WO2011055594A1 - 多翼遠心ファンおよびそれを用いた空気調和機 - Google Patents

多翼遠心ファンおよびそれを用いた空気調和機 Download PDF

Info

Publication number
WO2011055594A1
WO2011055594A1 PCT/JP2010/065977 JP2010065977W WO2011055594A1 WO 2011055594 A1 WO2011055594 A1 WO 2011055594A1 JP 2010065977 W JP2010065977 W JP 2010065977W WO 2011055594 A1 WO2011055594 A1 WO 2011055594A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal fan
scroll casing
tongue
air flow
multiblade centrifugal
Prior art date
Application number
PCT/JP2010/065977
Other languages
English (en)
French (fr)
Inventor
江口 剛
鈴木 敦
佐藤 誠司
高橋 政彦
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/318,957 priority Critical patent/US9011092B2/en
Priority to EP10828154.4A priority patent/EP2500582A4/en
Publication of WO2011055594A1 publication Critical patent/WO2011055594A1/ja
Priority to US14/660,456 priority patent/US9644631B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present invention relates to a multiblade centrifugal fan widely applied to air conditioners such as vehicle air conditioners and an air conditioner using the same.
  • a multiblade centrifugal fan in which an impeller having a plurality of blades is rotatably installed via a motor in a scroll casing having a tongue as a base point is a refrigeration, air-conditioning or ventilation device (hereinafter simply referred to as air). It is widely applied to fans for air blowers.
  • air air-conditioning or ventilation device
  • the air sucked in the axial direction from the suction port provided on the upper surface side of the scroll casing by the rotation of the impeller passes between a plurality of blades of the impeller and passes from the inner peripheral side to the outer peripheral side.
  • the pump is sent in a centrifugal direction (radial direction) and is sent to the air flow path in the scroll casing, and then sent in the circumferential direction along the inner circumferential surface. After that, it is sent to the outside.
  • Patent Document 1 proposes that the lower surface of the air flow path of the scroll casing is inclined downward from the position below the outer peripheral end of the impeller toward the radially outward direction to suppress the generation of vortex. .
  • Japanese Patent Application Laid-Open No. H10-228688 discloses a technique in which interference with the mainstream is suppressed. Further, a rib or a secondary flow suppression vane is provided along the air flow direction on the lower surface of the outlet side region of the air flow path of the scroll casing so as to reduce noise by suppressing the secondary flow toward the impeller. This is shown in Patent Documents 3 and 4 and the like.
  • Japanese Patent No. 3476085 (see FIG. 4-5) Japanese Patent No. 3622300 (see FIG. 1-3) Japanese Patent No. 3785758 (see FIG. 1-4) Japanese Patent Laying-Open No. 2006-307830 (see FIGS. 2-3 and 5)
  • the air flow is changed from the axial flow to the centrifugal flow in the impeller, but most of the air flow is not bent by the inertial force.
  • the flow is biased toward the (motor side).
  • This uneven flow flows out into the lower flow path of the scroll casing, and forms a complicated flow by the main flow along the inner peripheral surface of the scroll casing and the secondary flow in the direction orthogonal thereto.
  • abnormal noise low frequency sound
  • the aspect ratio (the outer diameter D of the impeller and the blade shaft on the outlet side thereof) can be secured while reducing the outer diameter of the multiblade centrifugal fan.
  • the ratio with the direction length B; B / D) tends to increase.
  • the flow deviation in the impeller becomes more conspicuous, and the outflow direction of the air flowing out from the impeller on the motor side where the air volume increases is relatively out of the radial direction compared to the impeller having a small aspect ratio. It becomes the direction.
  • the present invention has been made in view of such circumstances, and suppresses low-frequency sound generated due to destabilization, turbulence, and bias of the flow from the front and rear of the tongue portion to the diffuser portion of the outlet region.
  • An object of the present invention is to provide a multiblade centrifugal fan that can be used and an air conditioner using the same.
  • the multiblade centrifugal fan of the present invention and the air conditioner using the same employ the following means. That is, the multiblade centrifugal fan according to the first aspect of the present invention has a multiblade in which an impeller having a large number of blades is rotatably provided in a scroll casing formed in a spiral shape with a tongue as a base point.
  • the scroll casing includes an axially extending portion that forms an air flow path extending in the rotational axis direction on the radially outer side of the annular flange portion that supports the impeller on the lower surface thereof, A predetermined dimension protruded from the radially inner side toward the radially outer side from the radially inner side of the outlet region in the middle of the scroll casing end portion of the scroll casing and the tongue of the axially extending portion. Protrusions are provided.
  • the intermediate blowout between the winding end portion and the tongue portion of the axially extending portion that forms the air flow path extending in the rotational axis direction on the lower surface of the scroll casing Since the protrusion is provided in the mouth region with a predetermined dimension so as to face the circumferential air flow from the radially inward side toward the radially outward direction, the middle of the end portion of the scroll casing and the tongue portion is provided. It is possible to stabilize the turbulence of the main flow and the fluctuation of the vortex generated near the tongue by locally separating the flow by the protrusions provided on the surface and stabilizing the flow by this local separation. .
  • the air flow in the downstream region from the tongue can be stabilized, and the turbulence in the vicinity of the tongue occurs when the diffuser reaches the diffuser (the rapidly expanding portion of the flow path), particularly around 500 Hz.
  • Low frequency sound (abnormal noise) having frequency components can be reduced.
  • the height of the protrusion in the rotation axis direction is substantially the same as the annular flange portion. preferable.
  • the protrusion since the height of the protrusion in the rotation axis direction is substantially the same as the annular flange portion, the protrusion does not hinder the air flow flowing out from the impeller to the air flow path, Only the main flow that flows through the air flow path of the axially extending portion faces the main flow, and appropriate separation can be locally generated with respect to the flow. As a result, the air flow from the vicinity of the tongue portion to the diffuser portion outlet in the outlet region can be stabilized, and the generation of low frequency sound can be suppressed.
  • the protrusion is a part of the inner peripheral wall of the air flow path in the axial extension portion extended in the rotation axis direction of the scroll casing. It is preferable that it is formed integrally with the lower casing of the scroll casing by protruding inside the air flow path.
  • the protrusion protrudes inward from a part of the inner peripheral wall of the air flow path in the axial extension portion that is extended in the rotation axis direction of the scroll casing, so that it is integrated with the lower casing of the scroll casing. Therefore, when providing the protrusion in the air flow path of the axially extending portion, it is only necessary to form a part of its inner peripheral wall to the inside of the air flow path and form it integrally with the lower casing. Man-hour increase and cost increase due to the provision of the protrusions can be suppressed.
  • the scroll casing extends along the air flow direction on the wall surface of the diffuser portion from the vicinity of the tongue portion of the outlet region to the outlet of the diffuser portion. It is preferable that a plurality of rib-shaped protrusions are provided.
  • a plurality of rib-shaped protrusions along the air flow direction protrude from the vicinity of the tongue portion of the outlet region of the scroll casing to the exit of the diffuser portion (the rapidly expanding portion of the flow path) on the wall surface of the diffuser portion. Therefore, the unstable behavior of the secondary flow that flows in a direction orthogonal to the mainstream in the circumferential direction flowing in the axial extension of the scroll casing is caused by rib-like projections that protrude along the airflow direction. Can be suppressed.
  • the rib-like protrusion is integrally formed on the wall surface of the diffuser portion of the scroll casing.
  • the rib-shaped protrusion is integrally formed on the wall surface of the diffuser part of the scroll casing, when the rib-shaped protrusion is provided on the wall surface of the diffuser part, a part of the wall surface protrudes to the inner surface side. Therefore, it is only necessary to form them integrally. Therefore, it is possible to suppress an increase in man-hours and an increase in cost due to the provision of the rib-like projections.
  • the multiblade centrifugal fan according to the second aspect of the present invention is a multiblade centrifugal fan in which an impeller having a large number of blades is rotatably provided in a scroll casing formed in a spiral shape with a tongue as a base point.
  • the scroll casing includes an axially extending portion that forms an air flow path that extends in the rotational axis direction on the radially outer side of the annular flange portion that supports the impeller on the lower surface thereof, and the axial direction Air that simultaneously controls air flow turbulence, vortex generation, and secondary flow at a position on the inner peripheral side of the center of the diffuser portion wall surface in the outlet region downstream of the end of the scroll casing of the expansion portion Sub blades are provided along the flow direction.
  • a sub-blade along the air flow direction that simultaneously controls the turbulence of air flow, the generation of vortices and the secondary flow is provided at a position closer to the inner periphery than the center on the wall surface of the diffuser.
  • the flow of air in the outlet area downstream of the winding end of the casing can be rectified to prevent backflow, turbulence, and vortex generation in the front and back of the tongue, and secondary in the direction perpendicular to the mainstream Unstable flow behavior can be suppressed. Therefore, it is possible to reduce low-frequency sound (abnormal noise) having frequency components in the vicinity of 250 Hz and 500 Hz, which are generated when the flow disturbance before and after the tongue reaches the diffuser portion (the rapidly expanding portion of the flow path). .
  • the upper end of the sub-blade has substantially the same height as the annular flange portion of the scroll casing, and is substantially the same from the upstream end side to the downstream end side. It is preferable to keep the height.
  • the sub blade since the upper end of the sub blade has substantially the same height as the annular flange portion of the scroll casing, and the upstream end side to the downstream end side are kept at substantially the same height, the sub blade has the impeller.
  • the main flow of the airflow that flows in the axial extension portion is rectified without inhibiting the airflow that flows out of the airflow, and the turbulence and vortex generation and the unstable behavior of the secondary flow can be suppressed. Accordingly, it is possible to stabilize the air flow from the front and rear of the tongue portion to the diffuser portion outlet in the outlet region, and to suppress the generation of low frequency sounds near 250 Hz and 500 Hz.
  • the sub blade is integrally formed on the wall surface of the diffuser portion in the outlet region downstream of the end of winding of the scroll casing. Preferably it is.
  • the sub blade is integrally formed on the diffuser portion wall surface in the outlet region downstream from the winding end portion of the scroll casing, the sub blade is provided on the diffuser portion wall surface.
  • a part of the wall surface may be integrally formed by projecting into the air flow path in the outlet region, and therefore, the increase in man-hours and cost increase due to the provision of the sub blade can be suppressed.
  • the multiblade centrifugal fan according to the third aspect of the present invention is a multiblade centrifugal fan in which an impeller having a large number of blades is rotatably provided in a scroll casing formed in a spiral shape with a tongue as a base point.
  • the scroll casing includes an axially extending portion that forms an air flow path that extends in the rotational axis direction on the radially outer side of the annular flange portion that supports the impeller on the lower surface thereof, and the axial direction A vortex having a height in the direction of the rotation axis gradually increased from the upstream side of the tongue portion to the inner peripheral side surface of the outlet region in the vicinity of the tongue portion of the outlet portion downstream of the end portion of the scroll casing of the expansion portion.
  • a control plate is provided.
  • the tongue in the outlet region on the downstream side of the winding end portion of the axial expansion portion that forms the air flow path expanded in the rotation axis direction of the scroll casing In the vicinity of the tongue, there is a vortex control plate whose height in the rotational axis is gradually increased from the upstream side of the tongue to the inner peripheral side surface of the outlet region.
  • the reverse flow and the vortex flow due to the separation are generated at the same time, and the fluctuation of the unstable vortex flow that winds upward from the lower side of the axial extension portion can be suppressed. Therefore, it is possible to reduce low-frequency sound (abnormal noise) having a frequency component near 500 Hz, which is generated when the disturbance of the flow before and after the tongue reaches the diffuser portion (the rapidly expanding portion of the flow path).
  • the vortex control plate is extended to a position above the annular flange portion on the lower surface of the scroll casing.
  • the vortex control plate since the vortex control plate extends to a position above the annular flange portion on the lower surface of the scroll casing, the vortex control plate is wound from below the axially extended portion near the tongue portion to above the annular flange portion.
  • the fluctuation of the unstable vortex flow that rises can be suppressed by the vortex control plate that extends to a position above the annular flange portion. Therefore, it is possible to reduce the low-frequency sound that is generated when the turbulence of the flow before and after the tongue reaches the diffuser portion (the rapidly expanding portion of the flow path).
  • the diffuser portion is disposed from the vicinity of the tongue portion on the outer peripheral surface facing the inner peripheral side surface of the outlet region where the vortex control plate is provided. It is preferable that a secondary flow control plate for controlling the secondary flow in the diffuser section is provided toward the outlet.
  • the secondary flow in the diffuser portion is controlled from the vicinity of the tongue portion to the outlet of the diffuser portion on the outer peripheral side surface facing the inner peripheral side surface of the outlet region where the vortex control plate is provided. Since the secondary flow control plate is provided, the unstable behavior of the secondary flow flowing in the direction orthogonal to the circumferential air flow flowing in the axial extension of the scroll casing is It can suppress by the secondary flow control board provided in the. Therefore, it is possible to stabilize the secondary flow from the vicinity of the tongue portion of the outlet region to the exit of the diffuser portion, and to reduce the occurrence of low-frequency sound (abnormal noise) near 250 Hz and 500 Hz.
  • the secondary flow control plate has an upper end that is substantially the same height from the upstream end side to the downstream end side. .
  • the height of the upper end of the secondary flow control plate is substantially the same from the upstream end side to the downstream end side, the secondary flow from the vicinity of the tongue portion to the diffuser portion outlet is unstable.
  • the behavior can be reliably suppressed and stabilized.
  • it is possible to stabilize the turbulence of the air flow from the vicinity of the tongue portion to the diffuser portion outlet and suppress the generation of low frequency sound.
  • the vortex control plate and the secondary flow control plate are formed integrally with a lower casing of the scroll casing.
  • the vortex control plate and the secondary flow control plate are formed integrally with the lower casing of the scroll casing, the outer periphery from the inner peripheral side surface near the tongue portion and the vicinity of the tongue portion to the outlet of the diffuser portion.
  • a part of the wall surface of the lower casing may be integrally formed by projecting to the inner side of the air flow path. Man-hour increase and cost increase due to the provision of the secondary flow control plate can be suppressed.
  • the air conditioner according to the fourth aspect of the present invention is one in which the multiblade centrifugal fan described above is mounted as a fan for blowing air.
  • the air blowing fan mounted on the air conditioner is any one of the above-described multiblade centrifugal fans, generation of low-frequency sound is performed. Therefore, it is possible to mount a high-performance multi-blade centrifugal fan with reduced noise, and therefore, the air conditioner can be further reduced in noise and performance.
  • the multiblade centrifugal fan of the present invention it is possible to suppress the backflow and separation of the flow near the tongue, and to stabilize the turbulence of the main flow and the fluctuation of the vortex generated near the tongue.
  • the air flow in the downstream area can be stabilized and the deviation can be suppressed, and the turbulence in the vicinity of the tongue occurs when it reaches the diffuser part (the rapidly expanding part of the flow path), especially around 500 Hz
  • the low frequency sound (abnormal sound) which has the frequency component of this can be reduced.
  • the sub-blade can suppress the backflow, turbulence, and vortex generation in the front and back of the tongue, and the instability of the secondary flow in the direction orthogonal to the mainstream.
  • Low-frequency sound having frequency components around 250 Hz and 500 Hz, which is generated when the flow disturbance before and after the tongue reaches the diffuser part (the sudden expansion part of the flow path). ) Can be reduced.
  • the vortex control plate causes both the backflow of the flow and the vortex due to separation at the same time in the vicinity of the tongue, and the vortex control plate is unstablely rolled up from below the axially extending portion. Since fluctuations in the vortex flow can be suppressed, low-frequency sound (abnormal noise) having a frequency component around 500 Hz, which is generated when the flow turbulence before and after the tongue reaches the diffuser portion (the rapidly expanding portion of the flow path). Can be reduced.
  • the air conditioner of the present invention it is possible to mount a high performance multi-blade centrifugal fan with reduced generation of low frequency sound, so that the air conditioner can be further reduced in noise and performance. it can.
  • FIG. 3 is an aa cross-sectional view of the multiblade centrifugal fan shown in FIG. 2.
  • FIG. 3 is a bb cross-sectional view of the multiblade centrifugal fan shown in FIG. 2.
  • FIG. 3 is a bb cross-sectional view of the multiblade centrifugal fan shown in FIG. 2.
  • FIG. 3 is a bb cross-sectional view of the multiblade centrifugal fan shown in FIG. 2.
  • FIG. 3 is a bb cross-sectional view of the multiblade centrifugal fan shown in FIG. 2.
  • FIG. 3 is a bb cross-sectional view which looked at the lower casing side of the multiblade centrifugal fan which concerns on 2nd Embodiment of this invention.
  • FIG. 6 is a cc cross-sectional view of the multiblade centrifugal fan shown in FIG. 5. It is the cross-sectional view which looked at the lower casing side of the multiblade centrifugal fan which concerns on 3rd Embodiment of this invention.
  • FIG. 8 is a dd sectional view of the multiblade centrifugal fan shown in FIG. 7. It is a figure showing the noise reduction effect at the time of providing only the protrusion of the multiblade centrifugal fan shown in FIG. It is a figure showing the noise reduction effect at the time of providing the protrusion and columnar protrusion of the multiblade centrifugal fan shown in FIG. It is a figure showing the noise reduction effect of the multiblade centrifugal fan shown in FIG.
  • FIG. 1 shows a longitudinal sectional view of the multiblade centrifugal fan according to the first embodiment of the present invention
  • FIG. 2 shows a transverse sectional view of the lower casing side.
  • the multiblade centrifugal fan 1 includes a scroll casing 2 made of a resin material formed in a spiral shape (scroll shape).
  • an air flow path 9 is formed on the outer periphery of an upper casing 3 provided with a bell mouth 6 that forms a suction port 5 on an upper surface 4 and an annular flange portion 8 that supports a motor 22 and an impeller 17.
  • the upper casing 3 and the lower casing 7 are divided into two in the vertical direction at appropriate positions in the vertical direction (rotational axis direction), each of which is formed of a resin material, and the scroll casing 2 is configured by integrally joining them. is doing.
  • the scroll casing 2 has an upper surface 4, a lower surface (flange surface) 10, and an outer peripheral surface 11, and is formed in a spiral shape with the tongue portion 12 as a base point.
  • the scroll casing 2 is provided with a blowout port 14 that extends in a tangential direction from the winding end portion 13 on the upstream side of the tongue portion 12 that is the winding start portion, and is downstream from the tongue portion 12 of the blowout port 14.
  • This region is a diffuser section (abrupt expansion section of the flow path) 15 (see FIGS. 6 and 8) in which the air flow path 9 is rapidly expanded in the vertical direction, and the diffuser section 15 is a downstream air conditioning unit (illustrated). Is omitted).
  • an impeller 17 configured by providing a large number of blades 20 between the shroud 18 and the hub 19 is disposed.
  • the impeller 17 has a boss 21 provided at the center of the hub 19 fixed to the rotating shaft 23 of the motor 22 installed at the center of the annular flange portion 8 of the lower casing 7. It is supported rotatably.
  • the winding end portion 13 of the scroll casing 2 is the rotation of the impeller 17 with reference to a line connecting the center ⁇ 1 of the rotating shaft 23 of the impeller 17 and the center ⁇ 2 of the tongue 12 of the scroll casing 2.
  • the winding angle in the direction is ⁇ , for example, the position is ⁇ 310 °.
  • the air flow path 9 formed on the air outflow side of the impeller 17 by the scroll casing 2 gradually increases in cross-sectional area in the spiral direction from the tongue 12 of the scroll casing 2 to the end of winding 13.
  • the outer diameter of the annular flange portion 8 that supports the impeller 17 and the drive motor 22 on the lower surface (flange surface) 10 side of the lower casing 7 is increased.
  • An axially extending portion 7A that forms an air flow path 9A that extends in the direction of the rotation axis is formed integrally with the lower casing 7 on the side.
  • the air sucked in the axial direction from the suction port 5 through the impeller 17 is pressurized while being changed in the centrifugal direction in the impeller 17, and as shown in FIG. Then, it flows out from the outer edge of each blade 20 toward the tangential direction of the impeller 17 to the air flow path 9 in the scroll casing 2.
  • This air flow is pumped to the outlet 14 side while being gradually increased in pressure along the inner peripheral surface of the scroll casing 2, and passes through the diffuser portion (rapidly expanding portion of the flow path) 15 on the downstream side from the outlet 14. The air is sent to the air conditioning unit on the downstream side.
  • the direction of the air flow in the impeller 17 changes from the axial direction to the centrifugal direction (radial direction), but most of the flow does not bend due to inertial force, and the inside of the impeller 17 has a scroll casing 2.
  • the flow is biased toward the lower surface 10 side (motor 22 side).
  • the multi-blade centrifugal fan 1 has a larger aspect ratio (ratio between the outer diameter D of the impeller 17 and the blade axial length B on the outlet side thereof; B / D), the bias tends to become more prominent.
  • the winding end portion 13 and the tongue of the scroll casing 2 are suppressed.
  • a part of the wall surface protrudes toward the air flow path 9 ⁇ / b> A on the inner peripheral wall of the axially extending portion 7 ⁇ / b> A and is molded integrally with the lower casing 7.
  • the protrusion 24 is provided. The protrusion 24 is projected from the radially inner side to a radially outward direction by a predetermined dimension in the radial direction so as to face the circumferential air flow.
  • the circumferential width dimension is about 5 mm and the radial direction.
  • the amount of protrusion is about 10 mm, and the height in the rotation axis direction is substantially the same as the height of the lower surface 10 of the annular flange portion 8.
  • the main flow of the circumferential air flow along the inner peripheral surface of the air flow path 9 in the scroll casing 2 is orthogonal to the main flow in the air flow path 9 ⁇ / b> A of the axial extension portion 7 ⁇ / b> A.
  • a secondary flow in the direction occurs.
  • the unstable behavior of the secondary flow disturbs the flow in the region of the outlet 14 and causes abnormal noise (low frequency sound) in the diffuser section 15 depending on the operating state. Therefore, in order to suppress the unstable behavior of the secondary flow, as shown in FIG. 2, air is formed on the wall surface of the diffuser portion 15 from the vicinity of the tongue portion 12 in the outlet 14 region to the outlet of the diffuser portion 15.
  • a plurality of rib-like protrusions 25 along the flow direction are provided in a protruding manner.
  • the rib-like protrusion 25 has a semicircular rib-like protrusion 25A, a square rib-like protrusion 25B, a triangular rib-like protrusion, or the like. It is integrally formed on the wall surface of the diffuser portion 15 of the scroll casing 2 so as to protrude inward of the flow path, and is provided so as to be orthogonal to the secondary flow.
  • the air sucked in the axial direction from the suction port 5 through the bell mouth 6 by the rotation of the impeller 17 passes through the plurality of blades 20 of the impeller 17 in the centrifugal direction from the inner peripheral side to the outer peripheral side.
  • the pressure is changed and the air flows into the air flow path 9.
  • the air flow is pumped while the static pressure is increased along the inner circumferential surface of the air flow path 9 in the scroll casing 2 in the circumferential direction, and the flow path is rapidly expanded vertically from the outlet 14.
  • the air is sent to the outside through 15.
  • This air flow flows backward toward the impeller 17 in the vicinity of the tongue 12 of the scroll casing 2, and noise may be generated due to interference between the reverse flow area and the impeller 17. Further, the air flow in the impeller 17 is biased toward the lower surface 10 side (motor 22 side) of the scroll casing 2, and the aspect ratio (the outer diameter D of the impeller 17 and the blade shaft on the outlet side thereof).
  • the tendency of the multiblade centrifugal fan 1 having a larger ratio (B / D) to the direction length B is stronger (see FIG. 1), and the outflow direction of air from the impeller 17 tends to be relatively outward in the radial direction. There is. For this reason, it will be in the state which a flow tends to peel in the tongue part 12 vicinity.
  • a protrusion 24 is provided which protrudes from the radially inner side in a radial direction so as to face the circumferential air flow in the radially outward direction, and locally flows in the air flow path 9A by the protrusion 24. It is made to peel. By stabilizing the flow by this local separation, it is possible to stabilize mainstream turbulence and vortex fluctuations that have occurred in the vicinity of the tongue 12.
  • FIG. 9 is a diagram showing the noise reduction effect due to the provision of the protrusion 24.
  • the curve A with the protrusion 24 has a lower frequency component around 500 Hz than the curve B with the protrusion 24.
  • the frequency sound is reduced, and it has been confirmed by experiments that an overall noise reduction effect of about 1.4 dBA can be obtained.
  • the low frequency sound which has a frequency component of 125 Hz or less has increased a little, since the low frequency sound of 125 Hz or less is out of an audible range and cannot be heard, there is no problem.
  • the height of the protrusion 24 in the rotation axis direction is substantially the same as the height of the lower surface 10 of the annular flange portion 8. For this reason, the protrusion 24 does not hinder the air flow flowing out from the impeller 17 to the air flow path 9, and only faces the main flow of the air flow flowing through the air flow path 9 ⁇ / b> A of the axial extension portion 7 ⁇ / b> A, Appropriate separation can be locally generated with respect to the flow. Therefore, it is possible to stabilize the air flow from the vicinity of the tongue portion 12 to the outlet of the diffuser portion 15 in the blowout port 14 region and suppress the generation of low frequency sound.
  • the protrusion 24 protrudes inward from a part of the inner peripheral wall of the air flow path 9A in the axial extension portion 7A extended in the rotation axis direction of the scroll casing 2, so that the lower casing of the scroll casing 2. 7 is molded integrally. For this reason, when providing the protrusion 24 on the axially extending portion 7A, it is only necessary to form a part of the inner peripheral wall thereof inward of the air flow path 9A so as to be integrally formed with the lower casing 7, and thus the protrusion 24 is provided. It is possible to suppress an increase in man-hours and an increase in cost.
  • the projections 25 are projected. For this reason, the unstable behavior of the secondary flow (see FIG. 1) flowing in the direction orthogonal to the circumferential main flow flowing in the air flow path 9A of the axial extension portion 7A is projected along the air flow direction. It can be suppressed by the rib-shaped protrusion 25 provided. Accordingly, the secondary flow from the vicinity of the tongue portion 12 in the outlet 14 region to the outlet of the diffuser portion 15 is stabilized without disturbing the mainstream flow, and low frequency sound (abnormal noise) around 250 Hz and 500 Hz is generated. Both can be reduced.
  • FIG. 10 is a diagram showing the noise reduction effect due to the provision of the protrusions 24 and the rib-like protrusions 25.
  • the protrusions 24 and the rib-like protrusions 25 are present.
  • the curve A in this case low-frequency sounds having frequency components near 250 Hz and 500 Hz are both reduced, and it has been experimentally confirmed that a noise reduction effect of about 2 dBA can be obtained even with overalls.
  • the rib-like protrusion 25 is formed integrally on the wall surface of the diffuser portion 15 of the scroll casing 2. For this reason, in providing the rib-like protrusion 25 on the wall surface of the diffuser portion 15, it is only necessary to form a part of the wall surface to the inner surface side and form it integrally. An increase in cost can be suppressed.
  • FIGS. 5 and 6 the diffuser portion 15 in the region of the outlet 14 downstream of the winding end portion 13 of the scroll casing 2 of the axially extending portion 7 ⁇ / b> A provided in the lower casing 7.
  • the sub-blade 26 along the air flow direction for simultaneously controlling the turbulence of air flow, the generation of vortices and the secondary flow is provided at a position on the inner peripheral side with respect to the central portion on the wall surface.
  • the sub blade 26 is provided within a range of 50 to 30% closer to the inner peripheral side than the center portion when the center portion of the flow path width on the wall surface of the diffuser portion 15 in the region of the outlet 14 is set to 50%. Is desirable.
  • the sub blade 26 is formed integrally with the lower casing 7 on the wall surface of the diffuser portion 15 in the region of the outlet 14 of the lower casing 7, and the thickness thereof is about several mm to about 10 mm.
  • the height of the upper end 26A of the sub blade 26, that is, the height in the rotation axis direction is substantially the same as the lower surface 10 of the annular flange portion 8 of the scroll casing 2, and from the upstream end side to the downstream end side. The structure is kept up to approximately the same height.
  • the inner periphery of the diffuser portion 15 in the region of the outlet 14 region downstream of the winding end portion 13 of the axially expanded portion 7A that forms the air flow path 9A expanded in the rotation axis direction is more inner than the central portion on the wall surface.
  • FIG. 11 is a diagram showing the noise reduction effect due to the provision of the sub-blade 26.
  • the curve A with the sub-blade 26 is around 250 Hz and around 500 Hz. It has been confirmed by experiments that low frequency sound having a frequency component of 1 is reduced, and that an overall noise reduction effect of about 1.4 dBA can be obtained.
  • the upper end 26A of the sub blade 26 has substantially the same height as the lower surface 10 of the annular flange portion 8 of the scroll casing 2 and is kept at substantially the same height from the upstream end side to the downstream end side.
  • the blade 26 does not obstruct the air flow that flows out of the impeller 17, rectifies the main flow of the air flow that flows in the axial extension 7 ⁇ / b> A, generates turbulence and vortices, and unstable behavior of the secondary flow. Can be suppressed. Therefore, it is possible to stabilize the air flow from the front and rear of the tongue 12 to the outlet of the diffuser portion 15 in the blowout port 14 region, and to suppress the generation of low frequency sounds near 250 Hz and 500 Hz.
  • the sub blade 26 is integrally formed on the wall surface of the diffuser portion 15 in the blowout port 15 region downstream of the end portion 13 of the scroll casing 2. For this reason, when the sub blade 26 is provided on the wall surface of the diffuser portion 15, a part of the wall surface is projected into the air flow path 9 ⁇ / b> A in the region of the outlet 15, and is integrally formed. It is possible to suppress an increase in man-hours and an increase in cost due to the provision of.
  • FIG. 7 and FIG. 8 show a third embodiment of the present invention in that a vortex control plate 27 and a secondary flow control plate 29 are provided instead of the protrusions 24 and the rib-like protrusions 25. Since other points are the same as those in the first embodiment, description thereof will be omitted.
  • a vortex control plate 27 having a gradually increasing height in the direction of the rotation axis is provided in the vicinity from the upstream side of the tongue 12 to the inner peripheral side surface 28 of the outlet 14 region.
  • the vortex control plate 27 extends to a position above the annular flange portion 8 on the lower surface of the scroll casing 2.
  • the secondary flow in the diffuser portion 15 is caused to flow from the vicinity of the tongue portion 12 to the outlet of the diffuser portion 15 on the outer peripheral side surface 30 facing the inner peripheral side surface 28 of the outlet 14 region where the vortex control plate 27 is provided.
  • the secondary flow control plate 29 to be controlled is provided.
  • the secondary flow control plate 29 has an upper end 29 ⁇ / b> A whose height in the rotation axis direction is substantially the same from the upstream end side to the downstream end side.
  • the vortex control plate 27 and the secondary flow control plate 29 are integrally formed respectively on the inner peripheral side surface 28 and the outer peripheral side surface 30 of the lower casing 7 constituting the scroll casing 2.
  • the vortex control plate 27 is provided with a vortex control plate 27 whose height in the rotational axis is gradually increased from the upstream side of the tongue 12 to the inner peripheral side surface 28 of the outlet port 14 region.
  • a reverse flow of the flow and a vortex due to separation are generated at the same time, and the fluctuation of the unstable vortex that winds upward from below the axially extending portion 7A can be suppressed. For this reason, it is possible to reduce low-frequency sound (abnormal noise) having a frequency component in the vicinity of 500 Hz, which is generated when the turbulence of the air flow around the tongue portion 12 reaches the diffuser portion 15.
  • FIG. 12 is a diagram showing the noise reduction effect due to the provision of the vortex control plate 27.
  • the curve A with the vortex control plate 27 is around 500 Hz. It has been confirmed by experiments that a low frequency sound having a frequency component of approximately 1.1 dBA can be obtained even with overall.
  • the vortex control plate 27 is extended to a position above the annular flange portion 8 on the lower surface 10 of the scroll casing 2. For this reason, the fluctuation
  • the outer peripheral side surface 30 facing the inner peripheral side surface 28 of the blowout port 14 region extends from the vicinity of the tongue portion 12 to the outlet of the diffuser portion 15.
  • a secondary flow control plate 29 for controlling the next flow is provided.
  • the unstable behavior of the secondary flow that flows in the direction orthogonal to the mainstream in the circumferential direction that flows in the axial extension portion 7A of the scroll casing 2 is provided on the outer peripheral side surface 30 of the outlet 14 region. It can be suppressed by the secondary flow control plate 29. Accordingly, it is possible to stabilize the secondary flow from the vicinity of the tongue 12 in the region of the outlet 14 to the outlet of the diffuser unit 15, thereby reducing both low-frequency sound (abnormal noise) near 250 Hz and 500 Hz. be able to.
  • FIG. 13 is a diagram showing the noise reduction effect due to the provision of the vortex control plate 27 and the secondary flow control plate 29, with respect to the curve B in the case without the vortex control plate 27 and the secondary flow control plate 29.
  • the curve A with the vortex control plate 27 and the secondary flow control plate 29 both low frequency sounds having frequency components near 250 Hz and 500 Hz are reduced, and the overall noise reduction effect is about 1.4 dBA. It has been confirmed by experiments that it can be obtained.
  • the secondary flow control plate 29 has a height of the upper end 29A, that is, a height in the rotation axis direction, which is substantially the same from the upstream end side to the downstream end side.
  • the unstable behavior of the secondary flow to the 15 outlets can be reliably suppressed and stabilized. As a result, it is possible to stabilize the turbulence of the air flow from the vicinity of the tongue portion 12 to the outlet of the diffuser portion 15 and suppress the generation of low frequency sound.
  • the vortex control plate 27 and the secondary flow control plate 29 are formed integrally with the inner peripheral side surface 28 and the outer peripheral side surface 30 of the lower casing 7 constituting the scroll casing 2, respectively. Therefore, when the vortex control plate 27 and the secondary flow control plate 29 are provided on the inner peripheral side surface 28 in the vicinity of the tongue portion 12 and on the outer peripheral side surface 30 from the vicinity of the tongue portion 12 to the outlet of the diffuser portion 15, respectively, It is only necessary to form a part of the wall surface inwardly of the air flow path 9 so as to be integrally formed. Therefore, an increase in man-hours and an increase in cost due to the provision of the vortex control plate 27 and the secondary flow control plate 29 are suppressed. be able to.
  • this invention is not limited to the invention concerning the said embodiment, In the range which does not deviate from the summary, it can change suitably.
  • the example of the multiblade centrifugal fan 1 in which the rotating shaft 23 of the impeller 17 is vertically disposed has been described.
  • the rotating shaft 23 may be disposed horizontally. is there.
  • the multiblade centrifugal fan 1 of each embodiment can be widely applied as a blower fan for an air conditioner such as a vehicle air conditioner and can reduce the generation of low-frequency sound.
  • the air conditioner used can be further reduced in noise and performance.

Abstract

 スクロールケーシング(2)内に羽根車(17)が回転自在に設けられている多翼遠心ファン(1)において、スクロールケーシング(2)は、その下面の羽根車(17)を支持する環状フランジ部(8)の径外方側に回転軸方向に拡張された空気流路(9A)を形成する軸方向拡張部を備え、軸方向拡張部のスクロールケーシング(2)の巻き終り部位(13)と舌部(12)との中間の吹出し口(14)領域に、径内方側面から径外方向に向けて周方向の空気流れと正対するように所定寸法突出された突起(24)が設けられている。

Description

多翼遠心ファンおよびそれを用いた空気調和機
 本発明は、車両用空調装置等の空気調和機に広く適用されている多翼遠心ファンおよびそれを用いた空気調和機に関するものである。
 舌部を基点とするスクロールケーシング内に、複数枚のブレードを有する羽根車がモータを介して回転自在に設置されている多翼遠心ファンは、冷凍、空調、あるいは換気装置等(以下、単に空気調和機という。)の送風用ファンに広く適用されている。かかる多翼遠心ファンにおいて、羽根車の回転によりスクロールケーシングの上面側に設けられている吸い込み口から軸方向に吸い込まれた空気は、羽根車の複数枚のブレード間を通り内周側から外周側へと遠心方向(半径方向)に向きを変えて圧送され、羽根車からスクロールケーシング内の空気流路へと流出された後、その内周面に沿って周方向へと送られ、吹出し口を経て外部へと送風されるようになっている。
 このような多翼遠心ファンでは、スクロールケーシングの舌部付近で羽根車側への逆流が発生し、その逆流域と羽根車との干渉、逆流域での流れの乱れや渦による振動、更には主流の乱れや渦とスクロールケーシングとの干渉等により異音(耳障りな音)が発生することが知られている。その対策として、スクロールケーシングの空気流路下面を、羽根車の外周端下方位置から径外方向に向け下向きに傾斜させ、渦流の発生を抑制するようにしたものが特許文献1により提示されている。
 また、スクロールケーシングの巻き終り部位から吹出し口領域に向うほど、傾斜面の角度が大きくなる捩れ面を形成し、二次流れを捩れ面に沿って径内方に拡大するように流すことにより、主流との干渉を抑制するようにしたものが特許文献2に示されている。さらに、スクロールケーシングの空気流路の出口側領域の下面に、空気流れ方向に沿ってリブまたは二次流れ抑制ベーンを設け、羽根車に向う二次流れを抑制することにより騒音を低減するようにしたものが特許文献3,4等に示されている。
特許第3476085号公報(図4-5参照) 特許第3622300号公報(図1-3参照) 特許第3785758号公報(図1-4参照) 特開2006-307830号公報(図2-3,5参照)
 多翼遠心ファンでは、上記のように、羽根車内で空気流れが軸方向流れから遠心方向流れに向きが変えられるが、大部分は慣性力によって曲がり切れずに、羽根車内ではスクロールケーシングの下面側(モータ側)に偏った流れとなっている。この偏った流れは、スクロールケーシングの下部側流路に流出され、スクロールケーシングの内周面に沿う主流とそれに直交する方向の二次流れとにより複雑な流れを形成している。更に、舌部付近では舌部との干渉、スクロールケーシングの吹出し口領域ではディフューザ部(流路の急拡大部)による減速の影響もあり、舌部前後からディフューザ部にかけては、流れが不安定になり易く、運転状態によって異音(低周波音)が発生することがあった。
 特に、昨今では、空気調和機のコンパクト化に関連して、多翼遠心ファンの外径を小さくしながら風量を確保できるように、アスペクト比(羽根車の外径Dとその出口側のブレード軸方向長さBとの比;B/D)を大きくする傾向にある。このため、羽根車内での流れの偏りがより顕著となり、風量が増大するモータ側では羽根車から流出される空気の流出方向が、アスペクト比が小さい羽根車と比較して相対的に半径方向外向きとなる。その結果、舌部において剥離が生じ易くなり、舌部付近では羽根車側への逆流と剥離による渦流とが同時に発生し、渦が下から上へと巻き上がる現象が生じることがあり、舌部前後から吹出し口領域のディフューザ部にかけての流れの乱れに対して、上記した従来の対応策では制御仕切れなくなっている。
 本発明は、このような事情に鑑みてなされたものであって、舌部前後から吹出し口領域のディフューザ部にかけての流れの不安定化、乱れ、偏りに起因して発生する低周波音を抑制することができる多翼遠心ファンおよびそれを用いた空気調和機を提供することを目的とする。
 上記した課題を解決するために、本発明の多翼遠心ファンおよびそれを用いた空気調和機は、以下の手段を採用する。
 すなわち、本発明の第一の態様にかかる多翼遠心ファンは、舌部を基点として渦巻き状に形成されたスクロールケーシング内に、多数のブレードを有する羽根車が回転自在に設けられている多翼遠心ファンであって、前記スクロールケーシングは、その下面の前記羽根車を支持する環状フランジ部の径外方側に回転軸方向に拡張された空気流路を形成する軸方向拡張部を備え、前記軸方向拡張部の前記スクロールケーシングの巻き終り部位と舌部との中間の吹出し口領域に、径内方側面から径外方向に向けて周方向の空気流れと正対するように所定寸法突出された突起が設けられたものである。
 本発明の第一の態様に係る多翼遠心ファンによれば、スクロールケーシング下面の回転軸方向に拡張された空気流路を形成する軸方向拡張部の巻き終り部位と舌部との中間の吹出し口領域に、径内方側面から径外方向に向けて周方向の空気流れと正対するように所定寸法突出された突起が設けられているため、スクロールケーシングの巻き終り部位と舌部との中間に設けられている突起により局所的に流れを剥離させ、この局所的剥離で流れを安定化させることによって、舌部付近において発生していた主流の乱れや渦の変動を安定化することができる。その結果、舌部より下流域での空気流れを安定化させることができ、舌部付近での流れの乱れがディフューザ部(流路の急拡大部)に至ることによって発生する、特に500Hz付近の周波数成分を有する低周波音(異音)を低減することができる。
 本発明の第一の態様に係る多翼遠心ファンにおいては、上記の多翼遠心ファンにおいて、前記突起は、その回転軸方向の高さが前記環状フランジ部と略同一高さとされていることが好ましい。
 この構成によれば、突起の回転軸方向の高さが、環状フランジ部と略同一高さとされているため、突起が羽根車から空気流路に流出される空気流を阻害することはなく、軸方向拡張部の空気流路を流れる主流に対してのみ正対し、その流れに対して適度な剥離を局所的に生じさせることができる。これによって、舌部付近から吹出し口領域のディフューザ部出口にかけての空気流れを安定化させ、低周波音の発生を抑制することができる。
 また、本発明の第一の態様に係る多翼遠心ファンにおいては、前記突起は、前記スクロールケーシングの回転軸方向に拡張されている前記軸方向拡張部内の空気流路の内周壁の一部を該空気流路の内側に突出することにより、該スクロールケーシングのロワーケーシングと一体に成形されていることが好ましい。
 この構成によれば、突起が、スクロールケーシングの回転軸方向に拡張されている軸方向拡張部内の空気流路の内周壁の一部を内側に突出することにより、該スクロールケーシングのロワーケーシングと一体に成形されているため、軸方向拡張部の空気流路に突起を設けるに当り、その内周壁の一部を空気流路の内側に突出させてロワーケーシングと一体に成形すればよく、従って、突起を設けることによる工数増大やコスト上昇を抑制することができる。
 さらに、本発明の第一の態様に係る多翼遠心ファンにおいては、前記スクロールケーシングには、前記吹出し口領域の前記舌部近傍からディフューザ部出口にかけて、該ディフューザ部壁面上に空気流れ方向に沿う複数条のリブ状突起が突設されていることが好ましい。
 この構成によれば、スクロールケーシングの吹出し口領域の舌部近傍からディフューザ部(流路の急拡大部)出口にかけて、該ディフューザ部壁面上に空気流れ方向に沿う複数条のリブ状突起が突設されているため、スクロールケーシングの軸方向拡張部内を流れる周方向の主流に対して直交する方向に流れる二次流れの不安定な挙動を、空気流れ方向に沿って突設されているリブ状突起によって抑えることができる。従って、主流の流れを妨げることなく、吹出し口領域の舌部近傍からディフューザ部出口にかけての二次流れを安定化し、250Hz付近および500Hz付近の低周波音(異音)の発生を低減することができる。
 上記の多翼遠心ファンにおいては、前記リブ状突起は、前記スクロールケーシングの前記ディフューザ部壁面に一体に成形されていることが好ましい。
 この構成によれば、リブ状突起が、スクロールケーシングのディフューザ部壁面に一体に成形されているため、ディフューザ部壁面にリブ状突起を設けるに当り、その壁面の一部を内面側に突出させて一体に成形すればよく、従って、リブ状突起を設けることによる工数増大やコスト上昇を抑制することができる。
 本発明の第二の態様にかかる多翼遠心ファンは、舌部を基点として渦巻き状に形成されたスクロールケーシング内に、多数のブレードを有する羽根車が回転自在に設けられている多翼遠心ファンであって、前記スクロールケーシングは、その下面の前記羽根車を支持する環状フランジ部の径外方側に回転軸方向に拡張された空気流路を形成する軸方向拡張部を備え、前記軸方向拡張部の前記スクロールケーシングの巻き終り部位より下流側の吹出し口領域のディフューザ部壁面上の中央部よりも内周側位置に、空気流の乱れや渦の発生および二次流れを同時に制御する空気流れ方向に沿うサブブレードが設けられたものである。
 本発明の第二の態様に係る多翼遠心ファンによれば、スクロールケーシング下面の回転軸方向に拡張された空気流路を形成する軸方向拡張部の巻き終り部位より下流側の吹出し口領域のディフューザ部壁面上の中央部よりも内周側位置に、空気流の乱れや渦の発生および二次流れを同時に制御する空気流れ方向に沿うサブブレードが設けられているため、該サブブレードによりスクロールケーシングの巻き終り部位より下流側の吹出し口領域での空気流れを整流し、舌部前後での主流の逆流や乱れ、渦の発生を抑制することができるとともに、主流に直交する方向の二次流れの不安定な挙動を抑えることができる。従って、舌部前後での流れの乱れがディフューザ部(流路の急拡大部)に至ることにより発生する250Hz付近および500Hz付近の周波数成分を有する低周波音(異音)を低減することができる。
 本発明の第二の態様に係る多翼遠心ファンにおいては、前記サブブレードの上端は、前記スクロールケーシングの前記環状フランジ部と略同一高さとされ、その上流端側から下流端側までが略同じ高さにキープされていることが好ましい。
 この構成によれば、サブブレードの上端がスクロールケーシングの環状フランジ部と略同一高さとされ、その上流端側から下流端側までが略同じ高さにキープされているため、サブブレードが羽根車から流出される空気流を阻害することはなく、軸方向拡張部内を流れる空気流の主流を整流し、その乱れや渦の発生および二次流れの不安定な挙動を抑えることができる。従って、舌部前後から吹出し口領域のディフューザ部出口にかけての空気流れを安定化させ、250Hz付近および500Hz付近の低周波音の発生を抑制することができる。
 また、本発明の第二の態様に係る多翼遠心ファンンにおいては、前記サブブレードは、前記スクロールケーシングの巻き終り部位より下流側の前記吹出し口領域における前記ディフューザ部壁面上に一体に成形されていることが好ましい。
 この構成によれば、サブブレードが、スクロールケーシングの巻き終り部位より下流側の前記吹出し口領域におけるディフューザ部壁面上に一体に成形されているため、ディフューザ部壁面上にサブブレードを設けるに当り、その壁面の一部を吹出し口領域の空気流路内に突出させて一体に成形すればよく、従って、サブブレードを設けることによる工数増大やコスト上昇を抑制することができる。
 本発明の第三の態様にかかる多翼遠心ファンは、舌部を基点として渦巻き状に形成されたスクロールケーシング内に、多数のブレードを有する羽根車が回転自在に設けられている多翼遠心ファンであって、前記スクロールケーシングは、その下面の前記羽根車を支持する環状フランジ部の径外方側に回転軸方向に拡張された空気流路を形成する軸方向拡張部を備え、前記軸方向拡張部の前記スクロールケーシングの巻き終り部位より下流側の吹出し口領域の舌部近傍に、該舌部の上流側からその吹出し口領域の内周側面にかけて回転軸方向高さが漸次高くされた渦制御板が設けられたものである。
 本発明の第三の態様に係る多翼遠心ファンによれば、スクロールケーシングの回転軸方向に拡張された空気流路を形成する軸方向拡張部の巻き終り部位より下流側の吹出し口領域の舌部近傍に、舌部の上流側からその吹出し口領域の内周側面にかけて回転軸方向高さが漸次高くされた渦制御板が設けられているため、この渦制御板によって、舌部付近において流れの逆流と剥離による渦流とが同時に発生し、軸方向拡張部の下方から上方に向って巻き上がる不安定な渦流の変動を抑えることができる。従って、舌部前後での流れの乱れがディフューザ部(流路の急拡大部)に至ることにより発生する500Hz付近の周波数成分を有する低周波音(異音)を低減することができる。
 本発明の第三の態様に係る多翼遠心ファンにおいては、前記渦制御板は、前記スクロールケーシング下面の前記環状フランジ部よりも上方部位まで延設されていることが好ましい。
 この構成によれば、渦制御板が、スクロールケーシング下面の環状フランジ部よりも上方部位まで延設されているため、舌部付近の軸方向拡張部の下方から環状フランジ部の上方に向けて巻き上がる不安定な渦流の変動を、環状フランジ部よりも上方部位まで延設されている渦制御板により抑えることができる。従って、舌部前後での流れの乱れがディフューザ部(流路の急拡大部)に至ることにより発生する低周波音を低減することができる。
 また、本発明の第三の態様に係る多翼遠心ファンにおいては、前記渦制御板が設けられている前記吹出し口領域の内周側面と対向する外周側面に、前記舌部近傍からディフューザ部の出口にかけて、該ディフューザ部での二次流れを制御する二次流れ制御板が設けられていることが好ましい。
 この構成によれば、渦制御板が設けられている吹出し口領域の内周側面と対向する外周側面側に、舌部近傍からディフューザ部の出口にかけて、該ディフューザ部での二次流れを制御する二次流れ制御板が設けられているため、スクロールケーシングの軸方向拡張部内を流れる周方向の空気流に対して直交する方向に流れる二次流れの不安定な挙動を、吹出し口領域の外周側面に設けられている二次流れ制御板によって抑えることができる。従って、吹出し口領域の舌部近傍からディフューザ部出口にかけての二次流れを安定化させることができ、250Hz付近および500Hz付近の低周波音(異音)の発生を低減することができる。
 さらに、本発明の第三の態様に係る多翼遠心ファンにおいては、前記二次流れ制御板は、その上端の高さが上流端側から下流端側まで略同一高さとされていることが好ましい。
 この構成によれば、二次流れ制御板の上端の高さが上流端側から下流端側まで略同一高さとされているため、舌部近傍からディフューザ部出口にかけての二次流れの不安定な挙動を確実に抑制し、安定化することができる。その結果、舌部近傍からディフューザ部出口にかけての空気流れの乱れを安定化させ、低周波音の発生を抑制することができる。
 さらに、本発明の第三の態様に係る多翼遠心ファンにおいては、前記渦制御板および前記二次流れ制御板は、前記スクロールケーシングのロワーケーシングに一体に成形されていることが好ましい。
 この構成によれば、渦制御板および二次流れ制御板が、スクロールケーシングのロワーケーシングに一体に成形されているため、舌部近傍の内周側面および舌部近傍からディフューザ部の出口にかけての外周側面に、それぞれ渦制御板および二次流れ制御板を設けるに当り、ロワーケーシングの壁面の一部を空気流路の内方側に突出させて一体に成形すればよく、従って、渦制御板および二次流れ制御板を設けることによる工数増大やコスト上昇を抑制することができる。
 さらに、本発明の第四の態様にかかる空気調和機は、空気送風用のファンとして、上述のいずれかに記載の多翼遠心ファンが搭載されたものである。
 本発明の第四の態様に係る空気調和機によれば、空気調和機に搭載される空気送風用のファンが、上述のいずれかの多翼遠心ファンとされているため、低周波音の発生が低減された高性能の多翼遠心ファンを搭載することができ、従って、空気調和機を一段と低騒音化および高性能化することができる。
 本発明の多翼遠心ファンによると、舌部付近での流れの逆流および剥離を抑制し、舌部付近において発生していた主流の乱れや渦の変動を安定化することができるため、舌部より下流域での空気流れを安定化させ、その偏りを抑制することができ、舌部付近での流れの乱れがディフューザ部(流路の急拡大部)に至ることによって発生する、特に500Hz付近の周波数成分を有する低周波音(異音)を低減することができる。
 また、本発明の多翼遠心ファンによると、サブブレードにより、舌部前後での主流の逆流や乱れ、渦の発生を抑制することができるとともに、主流に直交する方向の二次流れの不安定な挙動を抑えることができるため、舌部前後での流れの乱れがディフューザ部(流路の急拡大部)に至ることにより発生する250Hz付近および500Hz付近の周波数成分を有する低周波音(異音)を低減することができる。
 また、本発明の多翼遠心ファンによると、渦制御板によって、舌部付近において流れの逆流と剥離による渦流とが同時に発生し、軸方向拡張部の下方から上方に向って巻き上がる不安定な渦流の変動を抑えることができるため、舌部前後での流れの乱れがディフューザ部(流路の急拡大部)に至ることにより発生する500Hz付近の周波数成分を有する低周波音(異音)を低減することができる。
 また、本発明の空気調和機によると、低周波音の発生が低減された高性能の多翼遠心ファンを搭載することができるため、空気調和機を一段と低騒音化および高性能化することができる。
本発明の第1実施形態に係る多翼遠心ファンの縦断面図である。 図1に示す多翼遠心ファンを横断してロワーケーシング側を見た横断面図である。 図2に示す多翼遠心ファンのa-a断面図である。 図2に示す多翼遠心ファンのb-b断面図である。 図2に示す多翼遠心ファンのb-b断面図である。 本発明の第2実施形態に係る多翼遠心ファンのロワーケーシング側を見た横断面図である。 図5に示す多翼遠心ファンのc-c断面図である。 本発明の第3実施形態に係る多翼遠心ファンのロワーケーシング側を見た横断面図である。 図7に示す多翼遠心ファンのd-d断面図である。 図2に示す多翼遠心ファンの突起のみを設けた場合の騒音低減効果を表す図である。 図2に示す多翼遠心ファンの突起および柱状突起を設けた場合の騒音低減効果を表す図である。 図5に示す多翼遠心ファンの騒音低減効果を表す図である。 図7に示す多翼遠心ファンの渦制御板のみを設けた場合の騒音低減効果を表す図である。 図7に示す多翼遠心ファンの渦制御板および二次流れ制御板を設けた場合の騒音低減効果を表す図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本発明の第1実施形態について、図1ないし図4Bおよび図9,10を用いて説明する。図1には、本発明の第1実施形態に係る多翼遠心ファンの縦断面図、図2には、そのロワーケーシング側を見た横断面図が示されている。
 多翼遠心ファン1は、渦巻き状(スクロール状)に形成されている樹脂材製のスクロールケーシング2を備えている。
 スクロールケーシング2は、上面4に吸い込み口5を形成するベルマウス6が設けられているアッパーケーシング3と、モータ22および羽根車17を支持する環状フランジ部8の外周に空気流路9が形成されているロワーケーシング7とから構成されている。このアッパーケーシング3およびロワーケーシング7は、上下方向(回転軸方向)の適宜位置で上下に2分割されており、それぞれが樹脂材で成形され、それを一体に結合することによってスクロールケーシング2を構成している。スクロールケーシング2は、上面4、下面(フランジ面)10および外周面11を有し、舌部12を基点として渦巻き状に形成されている。
 スクロールケーシング2には、その巻き始め部位である舌部12の上流側の巻き終り部位13から接線方向に延長された吹出し口14が設けられており、この吹出し口14の舌部12から下流側の領域は、空気流路9が上下方向に急拡大されたディフューザ部(流路の急拡大部)15(図6,8参照)とされており、ディフューザ部15は下流側の空調ユニット(図示省略)に接続されている。
 上記スクロールケーシング2の内部には、シュラウド18とハブ19間に多数のブレード20を設けて構成された羽根車17が配設されている。羽根車17は、ハブ19の中心に設けられているボス21がロワーケーシング7の環状フランジ部8の中心に設置されているモータ22の回転軸23に固定されることにより、モータ22を介して回転自在に支持されている。なお、本例では、スクロールケーシング2の巻き終り部位13は、羽根車17の回転軸23の中心Φ1とスクロールケーシング2の舌部12の中心Φ2とを結ぶ線を基準に、羽根車17の回転方向への巻き角度をΘとしたとき、例えば、Θ≒310°の位置とされている。
 また、スクロールケーシング2により羽根車17の空気流出側に形成されている空気流路9は、スクロールケーシング2の舌部12から巻き終り部位13にかけて渦巻き方向に断面積が漸次拡大されるようになっているが、回転軸方向にも空気流路9の断面積を拡大するため、ロワーケーシング7の下面(フランジ面)10側の羽根車17および駆動モータ22を支持する環状フランジ部8の径外方側に、回転軸方向に拡張された空気流路9Aを形成する軸方向拡張部7Aがロワーケーシング7と一体に成形されている。
 上記多翼遠心ファン1において、羽根車17を介して吸い込み口5から軸方向に吸い込まれた空気は、羽根車17内で遠心方向に向きを変えられながら昇圧され、図1に示されるように、各ブレード20の外縁から羽根車17の接線方向に向けてスクロールケーシング2内の空気流路9へと流出される。この空気流は、スクロールケーシング2の内周面に沿って徐々に昇圧されながら吹出し口14側へと圧送され、この吹出し口14から下流側のディフューザ部(流路の急拡大部)15を経て下流側の空調ユニットへ送風されるようになっている。
 この過程で、空気流は、羽根車17内で軸方向から遠心方向(半径方向)に向きが変化するが、流れの多くは慣性力によって曲がり切れずに、羽根車17の内部ではスクロールケーシング2の下面10側(モータ22側)に偏った流れとなっている。特に、アスペクト比(羽根車17の外径Dとその出口側のブレード軸方向長さBとの比;B/D)の大きい多翼遠心ファン1ほど、その偏りが顕著になる傾向がある。このため、スクロールケーシング下面10側(モータ22側)での風量割合が増加し、羽根車17からの空気の流出方向が接線方向から相対的に半径方向外向きとなり、舌部12において剥離が生じ易くなる。
 そこで、本実施形態では、舌部12付近での上記剥離を抑制するとともに、舌部12付近での羽根車17側への流れの逆流を抑えるため、スクロールケーシング2の巻き終り部位13と舌部12との中間の吹出し口14領域において、図3に示されるように、軸方向拡張部7Aの内周壁にその壁面の一部を空気流路9A側へ突出させてロワーケーシング7と一体に成形した突起24を設けた構成としている。この突起24は、径内方側面から径外方向に向けて周方向の空気流れと正対するように半径方向に所定寸法突出されたものであり、例えば周方向の幅寸法は約5mm、半径方向への突出量は約10mmとされ、その回転軸方向の高さは環状フランジ部8の下面10の高さと略同一高さとされている。
 また、多翼遠心ファン1では、スクロールケーシング2内の空気流路9の内周面に沿う周方向の空気流れの主流に対して、軸方向拡張部7Aの空気流路9Aにおいては主流に直交する方向の二次流れ(図1参照)が発生している。該二次流れの不安定な挙動が吹出し口14領域での流れを乱し、運転状態によりディフューザ部15で異音(低周波音)を発生する要因となっている。そこで、この二次流れの不安定な挙動を抑制するため、図2に示されるように、吹出し口14領域の舌部12の近傍からディフューザ部15の出口にかけて、ディフューザ部15の壁面上に空気流れ方向に沿う複数条のリブ状突起25を突設した構成としている。
 このリブ状突起25は、その断面形状が、図4A、図4Bに示されるように、半円形のリブ状突起25A、四角形のリブ状突起25B、あるいは三角形のリブ状突起等とされており、スクロールケーシング2のディフューザ部15の壁面に流路内方へと突出するように一体に成形され、二次流れに対しては直交するように設けられている。
 以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
 羽根車17の回転によりベルマウス6を介して吸い込み口5から軸方向に吸い込まれた空気は、羽根車17の複数枚のブレード20間を通って内周側から外周側へと遠心方向に向きを変えて圧送され、空気流路9内へと流出される。該空気流は、スクロールケーシング2内の空気流路9の内周面に沿って周方向へと静圧が上昇されつつ圧送され、吹出し口14から流路が上下に急拡大されているディフューザ部15を経て外部へと送風される。
 この空気流は、スクロールケーシング2の舌部12付近において羽根車17側に向って逆流し、該逆流域と羽根車17との干渉等により異音が発生することがある。また、羽根車17内での空気流は、スクロールケーシング2の下面10側(モータ22側)に偏った流れとなっており、アスペクト比(羽根車17の外径Dとその出口側のブレード軸方向長さBとの比;B/D)の大きい多翼遠心ファン1ほどその傾向が強く(図1参照)、羽根車17からの空気の流出方向が相対的に半径方向外向きとなる傾向がある。このため、舌部12付近において流れが剥離し易い状態となる。
 しかるに、本実施形態では、スクロールケーシング2の下面の回転軸方向に拡張された空気流路9Aを形成する軸方向拡張部7Aの巻き終り部位13と舌部12との中間の吹出し口14領域に、径内方側面から径外方向に向けて周方向の空気流れと正対するように半径方向に所定寸法突出された突起24を設け、該突起24によって空気流路9A内で局所的に流れを剥離させるようにしている。この局所的剥離で流れを安定化させることによって、舌部12付近において発生していた主流の乱れや渦の変動を安定化させることができる。
 その結果、舌部12より下流域での空気流れを安定化させることができ、舌部12付近での流れの乱れがディフューザ部15に至ることにより発生する、特に500Hz付近の周波数成分を有する低周波音(異音)を低減することができる。図9は、突起24を設けたことによる騒音低減効果を表した図であり、突起24無しの場合の曲線Bに対し、突起24有りの場合の曲線Aでは、500Hz付近の周波数成分を有する低周波音が低減されており、オーバーオールでも約1.4dBAの騒音低減効果が得られることが実験により確認されている。なお、125Hz以下の周波数成分を有する低周波音が若干増加しているが、125Hz以下の低周波音は可聴域から外れており、聞こえないため問題になることはない。
 また、突起24の回転軸方向の高さが、環状フランジ部8の下面10の高さと略同一高さとされている。このため、突起24が羽根車17から空気流路9に流出される空気流を妨げることはなく、軸方向拡張部7Aの空気流路9Aを流れる空気流の主流に対してのみ正対し、その流れに対して適度な剥離を局所的に発生させることができる。従って、舌部12付近から吹出し口14領域のディフューザ部15の出口にかけての空気流れを安定化させ、低周波音の発生を抑制することができる。
 また、上記突起24を、スクロールケーシング2の回転軸方向に拡張されている軸方向拡張部7A内の空気流路9Aの内周壁の一部を内側に突出することにより、スクロールケーシング2のロワーケーシング7と一体に成形している。このため、軸方向拡張部7Aに突起24を設けるに当り、その内周壁の一部を空気流路9Aの内側に突出させてロワーケーシング7と一体に成形すればよく、従って、突起24を設けることによる工数増大やコスト上昇を抑制することができる。
 さらに、本実施形態では、突起24に加えて、スクロールケーシング2の吹出し口14領域の舌部12近傍からディフューザ部15の出口にかけて、ディフューザ部15の壁面上に空気流れ方向に沿う複数条のリブ状突起25(半円形のリブ状突起25A、四角形のリブ状突起25B等)を突設した構成としている。このため、軸方向拡張部7Aの空気流路9A内を流れる周方向の主流に対して直交する方向に流れる二次流れ(図1参照)の不安定な挙動を、空気流れ方向に沿って突設されているリブ状突起25によって抑えることができる。従って、主流の流れを妨げることなく、吹出し口14領域の舌部12近傍からディフューザ部15の出口にかけての二次流れを安定化し、250Hz付近および500Hz付近の低周波音(異音)の発生を共に低減することができる。
 図10は、突起24およびリブ状突起25を設けたことによる騒音低減効果を表した図であり、突起24およびリブ状突起25無しの場合の曲線Bに対し、突起24およびリブ状突起25有りの場合の曲線Aでは、250Hz付近および500Hz付近の周波数成分を有する低周波音が共に低減されており、オーバーオールでも約2dBAの騒音低減効果が得られることが実験により確認されている。
 また、上記のリブ状突起25を、スクロールケーシング2のディフューザ部15の壁面に一体に成形している。このため、ディフューザ部15の壁面にリブ状突起25を設けるに当り、その壁面の一部を内面側に突出させて一体に成形すればよく、従って、リブ状突起25を設けることによる工数増大やコスト上昇を抑制することができる。
[第2実施形態]
 次に、本発明の第2実施形態について、図5,図6および図11を用いて説明する。
 本実施形態は、上記第1実施形態に対して、突起24およびリブ状突起25に代え、サブブレード26を設けた構成としている点が異なる。その他の点については、第1実施形態と同様であるので説明は省略する。
 本実施形態では、図5および図6に示されるように、ロワーケーシング7に設けられている軸方向拡張部7Aのスクロールケーシング2の巻き終り部位13より下流側の吹出し口14領域のディフューザ部15の壁面上の中央部よりも内周側位置に、空気流の乱れや渦の発生および二次流れを同時に制御する空気流れ方向に沿うサブブレード26が設けられた構成とされている。
 このサブブレード26は、吹出し口14領域のディフューザ部15の壁面上の流路幅の中央部を50%位置としたとき、中央部より内周側に寄った50ないし30%の範囲内に設けるのが望ましい。また、サブブレード26は、ロワーケーシング7の吹出し口14領域のディフューザ部15の壁面上にロワーケーシング7と一体に成形されており、その厚さは、数mm程度から10mm程度とされている。さらに、このサブブレード26の上端26Aの高さ、すなわち回転軸方向の高さは、スクロールケーシング2の環状フランジ部8の下面10と略同一高さとされており、その上流端側から下流端側までが略同じ高さにキープされた構成とされている。
 上記のように、回転軸方向に拡張された空気流路9Aを形成する軸方向拡張部7Aの巻き終り部位13より下流の吹出し口14領域のディフューザ部15の壁面上の中央部よりも内周側位置に、空気流の乱れや渦の発生および二次流れを同時に制御する空気流れ方向に沿うサブブレード26を設けることにより、このサブブレード26を介してスクロールケーシング2の巻き終り部位13より下流の吹出し口14領域での空気流れを整流し、舌部12前後での主流の逆流や乱れ、渦の発生を抑制することができるとともに、主流に直交する方向の二次流れの不安定な挙動を抑えることができる。
 このため、舌部12前後での流れの乱れがディフューザ部15に至ることにより発生する250Hz付近および500Hz付近の周波数成分を有する低周波音(異音)を共に低減することができる。図11は、サブブレード26を設けたことによる騒音低減効果を表した図であり、サブブレード26無しの場合の曲線Bに対し、サブブレード26有りの場合の曲線Aでは、250Hz付近および500Hz付近の周波数成分を有する低周波音が共に低減されており、オーバーオールでも約1.4dBAの騒音低減効果が得られることが実験により確認されている。
 また、サブブレード26の上端26Aは、スクロールケーシング2の環状フランジ部8の下面10と略同一高さとされ、その上流端側から下流端側までが略同じ高さにキープされているため、サブブレード26が羽根車17から流出される空気流を阻害することはなく、軸方向拡張部7A内を流れる空気流の主流を整流し、その乱れや渦の発生および二次流れの不安定な挙動を抑えることができる。従って、舌部12前後から吹出し口14領域のディフューザ部15の出口にかけての空気流れを安定化させ、250Hz付近および500Hz付近の低周波音の発生を共に抑制することができる。
 さらに、サブブレード26は、スクロールケーシング2の巻き終り部位13より下流側の吹出し口15領域におけるディフューザ部15の壁面上に一体に成形されている。このため、ディフューザ部15の壁面上にサブブレード26を設けるに当り、その壁面の一部を吹出し口15領域の空気流路9A内に突出させて一体に成形すればよく、従って、サブブレード26を設けることによる工数増大やコスト上昇を抑制することができる。
[第3実施形態]
 次に、本発明の第3実施形態について、図7,図8および図12,図13を用いて説明する。
 本実施形態は、上記第1実施形態に対して、突起24およびリブ状突起25に代え、渦制御板27および二次流れ制御板29を設けた構成としている点が異なる。その他の点については、第1実施形態と同様であるので説明は省略する。
 本実施形態では、図7および図8に示されるように、ロワーケーシング7に設けられている軸方向拡張部7Aのスクロールケーシング2の巻き終り部13より下流側の吹出し口14領域の舌部12近傍に、該舌部12の上流側からその吹出し口14領域の内周側面28にかけて回転軸方向高さが漸次高くされた渦制御板27を設けている。この渦制御板27は、スクロールケーシング2の下面の環状フランジ部8よりも上方部位まで延設されている。
 また、渦制御板27が設けられている吹出し口14領域の内周側面28と対向する外周側面30に、舌部12近傍からディフューザ部15の出口にかけて、該ディフューザ部15での二次流れを制御する二次流れ制御板29を設けた構成とされている。この二次流れ制御板29は、その上端29Aの回転軸方向高さが、上流端側から下流端側まで略同一高さとされている。さらに、上記渦制御板27および二次流れ制御板29は、スクロールケーシング2を構成するロワーケーシング7の内周側面28および外周側面30に、それぞれ一体に成形されている。
 上記のように、スクロールケーシング2の下面10の回転軸方向に拡張された空気流路9Aを形成する軸方向拡張部7Aの巻き終り部位13より下流の吹出し口14領域の舌部12近傍に、舌部12の上流側からその吹出し口14領域の内周側面28にかけて回転軸方向高さが漸次高くされている渦制御板27を設けた構成とすることにより、この渦制御板27によって、舌部12付近において流れの逆流と剥離による渦流とが同時に発生し、軸方向拡張部7Aの下方から上方に向って巻き上がる不安定な渦流の変動を抑えることができる。このため、舌部12前後での空気流の乱れがディフューザ部15に至ることによって発生する500Hz付近の周波数成分を有する低周波音(異音)を低減することができる。
 図12は、渦制御板27を設けたことによる騒音低減効果を表した図であり、渦制御板27無しの場合の曲線Bに対し、渦制御板27有りの場合の曲線Aでは、500Hz付近の周波数成分を有する低周波音が低減されており、オーバーオールでも約1.1dBAの騒音低減効果が得られることが実験により確認されている。
 また、渦制御板27は、スクロールケーシング2の下面10の環状フランジ部8よりも上方部位まで延設されている。このため、舌部12付近の軸方向拡張部7Aの下方から環状フランジ部8の上方に向けて巻き上がる不安定な渦流の変動を、環状フランジ部8よりも上方部位まで延設されている渦制御板12によって抑えることができる。従って、舌部12前後での流れの乱れがディフューザ部15に至ることにより発生する低周波音を低減することができる。
 さらに、本実施形態では、渦制御板27に加え、吹出し口14領域の内周側面28と対向する外周側面30側に、舌部12近傍からディフューザ部15の出口にかけて、ディフューザ部15での二次流れを制御する二次流れ制御板29を設けた構成としている。このため、スクロールケーシング2の軸方向拡張部7A内を流れる周方向の主流に対して直交する方向に流れる二次流れの不安定な挙動を、吹出し口14領域の外周側面30に設けられている二次流れ制御板29によって抑えることができる。従って、吹出し口14領域の舌部12の近傍からディフューザ部15の出口にかけての二次流れを安定化させることができ、250Hz付近および500Hz付近の低周波音(異音)の発生を共に低減することができる。
 図13は、渦制御板27および二次流れ制御板29を設けたことによる騒音低減効果を表した図であり、渦制御板27および二次流れ制御板29無しの場合の曲線Bに対し、渦制御板27および二次流れ制御板29有りの場合の曲線Aでは、250Hz付近および500Hz付近の周波数成分を有する低周波音が共に低減されており、オーバーオールでも約1.4dBAの騒音低減効果が得られることが実験により確認されている。
 また、二次流れ制御板29は、その上端29Aの高さ、すなわち回転軸方向の高さが上流端側から下流端側まで略同一高さとされているため、舌部12の近傍からディフューザ部15の出口にかけての二次流れの不安定な挙動を確実に抑制し、安定化することができる。その結果、舌部12の近傍からディフューザ部15の出口にかけての空気流れの乱れを安定化させ、低周波音の発生を抑制することができる。
 また、上記渦制御板27および二次流れ制御板29は、スクロールケーシング2を構成するロワーケーシング7の内周側面28および外周側面30に、それぞれ一体成形された構成とされている。このため、舌部12近傍の内周側面28および舌部12近傍からディフューザ部15の出口にかけての外周側面30に、それぞれ渦制御板27および二次流れ制御板29を設けるに当り、ロワーケーシング7の壁面の一部を空気流路9の内方側に突出させて一体に成形すればよく、従って、渦制御板27および二次流れ制御板29を設けることによる工数増大やコスト上昇を抑制することができる。
 なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、羽根車17の回転軸23が鉛直に配設された多翼遠心ファン1の例について説明したが、回転軸23が水平に配設されていてもよいことはもちろんである。また、各実施形態の多翼遠心ファン1は、車両用空調装置等の空気調和機の送風用ファンとして広く適用可能であり、低周波音の発生を低減できることから、該多翼遠心ファン1を用いた空気調和機を一段と低騒音化および高性能化することが可能となる。
 1 多翼遠心ファン
 2 スクロールケーシング
 7 ロワーケーシング
 7A 軸方向拡張部
 8 環状フランジ部
 9,9A 空気流路
 10 下面
 12 舌部
 13 巻き終り部位
 14 吹出し口
 15 ディフューザ部
 17 羽根車
 20 ブレード
 24 突起
 25,25A,25B リブ状突起
 26 サブブレード
 26A サブブレードの上端
 27 渦制御板
 28 吹出し口領域の内周側面
 29 二次流れ制御板
 29A 二次流れ制御板の上端
 30 吹出し口領域の外周側面

Claims (14)

  1.  舌部を基点として渦巻き状に形成されたスクロールケーシング内に、多数のブレードを有する羽根車が回転自在に設けられている多翼遠心ファンであって、
     前記スクロールケーシングは、その下面の前記羽根車を支持する環状フランジ部の径外方側に回転軸方向に拡張された空気流路を形成する軸方向拡張部を備え、
     前記軸方向拡張部の前記スクロールケーシングの巻き終り部位と舌部との中間の吹出し口領域に、径内方側面から径外方向に向けて周方向の空気流れと正対するように所定寸法突出された突起が設けられている多翼遠心ファン。
  2.  前記突起は、その回転軸方向の高さが前記環状フランジ部と略同一高さとされている請求項1に記載の多翼遠心ファン。
  3.  前記突起は、前記スクロールケーシングの回転軸方向に拡張されている前記軸方向拡張部内の空気流路の内周壁の一部を該空気流路の内側に突出することにより、該スクロールケーシングのロワーケーシングと一体に成形されている請求項1または2に記載の多翼遠心ファン。
  4.  前記スクロールケーシングには、前記吹出し口領域の前記舌部近傍からディフューザ部出口にかけて、該ディフューザ部壁面上に空気流れ方向に沿う複数条のリブ状突起が突設されている請求項1ないし3のいずれかに記載の多翼遠心ファン。
  5.  前記リブ状突起は、前記スクロールケーシングの前記ディフューザ部壁面に一体に成形されている請求項4に記載の多翼遠心ファン。
  6.  舌部を基点として渦巻き状に形成されたスクロールケーシング内に、多数のブレードを有する羽根車が回転自在に設けられている多翼遠心ファンであって、
     前記スクロールケーシングは、その下面の前記羽根車を支持する環状フランジ部の径外方側に回転軸方向に拡張された空気流路を形成する軸方向拡張部を備え、
     前記軸方向拡張部の前記スクロールケーシングの巻き終り部位より下流側の吹出し口領域のディフューザ部壁面上の中央部よりも内周側位置に、空気流の乱れや渦の発生および二次流れを同時に制御する空気流れ方向に沿うサブブレードが設けられている多翼遠心ファン。
  7.  前記サブブレードの上端は、前記スクロールケーシングの前記環状フランジ部と略同一高さとされ、その上流端側から下流端側まで略同じ高さにキープされている請求項6に記載の多翼遠心ファン。
  8.  前記サブブレードは、前記スクロールケーシングの巻き終り部位より下流側の前記吹出し口領域における前記ディフューザ部壁面上に一体に成形されている請求項6または7に記載の多翼遠心ファン。
  9.  舌部を基点として渦巻き状に形成されたスクロールケーシング内に、多数のブレードを有する羽根車が回転自在に設けられている多翼遠心ファンであって、
     前記スクロールケーシングは、その下面の前記羽根車を支持する環状フランジ部の径外方側に回転軸方向に拡張された空気流路を形成する軸方向拡張部を備え、
     前記軸方向拡張部の前記スクロールケーシングの巻き終り部位より下流側の吹出し口領域の舌部近傍に、該舌部の上流側からその吹出し口領域の内周側面にかけて回転軸方向高さが漸次高くされた渦制御板が設けられている多翼遠心ファン。
  10.  前記渦制御板は、前記スクロールケーシング下面の前記環状フランジ部よりも上方部位まで延設されている請求項9に記載の多翼遠心ファン。
  11.  前記渦制御板が設けられている前記吹出し口領域の内周側面と対向する外周側面に、前記舌部近傍からディフューザ部の出口にかけて、該ディフューザ部での二次流れを制御する二次流れ制御板が設けられている請求項9または10に記載の多翼遠心ファン。
  12.  前記二次流れ制御板は、その上端の高さが上流端側から下流端側まで略同一高さとされている請求項11に記載の多翼遠心ファン。
  13.  前記渦制御板および前記二次流れ制御板は、前記スクロールケーシングのロワーケーシングに一体に成形されている請求項9ないし12のいずれかに記載の多翼遠心ファン。
  14.  空気送風用のファンとして、請求項1ないし13のいずれかに記載の多翼遠心ファンが搭載されている空気調和機。
PCT/JP2010/065977 2009-11-09 2010-09-15 多翼遠心ファンおよびそれを用いた空気調和機 WO2011055594A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/318,957 US9011092B2 (en) 2009-11-09 2010-09-15 Multi-blade centrifugal fan and air conditioner employing the same
EP10828154.4A EP2500582A4 (en) 2009-11-09 2010-09-15 Multiblade centrifugal fan and air conditioner using same
US14/660,456 US9644631B2 (en) 2009-11-09 2015-03-17 Multi-blade centrifugal fan and air conditioner employing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-256075 2009-11-09
JP2009256075A JP5566663B2 (ja) 2009-11-09 2009-11-09 多翼遠心ファンおよびそれを用いた空気調和機

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/318,957 A-371-Of-International US9011092B2 (en) 2009-11-09 2010-09-15 Multi-blade centrifugal fan and air conditioner employing the same
US14/660,456 Division US9644631B2 (en) 2009-11-09 2015-03-17 Multi-blade centrifugal fan and air conditioner employing the same

Publications (1)

Publication Number Publication Date
WO2011055594A1 true WO2011055594A1 (ja) 2011-05-12

Family

ID=43969834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065977 WO2011055594A1 (ja) 2009-11-09 2010-09-15 多翼遠心ファンおよびそれを用いた空気調和機

Country Status (4)

Country Link
US (2) US9011092B2 (ja)
EP (1) EP2500582A4 (ja)
JP (1) JP5566663B2 (ja)
WO (1) WO2011055594A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120195747A1 (en) * 2011-01-27 2012-08-02 Minebea Co., Ltd. Centrifugal fan
CN103547808A (zh) * 2011-06-10 2014-01-29 三菱重工汽车空调系统株式会社 离心式鼓风机及具备该离心式鼓风机的车辆用空气调和机
CN103758788A (zh) * 2014-01-17 2014-04-30 南方风机股份有限公司 增压节能式离心风机
CN104169831A (zh) * 2012-03-15 2014-11-26 谷歌公司 主动冷却风扇

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751229B1 (fr) * 1996-07-19 1998-11-27 Rhone Merieux Formule de vaccin polynucleotidique notamment contre la pathologie respiratoire des bovins
JP5359458B2 (ja) * 2009-03-27 2013-12-04 ダイキン工業株式会社 空気調和装置、ケーシング、および化粧パネル
JP5832804B2 (ja) * 2011-07-25 2015-12-16 ミネベア株式会社 遠心式ファン
US10914316B1 (en) * 2011-08-23 2021-02-09 Climatecraft, Inc. Plenum fan
TW201319407A (zh) * 2011-11-09 2013-05-16 Delta Electronics Inc 離心式風扇
IN2014CN03317A (ja) * 2011-11-10 2015-07-03 Mitsubishi Electric Corp
KR101695646B1 (ko) * 2013-03-07 2017-01-12 한온시스템 주식회사 차량용 송풍장치
US10323853B2 (en) 2013-07-31 2019-06-18 Broan-Nutone Llc Ventilation system and method
DE102013222207B4 (de) * 2013-10-31 2022-03-03 Mahle International Gmbh Radialgebläse
US9523370B2 (en) * 2014-04-07 2016-12-20 Hanon Systems Blower with curved blades
US9568017B2 (en) * 2014-04-30 2017-02-14 Denso International America, Inc. Quieter centrifugal blower with suppressed BPF tone
PL3047771T3 (pl) * 2015-01-20 2017-09-29 Eurofilters Holding N.V. Robot-odkurzacz
EP3047772B1 (de) * 2015-01-20 2017-01-04 Eurofilters Holding N.V. Staubsaugerroboter
JP6259405B2 (ja) * 2015-02-05 2018-01-10 株式会社ヴァレオジャパン 車両空調装置
JP6561497B2 (ja) * 2015-02-27 2019-08-21 株式会社富士通ゼネラル 空気調和機
JP6583770B2 (ja) * 2015-04-22 2019-10-02 三菱重工サーマルシステムズ株式会社 遠心式送風機
DE112016002180T5 (de) * 2015-05-14 2018-01-25 Denso Corporation Zentrifugalgebläse
DE112017000980T5 (de) * 2016-02-24 2019-02-21 Denso Corporation Radiallüfter
WO2017168650A1 (ja) * 2016-03-30 2017-10-05 三菱重工業株式会社 圧縮機スクロール、および、遠心圧縮機
DE112017003333T5 (de) * 2016-07-01 2019-03-14 Ihi Corporation Radialverdichter
CN106524264A (zh) * 2016-12-27 2017-03-22 广东美的厨房电器制造有限公司 吸油烟机
US10473120B2 (en) 2017-03-09 2019-11-12 Denso International America, Inc. Blower assembly having resonators and resonator assembly
GB2575478A (en) * 2018-07-11 2020-01-15 Dyson Technology Ltd A centrifugal compressor
WO2020032110A1 (ja) * 2018-08-10 2020-02-13 シャープ株式会社 空気調和機
KR102549804B1 (ko) * 2018-08-21 2023-06-29 엘지전자 주식회사 공기조화기
CN109291760B (zh) * 2018-09-12 2020-06-09 珠海格力电器股份有限公司 出风结构及空调
CN109488603A (zh) * 2018-11-29 2019-03-19 长沙佳能通用泵业有限公司 一种多流道导流体式中开多级离心泵
US11480192B2 (en) * 2019-01-04 2022-10-25 Johnson Controls Tyco IP Holdings LLP Cutoff for a blower housing
US11236762B2 (en) * 2019-04-26 2022-02-01 Johnson Controls Technology Company Variable geometry of a housing for a blower assembly
KR20210031183A (ko) * 2019-09-11 2021-03-19 한온시스템 주식회사 차량용 블로워 유닛 및 이를 포함하는 공조장치
CN114483652B (zh) * 2020-10-26 2023-06-16 佛山市顺德区美的洗涤电器制造有限公司 一种蜗壳、风机及烟机
TWI771168B (zh) 2021-08-27 2022-07-11 建準電機工業股份有限公司 散熱風扇
EP4276313A1 (de) * 2022-05-11 2023-11-15 Wilhelm Gronbach GmbH Spiralgehäuse für ein radialgebläse sowie radialgebläse
CN115788957B (zh) * 2022-11-29 2023-05-30 广东顺威精密塑料股份有限公司 一种带涡流发生器的蜗壳及使用其的多翼离心风机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084803U (ja) * 1973-12-07 1975-07-19
JPS6270242U (ja) * 1985-10-16 1987-05-02
JPS6369800U (ja) * 1986-10-27 1988-05-11
JP3785758B2 (ja) * 1997-09-19 2006-06-14 株式会社デンソー 送風ユニット
JP2006275024A (ja) * 2005-03-30 2006-10-12 Calsonic Kansei Corp 送風機
JP2006307830A (ja) * 2005-03-31 2006-11-09 Mitsubishi Heavy Ind Ltd 遠心式送風装置
JP2007205642A (ja) * 2006-02-02 2007-08-16 Max Co Ltd 送風装置
JP2008261274A (ja) * 2007-04-11 2008-10-30 Mitsubishi Heavy Ind Ltd 遠心式送風装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1070337B (ja) * 1959-12-03
US3113593A (en) * 1961-06-01 1963-12-10 Vicard Pierre Georges Devices for minimizing losses in fluid conduits
US3684396A (en) * 1970-05-04 1972-08-15 Hg Ind Inc Centrifugal fan with improved cut off means
JPS59131799A (ja) * 1983-12-19 1984-07-28 Hitachi Ltd 遠心形流体機械のケ−シング
JPH0741917Y2 (ja) * 1988-12-21 1995-09-27 松下精工株式会社 空調機の送風装置
JP3476085B2 (ja) 1992-02-17 2003-12-10 株式会社デンソー 多翼送風ファン
CN1073215C (zh) * 1992-07-11 2001-10-17 株式会社金星社 通风机的蜗壳装置
US5536140A (en) * 1994-09-19 1996-07-16 Ametek, Inc. Furnace blower having sound attenuation
JP3081955B2 (ja) * 1995-08-23 2000-08-28 三洋電機株式会社 空気調和機
JP3622300B2 (ja) 1995-12-05 2005-02-23 株式会社デンソー 遠心送風機
US5997246A (en) * 1998-04-02 1999-12-07 Ford Motor Company Housing for a centrifugal blower
US20030012649A1 (en) * 2001-07-16 2003-01-16 Masaharu Sakai Centrifugal blower
US7883312B2 (en) * 2005-03-31 2011-02-08 Mitsubishi Heavy Industries, Ltd. Centrifugal blower
JP4760410B2 (ja) * 2006-02-02 2011-08-31 マックス株式会社 送風装置
US8313284B2 (en) * 2006-07-21 2012-11-20 Panasonic Corporation Centrifugal fan device and eletronic device having the same
JP4946352B2 (ja) * 2006-10-26 2012-06-06 マックス株式会社 送風装置及び空調装置
DE102008017121A1 (de) * 2008-04-02 2009-10-08 Behr Gmbh & Co. Kg Gebläsegehäuse
CN101676569A (zh) * 2008-09-19 2010-03-24 富准精密工业(深圳)有限公司 散热装置及其所采用的离心风扇

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084803U (ja) * 1973-12-07 1975-07-19
JPS6270242U (ja) * 1985-10-16 1987-05-02
JPS6369800U (ja) * 1986-10-27 1988-05-11
JP3785758B2 (ja) * 1997-09-19 2006-06-14 株式会社デンソー 送風ユニット
JP2006275024A (ja) * 2005-03-30 2006-10-12 Calsonic Kansei Corp 送風機
JP2006307830A (ja) * 2005-03-31 2006-11-09 Mitsubishi Heavy Ind Ltd 遠心式送風装置
JP2007205642A (ja) * 2006-02-02 2007-08-16 Max Co Ltd 送風装置
JP2008261274A (ja) * 2007-04-11 2008-10-30 Mitsubishi Heavy Ind Ltd 遠心式送風装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2500582A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120195747A1 (en) * 2011-01-27 2012-08-02 Minebea Co., Ltd. Centrifugal fan
US9039360B2 (en) * 2011-01-27 2015-05-26 Minebea Co., Ltd. Centrifugal fan
CN103547808A (zh) * 2011-06-10 2014-01-29 三菱重工汽车空调系统株式会社 离心式鼓风机及具备该离心式鼓风机的车辆用空气调和机
CN103547808B (zh) * 2011-06-10 2016-05-04 三菱重工汽车空调系统株式会社 离心式鼓风机及具备该离心式鼓风机的车辆用空气调和机
US9470241B2 (en) 2011-06-10 2016-10-18 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Centrifugal blower and vehicle air conditioner provided with the same
CN104169831A (zh) * 2012-03-15 2014-11-26 谷歌公司 主动冷却风扇
CN103758788A (zh) * 2014-01-17 2014-04-30 南方风机股份有限公司 增压节能式离心风机

Also Published As

Publication number Publication date
US9011092B2 (en) 2015-04-21
US20150192135A1 (en) 2015-07-09
JP5566663B2 (ja) 2014-08-06
US20120211205A1 (en) 2012-08-23
EP2500582A1 (en) 2012-09-19
JP2011099413A (ja) 2011-05-19
US9644631B2 (en) 2017-05-09
EP2500582A4 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP5566663B2 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
JP5645596B2 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
JP6129431B1 (ja) 送風機およびこの送風機を搭載した空気調和装置
JP6073604B2 (ja) 遠心送風機
JP5832804B2 (ja) 遠心式ファン
EP3034885B1 (en) Centrifugal fan and air conditioner provided with the same
WO2009139422A1 (ja) 遠心送風機
JP5728209B2 (ja) 遠心式ファン
JP2007127089A (ja) 遠心送風機及びこれを備えた空気調和装置
WO2018116498A1 (ja) 多翼送風機
JP5769960B2 (ja) 遠心式ファン
JP5682751B2 (ja) 多翼送風機
JP2011149328A (ja) 多翼遠心ファンおよびそれを用いた空気調和機
JP5675298B2 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
JP2009287427A (ja) 遠心送風機
JPH0882299A (ja) 多翼送風機
JP4395539B1 (ja) 多翼遠心ファンおよび車両用空調装置
JP2001032794A (ja) 遠心ファン
JP5291382B2 (ja) 多翼遠心ファン
JP2010242597A (ja) 軸流送風機及び空気調和機
JP6528112B2 (ja) 遠心送風機
JP6760376B2 (ja) 遠心式送風機
JP7466707B2 (ja) 遠心送風機
JP2017160807A (ja) 送風機
WO2019146015A1 (ja) 遠心送風機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010828154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13318957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE