WO2011065388A1 - 固体電池 - Google Patents

固体電池 Download PDF

Info

Publication number
WO2011065388A1
WO2011065388A1 PCT/JP2010/070958 JP2010070958W WO2011065388A1 WO 2011065388 A1 WO2011065388 A1 WO 2011065388A1 JP 2010070958 W JP2010070958 W JP 2010070958W WO 2011065388 A1 WO2011065388 A1 WO 2011065388A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
layer
solid
electrode layer
lizr
Prior art date
Application number
PCT/JP2010/070958
Other languages
English (en)
French (fr)
Inventor
邦雄 西田
倍太 尾内
充 吉岡
剛司 林
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2011543276A priority Critical patent/JP5403066B2/ja
Priority to CN201080051685.2A priority patent/CN102612782B/zh
Publication of WO2011065388A1 publication Critical patent/WO2011065388A1/ja
Priority to US13/477,136 priority patent/US20120231350A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid state battery.
  • batteries particularly secondary batteries
  • a lithium ion secondary battery is known to have a relatively large energy density.
  • a liquid electrolyte electrolytic solution
  • organic solvent has been conventionally used as a medium for moving ions.
  • secondary batteries using an electrolytic solution have problems such as leakage of the electrolytic solution. Therefore, development of a solid battery in which all the constituent elements are made of solid using a solid electrolyte has been underway.
  • a compound having a NASICON structure has been studied as a solid electrolyte used in a solid state battery.
  • -x (PO 4 ) 3 hereinafter referred to as LATP
  • LAGP Li 1 + x Al x Ge 2 ⁇ x (PO 4 ) 3
  • LAGP is known to be difficult to reduce compared to LATP, but its reduction resistance is not always sufficient.
  • LTO lithium-titanium composite oxide having a spinel structure, Li 4 Ti 5 O 12
  • the reduction potential of LTO is known to be relatively high at 1.5 V (vs Li / Li + ).
  • an object of the present invention is to provide a solid battery having high stability by improving the reduction resistance of the solid electrolyte.
  • the present inventors examined the reduction resistance of the solid electrolyte using first-principles calculation.
  • the electrode active material the solid electrolyte
  • Zr NASICON LiZr 2 (PO 4 ) 3
  • a solid battery according to one aspect of the present invention is a solid battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer, the positive electrode layer and the negative electrode layer include an electrode active material, and the solid electrolyte layer is a solid electrolyte. And a LiZr 2 (PO 4 ) 3 containing layer is provided on at least a part of the surface of the solid electrolyte contained in the solid electrolyte layer.
  • the LiZr 2 (PO 4 ) 3 containing layer is provided on at least a part of the surface of the solid electrolyte contained in the solid electrolyte layer, the positive electrode layer or the negative electrode layer an electrode active material contained in, between the solid electrolyte contained in the solid electrolyte layer, so that the LiZr 2 (PO 4) 3-containing layer is present.
  • restoration of the solid electrolyte by an electrode active material can be suppressed.
  • a solid battery having high stability can be produced.
  • a LiZr 2 (PO 4 ) 3 -containing layer is provided between the solid electrolyte layer and at least one of the positive electrode layer and the negative electrode layer.
  • the LiZr 2 (PO 4 ) 3 -containing layer exists between the solid electrolyte layer and at least one of the positive electrode layer or the negative electrode layer, the interface between the solid electrolyte layer and at least one of the positive electrode layer or the negative electrode layer Thus, a solid battery excellent in stability can be obtained.
  • the solid electrolyte layer includes a solid electrolyte covered with a LiZr 2 (PO 4 ) 3 containing layer.
  • the solid electrolyte layer is provided between the first solid electrolyte layer containing the solid electrolyte and the first solid electrolyte layer and at least one of the positive electrode layer or the negative electrode layer, and contains LiZr 2 (PO 4 ) 3. And a second solid electrolyte layer comprising a solid electrolyte coated with the layer.
  • the positive electrode layer and the negative electrode layer contain a solid electrolyte.
  • a solid state battery according to another aspect of the present invention is a solid state battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer, wherein the positive electrode layer and the negative electrode layer include an electrode active material and a solid electrolyte.
  • a LiZr 2 (PO 4 ) 3 -containing layer is provided on at least a partial surface of at least one of the electrode active material or the solid electrolyte contained in at least one of the negative electrode layers.
  • LiZr 2 (PO 4 ) 3 is contained on at least a partial surface of at least one of the electrode active material or the solid electrolyte contained in at least one of the positive electrode layer and the negative electrode layer. Since the electrode layer is formed by mixing the solid electrolyte and the electrode active material, the LiZr 2 (between the electrode active material and the solid electrolyte in at least one of the positive electrode layer and the negative electrode layer is formed. There will be a PO 4 ) 3 containing layer. Thereby, reduction
  • a LiZr 2 (PO 4 ) 3 -containing layer exists between the electrode active material and the solid electrolyte.
  • the LiZr 2 (PO 4 ) 3 containing layer preferably covers the surface of the electrode active material.
  • the LiZr 2 (PO 4 ) 3 containing layer preferably covers the surface of the solid electrolyte.
  • the solid electrolyte is represented by the general formula Li 1 + x M I x M II 2-x (PO 4) 3 [ wherein, M I is Al or It is preferable that at least one of the solid electrolytes having a NASICON structure represented by “Ga and M II are Ti or Ge” is included.
  • the electrode active material is preferably at least one of a lithium titanium composite oxide having a spinel structure or a titanium oxide.
  • the reduction resistance of the solid electrolyte is improved by interposing a substance made of LiZr 2 (PO 4 ) 3 between the solid electrolyte and the electrode active material. That is, it is possible to suppress the reduction of the solid electrolyte by the electrode active material. Thereby, a solid battery with high stability can be produced.
  • FIG. 1 It is sectional drawing which shows a schematic structure as a structural example (a) of the solid battery of Embodiment 1 of this invention. It is sectional drawing which shows a schematic structure as a structural example (b) of the solid battery of Embodiment 1 of this invention. It is sectional drawing which shows a schematic structure as a structural example (c) of the solid battery of Embodiment 1 of this invention. It is sectional drawing which shows schematic structure as a structural example (d) of the solid battery of Embodiment 1 of this invention, or the structural example (b) of the solid battery of Embodiment 2.
  • FIG. 2 It is sectional drawing which shows a schematic structure as a structural example (a) of the solid battery of Embodiment 2 of this invention. It is a figure which shows one example of the component which forms a positive electrode layer or a negative electrode layer in the structure of the solid battery of Embodiment 2 of this invention. It is a figure which shows another example of the component which forms a positive electrode layer or a negative electrode layer in the structure of the solid battery of Embodiment 2 of this invention. It is a figure which shows another example of the component which forms a positive electrode layer or a negative electrode layer in the structure of the solid battery of Embodiment 2 of this invention.
  • the electronic structure of a solid electrolyte particularly a solid electrolyte having a NASICON type structure such as LATP, LAGP, or Zr NASICON, consists of a valence band mainly composed of O2p and a conduction band mainly composed of a d orbital of a central metal element.
  • the valence band is full of electrons.
  • electrons are empty in the conduction band. Therefore, as a result, there are no conduction electrons, and the solid electrolyte having a NASICON structure is electronically an insulator. Since lithium ions can move in this NASICON-type crystal, electric conduction by ions is possible. Therefore, since it is possible to separate the movement of electrons and the movement of ions, the crystals of NASICON type structure can serve as the electrolyte of the battery.
  • the reduction resistance of the solid electrolyte having the NASICON structure can be evaluated by an electromotive force with respect to metallic lithium in the lithium ion insertion reaction into the solid electrolyte having the NASICON structure.
  • this electromotive force shows a high potential, lithium ions are likely to be inserted into the solid electrolyte, and the solid electrolyte is likely to be reduced.
  • this electromotive force is low, lithium ions are hardly inserted into the solid electrolyte, and the solid electrolyte is difficult to be reduced.
  • the electromotive force of the battery is made possible by calculating the difference between the sum of the internal energy of the solid electrolyte and metallic lithium before the reaction and the internal energy of the reduced state into which lithium ions have been inserted after the reaction.
  • the central metal is a mixed state of Ti and Zr.
  • the electromotive force is equivalent to the case where the central metal is Ti, and it can be seen that Ti having low reduction resistance dominates the reducing property of this substance.
  • LiZr 2 (PO 4 ) 3 As a solid electrolyte, it is effective to combine LiZr 2 (PO 4 ) 3 with an electrode active material or a solid electrolyte having a NASICON structure. .
  • an electrode active material or a solid electrolyte having a NASICON structure By interposing a substance made of LiZr 2 (PO 4 ) 3 between the electrode active material and the solid electrolyte having a NASICON structure, this problem can be solved while taking advantage of LiZr 2 (PO 4 ) 3 .
  • any method may be used for interposing a substance composed of LiZr 2 (PO 4 ) 3 between the solid electrolyte having a NASICON type structure and the electrode active material, and is not limited to the interposition method.
  • a method for coating or adhering a substance composed of LiZr 2 (PO 4 ) 3 to a solid electrolyte or electrode active material having a NASICON structure an electrode active material or a solid electrolyte having a NASICON structure and LiZr 2 (PO 4 ) 3 can be used.
  • a layer serving as a precursor of a substance composed of LiZr 2 (PO 4 ) 3 on the surface of a solid electrolyte or electrode active material having a NASICON structure by a sol-gel method by mechanically dispersing and mixing fine particles with the substance composed of the formed beforehand, LiZr 2 when co-firing of the battery (PO 4) formation of 3 composed of a synthetic and a surface layer of the material and be performed simultaneously, etc. can be considered.
  • the solid state battery 10 includes a positive electrode layer 11, a negative electrode layer 12, and a positive electrode layer 11 and a negative electrode layer 12.
  • the solid electrolyte layer 13 is disposed.
  • the LiZr 2 (PO 4 ) 3 containing layer 14 is provided between the negative electrode layer 12 and the solid electrolyte layer 13.
  • the solid electrolyte layer 13 is formed from the first solid electrolyte layer 130.
  • the first solid electrolyte layer 130 is composed of a large number of solid electrolyte particles 15.
  • the positive electrode layer 11 or the negative electrode layer 12 may be composed of a large number of electrode active material particles 16, and is composed of a mixture of a large number of solid electrolyte particles 15 and electrode active material particles 16 as shown in FIG. May be.
  • the solid state battery 10 includes a positive electrode layer 11, a negative electrode layer 12, and a positive electrode layer 11 and a negative electrode layer 12.
  • the solid electrolyte layer 13 is disposed.
  • the LiZr 2 (PO 4 ) 3 containing layer 14 is provided between the positive electrode layer 11 and the solid electrolyte layer 13.
  • the solid electrolyte layer 13 is formed from the first solid electrolyte layer 130.
  • the first solid electrolyte layer 130 is composed of a large number of solid electrolyte particles 15.
  • the positive electrode layer 11 or the negative electrode layer 12 may be composed of a large number of electrode active material particles 16, and is composed of a mixture of a large number of solid electrolyte particles 15 and electrode active material particles 16 as shown in FIG. May be.
  • the solid state battery 10 includes a positive electrode layer 11, a negative electrode layer 12, and a positive electrode layer 11 and a negative electrode layer 12.
  • the solid electrolyte layer 13 is disposed.
  • the solid electrolyte layer 13 includes a first solid electrolyte layer 130 and two second solid electrolyte layers 131 provided on both sides of the first solid electrolyte layer 130.
  • the second solid electrolyte layer 131 is provided between the first solid electrolyte layer 130 and at least one of the positive electrode layer 11 or the negative electrode layer 12.
  • the first solid electrolyte layer 130 is composed of a large number of solid electrolyte particles 15.
  • the second solid electrolyte layer 131 is composed of a large number of solid electrolyte particles 15 covered with the LiZr 2 (PO 4 ) 3 containing layer 14.
  • the positive electrode layer 11 or the negative electrode layer 12 may be composed of a large number of electrode active material particles 16, and is composed of a mixture of a large number of solid electrolyte particles 15 and electrode active material particles 16 as shown in FIG. May be.
  • the solid state battery 10 includes a positive electrode layer 11, a negative electrode layer 12, and a positive electrode layer 11 and a negative electrode layer 12.
  • the solid electrolyte layer 13 is disposed.
  • the solid electrolyte layer 13 is formed from the second solid electrolyte layer 131.
  • the second solid electrolyte layer 131 is composed of a large number of solid electrolyte particles 15 covered with the LiZr 2 (PO 4 ) 3 containing layer 14.
  • the positive electrode layer 11 or the negative electrode layer 12 may be composed of a large number of electrode active material particles 16, and is composed of a mixture of a large number of solid electrolyte particles 15 and electrode active material particles 16 as shown in FIG. May be.
  • the LiZr 2 (PO 4 ) 3 containing layer 14 is provided on at least a part of the surface of the solid electrolyte particles 15 included in the solid electrolyte layer 13. Therefore, the LiZr 2 (PO 4 ) 3 -containing layer 14 exists between the electrode active material particles 16 included in the positive electrode layer 11 or the negative electrode layer 12 and the solid electrolyte particles 15 included in the solid electrolyte layer 13. Become. Thereby, reduction
  • the LiZr 2 (PO 4 ) 3 containing layer 14 is provided between the solid electrolyte layer 13 and at least one of the positive electrode layer 11 or the negative electrode layer 12. Therefore, the reaction at the interface between the solid electrolyte layer 13 and at least one of the positive electrode layer 11 or the negative electrode layer 12 is suppressed, and a solid battery having excellent stability can be obtained.
  • the solid state battery 10 includes a positive electrode layer 11, a negative electrode layer 12, and a positive electrode layer 11 and a negative electrode layer 12.
  • the solid electrolyte layer 13 is disposed.
  • the solid electrolyte layer 13 is formed from the first solid electrolyte layer 130.
  • the first solid electrolyte layer 130 is composed of a large number of solid electrolyte particles 15.
  • Positive electrode layer 11 or negative electrode as shown in FIG. 10. 12 includes a number of solid electrolyte particles 15 and the electrode active material particles 16, LiZr 2 (PO 4) 3 -containing layer 14 covers the surface of electrode active material particles 16 Alternatively, as shown in FIG.
  • the positive electrode layer 11 or the negative electrode layer 12 includes a large number of solid electrolyte particles 15 and electrode active material particles 16, and the LiZr 2 (PO 4 ) 3 -containing layer 14 includes the solid electrolyte particles 15.
  • the positive electrode layer 11 or the negative electrode layer 12 includes a large number of solid electrolyte particles 15 and electrode active material particles 16, and a LiZr 2 (PO 4 ) 3 containing layer as shown in FIG. 14 may exist so as to fill a region between the solid electrolyte particles 15 and the electrode active material particles 16.
  • the solid state battery 10 includes a positive electrode layer 11, a negative electrode layer 12, and a positive electrode layer 11 and a negative electrode layer 12.
  • the solid electrolyte layer 13 is disposed.
  • the solid electrolyte layer 13 is formed from the second solid electrolyte layer 131.
  • the second solid electrolyte layer 131 is composed of a large number of solid electrolyte particles 15 covered with the LiZr 2 (PO 4 ) 3 containing layer 14. As shown in FIG.
  • the positive electrode layer 11 or the negative electrode layer 12 includes a large number of solid electrolyte particles 15 and electrode active material particles 16, and the LiZr 2 (PO 4 ) 3 containing layer 14 covers the surface of the electrode active material particles 16.
  • the positive electrode layer 11 or the negative electrode layer 12 includes a large number of solid electrolyte particles 15 and electrode active material particles 16, and the LiZr 2 (PO 4 ) 3 -containing layer 14 includes the solid electrolyte particles 15.
  • the positive electrode layer 11 or the negative electrode layer 12 includes a large number of solid electrolyte particles 15 and electrode active material particles 16, and a LiZr 2 (PO 4 ) 3 containing layer as shown in FIG. 14 may exist so as to fill a region between the solid electrolyte particles 15 and the electrode active material particles 16.
  • the solid state battery 10 of Embodiment 2 configured as described above, at least a part of the surface of at least one of the electrode active material particles 16 or the solid electrolyte particles 15 included in at least one of the positive electrode layer 11 or the negative electrode layer 12 is formed.
  • LiZr 2 (PO 4) 3-containing layer 14 is provided, in the case where the electrode layer by mixing the solid electrolyte and the electrode active material, at least one of the positive electrode layer 11 or negative electrode layer 12, the electrode active material A LiZr 2 (PO 4 ) 3 -containing layer 14 exists between the particles 16 and the solid electrolyte particles 15.
  • restoration of the solid electrolyte by an electrode active material in at least one of the positive electrode layer 11 or the negative electrode layer 12 can be suppressed.
  • the solid battery 10 with high stability can be manufactured.
  • the LTO powder and the fine powder of LiZr 2 (PO 4 ) 3 are processed with a mechanical milling device. By this treatment, the surface of the LTO particles is covered with a fine powder of LiZr 2 (PO 4 ) 3 .
  • This surface-treated LTO powder is used as a negative electrode active material.
  • This negative electrode active material is mixed with LATP, which is a solid electrolyte having a NASICON structure.
  • a slurry is prepared by adding a binder and a solvent to the mixture. A negative electrode green sheet is produced from this slurry.
  • a slurry is prepared by adding a binder and a solvent to LATP, which is a solid electrolyte having a NASICON structure.
  • LATP a solid electrolyte having a NASICON structure.
  • An electrolyte green sheet is produced from this slurry.
  • lithium manganate having a spinel structure that is a positive electrode active material and LATP that is a solid electrolyte having a NASICON structure are mixed.
  • a slurry is prepared by adding a binder and a solvent to the mixture.
  • a positive electrode green sheet is produced from this slurry.
  • the negative electrode green sheet, the electrolyte green sheet, and the positive electrode green sheet manufactured as described above are laminated and heat-treated to manufacture a sintered and integrated solid battery.
  • the LTO powder surface-treated by the mechanical milling method is in a state in which LiZr 2 (PO 4 ) 3 fine particles are firmly attached to the surface of the LTO particles.
  • the surface state of the LTO particles is maintained even after the LTO powder is mixed with a solid electrolyte having a NASICON structure and a green sheet is produced from the mixture.
  • LiZr 2 (PO 4) 3 particles are not substantially change as it is, LiZr 2 (PO 4 ) Sintering of the solid electrolyte of NASICON type structure existing around the three fine particles and sintering of LTO having LiZr 2 (PO 4 ) 3 fine particles fixed on the surface occur. At this time, sintering proceeds from both sides of the LiZr 2 (PO 4 ) 3 layer, and the surface of LiZr 2 (PO 4 ) 3 also sinters with these substances and integration proceeds.
  • the sintered LiZr 2 (PO 4 ) 3 is interposed between the LTO particles, that is, the electrode active material and the solid electrolyte having a NASICON type structure.
  • LTO particles that is, the electrode active material
  • the solid electrolyte having a NASICON type structure With this structure, direct bonding between the solid electrolyte having a NASICON structure and the electrode active material can be prevented, and reduction of the solid electrolyte having a NASICON structure by the electrode active material can be prevented. Thereby, a solid battery with high stability can be produced.
  • the solid battery 10 includes a positive electrode layer 11, a negative electrode layer 12, and a solid electrolyte layer 13 disposed between the positive electrode layer 11 and the negative electrode layer 12.
  • the solid electrolyte layer 13 is formed from the first solid electrolyte layer 130.
  • the first solid electrolyte layer 130 is composed of a number of LATP particles as the solid electrolyte particles 15.
  • the negative electrode layer 12 includes LATP particles as a large number of solid electrolyte particles 15 and LTO particles as a large number of electrode active material particles 16, and the LiZr 2 (PO 4 ) 3 -containing layer 14 includes The surface of the electrode active material particles 16 is covered.
  • the positive electrode layer 11 is a mixture of LATP particles as a large number of solid electrolyte particles 15 and lithium manganate particles as a large number of electrode active material particles 16.
  • the precursor used for the synthesis of LiZr 2 (PO 4 ) 3 is produced by the following method.
  • Zr (OC 4 H 9 ) 4 , LiNO 3 .H 2 O and NH 4 H 2 PO 4 are used as starting materials. These raw materials are accurately weighed so that the molar ratio of the components of LiZr 2 (PO 4 ) 3 is obtained.
  • a predetermined amount of glycol is added to accelerate the polyesterification and polycondensation reactions. . At this time, the concentration of metal ions is always maintained at 0.20 mol per liter.
  • the obtained solution was uniformly applied to the surface of the LATP particles using a tumbling fluidized coating apparatus, and then heat-treated at a temperature of 500 ° C. to thereby convert the precursor of LiZr 2 (PO 4 ) 3 into particles.
  • a LATP powder formed on the surface is obtained.
  • the surface-treated LATP is used as the solid electrolyte contained in the slurry for producing each of the negative electrode layer and the solid electrolyte layer, and the surface treatment is not performed as the solid electrolyte contained in the slurry for producing the positive electrode layer.
  • Use LATP Use LATP.
  • a negative electrode green sheet, an electrolyte green sheet, and a positive electrode green sheet are prepared by the same method as in the first specific configuration example, stacked, and heat-treated to prepare a sintered and integrated solid battery.
  • a specific configuration example 2 corresponds to the above-described embodiment 2-b.
  • the solid battery 10 includes a positive electrode layer 11, a negative electrode layer 12, and a solid electrolyte layer 13 disposed between the positive electrode layer 11 and the negative electrode layer 12.
  • the solid electrolyte layer 13 is formed from the second solid electrolyte layer 131.
  • the second solid electrolyte layer 131 is composed of a number of LATP particles as the solid electrolyte particles 15 covered with the LiZr 2 (PO 4 ) 3 containing layer 14. As shown in FIG.
  • the negative electrode layer 12 includes LATP particles as a large number of solid electrolyte particles 15 and LTO particles as a large number of electrode active material particles 16, and the LiZr 2 (PO 4 ) 3 -containing layer 14 includes The surface of the solid electrolyte particles 15 is covered.
  • the positive electrode layer 11 is a mixture of LATP particles as a large number of solid electrolyte particles 15 and lithium manganate particles as a large number of electrode active material particles 16.
  • a slurry is prepared by adding a binder and a solvent to LTO.
  • a negative electrode green sheet is produced from this slurry.
  • a slurry is prepared by adding a binder and a solvent to LATP.
  • An electrolyte green sheet is produced from this slurry.
  • a slurry is prepared by adding a binder and a solvent to LiZr 2 (PO 4 ) 3 .
  • a LiZr 2 (PO 4 ) 3 green sheet is produced from this slurry.
  • a slurry is prepared by adding a binder and a solvent to lithium manganate.
  • a positive electrode green sheet is produced from this slurry.
  • the solid battery 10 includes a positive electrode layer 11, a negative electrode layer 12, and a solid electrolyte layer 13 disposed between the positive electrode layer 11 and the negative electrode layer 12.
  • the LiZr 2 (PO 4 ) 3 containing layer 14 is provided between the positive electrode layer 11 and the solid electrolyte layer 13.
  • the solid electrolyte layer 13 is formed from the first solid electrolyte layer 130.
  • the first solid electrolyte layer 130 is composed of a number of LATP particles as the solid electrolyte particles 15.
  • the positive electrode layer 11 is composed of a large number of lithium manganate particles as the electrode active material particles 16
  • the negative electrode layer 12 is composed of a LTO particle as the large number of electrode active material particles 16.

Abstract

 固体電解質の耐還元性を向上させることにより、安定性に富んだ固体電池を提供する。固体電池(10)は、正極層(11)と負極層(12)と固体電解質層(13)とを備えた固体電池であって、正極層(11)と負極層(12)が電極活物質を含み、固体電解質層(13)が固体電解質を含み、固体電解質層(13)と正極層(11)または負極層(12)の少なくとも一方との間に、LiZr2(PO43含有層(14)が設けられている。

Description

固体電池
 本発明は、固体電池に関する。
 近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池、特に二次電池が用いられている。二次電池の一例としてリチウムイオン二次電池は、相対的に大きなエネルギー密度を有することが知られている。このような二次電池においては、イオンを移動させるための媒体として有機溶媒等の液体の電解質(電解液)が従来から使用されている。しかし、電解液を用いた二次電池においては、電解液の漏液等の問題がある。そこで、固体電解質を用いて、すべての構成要素を固体で構成した固体電池の開発が進められている。
 固体電池に使用される固体電解質としてナシコン型構造を有する化合物が検討されている。ナシコン型構造を有する化合物のうち、特開2009-140910号公報(特許文献1)と特開2009-224318号公報(特許文献2)に記載されているような、Li1+xAlxTi2-x(PO4)3(以下、LATPという)とLi1+xAlxGe2-x(PO4)3(以下、LAGPという)が、室温で1×10-4S/cm程度の比較的高いイオン伝導度を示す固体電解質として知られている。
特開2009-140910号公報 特開2009-224318号公報
 しかしながら、これらの化合物は還元しやすい。特に、LATPは電解液中で2.45V(vs Li/Li+)という電位で還元することが知られている。上記の化合物の耐還元性の低さが固体電池の具現化を困難にしている。LAGPは、LATPに比べると、還元し難いことが知られているが、その耐還元性は必ずしも十分ではない。
 また、固体電池の電極活物質としては種々のものが検討されている。代表的な電極活物質として、電池電圧を比較的高くでき、固体電池への適用が容易と考えられるスピネル型構造のリチウムチタン複合酸化物、Li4Ti512(以下、LTOという)を例示することができる。LTOの還元電位は、1.5V(vs Li/Li+)と比較的高いことが知られており、電極活物質としてLTOを用いて、固体電解質とともに固体電池を構成した場合、電池の安定性が懸念される。
 さらに、固体電池のエネルギー密度の向上を図るためには、正極層と負極層のそれぞれに固体電解質と電極活物質とを含有させ、イオンの伝導経路を形成することが有効である。しかしながら、このような構成を採用すると、電極活物質と固体電解質との接触面積が増加し、上述したような固体電解質の耐還元性の低さによる問題が顕在化する。そのため、高い耐還元性を有する固体電解質の開発が望まれている。
 そこで、本発明の目的は、固体電解質の耐還元性を向上させることにより、安定性に富んだ固体電池を提供することである。
 そこで、本発明者らは、従来技術の問題点を解決するために鋭意研究を重ねた結果、第一原理計算を用いて固体電解質の耐還元性について検討したところ、電極活物質と固体電解質との間にLiZr2(PO43(以下、Zrナシコンという)を介在させることにより、固体電解質の耐還元性が向上することを見出した。すなわち、電極活物質と固体電解質との間にZrナシコンを介在させることにより、固体電解質が電極活物質によって還元されることを抑制することを見出した。この知見に基づいて、本発明の固体電池は、次のような特徴を備えている。
 本発明の一つの局面に従った固体電池は、正極層と負極層と固体電解質層とを備えた固体電池であって、正極層と負極層が電極活物質を含み、固体電解質層が固体電解質を含み、固体電解質層に含まれる固体電解質の少なくとも一部表面の上にLiZr2(PO43含有層が設けられている。
 本発明の一つの局面に従った固体電池では、固体電解質層に含まれる固体電解質の少なくとも一部表面の上にLiZr2(PO43含有層が設けられているので、正極層または負極層に含まれる電極活物質と、固体電解質層に含まれる固体電解質との間に、LiZr2(PO43含有層が存在することになる。これにより、電極活物質による固体電解質の還元を抑制することができる。その結果、安定性に富む固体電池を作製することができる。
 本発明の一つの局面に従った固体電池において、固体電解質層と正極層または負極層の少なくとも一方との間に、LiZr2(PO43含有層が設けられていることが好ましい。
 この場合、固体電解質層と正極層または負極層の少なくとも一方との間にLiZr2(PO43含有層が存在しているので、固体電解質層と正極層または負極層の少なくとも一方との界面での反応が抑制され、安定性に優れた固体電池を得ることができる。
 また、本発明の一つの局面に従った固体電池において、固体電解質層が、LiZr2(PO43含有層で被覆された固体電解質を含むことが好ましい。
 この場合、固体電解質層が、固体電解質を含む第1の固体電解質層と、第1の固体電解質層と正極層または負極層の少なくとも一方との間に設けられ、LiZr2(PO43含有層で被覆された固体電解質を含む第2の固体電解質層とを含むことが好ましい。
 さらに、本発明の一つの局面に従った固体電池において、正極層と負極層が、固体電解質を含むことが好ましい。
 本発明のもう一つの局面に従った固体電池は、正極層と負極層と固体電解質層とを備えた固体電池であって、正極層と負極層が電極活物質と固体電解質を含み、正極層または負極層の少なくとも一方に含まれる電極活物質または固体電解質の少なくとも一方の少なくとも一部表面の上にLiZr2(PO43含有層が設けられている。
 本発明のもう一つの局面に従った固体電池では、正極層または負極層の少なくとも一方に含まれる電極活物質または固体電解質の少なくとも一方の少なくとも一部表面の上にLiZr2(PO43含有層が設けられているので、固体電解質と電極活物質を混合して電極層を構成した場合に、正極層または負極層の少なくとも一方において、電極活物質と固体電解質との間に、LiZr2(PO43含有層が存在することになる。これにより、正極層または負極層の少なくとも一方において電極活物質による固体電解質の還元を抑制することができる。その結果、安定性に富む固体電池を作製することができる。
 また、本発明のもう一つの局面に従った固体電池において、電極活物質と固体電解質との間にLiZr2(PO43含有層が存在していることが好ましい。
 さらに、本発明のもう一つの局面に従った固体電池において、LiZr2(PO43含有層が電極活物質の表面を被覆していることが好ましい。
 本発明のもう一つの局面に従った固体電池において、LiZr2(PO43含有層が固体電解質の表面を被覆していることが好ましい。
 本発明の一つの局面またはもう一つの局面に従った固体電池において、固体電解質が、一般式Li1+xI xII 2-x(PO43[式中、MIはAlまたはGa、MIIはTiまたはGeである]で表わされるナシコン型の構造を有する固体電解質のうち、少なくとも一種類を含むことが好ましい。
 本発明の一つの局面またはもう一つの局面に従った固体電池において、電極活物質が、スピネル型の構造を有するリチウムチタン複合酸化物、または、チタン酸化物の少なくとも一方であることが好ましい。
 本発明によれば、固体電解質と電極活物質との間にLiZr2(PO4)3からなる物質を介在させることにより、固体電解質の耐還元性が向上する。すなわち、固体電解質が電極活物質により還元されることを抑制することが可能となる。これにより、安定性に富む固体電池を作製することができる。
本発明の実施形態1の固体電池の構成例(a)として概略的な構成を示す断面図である。 本発明の実施形態1の固体電池の構成例(b)として概略的な構成を示す断面図である。 本発明の実施形態1の固体電池の構成例(c)として概略的な構成を示す断面図である。 本発明の実施形態1の固体電池の構成例(d)または実施形態2の固体電池の構成例(b)として概略的な構成を示す断面図である。 本発明の実施形態1または実施形態2の固体電池の構成において固体電解質層を形成する構成要素の一つの例を示す図である。 本発明の実施形態1または実施形態2の固体電池の構成において固体電解質層を形成する構成要素のもう一つの例を示す図である。 本発明の実施形態1の固体電池の構成において正極層または負極層を形成する構成要素の一つの例を示す図である。 本発明の実施形態1の固体電池の構成において正極層または負極層を形成する構成要素のもう一つの例を示す図である。 本発明の実施形態2の固体電池の構成例(a)として概略的な構成を示す断面図である。 本発明の実施形態2の固体電池の構成において正極層または負極層を形成する構成要素の一つの例を示す図である。 本発明の実施形態2の固体電池の構成において正極層または負極層を形成する構成要素のもう一つの例を示す図である。 本発明の実施形態2の固体電池の構成において正極層または負極層を形成する構成要素の別の例を示す図である。
 以下において、本発明を実施するための形態について説明する。
 固体電解質、特にLATP、LAGP、Zrナシコン等のナシコン型構造の固体電解質の電子構造は、O2pを主体とする価電子帯と、中心金属元素のd軌道を主体とする伝導帯とからなる。価電子帯は電子が充満している。また、伝導帯では電子が空となっている。したがって、結果的に伝導電子が存在せず、ナシコン型構造の固体電解質は電子的には絶縁体である。このナシコン型構造の結晶中ではリチウムイオンが移動することが可能であるので、イオンによる電気伝導が可能である。そのため、電子の移動とイオンの移動を分けることが可能となるので、ナシコン型構造の結晶は電池の電解質の役割を果たすことができる。
 このナシコン型構造の固体電解質の耐還元性については、ナシコン型構造の固体電解質へのリチウムイオン挿入反応の金属リチウムに対する起電力により評価が可能である。この起電力が高い電位を示す場合、固体電解質へのリチウムイオンの挿入が起こりやすく、固体電解質は還元しやすい。この起電力が低い場合には、固体電解質へのリチウムイオンの挿入が起こり難く、固体電解質は還元され難い。
 電池の起電力は、反応前の固体電解質と金属リチウムの内部エネルギーの和と、反応後のリチウムイオンが挿入された還元状態の内部エネルギーとの差を計算することにより、可能となる。
Figure JPOXMLDOC01-appb-T000001
 表1にナシコン型構造の固体電解質の中心金属をTi、Ge、Zrに変えた場合と、中心金属をTi:Zr=1:1の混合状態として算出した場合との起電力の値(OCV)を示す。表1からわかるように、中心金属がTiの場合に起電力が大きく、固体電解質の耐還元性が低いことが確認された。一方、中心金属がZrの場合には起電力が小さく、固体電解質の耐還元性が高いと結論づけられる。中心金属がGeの場合には起電力が両者の中間的であり、固体電解質の耐還元性は中心金属がZrの場合より劣る。
 特に注目すべき点は、中心金属がTiとZrの混合状態の場合である。Zrを構造中に含むにも関わらず、起電力は中心金属がTiの場合と同等であり、耐還元性の低いTiがこの物質の還元性を支配していることがわかる。
 上記の第一原理計算による解析の結果、LATPとLAGPに代えて、LiZr2(PO43を用いれば、耐還元性に問題のない固体電池を構成することができると結論づけられる。しかしながら、固体電池の固体電解質としてLiZr2(PO43のみを用いた場合、LiZr2(PO43の材料合成に必要な熱処理温度は高く、多くの電極活物質の融解温度または分解温度を超える。そのため、固体電池での活物質材料の選択が困難となる。また、固体電池を製造する際の熱処理過程において問題を生じ、焼結または焼付けにより一体型の固体電池を製造することが困難となる。
 LiZr2(PO43のみを固体電解質として用いた場合の困難を解決するには、LiZr2(PO43と、電極活物質またはナシコン型構造の固体電解質との複合化が有効である。電極活物質とナシコン型構造の固体電解質との間にLiZr2(PO43からなる物質を介在させることにより、LiZr2(PO43の利点を生かしながら、この問題を解決できる。
 ナシコン型構造の固体電解質と電極活物質との間にLiZr2(PO43からなる物質を介在させる方法としては、どんな手段でもよく、介在方法に限定されない。たとえば、ナシコン型構造の固体電解質または電極活物質にLiZr2(PO43からなる物質を被覆または付着させる方法としては、電極活物質またはナシコン型構造の固体電解質とLiZr2(PO43からなる物質との微粒子をボールミル等で機械的に分散混合すること、ゾルゲル法によりナシコン型構造の固体電解質または電極活物質の表面にLiZr2(PO43からなる物質の前駆体となる層を予め形成しておき、電池の一体焼成時にLiZr2(PO43からなる物質の合成と表面層の形成とを同時に行うこと、等が考えられる。
 次に、本発明の実施の形態について、図面を用いて説明する。
 (実施形態1)
 (実施形態1‐a)
 図1に示すように、本発明の実施形態1の固体電池の構成例(a)として、固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に配置された固体電解質層13とを備える。LiZr2(PO43含有層14は、負極層12と固体電解質層13との間に設けられている。固体電解質層13は、第1の固体電解質層130から形成されている。図5に示すように、第1の固体電解質層130は、多数の固体電解質粒子15から構成されている。図7に示すように正極層11または負極層12は多数の電極活物質粒子16から構成されてもよく、図8に示すように多数の固体電解質粒子15と電極活物質粒子16の混合物から構成されてもよい。
 (実施形態1‐b)
 図2に示すように、本発明の実施形態1の固体電池の構成例(b)として、固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に配置された固体電解質層13とを備える。LiZr2(PO43含有層14は、正極層11と固体電解質層13との間に設けられている。固体電解質層13は、第1の固体電解質層130から形成されている。図5に示すように、第1の固体電解質層130は、多数の固体電解質粒子15から構成されている。図7に示すように正極層11または負極層12は多数の電極活物質粒子16から構成されてもよく、図8に示すように多数の固体電解質粒子15と電極活物質粒子16の混合物から構成されてもよい。
 (実施形態1‐c)
 図3に示すように、本発明の実施形態1の固体電池の構成例(c)として、固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に配置された固体電解質層13とを備える。固体電解質層13は、第1の固体電解質層130と、第1の固体電解質層130の両側に設けられた二つの第2の固体電解質層131とを含む。言い換えれば、第2の固体電解質層131は、第1の固体電解質層130と正極層11または負極層12の少なくとも一方との間に設けられている。図5に示すように、第1の固体電解質層130は、多数の固体電解質粒子15から構成されている。図6に示すように、第2の固体電解質層131は、LiZr2(PO43含有層14で被覆された多数の固体電解質粒子15から構成されている。図7に示すように正極層11または負極層12は多数の電極活物質粒子16から構成されてもよく、図8に示すように多数の固体電解質粒子15と電極活物質粒子16の混合物から構成されてもよい。
 (実施形態1‐d)
 図4に示すように、本発明の実施形態1の固体電池の構成例(d)として、固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に配置された固体電解質層13とを備える。固体電解質層13は、第2の固体電解質層131から形成されている。図6に示すように、第2の固体電解質層131は、LiZr2(PO43含有層14で被覆された多数の固体電解質粒子15から構成されている。図7に示すように正極層11または負極層12は多数の電極活物質粒子16から構成されてもよく、図8に示すように多数の固体電解質粒子15と電極活物質粒子16の混合物から構成されてもよい。
 以上のように構成された実施形態1の固体電池10では、固体電解質層13に含まれる固体電解質粒子15の少なくとも一部表面の上にLiZr2(PO43含有層14が設けられているので、正極層11または負極層12に含まれる電極活物質粒子16と、固体電解質層13に含まれる固体電解質粒子15との間に、LiZr2(PO43含有層14が存在することになる。これにより、電極活物質による固体電解質の還元を抑制することができる。その結果、安定性に富む固体電池10を作製することができる。
 また、図1または図2に示される構成例(a)または(b)では、固体電解質層13と正極層11または負極層12の少なくとも一方との間にLiZr2(PO43含有層14が存在しているので、固体電解質層13と正極層11または負極層12の少なくとも一方との界面での反応が抑制され、安定性に優れた固体電池を得ることができる。
 (実施形態2)
 (実施形態2‐a)
 図9に示すように、本発明の実施形態2の固体電池の構成例(a)として、固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に配置された固体電解質層13とを備える。固体電解質層13は、第1の固体電解質層130から形成されている。図5に示すように、第1の固体電解質層130は、多数の固体電解質粒子15から構成されている。図10に示すように正極層11または負極層12は多数の固体電解質粒子15と電極活物質粒子16を含み、LiZr2(PO43含有層14が電極活物質粒子16の表面を被覆していてもよく、あるいは図11に示すように正極層11または負極層12は多数の固体電解質粒子15と電極活物質粒子16を含み、LiZr2(PO43含有層14が固体電解質粒子15の表面を被覆していてもよく、あるいは図12に示すように正極層11または負極層12は多数の固体電解質粒子15と電極活物質粒子16とを含み、LiZr2(PO43含有層14が固体電解質粒子15と電極活物質粒子16との間の領域を充填するように存在していてもよい。
 (実施形態2‐b)
 図4に示すように、本発明の実施形態2の固体電池の構成例(b)として、固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に配置された固体電解質層13とを備える。固体電解質層13は、第2の固体電解質層131から形成されている。図6に示すように、第2の固体電解質層131は、LiZr2(PO43含有層14で被覆された多数の固体電解質粒子15から構成されている。図10に示すように正極層11または負極層12は多数の固体電解質粒子15と電極活物質粒子16を含み、LiZr2(PO43含有層14が電極活物質粒子16の表面を被覆していてもよく、あるいは図11に示すように正極層11または負極層12は多数の固体電解質粒子15と電極活物質粒子16を含み、LiZr2(PO43含有層14が固体電解質粒子15の表面を被覆していてもよく、あるいは図12に示すように正極層11または負極層12は多数の固体電解質粒子15と電極活物質粒子16とを含み、LiZr2(PO43含有層14が固体電解質粒子15と電極活物質粒子16との間の領域を充填するように存在していてもよい。
 以上のように構成された実施形態2の固体電池10では、正極層11または負極層12の少なくとも一方に含まれる電極活物質粒子16または固体電解質粒子15の少なくとも一方の少なくとも一部表面の上にLiZr2(PO43含有層14が設けられているので、固体電解質と電極活物質を混合して電極層を構成した場合に、正極層11または負極層12の少なくとも一方において、電極活物質粒子16と固体電解質粒子15との間に、LiZr2(PO43含有層14が存在することになる。これにより、正極層11または負極層12の少なくとも一方において電極活物質による固体電解質の還元を抑制することができる。その結果、安定性に富む固体電池10を作製することができる。
 次に、本発明に係る固体電池の具体的な構成例について説明する。
 (具体的構成例1)
 LTO粉末とLiZr2(PO43の微粉末をメカニカルミリング装置で処理する。この処理により、LTO粒子の表面はLiZr2(PO43の微粉末により覆われた状態となる。この表面処理されたLTO粉を負極活物質とする。この負極活物質とナシコン型構造の固体電解質であるLATPとを混合する。この混合物にバインダーと溶剤を加えることにより、スラリーを作製する。このスラリーから負極グリーンシートを作製する。
 一方、ナシコン型構造の固体電解質であるLATPにバインダーと溶媒を加えることにより、スラリーを作製する。このスラリーから電解質グリーンシートを作製する。
 また、正極活物質であるスピネル型構造を有するマンガン酸リチウムとナシコン型構造の固体電解質であるLATPとを混合する。この混合物にバインダーと溶媒を加えることにより、スラリーを作製する。このスラリーから正極グリーンシートを作製する。
 以上のようにして作製された負極グリーンシートと電解質グリーンシートと正極グリーンシートとを積層し、熱処理することにより、焼結一体化した固体電池を作製する。
 メカニカルミリング法により表面処理されたLTO粉は、LTO粒子の表面にLiZr2(PO43の微粒子が強固に付着した状態となる。このLTO粒子の表面状態は、LTO粉がナシコン型構造の固体電解質と混合され、その混合物からグリーンシートが作製された後も維持される。積層後の熱処理においては、その熱処理温度がLiZr2(PO43の焼成温度よりも低いために、LiZr2(PO43微粒子はそのままの状態でほとんど変化しないが、LiZr2(PO43微粒子の周囲に存在するナシコン型構造の固体電解質の焼結と、表面にLiZr2(PO43微粒子が固着しているLTOの焼結とが起こる。このとき、LiZr2(PO43層の両側から焼結が進行し、LiZr2(PO43の表面もこれらの物質と焼結して一体化が進行する。その結果として、LTO粒子、すなわち電極活物質とナシコン型構造の固体電解質との間に焼結したLiZr2(PO43が介在することになる。この構造になることにより、ナシコン型構造の固体電解質と電極活物質との直接的な接合が防止され、ナシコン型構造の固体電解質が電極活物質により還元されることを阻止することができる。これにより、安定性に富む固体電池を作製することができる。
 なお、具体的構成例1は、上記の実施形態2‐aに相当する。図9に示すように、固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に配置された固体電解質層13とを備える。固体電解質層13は、第1の固体電解質層130から形成されている。図5に示すように、第1の固体電解質層130は、多数の固体電解質粒子15としてのLATP粒子から構成されている。図10に示すように、負極層12は、多数の固体電解質粒子15としてのLATP粒子と、多数の電極活物質粒子16としてのLTO粒子とを含み、LiZr2(PO43含有層14が電極活物質粒子16の表面を被覆している。図8に示すように、正極層11は、多数の固体電解質粒子15としてのLATP粒子と、多数の電極活物質粒子16としてのマンガン酸リチウム粒子との混合物である。
 (具体的構成例2)
 LiZr2(PO43の合成に用いる前駆体は、以下の方法で作製する。Zr(OC494とLiNO3・H2OとNH42PO4を出発原料として用いる。これらの原料を、LiZr2(PO43の成分のモル比率になるように正確に秤量する。上記の出発原料とポリマー前駆体としてクエン酸と、溶媒として蒸留水とを混合して得られた溶液を均一化した後、ポリエステル化と重縮合の反応を促進させるために所定量のグリコールを加える。このとき、金属イオンの濃度は常に1リットル当たり0.20モルに維持される。
 得られた溶液を、LATP粒子の表面に、転動流動コーティング装置を用いて、均一に塗布した後、500℃の温度で熱処理することにより、LiZr2(PO43の前駆体を粒子の表面に形成したLATP粉末を得る。負極層と固体電解質層とのそれぞれを作製するためのスラリーに含まれる固体電解質として上記の表面処理されたLATPを用い、正極層を作製するためのスラリーに含まれる固体電解質として表面処理されていないLATPを用いる。具体的構成例1と同様の方法により、負極グリーンシートと電解質グリーンシートと正極グリーンシートとを作製し、積層し、熱処理することにより、焼結一体化した固体電池を作製する。
 なお、具体的構成例2は、上記の実施形態2‐bに相当する。図4に示すように、固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に配置された固体電解質層13とを備える。固体電解質層13は、第2の固体電解質層131から形成されている。図6に示すように、第2の固体電解質層131は、LiZr2(PO43含有層14で被覆された多数の固体電解質粒子15としてのLATP粒子から構成されている。図11に示すように、負極層12は、多数の固体電解質粒子15としてのLATP粒子と、多数の電極活物質粒子16としてのLTO粒子とを含み、LiZr2(PO43含有層14が固体電解質粒子15の表面を被覆している。図8に示すように、正極層11は、多数の固体電解質粒子15としてのLATP粒子と、多数の電極活物質粒子16としてのマンガン酸リチウム粒子との混合物である。
 (具体的構成例3)
 LTOにバインダーと溶剤を加えることにより、スラリーを作製する。このスラリーから負極グリーンシートを作製する。LATPにバインダーと溶剤を加えることにより、スラリーを作製する。このスラリーから電解質グリーンシートを作製する。LiZr2(PO43にバインダーと溶剤を加えることにより、スラリーを作製する。このスラリーからLiZr2(PO43グリーンシートを作製する。マンガン酸リチウムにバインダーと溶剤を加えることにより、スラリーを作製する。このスラリーから正極グリーンシートを作製する。具体的構成例1と同様の方法により、負極グリーンシートと電解質グリーンシートとLiZr2(PO43グリーンシートと正極グリーンシートとを積層し、熱処理することにより、焼結一体化した固体電池を作製する。
 なお、具体的構成例3は、上記の実施形態1‐bに相当する。図2に示すように、固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に配置された固体電解質層13とを備える。LiZr2(PO43含有層14は、正極層11と固体電解質層13との間に設けられている。固体電解質層13は、第1の固体電解質層130から形成されている。図5に示すように、第1の固体電解質層130は、多数の固体電解質粒子15としてのLATP粒子から構成されている。図7に示すように、正極層11は多数の電極活物質粒子16としてのマンガン酸リチウム粒子から構成され、負極層12は多数の電極活物質粒子16としてのLTO粒子から構成されている。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
 本発明によれば、固体電解質の耐還元性が向上するので、安定性に富む固体電池を作製することができる。
 10:固体電池、11:正極層、12:負極層、13:固体電解質層、14:LiZr2(PO43含有層、15:固体電解質粒子、16:電極活物質粒子、130:第1の固体電解質層、131:第2の固体電解質層。

Claims (11)

  1.  正極層と負極層と固体電解質層とを備えた固体電池であって、
     前記正極層と前記負極層が電極活物質を含み、
     前記固体電解質層が固体電解質を含み、
     前記固体電解質層に含まれる固体電解質の少なくとも一部表面の上にLiZr2(PO43含有層が設けられている、固体電池。
  2.  前記固体電解質層と前記正極層または前記負極層の少なくとも一方との間に、前記LiZr2(PO43含有層が設けられている、請求項1に記載の固体電池。
  3.  前記固体電解質層が、前記LiZr2(PO43含有層で被覆された固体電解質を含む、請求項1に記載の固体電池。
  4.  前記固体電解質層が、固体電解質を含む第1の固体電解質層と、前記第1の固体電解質層と前記正極層または前記負極層の少なくとも一方との間に設けられ、前記LiZr2(PO43含有層で被覆された固体電解質を含む第2の固体電解質層とを含む、請求項3に記載の固体電池。
  5.  前記正極層と前記負極層が、固体電解質を含む、請求項1から請求項4までのいずれか1項に記載の固体電池。
  6.  正極層と負極層と固体電解質層とを備えた固体電池であって、
     前記正極層と前記負極層が電極活物質と固体電解質を含み、
     正極層または負極層の少なくとも一方に含まれる前記電極活物質または前記固体電解質の少なくとも一方の少なくとも一部表面の上にLiZr2(PO43含有層が設けられている、固体電池。
  7.  前記電極活物質と前記固体電解質との間に前記LiZr2(PO43含有層が存在している、請求項6に記載の固体電池。
  8.  前記LiZr2(PO43含有層が前記電極活物質の表面を被覆している、請求項6または請求項7に記載の固体電池。
  9.  前記LiZr2(PO43含有層が前記固体電解質の表面を被覆している、請求項6から請求項8までのいずれか1項に記載の固体電池。
  10.  前記固体電解質が、一般式Li1+xI xII 2-x(PO43[式中、MIはAlまたはGa、MIIはTiまたはGeである]で表わされるナシコン型の構造を有する固体電解質のうち、少なくとも一種類を含む、請求項1から請求項9までのいずれか1項に記載の固体電池。
  11.  前記電極活物質が、スピネル型の構造を有するリチウムチタン複合酸化物、または、チタン酸化物の少なくとも一方である、請求項1から請求項10までのいずれか1項に記載の固体電池。
                                                                                    
PCT/JP2010/070958 2009-11-27 2010-11-25 固体電池 WO2011065388A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011543276A JP5403066B2 (ja) 2009-11-27 2010-11-25 固体電池
CN201080051685.2A CN102612782B (zh) 2009-11-27 2010-11-25 固体电池
US13/477,136 US20120231350A1 (en) 2009-11-27 2012-05-22 Solid Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-270429 2009-11-27
JP2009270429 2009-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/477,136 Continuation US20120231350A1 (en) 2009-11-27 2012-05-22 Solid Battery

Publications (1)

Publication Number Publication Date
WO2011065388A1 true WO2011065388A1 (ja) 2011-06-03

Family

ID=44066493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070958 WO2011065388A1 (ja) 2009-11-27 2010-11-25 固体電池

Country Status (4)

Country Link
US (1) US20120231350A1 (ja)
JP (1) JP5403066B2 (ja)
CN (1) CN102612782B (ja)
WO (1) WO2011065388A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078112A (zh) * 2011-08-24 2013-05-01 丰田自动车株式会社 电池用活性材料、电池及制造电池用活性材料的方法
WO2013137224A1 (ja) * 2012-03-15 2013-09-19 株式会社 村田製作所 全固体電池およびその製造方法
WO2013190930A1 (ja) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 電池システム、電池システムの製造方法、電池の制御装置
JP2015028854A (ja) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 全固体電池
JP2015056349A (ja) * 2013-09-13 2015-03-23 富士通株式会社 リチウム電池
JP2015072772A (ja) * 2013-10-02 2015-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
JP2015079702A (ja) * 2013-10-18 2015-04-23 日本特殊陶業株式会社 リチウムイオン伝導性セラミックス材料およびその製造方法、リチウムイオン電池
US9225046B2 (en) 2011-12-13 2015-12-29 Samsung Electronics Co., Ltd. Protected anode and lithium air battery and all-solid battery including protected anode
WO2016031942A1 (ja) * 2014-08-29 2016-03-03 国立研究開発法人産業技術総合研究所 電解質シート及びその製造方法
JP2016039136A (ja) * 2014-08-11 2016-03-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
JP2016066550A (ja) * 2014-09-25 2016-04-28 太陽誘電株式会社 全固体二次電池
JP2016085843A (ja) * 2014-10-24 2016-05-19 株式会社豊田自動織機 固体型二次電池
CN106654216A (zh) * 2017-01-06 2017-05-10 南京海泰纳米材料有限公司 一种含磷酸锆钛的硫锂电池正极材料及其制备方法
US9692041B2 (en) 2013-10-02 2017-06-27 Samsung Electronics Co., Ltd. Lithium battery and method of preparing cathode active material for the lithium battery
WO2018062080A1 (ja) * 2016-09-29 2018-04-05 Tdk株式会社 全固体リチウムイオン二次電池
WO2018062081A1 (ja) * 2016-09-29 2018-04-05 Tdk株式会社 全固体リチウムイオン二次電池
JP2019510349A (ja) * 2016-03-28 2019-04-11 セブン キング エナージー カンパニー リミテッドSeven King Energy Co.,Ltd. 多層構造を有する二次電池用複合電解質

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9905883B2 (en) 2013-03-28 2018-02-27 Corning Incorporated Ceramic electrolyte material comprising a modified polycrystalline lithium metal phosphate
US9853323B2 (en) 2013-10-31 2017-12-26 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN106299468B (zh) * 2015-06-25 2019-07-26 比亚迪股份有限公司 一种固态电解质及其制备方法、锂离子电池
CN106328992B (zh) * 2015-06-30 2019-09-13 比亚迪股份有限公司 一种锂离子电池和该锂离子电池的制备方法
US10707522B2 (en) * 2015-09-24 2020-07-07 Ford Global Technologies, Llc Methods of manufacturing a solid state battery
CN110313038B (zh) * 2017-03-30 2021-01-19 Tdk株式会社 全固体二次电池
WO2018181823A1 (ja) 2017-03-30 2018-10-04 Tdk株式会社 固体電解質及び全固体二次電池
US11594754B2 (en) 2017-03-30 2023-02-28 Tdk Corporation Solid electrolyte and all-solid lithium-ion secondary battery
JP7151701B2 (ja) 2017-03-30 2022-10-12 Tdk株式会社 固体電解質及び全固体二次電池
CN109935910B (zh) * 2017-12-19 2024-04-02 成都大超科技有限公司 一种锂电池电芯、锂电池及其制备方法
US11024843B2 (en) 2018-01-15 2021-06-01 Ford Global Technologies, Llc Lithium titanate anode and fabrication method for solid state batteries
JP7182196B2 (ja) * 2018-01-26 2022-12-02 パナソニックIpマネジメント株式会社 電池
JP7328790B2 (ja) * 2019-05-13 2023-08-17 太陽誘電株式会社 セラミック原料粉末、全固体電池の製造方法、および全固体電池
CN110176626B (zh) * 2019-06-05 2022-02-08 青岛大学 一种离子电子共导电材料及其制备方法和应用
CN113178614B (zh) * 2021-04-21 2022-11-04 深圳市合壹新能技术有限公司 复合固态电解质、固态锂电池及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250264A (ja) * 1989-03-23 1990-10-08 Japan Synthetic Rubber Co Ltd リチウムイオン導電性固体電解質
JPH05299101A (ja) * 1992-02-18 1993-11-12 Sanyo Electric Co Ltd 固体電解質及びそれを使用してなるリチウム電池
JP2004281316A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 固体電解質電池
JP2009140910A (ja) * 2007-11-12 2009-06-25 Kyushu Univ 全固体電池
JP2009224318A (ja) * 2008-02-22 2009-10-01 Kyushu Univ 全固体電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099407B2 (ja) * 2006-11-30 2012-12-19 住友電気工業株式会社 電池
US9093707B2 (en) * 2007-06-11 2015-07-28 Alliance For Sustainable Energy, Llc MultiLayer solid electrolyte for lithium thin film batteries
JP5151692B2 (ja) * 2007-09-11 2013-02-27 住友電気工業株式会社 リチウム電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250264A (ja) * 1989-03-23 1990-10-08 Japan Synthetic Rubber Co Ltd リチウムイオン導電性固体電解質
JPH05299101A (ja) * 1992-02-18 1993-11-12 Sanyo Electric Co Ltd 固体電解質及びそれを使用してなるリチウム電池
JP2004281316A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 固体電解質電池
JP2009140910A (ja) * 2007-11-12 2009-06-25 Kyushu Univ 全固体電池
JP2009224318A (ja) * 2008-02-22 2009-10-01 Kyushu Univ 全固体電池

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078112A (zh) * 2011-08-24 2013-05-01 丰田自动车株式会社 电池用活性材料、电池及制造电池用活性材料的方法
US8980476B2 (en) 2011-08-24 2015-03-17 Toyota Jidosha Kabushiki Kaisha Active material for battery, battery, and method for production of active material for battery
US9225046B2 (en) 2011-12-13 2015-12-29 Samsung Electronics Co., Ltd. Protected anode and lithium air battery and all-solid battery including protected anode
WO2013137224A1 (ja) * 2012-03-15 2013-09-19 株式会社 村田製作所 全固体電池およびその製造方法
JPWO2013137224A1 (ja) * 2012-03-15 2015-08-03 株式会社村田製作所 全固体電池およびその製造方法
WO2013190930A1 (ja) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 電池システム、電池システムの製造方法、電池の制御装置
JP2014002966A (ja) * 2012-06-20 2014-01-09 Toyota Motor Corp 電池システム、電池システムの製造方法、電池の制御装置
US9484596B2 (en) 2012-06-20 2016-11-01 Toyota Jidosha Kabushiki Kaisha Battery system, method for producing battery system, and battery control apparatus
JP2015028854A (ja) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 全固体電池
JP2015056349A (ja) * 2013-09-13 2015-03-23 富士通株式会社 リチウム電池
JP2015072772A (ja) * 2013-10-02 2015-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
US9692041B2 (en) 2013-10-02 2017-06-27 Samsung Electronics Co., Ltd. Lithium battery and method of preparing cathode active material for the lithium battery
JP2015079702A (ja) * 2013-10-18 2015-04-23 日本特殊陶業株式会社 リチウムイオン伝導性セラミックス材料およびその製造方法、リチウムイオン電池
JP2016039136A (ja) * 2014-08-11 2016-03-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
WO2016031942A1 (ja) * 2014-08-29 2016-03-03 国立研究開発法人産業技術総合研究所 電解質シート及びその製造方法
KR20170041860A (ko) * 2014-08-29 2017-04-17 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 전해질 시트 및 그 제조방법
KR101995549B1 (ko) 2014-08-29 2019-07-02 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 전해질 시트 및 그 제조방법
JPWO2016031942A1 (ja) * 2014-08-29 2017-08-17 国立研究開発法人産業技術総合研究所 電解質シート及びその製造方法
JP2016066550A (ja) * 2014-09-25 2016-04-28 太陽誘電株式会社 全固体二次電池
JP2016085843A (ja) * 2014-10-24 2016-05-19 株式会社豊田自動織機 固体型二次電池
JP2019510349A (ja) * 2016-03-28 2019-04-11 セブン キング エナージー カンパニー リミテッドSeven King Energy Co.,Ltd. 多層構造を有する二次電池用複合電解質
US11322740B2 (en) 2016-03-28 2022-05-03 Seven King Energy Co., Ltd. Composite electrolyte for secondary battery, having multi-layer structure
WO2018062080A1 (ja) * 2016-09-29 2018-04-05 Tdk株式会社 全固体リチウムイオン二次電池
WO2018062081A1 (ja) * 2016-09-29 2018-04-05 Tdk株式会社 全固体リチウムイオン二次電池
JPWO2018062081A1 (ja) * 2016-09-29 2019-07-11 Tdk株式会社 全固体リチウムイオン二次電池
JPWO2018062080A1 (ja) * 2016-09-29 2019-07-11 Tdk株式会社 全固体リチウムイオン二次電池
JP7031596B2 (ja) 2016-09-29 2022-03-08 Tdk株式会社 全固体リチウムイオン二次電池
CN106654216B (zh) * 2017-01-06 2019-02-22 南京海泰纳米材料有限公司 一种含磷酸锆钛的硫锂电池正极材料及其制备方法
CN106654216A (zh) * 2017-01-06 2017-05-10 南京海泰纳米材料有限公司 一种含磷酸锆钛的硫锂电池正极材料及其制备方法

Also Published As

Publication number Publication date
US20120231350A1 (en) 2012-09-13
CN102612782B (zh) 2014-12-03
JP5403066B2 (ja) 2014-01-29
CN102612782A (zh) 2012-07-25
JPWO2011065388A1 (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5403066B2 (ja) 固体電池
Delaizir et al. The stone age revisited: Building a monolithic inorganic lithium‐ion battery
JP4927609B2 (ja) 全固体電池用の固体電解質構造体の製造方法、及び全固体電池の製造方法
WO2015087734A1 (ja) ナトリウムイオン電池用電極合材、及びその製造方法並びにナトリウム全固体電池
WO2013137224A1 (ja) 全固体電池およびその製造方法
Le et al. Citrate gel synthesis of aluminum-doped lithium lanthanum titanate solid electrolyte for application in organic-type lithium–oxygen batteries
JP2012243743A (ja) 全固体リチウムイオン電池
JP2009140910A (ja) 全固体電池
JP2013149433A (ja) 電極部材、全固体電池および電極部材の製造方法
JP2009140911A (ja) 全固体電池
JP6881465B2 (ja) 全固体リチウムイオン二次電池
CN110235295B (zh) 锂离子固体蓄电池及其制造方法
Sugata et al. Quasi-solid-state lithium batteries using bulk-size transparent Li7La3Zr2O12 electrolytes
He et al. In situ atomic-scale engineering of the chemistry and structure of the grain boundaries region of Li3xLa2/3-xTiO3
WO2013100002A1 (ja) 全固体電池およびその製造方法
JP2015069842A (ja) 全固体電池の製造方法
WO2018181576A1 (ja) 全固体電池
JP6897760B2 (ja) 全固体電池
WO2018181662A1 (ja) 全固体リチウムイオン二次電池
Ohta et al. Spontaneous formation of a core–shell structure by a lithium ion conductive garnet-type oxide electrolyte for co-sintering with the cathode
JP5975459B2 (ja) 全固体リチウム二次電池用正極の製造方法およびこれを用いた全固体リチウム二次電池
JP7040519B2 (ja) 固体電解質及び全固体リチウムイオン二次電池
CN110521048B (zh) 固体电解质及全固体二次电池
CN110494931B (zh) 固体电解质和全固体二次电池
JP2020053307A (ja) 全固体電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051685.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543276

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833234

Country of ref document: EP

Kind code of ref document: A1