  • the maximum value of the outer diameter is set to Ds in the same manner as in the reflected vibrating body 30.
  • the maximum value of the outer diameter of the portion excluding the flange portion 33 is set to Dr.
  • the outer diameter ratio Dr / Ds of the reflected vibrating body 30 satisfies the relationship of 0.2 ⁇ Dr / Ds ⁇ 6.0.
  • the reflected vibrating body 30 can realize a contact state while creating a gap with the object S to be processed.
  • the outer diameter ratio Dr / Ds of the reflected vibrating body 30 is preferably 0.5 or more, and more preferably 1.0 or more.
  • the outer diameter ratio Dr / Ds of the reflected vibrating body 30 exceeds 6.0, the reflected vibrating body 30 becomes relatively large, and it is not possible to secure a space for processing a plurality of objects S to be processed. In some cases, or even if the contact state with the object S to be processed can be maintained, there may be a case where the ultrasonic wave cannot propagate because it is behind the reflected vibrating body 30.
  • the outer diameter ratio Dr / Ds of the reflected vibrating body 30 is preferably 5.0 or less, more preferably 4.5 or less.
  • the thickness (thickness) of the reflected vibrating body 30 is represented by tr
  • the intrinsic acoustic impedance of the reflected vibrating body 30 is represented by Zr
  • the substance (encapsulated) in the reflected vibrating body 30 is represented.
  • the intrinsic acoustic impedance of the liquid or gas existing inside the reflected vibrating body regardless of the presence or absence is expressed as Zi.
  • the thickness t [mm] of the reflected vibrating body 30 is set to 0.2 ⁇ t ⁇ 3. It is preferably in the range of 0.
  • the thickness tr of the reflected vibrating body 30 is within the range of 3.0 mm ⁇ t ⁇ 20.0 mm.
  • the fact that the ratio Zi / Zr of the intrinsic acoustic impedance is 1 ⁇ 10 -3 or less means that the intrinsic acoustic impedance Zi of the material inside the hollow of the reflected vibrating body 30 and the intrinsic acoustic impedance Zr of the reflected vibrating body 30. This means that the difference between the two is large and the ultrasonic waves are easily reflected at the interface between the reflected vibrating body 30 and the material inside the hollow of the reflected vibrating body 30.
  • the substance capable of realizing the ratio Zi / Zr of the intrinsic acoustic impedance is, for example, various gases (for example, air, oxygen, etc.). Nitrogen, carbon dioxide, inert gas such as helium and argon, etc.).
  • the intrinsic acoustic impedance of air is 4.29 ⁇ 10 2 kg ⁇ m -2 ⁇ sec -1 .
  • the thickness tr of the reflected vibrating body 30 by setting the thickness tr of the reflected vibrating body 30 to 0.2 mm to 3.0 mm, the time for ultrasonic waves to pass through the reflected vibrating body 30 can be shortened, and further, the reflected vibrating body 30 after passing can be shortened. It is possible to more efficiently reflect the ultrasonic waves that have reached the inner surface of the above by the closed gas filled in the hollow inside of the reflected vibrating body 30.
  • the thickness tr of the reflected vibrating body 30 is thinner than 0.2 mm, the strength when the reflected vibrating body 30 is provided inside the aggregate of a plurality of objects to be processed is weak, and the reflected vibrating body 30 is deformed as the reflected vibrating body 30. It may not be able to fulfill its role.
  • the thickness tr of the reflected vibrating body 30 is more preferably 0.3 mm or more.
  • the ultrasonic waves are absorbed, scattered, or reflected in the reflected vibrating body 30 before reaching the interface inside the hollow of the reflecting vibrating body 30. Reflection occurs on the surface of the vibrating body 30, and as a result, ultrasonic waves cannot be attenuated or efficiently reflected.
  • the thickness t of the reflected vibrating body 30 is more preferably 2.0 mm or less.
  • the fact that the ratio Zi / Zr of the intrinsic acoustic impedance is more than 1 ⁇ 10 -3 means that the intrinsic acoustic impedance Zi of the material inside the hollow of the reflected vibrating body 30 and the intrinsic acoustic impedance Zr of the reflected vibrating body 30 When the difference is small and the ultrasonic waves propagate inside the hollow of the reflected vibrating body 30, it means that the ultrasonic waves are easily transmitted.
  • the intrinsic acoustic impedance Zr of the reflected vibrating body 30 is within the above range, as a substance capable of realizing the ratio Zi / Zr of the intrinsic acoustic impedance, for example, silicone rubber (inherent acoustic impedance: 1.0).
  • silicone rubber inherent acoustic impedance: 1.0.
  • ⁇ 10 In addition to various solids such as resins such as 6 kg ⁇ m -2 ⁇ sec -1 ), various liquids such as pure water, distilled water, aqueous solutions containing various compounds, and various organic solvents can be mentioned.
  • the ratio Zi / Zr of the intrinsic acoustic impedance as described above is more than 1 ⁇ 10 -3 and the treatment liquid 3 is a liquid that has not been degassed, the hollow portion of the reflected vibrating body 30 is formed. It may be sealed with the degassed liquid filled. By enclosing the degassed liquid in this way, it is possible to further improve the propagation efficiency of ultrasonic waves and further improve the treatment performance of surface treatment. Further, when the ratio Zi / Zr of the intrinsic acoustic impedance as described above is more than 1 ⁇ 10 -3 , the hollow portion of the treatment liquid 3 may be filled with the treatment liquid 3 itself.
  • the partition wall or the like for sealing the treatment liquid 3 near both ends of the reflected vibrating body 30, but the partition wall or the like may not be provided.
  • the hollow portion of the reflected vibrating body 30 is filled with a substance different from the treatment liquid 3, regardless of the magnitude of the specific acoustic impedance ratio Zi / Zr, these substances are located near both ends of the reflected vibrating body 30.
  • the thickness tr of the reflected vibrating body 30 is set to 3.0 mm to 20.0 mm, so that the ultrasonic waves reach the surface of the reflected vibrating body 30. Is less likely to pass through the reflected vibrating body 30, and can be more efficiently reflected on the surface of the reflected vibrating body 30.
  • the thickness tr of the reflected vibrating body 30 is thinner than 3.0 mm, ultrasonic waves pass through the reflected vibrating body 30 and the reflectance on the surface is lowered, and as a result, the object to be processed is subjected to. The propagation of ultrasonic waves is reduced.
  • the thickness tr of the reflected vibrating body 30 is more preferably 5.0 mm or more.
  • the thickness tr of the reflected vibrating body 30 becomes thicker than 20.0 mm, the relationship between the reflection and the transmission due to the wavelength of the ultrasonic frequency becomes remarkable, and it is difficult to control the reflection on the surface of the reflected vibrating body 30. Will be.
  • the thickness tr of the reflected vibrating body 30 is more preferably 20.0 mm or less.
  • the length in the longitudinal direction of the object S to be processed (for example, the length in the y-axis direction shown in FIG. 5) is represented by Ls, and the length in the longitudinal direction of the reflected vibrating body 30 (for example, the y-axis shown in FIG. 5).
  • the length in the direction) is expressed as Lr.
  • the length ratio Lr / Ls is smaller than 0.7, there may be a wide portion that is not in contact with the object S to be treated, and the effect of reflection may not be obtained.
  • the length ratio Lr / Ls is more preferably 0.7 or more, still more preferably 0.8 or more, and even more preferably 0.9 or more.
  • the length ratio Lr / Ls is larger than 3.0, the reflection efficiency increases in a place where there is no object S to be processed, which may lead to a failure of the oscillator.
  • the ratio Lr / Ls of the lengths of the reflected vibrating body 30 and the object S to be processed in the longitudinal direction is more preferably 2.0 or less, still more preferably 1.5 or less.
  • the reflected vibrating body 30 according to the present embodiment is shown as one member having no seam, but the reflected vibrating body 30 according to the present embodiment has a plurality of members. It may have a connected connection structure.
  • the method of connecting and integrating a plurality of members is not particularly limited, and the plurality of members may be connected by welding or the like, or a plurality of members may be connected by using various connecting members such as nuts and bolts. Members may be connected.
  • the reflected vibrating body 30 is hollow, partition walls or the like may be provided near both ends of the reflected vibrating body 30. In particular, in order to fill the inside of the reflected vibrating body 30 with a substance having an intrinsic acoustic impedance different from that of the processing liquid 3, partition walls and the like near both ends of the reflected vibrating body 30 are indispensable.
  • the end portion of the reflected vibrating body 30 may not be sealed, and the hollow portion of the reflected vibrating body 30 immersed in the treatment liquid 3 may be filled with the treatment liquid 3.
  • the hollow portion of the reflected vibrating body 30 may be in a sealed state and may not be filled with the treatment liquid 3.
  • the hollow portion of the sealed reflected vibrating body 30 is filled with a gas (for example, air, an inert gas, etc.) or a liquid. Since the reflected vibrating body 30 has such a closed hollow structure, it is possible to more reliably reflect the ultrasonic waves that have reached the reflected vibrating body 30.
  • the hollow portion of the reflected vibrating body 30 in the sealed state is -100 kPa to -10 kPa from the atmospheric pressure. It is more preferable that the pressure is reduced to some extent. Since the hollow portion of the reflected vibrating body 30 in the sealed state is in the depressurized state as described above, it is possible to more reliably reflect the ultrasonic waves that have reached the reflected vibrating body 30.
  • the reflected vibrating body 30 according to the present embodiment is provided with a flange portion 33 on the outer surface as schematically shown in FIG.
  • a flange portion 33 By providing such a flange portion 33, it is possible to more efficiently propagate the transverse wave generated by the reflected vibrating body 30 by the ultrasonic wave to the object S to be processed.
  • the flange portion 33 is provided on the reflected vibrating body 30, the above-mentioned maximum value Dr of the outer diameter is the maximum value of the outer diameter of the portion other than the flange portion 33.
  • the flange portion 33 is integrated with the reflected vibrating body 30.
  • the means for integrating the flange portion 33 into the reflected vibrating body 30 is not particularly limited.
  • the flange portion 33 may be integrated with the reflected vibrating body 30 by welding, or the flange portion 33 may be integrated with the reflecting vibrating body 30 by various connecting members such as bolts and nuts.
  • the flange portion 33 may be formed so as to protrude from the reflected vibrating body 30 by overhanging molding, or the flange portion 33 may be formed by performing machined molding on the reflected vibrating body 30.
  • the size of the cross section (cross section orthogonal to the y-axis direction) of the reflected vibrating body 30 of the portion where the flange portion 33 is provided is expressed as Df, and the flange portion is represented by Df.
  • the maximum value of the outer diameter of the reflected vibrating body 30 in the portion where 33 is not provided is represented by Dr.
  • the ratio Df / Dr of the size of the cross section satisfies the relationship of 1.1 ⁇ Df / Dr ⁇ 3.0.
  • the cross-sectional size ratio Df / Dr is more preferably 1.2 or more or 1.4 or more, and 2.0 or less or 1.6 or less.
  • the thickness of the flange portion 33 (thickness tf of the flange portion 33 in the y-axis direction shown in FIG. 5) shall be the same as the thickness tr of the reflected vibrating body 30 or larger than the thickness tr of the reflected vibrating body 30. Is preferable. This makes it possible to more reliably propagate the transverse wave generated by the reflected vibrating body 30 to the object S to be processed while suppressing the attenuation of the intensity.
  • the thickness tf of the flange portion 33 is more preferably 2 to 10 times the thickness tr of the reflected vibrating body 30.
  • FIG. 6 shows a case where three flange portions 33 are provided for the reflected vibrating body 30, but the number of flange portions 33 provided for one reflecting vibrating body 30 is not particularly limited. It may be one or two, or four or more. Further, the separation distance between the adjacent flange portions 33 (separation distance p in FIG. 6) is not particularly limited, and may be appropriately set according to the length of the reflected vibrating body 30 in the y-axis direction. For example, it is preferably about 0.1 m to 5.0 m.
  • the flange portion 33 is preferably formed using a material having a lateral elastic modulus G in the range of 15 to 250 GPa.
  • the lateral elastic modulus (also referred to as shear elastic modulus) G can be regarded as an index showing the difficulty of deformation.
  • the propagation state of the transverse wave generated by the reflected vibrating body 30 by ultrasonic waves depends on the transverse elastic modulus, and the more easily the material is deformed, the more the transverse wave is attenuated.
  • the transverse wave propagates in a direction orthogonal to the traveling direction of the ultrasonic wave (sparse and dense wave) to cause a vertical displacement, and the vibration of the transverse wave propagates in the solid of the reflected vibrating body 30.
  • the transverse elastic modulus G of the material forming the flange portion 33 is preferably a large value.
  • the transverse elastic modulus G of the material forming the flange portion 33 is preferably in the range of 15 to 250 GPa.
  • the lateral elastic modulus G of the material forming the flange portion 33 is more preferably 30 to 100 GPa.
  • Examples of the material having the transverse elastic coefficient G as described above include iron (60 GPa), stainless steel (74 GPa), titanium alloy (41 GPa), brass (37 GPa), quartz (31 GPa), magnesium alloy (17 GPa), and tungsten. Carbide (219 GPa) and the like can be mentioned.
  • the flange portion 33 is preferably formed of the same material as the reflected vibrating body 30, and more preferably integrally molded with the reflecting vibrating body 30 by overhanging or cutting.
  • the flange portion 33 of the reflected vibrating body 30 as described above is provided so as to be in contact with the object to be processed S at at least one place at intervals of 5 m or less along the longitudinal direction of the object to be processed S.
  • the reflected vibrating body 30 so as to satisfy the above-mentioned positional relationship, when surface treatment is performed on an aggregate composed of a plurality of objects to be processed S, the plurality of objects to be treated are further subjected to surface treatment. It is possible to reliably propagate ultrasonic waves.
  • the flange portions 33 are provided so as to come into contact with the object to be processed S at two or more places at intervals of 5 m or less along the longitudinal direction of the object to be processed S.
  • the contact intervals are 0.1 m or more. If the contact interval of the flange portion 33 is smaller than 0.1 m, the reflected ultrasonic waves may repeat multiple reflections only in the closed space, resulting in attenuation at the flange portion 33.
  • the ultrasonic processing apparatus 1 used in the ultrasonic processing method according to the present embodiment has been described in detail above.
  • the ultrasonic wave processing method according to the present embodiment is realized by using the ultrasonic wave processing device 1 as described above.
  • a treatment tank having a long axis having substantially the same cross-sectional shape and provided with an ultrasonic wave application mechanism is filled with a treatment liquid and treated.
  • the surface treatment is applied to the objects to be treated while applying ultrasonic waves.
  • each of the objects to be treated is arranged so as to be in contact with one or a plurality of other objects to be treated at least at two points, and is immersed in the treatment liquid in the treatment tank.
  • One or a plurality of hollow reflective vibrating bodies extending in the direction are arranged, and each of the reflected vibrating bodies is arranged so as to be in contact with another object to be processed at at least two points.
  • the outer diameter ratio Dr / Ds is 0.2 to 6.0
  • the intrinsic acoustic impedance Zr of the reflected vibrating body is 1 ⁇ 10 7 to 2 ⁇ 10 8 kg ⁇ m ⁇ 2 ⁇ sec -1 , and the hollow portion of the reflected vibrating body. Is filled with a liquid or gas having an intrinsic acoustic impedance Zi different from that of the intrinsic acoustic impedance Zr.
  • the preferable conditions in the ultrasonic wave processing method according to the present embodiment are as described in the description of the ultrasonic wave processing device according to the present embodiment, and detailed description thereof will be omitted below.
  • the ultrasonic treatment method according to this embodiment has been briefly described above.
  • the ultrasonic processing method and the ultrasonic processing apparatus according to the present invention will be specifically described with reference to Examples and Comparative Examples.
  • the examples shown below are merely examples of the ultrasonic processing method and the ultrasonic processing apparatus according to the present invention, and the ultrasonic processing method and the ultrasonic processing apparatus according to the present invention are limited to the examples shown below. It's not something.
  • Example 8A and 8B are explanatory views showing an implementation state of ultrasonic treatment in Experimental Example 1, which imitates washing (rinsing) of a steel pipe.
  • the treatment tank 10 had an outer wall made of SUS, a width of 1.0 ⁇ a length of 15.0 ⁇ 0.6 m , and a capacity of 9.0 m3.
  • verification was performed by immersing the object to be treated S (steel pipe or brass pipe) to which the oxide scale remained inside and outside the pipe after pickling for a predetermined time.
  • As the cleaning liquid that functions as the treatment liquid 3 undegassed water at a temperature of 20 ° C.
  • the ultrasonic oscillator of the ultrasonic application mechanism 20 had an output of 1200 W, and 10 SUS throw-in oscillators as shown in FIG. 2B were used as the ultrasonic oscillators.
  • the frequency of the ultrasonic wave was 35 kHz.
  • a cushioning member (not shown) was installed on the wall surface of the treatment tank 10 so that the object S to be treated would not be damaged.
  • the reflected vibrating body 30 installed so as to be in contact with the object S to be processed was compared by changing the size, shape, length, closed structure, and contact conditions.
  • the material (including the flange) used as the reflected vibrating body 30 is stainless steel (natural acoustic impedance Zr: 4.57 ⁇ 10 7 kg ⁇ m -2 / sec -1 ) duralumin material (natural acoustic impedance Zr: 1).
  • stainless steel transverse elastic modulus G: 74 GPa
  • quartz G: 31 GPa
  • tungsten carbide G: 219 GPa
  • brass G: 37 GPa
  • polystyrene G: 1. 4 GPa
  • degassed water means degassed water.
  • the partition wall near both ends of the reflected vibrating body 30. It means that the inside of the reflected vibrating body 30 is filled with the treatment liquid 3 (that is, undegassed water).
  • one point for example, position 1 in the side view shown in FIG. 8A
  • the ultrasonic intensity (mV) was measured at one point (position 2 in FIG. 8B) in the processing tank, and the relative ultrasonic intensity (measurement result of Comparative Example 1, that is, the reflected vibrating body 30 was not installed).
  • Relative strength when the measured ultrasonic strength was 1 when only the steel pipe was installed) was calculated, and the propagating property into the object S to be treated and the tank was compared.
  • evaluation A and evaluation B mean that the water washing performance was very good
  • evaluation C meant that the water washing performance was good
  • evaluation D had some difficulty in water washing performance.
  • the evaluation E and the evaluation F mean that the washing performance was poor.
  • Those with evaluations A to D were regarded as acceptable. The obtained results are summarized in Table 1 below.
  • the cross-sectional ratio between the comparative example 1 in which the reflected vibrating body 30 according to the present invention was not held in the processing tank 10 and the object to be processed S is less than 0.2, or 6.
  • Comparative Examples 2 and 3 in which the reflected vibrating body 30 exceeding 0 was provided a region where the water washing performance was poor or the water washing was insufficient occurred.
  • This result is in agreement with the measurement result that the relative ultrasonic intensity and the vibration acceleration are almost the same as the values of Comparative Example 1, and the reflection efficiency of the ultrasonic waves of the reflected vibrating body 30 of Comparative Examples 2 and 3 does not increase. , It turned out that the effect of the reflected vibrating body could not be exhibited.
  • Comparative Example 4 in which the reflected vibrating body 30 is brought into contact with only one steel pipe, the vibration acceleration propagates to the contacting steel pipe, but the relative ultrasonic intensity is almost the same as that of Comparative Example 1. ing. This indicates that the effect of the reflected vibrating body 30 cannot be exhibited because the number of contact points of the reflected vibrating body 30 is small. Further, in Comparative Example 5 using the reflected vibrating body made of polyethylene, it was found that the vibration acceleration did not propagate well to the steel pipe and the effect of the reflected vibrating body could not be exhibited.
  • Examples 1 to 36 in which the reflected vibrating body according to the present invention was provided and the shape, the cross-sectional ratio to the object S to be treated, and the length ratio were changed had good washing performance.
  • Examples 5 to 13 having a closed structure excellent washing performance was confirmed.
  • Examples 20 to 35 provided with the flange excellent washing performance was confirmed. A correlation was obtained between these washing performances and the ultrasonic intensity and vibration acceleration.
  • Ultrasonic processing device 3 Processing liquid 10 Processing tank 20 Ultrasonic application mechanism 30 Reflecting vibrator 33 Flange part 201 Ultrasonic oscillator 203 Ultrasonic oscillator 205 Housing 211 Throw-in type oscillator S Processed object

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

【課題】複数の被処理物に対してより確実に超音波を伝播させて、表面処理のより一層の均一化を図ること。 【解決手段】超音波印加機構が設けられた処理槽に処理液が満たされ、処理液中に複数の被処理物が浸された状態において、被処理物に対して超音波を印加しながら表面処理を施すものであり、各被処理物が他の被処理物と少なくとも2つの箇所で互いに接触するように配置され、処理槽内に、処理液に浸漬された状態で中空の反射振動体が配置され、反射振動体が、少なくとも2つの箇所で他の被処理物に接触するように配置され、被処理物の外径の最大値Dsと反射振動体の外径の最大値Drとの比Dr/Dsは、0.2~6.0であり、反射振動体の固有音響インピーダンスZrは、1×107~2×108kg・m-2・sec-1であり、反射振動体の中空部は、固有音響インピーダンスZrとは異なる固有音響インピーダンスZiの液体又は気体で満たされている。

Description

超音波処理方法及び超音波処理装置
 本発明は、超音波処理方法及び超音波処理装置に関する。
 一般に、鋼板や鋼管といった各種の金属体の製造工程において、金属体の表面に存在する汚れやスケール等を除去するために、薬液(例えば、アルカリ脱脂剤、界面活性剤、硫酸溶液等)やリンス等が保持された洗浄槽に対して金属体を浸漬することで洗浄を行う洗浄処理方法が、広く採用されている。このような洗浄処理方法を実施する洗浄処理装置としては、例えば、高圧気流噴射ノズルを利用した処理装置や、超音波を利用した超音波処理装置がある。
 ここで、鋼板や鋼管などのような大型材に対する、洗浄処理をはじめとする各種の表面処理に際して、超音波の伝導性及び均一性を向上するために、以下の特許文献1のように振動子を移動させながら超音波を印加したり、以下の特許文献2のように超音波の反射部材を処理槽に対して設けたりすることが、行われている。
特開平9-143767号公報 国際公開第2018/169050号
 表面処理の更なる効率化を図るために、複数の被処理物をまとめて集合体とし、この集合体に対して処理を施すことが考えられる。この場合、集合体の内部に位置する被処理物への超音波の印加度合いは、集合体の外縁部に位置する被処理物よりも低くなると考えられる。そのため、上記特許文献1及び特許文献2に開示されている技術を用いたとしても、集合体の内部に位置する被処理物と集合体の外縁部に位置する被処理物とで、表面処理の処理度合いが相違してしまう可能性がある。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、複数の被処理物からなる集合体に対して表面処理を施す際に、複数の被処理物に対してより確実に超音波を伝播させて、表面処理のより一層の均一化を図ることが可能な、超音波処理装置及び超音波処理方法を提供することにある。
 上記課題を解決するために、本発明者らが鋭意検討を行った結果、複数の被処理物からなる集合体の内部に、超音波を反射させる反射部材を設け、かつ、かかる反射部材といくつかの被処理物とを、適度な間隙を保持しながら接触させることに着想した。本発明者らは、かかる着想に基づき更なる検討を行った結果、反射部材と被処理物とを、適度な間隙を保持しながら接触させるための条件を見出すことができた。
 かかる知見に基づき完成された本発明の要旨は、以下の通りである。
(1)断面形状が略同一である長軸を有し、超音波印加機構が設けられた処理槽に、処理液が満たされ、前記処理液中に長手方向に延伸する複数の被処理物が浸された状態において、前記被処理物に対して超音波を印加しながら表面処理を施す超音波処理方法であって、前記被処理物のそれぞれが、1又は複数の他の前記被処理物と、少なくとも2つの箇所で互いに接触するように配置され、処理槽内に、処理液に浸漬された状態で、長手方向に延伸する1又は複数の中空の反射振動体が配置され、前記反射振動体のそれぞれが、少なくとも2つの箇所で、他の前記被処理物に接触するように配置され、前記被処理物の長手方向に垂直な断面における外径の最大値をDsとし、前記反射振動体の長手方向に垂直な断面における外径の最大値をDrとしたときに、外径比Dr/Dsは、0.2~6.0であり、前記反射振動体の固有音響インピーダンスZrは、1×10~2×10kg・m-2・sec-1であり、前記反射振動体の中空部は、前記固有音響インピーダンスZrとは異なる固有音響インピーダンスZiの液体又は気体で満たされている、超音波処理方法。
(2)前記反射振動体の中空部は、固有音響インピーダンスの比Zi/Zrが1×10-3以下となる気体で満たされている、(1)に記載の超音波処理方法。
(3)前記反射振動体の厚さtrは、0.2~3.0mmである、(2)に記載の超音波処理方法。
(4)前記処理液は、溶存気体量が飽和溶存気体量の80%以上であり、前記反射振動体の中空部は、溶存気体量が飽和溶存気体量の50%未満である液体で満たされている、(1)に記載の超音波処理方法。
(5)前記反射振動体の中空部は、前記処理液で満たされている、(1)に記載の超音波処理方法。
(6)前記反射振動体の厚さtrは、3.0~20.0mmである、(4)又は(5)に記載の超音波処理方法。
(7)前記被処理物は、前記被処理物の長手方向の長さをLsとし、前記反射振動体の長手方向の長さをLrとしたときに、長さの比Lr/Lsは、0.7≦Lr/Ls≦3.0の関係を満足する、(1)~(6)の何れか1つに記載の超音波処理方法。
(8)前記反射振動体の外表面には、フランジ部が設けられている、(1)~(7)の何れか1つに記載の超音波処理方法。
(9)前記フランジ部が設けられた部分の前記反射振動体の断面の大きさをDfとしたときに、断面の大きさの比Df/Drは、1.1≦Df/Dr≦3.0の関係を満足する、(8)に記載の超音波処理方法。
(10)前記フランジ部は、横弾性係数Gが15~250GPaである、(8)又は(9)に記載の超音波処理方法。
(11)前記フランジ部の厚みtfは、前記反射振動体の厚みtrの2.0~10.0倍である、(8)~(10)の何れか1つに記載の超音波処理方法。
(12)前記フランジ部は、前記被処理物の長手方向に沿って前記被処理物の長さ5mの範囲内で、前記被処理物と少なくとも1箇所接触するように設けられる、(8)~(11)の何れか1つに記載の超音波処理方法。
(13)長手方向に延伸する複数の被処理物と、前記被処理物を浸漬するための処理液と、が収納された、断面形状が略同一である長軸を有する処理槽と、前記処理液に対して超音波を印加する超音波印加機構と、を備えた超音波処理装置であって、前記被処理物のそれぞれが、1又は複数の他の被処理物と、少なくとも2つの箇所で互いに接触するように配置され、処理槽内に、処理液に浸漬された状態で、長手方向に延伸する1又は複数の中空の反射振動体が配置され、前記反射振動体のそれぞれが、少なくとも2つの箇所で、他の前記被処理物に接触するように配置され、前記被処理物の長手方向に垂直な断面における外径の最大値をDsとし、前記反射振動体の長手方向に垂直な断面における外径の最大値をDrとしたときに、外径比Dr/Dsは、0.2~6.0であり、前記反射振動体の固有音響インピーダンスZiは、1×10~2×10kg・m-2・sec-1であり、前記反射振動体の中空部は、前記固有音響インピーダンスZiとは異なる固有音響インピーダンスZrの液体又は気体で満たされている、超音波処理装置。
 以上説明したように本発明によれば、複数の被処理物からなる集合体に対して表面処理を施す際に、複数の被処理物に対してより確実に超音波を伝播させて、表面処理のより一層の均一化を図ることが可能となる。
本発明の実施形態に係る超音波処理装置の全体構成の一例を模式的に示した説明図である。 同実施形態に係る超音波処理装置の全体構成の一例を模式的に示した説明図である。 同実施形態に係る超音波処理装置における超音波印加機構について説明するための説明図である。 同実施形態に係る超音波処理装置における超音波印加機構について説明するための説明図である。 同実施形態に係る反射振動体について説明するための模式図である。 同実施形態に係る反射振動体について説明するための模式図である。 同実施形態に係る反射振動体について説明するための模式図である。 同実施形態に係る反射振動体について説明するための模式図である。 同実施形態に係る反射振動体について説明するための模式図である。 実験例1における超音波処理の実施状態を示した説明図である。 実験例1における超音波処理の実施状態を示した説明図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<超音波処理装置の全体構成>
 まず、図1A及び図1Bを参照しながら、本発明の実施形態に係る超音波処理方法に用いられる超音波処理装置の全体的な構成について、簡単に説明する。図1A及び図1Bは、本実施形態に係る超音波処理装置の全体的な構成の一例を模式的に示した説明図である。なお、図中の各部材の大きさは、説明を容易とするため適宜強調されており、実際の寸法、部材間の比率を示すものではない。
 本実施形態に係る超音波処理装置1は、複数の被処理物に対して所定の処理を施す処理液に加えて超音波を併用し、被処理物の表面(処理液に接している部位)に対して所定の処理を施す装置である。かかる超音波処理装置1は、鋼材等に代表される各種の金属体や、プラスチック樹脂製部材等に代表される各種の非金属体等の被処理物に対して、例えば洗浄等の各種の処理を施す際に利用することができる。例えば、鋼管、形鋼、棒鋼、鋼線材等といった、所定の長手方向に延伸する各種の金属体を被処理物とし、本実施形態に係る超音波処理装置1を用いることで、これらの金属体に対して、酸洗処理や脱脂処理、更には洗浄処理を行うことができる。また、本実施形態に係る超音波処理装置1は、酸洗処理後の水洗処理を実施する際に対しても、用いることが可能である。
 ここで、酸洗処理とは、金属体の表面に熱処理や熱加工等により形成された酸化物スケールを、酸性溶液を用いて除去する処理であり、脱脂処理とは、有機溶剤、界面活性剤を含む水溶液、又は、アルカリ系の脱脂液を用いて、加工処理等に用いる潤滑剤や加工油等の油分を除去する処理である。これらの酸洗処理及び脱脂処理は、表面仕上げ処理(金属被覆処理、化成処理、塗装処理等)を金属体に対して施すに先だって実施される前処理である。かかる酸洗処理によって、地の金属の一部を溶解させることもある。また、表面仕上げ品質を向上させるためのエッチングによる金属体の溶解にも、かかる酸洗処理は用いられている。また、酸洗処理の前段に脱脂処理が設けられている場合もあり、脱脂処理における脱脂性能が、その後の酸洗処理のスケールの除去に影響を及ぼすこともある。更には、脱脂処理は、最終製品の仕上げ品質としての油分管理指標である濡れ性の改善にも、使用される。
 更に、以下で詳述する本実施形態に係る超音波処理装置1は、上記のような製造ラインにおける洗浄工程以外にも、使用済み配管や定期的もしくは不定期に汚れ除去を必要とする配管などの洗浄等に対しても用いることが可能である。
 このように、本実施形態に係る超音波処理方法で用いられる超音波処理装置1は、所定の長手方向に沿って延伸する長尺体のような被処理物の各種表面処理に適用可能であり、表面処理皮膜(例えば、各種の酸化皮膜やめっき皮膜、表面処理仕上げ処理後の塗膜等)が表面に生成した長尺体を被処理物とすることも可能である。更に、本実施形態に係る超音波処理装置1は、上記のような意図的に形成した各種の皮膜以外にも、例えば、酸化物スケールや油分等の意図しない表面付着物が膜状に付着した長尺体を被処理物とすることも可能である。
 以下では、処理液の保持されている処理槽が存在し、かかる処理槽の内部に、複数の長尺体が集合体となって浸漬される場合を例に挙げて、詳細に説明を行う。この場合、複数の長尺体の集合体は、クレーン等の上下動が可能な駆動機構(図示せず。)によって、処理液の保持された処理槽の内部に浸漬される。また、複数の長尺体の集合体は、未図示のワイヤーやネット等によって束状に纏められた状態で、処理槽に浸漬されてもよい。
 以下では、便宜的に、図1A及び図1Bに示した座標系を適宜利用して、説明を行う。
 本実施形態に係る超音波処理装置1は、図1Aに例示したように、被処理物Sの一例である複数の長尺体の集合体が収容される処理槽10と、超音波印加機構20と、を有している。処理槽10の長軸方向(y軸方向)に垂直な断面形状は、略同じ断面形状である。各被処理物Sは、図1Aに模式的に示したように、y軸方向に沿って延伸している鋼管等の管状体や棒鋼等の長尺物であり、1又は複数の他の被処理物Sと、少なくとも2つの箇所で互いに接触するように配置されている。また、本実施形態に係る超音波処理装置1では、図1Bに模式的に示したように、少なくとも2つの箇所で被処理物Sと接触するように、長手方向に延伸する1又は複数の反射振動体30が設けられている。
 なお、反射振動体30は、少なくとも2つ箇所での被処理物Sと接触するような状態となっていれば、被処理物Sの集合体の内部にあってもよく、又は、反射振動体30が、被処理物Sの集合体から露出している、つまり集合体Sの外側にあってもよい。また、反射振動体30が複数の場合、一部の反射振動体30が集合体の内部にあり、かつ、一部の反射振動体30が集合体の外側にあってもよい。
 なお、複数の被処理物Sではなく、ただ一つの被処理物Sが浸漬されている場合、この被処理物Sに反射振動体30が少なくとも2つ箇所で接触すれば、被処理物Sに対して超音波を伝播させることが可能である。このため、本実施形態においては、被処理物Sの数は1つでもよい。しかしながら、一つの被処理物Sが1つで、かつ、反射振動体30が1つの場合、2つの箇所で互いに接触することは容易でなく、複数の反射振動体30が必要となる場合が多い。このため、被処理物Sの数は2以上であることが好ましい。被処理物Sの数は、多ければ多いほどよく、その上限値は特に規定するものではない。被処理物Sの数の上限値は、処理槽10の寸法と被処理物Sの寸法などにより自ずと決まる。例えば、被処理物Sの数の上限を1000又は100としてもよい。
 ここで、図1Aでは、処理槽10の内壁面に対して、y軸方向に略平行な内壁面については各面6個の超音波印加機構20が設けられ、x軸方向に略平行な内壁面については各面2個の超音波印加機構20が設けられている。ただし、かかる超音波印加機構20の個数及び設置状態については、図1Aに示した例に限定されるものではない。超音波印加機構20の個数については、処理槽10の形状や大きさ等に応じて、適宜設定すればよい。また、超音波印加機構20の配置状態についても、例えば、なるべく対称となるように設置する、千鳥配置とする等、処理槽10の形状や大きさ等に応じて、各種の配置方法を適用することが可能である。
 また、図1Bでは、反射振動体30が1つだけ設けられている場合を図示しているが、用いられる反射振動体30の個数についても特に限定されるものではない。反射振動体30は、被処理物Sの数に応じて適宜設定すればよく、2つ以上の反射振動体30を用いてもよい。
 以下に、本実施形態に係る超音波処理方法で用いられる超音波処理装置1の各構成について、より詳細に説明する。
<処理槽10>
 処理槽10は、断面形状が略同一である長軸(図1Aの場合、y軸)を有しており、被処理物Sに対して所定の処理を施すために用いられる処理液3や、被処理物Sそのものや、反射振動体30が収容される。これにより、処理槽10内に収容された被処理物Sは、処理液3に浸漬されている。処理槽10に保持される処理液3の種類については、特に限定されるものではなく、被処理物Sに対して行う処理に応じて、各種の処理液を用いることが可能である。このような処理液3として、純水、蒸留水、各種の化合物を含む水溶液、各種の有機溶媒等を挙げることができ、これらの処理液には、被処理物Sから除去された各種物質や不純物が種々の形態で存在していてもよい。また、処理液3は、超音波の伝播効率を高めるために、脱気されていてもよいし、脱気されていなくともよい。また、処理液3中には、気泡径が100μm以下の微細気泡であるファインバブルが存在していてもよい。処理液3中にファインバブルが存在することで、超音波の衝撃波の増大と共に処理効率を更に向上させることが可能となる。また、処理液3の温度は、処理液3を用いて実施する具体的な処理内容にもよるが、例えば、20℃~85℃程度であることが好ましい。
 ここで、液体が脱気されている、とは、着目する液体の溶存気体量が、液体の温度によって定まる飽和溶存気体量の50%未満であることを表し、液体が脱気されていない、とは、着目する液体の溶存気体量が、飽和溶存気体量の80%以上であることを表す。
 本実施形態に係る処理槽10を形成するために用いられる素材は、特に限定されるものではなく、鉄、鋼、ステンレス鋼板等といった各種の金属材料であってもよいし、繊維強化プラスチック(FRP)やポリプロピレン(PP)等といった各種のプラスチック樹脂であってもよいし、耐酸レンガ等のような各種のレンガであってもよい。すなわち、本実施形態に係る超音波処理装置1を構成する処理槽10として、上記のような素材で形成された処理槽を新たに準備することも可能であるし、各種の製造ライン等における既設の処理槽を利用することも可能である。
 また、処理槽10の大きさについても特に限定されるものではなく、液面深さ1~2m程度×全長3~25m程度のような各種形状の大型処理槽であったとしても、本実施形態に係る超音波処理装置1の処理槽10として利用可能である。
<超音波印加機構20>
 超音波印加機構20は、処理槽10に設けられており、処理槽10に収容されている処理液3や被処理物Sや反射振動体30に対して、所定周波数の超音波を印加する。超音波印加機構20は、特に限定されるものではなく、超音波発振器に接続された超音波振動子など、公知の各種のものを利用することが可能である。また、図1A及び図1Bでは、超音波印加機構20を処理槽10の壁面に設ける場合について図示しているが、超音波印加機構20の処理槽10への設置位置についても特に限定されるものではなく、処理槽10の壁面や底面に対して、1又は複数の超音波振動子を適宜設置すればよい。なお、処理槽10全体に均一に超音波が伝播されるような条件となれば、個々の超音波振動子の発振負荷のバランスが一様となるため、超音波振動子の個数が複数であったとしても、発生した超音波間で干渉が生じなくなる。
 図2A及び図2Bは、本実施形態に係る超音波印加機構20の構成の一例を模式的に示した説明図である。
 本実施形態に係る超音波印加機構20は、図2Aに示したように、例えば、超音波発振器201と、超音波振動子203と、で構成されていてもよい。超音波発振器201は、超音波振動子203に所望の出力で電力を供給する装置である。また、超音波振動子203は、超音波発振器201から出力された電力を振動に変換して、発振面から所望の周波数の超音波を発振する。かかる超音波印加機構20のうち超音波振動子203の部分を、処理槽10に対して設置することで、処理液3の液面高さ予定線に対して超音波を発振することが可能となる。
 また、本実施形態に係る超音波印加機構20は、図2Bに示したように、例えば、超音波発振器201と、投げ込み型振動子211と、で構成されていてもよい。投げ込み型振動子211は、図2Bに示したように、筐体205の内部に複数の超音波振動子203を配置した上で、各超音波振動子203の発振面を覆うように、超音波を透過する所定の材質からなる部材で筐体205を封止したものである。この場合、各超音波振動子203の発振面を覆うように設けられた部材が、投げ込み型振動子211の発振面となる。投げ込み型振動子211の場合、超音波の出力安定性や発振効率を考慮して、超音波振動子203の間隔及び個数や、発振面の大きさが決定される。
 超音波印加機構20から出力される超音波の周波数は、例えば、20kHz~200kHzであることが好ましい。超音波の周波数が20kHz未満である場合には、被処理物Sの表面から発生するサイズの大きな気泡により超音波伝播が阻害され、超音波による処理性向上効果が低下する場合がある。超音波印加機構20から出力される超音波の周波数は、より好ましくは20kHz以上であり、更に好ましくは25kHz以上である。一方、超音波の周波数が200kHzを超える場合には、被処理物Sを処理する際の超音波の直進性が強くなりすぎて、処理の均一性が低下する場合がある。超音波印加機構20から出力される超音波の周波数は、より好ましくは150kHz以下であり、更に好ましくは100kHz以下である。
 なお、印加する超音波の周波数は、被処理物Sの種別等に応じて上記範囲内で適切な値を選定することが好ましく、被処理物Sの種類によっては、2種類以上の周波数の超音波を印加してもよい。
 また、超音波印加機構20は、ある選択した超音波の周波数を中心として所定の範囲で周波数を掃引しつつ超音波を印加することが可能な、周波数掃引機能を有していてもよい。このような周波数掃引機能によって、以下のような更なる効果を実現することが可能となる。
 超音波の一般的な性質として、「超音波の波長が照射物体の厚みに対応する波長の1/4となったときに、照射物体を透過する超音波の透過率が最大となる」という現象が知られている。そこで、周波数を適切な範囲で掃引しながら超音波を印加することで、例えば被処理物Sが管状体等の中空部を有するものであった場合に、管状体内へと透過する超音波を増加させることが可能となり、本実施形態に係る超音波処理装置1の処理効率を更に向上させることが可能となる。
<反射振動体30>
 本実施形態に係る反射振動体30は、例えば図1Bに示したように、処理液3に浸漬された状態で、処理液3中に浸漬される複数の被処理物Sの集合体の内部又は外部に設けられる。ここで、被処理物Sの集合体の内部とは、反射振動体30の全てが被処理物Sの集合体に囲まれている状態のみを意味するのではなく、反射振動体30の少なくとも一部が、少なくとも2つの被処理物Sと接触した状態で、被処理物Sに囲まれている状態をも含む。すなわち、反射振動体30は、その少なくとも一部が、複数の被処理物Sの集合体の内部に埋没していればよい。また、反射振動体30は、少なくとも2つの箇所で他の被処理物Sと接触した状態となっているのであれば、被処理物Sの集合体の外部に位置していてもよい。
 かかる反射振動体30は、長手方向に沿って延伸した中空部材であり、図1Bに示した例では、反射振動体30はy軸方向に沿って延伸している。この反射振動体30は、印加された超音波を反射させることが可能な素材を用いて形成されている。
 以下、図3~図7を参照しながら、本実施形態に係る反射振動体30について、詳細に説明する。図3~図7は、本実施形態に係る反射振動体30について説明するための模式図である。
 本実施形態に係る反射振動体30の表面に対し、図3に模式的に示したように、縦波である超音波が到達すると、超音波は反射振動体30の表面で反射される。そのため、本実施形態に係る反射振動体30を用いることで、複数の被処理物Sの集合体の内部まで到達した超音波を反射させて、より多くの被処理物Sに対し超音波を印加することが可能となる。その結果、本実施形態に係る超音波処理装置1では、複数の被処理物Sに対してより確実に超音波を伝播させて、表面処理のより一層の均一化を図ることが可能となる。
 また、縦波である超音波が反射振動体30の表面に到達すると、反射振動体30は、図3に模式的に示したように、横波を発生させる。先だって例示したように、本実施形態に係る超音波処理装置1において印加される超音波の周波数は、例えばkHz帯に属するものであるが、反射振動体30により発生する横波の周波数は、超音波の周波数よりも低く、例えば数十~数百Hz程度である。発生した横波は反射振動体30中を伝播していくが、横波は、被処理物Sの接触部位を介して、被処理物Sに対しても伝播する。更に、被処理物S中を伝播している横波は、他の被処理物Sとの接触部位を介して、他の被処理物Sへと伝播していく。このような横波の伝播により、本実施形態に係る超音波処理装置1では、超音波キャビテーションに加えて横波によっても被処理物Sを振動させることが可能となる。その結果、本実施形態に係る超音波処理装置1では、被処理物Sに対して、各種の表面処理をより確実に施すことが可能となる。
 ここで、反射振動体30まで到達した超音波を確実に反射させるために、反射振動体30は、固有音響インピーダンスZrが1×10kg・m-2・sec-1~2×10kg・m-2・sec-1である素材により形成される。固有音響インピーダンスZrが上記範囲内である素材を用いて反射振動体30が形成されることで、かかる反射振動体30は、超音波を確実に反射させることが可能となる。また、反射振動体30が、上記のような固有音響インピーダンスZrを有する素材により形成されることで、反射振動体30の中空部は、以下で説明するように、固有音響インピーダンスZrとは異なる固有音響インピーダンスZiの液体又は気体で満たされることとなる。
 固有音響インピーダンスが1×10kg・m-2・sec-1~2×10kg・m-2・sec-1である素材としては、例えば、各種の金属又は金属酸化物や、非酸化物セラミックスを含む各種のセラミックス等を挙げることができる。このような素材の具体例としては、例えば、鋼(固有音響インピーダンス[単位:kg・m-2・sec-1]:4.70×10、以下、カッコ内の数値は同様に固有音響インピーダンスの値を表す。)、鉄(3.78×10)、ニッケルクロム鋼(3.98×10)、ステンレス鋼(SUS、4.57×10)、チタン(2.73×10)、亜鉛(3.00×10)、ニッケル(5.35×10)、アルミニウム(1.73×10)、黄銅(4.06×10)、ジュラルミン(1.71×10)、タングステン(1.03×10)、ガラス(1.32×10)、石英ガラス(1.27×10)、グラスライニング(1.67×10)、アルミナ(酸化アルミニウム、3.84×10)、ジルコニア(酸化ジルコニウム、3.91×10)、窒化ケイ素(SiN、3.15×10)、炭化ケイ素(SiC、3.92×10)、炭化タングステン(WC、9.18×10)等がある。本実施形態に係る反射振動体30においては、処理槽10に保持される処理液3の液性や、反射振動体30に求める強度等に応じて、反射振動体30の形成に用いる素材を適宜選択すればよいが、上記のような固有音響インピーダンスを有する各種金属又は金属酸化物を用いることが好ましい。
 反射振動体30の断面形状(より詳細には、反射振動体30の長手方向に対して直交する断面の形状)は、図4に例示したように、円形状であってもよいし、楕円形状であってもよいし、多角形状であってもよい。ただし、円形状に近ければ近いほど、反射波の進行方向に異方性が生じなくなり、また、被処理物Sに対してより接触しやすい状態となるため、反射振動体30の断面形状は円形状であることが好ましい。
 ここで、超音波は、媒質である処理液3を介して伝播していく。そのため、超音波を周囲の被処理物Sへと確実に到達させるために、反射振動体30の周囲には、間隙が存在していることが重要である。一方、図3に示したような横波を被処理物Sへと伝播させるためには、反射振動体30の少なくとも一部と被処理物Sの少なくとも一部とが、互いに接触した状態にあることが重要である。このような、被処理物Sとの間で間隙を生じさせつつ、接触状態も実現するための条件について、本発明者らが鋭意検討したところ、被処理物Sの断面の大きさを基準とした、反射振動体30の断面の大きさが満足すべき条件を見出すことができた。以下、かかる条件について説明する。
 図4に示したような、反射振動体30の断面形状(より詳細には、長手方向に対して垂直な断面の形状)に着目する。ここで、断面形状が図4左上のように円形状である場合には直径の大きさの最大値を、断面形状が図4右上のように楕円形状である場合には長径の大きさの最大値を、断面形状が図4左下のように多角形状である場合には最も長い対角線の大きさを、反射振動体30の外径の最大値Drとする。また、被処理物Sについても、反射振動体30と同様にして、外径の最大値をDsとする。ここで、後述のように反射振動体にフランジ部33が設けられている場合、フランジ部33を除く部分の外径の最大値をDrとする。
 この際、本実施形態に係る超音波処理装置1では、反射振動体30の外径比Dr/Dsは、0.2≦Dr/Ds≦6.0の関係を満足する。外径比Dr/Dsが上記の範囲内となることで、反射振動体30は、被処理物Sとの間で間隙を生じさせつつ、接触状態も実現することが可能となる。
 反射振動体30の外径比Dr/Dsが0.2未満である場合には、反射振動体30と被処理物Sとの間の間隙が狭くなりすぎ、処理液3を介して超音波の縦波を伝播させることができず、被処理物Sに超音波を印加することができない。反射振動体30の外径比Dr/Ds)は、好ましくは0.5以上であり、より好ましくは1.0以上である。反射振動体30の外径比Dr/Dsが上記のような好ましい範囲となることで、より確実に、反射振動体30と被処理物Sとの間で間隙を生じさせつつ、接触状態も実現することが可能となる。
 一方、反射振動体30の外径比Dr/Dsが6.0を超える場合には、反射振動体30が相対的に大きくなりすぎて、被処理物Sを複数処理するだけのスペースを確保できない場合や、被処理物Sとの接触状態を保持できたとしても、反射振動体30の陰になり超音波が伝播できない場合が生じる。反射振動体30の外径比Dr/Dsは、好ましくは5.0以下であり、より好ましくは4.5以下である。反射振動体30の外径比Dr/Dsが上記のような好ましい範囲となることで、より確実に、反射振動体30と被処理物Sとの間で間隙を生じさせつつ、接触状態も実現することが可能となる。
 また、図4に模式的に示したように、反射振動体30の厚み(肉厚)をtrと表し、反射振動体30の固有音響インピーダンスをZrと表し、反射振動体30内の物質(封入有無にかかわらず、反射振動体の内部に存在する液体や気体)の固有音響インピーダンスをZiと表す。この際に、本実施形態では、固有音響インピーダンスの比Zi/Zrが1×10-3以下である場合には、反射振動体30の厚みt[mm]を、0.2≦t≦3.0の範囲内とすることが好ましい。また、固有音響インピーダンスの比Zi/Zrが1×10-3を超える場合には、反射振動体30の厚みtrを、3.0mm<t≦20.0mmの範囲内とすることが好ましい。
 ここで、固有音響インピーダンスの比Zi/Zrが1×10-3以下であるということは、反射振動体30の中空内部の物質の固有音響インピーダンスZiと、反射振動体30の固有音響インピーダンスZrとの差が大きく、超音波が反射振動体30と反射振動体30の中空内部の物質との界面で反射しやすい状況となっていることを意味する。また、反射振動体30の固有音響インピーダンスZrが上記の範囲内である場合に、かかる固有音響インピーダンスの比Zi/Zrを実現可能な物質としては、例えば、各種の気体(例えば、空気、酸素、窒素、二酸化炭素、ヘリウムやアルゴン等の不活性ガスなど)が挙げられる。例えば、空気の固有音響インピーダンスは、4.29×10kg・m-2・sec-1である。
 この場合に、反射振動体30の厚みtrを0.2mm~3.0mmとすることで、超音波が反射振動体30の中を通過する時間を短くし、更には、通過後反射振動体30の内面まで到達した超音波を、反射振動体30の中空内部に満たされた密閉気体により、より効率的に反射させることが可能となる。反射振動体30の厚みtrが0.2mmよりも薄い場合には、反射振動体30を複数の被処理物の集合体の内部に設けた際の強度が弱く、変形して反射振動体30としての役目を果たせない場合がある。固有音響インピーダンスの比Zi/Zrが1×10-3以下である場合の反射振動体30の厚みtrは、より好ましくは0.3mm以上である。一方、反射振動体30の厚みtrが3.0mmよりも厚くなると、超音波が反射振動体30の中空内部の界面に到達する前に、反射振動体30の中で吸収や散乱、又は、反射振動体30表面での反射が起こり、その結果、超音波の減衰や効率的な反射ができない。固有音響インピーダンスの比Zi/Zrが1×10-3以下である場合の反射振動体30の厚みtは、より好ましくは2.0mm以下である。
 一方、固有音響インピーダンスの比Zi/Zrが1×10-3超であるということは、反射振動体30の中空内部の物質の固有音響インピーダンスZiと、反射振動体30の固有音響インピーダンスZrとの差が小さく、超音波が反射振動体30中空内部に伝播した場合、透過しやすい状況となっていることを意味する。また、反射振動体30の固有音響インピーダンスZrが上記の範囲内である場合に、かかる固有音響インピーダンスの比Zi/Zrを実現可能な物質としては、例えば、シリコーンゴム(固有音響インピーダンス:1.0×10kg・m-2・sec-1)等の樹脂などといった各種の固体に加え、純水、蒸留水、各種の化合物を含む水溶液、各種の有機溶媒等の各種の液体が挙げられる。
 また、上記のような固有音響インピーダンスの比Zi/Zrが1×10-3超である際に、処理液3が脱気されていない液体である場合に、反射振動体30の中空部は、脱気された状態の液体が満たされた状態で密閉されていてもよい。このように、脱気された状態の液体が封入されることで、超音波の伝搬効率をより向上させ、表面処理の処理性能をより向上させることが可能となる。また、上記のような固有音響インピーダンスの比Zi/Zrが1×10-3超である際に、処理液3の中空部は、処理液3そのもので満たされていてもよい。処理液3の中空部に処理液3を満たすために、反射振動体30の両端部付近に処理液3を密閉するための隔壁等があってもよいが、隔壁等がなくてもよい。なお、固有音響インピーダンスの比Zi/Zrの大きさにかかわらず、反射振動体30の中空部に処理液3と異なる物質が満たされている場合、反射振動体30の両端部付近にこれらの物質を密閉するための隔壁等がある。
 固有音響インピーダンスの比Zi/Zrが1×10-3超である場合、反射振動体30の厚みtrを3.0mm~20.0mmとすることで、反射振動体30の表面まで到達した超音波を、反射振動体30の中に透過しにくくし、より効率的に反射振動体30の表面で反射させることが可能となる。反射振動体30の厚みtrが3.0mmよりも薄い場合には、超音波が反射振動体30の中を通過して、表面での反射率が低下してしまい、その結果、被処理物への超音波の伝播が低下する。固有音響インピーダンスの比Zi/Zaが1×10-3超である場合の反射振動体30の厚みtrは、より好ましくは5.0mm以上である。一方、反射振動体30の厚みtrが20.0mmよりも厚くなると、超音波周波数の波長による反射と透過の関係が顕著に現れてくるため、反射振動体30の表面での反射の制御が困難となる。固有音響インピーダンスの比Zi/Zaが1×10-3超である場合の反射振動体30の厚みtrは、より好ましくは20.0mm以下である
 被処理物Sの長手方向の長さ(例えば、図5に示したy軸方向の長さ)をLsと表し、反射振動体30の長手方向の長さ(例えば、図5に示したy軸方向の長さ)をLrと表す。このとき、被処理物Sが長手方向に複数並んだ場合は、複数の被処理物Sのそれぞれの長さに対し、以下の式を満たすものとする。この際に、本実施形態に係る反射振動体30において、長さの比Lr/Lsは、0.7≦Lr/Ls≦3.0の関係を満足することが好ましい。長さの比Lr/Lsが0.7よりも小さいと、被処理物Sに接触していない部分が広く存在してしまい、反射の効果を得られない場合がある。長さの比Lr/Lsは、より好ましくは0.7以上であり、更に好ましくは0.8以上あり、より一層好ましくは0.9以上である。一方、長さの比Lr/Lsが3.0よりも大きいと、被処理物Sの無い場所で反射効率があがることで、振動子の故障に繋がる場合がある。反射振動体30と被処理物Sとの長手方向の長さの比Lr/Lsが上記の範囲内となることで、より確実に、反射振動体30と被処理物Sとの間で間隙を生じさせつつ、接触状態も実現することが可能となる。反射振動体30と被処理物Sとの長手方向の長さの比Lr/Lsは、より好ましくは2.0以下であり、更に好ましくは1.5以下である。
 なお、図5では、本実施形態に係る反射振動体30が、継ぎ目の存在しない1本の部材であるように図示しているが、本実施形態に係る反射振動体30は、複数の部材が連結された連結構造を有しているものであってもよい。複数の部材を連結させて一体化させる方法については、特に限定されるものではなく、溶接等によって複数の部材を連結させてもよいし、ナット及びボルト等といった各種の連結部材を利用して複数の部材を連結させてもよい。反射振動体30は中空であるが、反射振動体30の両端部付近などに隔壁等が設けられてもよい。特に、反射振動体30の内部に、処理液3と異なる固有音響インピーダンスの物質を満たすためには、反射振動体30の両端部付近の隔壁等が必須である。
 本実施形態において、反射振動体30の端部が密閉されずに、処理液3に浸漬された状態の反射振動体30の中空部に、処理液3で満たされた状態となっていてもよいが、反射振動体30の中空部は、密閉された状態となって、処理液3で満たされていない状態でもよい。この場合に、密閉された状態の反射振動体30の中空部は、気体(例えば、空気や不活性ガス等)や液体が充填された状態となっている。反射振動体30がこのような密閉された中空構造を有することで、反射振動体30まで到達した超音波を、より確実に反射させることが可能となる。また、反射振動体30の内部に気体が満たされている場合(つまり、気体が密封されている場合)、密閉された状態の反射振動体30の中空部は、大気圧より-100kPa~-10kPa程度の減圧状態となっていることがより好ましい。密閉された状態の反射振動体30の中空部が上記のような減圧状態となっていることで、反射振動体30まで到達した超音波を、より一層確実に反射させることが可能となる。
 本実施形態に係る反射振動体30は、図6に模式的に示したように、外表面にフランジ部33が設けられることが好ましい。このようなフランジ部33を設けることで、超音波によって反射振動体30で発生した横波を、より効率よく被処理物Sに伝播させることが可能となる。なお、反射振動体30にフランジ部33を設ける場合、上述の外径の最大値Drは、フランジ部33以外の部分の外径の最大値とする。
 かかるフランジ部33は、反射振動体30と一体化されていることが好ましい。フランジ部33を反射振動体30に一体化させる手段については、特に限定されるものではない。例えば、溶接によりフランジ部33を反射振動体30と一体化させてもよいし、ボルト及びナット等といった各種の連結部材によりフランジ部33を反射振動体30と一体化させてもよい。また、張り出し成形により反射振動体30からフランジ部33を突出形成してもよいし、反射振動体30に対して削り出し成形を施すことで、フランジ部33を形成してもよい。
 ここで、図7に模式的に示したように、フランジ部33が設けられた部分の反射振動体30の断面(y軸方向に対して直交する断面)の大きさをDfと表し、フランジ部33が設けられていない部分の反射振動体30の外径の最大値をDrと表す。この場合に、断面の大きさの比Df/Drは、1.1≦Df/Dr≦3.0の関係を満足することが好ましい。断面の大きさの比Df/Drが上記の関係を満足することで、反射振動体30で発生した横波を、強度の減衰を抑制しながら被処理物Sへと伝播させることが可能となる。断面の大きさの比Df/Drは、より好ましくは、1.2以上又は1.4以上であり、2.0以下又は1.6以下である。
 また、フランジ部33の厚み(図5に示したy軸方向のフランジ部33の厚みtf)は、反射振動体30の厚みtrと同じか、又は、反射振動体30の厚みtrよりも大きいことが好ましい。これにより、反射振動体30で発生した横波を、強度の減衰を抑制しながら被処理物Sへとより確実に伝播させることが可能となる。フランジ部33の厚みtfは、反射振動体30の厚みtrに対して、より好ましくは2倍~10倍である。
 図6では、反射振動体30に対して3つのフランジ部33が設けられる場合について図示しているが、1つの反射振動体30に設けられるフランジ部33の個数は、特に限定されるものではなく、1つ又は2つでもよいし、4つ以上であってもよい。また、隣り合うフランジ部33間の離隔距離(図6における離隔距離p)についても、特に限定されるものではなく、反射振動体30のy軸方向の長さに応じて適宜設定すればよいが、例えば、0.1m~5.0m程度とすることが好ましい。
 かかるフランジ部33は、横弾性係数Gが15~250GPaの範囲内である素材を用いて形成されることが好ましい。横弾性係数(せん断弾性係数ともいう。)Gは、変形のしにくさを表す指標として捉えることができる。超音波により反射振動体30で発生する横波の伝播状態は、横弾性係数に依存し、変形しやすい素材であるほど横波は減衰してしまう。横波は、超音波(疎密波)の進行方向に対して直交する方向に伝播することで、上下の変位を生じさせ、反射振動体30の固体中を横波の振動が伝播していく。このような横波をより確実に伝播させるためには、フランジ部33を形成する素材の横弾性係数Gは、大きい値であることが好ましい。一方で、横弾性係数が大きくなりすぎると反射振動体30との固有音響インピーダンス差が大きくなる場合があり、異質材界面で反射してしまう可能性が高まるため、好ましくない。このような観点から、フランジ部33を形成する素材の横弾性係数Gは、15~250GPaの範囲内であることが好ましい。フランジ部33を形成する素材の横弾性係数Gは、より好ましくは30~100GPaである。
 上記のような横弾性係数Gを有する素材としては、例えば、鉄(60GPa)、ステンレス鋼(74GPa)、チタン合金(41GPa)、黄銅(37GPa)、石英(31GPa)、マグネシウム合金(17GPa)、タングステンカーバイド(219GPa)等を挙げることができる。
 また、フランジ部33と反射振動体30の本体部との固有音響インピーダンス差が大きくなりすぎると、異材質界面で反射が発生する可能性が高くなる。かかる観点から、フランジ部33は、反射振動体30と同質の素材で形成されることが好ましく、張り出し加工又は削り出し加工により反射振動体30と一体成形されることがより好ましい。
 以上説明したような反射振動体30のフランジ部33は、被処理物Sの長手方向に沿って5m以内の間隔で、被処理物Sと少なくとも1か所接触するように設けられることが好ましい。上記のような位置関係が満たされるように反射振動体30を設けることで、複数の被処理物Sからなる集合体に対して表面処理を施す際に、複数の被処理物に対してより一層確実に超音波を伝播させることが可能となる。フランジ部33は、被処理物Sの長手方向に沿って5m以内の間隔で、被処理物Sと2か所以上接触するように設けられることが、より好ましい。また、接触箇所を多く設ける場合、接触間隔が0.1m以上空いていることが、より好ましい。フランジ部33の接触間隔が0.1mよりも小さくなると、反射した超音波が閉鎖空間のみで多重反射を繰り返してしまい、フランジ部33での減衰を招いてしまう場合がある。
 以上、本実施形態に係る超音波処理方法で用いられる超音波処理装置1について、詳細に説明した。
<超音波処理方法について>
 本実施形態に係る超音波処理方法は、以上説明したような超音波処理装置1を用いて実現される。かかる超音波処理装置1を用いて実現される超音波処理方法は、断面形状が略同一である長軸を有し、超音波印加機構が設けられた処理槽に、処理液が満たされ、処理液中に長手方向に延伸する複数の被処理物を浸された状態において、被処理物に対して超音波を印加しながら表面処理を施すものである。この際に、被処理物のそれぞれが、1又は複数の他の被処理物と、少なくとも2つの箇所で互いに接触するように配置され、処理槽内に、処理液に浸漬された状態で、長手方向に延伸する1又は複数の中空の反射振動体が配置され、反射振動体のそれぞれが、少なくとも2つの箇所で、他の被処理物に接触するように配置される。また、被処理物の長手方向に垂直な断面における外径の最大値をDsとし、反射振動体の長手方向に垂直な断面における外径の最大値をDrとしたときに、外径比Dr/Dsは、0.2~6.0であり、反射振動体の固有音響インピーダンスZrは、1×10~2×10kg・m-2・sec-1であり、反射振動体の中空部は、固有音響インピーダンスZrとは異なる固有音響インピーダンスZiの液体又は気体で満たされている。
 また、本実施形態に係る超音波処理方法における、好ましい条件については、本実施形態に係る超音波処理装置の説明において記載した通りであり、以下では詳細な説明は省略する。
 以上、本実施形態に係る超音波処理方法について、簡単に説明した。
 以下に、実施例及び比較例を示しながら、本発明に係る超音波処理方法及び超音波処理装置について、具体的に説明する。なお、以下に示す実施例は、あくまでも本発明に係る超音波処理方法及び超音波処理装置の一例にすぎず、本発明に係る超音波処理方法及び超音波処理装置が下記に示す例に限定されるものではない。
(実験例)
 図8A及び図8Bは、鋼管の水洗(リンス)を模した、実験例1における超音波処理の実施状態を示した説明図である。処理槽10は、外壁がSUS製で、幅1.0×長さ15.0×0.6mの容量9.0mのものを用いた。この処理槽10を利用して、酸洗後の管内外に残存している酸化スケールの付着した被処理物S(鋼管又は黄銅管)を所定時間浸漬する水洗で、検証を行った。処理液3として機能する洗浄液としては、温度20℃の脱気されていない状態の水(固有音響インピーダンス:1.50×10kg・m-2・sec-1)を用い、酸洗液が持ち込まれるため酸性条件pH4~7での洗浄液を用いた。
 超音波印加機構20の超音波発振器は、出力が1200Wであり、超音波振動子は、図2Bに示したようなSUS製投げ込み型振動子を10台用いた。また、超音波の周波数は、35kHzとした。処理槽10の壁面には、被処理物Sが傷つかないように緩衝部材(図示せず。)を設置した。
 被処理物Sと共に接触するように設置する反射振動体30は、大きさ、形状、長さ、密閉構造、接触条件を変化させて比較を行った。ここで、反射振動体30として用いる素材(フランジ含む。)は、ステンレス鋼(固有音響インピーダンスZr:4.57×10kg・m-2/sec-1)ジュラルミン材(固有音響インピーダンスZr:1.71×10kg・m-2・sec-1)、ニッケルクロム鋼(固有音響インピーダンスZr:3.98×10kg・m-2・sec-1)、黄銅(固有音響インピーダンスZr:4.06×10kg・m-2・sec-1)、又は、ポリエチレン(固有音響インピーダンスZr:1.75×10kg・m-2・sec-1)とした。また、フランジ部33の素材として、ステンレス鋼(横弾性係数G:74GPa)、石英(G:31GPa)、タングステンカーバイト(G:219GPa)、黄銅(G:37GPa)又は、ポリスチレン(G:1.4GPa)を用いた。
 なお、以下の表1の「封入物質」の欄において、脱気水との記載は、脱気した状態の水を意味している。また、以下の表1の「密封有無」の欄において無と記載され、且つ、「封入物質」の欄において非脱気水と記載している例は、「反射振動体30の両端付近に隔壁等がなく、反射振動体30の内部に処理液3(すなわち、脱気されていない水)が満たされていることを意味している。
 本実験例では、処理槽10内の中央に、複数の被処理物Sの一例として外径50mm×長さ3~10mの鋼管又は黄銅管を10本束にして配置し、これら鋼管又は黄銅管と接触するように反射振動体30を設けた上で、超音波強度及び振動加速度を測定するとともに、以下の基準に即して洗浄評価を行なった。ここで、Lr/Lsは、最長の被処理物Sの長さに対する反射振動体長さの比とした。なお、以下に示す比較例4では、なるべく重ならないように鋼管を平置きにした後、反射振動体30が鋼管の束に対して1箇所のみ接触するように、鋼管の束の端部に反射振動体30を設置した。
 超音波強度に関して、超音波レベルモニター(カイジョー製19001D)を用いて、処理槽に保持した被処理物Sの1点(例えば、図8Aに示した側面図における位置1)と、被処理物Sではない処理槽内の1点(図8Bにおける位置2)の超音波強度(mV)の測定を行い、相対超音波強度(比較例1の測定結果、すなわち、反射振動体30を設置せず、鋼管のみを設置した場合における測定超音波強度を1としたときの相対強度)を算出して、被処理物S及び槽内への伝搬性を比較した。
 また、3軸加速度センサー(ローツェ製デバッグスコープ)を用いて、反射振動体30と、その反射振動体30に接触した被処理物Sそれぞれの加速度測定を行った。3軸加速度センサーは、液に触れないように、測定対象物を液面から少し出すことで測定することとした。以下の表1において、「測定A」が反射振動体30の測定結果であり、「測定B」が反射振動体30に接触した被処理物Sの測定結果である。
 本実験例では、管内面の酸化スケール除去率を測定し、測定した除去率を水洗性能として評価した。より詳細には、各被処理物Sについて、管端部より1mの位置から、更に、管軸方向の内側に向かって5cmまでの管内周面の領域を評価領域(評価面積:約70cm)とし、かかる評価領域が含まれるように、水洗前後のそれぞれで管内表面を撮像した。得られた画像を二値化することで得られる二値化画像から、酸化スケール除去率を算出した。水洗前の酸化スケール残存量に対し、各条件で除去できた酸化スケール除去量の割合を、酸化スケール除去率とした。なお、1つの被処理物Sにおいて、2箇所の評価領域が存在することから、2箇所×10本分=20箇所での平均値を、酸化スケール除去率とした。下記表2における水洗性能の評価基準階下の通りである。
 酸化スケール残存皮膜の除去率
  100%以下~95%以上:A
   95%未満~90%以上:B
   90%未満~80%以上:C
   80%未満~60%以上:D
   60%未満~40%以上:E
   40%未満      :F
 すなわち評価A及び評価Bは、水洗性能が非常に良好であったことを意味し、評価Cは、水洗性能が良好であったことを意味し、評価Dは、水洗性能にやや難があったことを意味し、評価E及び評価Fは、水洗性能が不良であったことを意味する。評価A~評価Dとなったものを、合格とした。
 得られた結果を、以下の表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 まず、比較例を見ると、本発明に係る反射振動体30を処理槽10に保持しなかった比較例1と、被処理物Sとの断面比が0.2に満たない、又は、6.0を超える反射振動体30を設けた比較例2~3では、水洗性能が不良又は水洗不足となる領域が発生した。この結果は、相対超音波強度と振動加速度が比較例1の値とほぼ変わらないという測定結果とも一致しており、比較例2~3の反射振動体30の超音波の反射効率が上がらずに、反射振動体の効果を発揮できていないことが分かった。また、反射振動体30を1本の鋼管のみに接触させた比較例4では、振動加速度は接触している鋼管に伝播しているものの、相対超音波強度は比較例1とほぼ同じ値となっている。これは、反射振動体30の接触箇所が少ないことから、反射振動体30による効果が発現できていないことを示している。また、ポリエチレン製の反射振動体を用いた比較例5では、振動加速度が鋼管にうまく伝播せず、反射振動体の効果を発揮できていないことが分かった。
 一方、本発明に係る反射振動体を設け、形状、被処理物Sとの断面比、長さ比を変えた実施例1~36は、水洗性能が良好であることが確認された。特に、密閉構造とした実施例5~13において、優れた水洗性能が確認された。また、フランジを設けた実施例20~35においても、優れた水洗性能が確認された。これら水洗性能と、超音波強度及び振動加速度とは、相関が得られた。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
   1  超音波処理装置
   3  処理液
  10  処理槽
  20  超音波印加機構
  30  反射振動体
  33  フランジ部
 201  超音波発振器
 203  超音波振動子
 205  筐体
 211  投げ込み型振動子
   S  被処理物
 

Claims (13)

  1.  断面形状が略同一である長軸を有し、超音波印加機構が設けられた処理槽に、処理液が満たされ、前記処理液中に長手方向に延伸する複数の被処理物が浸された状態において、前記被処理物に対して超音波を印加しながら表面処理を施す超音波処理方法であって、
     前記被処理物のそれぞれが、1又は複数の他の前記被処理物と、少なくとも2つの箇所で互いに接触するように配置され、
     処理槽内に、処理液に浸漬された状態で、長手方向に延伸する1又は複数の中空の反射振動体が配置され、
     前記反射振動体のそれぞれが、少なくとも2つの箇所で、他の前記被処理物に接触するように配置され、
     前記被処理物の長手方向に垂直な断面における外径の最大値をDsとし、前記反射振動体の長手方向に垂直な断面における外径の最大値をDrとしたときに、外径比Dr/Dsは、0.2~6.0であり、
     前記反射振動体の固有音響インピーダンスZrは、1×10~2×10kg・m-2・sec-1であり、
     前記反射振動体の中空部は、前記固有音響インピーダンスZrとは異なる固有音響インピーダンスZiの液体又は気体で満たされている、超音波処理方法。
  2.  前記反射振動体の中空部は、固有音響インピーダンスの比Zi/Zrが1×10-3以下となる気体で満たされている、請求項1に記載の超音波処理方法。
  3.  前記反射振動体の厚さtrは、0.2~3.0mmである、請求項2に記載の超音波処理方法。
  4.  前記処理液は、溶存気体量が飽和溶存気体量の80%以上であり、
     前記反射振動体の中空部は、溶存気体量が飽和溶存気体量の50%未満である液体で満たされている、請求項1に記載の超音波処理方法。
  5.  前記反射振動体の中空部は、前記処理液で満たされている、請求項1に記載の超音波処理方法。
  6.  前記反射振動体の厚さtrは、3.0~20.0mmである、請求項4又は5に記載の超音波処理方法。
  7.  前記被処理物は、前記被処理物の長手方向の長さをLsとし、前記反射振動体の長手方向の長さをLrとしたときに、長さの比Lr/Lsは、0.7≦Lr/Ls≦3.0の関係を満足する、請求項1~6の何れか1項に記載の超音波処理方法。
  8.  前記反射振動体の外表面には、フランジ部が設けられている、請求項1~7の何れか1項に記載の超音波処理方法。
  9.  前記フランジ部が設けられた部分の前記反射振動体の断面の大きさをDfとしたときに、断面の大きさの比Df/Drは、1.1≦Df/Dr≦3.0の関係を満足する、請求項8に記載の超音波処理方法。
  10.  前記フランジ部は、横弾性係数Gが15~250GPaである、請求項8又は9に記載の超音波処理方法。
  11.  前記フランジ部の厚みtfは、前記反射振動体の厚みtrの2.0~10.0倍である、請求項8~10の何れか1項に記載の超音波処理方法。
  12.  前記フランジ部は、前記被処理物の長手方向に沿って前記被処理物の長さ5mの範囲内で、前記被処理物と少なくとも1箇所接触するように設けられる、請求項8~11の何れか1項に記載の超音波処理方法。
  13.  長手方向に延伸する複数の被処理物と、前記被処理物を浸漬するための処理液と、が収納された、断面形状が略同一である長軸を有する処理槽と、
     前記処理液に対して超音波を印加する超音波印加機構と、
    を備えた超音波処理装置であって、
     前記被処理物のそれぞれが、1又は複数の他の被処理物と、少なくとも2つの箇所で互いに接触するように配置され、
     処理槽内に、処理液に浸漬された状態で、長手方向に延伸する1又は複数の中空の反射振動体が配置され、
     前記反射振動体のそれぞれが、少なくとも2つの箇所で、他の前記被処理物に接触するように配置され、
     前記被処理物の長手方向に垂直な断面における外径の最大値をDsとし、前記反射振動体の長手方向に垂直な断面における外径の最大値をDrとしたときに、外径比Dr/Dsは、0.2~6.0であり、
     前記反射振動体の固有音響インピーダンスZiは、1×10~2×10kg・m-2・sec-1であり、
     前記反射振動体の中空部は、前記固有音響インピーダンスZiとは異なる固有音響インピーダンスZrの液体又は気体で満たされている、超音波処理装置。
     
PCT/JP2020/047147 2020-12-17 2020-12-17 超音波処理方法及び超音波処理装置 WO2022130565A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/047147 WO2022130565A1 (ja) 2020-12-17 2020-12-17 超音波処理方法及び超音波処理装置
JP2022569423A JP7295490B2 (ja) 2020-12-17 2020-12-17 超音波処理方法及び超音波処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047147 WO2022130565A1 (ja) 2020-12-17 2020-12-17 超音波処理方法及び超音波処理装置

Publications (1)

Publication Number Publication Date
WO2022130565A1 true WO2022130565A1 (ja) 2022-06-23

Family

ID=82057390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047147 WO2022130565A1 (ja) 2020-12-17 2020-12-17 超音波処理方法及び超音波処理装置

Country Status (2)

Country Link
JP (1) JP7295490B2 (ja)
WO (1) WO2022130565A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4624934Y1 (ja) * 1964-04-04 1971-08-27
JPH03222419A (ja) * 1990-01-29 1991-10-01 Kokusai Denki Erutetsuku:Kk 超音波洗浄装置
WO2011067955A1 (ja) * 2009-12-03 2011-06-09 新日本製鐵株式会社 鋼板の酸洗方法及び酸洗装置
WO2018169050A1 (ja) * 2017-03-16 2018-09-20 新日鐵住金株式会社 超音波洗浄装置及び超音波洗浄方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3222419B2 (ja) 1998-03-27 2001-10-29 丸善製薬株式会社 バナナ果肉の黒変防止剤、黒変防止バナナ、黒変防止バナナ飲食品及びバナナ果肉の黒変防止法
TWI300208B (en) 2005-03-30 2008-08-21 Quanta Comp Inc Apparatus and method for adjusting brightness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4624934Y1 (ja) * 1964-04-04 1971-08-27
JPH03222419A (ja) * 1990-01-29 1991-10-01 Kokusai Denki Erutetsuku:Kk 超音波洗浄装置
WO2011067955A1 (ja) * 2009-12-03 2011-06-09 新日本製鐵株式会社 鋼板の酸洗方法及び酸洗装置
WO2018169050A1 (ja) * 2017-03-16 2018-09-20 新日鐵住金株式会社 超音波洗浄装置及び超音波洗浄方法

Also Published As

Publication number Publication date
JPWO2022130565A1 (ja) 2022-06-23
JP7295490B2 (ja) 2023-06-21

Similar Documents

Publication Publication Date Title
JP6673527B2 (ja) 超音波洗浄装置及び超音波洗浄方法
JPH0213116Y2 (ja)
JP2009055024A (ja) 基板洗浄装置及び基板洗浄方法
JP7131622B2 (ja) 金属管の洗浄方法及び洗浄装置
WO2022130565A1 (ja) 超音波処理方法及び超音波処理装置
JP6863540B1 (ja) 超音波処理装置及びファインバブルの供給方法
JP2010153541A (ja) 超音波洗浄装置及び超音波洗浄方法
KR101639635B1 (ko) 메가소닉 세정 방법 및 세정 장치
Tan et al. Developing high intensity ultrasonic cleaning (HIUC) for post-processing additively manufactured metal components
JP7372535B2 (ja) 超音波処理装置及び超音波処理方法
EP3976282B1 (en) A system and use of the system for cleaning a device
JP4533406B2 (ja) 超音波洗浄装置及び超音波洗浄方法
WO2021125260A1 (ja) 超音波処理装置
JP3839154B2 (ja) 超音波振動発生装置及び超音波洗浄装置
JP3809293B2 (ja) 超音波励振装置及びこれを備えた超音波洗浄装置
JP3734333B2 (ja) 超音波励振装置及びこれを具備した超音波洗浄装置
JPH0420546Y2 (ja)
CN208680010U (zh) 一种超声波清洗器
KR20190096361A (ko) 액체 금속에 의한 고체 기판의 표면의 습윤성 개선 방법
Awad et al. High intensity ultrasonic cleaning for particle removal
JP2023500094A (ja) 移動する鋼ストリップの連続洗浄方法および装置
Svonni Hot Rolled Wire Descaling
RU2429086C1 (ru) Способ очистки проволоки и устройство для его осуществления
KR20140112455A (ko) 액체 초음파파쇄 세정 시스템에서 홀들 내의 세정을 향상시키기 위한 홀들 내의 정상파 생성
JP2011131110A (ja) 微細気泡発生方法及び微細気泡発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965953

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022569423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965953

Country of ref document: EP

Kind code of ref document: A1