WO2021125260A1 - 超音波処理装置 - Google Patents

超音波処理装置 Download PDF

Info

Publication number
WO2021125260A1
WO2021125260A1 PCT/JP2020/047145 JP2020047145W WO2021125260A1 WO 2021125260 A1 WO2021125260 A1 WO 2021125260A1 JP 2020047145 W JP2020047145 W JP 2020047145W WO 2021125260 A1 WO2021125260 A1 WO 2021125260A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
processing
tank
treatment
ultrasonic wave
Prior art date
Application number
PCT/JP2020/047145
Other languages
English (en)
French (fr)
Inventor
英里 干場
伊達 博充
徳丸 慎司
慎太郎 小原
裕太 尾崎
林 伸幸
正喜 安東
Original Assignee
日本製鉄株式会社
日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, 日鉄エンジニアリング株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021531434A priority Critical patent/JP6980950B2/ja
Priority to KR1020227023942A priority patent/KR20220111705A/ko
Priority to US17/787,179 priority patent/US11839906B2/en
Priority to CN202080087892.7A priority patent/CN114929404A/zh
Publication of WO2021125260A1 publication Critical patent/WO2021125260A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/04Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving focusing or reflecting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/048Overflow-type cleaning, e.g. tanks in which the liquid flows over the tank in which the articles are placed
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/71Cleaning in a tank

Definitions

  • the present invention relates to an ultrasonic processing apparatus.
  • Patent Document 1 a swinging means for rotating an ultrasonic vibrator is provided inside a washing tank, and the ultrasonic vibrator is shaken during cleaning of an object to be cleaned to perform cleaning by ultrasonic waves.
  • Techniques for improving sexuality have been proposed.
  • Patent Document 2 proposes a technique for improving cleaning efficiency by rotating the object to be cleaned and driving the ultrasonic vibrator up and down during cleaning of the object to be cleaned.
  • Patent Document 3 proposes a technique of providing a curved surface member for reflecting ultrasonic waves on the wall surface and / or the bottom surface of the processing tank.
  • an object of the present invention is to improve the propagability and uniformity of ultrasonic waves even when treating a plurality of objects to be processed.
  • An object of the present invention is to provide an ultrasonic processing apparatus that can be easily improved.
  • the surface of the inner surface of the treatment tank up to the planned liquid level height of the treatment liquid (in other words, the portion in contact with the treatment liquid).
  • a treatment tank capable of accommodating an object to be processed and a treatment liquid for immersing the object to be processed, and an ultrasonic application mechanism for applying ultrasonic waves to the treatment liquid are provided.
  • the treatment tank has a long axis whose cross-sectional shapes are substantially the same as each other, and the wall surface of the treatment liquid up to the planned liquid level height is a concave curved surface.
  • An ultrasonic processing apparatus provided at a position where the angle ⁇ formed by the normal line of the oscillating surface and the planned liquid level line of the processing liquid is 5 ° to 80 °.
  • the ultrasonic processing apparatus according to any one of (1) to (4), which is 90% or more.
  • the radius of curvature R of the concave curved surface is 1.
  • the ultrasonic processing apparatus according to any one of (1) to (5), which is 0 to 25.0 times.
  • the ultrasonic wave application mechanism is provided according to any one of (1) to (6), wherein the installation position in the processing tank can be changed according to the processing amount of the object to be processed. Ultrasonic processing equipment.
  • the processing tank is parallel to the long axis of the processing tank by connecting or detaching processing tank parts having substantially the same cross-sectional shape in a cross section cut in a direction orthogonal to the long axis.
  • the ultrasonic processing apparatus according to any one of (1) to (7), which is configured so that the length in each direction is variable.
  • the portion of the gantry that holds the processing tank in contact with the processing tank is made of a material having an intrinsic acoustic impedance of 1 ⁇ 10 5 to 2 ⁇ 10 6 kg ⁇ m -2 ⁇ sec -1 .
  • the ultrasonic processing apparatus according to any one of (9).
  • FIG. 5 is an explanatory view showing an enlarged cross section when the ultrasonic processing apparatus according to the embodiment of the present invention is cut along the AA cutting line of FIG. 1A. It is explanatory drawing for demonstrating the ultrasonic wave application mechanism in the ultrasonic wave processing apparatus which concerns on this embodiment. It is explanatory drawing for demonstrating the ultrasonic wave application mechanism in the ultrasonic wave processing apparatus which concerns on this embodiment. It is explanatory drawing for demonstrating the ultrasonic wave processing apparatus which concerns on this embodiment. It is explanatory drawing for demonstrating the ultrasonic wave processing apparatus which concerns on this embodiment. It is explanatory drawing for demonstrating the ultrasonic wave processing apparatus which concerns on this embodiment.
  • FIG. 1A is an explanatory view schematically showing the overall configuration of the ultrasonic processing apparatus according to the present embodiment
  • FIG. 1B shows the ultrasonic processing apparatus according to the present embodiment at the AA cutting line of FIG. 1A.
  • It is explanatory drawing which enlarged and showed the cross section at the time of cutting. The size of each member in the drawing is emphasized as appropriate for ease of explanation, and does not indicate the actual size or the ratio between the members.
  • the treatment liquid 3 is immersed in the treatment liquid 3 stored (or filled) in the treatment tank 10 from the ultrasonic treatment mechanism 20.
  • This is a device that applies the following treatment to the surface of the object to be treated (the part in contact with the treatment liquid) by applying ultrasonic waves to the surface of the object to be treated.
  • the ultrasonic processing apparatus 1 performs various treatments such as cleaning on various metal bodies represented by steel materials and various non-metal bodies represented by plastic resin members and the like. It can be used when applying. For example, various metal bodies extending in a predetermined axial direction such as steel pipes, shaped steels, steel bars, steel wires, etc.
  • a pickling treatment, a degreasing treatment, and a washing treatment (after the pickling treatment or the like) can be performed.
  • the pickling treatment is a treatment for removing the oxide scale formed on the surface of the metal body by heat treatment, heat processing, or the like
  • the degreasing treatment is a treatment for a lubricant, a processing oil, or the like used for the processing treatment or the like. This is a process for removing oil.
  • These pickling treatments and degreasing treatments are pretreatments that are carried out prior to applying a surface finishing treatment (metal coating treatment, chemical conversion treatment, coating treatment, etc.) to a metal body.
  • the pickling treatment may dissolve a part of the ground metal.
  • the pickling treatment is also used to dissolve the metal body by etching to improve the surface finish quality.
  • a degreasing treatment may be provided before the pickling treatment, and the degreasing performance in the degreasing treatment may affect the removal of scale in the subsequent pickling treatment. Furthermore, the degreasing treatment is also used to improve the wettability, which is an oil content control index as the finish quality of the final product.
  • the ultrasonic processing apparatus 1 includes used pipes, pipes that require regular or irregular stain removal, and the like, in addition to the cleaning process in the production line as described above. It can also be used for cleaning and the like.
  • the ultrasonic treatment apparatus 1 is mainly applicable to various surface treatments of an object to be treated such as a long body extending along a predetermined axial direction, and is applicable to a surface treatment film (a surface treatment film ().
  • a surface treatment film a surface treatment film ().
  • a long body having various oxide films, plating films, coating films after surface treatment and finishing treatment
  • unintended surface deposits such as oxide scale and oil are adhered in a film shape. It is also possible to use a long body as the object to be treated.
  • the aggregate (object to be processed) of a plurality of long bodies is processed in which the processing liquid 3 is stored (or filled) by a drive mechanism (not shown) capable of moving up and down such as a crane. It is immersed in the inside of the tank 10. Further, the aggregate of the plurality of long bodies may be immersed in the treatment tank 10 in a state of being bundled by a wire, a net or the like (not shown).
  • FIGS. 1A and 1B schematically shows the side surface of the ultrasonic processing apparatus 1 when viewed from the positive direction side of the x-axis
  • the upper part of FIG. 1A shows the ultrasonic processing.
  • the upper surface of the apparatus 1 when viewed from the positive direction side of the z-axis is schematically shown.
  • the ultrasonic processing apparatus 1 holds the processing liquid 3 and is an example of the object to be processed S (not shown in FIG. 1A). It has a processing tank 10 in which an aggregate of long bodies is housed, and an ultrasonic wave applying mechanism 20 for applying ultrasonic waves to the processing liquid 3.
  • the y-axis direction in such a coordinate system is a direction parallel to the major axis direction of the processing tank 10, and the z-axis direction corresponds to the depth direction of the processing tank 10. doing.
  • the expressions “inner wall” and “outer wall” of the treatment tank 10 are adopted, but such expressions are for convenience, and the treatment tank 10 has a double structure. It doesn't mean that you are doing it.
  • the surface of the treatment tank 10 the surface (inner surface) on the side that can come into contact with the treatment liquid 3 is referred to as an "inner wall”, and the surface (outer surface) on the side opposite to the inner wall is referred to as an "outer wall”. It is called.
  • the processing tank 10 of the ultrasonic processing apparatus 1 has a long axis having substantially the same cross-sectional shape (in FIGS. 1A and 1B). It has an axis corresponding to the y-axis direction), and the wall surface (that is, the portion in contact with the treatment liquid 3) of the inner wall 101 of the treatment tank 10 up to the planned liquid level height line of the treatment liquid 3 is formed of a concave curved surface.
  • the treatment tank 10 has a cross-sectional shape such that the direction of the center of curvature is located in the inner direction of the treatment tank 10 when focusing on the radius of curvature of the curved surface forming the inner wall 101.
  • the cross-sectional shape of the inner wall 101 as shown in FIG. 1B is obtained by cutting not only the portion of the AA cutting line in FIG. 1A but also the processing tank 10 at an arbitrary position in the y-axis direction so as to be parallel to the x-axis. Even in some cases, it will be realized.
  • the inner wall 101 up to the planned liquid level of the treatment liquid 3 in the treatment tank 10 (in FIG. 1B, this planned liquid level is the same as the liquid level of the treatment liquid 3) is recessed (toward the inner wall 101 side).
  • a cross-sectional shape in other words, a part of a circle
  • the processing tank 10 has a shape obtained by cutting out a part of a substantially cylindrical shape along the y-axis direction.
  • Cross-sectional shape like a notch is taken as an example and shown in the figure.
  • the cross-sectional shape of the inner wall 101 of the treatment tank 10 is not particularly limited, and for example, a part of a substantially elliptical shape is cut out. It may have a cross-sectional shape as if it were.
  • the inner wall of the portion that does not come into contact with the treatment liquid 3 is not particularly specified, and may be formed of a curved surface, or a portion that is not a curved surface exists. May be good.
  • the ultrasonic wave applying mechanism 20 is provided on the inner wall 101 side and the outer wall 103 side of the processing tank 10.
  • the number and installation state of the ultrasonic wave applying mechanisms 20 are not limited to the example shown in FIG. 1A, and may be appropriately set according to the shape and size of the processing tank 10.
  • the ultrasonic wave application mechanism 20 may be installed on only one side of the processing tank 10, or may be installed on both sides as shown in FIG. 1A.
  • the arrangement of the ultrasonic wave application mechanism 20 in the y-axis direction (long-axis direction of the processing tank 10) is preferably a staggered arrangement. This makes it possible to use the oscillated ultrasonic waves more efficiently.
  • it when it is installed on both sides of the processing tank 10, it may be arranged in a staggered arrangement as shown in FIG. 1A, or it may be arranged symmetrically. Further, as shown in FIG. 1A, it may be installed along the inner wall 101 in the x-axis direction having a concave curved surface shape.
  • the ultrasonic wave application mechanism 20 may be provided only on the inner wall 101 side of the processing tank 10 or only on the outer wall 103 side. Further, unlike FIG. 1A, the ultrasonic wave applying mechanism 20 may not be arranged near both ends of the processing tank 10, but may be arranged on the inner wall 101 or the outer wall 103 excluding the vicinity of both ends of the processing tank 10.
  • the ultrasonic wave application mechanism 20 has a normal line of the ultrasonic wave oscillation surface and a planned liquid level height line of the processing liquid 3.
  • this planned liquid level height line is provided so that the angle ⁇ formed with the liquid level of the treatment liquid 3 is 5 ° or more.
  • the ultrasonic wave processing apparatus 1 can further improve the ultrasonic wave propagation property and uniformity.
  • the ultrasonic wave application mechanism 20 is arranged so that the angle ⁇ shown in FIG. 1B is 80 ° or less. Further, it is preferable that the ultrasonic wave application mechanism 20 does not oscillate the ultrasonic wave directly to the object S to be processed, but oscillates the ultrasonic wave toward the liquid surface to reflect the ultrasonic wave at the liquid surface.
  • the size of the angle ⁇ formed by the normal of the ultrasonic oscillation surface and the planned liquid level height of the treatment liquid 3 is 5 ° to 80 °.
  • the angle ⁇ is preferably 15 ° or more, more preferably 25 ° or more, and even more preferably 30 ° or more. By setting such an angle, the application efficiency of ultrasonic waves can be further improved.
  • the angle ⁇ exceeds 70 °, there is a possibility that the propagation and uniformity of ultrasonic waves cannot be sufficiently improved.
  • the angle ⁇ is preferably 70 ° or less, more preferably 65 ° or less, and even more preferably 60 ° or less. By setting such an angle, the propaganda and uniformity of ultrasonic waves can be further improved.
  • the ultrasonic wave application mechanism 20 does not exist outside the range of the angle ⁇ . That is, it is preferable that the ultrasonic wave application mechanism 20 is provided only within the range of the angle ⁇ .
  • the plurality of ultrasonic wave application mechanisms 20 do not have to have the same value of the angle ⁇ , and may have a plurality of types of values of the angle ⁇ within the above range. .. However, by setting the same angle ⁇ , it is possible to reduce the installation cost.
  • FIGS. 2A and 2B are explanatory views schematically showing an example of the configuration of the ultrasonic wave application mechanism 20 according to the present embodiment.
  • the ultrasonic wave applying mechanism 20 may be composed of, for example, an ultrasonic oscillator 201 and an ultrasonic vibrator 203.
  • the ultrasonic oscillator 201 is a device that supplies electric power to the ultrasonic oscillator 203 with a desired output.
  • the ultrasonic vibrator 203 converts the electric power output from the ultrasonic oscillator 201 into vibration, and oscillates ultrasonic waves of a desired frequency from the oscillating surface.
  • the ultrasonic wave application mechanism 20 may be composed of, for example, an ultrasonic oscillator 201 and a throw-in type vibrator 211.
  • the throw-in type vibrator 211 has a plurality of ultrasonic vibrators 203 arranged inside the housing 205 and then ultrasonic waves so as to cover the oscillation surface of each ultrasonic vibrator 203.
  • the housing 205 is sealed with a member made of a predetermined material that allows the housing 205 to pass through. In this case, the member provided so as to cover the oscillation surface of each ultrasonic vibrator 203 becomes the oscillation surface of the throw-in type vibrator 211.
  • the interval and the number of the ultrasonic vibrators 203 and the size of the oscillation surface are determined in consideration of the output stability of the ultrasonic waves and the oscillation efficiency.
  • the ultrasonic wave application mechanism 20 of FIG. 2A or FIG. 2B may be provided on either or both of the inner wall 101 and the outer wall 103.
  • the frequency of the ultrasonic waves output from the ultrasonic wave application mechanism 20 is preferably, for example, 18 kHz to 200 kHz.
  • the frequency of the ultrasonic wave is less than 18 kHz, the ultrasonic wave changes to the audible range and can be propagated into the liquid, but the attenuation becomes large by the propagation in the solid.
  • ultrasonic waves are recognized as noise, which may lead to deterioration of the working environment.
  • ultrasonic propagation may be hindered by large-sized bubbles generated from the surface of the object S to be treated, and the effect of improving the processability by ultrasonic waves may be reduced.
  • the frequency of the ultrasonic waves output from the ultrasonic wave application mechanism 20 is more preferably 18 kHz or more.
  • the frequency of the ultrasonic waves output from the ultrasonic wave application mechanism 20 is more preferably 150 kHz or less, still more preferably 100 kHz or less.
  • the frequency of the ultrasonic waves to be applied is preferably an appropriate value within the above range according to the type of the object to be processed, and depending on the type of the object to be processed, ultrasonic waves having two or more types of frequencies are used. It may be applied.
  • the ultrasonic wave application mechanism 20 may have a frequency sweep function capable of applying ultrasonic waves while sweeping the frequency within a predetermined range around the frequency of a certain selected ultrasonic wave. Such a frequency sweep function makes it possible to realize the following further effects.
  • the inner wall 101 of the treatment tank 10 is made of a material capable of reflecting ultrasonic waves. More specifically, the inner wall 101 of the processing tank 10 is made of a material having an intrinsic acoustic impedance of 1 ⁇ 10 7 kg ⁇ m -2 ⁇ sec -1 to 2 ⁇ 10 8 kg ⁇ m -2 ⁇ sec -1. Is preferable. By forming the inner wall 101 using a material whose acoustic impedance is within the above range, the inner wall 101 can more reliably reflect ultrasonic waves.
  • the “material of the inner wall 101 of the processing tank 10" is the “material of the processing tank 10" when the processing tank 10 is made of one material (not a double structure or the like).
  • the treatment tank 10 may have a double structure, a three-layer structure, or the like, and in this case, the "material of the inner wall 101 of the treatment tank 10" means the “material of the inner wall 101 of the treatment tank 10" as described.
  • Materials having an acoustic impedance of 1 ⁇ 10 7 kg ⁇ m -2 ⁇ sec -1 to 2 ⁇ 10 8 kg ⁇ m -2 ⁇ sec -1 or less include, for example, various metals or metal oxides and non-oxidized materials.
  • Various ceramics including physical ceramics can be mentioned.
  • the material used for forming the inner wall 101 may be appropriately selected according to the liquid properties of the treatment liquid 3 to be held, the strength required for the treatment tank 10, and the like. It is preferable to use various metals or metal oxides having such acoustic impedance.
  • a processing liquid circulation path 30 for circulating the processing liquid 3 may be provided outside the processing tank 10.
  • the treatment liquid circulation path 30 includes, for example, an overflow portion 301 to which the treatment liquid 3 overflowed from the treatment tank 10 reaches, a partition plate 303 provided inside the overflow portion 301, and an overflow portion 301, for example. It has a treatment liquid suction port 305 provided on the bottom surface, a treatment liquid circulation pipe 307, and a treatment liquid circulation mechanism 309.
  • the treatment liquid 3 overflowing from the treatment tank 10 flows into the overflow portion 301 and is held at a portion of the overflow portion 301 located on the treatment tank 10 side until it reaches the height of the partition plate 303.
  • the treatment liquid 3 exceeds the partition plate 303 and flows into the side where the treatment liquid suction port 305 is located.
  • the treatment liquid 3 that has reached the vicinity of the treatment liquid suction port 305 is sucked into the treatment liquid circulation pipe 307 by the treatment liquid circulation mechanism 309 such as a pump, and is returned to the inside of the treatment tank 10.
  • a fine bubble supply mechanism (not shown) for supplying fine bubbles to the treatment liquid may be provided in a part of such a treatment liquid circulation path 30.
  • a fine bubble supply mechanism for supplying fine bubbles to the treatment liquid may be provided in a part of such a treatment liquid circulation path 30.
  • FIGS. 1B to 6. 3 to 6 are explanatory views for explaining the ultrasonic processing apparatus according to the present embodiment.
  • the depth direction of the processing tank 10 (z-axis in FIG. 1B).
  • M The maximum distance between the inner walls of the processing tank 10 in the direction (x-axis direction in FIG. 1B) perpendicular to the long-axis direction (y-axis direction in FIG. 1B) is referred to as M.
  • This maximum distance between inner walls M corresponds to the size of the diameter of the circles constituting the cylinder in a cross-sectional shape such as a part of the cylinder cut out as shown in FIG. 1B.
  • the planned liquid level height line in the direction orthogonal to the major axis direction of the processing tank 10 (x-axis direction in FIG. 1B) (in FIG. 1B, this planned liquid level height line is processed.
  • the length M'of the liquid surface at the same as the liquid level of the liquid 3) is preferably 90% or more of the maximum distance between the inner walls M.
  • the upper limit of the length M'of the liquid surface is not particularly specified, and may correspond to the maximum distance between inner walls M. That is, the upper limit of the liquid surface length M'is 100% of the maximum distance between inner walls M.
  • the ultrasonic waves oscillated from the oscillating surface of the ultrasonic wave applying mechanism 20 are reflected by the liquid surface of the processing liquid 3. From this point of view, the longer the liquid surface length M', the larger the ultrasonic wave reflection region can be realized.
  • the oscillating surface of the ultrasonic wave applying mechanism 20 faces the liquid surface (specifically, from the center of the length L of the transmitting surface). Even if the length M'of the liquid surface is short (because the normal line (of the transmitting surface) intersects the planned liquid level line of the treatment liquid), the reflection of ultrasonic waves on the liquid surface is sufficiently realized. be able to.
  • the oscillation surface of the ultrasonic wave application mechanism 20 faces the wall surface more than the liquid surface, so that the length M'of the liquid surface is made as long as possible. Therefore, it is preferable to maintain the reflection efficiency of ultrasonic waves on the liquid surface.
  • M'/ M 90% or more, the ultrasonic waves transmitted from the transmitting surface directly collide with the liquid surface instead of the inner wall 101, and as a result, the reflection efficiency of the ultrasonic waves on the liquid surface becomes high.
  • the liquid surface length M' is 90% or more of the maximum distance between the inner walls M, and the ultrasonic liquid surface It was clarified that the reflection efficiency of the above can be maintained in a preferable state.
  • the length M'of the liquid surface is preferably 90% or more of the maximum distance between inner walls M.
  • the length M'of the liquid surface is more preferably 93% or more of the maximum distance between inner walls M, and further preferably 95% or more of the maximum distance M between inner walls.
  • the processing tank 10 is orthogonal to the depth direction of the processing tank 10 (z-axis direction in FIG. 1B) and the major axis direction of the processing tank 10 (y-axis direction in FIG. 1B).
  • the length of the oscillating surface of the ultrasonic application mechanism 20 as shown in FIGS. 2A and 2B is referred to as L in an arbitrary cross section cut into.
  • the radius of curvature R of the concave curved surface forming the inner wall 101 of the portion in contact with the treatment liquid 3 is preferably 1.0 to 25.0 times the length L of the oscillating surface. That is, the R / L is preferably 1.0 to 25.0.
  • the radius of curvature R of the concave curved surface forming the inner wall 101 of the portion in contact with the treatment liquid 3 is more preferably 2.0 times or more, still more preferably 3.0 times or more with respect to the length L of the oscillating surface. Yes, and even more preferably 4.0 times or more.
  • the radius of curvature R exceeds 25.0 times the length L of the oscillating surface, the distance from the ultrasonic oscillation to the liquid surface becomes long, so that diffusion due to the diffraction phenomenon of ultrasonic waves occurs and the ultrasonic waves oscillate. All the sound waves do not reach the liquid surface, and the effect of the radius of curvature is reduced.
  • the radius of curvature R satisfies the above relationship, the ultrasonic waves can be reliably propagated in the entire processing tank 10, and the ultrasonic waves can be more efficiently propagated around the object to be processed S. become.
  • the radius of curvature R of the concave curved surface forming the inner wall 101 of the portion in contact with the treatment liquid 3 is more preferably 20.0 times or less, still more preferably 17.0 times or less, with respect to the length L of the oscillating surface. Yes, even more preferably 14.0 times or less, and even more preferably 11.0 times or less.
  • the length L of the oscillation surface can be changed by changing the size of the vibration surface of each ultrasonic vibrator 203. , Will be adjusted. Further, when the throw-in type vibrator 211 as shown in FIG. 2B is installed, the length L of the oscillation surface can be changed by changing the number and the arrangement interval of the ultrasonic vibrators 203 arranged in the housing 205. It is possible to adjust more easily.
  • the size of an efficient oscillator for oscillating ultrasonic waves is determined when the output of the ultrasonic oscillator 201 is set.
  • the length L of the oscillating surface can be finely adjusted by changing the aspect ratio, diameter, etc. of the oscillating surface.
  • the adjustment range is small. Therefore, considering that individual ultrasonic vibrators 201 as shown in FIG. 2A can be installed, when adjusting the relationship between the length L of the oscillating surface and the radius of curvature R as described above, the oscillating surface It is more convenient to adjust the radius of curvature R within the permissible range than to adjust the length L.
  • an ultrasonic application mechanism 20 having a length L of a transmitting surface such that R / L is in a preferable range may be used.
  • the radius of curvature R of the concave curved surface constituting the inner wall 101 is maintained so as to satisfy the above relationship, and then the treatment tank 10 is used. It is preferable to adjust the length in the major axis direction (y-axis direction in FIG. 1B). However, even in this case, the length of the treatment tank 10 in the major axis direction is preferably 1 m or more. When the length in the major axis direction is less than 1 m, the size of the object to be processed S is likely to be excessively limited, and the concave curved surface constituting the inner wall 101 and a general ultrasonic processing apparatus are used.
  • the length in the long axis direction is not particularly set to an upper limit, and when the length in the long axis direction is lengthened, the number of ultrasonic wave application mechanisms 20 to be arranged may be increased and adjusted.
  • the cross-sectional shapes of the cross sections cut so as to be orthogonal to the major axis direction in the depth direction (z-axis direction) of the treatment tank 10 are substantially the same as each other, and the major axis direction (y) of the treatment tank 10 is substantially the same.
  • a processing tank part (not shown) having a predetermined length in the axial direction can be prepared, and the length in the major axis direction can be made variable by connecting or detaching the processing tank parts to each other.
  • the processing tank 10 may be configured so as to be possible. By making the processing tank 10 divisible in this way, it is possible to more easily adjust the length of the processing tank 10 in the major axis direction.
  • the installation position of the ultrasonic wave application mechanism 20 in the processing tank 10 can be changed according to the processing amount of the object to be processed S (not shown in FIG. 3) and the like. It is preferable that it is provided as such. More specifically, as the amount of the object to be processed S immersed in the treatment liquid 3 increases, the angle ⁇ formed by the normal of the oscillation surface and the liquid surface becomes smaller, so that the ultrasonic wave application mechanism 20 has a smaller value. It is preferable that the installation position in the treatment tank 10 can be changed.
  • the proportion of the first wave of the ultrasonic wave that is blocked by the object S to be processed and does not reach the liquid surface becomes high. Therefore, by moving the installation position of the ultrasonic wave application mechanism 20 closer to the liquid level (for example, the installation position B in FIG. 3), the size of the angle ⁇ becomes smaller (for example, the angle ⁇ B in FIG. 3), and the liquid level becomes smaller. It is possible to realize the wraparound propagation of the ultrasonic wave to the object S to be processed while maintaining the ratio of the first wave reaching the object S.
  • the mechanism for changing the installation position of the ultrasonic wave application mechanism 20 is not particularly limited, and various mechanisms can be appropriately adopted.
  • a rail (not shown) or the like for moving and fixing the ultrasonic wave application mechanism 20 on the inner wall 101 of the processing tank 10
  • the ultrasonic wave application mechanism is provided so that the angle ⁇ becomes a desired value.
  • the installation position of 20 can be easily adjusted.
  • the ratio of occupying the space in the treatment tank 10 is low, and various treatment liquids 3 can be appropriately used by applying an appropriate surface treatment to the rail. ..
  • the ultrasonic wave application mechanism 20 is mainly provided on the inner wall side of the processing tank 10 is shown, but in the ultrasonic wave processing device 1 according to the present embodiment, the ultrasonic wave application mechanism 20 is used.
  • the ultrasonic wave application mechanism 20 may be installed on the outer wall 103 side of the treatment tank 10.
  • the oscillating surface is along the outer wall 103 of the processing tank 10 in order to more reliably propagate the ultrasonic waves oscillated from the oscillating surface of the ultrasonic application mechanism 20 in the processing liquid 3. It is preferable to install the ultrasonic wave application mechanism 20 so as to have a shape.
  • the length L of the oscillating surface described in FIG. 1B is the length of the arc of the oscillating surface along the outer wall 103 of the processing tank 10.
  • the ultrasonic wave application mechanism 20 When the ultrasonic wave application mechanism 20 is provided on the outer wall 103 side of the processing tank 10, if the ultrasonic wave oscillation surface of the ultrasonic wave application mechanism 20 can be held so as to be in contact with the outer wall 103 of the processing tank 10, the ultrasonic waves
  • the method of fixing the application mechanism 20 is not particularly limited.
  • the ultrasonic wave application mechanism 20 is fixed to the outer wall 103 of the processing tank 10 via the adhesive layer 21 by using various adhesives or the like, the ultrasonic waves are more reliably propagated to the processing liquid 3.
  • the thickness of the adhesive layer 21 is 1 mm or less so as not to be affected by the adhesive material as much as possible. It is preferable to use the same material or a material having an approximate natural acoustic impedance for the ultrasonic vibration element portion of the ultrasonic application mechanism 20 and the processing tank 10, and there are gaps and an air layer (including air bubbles). It is preferable to fix, bond, and join so as not to prevent it.
  • the installation interval D of the ultrasonic wave application mechanism 20 in the long axis direction (y-axis direction) of the processing tank 10 is set so that adjacent vibrators do not interfere with each other.
  • the upper limit of the installation interval D is not particularly specified, and may be installed at an arbitrary interval.
  • the radius of curvature R of the concave curved surface forming the inner wall 101 is either in the direction orthogonal to the depth direction of the processing tank 10 (x-axis direction or y-axis direction) while maintaining the above-mentioned relationship so as to satisfy the above-mentioned relationship. It may be installed in.
  • the processing tank 10 according to the present embodiment is preferably provided so as to be detachable from the gantry 40 that holds the processing tank 10.
  • the ultrasonic processing apparatus 1 according to the present embodiment has a state in which the processing tank 10 is isolated from the gantry 40 (in other words, it can be said to be an independent state or a separated state), for example, a crane or the like.
  • the processing tank 10 may be used in a state of being lifted by a lifting mechanism (not shown). By using the treatment tank 10 in such a state, it is possible to treat the object to be treated S while more reliably suppressing the attenuation of the ultrasonic waves applied to the treatment liquid 3.
  • the ultrasonic processing apparatus 1 can be used in a state where the processing tank 10 is held by the gantry 40 as shown in the lower part of FIG.
  • the ultrasonic waves transmitted through the processing tank 10 are attenuated at the portion in contact with the gantry 40 (in other words, the interface between the processing tank 10 and the gantry 40). Therefore, in order to more reliably suppress the attenuation of ultrasonic waves at the interface between the processing tank 10 and the gantry 40, the intrinsic acoustic impedance is 1 ⁇ 10 5 to 2 ⁇ 10 6 at the portion of the gantry 40 in contact with the processing tank 10.
  • a material having a weight of kg ⁇ m ⁇ 2 ⁇ sec -1 or less is present.
  • the presence of such a material makes it possible to increase the difference between the intrinsic acoustic impedance of the material forming the processing tank 10 and the intrinsic acoustic impedance of the material forming the gantry 40, thereby reducing ultrasonic wave attenuation. It becomes possible to suppress it more reliably.
  • examples of such materials include silicone rubber (1 ⁇ 10 6 kg ⁇ m -2 ⁇ sec -1 ), natural rubber (1.46 ⁇ 10 6 kg ⁇ m -2 ⁇ sec -1 ), and foamed polyethylene (1.46 ⁇ 10 6 kg ⁇ m -2 ⁇ sec -1). 1.7 ⁇ 10 6 kg ⁇ m -2 ⁇ sec -1 ) can be mentioned.
  • the gantry 40 itself may be formed by using wood or a plastic resin such as phenol resin as a material.
  • Wood and plastic resins such as phenolic resins have a slightly higher intrinsic acoustic impedance than the above-mentioned silicone rubber, natural rubber, and foamed polyethylene, but have a sufficiently smaller intrinsic acoustic impedance than metals. The attenuation of ultrasonic waves at the interface between the treatment tank 10 and the gantry 40 can be suppressed more reliably.
  • the area of the contact portion of the treatment tank 10 with the gantry 40 is preferably 40% or less of the surface area of the treatment tank 10. Further, from the viewpoint of suppressing the attenuation of ultrasonic waves, the smaller the area of the contact portion with respect to the surface area of the treatment tank 10, the better, and the lower limit value thereof is not particularly specified.
  • processing tank 10 and the ultrasonic wave application mechanism 20 in the ultrasonic wave processing device 1 according to the present embodiment have been described in more detail with reference to FIGS. 1B to 6.
  • the inner wall 101 of the treatment tank 10 containing the treatment liquid 3 has a concave curved surface, and the ultrasonic wave application mechanism 20 is installed toward the liquid surface at a predetermined angle. It is possible to realize an ultrasonic processing apparatus 1 in which ultrasonic waves efficiently propagate from the entire processing tank 10 to an object S to be processed. Further, in the ultrasonic processing apparatus 1, efficient processing is possible by reflecting ultrasonic waves from the liquid surface and propagating ultrasonic waves to the object to be processed from various angles on the inner wall 101 of the processing tank 10. ..
  • the ultrasonic processing apparatus 1 has been described in detail above.
  • the ultrasonic processing apparatus according to the present invention will be specifically described below with reference to Examples and Comparative Examples.
  • the examples shown below are merely examples of the ultrasonic processing apparatus according to the present invention, and the ultrasonic processing apparatus according to the present invention is not limited to the examples shown below.
  • the treatment tank 10 was formed using a SUS material having a thickness of 5 mm (inherent acoustic impedance: 4.57 ⁇ 10 7 kg ⁇ m -2 / sec -1). At this time, the depth length of the treatment tank 10 (the length in the y-axis direction in FIG. 1A) was fixed at 5 m, and then the cross-sectional shape of the treatment tank 10 was changed.
  • the gantry 40 was manufactured by using a steel material according to the cross-sectional shape of the processing tank 10.
  • Example 16 the case where the foamed polyethylene sheet is not present is verified, in the following Example 17, the case where the area of the contact portion is 50% is verified, and in the following Example 18, the contact portion is verified. It was verified that the area of was 50% and the foamed polyethylene sheet was not present. Further, in the following Example 19, the case where the pedestal 40 made of phenol resin is used, the area of the contact portion is 50%, and the foamed polyethylene sheet is absent is verified, and in the following Example 20, the wooden pedestal is used. 40 was used, the area of the contact portion was set to 50%, and the case where the foamed polyethylene sheet was not provided was verified.
  • a used waste oil pipe having an outer diameter of 100 mm and a length of 2 to 4 m is used as an object S to be treated, and is immersed in a treatment tank 10 in which a treatment liquid is held for 3 minutes, and the oxide scale remaining in the pipe is washed with water. Verification was performed by performing processing.
  • As the treatment liquid clean water having a liquid temperature of 30 ° C. was used.
  • the ratio (M'/ M) of the liquid level length M'to the maximum inner wall distance M is adjusted to the height of the liquid level of the treatment liquid, and is 85%, 90% or 100. It was made constant in%.
  • the ultrasonic oscillator of the ultrasonic application mechanism 20 had an output of 1200 W, and eight ultrasonic vibrators were fixed to the inner wall side or the outer wall side of the processing tank 10 at an installation interval of 0.5 m for verification.
  • the ultrasonic oscillator of the ultrasonic application mechanism 20 installed on the inner wall side of the processing tank 10 is a throw-in oscillator 211 made of SUS (width 0.4 m ⁇ length 0.3 m ⁇ as shown in FIG. 2B). The thickness was 0.08 m), and the length L of the oscillating surface shown in FIG. 1B was 0.3 m.
  • the ultrasonic vibrator 203 of the ultrasonic wave applying mechanism 20 installed on the outer wall side of the processing tank 10, one having a diameter of 0.09 m and a thickness of 0.15 m was used. Further, the ultrasonic vibrator 203 installed on the outer wall side is installed at a position of 5 °, 25 °, 30 °, 45 °, 60 °, 70 ° or 80 °, and in the following Examples 9 to 11 and 14. , 30 ° and 60 ° positions, 0 ° and 60 ° positions, or 30 ° and 90 ° positions, the ultrasonic transducers 203 were alternately arranged at different angles ⁇ . The frequency of the applied ultrasonic waves was 18 to 192 kHz.
  • Example 6 Three used waste oil well pipes, which are the objects to be treated S, are bundled and immersed by a crane while hanging in the center of the treatment tank 10, and then the treatment tank 10 itself is not welded to the gantry 40, but the gantry Cleaning was performed with the product placed on top of 40, the ultrasonic intensity was measured, and the cleaning was evaluated.
  • Example 6 the treatment tank 10 itself was further lifted by a crane and washed while being separated from the gantry 40, and the ultrasonic intensity was measured and the washing was evaluated.
  • the ultrasonic intensity (mV) of 10 points and 2 rows in the longitudinal direction of the center of the treatment tank was measured using an ultrasonic level monitor (19001D manufactured by Kaijo).
  • 10 points are measured at intervals of 0.4 m from the end along the y-axis direction, and in the cross section (xz plane) of the treatment tank 10, the treatment tank 10 A total of 20 measurement points were set for the entire processing tank 10 with the center position of the cross section and two points separated by 0.2 m as measurement points.
  • the 20 measured values obtained were averaged to calculate the standard deviation ⁇ .
  • the relative ultrasonic intensity (the measurement result of Comparative Example 1, that is, the measured ultrasonic intensity when the object S to be processed is installed on the premise of irradiation in which the vibrator is arranged on the side surface of the tank in the square tank is set to 1.
  • the relative intensity and the standard deviation ⁇ were calculated and the propagating properties of the ultrasonic waves into the object S to be treated and the inside of the treatment tank were compared.
  • the oxidation scale removal rate on the inner surface of the pipe was measured, and the measured removal rate was evaluated as the washing performance. More specifically, the oxidation scale on the inner surface of the pipe before and after washing with water was photographed with a fiberscope, and the oxidation scale removal rate was calculated from the binarized image. The ratio of the amount of oxide scale removed under each condition to the amount of oxide scale remaining before washing with water was defined as the oxidation scale removal rate. Table 1 below shows the evaluation criteria for washing performance downstairs.
  • a score A, a score B, and a score C mean that the washing performance was very good
  • a score D means that the washing performance was good
  • a score E means that the washing performance was slightly good. It means that there was a difficulty
  • the score F and the score G mean that the washing performance was poor. Scores A to D were accepted.
  • the description “parallel” means that the bottom surface of the treatment tank 10 is parallel to the liquid surface, and is referred to as "inclination”.
  • the description means that the bottom surface of the treatment tank 10 is slanted with respect to the liquid surface (however, it is not curved).
  • the relative ultrasonic intensity may be a relatively small value, and the detergency was also rejected.
  • the relative ultrasonic intensity became a large value, the standard deviation of the ultrasonic intensity became small, and further, excellent detergency was exhibited.
  • Treatment liquid circulation mechanism 1 Ultrasonic processing device 3 Treatment liquid 10 Treatment tank 20 Ultrasonic application mechanism 21 Adhesive layer 30 Treatment liquid circulation path 40 Stand 101 Inner wall 103 Outer wall 201 Ultrasonic oscillator 203 Ultrasonic oscillator 205 Housing 211 Throw-in oscillator 301 Overflow Part 303 Partition plate 305 Treatment liquid suction port 307 Treatment liquid circulation piping 309 Treatment liquid circulation mechanism

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

【課題】複数の被処理物を処理する場合であっても、超音波の伝播性及び均一性をより簡便に向上させること。 【解決手段】本発明に係る超音波処理装置は、被処理物と、前記被処理物を浸漬するための処理液と、を収納することができる処理槽と、前記処理液に対して超音波を印加する超音波印加機構と、を備え、前記処理槽は、断面形状が互いに略同一である長軸を有し、かつ、前記処理液の液面高さ予定線までの壁面が凹曲面からなり、前記超音波印加機構は、超音波の発振面の法線と前記処理液の液面予定線とのなす角θが5°~80°となる位置に設けられている。

Description

超音波処理装置
 本発明は、超音波処理装置に関する。
 一般に、鋼板や鋼管といった各種の金属体の製造工程において、金属体の表面に存在する汚れやスケール等を除去するために、薬液(例えば、アルカリ脱脂剤、界面活性剤、硫酸溶液等)やリンス等が保持された洗浄槽に対して金属体を浸漬することで洗浄を行う洗浄処理方法が、広く採用されている。このような洗浄処理方法を実施する洗浄処理装置としては、例えば、高圧気流噴射ノズルを利用した処理装置や、超音波を利用した超音波処理装置がある。
 ここで、鋼板や鋼管などのような大型材に対する、洗浄処理をはじめとする各種の表面処理に際して、超音波の伝播性及び処理性を向上するために、従来、各種の方法が提案されている。
 例えば、以下の特許文献1には、超音波振動子を回転させる揺動手段を洗浄槽の内部に設け、被洗浄物の洗浄中に超音波振動子を揺動させることで、超音波による洗浄性を向上させる技術が提案されている。また、以下の特許文献2には、被洗浄物の洗浄中に、被洗浄物を回転させるとともに、超音波振動子を上下駆動させることで、洗浄効率を向上させる技術が提案されている。また、以下の特許文献3には、処理槽の壁面及び/又は底面に対して、超音波を反射させるための曲面部材を設ける技術が提案されている。
特開2000-301087号公報 特開2013-202597号公報 国際公開第2018/169050号
 しかしながら、上記特許文献1及び特許文献2のように、洗浄槽の洗浄液が保持される部分に各種の駆動機構を設ける場合には、駆動機構に悪影響を与えないような処理液を選択することが求められる。また、設置する駆動機構の分だけ、洗浄槽の内部空間を有効に用いることができず、一度に処理できる被処理物の個数が低下してしまう。
 また、上記特許文献1~特許文献3の技術を用いた場合であっても、処理槽内に複数の被処理物を配置する場合には、超音波の伝播性及び均一性が低下する可能性があり、更なる超音波の伝播性及び均一性の向上について、検討の余地があった。
 このように、複数の被処理物を処理する場合であっても、超音波の伝播性及び均一性をより簡便に向上させることが可能な技術が希求されている。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、複数の被処理物を処理する場合であっても、超音波の伝播性及び均一性をより簡便に向上させることが可能な、超音波処理装置を提供することにある。
 上記課題を解決するために、本発明者らが鋭意検討を行った結果、処理槽の内表面のうち処理液の液面高さ予定線までの面(換言すれば、処理液に接する部分)の形状を凹曲面とし、処理槽における処理液の液面高さ予定線に向かって超音波を照射することで、超音波の伝播性及び均一性をより一層向上させることが可能である、との知見を得ることができた。
 かかる知見に基づき完成された本発明の要旨は、以下の通りである。
(1)被処理物と、前記被処理物を浸漬するための処理液と、を収納することができる処理槽と、前記処理液に対して超音波を印加する超音波印加機構と、を備え、前記処理槽は、断面形状が互いに略同一である長軸を有し、かつ、前記処理液の液面高さ予定線までの壁面が凹曲面からなり、前記超音波印加機構は、超音波の発振面の法線と前記処理液の液面予定線とのなす角θが5°~80°となる位置に設けられている、超音波処理装置。
(2)前記超音波印加機構は、前記角θが25°~70°となる位置に設けられている、(1)に記載の超音波処理装置。
(3)前記超音波印加機構は、前記角θが(1)又は(2)に記載の範囲外となる位置に、設けられていない、(1)又は(2)に記載の超音波処理装置。
(4)前記処理槽を前記長軸に対して直交する面で切断した断面が、略円又は略楕円の一部を切り欠いたような形状である、(1)~(3)のいずれか1つに記載の超音波処理装置。
(5)前記処理槽を前記長軸に対して直交する面で切断した断面において、前記液面高さ予定線での内壁間距離は、前記断面における前記処理槽の最大の内壁間距離Mの90%以上である、(1)~(4)の何れか1つに記載の超音波処理装置。
(6)前記処理槽を前記長軸に対して直交する面で切断した断面において、前記凹曲面の曲率半径Rは、前記断面における前記超音波印加機構の前記発振面の長さLの1.0~25.0倍である、(1)~(5)の何れか1つに記載の超音波処理装置。
(7)前記超音波印加機構は、前記処理槽への設置位置が前記被処理物の処理量に応じて変更可能なように設けられる、(1)~(6)の何れか1つに記載の超音波処理装置。
(8)前記処理槽は、前記長軸に対して直交する方向に切断した断面における断面形状が互いに略同一である処理槽パーツを連結又は脱着することで、前記処理槽の前記長軸に平行な方向の長さが可変となるように構成される、(1)~(7)の何れか1つに記載の超音波処理装置。
(9)前記処理槽は、前記処理槽を保持する架台に対して着脱可能である、(1)~(8)の何れか1つに記載の超音波処理装置。
(10)前記処理槽を保持する架台の前記処理槽と接する部分は、固有音響インピーダンスが1×10~2×10kg・m-2・sec-1である素材からなる、(1)~(9)の何れか1つに記載の超音波処理装置。
(11)前記処理槽における架台との接触部分の面積は、処理槽の外表面の面積の40%以下である、(1)~(10)の何れか1つに記載の超音波処理装置。
(12)前記処理槽が前記架台から離隔した状態で用いられる、(1)~(9)の何れか1つに記載の超音波処理装置。
(13)前記処理液を循環させる処理液循環経路が、前記処理槽の外部に設けられる、(1)~(12)の何れか1つに記載の超音波処理装置。
 以上説明したように本発明によれば、複数の被処理物を処理する場合であっても、超音波の伝播性及び均一性をより簡便に向上させることが可能となる。
本発明の実施形態に係る超音波処理装置の全体構成を模式的に示した説明図である。 本発明の実施形態に係る超音波処理装置を図1AのA-A切断線で切断した場合の断面を拡大して示した説明図である。 同実施形態に係る超音波処理装置における超音波印加機構について説明するための説明図である。 同実施形態に係る超音波処理装置における超音波印加機構について説明するための説明図である。 同実施形態に係る超音波処理装置について説明するための説明図である。 同実施形態に係る超音波処理装置について説明するための説明図である。 同実施形態に係る超音波処理装置について説明するための説明図である。 同実施形態に係る超音波処理装置について説明するための説明図である。 同実施形態に係る超音波処理装置について説明するための説明図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<超音波処理装置の全体構成>
 まず、図1A及び図1Bを参照しながら、本発明の実施形態に係る超音波処理装置の全体的な構成について、簡単に説明する。図1Aは、本実施形態に係る超音波処理装置の全体構成を模式的に示した説明図であり、図1Bは、本実施形態に係る超音波処理装置を図1AのA-A切断線で切断した場合の断面を拡大して示した説明図である。なお、図中の各部材の大きさは、説明を容易とするため適宜強調されており、実際の寸法、部材間の比率を示すものではない。
 本実施形態に係る超音波処理装置1は、処理槽10内に収納された(又は満たされた)処理液3中に被処理物が浸漬された状態で、超音波処理機構20から処理液3に超音波を印加することにより、被処理物の表面(処理液に接している部位)に対して次のような処理を施す装置である。かかる超音波処理装置1は、鋼材等に代表される各種の金属体や、プラスチック樹脂製部材等に代表される各種の非金属体等の被処理物に対して、例えば洗浄等の各種の処理を施す際に利用することができる。例えば、鋼管、形鋼、棒鋼、鋼線材等といった、所定の軸方向に延伸する各種の金属体を被処理物とし、本実施形態に係る超音波処理装置1を用いることで、これらの金属体に対して、酸洗処理や脱脂処理、更には(酸洗処理などの後に)洗浄処理を行うことができる。
 ここで、酸洗処理とは、金属体の表面に熱処理や熱加工等により形成された酸化物スケールを除去する処理であり、脱脂処理とは、加工処理等に用いる潤滑剤や加工油等の油分を除去する処理である。これらの酸洗処理及び脱脂処理は、表面仕上げ処理(金属被覆処理、化成処理、塗装処理等)を金属体に対して施すに先だって実施される前処理である。かかる酸洗処理によって、地の金属の一部を溶解させることもある。また、表面仕上げ品質を向上させるためのエッチングによる金属体の溶解にも、かかる酸洗処理は用いられている。また、酸洗処理の前段に脱脂処理が設けられている場合もあり、脱脂処理における脱脂性能が、その後の酸洗処理のスケールの除去に影響を及ぼすこともある。更には、脱脂処理は、最終製品の仕上げ品質としての油分管理指標である濡れ性の改善にも、使用される。
 更に、以下で詳述する本実施形態に係る超音波処理装置1は、上記のような製造ラインにおける洗浄工程以外にも、使用済み配管や定期的もしくは不定期に汚れ除去を必要とする配管などの洗浄等に対しても用いることが可能である。
 このように、本実施形態に係る超音波処理装置1は、主として、所定の軸方向に沿って延伸する長尺体のような被処理物の各種表面処理に適用可能であり、表面処理皮膜(例えば、各種の酸化皮膜やめっき皮膜、表面処理仕上げ処理後の塗膜等)が表面に生成した長尺体を被処理物とすることも可能である。更に、本実施形態に係る超音波処理装置1は、上記のような意図的に形成した各種の皮膜以外にも、例えば、酸化物スケールや油分等の意図しない表面付着物が膜状に付着した長尺体を被処理物とすることも可能である。
 以下では、処理液の保持されている処理槽10が存在し、かかる処理槽10の内部に、複数の長尺体が集合体となって浸漬される場合を例に挙げて、詳細に説明を行う。この場合、複数の長尺体の集合体(被処理物)は、クレーン等の上下動が可能な駆動機構(図示せず。)によって、処理液3が収納された(又は満たされた)処理槽10の内部に浸漬される。また、複数の長尺体の集合体は、未図示のワイヤーやネット等によって束状に纏められた状態で、処理槽10に浸漬されてもよい。
 以下では、便宜的に、図1A及び図1Bに示した座標系を適宜利用して、説明を行う。図1Aの下段に示した図は、超音波処理装置1をx軸正方向側から見た場合の側面を模式的に示したものであり、図1Aの上段に示した図は、超音波処理装置1をz軸正方向側から見た場合の上面を模式的に示したものである。
 本実施形態に係る超音波処理装置1は、図1Aに例示したように、処理液3が保持されており、かつ、被処理物S(図1Aに図示せず。)の一例である複数の長尺体の集合体が収容される処理槽10と、処理液3に対して超音波を印加する超音波印加機構20と、を有している。図1Aに示した座標系から明らかなように、かかる座標系におけるy軸方向は、処理槽10の長軸方向と平行な方向であり、z軸方向は、処理槽10の深さ方向に対応している。
 なお、以下では、説明の都合上、処理槽10の「内壁」及び「外壁」という表現を採用しているが、かかる表現は便宜的なものであって、処理槽10が二重構造を有していることを意味しているわけではない。以下の説明では、処理槽10の表面のうち、処理液3と接しうる側の表面(内表面)を「内壁」と称しており、内壁とは反対側の表面(外表面)を「外壁」と称している。
 ここで、本実施形態に係る超音波処理装置1の処理槽10は、図1A及び図1Bに模式的に示したように、断面形状が互いに略同一である長軸(図1A及び図1Bにおけるy軸方向に対応する軸)を有し、処理槽10の内壁101のうち処理液3の液面高さ予定線までの壁面(すなわち、処理液3と接する部分)が、凹曲面からなる。換言すれば、処理槽10は、内壁101を構成する曲面の曲率半径に着目した場合に、曲率中心の方向が処理槽10の内側方向に位置するような断面形状を有している。図1Bに示したような内壁101の断面形状は、図1AのA-A切断線の部分のみならず、処理槽10をy軸方向の任意の位置でx軸と平行となるように切断した場合においても、実現される。処理槽10の処理液3の液面高さ予定線(図1Bでは、この液面高さ予定線は、処理液3の液面と同じ。)までの内壁101を(内壁101側にくぼんだ)凹曲面で構成することで、超音波印加機構20を内壁101や外壁103のどの位置に設置しようとも、超音波の波形の腹や節となる位置が一定とならないようにすることが可能となり、超音波の槽内伝播をより向上させることが可能となる。
 図1Bでは、処理槽10が、略円筒形の一部をy軸方向に沿って切り欠くことで得られるような形状を有している場合の断面形状(換言すれば、円の一部を切り欠いたような断面形状)を例に挙げて、図示している。しかしながら、処理液3と接する部分の内壁101が凹曲面となる形状であれば、処理槽10の内壁101の断面形状は特に限定されるものではなく、例えば、略楕円形の一部を切り欠いたような断面形状を有していてもよい。ただし、略円の一部を切り欠いたような断面形状となる凹曲面とする方が、処理槽10の取り扱いが簡便となるため、好ましい。また、本実施形態に係る処理槽10において、処理液3と接しない部分の内壁については、特に規定するものではなく、曲面で構成されていてもよいし、曲面ではない部分が存在していてもよい。
 また、図1Aの上段に示したように、本実施形態に係る超音波処理装置1では、例えば処理槽10の内壁101側及び外壁103側に、超音波印加機構20が設けられている。ここで、図1Aでは、処理槽10の両端部付近を除く内壁101側に、y軸方向に沿って5個+4個=9個の超音波印加機構20が設けられており、処理槽10の両端部付近の外壁103側に、3個+3個=6個の超音波印加機構20が設けられている。ただし、かかる超音波印加機構20の個数及び設置状態については、図1Aに示した例に限定されるものではなく、処理槽10の形状や大きさ等に応じて、適宜設定すればよい。例えば、超音波印加機構20は、処理槽10の片側だけに設置してもよいし、図1Aに示したように、両側に設置してもよい。この際、y軸方向(処理槽10の長軸方向)の超音波印加機構20の配置は、千鳥配置とすることが好ましい。これにより、発振した超音波をより効率良く利用することが可能となる。また、処理槽10の両側に設置する場合、図1Aに示したように千鳥配置としてもよいし、対称に配置するようにしてもよい。また、図1Aに示したように、凹曲面形状としたx軸方向の内壁101に沿って設置してもよい。更に、超音波印加機構20は、処理槽10の内壁101側のみに設けてもよいし、外壁103側のみに設けてもよい。また、図1Aとは異なり、超音波印加機構20は処理槽10の両端部付近に配置されず、処理槽の両端部付近を除く内壁101又は外壁103に配置されてもよい。
 図1Bに模式的に示したように、本実施形態に係る超音波処理装置1において、超音波印加機構20は、超音波の発振面の法線と処理液3の液面高さ予定線(図1Bでは、この液面高さ予定線は処理液3の液面と同じ。)とのなす角θが5°以上となるように、設けられている。超音波印加機構20における超音波の発振面が、上記の関係を満足することで、超音波は、処理液3の液面に向かって発振されるようになる。その結果、処理液3の液面での超音波の反射効率が向上し、第2波の音波(すなわち、液面での超音波の反射波)が処理槽10内へと戻るようになり、凹曲面で構成される内壁101で更に反射するようになる。これにより、超音波の波形における腹や節の位置は、更に特定の分布を示さないようになり、処理槽10の内部で反射を繰り返すようになる。このような超音波の伝播状態が実現されることで、本実施形態に係る超音波処理装置1では、超音波の伝播性及び均一性をより一層向上させることが可能となる。
 図1Bに示した角度θが80°超となる場合、発振面から発振された超音波の第1波の進行経路上に、被処理物S(図1Bでは図示せず。)が存在する確率が高くなるため、液面まで到達する超音波の割合は低くなり、結果として、超音波の伝播性及び均一性の向上が十分に得られない可能性が生じうる。かかる観点から、本実施形態では、図1Bに示した角度θが80°以下となるように、超音波印加機構20が配置される。また、超音波印加機構20は、超音波を被処理物Sに直接発振するのではなく、液面に向けて超音波を発振するようにして、液面で超音波を反射させることが好ましい。
 上記のような観点から、超音波の発振面の法線と処理液3の液面高さ予定線とのなす角θの大きさは、5°~80°とする。角度θは、好ましくは15°以上であり、より好ましくは25°以上であり、更に好ましくは30°以上である。このような角度とすることで、超音波の印加効率をより向上させることができる。一方、角度θが70°を超える場合には、超音波の伝播性及び均一性の向上が十分に得られない可能性が生じうる。角度θは、好ましくは70°以下であり、より好ましくは65°以下であり、更に好ましくは60°以下である。このような角度とすることで、超音波の伝搬性及び均一性をより向上させることができる。
 また、本実施形態に係る超音波処理装置1において、上記角度θの範囲外には、超音波印加機構20が存在しないことが好ましい。つまり、上記角度θの範囲内のみに超音波印加機構20が設けられていることが好ましい。超音波印加機構20をこのように配置することで、超音波の伝搬性及び均一性のより一層の向上を図ることが可能となる。
 ここで、本実施形態では、複数の超音波印加機構20が、同一の角度θの値を有していなくともよく、上記の範囲内で複数種類の角度θの値を有していてもよい。ただし、同一の角度θとすることで、設置コストの低減を図ることが可能となる。
 図2A及び図2Bは、本実施形態に係る超音波印加機構20の構成の一例を模式的に示した説明図である。
 本実施形態に係る超音波印加機構20は、図2Aに示したように、例えば、超音波発振器201と、超音波振動子203と、で構成されていてもよい。超音波発振器201は、超音波振動子203に所望の出力で電力を供給する装置である。また、超音波振動子203は、超音波発振器201から出力された電力を振動に変換して、発振面から所望の周波数の超音波を発振する。かかる超音波印加機構20のうち超音波振動子203の部分を、処理槽10に対して設置することで、処理液3に対して超音波を発振することが可能となる。
 また、本実施形態に係る超音波印加機構20は、図2Bに示したように、例えば、超音波発振器201と、投げ込み型振動子211と、で構成されていてもよい。投げ込み型振動子211は、図2Bに示したように、筐体205の内部に複数の超音波振動子203を配置した上で、各超音波振動子203の発振面を覆うように、超音波を透過する所定の材質からなる部材で筐体205を封止したものである。この場合、各超音波振動子203の発振面を覆うように設けられた部材が、投げ込み型振動子211の発振面となる。投げ込み型振動子211の場合、超音波の出力安定性や発振効率を考慮して、超音波振動子203の間隔及び個数や、発振面の大きさが決定される。図2A又は図2Bの超音波印加機構20は、内壁101又は外壁103のいずれか又は双方に設けられてよい。
 超音波印加機構20から出力される超音波の周波数は、例えば、18kHz~200kHzであることが好ましい。超音波の周波数が18kHz未満である場合には、超音波は可聴域へと変化し、液体中への伝播は可能であるが、固体中の伝播で減衰が大きくなる。更には、超音波が騒音として認識され、作業環境悪化につながる可能性がある。また、被処理物Sの表面から発生するサイズの大きな気泡により超音波伝播が阻害され、超音波による処理性向上効果が低下する場合がある。超音波印加機構20から出力される超音波の周波数は、より好ましくは18kHz以上である。一方、超音波の周波数が200kHzを超える場合には、被処理物を処理する際の超音波の直進性が強くなりすぎて、処理の均一性が低下する場合がある。超音波印加機構20から出力される超音波の周波数は、より好ましくは150kHz以下であり、更に好ましくは100kHz以下である。
 なお、印加する超音波の周波数は、被処理物の種別等に応じて上記範囲内で適切な値を選定することが好ましく、被処理物の種類によっては、2種類以上の周波数の超音波を印加してもよい。
 また、超音波印加機構20は、ある選択した超音波の周波数を中心として所定の範囲で周波数を掃引しつつ超音波を印加することが可能な、周波数掃引機能を有していてもよい。このような周波数掃引機能によって、以下のような更なる効果を実現することが可能となる。
 超音波の一般的な性質として、「超音波の波長が照射物体の厚みに対応する波長の1/4となったときに、照射物体を透過する超音波の透過率が最大となる」という現象が知られている。そこで、周波数を適切な範囲で掃引しながら超音波を印加することで、例えば被処理物が管状体等の中空部を有するものであった場合に、管状体内へと透過する超音波を増加させることが可能となり、本実施形態に係る超音波処理装置1の処理効率を更に向上させることが可能となる。
 また、内壁101において、超音波を確実に反射させるために、処理槽10の内壁101は、超音波を反射可能な素材で形成されていることが好ましい。より詳細には、処理槽10の内壁101は、固有音響インピーダンスが1×10kg・m-2・sec-1~2×10kg・m-2・sec-1である素材からなることが好ましい。音響インピーダンスが上記範囲内である素材を用いて内壁101が形成されることで、かかる内壁101は、超音波をより確実に反射させることが可能となる。なお、「処理槽10の内壁101の素材」は、処理槽10が(二重構造等でなく)ひとつの素材から造られている場合、「処理槽10の素材」である。処理槽10が二重構造や三層構造などであってもよく、この場合の「処理槽10の内壁101の素材」は、その記載どおり「処理槽10の内壁101の素材」を意味する。
 音響インピーダンスが1×10kg・m-2・sec-1~2×10kg・m-2・sec-1以下である素材としては、例えば、各種の金属又は金属酸化物や、非酸化物セラミックスを含む各種のセラミックス等を挙げることができる。このような素材の具体例としては、例えば、鋼(固有音響インピーダンス[単位:kg・m-2・sec-1]:4.70×10、以下、カッコ内の数値は同様に固有音響インピーダンスの値を表す。)、鉄(3.78×10)、ニッケルクロム鋼(3.98×10)、ステンレス鋼(SUS、4.57×10)、チタン(2.73×10)、亜鉛(3.00×10)、ニッケル(5.35×10)、アルミニウム(1.73×10)、黄銅(4.06×10)、ジュラルミン(1.71×10)、タングステン(1.03×10)、ガラス(1.32×10)、石英ガラス(1.27×10)、グラスライニング(1.67×10)、アルミナ(酸化アルミニウム、3.84×10)、ジルコニア(酸化ジルコニウム、3.91×10)、窒化ケイ素(SiN、3.15×10)、炭化ケイ素(SiC、3.92×10)、炭化タングステン(WC、9.18×10)等がある。本実施形態に係る処理槽10においては、保持される処理液3の液性や、処理槽10に求める強度等に応じて、内壁101の形成に用いる素材を適宜選択すればよいが、上記のような音響インピーダンスを有する各種金属又は金属酸化物を用いることが好ましい。
 また、本実施形態に係る超音波処理装置1は、図1Aに模式的に示したように、処理槽10の外部に、処理液3を循環させるための処理液循環経路30が設けられることが好ましい。この処理液循環経路30は、例えば、処理槽10から越流した処理液3が到達する越流部301と、越流部301の内部に設けられた仕切板303と、越流部301の例えば底面に設けられた処理液吸い込み口305と、処理液循環配管307と、処理液循環機構309と、を有している。
 処理槽10から越流した処理液3は、越流部301へと流入し、仕切板303の高さとなるまで越流部301の処理槽10側に位置する部分で保持される。処理液3が仕切板303の高さまで到達すると、処理液3は、仕切板303を超えて、処理液吸い込み口305のある側へと流入する。処理液吸い込み口305の近傍に到達した処理液3は、ポンプ等の処理液循環機構309により、処理液循環配管307へと吸い込まれ、処理槽10の内部に戻される。
 また、このような処理液循環経路30の一部に対し、処理液にファインバブルを供給するためのファインバブル供給機構(図示せず。)を設けてもよい。処理液循環経路30にファインバブル供給機構を設けることで、処理液3による処理性を更に向上させることが可能となる。
 以上、図1A及び図1Bを参照しながら、本実施形態に係る超音波処理装置1の全体的な構成について、簡単に説明した。
<処理槽10及び超音波印加機構20について>
 続いて、図1B~図6を参照しながら、本実施形態に係る超音波処理装置1における処理槽10と超音波印加機構20について、より詳細に説明する。図3~図6は、本実施形態に係る超音波処理装置について説明するための説明図である。
 図1Bに示したような、処理槽10の長軸方向(図1Bにおけるy軸方向)に対して直交するように切断した任意の断面において、処理槽10の深さ方向(図1Bにおけるz軸方向)と長軸方向(図1Bにおけるy軸方向)に垂直な方向(図1Bにおけるx軸方向)の処理槽10の最大の内壁間距離を、Mと表記する。この最大の内壁間距離Mは、例えば図1Bに示したような円筒形の一部を切り欠いたような断面形状においては、円筒を構成する円の直径の大きさに対応している。この場合に、かかる断面において、処理槽10の長軸方向に対して直交する方向(図1Bにおけるx軸方向)の液面高さ予定線(図1Bでは、この液面高さ予定線は処理液3の液面と同じ。)における液面の長さM’は、最大の内壁間距離Mの90%以上であることが好ましい。液面の長さM’の上限は、特に規定するものではなく、最大の内壁間距離Mに一致していてもよい。つまり、液面の長さM’の上限は、最大の内壁間距離Mの100%である。
 本実施形態では、上述のように、超音波印加機構20の発振面から発振された超音波を、処理液3の液面で反射させることを重視している。このような観点から、液面の長さM’が長いほど、より大きな超音波の反射領域を実現できることとなる。ここで、図1Bに示した角度θを大きくした場合、超音波印加機構20の発振面は液面を向くようになっていくため(具体的には、発信面の長さLの中央からの(発信面の)法線が処理液の液面予定線と交差するようになっているため)、液面の長さM’が短くとも、超音波の液面での反射を十分に実現することができる。一方、図1Bに示した角度θを小さくした場合には、超音波印加機構20の発振面は、液面よりも壁面を向くようになっていくため、液面の長さM’をなるべく長くして、超音波の液面での反射効率を保持することが好ましい。M’/Mを90%以上とすると、発信面から発信された超音波が内壁101ではなく液面に直接衝突するようになり、その結果、超音波の液面での反射効率が高くなる。
 上記のような観点から液面の長さM’の下限について鋭意検討した結果、液面の長さM’が最大の内壁間距離Mの90%以上となることで、超音波の液面での反射効率を好ましい状態に保持できることが明らかとなった。かかる観点から、液面の長さM’は、最大の内壁間距離Mの90%以上であることが好ましい。液面の長さM’は、より好ましくは最大の内壁間距離Mの93%以上であり、更に好ましくは最大の内壁間距離Mの95%以上である。
 また、図1Bに示したような、処理槽10を処理槽10の深さ方向(図1Bにおけるz軸方向)に、処理槽10の長軸方向(図1Bにおけるy軸方向)に直交するように切断した任意の断面において、図2A及び図2Bに示したような超音波印加機構20の発振面の長さをLと表記する。この場合に、処理液3と接する部分の内壁101を構成する凹曲面の曲率半径Rは、発振面の長さLに対して、1.0倍~25.0倍であることが好ましい。つまり、R/Lは1.0~25.0であることが好ましい。曲率半径Rが発振面の長さLの1.0倍未満である場合、被処理物Sとの距離が近くなりすぎて、液面での超音波反射の距離を確保することができない。処理液3と接する部分の内壁101を構成する凹曲面の曲率半径Rは、発振面の長さLに対して、より好ましくは2.0倍以上であり、更に好ましくは3.0倍以上であり、より一層好ましくは4.0倍以上である。一方、曲率半径Rが発振面の長さLの25.0倍を超える場合には、超音波発振から液面までの距離が遠くなるために超音波の回折現象による拡散が起こり、発振する超音波全てが液面に到達せず、曲率半径の効果が低下する。曲率半径Rが上記の関係を満足することで、超音波が処理槽10の全体により確実に伝播するようになり、かつ、超音波の被処理物Sへの回り込み伝播をより効率良く実現できるようになる。処理液3と接する部分の内壁101を構成する凹曲面の曲率半径Rは、発振面の長さLに対して、より好ましくは20.0倍以下であり、更に好ましくは17.0倍以下であり、より一層好ましくは14.0倍以下であり、更に一層好ましくは11.0倍以下である。
 ここで、図2Aに示したような、個々の超音波振動子203を設置する場合、上記の発振面の長さLは、個々の超音波振動子203の振動面の大きさを変えることで、調整することとなる。また、図2Bに示したような、投げ込み型振動子211を設置する場合、筐体205内に配置する超音波振動子203の個数及び配置間隔を変更することで、発振面の長さLをより簡便に調整することが可能である。
 一般に、超音波を発振する際の効率的な振動子の大きさは、超音波発振器201の出力が設定された時点で決まってしまう。図2Aに示したような、個々の超音波振動子201を用いる場合、振動面の縦横比や直径等を変更することで、発振面の長さLを微調整することは可能であるが、その調整幅は小さい。そのため、図2Aに示したような個々の超音波振動子201を設置しうることも考慮すると、上記のような発振面の長さLと曲率半径Rとの関係を調整する場合、発振面の長さLを調整するよりも、曲率半径Rを許容範囲内で調整する方が、より簡便である。一方、処理槽10の大きさつまりRの変更が困難な場合などには、R/Lが好ましい範囲となるような発信面の長さLを有する超音波印加機構20を使用してもよい。
 なお、処理槽10の大きさ(容積)を大きな値に設定する場合には、内壁101を構成する凹曲面の曲率半径Rは上記の関係を満足するように保持した上で、処理槽10の長軸方向(図1Bのy軸方向)の長さを調整することが好ましい。ただし、この場合であっても、処理槽10の長軸方向の長さは、1m以上にすることが好ましい。長軸方向の長さが1m未満である場合には、被処理物Sの大きさが過度に制限される可能性が高まる他、内壁101を構成する凹曲面と、一般的な超音波処理装置における内壁との効果差が小さくなる可能性が高くなる。一方、長軸方向の長さについては、特に上限を設けるものではなく、長軸方向を長くした場合には、配置する超音波印加機構20の台数を増やして調整すればよい。
 なお、処理槽10の深さ方向(z軸方向)に、長軸方向に対して直交するように切断した断面における断面形状が互いに略同一であり、かつ、処理槽10の長軸方向(y軸方向)に所定の長さを有する処理槽パーツ(図示せず。)を準備し、かかる処理槽パーツを互いに連結したり脱着したりすることで長軸方向の長さを可変とすることができるように、処理槽10を構成してもよい。このように、処理槽10を分割可能な構成とすることで、処理槽10の長軸方向の長さをより簡便に調整することが可能となる。
 また、図3に模式的に示したように、超音波印加機構20は、処理槽10への設置位置が被処理物S(図3に図示せず。)の処理量などに応じて変更可能なように設けられることが好ましい。より詳細には、処理液3中に浸漬される被処理物Sの量が多くなるほど、発振面の法線と液面とのなす角θが小さな値となるように、超音波印加機構20の処理槽10への設置位置を変更可能なようにすることが好ましい。
 図3に模式的に示したように、超音波印加機構20の設置位置を処理槽10の底部に近づけるほど(例えば、図3における設置位置A)、角度θの大きさは大きくなり(例えば、図3における角度θ)、被処理物Sで遮られて液面へと到達しなくなる超音波の第1波の割合は高くなる。そこで、超音波印加機構20の設置位置を、液面に近づける(例えば、図3における設置位置B)ことで、角度θの大きさは小さくなり(例えば、図3における角度θ)、液面へと到達する第1波の割合を保持しながら、被処理物Sへの超音波の回り込み伝播を実現することが可能となる。
 このような超音波印加機構20の設置位置を変更するための仕組みについては、特に限定されるものではなく、各種の仕組みを適宜採用することが可能である。例えば、処理槽10の内壁101に、超音波印加機構20を移動及び固定するためのレール(図示せず。)等を設けることで、角度θが所望の値となるように、超音波印加機構20の設置位置を簡便に調整することが可能となる。また、このようなレール機構であれば、処理槽10内の空間を占有する割合も低く、レールに対して適切な表面処理を施すことで、各種の処理液3を適宜用いることも可能となる。
 また、図1A~図3では、超音波印加機構20が主に処理槽10の内壁側に設けられる場合について図示したが、本実施形態に係る超音波処理装置1では、超音波印加機構20を、図4Aに模式的に示したように、処理槽10の外壁103側に設置してもよい。この場合、超音波印加機構20の発振面から発振される超音波を処理液3中により確実に伝播させるために、図4Aに示したように、発振面が処理槽10の外壁103に沿った形状となるように超音波印加機構20を設置することが好ましい。なお、図4Aに示した場合では、図1Bで説明した発振面の長さLは、処理槽10の外壁103に沿った発振面の弧の長さとなる。
 なお、超音波印加機構20を処理槽10の外壁103側に設ける場合、超音波印加機構20の超音波の発振面が処理槽10の外壁103に接触するように保持可能であれば、超音波印加機構20の固定方法は、特に限定されるものではない。
 ただし、各種の接着剤等を用いて、接着層21を介して超音波印加機構20を処理槽10の外壁103に固定する場合には、超音波をより確実に処理液3へと伝播させるために、接着層21の厚みは1mm以下とし、接着素材の影響を極力受けないようにすることが好ましい。超音波印加機構20の超音波振動素子部と処理槽10とは、同等の素材、又は、近似の固有音響インピーダンスを有する素材を用いることが好ましく、隙間及び空気層(気泡を含む。)が存在しないように、固定したり接着、接合したりすることが好ましい。
 また、図5に示したように、処理槽10の長軸方向(y軸方向)での超音波印加機構20の設置間隔Dは、隣り合う振動子同士が干渉しない程度にあけることが好ましい。また、設置間隔Dの上限は特に規定するものではなく、任意の間隔で設置すればよい。内壁101を構成する凹曲面の曲率半径Rは、上述した関係を満足するように保持した上で、処理槽10の深さ方向に対して直行する方向(x軸方向及びy軸方向)のどちらに設置してもよい。
 本実施形態に係る処理槽10は、図6の上段に模式的に示したように、処理槽10を保持する架台40に対して着脱可能となるように設けられることが好ましい。その上で、本実施形態に係る超音波処理装置1は、処理槽10が架台40から隔離した状態(換言すると、独立した状態又は分離した状態ともいうことができる。)、例えば、クレーン等の吊り上げ機構(図示せず。)で処理槽10が吊り上げられた状態で用いられてもよい。このような状態で処理槽10が用いられることで、処理液3中に印加された超音波の減衰をより確実に抑制しながら、被処理物Sを処理することが可能となる。
 また、本実施形態に係る超音波処理装置1は、図6の下段に示したように、処理槽10が架台40に保持された状態で使用することも可能である。この場合には、架台40と接している部分(換言すれば、処理槽10と架台40との界面)において、処理槽10を透過した超音波が減衰する可能性が生じる。そこで、処理槽10と架台40との界面における超音波の減衰をより確実に抑制するために、架台40の処理槽10と接する部分には、固有音響インピーダンスが1×10~2×10kg・m-2・sec-1以下である素材が存在することが好ましい。このような素材が存在することで、処理槽10を形成する素材の固有音響インピーダンスと、架台40を形成する素材の固有音響インピーダンスと、の差を大きくすることが可能となり、超音波の減衰をより確実に抑制することが可能となる。このような素材としては、例えば、シリコーンゴム(1×10kg・m-2・sec-1)、天然ゴム(1.46×10kg・m-2・sec-1)、発泡ポリエチレン(1.7×10kg・m-2・sec-1)を挙げることができる。
 更に、架台40自体を、木材や、例えばフェノール樹脂等のプラスチック樹脂を素材として用いて形成してもよい。木材や、フェノール樹脂等のプラスチック樹脂は、上記のシリコーンゴム、天然ゴム、発泡ポリエチレンよりも、固有音響インピーダンスはやや大きいものの、金属と比較して十分に小さな固有音響インピーダンスを有しているため、処理槽10と架台40との界面における超音波の減衰をより確実に抑制することができる。
 また、架台40と接している部分が多くなるほど、超音波の減衰が生じやすくなる。かかる観点から、処理槽10における架台40との接触部分の面積は、処理槽10の表面積の40%以下であることが好ましい。また、超音波の減衰の抑制という観点から、かかる接触部分の面積は、処理槽10の表面積に対して小さければ小さいほど良く、その下限値は特に規定するものではない。
 以上、図1B~図6を参照しながら、本実施形態に係る超音波処理装置1における処理槽10と超音波印加機構20について、より詳細に説明した。
 以上説明したように、本実施形態によれば、処理液3が収容された処理槽10の内壁101が凹曲面となり、超音波印加機構20を所定角で液面に向かって設置することにより、処理槽10の全体から被処理物Sに対して、超音波が効率よく伝播する超音波処理装置1を実現することが可能となる。また、かかる超音波処理装置1では、液面からの超音波の反射と、処理槽10の内壁101における様々な角度からの被処理物への超音波伝播によって、効率的な処理が可能となる。
 以上、本実施形態に係る超音波処理装置1について、詳細に説明した。
 以下に、実施例及び比較例を示しながら、本発明に係る超音波処理装置について、具体的に説明する。なお、以下に示す実施例は、あくまでも本発明に係る超音波処理装置の一例にすぎず、本発明に係る超音波処理装置が下記に示す例に限定されるものではない。
 厚みが5mmのSUS材(固有音響インピーダンス:4.57×10kg・m-2/sec-1)を用いて、処理槽10を形成した。この際に、処理槽10の奥行の長さ(図1Aにおけるy軸方向の長さ)は、5mに固定した上で、処理槽10の断面形状を変化させた。架台40は、鋼材を用いて、処理槽10の断面形状に合わせて製作した。処理槽10の外表面における架台40との接触部分の面積を35%として、架台40と処理槽10との間に厚み10mmの発泡ポリエチレンシート(固有音響インピーダンス:1.7×10kg・m-2・sec-1)を貼り付けた。
 なお、以下の実施例16では、上記発泡ポリエチレンシートが無い場合について検証し、以下の実施例17では、接触部分の面積を50%にした場合について検証し、以下の実施例18では、接触部分の面積を50%とし、かつ、上記発泡ポリエチレンシートが無い場合について検証した。更に、以下の実施例19では、フェノール樹脂製の架台40を用い、接触部分の面積を50%とし、かつ、上記発泡ポリエチレンシートが無い場合について検証し、以下の実施例20では、木製の架台40を用い、接触部分の面積を50%とし、かつ、上記発泡ポリエチレンシートが無い場合について検証した。
 外径100mm×長さ2~4mである使用済み廃油井管を被処理物Sとして、処理液の保持されている処理槽10に3分間浸漬し、管内に残存している酸化スケールを水洗する処理を行うことで、検証を行った。処理液としては、液温が30℃である上水を使用した。この際、最大の内壁間距離Mに対する液面の長さM’の比(M’/M)は、処理液の液面の高さで割合を調整するようにし、85%、90%又は100%で一定となるようにした。
 超音波印加機構20の超音波発振器は、出力が1200Wであり、超音波振動子8個を処理槽10の内壁側又は外壁側に設置間隔0.5mで固定して、検証を行った。なお、処理槽10の内壁側に設置する超音波印加機構20の超音波振動子は、図2Bに示したようなSUS製の投げ込み型振動子211(幅0.4m×長さ0.3m×厚み0.08m)であり、図1Bに示した発振面の長さLが0.3mとなるように設置した。また、処理槽10の外壁側に設置する超音波印加機構20の超音波振動子203は、直径0.09m×厚み0.15mのものを用いた。また、外壁側に設置する超音波振動子203は、5°、25°、30°、45°、60°、70°又は80°の位置に設置し、以下の実施例9~11、14では、30°及び60°の位置、0°及び60°の位置、又は、30°及び90°の位置に、角度θをずらして交互に超音波振動子203を配置した。なお、印加する超音波の周波数は、18~192kHzとした。
 被処理物Sである使用済み廃油井管を3本束にして、クレーンで処理槽10の中央に吊り下げながら浸漬させた上で、処理槽10自体を架台40に溶接はしていないが架台40の上に載せた状態で洗浄を実施し、超音波強度を測定するとともに、洗浄評価を行った。なお、以下に示す実施例6では、処理槽10自体を更にクレーンで吊り上げて、架台40から離隔させた状態で洗浄を実施し、超音波強度を測定するとともに、洗浄評価を行った。
 超音波強度測定は、超音波レベルモニター(カイジョー製19001D)を用いて、処理槽中央長手方向の10点2列の超音波強度(mV)の測定を行った。処理槽10の長軸方向(y軸方向)では、端部からy軸方向に沿って0.4m毎の測定間隔で10点、処理槽10の断面(xz平面)においては、処理槽10の断面中心位置と、0.2m離隔させた2点を測定点とし、処理槽10の全体で計20点の測定点を設定した。得られた20個の測定値を平均し、標準偏差σを算出した。この際、相対超音波強度(比較例1の測定結果、すなわち、角槽で振動子を槽の側面に配置した照射を前提とした、被処理物Sを設置した場合における測定超音波強度を1としたときの相対強度)と標準偏差σを算出して、被処理物S及び処理槽内への超音波の伝播性を比較した。
 また、本実験例では、管内面の酸化スケール除去率を測定し、測定した除去率を水洗性能として評価した。より詳細には、水洗前後の管内面の酸化スケールをファイバースコープにて撮影し、二値化画像により酸化スケール除去率を算出した。水洗前の酸化スケール残存量に対し、各条件で除去できた酸化スケール除去量の割合を、酸化スケール除去率とした。下記表1における水洗性能の評価基準階下の通りである。
 酸化スケール残存皮膜の除去率
  100%以下~95%以上:A
   95%未満~90%以上:B
   90%未満~85%以上:C
   85%未満~80%以上:D
   80%未満~60%以上:E
   60%未満~40%以上:F
   40%未満      :G
 すなわち、評点A、評点B及び評点Cは、水洗性能が非常に良好であったことを意味し、評点Dは、水洗性能が良好であったことを意味し、評点Eは、水洗性能にやや難があったことを意味し、評点F及び評点Gは、水洗性能が不良であったことを意味する。評点A~評点Dを合格とした。
 処理槽10及び超音波印加機構20の設定条件、及び、得られた結果を、以下の表1にまとめて示した。
 なお、以下の表1の「内壁断面形状」の欄において、「平行」との記載は、処理槽10の底面が液面に対して平行となっていることを意味し、「傾斜」との記載は、処理槽10の底面が液面に対して斜めになっている(ただし、曲面とはなっていない)ことを意味する。また、「角度θ」の欄において、「垂直」との記載は、超音波印加機構20の超音波振動子を処理槽10(角槽)の底面に設置したこと(つまり、θ=90°)を意味し、「平行」との記載は、超音波印加機構20の超音波振動子(投げ込み型振動子211)を処理槽10(角槽)の側面に設置したこと(つまり、θ=0°)を意味する。
Figure JPOXMLDOC01-appb-T000001
 
 上記表1から明らかなように、本発明の比較例に該当する例では、相対超音波強度が比較的小さな値となる場合が発生し、また、洗浄性についても、不合格となった。一方で、本発明の実施例に該当する例では、相対超音波強度が大きな値となるとともに、超音波強度の標準偏差も小さくなり、更に、優れた洗浄性を示した。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
   1  超音波処理装置
   3  処理液
  10  処理槽
  20  超音波印加機構
  21  接着層
  30  処理液循環経路
  40  架台
 101  内壁
 103  外壁
 201  超音波発振器
 203  超音波振動子
 205  筐体
 211  投げ込み型振動子
 301  越流部
 303  仕切板
 305  処理液吸い込み口
 307  処理液循環配管
 309  処理液循環機構
 

Claims (13)

  1.  被処理物と、前記被処理物を浸漬するための処理液と、を収納することができる処理槽と、
     前記処理液に対して超音波を印加する超音波印加機構と、
    を備え、
     前記処理槽は、断面形状が互いに略同一である長軸を有し、かつ、前記処理液の液面高さ予定線までの壁面が凹曲面からなり、
     前記超音波印加機構は、超音波の発振面の法線と前記処理液の液面予定線とのなす角θが5°~80°となる位置に設けられている、超音波処理装置。
  2.  前記超音波印加機構は、前記角θが25°~70°となる位置に設けられている、請求項1に記載の超音波処理装置。
  3.  前記超音波印加機構は、前記角θが請求項1又は2に記載の範囲外となる位置に、設けられていない、請求項1又は2に記載の超音波処理装置。
  4.  前記処理槽を前記長軸に対して直交する面で切断した断面が、略円又は略楕円の一部を切り欠いたような形状である、請求項1~3の何れか1項に記載の超音波処理装置。
  5.  前記処理槽を前記長軸に対して直交する面で切断した断面において、
     前記液面高さ予定線での内壁間距離は、前記断面における前記処理槽の最大の内壁間距離Mの90%以上である、請求項1~4の何れか1項に記載の超音波処理装置。
  6.  前記処理槽を前記長軸に対して直交する面で切断した断面において、
     前記凹曲面の曲率半径Rは、前記断面における前記超音波印加機構の前記発振面の長さLの1.0~25.0倍である、請求項1~5の何れか1項に記載の超音波処理装置。
  7.  前記超音波印加機構は、前記処理槽への設置位置が前記被処理物の処理量に応じて変更可能なように設けられる、請求項1~6の何れか1項に記載の超音波処理装置。
  8.  前記処理槽は、前記長軸に対して直交する方向に切断した断面における断面形状が互いに略同一である処理槽パーツを連結又は脱着することで、前記処理槽の前記長軸に平行な方向の長さが可変となるように構成される、請求項1~7の何れか1項に記載の超音波処理装置。
  9.  前記処理槽は、前記処理槽を保持する架台に対して着脱可能である、請求項1~8の何れか1項に記載の超音波処理装置。
  10.  前記処理槽を保持する架台の前記処理槽と接する部分は、固有音響インピーダンスが1×10~2×10kg・m-2・sec-1である素材からなる、請求項1~9の何れか1項に記載の超音波処理装置。
  11.  前記処理槽における架台との接触部分の面積は、処理槽の外表面の面積の40%以下である、請求項1~10の何れか1項に記載の超音波処理装置。
  12.  前記処理槽が前記架台から離隔した状態で用いられる、請求項1~9の何れか1項に記載の超音波処理装置。
  13.  前記処理液を循環させる処理液循環経路が、前記処理槽の外部に設けられる、請求項1~12の何れか1項に記載の超音波処理装置。
     
PCT/JP2020/047145 2019-12-19 2020-12-17 超音波処理装置 WO2021125260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021531434A JP6980950B2 (ja) 2019-12-19 2020-12-17 超音波処理装置
KR1020227023942A KR20220111705A (ko) 2019-12-19 2020-12-17 초음파 처리 장치
US17/787,179 US11839906B2 (en) 2019-12-19 2020-12-17 Ultrasonic treatment apparatus
CN202080087892.7A CN114929404A (zh) 2019-12-19 2020-12-17 超声波处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019228830 2019-12-19
JP2019-228830 2019-12-19

Publications (1)

Publication Number Publication Date
WO2021125260A1 true WO2021125260A1 (ja) 2021-06-24

Family

ID=76477640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047145 WO2021125260A1 (ja) 2019-12-19 2020-12-17 超音波処理装置

Country Status (5)

Country Link
US (1) US11839906B2 (ja)
JP (1) JP6980950B2 (ja)
KR (1) KR20220111705A (ja)
CN (1) CN114929404A (ja)
WO (1) WO2021125260A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114379A (en) * 1979-02-27 1980-09-03 Shimada Physical Chem Ind Co Ultrasoniccwave washing device
JPH07100444A (ja) * 1993-10-06 1995-04-18 Hitachi Zosen Corp 洗浄方法および洗浄装置
US6019852A (en) * 1997-10-31 2000-02-01 Pedziwiatr; Michael P. Ultrasonic cleaning method in which ultrasonic energy of different frequencies is utilized simultaneously
JP2005046824A (ja) * 2003-07-29 2005-02-24 Motoyoshi Fujimori 二槽式自動超音波洗浄器
CN105170562A (zh) * 2015-09-25 2015-12-23 无锡市博阳超声电器有限公司 一种新型超声波清洗槽
WO2018169050A1 (ja) * 2017-03-16 2018-09-20 新日鐵住金株式会社 超音波洗浄装置及び超音波洗浄方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US678913A (en) * 1901-04-15 1901-07-23 Joseph Stephenson Knockdown water-tank.
US4528652A (en) * 1981-12-30 1985-07-09 General Electric Company Ultrasonic transducer and attenuating material for use therein
TW371315B (en) 1993-10-06 1999-10-01 Hitachi Shipbuilding Eng Co Wet scrubber
JP3641383B2 (ja) 1999-04-14 2005-04-20 シャープ株式会社 超音波洗浄装置
JP2006095472A (ja) * 2004-09-30 2006-04-13 Jatco Ltd 無段変速機用ベルトの防錆洗浄処理装置及び防錆洗浄処理方法
JP2008086898A (ja) * 2006-09-30 2008-04-17 Honda Electronic Co Ltd 超音波洗浄装置
JP6161236B2 (ja) 2012-03-29 2017-07-12 三菱重工業株式会社 原子力用多孔板の洗浄装置
CN204276436U (zh) * 2014-03-21 2015-04-22 张学来 一种超声波清洗机
CN105170554A (zh) * 2015-09-25 2015-12-23 无锡市博阳超声电器有限公司 一种半球形超声波清洗槽
CN207103312U (zh) * 2017-08-18 2018-03-16 遵义市第一人民医院 一种超声波振荡器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114379A (en) * 1979-02-27 1980-09-03 Shimada Physical Chem Ind Co Ultrasoniccwave washing device
JPH07100444A (ja) * 1993-10-06 1995-04-18 Hitachi Zosen Corp 洗浄方法および洗浄装置
US6019852A (en) * 1997-10-31 2000-02-01 Pedziwiatr; Michael P. Ultrasonic cleaning method in which ultrasonic energy of different frequencies is utilized simultaneously
JP2005046824A (ja) * 2003-07-29 2005-02-24 Motoyoshi Fujimori 二槽式自動超音波洗浄器
CN105170562A (zh) * 2015-09-25 2015-12-23 无锡市博阳超声电器有限公司 一种新型超声波清洗槽
WO2018169050A1 (ja) * 2017-03-16 2018-09-20 新日鐵住金株式会社 超音波洗浄装置及び超音波洗浄方法

Also Published As

Publication number Publication date
JPWO2021125260A1 (ja) 2021-12-16
KR20220111705A (ko) 2022-08-09
CN114929404A (zh) 2022-08-19
US11839906B2 (en) 2023-12-12
JP6980950B2 (ja) 2021-12-15
US20230037005A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP6673527B2 (ja) 超音波洗浄装置及び超音波洗浄方法
KR101384595B1 (ko) 초음파 세정 장치 및 초음파 세정 방법
US7104268B2 (en) Megasonic cleaning system with buffered cavitation method
KR20130107287A (ko) 개선된 초음파 세정 방법 및 장치
JPWO2011067955A1 (ja) 鋼板の酸洗方法及び酸洗装置
JP7014076B2 (ja) 脱気ファインバブル液製造装置、脱気ファインバブル液製造方法、超音波処理装置及び超音波処理方法
CN112739465A (zh) 金属管的清洗方法和清洗装置
WO2021125260A1 (ja) 超音波処理装置
US8486199B2 (en) Ultrasonic cleaning method and apparatus
JP2010153541A (ja) 超音波洗浄装置及び超音波洗浄方法
JP2007125516A (ja) 超音波洗浄方法及び超音波洗浄装置
JP7372535B2 (ja) 超音波処理装置及び超音波処理方法
WO2022130565A1 (ja) 超音波処理方法及び超音波処理装置
JP2009011879A (ja) 超音波洗浄装置及び超音波洗浄方法
JPH06106144A (ja) 超音波洗浄方式及び超音波洗浄装置
JP5592734B2 (ja) 超音波洗浄装置及び超音波洗浄方法
JP3809293B2 (ja) 超音波励振装置及びこれを備えた超音波洗浄装置
JPH0420546Y2 (ja)
JP2009136726A (ja) 超音波洗浄装置
KR20030020829A (ko) 웨트처리용 노즐, 웨트처리장치 및 웨트처리방법
JP7282472B2 (ja) 超音波シャワー洗浄装置
CN208680010U (zh) 一种超声波清洗器
JPH04256473A (ja) 超音波洗浄装置
JP2009094140A (ja) 圧電振動子及びその製造方法、並びに超音波洗浄装置
BR112019017215B1 (pt) Equipamento de limpeza ultrassônica e método de limpeza ultrassônica

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021531434

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227023942

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903008

Country of ref document: EP

Kind code of ref document: A1