JP2020053307A - 全固体電池 - Google Patents
全固体電池 Download PDFInfo
- Publication number
- JP2020053307A JP2020053307A JP2018182879A JP2018182879A JP2020053307A JP 2020053307 A JP2020053307 A JP 2020053307A JP 2018182879 A JP2018182879 A JP 2018182879A JP 2018182879 A JP2018182879 A JP 2018182879A JP 2020053307 A JP2020053307 A JP 2020053307A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- electrode
- solid electrolyte
- electrode layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】簡便に作製することができ、動作電圧を自由に設計することができる全固体電池を提供する。【解決手段】全固体電池100は、酸化物系固体電解質を主成分とする固体電解質層30と、前記固体電解質層の第1主面に形成され、正極動作する活物質とLi−La−Ti−O系酸化物とを含む第1電極層11と、前記固体電解質層の第2主面に形成され、正極動作する活物質とLi−La−Ti−O系酸化物とを含む第2電極層21と、を備えることを特徴とする。【選択図】図1
Description
本発明は、全固体電池に関する。
全固体リチウムイオン二次電池において、応答性や容量密度を向上させるために、薄層化および積層化を図る方法が開示されている。例えば、積層型の全固体電池の製造方法が開示されている(例えば、特許文献1参照)。積層により、全固体電池のエネルギー密度を向上させることができる。積層型の場合、正極および負極の集電体を個別に引き出して適宜外部電極等に接続するが、正負極の識別が必要であり、接続を間違えると正常に動作しないばかりか、素子が壊れてしまう可能性がある。
そこで、正極と負極とを区別しなくてもよい、対称型電池も開示されている(例えば、特許文献2および非特許文献1参照)。これらの対称型電池では、正極および負極に同じ活物質を用いており、酸化還元反応が起こる電位が2種以上存在する活物質が用いられている。また、Ni−Co−Al系(NCA)正極活物質を、Li7La3Zr2O12(LLZ)固体電解質を介して両極に配置した構造の全固体電池が開示されている(例えば、特許文献3参照)。さらに、積層構造を工夫し、正極層と負極層とを重ね合わせる構造とすることで、電圧印加方向に応じて動作する部分が変化するような構成で無極性を実現する手法が開示されている(例えば、特許文献4参照)。
Electrochemistry Communications Volume 12, Issue 7, July 2010, Pages 894-896
上記の対称型電池では、出力電圧が固定値となる。また、充放電容量は理論容量よりも低い値となり、エネルギー密度を高くしにくいという問題がある。また、特許文献1や特許文献4のように積層構造体の内部構成を工夫する手法は製造工程が煩雑となる。また、特許文献3も対称構造の全固体電池を作製後両極の活物質からリチウムを脱離させるというプロセスが必要になるため簡便ではない。
本発明は、上記課題に鑑みなされたものであり、簡便に作製することができ、動作電圧を自由に設計することができる全固体電池を提供することを目的とする。
本発明に係る全固体電池は、酸化物系固体電解質を主成分とする固体電解質層と、前記固体電解質層の第1主面に形成され、正極動作する活物質とLi−La−Ti−O系酸化物とを含む第1電極層と、前記固体電解質層の第2主面に形成され、正極動作する活物質とLi−La−Ti−O系酸化物とを含む第2電極層と、を備えることを特徴とする。
上記全固体電池において、前記正極動作する活物質は、LiCoO2としてもよい。
上記全固体電池において、前記酸化物系固体電解質は、NASICON構造を有していてもよい。
上記全固体電池において、前記固体電解質層は、Li−La−Zr−O系酸化物を含んでいてもよい。
本発明によれば、簡便に作製することができ、動作電圧を自由に設計することができる全固体電池を提供することができる。
以下、図面を参照しつつ、実施形態について説明する。
図1は、全固体電池100の模式的断面図である。図1で例示するように、全固体電池100は、第1電極10と第2電極20とによって、酸化物系固体電解質を主成分とする固体電解質層30が挟持された構造を有する。第1電極10は、固体電解質層30の第1主面上に形成されており、第1電極層11および第1集電体層12が積層された構造を有し、固体電解質層30側に第2電極層11を備える。第2電極20は、固体電解質層30の第2主面上に形成されており、第2電極層21および第2集電体層22が積層された構造を有し、固体電解質層30側に第2電極層21を備える。
固体電解質層30の主成分は、リチウムイオン伝導性を有する酸化物系固体電解質であれば特に限定されるものではないが、例えば、NASICON構造を有するリン酸塩系固体電解質を用いることができる。NASICON構造を有するリン酸塩系固体電解質は、高い導電率を有するとともに、大気中で安定しているという性質を有している。リン酸塩系固体電解質は、例えば、リチウムを含んだリン酸塩である。当該リン酸塩は、特に限定されるものではないが、例えば、Tiとの複合リン酸リチウム塩(例えば、LiTi2(PO4)3)などが挙げられる。または、TiをGe,Sn,Hf,Zrなどといった4価の遷移金属に一部あるいは全部置換することもできる。また、Li含有量を増加させるために、Al,Ga,In,Y,Laなどの3価の遷移金属に一部置換してもよい。より具体的には、例えば、Li1+xAlxGe2−x(PO4)3や、Li1+xAlxZr2−x(PO4)3、Li1+xAlxTi2−x(PO4)3などが挙げられる。例えば、第1電極層11および第2電極層21に含有されるオリビン型結晶構造をもつリン酸塩が含む遷移金属と同じ遷移金属を予め添加させたLi−Al−Ge−PO4系材料が好ましい。例えば、第1電極層11および第2電極層21にCoおよびLiを含むリン酸塩が含有される場合には、Coを予め添加したLi−Al−Ge−PO4系材料が固体電解質層30に含まれることが好ましい。この場合、電極活物質が含む遷移金属の電解質への溶出を抑制する効果が得られる。
固体電解質層30は、層内に含まれる全固体電解質中のTiの含有率が10wt.%以下であることが好ましく、Tiを含有しない酸化物系固体電解質の層を含むことがより好ましく、Tiを含有しない酸化物系固体電解質のみで構成されることがさらに好ましい。負極反応サイトが正極側へと成長して正負極間にリークパスが形成されることが抑制されるからである。例えば、固体電解質層30は、正負極間のいずれかに、Tiを含有しない酸化物系固体電解質の層を含むことが好ましい。Tiを含有しない酸化物系固体電解質として、例えばガーネット構造のLi−La−Zr−O系酸化物、Li4SiO4−Li3PO4系酸化物、Li−Al−Ge−P−O系酸化物などを用いることができる。Li−La−Zr−O系酸化物として、主たる結晶が立方晶相を示すLi7La3Zr2O12、その一部を金属元素で置換したもの、などを用いることが好ましい。例えば、Li7−xLa3Zr2−xAxO12(Aは5価の金属)、Li7−3yLa3Zr2ByO12(Bは3価の金属)、Li7−x−3yLa3Zr2−xAxByO12などを用いることが好ましい。
第1電極層11および第2電極層21は、正極動作する活物質と負極動作する活物質とが共存する構造を有している。正極動作する活物質は、特に限定されるものではない。例えば、正極動作する活物質として、オリビン型結晶構造をもつ電極活物質を用いることができる。このような電極活物質として、遷移金属とリチウムとを含むリン酸塩が挙げられる。オリビン型結晶構造は、天然のカンラン石(olivine)が有する結晶であり、X線回折において判別することができる。オリビン型結晶構造を持つ電極活物質として、LiMPO4(M=Mn、Fe、Co、Ni)の化学式で示される活物質などを用いることができる。例えば、オリビン型結晶構造をもつ電極活物質の典型例として、Coを含むLiCoPO4などを用いることができる。その他、Co、Mn、Niなどを1種以上含有する層状岩塩型構造の正極活物質、LiM2O4(M=Mn、Niなど)の化学式で示されるスピネル型構造の正極活物質などを用いることができる。
負極動作する活物質として、ペロブスカイト型固体電解質材料であるLi−La−Ti−O化合物(LLTO)を用いることができる。LLTOは、イオン導電助剤としても機能する。本発明者らの研究により、LLTOは、正極動作において不動であることが確認されている。正極動作において不動とは、Liイオンが脱離せずTi価数も不変であることを意味する。LLTOは、La2/3−xLi3xTiO3で表されるリチウムイオン伝導体でx=0.04〜0.14であることで高イオン伝導相のペロブスカイト構造となりやすいため、好ましい。第1電極層11および第2電極層21中のLLTO含有比率は、十分なイオン伝導を発現させる意味および負極活物質の存在量を一定以上として負極容量発現を確保する意味で、20vol.%以上であることが好ましく、30vol.%以上であることがより好ましい。また、第1電極層11および第2電極層21中のLLTO含有比率は、正極活物質の存在量を一定以上として容量発現を確保する意味で、80vol.%以下であることが好ましく、70vol.%以下であることがより好ましい。第1電極層11および第2電極層21の厚みは、全固体電池100全体の容量確保の点から1μm以上であることが好ましく、2μm以上であることがより好ましい。また、応答性確保の点から、第1電極層11および第2電極層21の厚みは、30μm以下であることが好ましく、10μm以下であることがより好ましい。
なお、第1電極層11および第2電極層21は、これら活物質に加えて、酸化物系固体電解質材料や、カーボンや金属といった導電性材料(導電助剤)などをさらに含んでいてもよい。これらの部材については、バインダと可塑剤を水あるいは有機溶剤に均一分散させることで電極層用ペーストを得ることができる。導電助剤の金属としては、Pd、Ni、Cu、Fe、これらを含む合金などが挙げられる。なお、第1電極層11および第2電極層21が数μm程度の薄膜である場合には、第1電極層11および第2電極層21は、導電助剤を含んでいなくてもよい。
第1集電体層12および第2集電体層22は、導電性材料からなる。
本実施形態によれば、第1電極層11および第2電極層21内に、正極動作する活物質とLLTOとが添加されている。正極動作する活物質は、負極動作において不動である。また、LLTOは、正極動作において不動である。したがって、正極として接続された電極層では、負極動作する活物質が不動である一方で正極動作する活物質が酸化還元反応を起こし、負極として接続された電極層では、正極動作する活物質が不動である一方でLLTOが酸化還元反応を起こす。以上のことから、本実施形態に係る全固体電池100は、対称型電池として動作する。
また、本実施形態によれば、正極活物質は特に限定されず従来公知の活物質から任意に選択できるため、全固体電池100の動作電圧を自由に設計することができる。
また、同一の活物質を片方の極で正極活物質として、他方の極で負極活物質として動作させる電池では、どちらか一方の動作容量が他方よりも低くなり、その容量分しか他方の活物質が活用できないため、どちらか片方の極で理論容量分を活用できないが、本実施形態によれば、正極活物質の理論容量分のLiを挿入可能なLLTOを配置することで正負極ともに充放電容量を理論容量に近づけることができるため、エネルギー密度を高くしやすい。
また、本実施形態によれば、両方の電極に正極動作する活物質とLLTOとを含有させるだけでよいため、積層構造体の内部構造が煩雑な構造としなくてもよい。それにより、簡便な作製が可能となる。
第1電極層11および第2電極層21を正負極のいずれとしても用いることができるため、製造時に正負極を識別する必要がなくなり、人為的ミスによる不良ロットを削減することができる。また製造後の管理も正負極の識別が不要であるため、コストダウンにつながる。電池として利用する際も極性を気にしなくて良いため、実装などのプロセスでのトラブル回避・コストダウンに貢献できる。また使用中に正極と負極を逆にすることも可能であるため、使用における設計の幅も拡大できる。
図2は、全固体電池の他の例である全固体電池100aの模式的断面図である。全固体電池100aは、略直方体形状を有する積層チップ60と、積層チップ60の第1端面に設けられた第1外部電極40aと、当該第1端面と対向する第2端面に設けられた第2外部電極40bとを備える。以下の説明において、全固体電池100と同一の構成については、同一符号を付すことで詳細な説明を省略する。
全固体電池100aにおいては、複数の第1集電体層12と複数の第2集電体層22とが、交互に積層されている。複数の第1集電体層12の端縁は、積層チップ60の第1端面に露出し、第2端面には露出していない。複数の第2集電体層22の端縁は、積層チップ60の第2端面に露出し、第1端面には露出していない。それにより、第1集電体層12および第2集電体層22は、第1外部電極40aと第2外部電極40bとに、交互に導通している。
第1集電体層12上には、第1電極層11が積層されている。第1電極層11上には、固体電解質層30が積層されている。固体電解質層30は、第1外部電極40aから第2外部電極40bにかけて延在している。固体電解質層30上には、第2電極層21が積層されている。第2電極層21上には、第2集電体層22が積層されている。第2集電体層22上には、別の第2電極層21が積層されている。当該第2電極層21上には、別の固体電解質層30が積層されている。当該固体電解質層30は、第1外部電極40aから第2外部電極40bにかけて延在している。当該固体電解質層30上には、第1電極層11が積層されている。全固体電池100aにおいては、これらの積層単位が繰り返されている。それにより、全固体電池100aは、複数の電池単位が積層された構造を有している。
図3は、全固体電池100および全固体電池100aの製造方法のフローを例示する図である。
(グリーンシート作製工程)
まず、上述の固体電解質層30を構成する酸化物系固体電解質の粉末を作製する。例えば、原料、添加物などを混合し、固相合成法などを用いることで、固体電解質層30を構成する酸化物系固体電解質の粉末を作製することができる。得られた粉末を乾式粉砕することで、所望の粒子径に調整することができる。例えば、5mmφのZrO2ボールを用いた遊星ボールミルで、所望の粒子径に調整する。
まず、上述の固体電解質層30を構成する酸化物系固体電解質の粉末を作製する。例えば、原料、添加物などを混合し、固相合成法などを用いることで、固体電解質層30を構成する酸化物系固体電解質の粉末を作製することができる。得られた粉末を乾式粉砕することで、所望の粒子径に調整することができる。例えば、5mmφのZrO2ボールを用いた遊星ボールミルで、所望の粒子径に調整する。
次に、得られた粉末を、結着材、分散剤、可塑剤などとともに、水性溶媒あるいは有機溶媒に均一に分散させて、湿式粉砕を行うことで、所望の粒子径を有する固体電解質スラリを得る。このとき、ビーズミル、湿式ジェットミル、各種混錬機、高圧ホモジナイザーなどを用いることができ、粒度分布の調整と分散とを同時に行うことができる観点からビーズミルを用いることが好ましい。得られた固体電解質スラリにバインダを添加して固体電解質ペーストを得る。得られた固体電解質ペーストを塗工することで、グリーンシートを作製することができる。塗工方法は、特に限定されるものではなく、スロットダイ方式、リバースコート方式、グラビアコート方式、バーコート方式、ドクターブレード方式などを用いることができる。湿式粉砕後の粒度分布は、例えば、レーザ回折散乱法を用いたレーザ回折測定装置を用いて測定することができる。
(電極層用ペースト作製工程)
次に、上述の第1電極層11および第2電極層21の作製用の電極層用ペーストを作製する。例えば、導電助剤、活物質、固体電解質材料、バインダ、可塑剤などを水あるいは有機溶剤に均一分散させることで電極層用ペーストを得ることができる。例えば、固練り法による混合、プラネタリーミキサー、ハイシェアミキサー、ペースト混錬機、フィルミックスなどを用いた混錬法等、従来公知のペースト作製手法が適用できる。固体電解質材料として、上述した固体電解質ペーストを用いてもよい。導電助剤として、各種カーボン材料を用いる。第1電極層11と第2電極層21とで組成が異なる場合には、それぞれの電極層用ペーストを個別に作製すればよい。
次に、上述の第1電極層11および第2電極層21の作製用の電極層用ペーストを作製する。例えば、導電助剤、活物質、固体電解質材料、バインダ、可塑剤などを水あるいは有機溶剤に均一分散させることで電極層用ペーストを得ることができる。例えば、固練り法による混合、プラネタリーミキサー、ハイシェアミキサー、ペースト混錬機、フィルミックスなどを用いた混錬法等、従来公知のペースト作製手法が適用できる。固体電解質材料として、上述した固体電解質ペーストを用いてもよい。導電助剤として、各種カーボン材料を用いる。第1電極層11と第2電極層21とで組成が異なる場合には、それぞれの電極層用ペーストを個別に作製すればよい。
(集電体用ペースト作製工程)
次に、上述の第1集電体層12および第2集電体層22の作製用の集電体用ペーストを作製する。例えば、Pdの粉末、バインダ、分散剤、可塑剤などを水あるいは有機溶剤に均一分散させることで、集電体用ペーストを得ることができる。
次に、上述の第1集電体層12および第2集電体層22の作製用の集電体用ペーストを作製する。例えば、Pdの粉末、バインダ、分散剤、可塑剤などを水あるいは有機溶剤に均一分散させることで、集電体用ペーストを得ることができる。
(積層工程)
図1で説明した全固体電池100については、電極層用ペーストおよび集電体用ペーストをグリーンシートの両面に印刷する。印刷の方法は、特に限定されるものではなく、スクリーン印刷法、凹版印刷法、凸版印刷法、カレンダロール法などを用いることができる。薄層かつ高積層の積層デバイスを作製するにはスクリーン印刷がもっとも一般的と考えられる一方、ごく微細な電極パターンや特殊形状が必要な場合はインクジェット印刷を適用する方が好ましい場合もある。なお、電極層用ペーストを印刷するかわりに、PETフィルム上に塗工・乾燥することで作成した電極層用グリーンシートを用いてもよい。
図1で説明した全固体電池100については、電極層用ペーストおよび集電体用ペーストをグリーンシートの両面に印刷する。印刷の方法は、特に限定されるものではなく、スクリーン印刷法、凹版印刷法、凸版印刷法、カレンダロール法などを用いることができる。薄層かつ高積層の積層デバイスを作製するにはスクリーン印刷がもっとも一般的と考えられる一方、ごく微細な電極パターンや特殊形状が必要な場合はインクジェット印刷を適用する方が好ましい場合もある。なお、電極層用ペーストを印刷するかわりに、PETフィルム上に塗工・乾燥することで作成した電極層用グリーンシートを用いてもよい。
図2で説明した全固体電池100aについては、図4で例示するように、グリーンシート51の一面に、電極層用ペースト52を印刷し、さらに集電体用ペースト53を印刷し、さらに電極層用ペースト52を印刷する。グリーンシート51上で電極層用ペースト52および集電体用ペースト53が印刷されていない領域には、逆パターン54を印刷する。逆パターン54として、グリーンシート51と同様のものを用いることができる。印刷後の複数のグリーンシート51を、交互にずらして積層し、積層体を得る。この場合、当該積層体において、2端面に交互に、電極層用ペースト52および集電体用ペースト53のペアが露出するように、積層体を得る。例えば、積層体の厚みを300μm程度とする。
(焼成工程)
次に、得られた積層体を焼成する。焼成の条件は酸化性雰囲気下あるいは非酸化性雰囲気下で、最高温度を好ましくは400℃〜1000℃、より好ましくは500℃〜900℃などとすることが特に限定なく挙げられる。最高温度に達するまでにバインダを十分に除去するために酸化性雰囲気において最高温度より低い温度で保持する工程を設けてもよい。プロセスコストを低減するためにはできるだけ低温で焼成することが望ましい。焼成後に、再酸化処理を施してもよい。このようにして、全固体電池100または全固体電池100aが製造される。なお、外部電極40a,40bについては、スパッタなどで形成することができる。
次に、得られた積層体を焼成する。焼成の条件は酸化性雰囲気下あるいは非酸化性雰囲気下で、最高温度を好ましくは400℃〜1000℃、より好ましくは500℃〜900℃などとすることが特に限定なく挙げられる。最高温度に達するまでにバインダを十分に除去するために酸化性雰囲気において最高温度より低い温度で保持する工程を設けてもよい。プロセスコストを低減するためにはできるだけ低温で焼成することが望ましい。焼成後に、再酸化処理を施してもよい。このようにして、全固体電池100または全固体電池100aが製造される。なお、外部電極40a,40bについては、スパッタなどで形成することができる。
なお、材料間での相互反応が問題となる場合は、固体電解質層のみ先に燒結させて焼結体ペレットとし、その上下に電極層ペーストを印刷・塗布することで電極層を形成し、その後必要に応じて固体電解質ペレットの焼成温度よりも低温で熱処理することで、電極層を固体電解質層に良好に密着させてもよい。
以下、実施形態に係る製造方法に従って全固体電池を作製し、特性について調べた。
(実施例1)
正極動作する活物質、導電助剤およびLLTOを含む電極層を作成した。正極動作する活物質として、日本化学工業製のLiCoO2を用いた。導電助剤として、デンカ製アセチレンブラックを用いた。LLTOとして、豊島製作所製LLTOを用いた。LLTOは、XRDの結果からペロブスカイト構造であることを確認した。
正極動作する活物質、導電助剤およびLLTOを含む電極層を作成した。正極動作する活物質として、日本化学工業製のLiCoO2を用いた。導電助剤として、デンカ製アセチレンブラックを用いた。LLTOとして、豊島製作所製LLTOを用いた。LLTOは、XRDの結果からペロブスカイト構造であることを確認した。
LiCoO2:LLTO:アセチレンブラック:ポリフッ化ビニリデン(PVdF)=40:40:10:10(重量比)となるように各材料を乳鉢で混合しながら、PVdFとN−メチル−2−ピロリジノン(NMP)を少量ずつ加えていき、固練り状となるところでよく混錬し、さらにNMPを加えてペースト状になるまで混錬した。これをペースト混錬機でよく撹拌したのち、アルミ箔の上にドクターブレード法で塗工した。塗工後100℃のホットプレートで乾燥したのち、ロールプレス機により、加熱・加圧することで電極の高密度化を図った。その後Φ15mmに打ち抜き、電極層を完成させた。
この電極層を、Φ16.5mmに打ち抜いた紙製セパレータを介して対極にΦ15mmの金属Li箔を配置させた構成で2032型コインセルにAr雰囲気中で封止し、ハーフセルとした。このハーフセルの正極特性をサイクリックボルタンメトリーで評価した。25℃において、0.1mV/secの掃引速度で3.0〜4.2V vs Li/Li+の範囲で電圧掃引した。この結果、4V付近でLiCoO2に特徴的な酸化還元ピークが認められ、それ以外の電気化学反応は見られなかった。
(実施例2)
実施例1で作製してCV評価したハーフセルを引き続き25℃において0.1mV/secの掃引速度で1.2Vまで掃引し、同速度で3Vまで戻すという電圧掃引することで負極特性を評価した。この結果、LLTOの酸化還元に起因すると思われるピークが1.6V vs Li/Li+付近に認められ、それ以外の電気化学反応は見られなかった。実施例1および実施例2で行ったCV評価結果(サイクリックボルタモグラム)を図5に示す。
実施例1で作製してCV評価したハーフセルを引き続き25℃において0.1mV/secの掃引速度で1.2Vまで掃引し、同速度で3Vまで戻すという電圧掃引することで負極特性を評価した。この結果、LLTOの酸化還元に起因すると思われるピークが1.6V vs Li/Li+付近に認められ、それ以外の電気化学反応は見られなかった。実施例1および実施例2で行ったCV評価結果(サイクリックボルタモグラム)を図5に示す。
(実施例3)
実施例1と同様に電極層を作製し、紙製セパレータを介して両極に電極層となるように対向させた構成で2032型コインセルにAr雰囲気中で封止してフルセルとした。このフルセルの電池特性を定電流充放電測定にて評価した。25℃において、13.3mA/g(LCO)の電流値でプラス側は2.7Vまで充電し、その後同電流値で0Vまで放電して、0Vで3時間保持するというCCCV放電を行った。引き続き−2.7Vまで逆側に充電して、同様に0VまでCCCV放電を行った。充放電曲線を図6に示す。図5に示すサイクリックボルタモグラムでのLiCoO2とLLTOの酸化還元電位の差分とほぼ同程度の、2.3V〜2.4V付近に電位平坦部が認められ、容量は約45mAh/g(LCO基準)発現した。またマイナス側の電圧範囲では−2.3Vに同様の酸化還元ピークが認められ、プラス側の充放電とほぼ対称の充放電曲線であった。このことから、対称型電池ではどちらの電圧に掃引してもそれぞれ正極反応、負極反応を示すことが分かった。またマイナス側でも電池は壊れることなく動作することから過放電耐性が非常に高い電池であると考えられる。
実施例1と同様に電極層を作製し、紙製セパレータを介して両極に電極層となるように対向させた構成で2032型コインセルにAr雰囲気中で封止してフルセルとした。このフルセルの電池特性を定電流充放電測定にて評価した。25℃において、13.3mA/g(LCO)の電流値でプラス側は2.7Vまで充電し、その後同電流値で0Vまで放電して、0Vで3時間保持するというCCCV放電を行った。引き続き−2.7Vまで逆側に充電して、同様に0VまでCCCV放電を行った。充放電曲線を図6に示す。図5に示すサイクリックボルタモグラムでのLiCoO2とLLTOの酸化還元電位の差分とほぼ同程度の、2.3V〜2.4V付近に電位平坦部が認められ、容量は約45mAh/g(LCO基準)発現した。またマイナス側の電圧範囲では−2.3Vに同様の酸化還元ピークが認められ、プラス側の充放電とほぼ対称の充放電曲線であった。このことから、対称型電池ではどちらの電圧に掃引してもそれぞれ正極反応、負極反応を示すことが分かった。またマイナス側でも電池は壊れることなく動作することから過放電耐性が非常に高い電池であると考えられる。
(実施例4)
固体電解質には豊島製作所製Li7La3Zr2O12(LLZO)を使用し、バインダとともに混錬することで造粒し、金型に入れて一軸プレス機により加圧成型することで300μm厚のペレットを作製した。これを大気中1300℃で同組成LLZO母粉体に埋没させながら5時間焼成して固体電解質焼結ペレットを作製した。この焼結体ペレットを耐水研磨紙#2000で研磨して平滑にした後、LiCoO2:LLTO:アセチレンブラック:エチルセルロース=25:55:10:10(重量比)とし、希釈溶媒をターピネオールとしたこと以外、実施例1と同様に電極ペーストを作製し、焼結体ペレット上下にLiCoO2、LLTO、アセチレンブラックからなる電極層ペーストを印刷塗布することで電極層を形成させた。その後、不活性雰囲気下600℃、700℃、800℃でこのペレットを焼成し、上下にAuスパッタリングで集電体層を形成させることで全固体電池を作製した。この電池を2032型コインセルにAr雰囲気中で封止することで全固体電池フルセルとした。150℃で同様のサイクリックボルタンメトリーを行ったところ、電解液系フルセルと同様に2.3V付近および−2.3V付近に酸化還元ピークが確認された。+側も−側も約11μAh/cm2・μmの放電容量を示した。以上のように作製した全固体電池では電解液系電池と同様に高い対称性を示すとともに、実施例1〜3に例示した電解液系では不可能な150℃という高い温度でも安定に動作することが確認できた。このような電池は小型化を図ることでリフロー温度や高温使用環境下においても高い安定性を示す表面実装可能な蓄電デバイスとしての応用が考えられ、そのようなデバイスにおいては極性の区別をしなくても良い無極性型が好適に使用されると考えられる。
固体電解質には豊島製作所製Li7La3Zr2O12(LLZO)を使用し、バインダとともに混錬することで造粒し、金型に入れて一軸プレス機により加圧成型することで300μm厚のペレットを作製した。これを大気中1300℃で同組成LLZO母粉体に埋没させながら5時間焼成して固体電解質焼結ペレットを作製した。この焼結体ペレットを耐水研磨紙#2000で研磨して平滑にした後、LiCoO2:LLTO:アセチレンブラック:エチルセルロース=25:55:10:10(重量比)とし、希釈溶媒をターピネオールとしたこと以外、実施例1と同様に電極ペーストを作製し、焼結体ペレット上下にLiCoO2、LLTO、アセチレンブラックからなる電極層ペーストを印刷塗布することで電極層を形成させた。その後、不活性雰囲気下600℃、700℃、800℃でこのペレットを焼成し、上下にAuスパッタリングで集電体層を形成させることで全固体電池を作製した。この電池を2032型コインセルにAr雰囲気中で封止することで全固体電池フルセルとした。150℃で同様のサイクリックボルタンメトリーを行ったところ、電解液系フルセルと同様に2.3V付近および−2.3V付近に酸化還元ピークが確認された。+側も−側も約11μAh/cm2・μmの放電容量を示した。以上のように作製した全固体電池では電解液系電池と同様に高い対称性を示すとともに、実施例1〜3に例示した電解液系では不可能な150℃という高い温度でも安定に動作することが確認できた。このような電池は小型化を図ることでリフロー温度や高温使用環境下においても高い安定性を示す表面実装可能な蓄電デバイスとしての応用が考えられ、そのようなデバイスにおいては極性の区別をしなくても良い無極性型が好適に使用されると考えられる。
実施例1〜4の結果から、両方の電極層に正極動作する活物質とLLTOとを添加することで、対称型の全固体電池が可能になり、両極では印加電圧に応じてそれぞれの活物質のみが動作することが分かった。
以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 第1電極
11 第1電極層
12 第1集電体層
20 第2電極
21 第2電極層
22 第2集電体層
30 固体電解質層
40a 第1外部電極
40b 第2外部電極
51 グリーンシート
52 電極層用ペースト
53 集電体用ペースト
54 逆パターン
60 積層チップ
100 全固体電池
11 第1電極層
12 第1集電体層
20 第2電極
21 第2電極層
22 第2集電体層
30 固体電解質層
40a 第1外部電極
40b 第2外部電極
51 グリーンシート
52 電極層用ペースト
53 集電体用ペースト
54 逆パターン
60 積層チップ
100 全固体電池
Claims (4)
- 酸化物系固体電解質を主成分とする固体電解質層と、
前記固体電解質層の第1主面に形成され、正極動作する活物質とLi−La−Ti−O系酸化物とを含む第1電極層と、
前記固体電解質層の第2主面に形成され、正極動作する活物質とLi−La−Ti−O系酸化物とを含む第2電極層と、を備えることを特徴とする全固体電池。 - 前記正極動作する活物質は、LiCoO2であることを特徴とする請求項1記載の全固体電池。
- 前記酸化物系固体電解質は、NASICON構造を有することを特徴とする請求項1または2に記載の全固体電池。
- 前記固体電解質層は、Li−La−Zr−O系酸化物を含むことを特徴とする請求項1または2に記載の全固体電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018182879A JP7033042B2 (ja) | 2018-09-27 | 2018-09-27 | 全固体電池 |
US16/572,353 US20200106088A1 (en) | 2018-09-27 | 2019-09-16 | All solid battery |
CN201910906289.6A CN110957493A (zh) | 2018-09-27 | 2019-09-24 | 全固体电池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018182879A JP7033042B2 (ja) | 2018-09-27 | 2018-09-27 | 全固体電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020053307A true JP2020053307A (ja) | 2020-04-02 |
JP7033042B2 JP7033042B2 (ja) | 2022-03-09 |
Family
ID=69946676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018182879A Active JP7033042B2 (ja) | 2018-09-27 | 2018-09-27 | 全固体電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200106088A1 (ja) |
JP (1) | JP7033042B2 (ja) |
CN (1) | CN110957493A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102292A1 (ja) * | 2020-11-11 | 2022-05-19 | 太陽誘電株式会社 | 全固体電池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113889660A (zh) * | 2021-09-04 | 2022-01-04 | 浙江锋锂新能源科技有限公司 | 一种球形含锂氧化物电解质粉体材料及制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011146202A (ja) * | 2010-01-13 | 2011-07-28 | Namics Corp | リチウムイオン二次電池 |
WO2011125482A1 (ja) * | 2010-03-31 | 2011-10-13 | ナミックス株式会社 | リチウムイオン二次電池 |
WO2013136446A1 (ja) * | 2012-03-13 | 2013-09-19 | 株式会社 東芝 | リチウムイオン伝導性酸化物、固体電解質二次電池および電池パック |
JP2013243112A (ja) * | 2012-05-17 | 2013-12-05 | Ngk Insulators Ltd | 全固体蓄電素子 |
JP2018073554A (ja) * | 2016-10-26 | 2018-05-10 | 太陽誘電株式会社 | 全固体電池 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011020073A1 (en) * | 2009-08-14 | 2011-02-17 | Seeo, Inc | High energy polymer battery |
JP2011065982A (ja) * | 2009-08-18 | 2011-03-31 | Seiko Epson Corp | リチウム電池用電極体及びリチウム電池 |
JP2011096630A (ja) * | 2009-10-02 | 2011-05-12 | Sanyo Electric Co Ltd | 固体リチウム二次電池及びその製造方法 |
WO2012051280A2 (en) * | 2010-10-12 | 2012-04-19 | The Research Foundation Of State University Of New York | Composite electrodes, methods of making, and uses thereof |
CN103811772B (zh) * | 2012-11-09 | 2016-12-21 | 中国科学院物理研究所 | 含有钙钛矿型结构氧化物的复合材料及其制备方法和用途 |
US9583786B2 (en) * | 2013-11-26 | 2017-02-28 | Lg Chem, Ltd. | Secondary battery including solid electrolyte layer |
CN105186043B (zh) * | 2015-09-23 | 2017-07-11 | 厦门理工学院 | 全固态LiMn2O4‑Li4Ti5O12电池及其制备方法 |
CN108336309B (zh) * | 2017-01-20 | 2020-07-14 | 中国科学院上海硅酸盐研究所 | 一种钙钛矿型开框架铁基氟化物正极材料及其制备方法和应用 |
-
2018
- 2018-09-27 JP JP2018182879A patent/JP7033042B2/ja active Active
-
2019
- 2019-09-16 US US16/572,353 patent/US20200106088A1/en not_active Abandoned
- 2019-09-24 CN CN201910906289.6A patent/CN110957493A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011146202A (ja) * | 2010-01-13 | 2011-07-28 | Namics Corp | リチウムイオン二次電池 |
WO2011125482A1 (ja) * | 2010-03-31 | 2011-10-13 | ナミックス株式会社 | リチウムイオン二次電池 |
WO2013136446A1 (ja) * | 2012-03-13 | 2013-09-19 | 株式会社 東芝 | リチウムイオン伝導性酸化物、固体電解質二次電池および電池パック |
JP2013243112A (ja) * | 2012-05-17 | 2013-12-05 | Ngk Insulators Ltd | 全固体蓄電素子 |
JP2018073554A (ja) * | 2016-10-26 | 2018-05-10 | 太陽誘電株式会社 | 全固体電池 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102292A1 (ja) * | 2020-11-11 | 2022-05-19 | 太陽誘電株式会社 | 全固体電池 |
Also Published As
Publication number | Publication date |
---|---|
JP7033042B2 (ja) | 2022-03-09 |
CN110957493A (zh) | 2020-04-03 |
US20200106088A1 (en) | 2020-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7276316B2 (ja) | 全固体電池 | |
JP2023011777A (ja) | 固体電解質物質を含むイオン伝導性バッテリー | |
WO2014115604A1 (ja) | 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池 | |
WO2015068268A1 (ja) | 全固体電池、全固体電池用電極及びその製造方法 | |
JP7553352B2 (ja) | 全固体電池 | |
WO2013137224A1 (ja) | 全固体電池およびその製造方法 | |
US11349146B2 (en) | All-solid lithium ion secondary battery | |
JP6969567B2 (ja) | リチウムイオン伝導性固体電解質および全固体リチウムイオン二次電池 | |
JP6262129B2 (ja) | 全固体電池およびその製造方法 | |
US20200313230A1 (en) | All-solid battery | |
WO2013100000A1 (ja) | 全固体電池およびその製造方法 | |
CN114946049B (zh) | 固体电池 | |
JP2020514948A (ja) | 全固体リチウムイオン蓄電池およびその製造方法 | |
WO2013100002A1 (ja) | 全固体電池およびその製造方法 | |
JP2018008843A (ja) | 固体電解質、全固体電池、およびそれらの製造方法 | |
JP6897760B2 (ja) | 全固体電池 | |
CN110931842A (zh) | 全固体电池 | |
JP7033042B2 (ja) | 全固体電池 | |
JP6801778B2 (ja) | 全固体電池 | |
WO2018181578A1 (ja) | 固体電解質および全固体二次電池 | |
WO2015159331A1 (ja) | 全固体電池、全固体電池用電極及びその製造方法 | |
JP7525404B2 (ja) | 全固体電池 | |
JP2020129503A (ja) | 全固体リチウムイオン電池及び全固体リチウムイオン電池の製造方法 | |
CN113937349B (zh) | 全固体电池 | |
US11769907B2 (en) | All solid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7033042 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |