WO2019146015A1 - 遠心送風機 - Google Patents
遠心送風機 Download PDFInfo
- Publication number
- WO2019146015A1 WO2019146015A1 PCT/JP2018/002113 JP2018002113W WO2019146015A1 WO 2019146015 A1 WO2019146015 A1 WO 2019146015A1 JP 2018002113 W JP2018002113 W JP 2018002113W WO 2019146015 A1 WO2019146015 A1 WO 2019146015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impeller
- scroll casing
- centrifugal fan
- tongue
- center
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
Definitions
- the present invention relates to a centrifugal fan provided with a scroll casing.
- the centrifugal fan When collecting the air blown out from the impeller by the scroll casing, the centrifugal fan gradually moves the air flow by gradually expanding the air passage cross-sectional area from the tongue toward the outlet in the rotation direction of the impeller.
- the pressure component is converted to the static pressure component.
- the expansion angle of the scroll casing is made larger, the expansion ratio of the air passage cross-sectional area in the scroll casing also becomes larger, so the conversion from dynamic pressure to static pressure proceeds, and static pressure near the air outlet of the blower. Becomes higher.
- the centrifugal fan disclosed in Patent Document 1 shifts the impeller from the conventional position so that the clearance between the impeller and the scroll casing is minimized within a winding angle of 60 ° to 145 °.
- the centrifugal fan disclosed in Patent Document 1 is disposed by shifting the center of the impeller and the center of the scroll casing, and the positional relationship between the tongue portion and the impeller, which greatly contributes to the air flow performance of the centrifugal fan, is a design value. It will be operated in a different state. Therefore, as the deviation between the center of the impeller and the center of the scroll casing becomes larger, the flow blown out from the impeller is more likely to collide directly with the tongue, and the air flow around the outlet and the tongue is disturbed. Performance may decrease and noise may increase.
- This invention is made in view of the above, Comprising: It aims at obtaining the centrifugal blower which suppressed disorder of the airflow around a blower outlet and a tongue part.
- the present invention provides a drive motor, an impeller rotating around a shaft of the drive motor, an inlet, and an outlet for blowing out an air flow generated by the impeller. And a tongue portion for guiding the air flow generated by the impeller to the air outlet, and a scroll casing for accommodating the impeller.
- the distance from the center of the impeller to the inner wall surface of the scroll casing is the shortest at the closest point, which advances in the rotational direction of the impeller starting from the tongue.
- the scroll casing changes its expansion angle along the rotational direction of the impeller.
- the centrifugal fan according to the present invention has the effect of preventing the air flow from being disturbed around the outlet and the tongue.
- the perspective view of the centrifugal blower which concerns on Embodiment 1 of this invention A perspective view of an impeller of a centrifugal fan according to a first embodiment Sectional drawing of the cross section containing the rotating shaft of the centrifugal blower which concerns on Embodiment 1 Sectional drawing of a cross section perpendicular to the rotating shaft of the centrifugal blower according to the first embodiment
- the figure which shows the relationship of the distance from the tongue part of the inner wall surface of the scroll casing of the centrifugal blower which concerns on Embodiment 1, and the distance from a rotating shaft.
- Sectional drawing of a cross section perpendicular to the rotating shaft of the centrifugal blower according to the first embodiment Sectional drawing of a cross section perpendicular to the rotating shaft of the centrifugal blower according to the first embodiment
- Sectional drawing of a cross section perpendicular to the rotating shaft of the centrifugal blower according to the first embodiment Sectional drawing of a cross section perpendicular to the rotating shaft of the centrifugal blower according to the first embodiment
- centrifugal fan according to an embodiment of the present invention will be described in detail based on the drawings.
- the present invention is not limited by the embodiment.
- FIG. 1 is a perspective view of a centrifugal fan according to Embodiment 1 of the present invention.
- FIG. 2 is a perspective view of an impeller of the centrifugal blower according to the first embodiment.
- FIG. 3 is a cross-sectional view of a cross section including the rotation shaft of the centrifugal blower according to the first embodiment.
- FIG. 4 is a cross-sectional view of a cross section perpendicular to the rotation axis of the centrifugal blower according to the first embodiment.
- FIG. 3 shows a cross section taken along the line III-III in FIG.
- FIG. 4 shows a cross section taken along the line VI-VI in FIG.
- the broken arrows in FIGS. 3 and 4 indicate the flow of air.
- the centrifugal fan 1 includes an impeller 3 that generates an air flow in the centrifugal direction by rotation, a drive motor 2 that rotates the impeller 3, and a scroll casing 4 that houses the impeller 3 and part of the drive motor 2.
- the impeller 3 includes a disk-shaped main plate 5, a plurality of wings 6 arranged at intervals on the outer edge of the main plate 5, and an annular reinforcing ring 7 installed on the outer circumference of the wings 6.
- the impeller 3 is a multi-blade impeller having a plurality of wings 6.
- the scroll casing 4 has a bell mouth 8 whose flow passage cross-sectional area becomes narrower toward the downstream side, a suction port 9 into which air flows in through the bell mouth 8, a blowout port 10 for blowing the air flow generated by the impeller 3 and a scroll casing And a tongue 11 for guiding a part of the air flow swirling in 4 to the outlet 10.
- the air sucked into the centrifugal fan 1 from the suction port 9 is blown out into the scroll casing 4 as the impeller 3 rotates.
- the distribution of the air flow in the scroll casing 4 has a large air volume because the air easily flows in a region where the air passage cross-sectional area in front of the blowout port 10 is wide.
- the air flow is small because air hardly flows in.
- FIG. 5 is a diagram showing the relationship between the distance from the tongue of the inner wall surface of the scroll casing of the centrifugal blower according to Embodiment 1 and the distance from the center of the impeller.
- the distance from the tongue portion 11 of the inner wall surface 41 of the scroll casing 4 is the distance from the tongue portion 11 in the direction along the rotation direction of the impeller 3.
- FIG. 5 also shows the relationship between the distance from the tongue of the inner wall surface of the scroll casing of the centrifugal fan without a reduction portion and the distance from the center of the impeller.
- the distance L from the center O of the impeller 3 to the inner wall surface 41 of the scroll casing 4 is the minimum value L min at the closest point A where the tongue portion 11 is the starting point in the rotational direction of the impeller 3.
- the reduced portion 12 is formed to be From the tongue 11 to the closest point A, the distance L gradually decreases while forming the reduced portion 12. That is, by gradually narrowing the gap between the impeller 3 and the inner wall surface 41 of the scroll casing 4, the flow of entering and recirculating into the scroll casing 4 without going from the tongue portion 11 to the outlet 10 is reduced. .
- the disturbance of the flow around the blower outlet 10 and the tongue part 11 decreases, and the air blowing performance of the centrifugal fan 1 can be improved without reducing the noise performance. Furthermore, since it is possible to reduce the flow of entering into the scroll casing 4 and recirculating while securing a gap between the tongue 11 and the impeller 3, it is possible to reduce the noise of the blade passing noise caused by the rotation of the impeller 3 around the tongue 11. The occurrence can be suppressed.
- the scroll casing 4 of the centrifugal fan 1 has a shape in which the expansion angle is larger on the downstream side than the closest point A.
- the expansion angle of the scroll casing 4 is larger on the downstream side than the closest point A, as shown in FIG. It has become. That is, since the rate at which the air passage cross-sectional area expands on the downstream side of the closest approach point A of the scroll casing 4 is increased, the conversion from dynamic pressure to static pressure is more likely to occur in the scroll casing 4.
- the static pressure around 10 can be increased.
- the vertical dimension H of the centrifugal blower 1 depends on the size of the angle ⁇ , where ⁇ is the angle of the crucible AOB.
- the enlargement end point B is located at a point that has advanced in the rotation direction of the impeller 3 starting from the closest point A.
- the wedge AOB is an angle formed on the side opposite to the tongue 11.
- FIG. 6 is a cross-sectional view of a cross section perpendicular to the rotation axis of the centrifugal blower according to the first embodiment.
- the vertical dimension H of the centrifugal fan 1 is determined by the enlargement angle from the closest point A to the enlargement end point B of the scroll casing 4. In other words, it is possible to contribute all of the vertical dimension H to the enlargement of the enlargement angle from the closest point A of the scroll casing 4 to the enlargement end point B.
- the air passage cross-sectional area in front of the blowout port 10 becomes larger, and the air can more easily flow in the scroll casing 4, so that the air blowing performance can be improved.
- the reduction effect of the air flow performance which occurs when the vertical dimension H of the centrifugal fan 1 is reduced is applied by applying the improvement effect of the air flow performance, the miniaturization of the centrifugal fan 1 is realized without deteriorating the air flow performance. It can also be done.
- FIG. 7 is a cross-sectional view of a cross section perpendicular to the rotation axis of the centrifugal blower according to the first embodiment.
- the vertical dimension H of the centrifugal fan 1 is a point at which the vertical line passing through the expansion end point B intersects the scroll casing 4 on the opposite side to the expansion end point B This is the vertical distance between C and the enlargement end point B.
- a point at which a vertical line passing through the enlargement end point B intersects the scroll casing 4 on the opposite side to the enlargement end point B is located between the tongue 11 of the scroll casing 4 and the closest point A.
- the gap between the impeller 3 and the scroll casing 4 is reduced from the tongue 11 to the outlet 10 from the tongue 11 to the closest point A of the scroll casing 4. The flow recirculating into the scroll casing 4 is reduced.
- the region between the tongue 11 and the closest point A is a region where the air passage area is narrow and the suction flow is weak, and in the case of ⁇ ⁇ 180 °, the region where the suction flow is weak is too wide. There is a risk of lowering
- FIG. 8 is a cross-sectional view of a cross section perpendicular to the rotation axis of the centrifugal blower according to the first embodiment.
- the closest point A of the scroll casing 4 exists near the tongue portion 11, and the inner wall surface 41 of the scroll casing 4 includes the impeller 3 and the scroll casing
- the shape of the gap with 4 narrows sharply. Therefore, turbulence in the flow in the scroll casing 4 is likely to occur, which may adversely affect the flow around the air outlet 10 and the tongue 11.
- FIG. 9 shows the improvement of the maximum fan efficiency and the angle formed by the center of the impeller of the centrifugal blower according to Embodiment 1 and the closest point of the inner wall surface of the scroll casing and the enlargement end point of the scroll casing It is a figure which shows a relation. From the relationship between the angle ⁇ and the improvement amount ⁇ of the maximum fan efficiency ⁇ of the centrifugal fan 1, it is understood that the reduced portion 12 of the scroll casing 4 may be formed in the range where the angle ⁇ is 180 ° ⁇ ⁇ ⁇ 240 °.
- FIG. 10 is a diagram showing the relationship between the distance from the tongue of the inner wall surface of the scroll casing of the centrifugal blower according to Embodiment 1 and the distance from the center of the impeller.
- the distance L has the minimum value L min at the closest point A by arranging the reduction portion 12 in the scroll casing 4, and the distance toward the enlargement end point B
- the expansion angle may be changed in multiple steps so that L is increased. By changing the expansion angle to a plurality of steps, the air blowing performance can be improved without increasing the size of the centrifugal fan 1.
- FIG. 11 is a cross-sectional view of the centrifugal fan according to the first embodiment, taken along the rotation axis. As shown in FIG. 11, the wall surface of the scroll casing 4 around the reduction portion 12 is inclined in the direction of the rotation axis to reduce the generation of the blade passing sound accompanying the rotation of the impeller 3 around the reduction portion 12. It is also good.
- FIG. 12 is a cross-sectional view of a cross section perpendicular to the rotation axis of the centrifugal blower according to the first embodiment.
- the centrifugal fan 1 is mounted and used in the housing of an apparatus such as an air conditioner, as shown in FIG. 12, in order to reduce the vertical dimension of the centrifugal fan 1 to H ', Some may be reduced or the blowing direction may be changed.
- the point at which the expansion of the scroll casing 4 originally ends is a virtual point
- the expansion end point B at which the expansion of the distance between the center O of the impeller 3 and the inner wall surface 41 of the scroll casing 4 actually ends It becomes difficult to quantify ⁇ AOB because it becomes a point according to the condition.
- the closest point A of the scroll casing 4 is not provided near the tongue 11 as described above. It is desirable to increase the expansion angle from A to the expansion end point B. Therefore, the centrifugal fan 1 is viewed from the side opposite to the drive motor 2, and it is considered that the center of the impeller 3 is disposed at the origin and the outlet 10 and the tongue 11 of the centrifugal fan 1 are disposed in the first quadrant.
- the closest point A of the scroll casing 4 where the distance to the inner wall surface 41 of the scroll casing 4 is minimum is the fourth quadrant It is good to form scroll casing 4 so that it may fit inside.
- FIG. 13 and FIG. 14 are diagrams showing air blowing characteristics of the centrifugal fan according to the first embodiment.
- FIG. 15 is a diagram showing fan efficiency of the centrifugal blower according to the first embodiment.
- FIG. 14 and FIG. 15 show the air flow characteristics or the fan efficiency of the centrifugal fan provided with the scroll casing having a constant expansion angle under the condition that the vertical dimension H is made the same.
- the centrifugal fan 1 according to the first embodiment is improved in pressure characteristics with respect to the centrifugal fan having a constant expansion angle, and the effect improvement effect of the fan efficiency +1 pt is obtained at the maximum.
- the centrifugal fan 1 has the inside of the scroll casing 4 from the center O of the impeller 3 at the closest point A in the scroll casing 4 which has advanced in the rotational direction of the impeller 3 from the tongue 11.
- the reduction portion 12 is formed in the scroll casing 4 such that the distance L to the wall surface 41 becomes the minimum value L min .
- the scroll casing 4 is provided with the reduction portion 12 to reduce the flow of recirculation from the tongue 11 into the scroll casing 4 without going to the outlet 10, and the flow around the outlet 10 and the tongue 11 As a result, the air blowing performance of the centrifugal fan 1 can be expected to be improved without deteriorating the noise performance.
- the expansion angle of the scroll casing 4 is changed on the downstream side of the closest approach point A in the scroll casing 4, and the center O of the impeller 3 and the inner wall surface 41 of the scroll casing 4 It is configured to take a large value of the enlargement angle to the enlargement end point B where the enlargement of the distance ends.
- the ratio at which the air passage cross-sectional area in the scroll casing 4 is expanded is larger than in the case where the expansion angle is constant, so the conversion from dynamic pressure to static pressure proceeds, and the centrifugal fan 1
- the static pressure is higher near the air outlet 10 of
- the start point of the expansion of the distance between the center of the impeller and the inner wall surface of the scroll casing is the tongue, while in the centrifugal fan 1 according to the first embodiment, The starting point of the expansion of the distance between the center and the inner wall surface of the scroll casing is the closest point A in the scroll casing 4.
- Embodiment 1 explained the case where the present invention was applied to the multi-blade fan using a multi-blade impeller, the present invention is applicable to the whole centrifugal fan provided with a scroll casing. Moreover, in said Embodiment 1, although the case where this invention was applied to the centrifugal fan of a single suction type was demonstrated, this invention is applicable also to the centrifugal fan of a double suction type. Moreover, in said Embodiment 1, although the case where this invention was applied to the air blower for ventilation and air conditioning application was demonstrated, this invention is applicable also to apparatuses other than the air blower for ventilation or air conditioning.
- the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
- Reference Signs List 1 centrifugal fan, 2 drive motor, 3 impeller, 4 scroll casing, 5 main plate, 6 wings, 7 reinforcing ring, 8 bell mouth, 9 suction port, 10 air outlet, 11 tongue portion, 12 reduced portion, 41 inner wall surface.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
駆動モータ(2)と、駆動モータ(2)のシャフトを中心に回転する羽根車(3)と、吸込口(9)と、羽根車(3)が発生させた気流を吹き出す吹出口と、羽根車(3)が発生させた気流を吹出口に導く舌部とを備え、羽根車(3)を収容するスクロールケーシング(4)とを有する遠心送風機(1)であって、羽根車(3)の中心からスクロールケーシング(4)の内壁面(41)までの距離は、舌部を基点に羽根車(3)の回転方向へ進んだ最接近点において最短となり、スクロールケーシング(4)は、羽根車(3)の回転方向に沿って拡大角が変化する。
Description
本発明は、スクロールケーシングを備えた遠心送風機に関する。
遠心送風機は、羽根車から吹き出された空気をスクロールケーシングにて回収する際に、羽根車の回転方向へ舌部から吹出口に向かって風路断面積を徐々に拡大させることで、気流の動圧成分を静圧成分へと変換させている。ここで、スクロールケーシングの拡大角をより大きくすると、スクロールケーシング内の風路断面積の拡大率も合わせて大きくなるため、動圧から静圧への変換が進み、送風機の吹出口付近では静圧が高くなる。
一方、スクロールケーシングの拡大角を大きくすると、送風機本体の大型化を招くだけでなく、送風機の吹出口も大型化する。送風機の吹出口に角ダクトに例示される配管部材を取り付ける際に、送風機の吹出口と配管部材の口径とでサイズが大きく異なると、吹出口と配管部材との間で絞り部が生じることで、圧力損失の上昇に繋がり、送風性能が低下してしまう。したがって、送風機の吹出口のサイズを大きくしすぎることが無いように、スクロールケーシングの拡大角を目的に合わせて調節し、送風性能の向上及び騒音の低下を実現することが求められている。
特許文献1に開示される遠心送風機は、羽根車とスクロールケーシングとの隙間が、巻き角度60°から145°内において最小となるように、従来の位置から羽根車をずらしている。
特許文献1に開示される遠心送風機は、羽根車の中心とスクロールケーシングの中心とをずらして配置しており、遠心送風機の送風性能に大きく寄与する舌部と羽根車との位置関係が設計値と異なった状態で運転されることになる。そのため、羽根車の中心とスクロールケーシングの中心とのずれが大きくなるほど、羽根車から吹き出された流れが直接舌部に衝突しやすくなり、吹出口及び舌部のまわりの気流が乱れることで、送風性能が低下し騒音が増大する恐れがある。
本発明は、上記に鑑みてなされたものであって、吹出口及び舌部の周りでの気流の乱れを抑えた遠心送風機を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、駆動モータと、駆動モータのシャフトを中心に回転する羽根車と、吸込口と、羽根車が発生させた気流を吹き出す吹出口と、羽根車が発生させた気流を吹出口に導く舌部とを備え、羽根車を収容するスクロールケーシングとを有する遠心送風機である。羽根車の中心からスクロールケーシングの内壁面までの距離は、舌部を基点に羽根車の回転方向へ進んだ最接近点において最短となる。スクロールケーシングは、羽根車の回転方向に沿って拡大角が変化する。
本発明に係る遠心送風機は、吹出口及び舌部のまわりで気流が乱れることを防止できるという効果を奏する。
以下に、本発明の実施の形態に係る遠心送風機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係る遠心送風機の斜視図である。図2は、実施の形態1に係る遠心送風機の羽根車の斜視図である。図3は、実施の形態1に係る遠心送風機の回転軸を含む断面の断面図である。図4は、実施の形態1に係る遠心送風機の回転軸に垂直な断面の断面図である。図3は、図4中のIII-III線に沿った断面を示している。図4は、図3中のVI-VI線に沿った断面を示している。図3及び図4中の破線の矢印は、空気の流れを示している。遠心送風機1は、回転により遠心方向の気流を発生させる羽根車3と、羽根車3を回転させる駆動モータ2と、羽根車3及び駆動モータ2の一部を収容するスクロールケーシング4とを備える。羽根車3は、円盤状の主板5と、主板5の外縁部に間隔を空けて配列された複数の翼6と、翼6の外周部に設置された環状の補強リング7とを備える。羽根車3は、複数の翼6を有する多翼羽根車である。スクロールケーシング4は、下流側ほど流路断面積が狭くなるベルマウス8と、ベルマウス8を通じて空気が流入する吸込口9と、羽根車3が発生させた気流を吹き出す吹出口10と、スクロールケーシング4内で旋回する気流の一部を吹出口10へ導く舌部11とを備えている。
図1は、本発明の実施の形態1に係る遠心送風機の斜視図である。図2は、実施の形態1に係る遠心送風機の羽根車の斜視図である。図3は、実施の形態1に係る遠心送風機の回転軸を含む断面の断面図である。図4は、実施の形態1に係る遠心送風機の回転軸に垂直な断面の断面図である。図3は、図4中のIII-III線に沿った断面を示している。図4は、図3中のVI-VI線に沿った断面を示している。図3及び図4中の破線の矢印は、空気の流れを示している。遠心送風機1は、回転により遠心方向の気流を発生させる羽根車3と、羽根車3を回転させる駆動モータ2と、羽根車3及び駆動モータ2の一部を収容するスクロールケーシング4とを備える。羽根車3は、円盤状の主板5と、主板5の外縁部に間隔を空けて配列された複数の翼6と、翼6の外周部に設置された環状の補強リング7とを備える。羽根車3は、複数の翼6を有する多翼羽根車である。スクロールケーシング4は、下流側ほど流路断面積が狭くなるベルマウス8と、ベルマウス8を通じて空気が流入する吸込口9と、羽根車3が発生させた気流を吹き出す吹出口10と、スクロールケーシング4内で旋回する気流の一部を吹出口10へ導く舌部11とを備えている。
図3及び図4に示すように、吸込口9から遠心送風機1内に吸い込まれた空気は、羽根車3の回転に伴ってスクロールケーシング4内へ吹き出される。スクロールケーシング4内の空気の流れの分布は、吹出口10の手前の風路断面積が広い領域において、空気が流れやすいために風量が多くなる。一方、舌部11付近の風路断面積が狭い領域では、空気が流れ込みにくいため、風量が少なくなっている。
図5は、実施の形態1に係る遠心送風機のスクロールケーシングの内壁面の舌部からの距離と、羽根車の中心からの距離との関係を示す図である。なお、スクロールケーシング4の内壁面41の舌部11からの距離とは、羽根車3の回転方向に沿う方向での舌部11からの距離である。図5には、縮小部が無い遠心送風機のスクロールケーシングの内壁面の舌部からの距離と、羽根車の中心からの距離との関係も合わせて示している。スクロールケーシング4には、舌部11を起点に羽根車3の回転方向に進んだ最接近点Aにおいて、羽根車3の中心Oからスクロールケーシング4の内壁面41までの距離Lが最小値Lminとなるように縮小部12が形成されている。舌部11から最接近点Aにかけては、縮小部12を形成しつつ距離Lが徐々に短くなる。すなわち、羽根車3とスクロールケーシング4の内壁面41との隙間が徐々に狭まることで、舌部11から吹出口10に向かわずにスクロールケーシング4内へと入り込んで再循環する流れが低減される。
また、縮小部12を設けることで、吹出口10及び舌部11の周辺での流れの乱れが少なくなり、騒音性能を低下させることなく、遠心送風機1の送風性能を向上させることができる。さらに、舌部11と羽根車3との隙間を確保しつつ、スクロールケーシング4内へ入り込んで再循環する流れを低減できるため、舌部11の周囲における羽根車3の回転に伴う羽根通過音の発生を抑制できる。
また、実施の形態1に係る遠心送風機1のスクロールケーシング4は、最接近点Aよりも後流側においては、拡大角が大きくなる形状となっている。羽根車がスクロールケーシングの中央に配置される遠心送風機と比較した場合、最接近点Aよりも後流側ではスクロールケーシング4の拡大角が大きいため、図5に示すように、グラフの傾きが急になっている。すなわち、スクロールケーシング4の最接近点Aよりも後流側において風路断面積が拡大する割合が増大するため、スクロールケーシング4内にて動圧から静圧への変換が生じやすくなり、吹出口10付近における静圧を高めることができる。
羽根車3の中心Oとスクロールケーシング4の内壁面41の最接近点Aと、羽根車3の中心Oとスクロールケーシング4の内壁面41との距離の拡大が終了する拡大終了点Bとによって形成される∠AOBの角度をθとすると、遠心送風機1の縦寸法Hは、角度θの大きさに左右される。拡大終了点Bは、最接近点Aを起点に羽根車3の回転方向へ進んだ箇所に位置する。なお、∠AOBは、舌部11と逆側に形成される角度である。
図6は、実施の形態1に係る遠心送風機の回転軸に垂直な断面の断面図である。図6に示すように、180°<θ<270°の場合、遠心送風機1の縦寸法Hは、スクロールケーシング4の最接近点Aから拡大終了点Bにかけての拡大角によって決まる。言い換えれば、縦寸法Hの全てをスクロールケーシング4の最接近点Aから拡大終了点Bにかけての拡大角を大きくすることに寄与させることができる。よって、吹出口10の手前の風路断面積が広い領域において、風路断面積がより大きくなり、スクロールケーシング4内を空気がさらに流れやすくなるため、送風性能を向上させることができる。また、送風性能の向上効果を応用して、遠心送風機1の縦寸法Hを小さくした際に生じる送風性能の低下分を補えば、送風性能を損なうことなく、遠心送風機1の小型化を実現することもできる。
図7は、実施の形態1に係る遠心送風機の回転軸に垂直な断面の断面図である。図7に示すように、θ<180°の場合、遠心送風機1の縦寸法Hは、拡大終了点Bを通る縦方向の線が、拡大終了点Bとは逆側でスクロールケーシング4と交わる点Cと、拡大終了点Bとの縦方向の距離となる。なお、拡大終了点Bを通る縦方向の線が、拡大終了点Bとは逆側でスクロールケーシング4と交わる点は、スクロールケーシング4の舌部11と最接近点Aとの間に位置する。θ<180°の場合、遠心送風機1の縦寸法Hに制約があると、スクロールケーシング4の最接近点Aから拡大終了点Bにかけての拡大角を大きくしにくくなるため、送風性能を低下させることなく騒音を低減する効果が小さくなる懸念がある。また、実施の形態1に係る遠心送風機1は、スクロールケーシング4の舌部11から最接近点Aにかけて、羽根車3とスクロールケーシング4との隙間を縮めることによって、舌部11から吹出口10に向わずにスクロールケーシング4内へと再循環する流れを低減させている。したがって、舌部11と最接近点Aとの間の領域は風路面積が狭く吸込流れが弱い領域であり、θ<180°の場合、吸込流れが弱い領域を広げ過ぎることになり、送風性能を低下させてしまう恐れがある。
図8は、実施の形態1に係る遠心送風機の回転軸に垂直な断面の断面図である。図8に示すように、θ>270°の場合、スクロールケーシング4の最接近点Aは舌部11の近くに存在することになり、スクロールケーシング4の内壁面41は、羽根車3とスクロールケーシング4との隙間が急激に狭まる形状となる。したがって、スクロールケーシング4内の流れの乱れが生じやすくなり、吹出口10及び舌部11のまわりの流れに悪影響を及ぼす恐れがある。
このように、角度θによってスクロールケーシング4の形状は左右されるため、遠心送風機1の送風性能も角度θの影響を受ける。図9は、実施の形態1に係る遠心送風機の羽根車の中心とスクロールケーシングの内壁面の最接近点と、スクロールケーシングの拡大終了点とによって形成される角度と最大ファン効率の改善量との関係を示す図である。角度θと遠心送風機1の最大ファン効率ηの改善量Δηとの関係から、角度θが180°≦θ≦240°となる範囲内にスクロールケーシング4の縮小部12を形成すると良いことが分かる。ここで、遠心送風機1の最大ファン効率ηは、静圧をP[Pa]、風量をQ[m3/min]、軸出力をW[W]とするとき、η=P・Q/60Wで算出される。
図10は、実施の形態1に係る遠心送風機のスクロールケーシングの内壁面の舌部からの距離と、羽根車の中心からの距離との関係を示す図である。図10に示すように、スクロールケーシング4の形状について、スクロールケーシング4内に縮小部12を配置することで、最接近点Aにおいて距離Lが最小値Lminとなり、拡大終了点Bに向かって距離Lが大きくなるように拡大角を複数段に変化させてもよい。拡大角を複数段に変化させることにより、遠心送風機1を大型化することなく送風性能を向上させることができる。
図11は、実施の形態1に係る遠心送風機の回転軸に沿った断面図である。図11に示すように、縮小部12の周囲のスクロールケーシング4の壁面を回転軸方向に傾斜させることにより、縮小部12の周囲において羽根車3の回転に伴う翼通過音の発生を低減させてもよい。
図12は、実施の形態1に係る遠心送風機の回転軸に垂直な断面の断面図である。遠心送風機1を空気調和機のような装置の筐体内に実装して使用する場合には、図12に示されるように、遠心送風機1の縦寸法をH’に小さくするためにスクロールケーシング4の一部を削減したり、吹出方向を変化させたりすることがある。この場合、本来のスクロールケーシング4の拡大が終了する点は仮想点になり、羽根車3の中心Oとスクロールケーシング4の内壁面41との距離の拡大が実際に終了する拡大終了点Bも実装状態に応じた点になることから、∠AOBを数値化することは難しくなる。ただし、実装時における遠心送風機1の送風性能の向上効果を得るためには、上述したようにスクロールケーシング4の最接近点Aを舌部11付近には設けずに、スクロールケーシング4の最接近点Aから拡大終了点Bにかけての拡大角を大きくすることが望ましい。よって、駆動モータ2と逆側から遠心送風機1を見て、羽根車3の中心が原点に配置され、遠心送風機1の吹出口10及び舌部11が第一象限内に配置されているとみなすとき、スクロールケーシング4の拡大終了点Bが第一象限内又は第二象限内に配置され、スクロールケーシング4の内壁面41までの距離が最小となるスクロールケーシング4の最接近点Aが第四象限内に収まるようにスクロールケーシング4を形成すると良い。
図13及び図14は、実施の形態1に係る遠心送風機の送風特性を示す図である。図15は、実施の形態1に係る遠心送風機のファン効率を示す図である。図13、図14及び図15に示す送風性能及びファン効率は、遠心送風機1が∠AOB=θ=200°のスクロールケーシング4を備える場合の送風性能及びファン効率である。なお、図13、図14及び図15には、拡大角が一定のスクロールケーシングを備えた遠心送風機の送風特性又はファン効率を、縦寸法Hを同じに揃えた条件において合わせて示している。実施の形態1に係る遠心送風機1は、拡大角が一定の遠心送風機に対して圧力特性が向上し、最大でファン効率+1ptの特性向上効果を得られている。
実施の形態1に係る遠心送風機1は、舌部11を基点に羽根車3の回転方向へ進んだスクロールケーシング4内の最接近点Aにて、羽根車3の中心Oからスクロールケーシング4の内壁面41までの距離Lが最小値Lminとなるように縮小部12がスクロールケーシング4内に形成されている。スクロールケーシング4が縮小部12を備えたことで、舌部11から吹出口10に向わずにスクロールケーシング4内へと再循環する流れを低減し、吹出口10及び舌部11のまわりの流れの乱れが少なくなり、騒音性能を悪化させることなく、遠心送風機1の送風性能の向上を期待できる。
スクロールケーシング4の拡大角について、スクロールケーシング4内の最接近点Aよりも後流側において、スクロールケーシング4の拡大角を変化させ、羽根車3の中心Oとスクロールケーシング4の内壁面41との距離の拡大が終了する拡大終了点Bにかけての拡大角の値を大きく採るように構成する。この構造とすることで、スクロールケーシング4内の風路断面積が拡大する比率は、拡大角が一定の場合と比較して大きくなるため、動圧から静圧への変換が進み、遠心送風機1の吹出口10付近において静圧がより高くなる。さらに、拡大角が一定の遠心送風機では羽根車の中心とスクロールケーシングの内壁面との距離の拡大の始点は舌部であるのに対し、実施の形態1に係る遠心送風機1では、羽根車の中心とスクロールケーシングの内壁面との距離の拡大の始点はスクロールケーシング4内の最接近点Aとなる。したがって、羽根車3の中心Oとスクロールケーシング4の内壁面41との距離の拡大が終了する拡大終了点Bにかけての拡大角の値を大きく採りつつも、遠心送風機1全体の大型化を招くことなく、遠心送風機1の送風騒音性能の向上を期待できる。
上記の実施の形態1においては、多翼羽根車を用いた多翼送風機へ本発明を適用した場合について説明したが、本発明はスクロールケーシングを備えた遠心送風機全般に適用可能である。また、上記の実施の形態1においては、片吸込式の遠心送風機へ本発明を適用した場合について説明したが、本発明は、両吸込式の遠心送風機にも適用可能である。また、上記の実施の形態1においては、換気及び空調用途の送風機に本発明を適用した場合について説明したが、本発明は、換気又は空調用の送風機以外の機器にも適用可能である。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 遠心送風機、2 駆動モータ、3 羽根車、4 スクロールケーシング、5 主板、6 翼、7 補強リング、8 ベルマウス、9 吸込口、10 吹出口、11 舌部、12 縮小部、41 内壁面。
Claims (4)
- 駆動モータと、
前記駆動モータのシャフトを中心に回転する羽根車と、
吸込口と、前記羽根車が発生させた気流を吹き出す吹出口と、前記羽根車が発生させた気流を前記吹出口に導く舌部とを備え、前記羽根車を収容するスクロールケーシングとを有する遠心送風機であって、
前記羽根車の中心から前記スクロールケーシングの内壁面までの距離は、前記舌部を基点に前記羽根車の回転方向へ進んだ最接近点において最短となり、
前記スクロールケーシングは、前記羽根車の回転方向に沿って拡大角が変化することを特徴とする遠心送風機。 - 前記舌部から前記最接近点にかけて、前記羽根車の中心から前記スクロールケーシングの内壁面までの距離が前記羽根車の回転方向に沿って減少していき、
前記最接近点を起点に前記羽根車の回転方向へ進んだ箇所に位置し、前記羽根車の中心と前記スクロールケーシングの内壁面との距離の拡大が終了する拡大終了点にかけて、前記羽根車の中心から前記スクロールケーシングの内壁面までの距離が増大することを特徴とする請求項1に記載の遠心送風機。 - 前記最接近点と、前記羽根車の中心と、前記拡大終了点とによって形成される角度θは、180°≦θ≦240°であることを特徴とする請求項1又は2に記載の遠心送風機。
- 前記シャフトの軸方向に沿って前記駆動モータと逆側から前記スクロールケーシングを見た視点において、前記羽根車の中心を原点に配置し、前記吹出口及び前記舌部を第一象限内に配置し、前記拡大終了点を第一象限内又は第二象限内に配置したとき、前記最接近点が第四象限内に配置されることを特徴とする請求項1又は2に記載の遠心送風機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/002113 WO2019146015A1 (ja) | 2018-01-24 | 2018-01-24 | 遠心送風機 |
JP2019567442A JPWO2019146015A1 (ja) | 2018-01-24 | 2018-01-24 | 遠心送風機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/002113 WO2019146015A1 (ja) | 2018-01-24 | 2018-01-24 | 遠心送風機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019146015A1 true WO2019146015A1 (ja) | 2019-08-01 |
Family
ID=67394967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/002113 WO2019146015A1 (ja) | 2018-01-24 | 2018-01-24 | 遠心送風機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2019146015A1 (ja) |
WO (1) | WO2019146015A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021165543A (ja) * | 2020-04-08 | 2021-10-14 | 日本電産サーボ株式会社 | ケーシング及び遠心ファン |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5377326A (en) * | 1976-12-20 | 1978-07-08 | Isao Yamamoto | Joint of lining or coating steel pipe |
JPS63100300A (ja) * | 1986-10-16 | 1988-05-02 | Matsushita Seiko Co Ltd | 送風機 |
JPS63152580A (ja) * | 1986-12-04 | 1988-06-25 | 日本電気株式会社 | 半導体装置収納用トレ− |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4948208U (ja) * | 1972-07-31 | 1974-04-26 | ||
JPS54179514U (ja) * | 1978-06-08 | 1979-12-19 | ||
JPH0274599U (ja) * | 1988-11-25 | 1990-06-07 | ||
JP3404858B2 (ja) * | 1994-02-07 | 2003-05-12 | 株式会社デンソー | 遠心多翼送風機 |
JP2017180187A (ja) * | 2016-03-29 | 2017-10-05 | 株式会社ケーヒン | 車両用遠心送風機 |
-
2018
- 2018-01-24 WO PCT/JP2018/002113 patent/WO2019146015A1/ja active Application Filing
- 2018-01-24 JP JP2019567442A patent/JPWO2019146015A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5377326A (en) * | 1976-12-20 | 1978-07-08 | Isao Yamamoto | Joint of lining or coating steel pipe |
JPS63100300A (ja) * | 1986-10-16 | 1988-05-02 | Matsushita Seiko Co Ltd | 送風機 |
JPS63152580A (ja) * | 1986-12-04 | 1988-06-25 | 日本電気株式会社 | 半導体装置収納用トレ− |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021165543A (ja) * | 2020-04-08 | 2021-10-14 | 日本電産サーボ株式会社 | ケーシング及び遠心ファン |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019146015A1 (ja) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2233847B1 (en) | Air conditioner | |
JP3698150B2 (ja) | 遠心送風機 | |
JP5566663B2 (ja) | 多翼遠心ファンおよびそれを用いた空気調和機 | |
JP5303877B2 (ja) | 遠心送風機 | |
JP2007127089A (ja) | 遠心送風機及びこれを備えた空気調和装置 | |
CN107850083B (zh) | 送风机和搭载有该送风机的空调装置 | |
WO2014034950A1 (ja) | 遠心送風機 | |
US9816524B2 (en) | Centrifugal compressor | |
WO2009130954A1 (ja) | 送風機およびこの送風機を用いたヒートポンプ装置 | |
WO2016139732A1 (ja) | シロッコファン及びこのシロッコファンを用いた空気調和機の室内機 | |
US9702373B2 (en) | Single suction type centrifugal fan | |
WO2016071948A1 (ja) | プロペラファン、プロペラファン装置および空気調和装置用室外機 | |
WO2014034951A1 (ja) | 遠心送風機 | |
WO2018116498A1 (ja) | 多翼送風機 | |
JP2010124534A (ja) | 電動機用斜流ファンと該斜流ファンを備えた電動機 | |
JP2006002691A (ja) | 送風機 | |
JP2010133297A (ja) | 遠心送風機 | |
JP2009287427A (ja) | 遠心送風機 | |
JP2009062953A (ja) | 多翼羽根車および多翼送風機 | |
WO2019146015A1 (ja) | 遠心送風機 | |
JP5024349B2 (ja) | 送風機及びこれを用いた空気調和機並びに空気清浄機 | |
JP2009275524A (ja) | 軸流送風機 | |
JP2005351141A (ja) | 送風機 | |
JP2006125229A (ja) | シロッコファン | |
JP2011052673A (ja) | シロッコファン及びこのシロッコファンを用いた空気調和機の室内機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18901874 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019567442 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18901874 Country of ref document: EP Kind code of ref document: A1 |