WO2011052632A1 - リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池 - Google Patents
リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池 Download PDFInfo
- Publication number
- WO2011052632A1 WO2011052632A1 PCT/JP2010/069055 JP2010069055W WO2011052632A1 WO 2011052632 A1 WO2011052632 A1 WO 2011052632A1 JP 2010069055 W JP2010069055 W JP 2010069055W WO 2011052632 A1 WO2011052632 A1 WO 2011052632A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- secondary battery
- lithium secondary
- electrode active
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/08—Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
- C01B35/10—Compounds containing boron and oxygen
- C01B35/1027—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/08—Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
- C01B35/10—Compounds containing boron and oxygen
- C01B35/12—Borates
- C01B35/121—Borates of alkali metal
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/08—Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
- C01B35/14—Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
- C01B35/143—Phosphates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a Li 3 V 2 (PO 4 ) 3 -based compound that can be used as a positive electrode active material for a lithium secondary battery, and a lithium secondary battery using the same.
- non-aqueous electrolyte secondary batteries represented by lithium secondary batteries with high energy density, low self-discharge and good cycle characteristics as power sources for portable devices such as mobile phones and notebook computers and electric vehicles
- the current mainstream of lithium secondary batteries is for consumer use, mainly for mobile phones of 2 Ah or less.
- Many positive electrode active materials for lithium secondary batteries have been proposed.
- the most commonly known positive electrode active materials are lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide whose operating voltage is around 4V. object is a (LiNiO 2), or lithium manganese oxide having a spinel structure lithium-containing transition metal oxide to basic configuration (LiMn 2 O 4) or the like.
- lithium cobalt oxide is widely adopted as a positive electrode active material for small-capacity lithium secondary batteries up to a battery capacity of 2 Ah because of its excellent charge / discharge characteristics and energy density.
- M a N b X c (1)
- M represents one selected from H, Li, Na, Mg, Al, K, and Ca; And a transition metal, at least one selected from Al and Cu, X represents a polyanion, a represents 0 to 5, b represents 1 to 2, and c represents 1 to 3.
- Patent Document 2 “in the formula (1), X is SiO 4 , PO 4 , SO 4 , MoO 4 , WO 4 , It is preferably at least one polyanion selected from BO 4 and BO 3, more preferably PO 4 and MoO 4 ”(paragraph [0023]), which is exemplified in the specification.
- positive electrode active materials examples include “LiFePO 4 , LiCoPO 4, LiNa 2. PO 4 , Li 3 V 2 (PO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , LiVPO 4 F, NaVPO 4 F, etc. ”(paragraph [0024]), and examples include“ Li 3 V 2 (PO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , LiVPO 4 F ”(paragraph [0046] Table 1) is shown, and the PO of Li 3 V 2 (PO 4 ) 3 Replacing part of 4 with BO 3 is not shown.
- Patent Document 2 has “an object is to provide a secondary battery using a liquid electrolyte having excellent storage characteristics” (paragraph [0007]), and “so-called NASICON structure as an active material at the same time.
- a material with a material of the positive electrode and the negative electrode was found to be able to provide a secondary battery using an ionic liquid is excellent in storage characteristics and safety with electrolyte "(paragraph [0008]), but those, Li 3 It has not been suggested that the storage characteristics are improved by substituting a part of PO 4 of V 2 (PO 4 ) 3 with BO 3 .
- the electrode active compound described in the above is “lithium insertion compound or sodium insertion compound such as LiFePO 4 , LiFeBO 3 or NaFeBO 3 ” (Claim 6), and Li 3 V 2 (PO 4 ) 3 , Li An electrode active compound in which a part of PO 4 of 3 V 2 (PO 4 ) 3 is substituted with BO 3 is not described at all.
- composition formula Li 1 + a FeP 1-x M x O 4-b (M: one or more elements selected from trivalent elements, 0 ⁇ x ⁇ 1, 0 ⁇ a ⁇ 2x, 0 ⁇ b ⁇ x”) Where x, a, and b are selected so that the compound represented by the compositional formula maintains electrical neutrality), and a positive electrode active material, lithium and other alkali metals or ions thereof
- a material that can be reversibly inserted / desorbed or occluded / released is used as a negative electrode active material, and a material that is chemically stable with respect to the positive electrode active material and the negative electrode active material and that can move for the electrochemical reaction of the ions.
- Patent Document 4 The invention of a non-aqueous electrolyte secondary battery characterized in that it is an electrolyte substance (see Patent Document 4) is known, and Patent Document 4 states that “the compound M is one or more of B and Al”.
- As a positive electrode active material ”(Claim 2). By replacing a part of PO 4 in LiFePO 4 in BO 3, the discharge capacity is also shown to increase (paragraph [0040] Table 1), Li 3 V 2 (PO 4) 3 of the PO There is no suggestion of substituting a part of 4 with BO 3 , and no preservation performance is suggested.
- Patent Document 6 describes that the charge capacity and cycle life of a cathode material of a battery having a lithium metal polyanion powder is improved, and “a lithium metal polyanion powder is boron, phosphorus, silicon, aluminum, sulfur. , Having a polyanion containing fluorine, chlorine, or a combination thereof ”(Claim 2),“ the polyanion is BO 3 3 ⁇ , PO 4 3 ⁇ , AlO 3 3 ⁇ , AsCl 4 ⁇ , AsO 3 3 ⁇ , It includes “SiO 3 3 ⁇ , SO 4 2 ⁇ , BO 3 ⁇ , AlO 2 ⁇ , SiO 3 2 ⁇ , SO 4 2 ⁇ , or a combination thereof” (claim 3). will only lithium vanadium phosphate powder (example 2) are shown, any no suggestion about what to replace PO 4 3- of the part in BO 3 3-, also the storage performance It has not been suggested even.
- the present invention provides a Li 3 V 2 (PO 4 ) 3 -based lithium secondary battery having a high discharge capacity and excellent storage performance, particularly high-temperature storage performance, as compared with the positive electrode active material shown in the above prior art. It is an object to provide a positive electrode active material for use and a lithium secondary battery using the positive electrode active material.
- the present invention is a positive electrode active material for a lithium secondary battery characterized by having the general formula Li 3 V 2 (PO 4 ) 3-x (BO 3 ) x (0 ⁇ x ⁇ 2 ⁇ 2 ).
- This positive electrode active material is characterized by excellent storage performance by replacing a part of the PO 4 anion of Li 3 V 2 (PO 4 ) 3 with a BO 3 anion.
- the x is preferably 2 ⁇ 7 ⁇ x ⁇ 2 ⁇ 3 .
- the present invention is a positive electrode for a lithium secondary battery including the positive electrode active material, and a lithium secondary battery including the positive electrode, a negative electrode, and a nonaqueous electrolyte.
- the present invention by replacing a part of the PO 4 anion of the Li 3 V 2 (PO 4 ) 3 -based positive electrode active material for a lithium secondary battery with a BO 3 anion, excellent storage performance, particularly high temperature storage is achieved.
- a positive electrode active material for a lithium secondary battery having performance can be provided.
- the present inventors picked up lithium vanadium phosphate Li 3 V 2 (PO 4 ) 3 as a highly safe 4V class positive electrode active material replacing lithium iron phosphate, and substituted a part of its cation or anion.
- the positive electrode active material obtained by substituting a part of the PO 4 anion of Li 3 V 2 (PO 4 ) 3 with a BO 3 anion is Li 3 V 2 (PO 4 ) It was found that the high-temperature storage performance was significantly improved as compared with 3 , and the present invention was reached.
- the positive electrode active material for a lithium secondary battery of the present invention is represented by the general formula Li 3 V 2 (PO 4 ) 3-x (BO 3 ) x , where x is 0 ⁇ x ⁇ 2-2. is there.
- x is 2-2 or less, the high-temperature storage performance is remarkably improved.
- x exceeds 2-2 when stored at high temperature, as shown in a comparative example described later, the discharge capacity before storage becomes small and storage performance deteriorates, which is not preferable.
- the positive electrode active material of the present invention does not exclude those in which a part of V or Li in the above general formula is substituted with a transition metal element other than V, such as Fe, Mn, and Ni.
- the polyanion portion (PO 4 ) is a solid solution of a small amount of other anions such as (WO 4 ), (MoO 4 ), and (SiO 4 ) within a range not impairing the effects of the present invention due to BO 3 substitution. Such a thing may be included in the scope of rights of the present invention.
- the method for synthesizing the polyanionic positive electrode active material according to the present invention is not particularly limited. Specific examples include a solid phase method, a liquid phase method, a sol-gel method, and a hydrothermal method. Basically, the raw material containing the metal elements (Li, V) constituting the active material and the raw material containing the phosphoric acid source and the boric acid source are prepared according to the composition of the active material, and this is fired. Can be obtained. At this time, the composition of the compound actually obtained may slightly vary compared to the composition calculated from the raw material composition ratio.
- the present invention can be carried out without departing from the technical idea or main features thereof, and the scope of the present invention is only that the composition of the product obtained as a result of the production does not exactly match the above composition formula. Needless to say, it should not be construed as not belonging to. In particular, it is known that a part of the lithium source easily volatilizes during firing. For this reason, it is usually performed that a lithium source is charged in an amount larger than an equimolar amount with respect to V as a raw material before firing.
- lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium nitrate (LiNO 3 ), lithium acetate (CH 3 COOLi), or the like is used.
- vanadium pentoxide (V 2 O 5 ) is usually used.
- a low oxidation state vanadium oxide such as V 2 O 3 or ammonium vanadate can also be used.
- the phosphoric acid source ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate and the like can be used, and as the boric acid source, boric acid, anhydrous boric acid (B 2 O 3 ) and the like can be used.
- lithium phosphate (Li 3 PO 4 ), lithium dihydrogen phosphate (LiH 2 PO 4 ), and lithium borate can be used as a phosphoric acid source and a boric acid source containing Li.
- the lithium phosphate transition metal-based positive electrode active material according to the present invention it is important to sufficiently ensure the electron conduction between the particles by carbon or the like in order to sufficiently exhibit the effects of the present invention.
- the method for adhering or coating the carbon on the surface of the positive electrode active material particles is not limited, but for example, it can be obtained by heat-treating the polymer organic material and the positive electrode active material particles.
- the heat treatment temperature needs to be equal to or higher than the temperature at which the polymer organic substance is thermally decomposed, and is preferably equal to or lower than the temperature at which particle growth of the positive electrode active material particles occurs.
- the polymer organic material include sucrose and polyvinyl alcohol.
- a method may be employed in which the positive electrode active material particles are placed in a temperature rising atmosphere and carbon is deposited and vapor phase grown on the surface of the positive electrode active material particles by introducing a gaseous organic material.
- gaseous organic substance monohydric alcohols, such as vaporized methanol, ethanol, isopropanol, butanol, are mentioned.
- organic substances such as citric acid and ascorbic acid may be added to the water bath for the purpose of preventing oxidation.
- the positive electrode active material which is the final product Since carbon derived from the organic matter may adhere or be coated on the surface, it can be used as it is.
- the polyanion-type positive electrode active material is preferably used for a positive electrode for a lithium secondary battery as a powder having an average secondary particle size of 100 ⁇ m or less.
- the particle size is small, the average particle size of the secondary particles is more preferably 0.5 to 20 ⁇ m, and the particle size of the primary particles constituting the secondary particles is preferably 1 to 500 nm.
- the specific surface area of the powder particles is preferably large in order to improve the high rate discharge characteristics of the positive electrode, and preferably 1 to 100 m 2 / g. More preferably, it is 5 to 100 m 2 / g.
- a pulverizer or a classifier can be used.
- a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like can be used.
- wet pulverization in which an organic solvent such as water or alcohol or hexane coexists may be used.
- the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used dry or wet as necessary.
- conductive agent and the binder well-known ones can be used in a well-known prescription.
- the amount of water contained in the positive electrode containing the positive electrode active material of the present invention is smaller, specifically, less than 500 ppm.
- the thickness of the electrode mixture layer is preferably 20 to 500 ⁇ m in view of the energy density of the battery.
- the negative electrode of the battery of the present invention is not limited in any way, but lithium metal, lithium alloy (lithium metal such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy) Alloys), alloys capable of inserting and extracting lithium, carbon materials (eg, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.), metal oxides, lithium metal oxides (Li 4 Ti 5 O 12) Etc.), polyphosphoric acid compounds and the like.
- graphite is preferable as a negative electrode material because it has an operating potential very close to that of metallic lithium and can realize charge and discharge at a high operating voltage.
- artificial graphite and natural graphite are preferable.
- graphite in which the surface of the negative electrode active material particles is modified with amorphous carbon or the like is desirable because it generates less gas during charging.
- the form of the lithium secondary battery is composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is contained in a non-aqueous solvent. Is provided.
- non-aqueous solvent examples include cyclic carbonates such as propylene carbonate and ethylene carbonate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
- cyclic carbonates such as propylene carbonate and ethylene carbonate
- cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone
- chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
- Chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl dig Examples include ethers such as lime; nitriles such as acetonitrile and benzonitrile; dioxolane or a derivative thereof; ethylene sulfide, sulfolane, sultone or a derivative thereof alone or a mixture of two or more thereof. Limited to is not.
- the electrolyte salt examples include ionic compounds such as LiBF 4 and LiPF 6 , and these ionic compounds can be used alone or in admixture of two or more.
- the concentration of the electrolyte salt in the nonaqueous electrolyte is preferably 0.5 mol / l to 5 mol / l, more preferably 1 mol / l to 2.5 mol, in order to reliably obtain a nonaqueous electrolyte battery having high battery characteristics. / L.
- the calcining temperature for pre-firing was 350 ° C.
- the calcining time (the time for maintaining the calcining temperature) was 3 hours
- the main calcining temperature was 850 ° C.
- the calcining time was 6 hours.
- the rate of temperature increase was 5 ° C./minute, and the temperature was naturally cooled.
- a carbonaceous material derived from citric acid is arranged on the surface of the primary particles of Li 3 V 2 (PO 4 ) 3 . This also applies to the following examples and comparative examples. This is designated as active material a1 of the present invention.
- the positive electrode active material, the conductive agent acetylene black and the binder polyvinylidene fluoride (PVdF) are contained in a weight ratio of 82: 10: 8, and N-methyl-2-pyrrolidone (NMP) is used as a solvent.
- NMP N-methyl-2-pyrrolidone
- a positive electrode paste was prepared. The positive electrode paste is applied on both sides of an aluminum mesh current collector to which aluminum terminals are attached, and after removing NMP at 80 ° C., the applied portions are doubled and folded so that the projected area of the applied portion is halved. Then, press working was performed so that the thickness after bending was 400 ⁇ m, to obtain a positive electrode.
- the application area of the active material is 2,25 cm 2 and the application weight is 0.071 g.
- the positive electrode was vacuum-dried at 150 ° C. for 5 hours or longer to remove moisture from the electrode plate.
- a lithium metal foil having a thickness of 300 ⁇ m was attached to both surfaces of a SUS316 mesh current collector to which a SUS316 terminal was attached, and the negative electrode was used as a negative electrode.
- a reference electrode was prepared by attaching a 300 ⁇ m-thick lithium metal foil to a SUS316 current collector rod.
- a glass lithium ion secondary battery was assembled in an Ar box having a dew point of ⁇ 40 ° C. or lower.
- Each of the positive electrode, the negative electrode, and the reference electrode was sandwiched between gold-plated clips whose conductors were previously fixed to the lid portion of the container, and then fixed so that the positive and negative electrodes were opposed to each other.
- the reference electrode was fixed at a position on the back side of the positive electrode when viewed from the negative electrode.
- a polypropylene cup containing a certain amount of electrolyte was placed in a glass container, and a battery was assembled by covering the positive electrode, the negative electrode, and the reference electrode so as to be immersed therein.
- a positive electrode was prepared using each positive electrode active material of Examples 1 to 6 and Comparative Examples 1 to 7, and a lithium secondary battery was assembled according to the above procedure.
- the lithium secondary battery was subjected to a charging / discharging process of charging / discharging two cycles at a temperature of 25 ° C.
- the charging conditions were a constant current / constant voltage charging with a current of 0.9 mA and a voltage of 4.5 V for 15 hours, and the discharging conditions were a constant current discharge with a current of 0.9 mA and a final voltage of 2.7 V.
- the discharge capacity obtained in the second cycle was recorded as “discharge capacity before high-temperature storage (mAh)”.
- the high-temperature storage performance exceeds 70% and the discharge capacity after high-temperature storage exceeds 100 mAh / g. Therefore, it can be seen that the high-temperature storage performance is improved and the discharge capacity is large.
- the high temperature storage performance is 73 to 78%, and the discharge capacity after high temperature storage is also 107 mAh. / G or more, and the high-temperature storage performance is significantly improved.
- x exceeds 1/4 (2 ⁇ 2 )
- the discharge capacity before high-temperature storage decreases and the high-temperature storage performance also decreases, so 0 ⁇ x ⁇ 2 ⁇ 2 is preferable.
- the high-temperature storage performance exceeds 70%
- a part of PO 4 of Li 3 V 2 (PO 4 ) 3 is converted to WO 4 or MoO.
- the high-temperature storage performance exceeds 70% when the replacement amount is 2.1 mol%, but the high-temperature storage performance is high when the replacement amount is 8.3 mol%. because significantly less than 70%, a portion of the Li 3 V 2 (PO 4) 3 of PO 4 only lithium secondary battery was replaced by BO 3 is said to the effect in the range of a specific amount of substitution.
- the lithium secondary battery using the positive electrode active material of the present invention is suitable for applications in fields where high capacity is particularly required in industrial batteries, such as electric vehicles that are expected to be developed in the future.
- the potential is enormous.
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
そこで、最近、高容量でかつ安全性を有する正極活物質としてLi3V2(PO4)3で代表される式量ユニットあたりのリチウム含量の高いリチウム含有リン酸塩物質が提案されている(特許文献1参照)。
LiMP1-xAxO4 式(1)
(上記式中、Mは遷移金属であり、Aは酸化数が+4以下である元素であり、0<X<1である。)で表わされる化合物」(請求項1)を含んでなる電極活性物質(請求項4)が記載され、「前記式中、Mが、Fe,Co,Mn,Ni,V,Cu,及びTiからなる群から選択されてなる少なくとも一種の遷移金属である」(請求項2)こと、「前記式中、Aが、Ti(4+),Al(3+),B(3+),Zr(4+),Sn(4+),V(4+),Pb(4+),及びGe(4+)からなる群から選択されてなる元素である」(請求項3)ことも記載されているが、MをVとし、AをB(3+)とすることについては具体的な記載がなく、また、保存性能についても示唆されていない。
xが2-7≦x≦2-3の範囲では、実施例にあるように、x=0のLi3V2(PO4)3と比較して、高温保存前放電容量はやや小さくなるものの、高温保存性能が顕著に向上するから、高温保存後放電容量が顕著に増大する。
基本的に、活物質を構成する金属元素(Li,V)を含む原料及びリン酸源、ホウ酸源となる原料を目的とする活物質の組成通りに含有する原料を調整し、これを焼成することによって得ることができる。このとき、実際に得られる化合物の組成は、原料の仕込み組成比から計算される組成に比べて若干変動することがある。本発明は、その技術思想又は主要な特徴から逸脱することなく実施することができるものであって、作製の結果得られたものの組成が上記組成式と厳密に一致しないことのみをもって本発明の範囲に属さないものと解釈してはならないことはいうまでもない。特にリチウム源については焼成中に一部が揮発しやすいことが知られている。このため、焼成前の原料としてリチウム源をVに対して等モルよりも多めに仕込んでおくことが通常行われる。
特に、本発明に係るリン酸遷移金属リチウム化合物系の正極活物質においては、本発明の効果を充分に発現させるため、カーボン等により粒子同士の電子伝導を十分に確保することが重要である。
一般式Li3V2(PO4)3-x(BO3)xにおけるx=1/4に相当するLi3V2(PO4)11/4(BO3)1/4の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸(H3BO3)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H3BO3=3.03:2:1.5:11/4:1/4になるように秤量した。これらを記載した順番に精製水に加えて撹拌し、それぞれの原料を加える度に溶解していることを確認した。次に80℃のホットプレート上にて溶媒を除去し、前駆体を得た。これを自動乳鉢でよく粉砕した。この前駆体をアルミナ製の匣鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(デンケン社製卓上真空ガス置換炉KDF-75)を用いて、窒素ガスの流通下(流速1.0l/min)で焼成を行った。仮焼成の焼成温度は350℃とし、焼成時間(前記焼成温度を維持する時間)は3時間、本焼成の焼成温度は850℃とし、焼成時間6時間とした。なお、昇温速度は5℃/分、降温は自然放冷とした。次に、自動乳鉢で1時間粉砕し、二次粒子径を50μm以下とした。この状態において、Li3V2(PO4)3の一次粒子の表面にはクエン酸に由来する炭素質材料が配されている。この点については、以下の実施例、比較例でも同様である。これを本発明活物質a1とする。
一般式Li3V2(PO4)3-x(BO3)xにおけるx=1/8に相当するLi3V2(PO4)23/8(BO3)1/8の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸(H3BO3)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H3BO3=3.03:2:1.5:23/8:1/8になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを本発明活物質a2とする。
一般式Li3V2(PO4)3-x(BO3)xにおけるx=1/16に相当するLi3V2(PO4)47/16(BO3)1/16の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸(H3BO3)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H3BO3=3.03:2:1.5:47/16:1/16になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを本発明活物質a3とする。
一般式Li3V2(PO4)3-x(BO3)xにおけるx=1/32に相当するLi3V2(PO4)95/32(BO3)1/32の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸(H3BO3)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H3BO3=3.03:2:1.5:95/32:1/32になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを本発明活物質a4とする。
一般式Li3V2(PO4)3-x(BO3)xにおけるx=1/64に相当するLi3V2(PO4)191/64(BO3)1/64の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸(H3BO3)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H3BO3=3.03:2:1.5:191/64:1/64になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを本発明活物質a5とする。
一般式Li3V2(PO4)3-x(BO3)xにおけるx=1/128に相当するLi3V2(PO4)383/128(BO3)1/128の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸(H3BO3)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H3BO3=3.03:2:1.5:383/128:1/128になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを本発明活物質a6とする。
一般式Li3V2(PO4)3-x(BO3)xにおけるx=0に相当するLi3V2(PO4)3の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸(H3BO3)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H3BO3=3.03:2:1.5:3:0になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b1とする。
一般式Li3V2(PO4)3-x(BO3)xにおけるx=1/2に相当するLi3V2(PO4)5/2(BO3)1/2の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸(H3BO3)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H3BO3=3.03:2:1.5:5/2:1/2になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b2とする。
一般式Li3V2(PO4)3-x(BO3)xにおけるx=1に相当するLi3V2(PO4)2(BO3)1の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸(H3BO3)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H3BO3=3.03:2:1.5:2:1になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b3とする。
一般式Li3V2(PO4)3-x(WO4)xにおけるx=1/4に相当するLi3V2(PO4)11/4(WO4)1/4の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸の代わりにタングステン酸(H2WO4)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H2WO4=3.03:2:1.5:11/4:1/4になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b4とする。
一般式Li3V2(PO4)3-x(WO4)xにおけるx=1/16に相当するLi3V2(PO4)47/16(WO4)1/16の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸の代わりにタングステン酸(H2WO4)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H2WO4=3.03:2:1.5:47/16:1/16になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b5とする。
一般式Li3V2(PO4)3-x(MoO4)xにおけるx=1/4に相当するLi3V2(PO4)11/4(MoO4)1/4の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸の代わりにモリブデン酸(H2MoO4)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H2MoO4=3.03:2:1.5:11/4:1/4になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b6とする。
一般式Li3V2(PO4)3-x(MoO4)xにおけるx=1/16に相当するLi3V2(PO4)47/16(MoO4)1/16の合成
水酸化リチウム一水和物(LiOH・H2O)と、バナジン酸アンモニウム(NH4VO3)と、クエン酸一水和物と、リン酸二水素アンモニウム(NH4H2PO4)と、ホウ酸の代わりにモリブデン酸(H2MoO4)とをモル比でLiOH・H2O:NH4VO3:クエン酸一水和物:NH4H2PO4:H2MoO4=3.03:2:1.5:47/16:1/16になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b7とする。
前記正極活物質、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVdF)を82:10:8の重量比で含有し、N-メチル-2-ピロリドン(NMP)を溶媒とする正極ペーストを調整した。該正極ペーストをアルミ端子を取り付けたアルミニウムメッシュ集電体上の両面に塗布し、80℃でNMPを除去した後、塗布部分同士が二重に重なり塗布部分の投影面積が半分になるように折り曲げ、折り曲げた後の厚みが400μmになるようにプレス加工を行い、正極とした。活物質の塗布面積は2,25cm2、塗布重量は0.071gである。正極は150℃で5時間以上の真空乾燥を行い、極板中の水分を除去して使用した。
厚さ300μmのリチウム金属箔をSUS316端子を取り付けたSUS316メッシュ集電体の両面に貼り付けてプレス加工したものを負極とした。
厚さ300μmのリチウム金属箔をSUS316集電棒に貼り付けたものを参照極とした。
エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを体積比1:1:1の割合で混合した混合溶媒に、含フッ素系電解質塩であるLiPF6を1.0mol/lの濃度で溶解させ、非水電解質を作製した。該非水電解質中の水分量は50ppm未満とした。
露点-40℃以下のArボックス中においてガラス製のリチウムイオン二次電池を組み立てた。予め容器の蓋部分に導線部を固定した金メッキクリップに正極と負極と参照極とを各1枚ずつ挟んだ後、正・負極が対向するように固定した。参照極は負極から見て正極の裏側となる位置に固定した。次に、一定量の電解液を入れたポリプロピレン製カップをガラス容器内に設置し、そこに正極、負極及び参照極が浸かるように蓋をすることで電池を組み立てた。
まず、上記リチウム二次電池に対して温度25℃において、2サイクルの充放電を行う充放電工程に供した。充電条件は、電流0.9mA、電圧4.5V、15時間の定電流定電圧充電とし、放電条件は、電流0.9mA、終止電圧2.7Vの定電流放電とした。このとき、2サイクル目に得られた放電容量を「高温保存前放電容量(mAh)」として記録した。
しかし、xが1/4(2-2)を超えると、比較例2及び3に示されるように、高温保存前放電容量が低下し、高温保存性能も低下するので、0<x≦2-2とすることが好ましい。
Claims (4)
- 一般式Li3V2(PO4)3-x(BO3)x(0<x≦2-2)であることを特徴とするリチウム二次電池用正極活物質。
- 前記xが、2-7≦x≦2-3であることを特徴とする請求項1に記載のリチウム二次電池用正極活物質。
- 請求項1又は2に記載の正極活物質を含むリチウム二次電池用正極。
- 請求項3記載の正極と、負極と、非水電解質を備えたリチウム二次電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/505,123 US8822080B2 (en) | 2009-11-02 | 2010-10-27 | Positive active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery |
CN201080049401.6A CN102612773B (zh) | 2009-11-02 | 2010-10-27 | 锂二次电池用正极活性物质、锂二次电池用电极和锂二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-251953 | 2009-11-02 | ||
JP2009251953A JP5489063B2 (ja) | 2009-11-02 | 2009-11-02 | リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011052632A1 true WO2011052632A1 (ja) | 2011-05-05 |
Family
ID=43922057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/069055 WO2011052632A1 (ja) | 2009-11-02 | 2010-10-27 | リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8822080B2 (ja) |
JP (1) | JP5489063B2 (ja) |
CN (1) | CN102612773B (ja) |
TW (1) | TWI492443B (ja) |
WO (1) | WO2011052632A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12027710B2 (en) | 2018-02-27 | 2024-07-02 | Tdk Corporation | Active material and all-solid secondary battery |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5637102B2 (ja) * | 2011-09-05 | 2014-12-10 | 昭栄化学工業株式会社 | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池 |
JP5839227B2 (ja) * | 2011-11-10 | 2016-01-06 | トヨタ自動車株式会社 | リチウム二次電池とその製造方法 |
JP6181948B2 (ja) | 2012-03-21 | 2017-08-16 | 株式会社半導体エネルギー研究所 | 蓄電装置及び電気機器 |
JP5888046B2 (ja) * | 2012-03-27 | 2016-03-16 | Tdk株式会社 | 正極活物質、正極及びリチウムイオン二次電池 |
CN102832390A (zh) * | 2012-08-31 | 2012-12-19 | 天津大学 | 锂离子电池正极材料磷酸钒锂的制备方法 |
KR101994260B1 (ko) * | 2012-10-15 | 2019-06-28 | 삼성에스디아이 주식회사 | 양극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지 |
CN103050690A (zh) * | 2012-11-30 | 2013-04-17 | 东莞市翔丰华电池材料有限公司 | 一种锂离子电池正极材料磷酸钒锂的制备方法 |
KR101579251B1 (ko) * | 2014-05-16 | 2015-12-22 | 동국대학교 산학협력단 | 리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지 |
CN105932331A (zh) * | 2016-06-14 | 2016-09-07 | 东莞市联洲知识产权运营管理有限公司 | 一种绿色高容量锂离子二次电池 |
KR101938128B1 (ko) * | 2017-06-20 | 2019-01-14 | 울산대학교 산학협력단 | 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 |
US11251430B2 (en) | 2018-03-05 | 2022-02-15 | The Research Foundation For The State University Of New York | ϵ-VOPO4 cathode for lithium ion batteries |
CN117623260A (zh) * | 2022-08-10 | 2024-03-01 | 比亚迪股份有限公司 | 一种电池材料及其制备方法、应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008506243A (ja) * | 2004-07-16 | 2008-02-28 | エルジー・ケム・リミテッド | リチウム2次電池用電極活性物質 |
JP2008235260A (ja) * | 2007-02-24 | 2008-10-02 | Kyushu Univ | 二次電池 |
JP2009231206A (ja) * | 2008-03-25 | 2009-10-08 | Gs Yuasa Corporation | 非水電解質電池 |
JP2010003593A (ja) * | 2008-06-20 | 2010-01-07 | Gs Yuasa Corporation | リチウム二次電池用活物質及びリチウム二次電池 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4206016A (en) * | 1978-06-19 | 1980-06-03 | E. I. Du Pont De Nemours And Company | Sodium ion conducting sodium borophosphate glass |
US4317874A (en) * | 1980-10-24 | 1982-03-02 | Ray-O-Vac Corporation | Self healing cathodes |
US5871866A (en) | 1996-09-23 | 1999-02-16 | Valence Technology, Inc. | Lithium-containing phosphates, method of preparation, and use thereof |
US6913821B2 (en) * | 1999-03-04 | 2005-07-05 | Honeywell International Inc. | Fluidizing oxidation protection systems |
JP2001256997A (ja) * | 2000-03-13 | 2001-09-21 | Sanyo Electric Co Ltd | リチウム二次電池 |
US6878487B2 (en) * | 2001-09-05 | 2005-04-12 | Samsung Sdi, Co., Ltd. | Active material for battery and method of preparing same |
EP2367224B1 (en) * | 2002-03-25 | 2013-01-09 | Sumitomo Chemical Company, Limited | Method for preparing positive electrode active material for non-aqueous secondary battery |
JP4153288B2 (ja) * | 2002-11-25 | 2008-09-24 | 日本電信電話株式会社 | 非水電解質二次電池 |
US7041239B2 (en) * | 2003-04-03 | 2006-05-09 | Valence Technology, Inc. | Electrodes comprising mixed active particles |
US7294435B2 (en) * | 2003-05-15 | 2007-11-13 | Nichia Corporation | Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
FR2865576B1 (fr) | 2004-01-28 | 2006-04-28 | Commissariat Energie Atomique | Procede de preparation de materiaux composites comprenant un compose actif d'electrode et un compose conducteur electronique tel que le carbone notamment pour accumulateurs au lithium |
WO2005124898A1 (ja) * | 2004-06-16 | 2005-12-29 | Seimi Chemical Co., Ltd. | リチウム二次電池用正極活物質粉末 |
WO2006085588A1 (ja) * | 2005-02-14 | 2006-08-17 | Agc Seimi Chemical Co., Ltd. | リチウム二次電池正極用のリチウム含有複合酸化物の製造方法 |
JP2006339092A (ja) * | 2005-06-06 | 2006-12-14 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池およびその負極 |
US20070160752A1 (en) | 2006-01-09 | 2007-07-12 | Conocophillips Company | Process of making carbon-coated lithium metal phosphate powders |
US7914932B2 (en) * | 2006-02-24 | 2011-03-29 | Ngk Insulators, Ltd. | All-solid-state battery |
US20080213674A1 (en) * | 2007-02-24 | 2008-09-04 | Ngk Insulators, Ltd. | Secondary battery |
JP5035834B2 (ja) * | 2007-02-27 | 2012-09-26 | 国立大学法人東京工業大学 | リチウムマンガン複合酸化物 |
JP4317239B2 (ja) * | 2007-04-27 | 2009-08-19 | Tdk株式会社 | 電極用複合粒子の製造方法 |
-
2009
- 2009-11-02 JP JP2009251953A patent/JP5489063B2/ja not_active Expired - Fee Related
-
2010
- 2010-10-27 WO PCT/JP2010/069055 patent/WO2011052632A1/ja active Application Filing
- 2010-10-27 CN CN201080049401.6A patent/CN102612773B/zh not_active Expired - Fee Related
- 2010-10-27 US US13/505,123 patent/US8822080B2/en not_active Expired - Fee Related
- 2010-11-01 TW TW099137485A patent/TWI492443B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008506243A (ja) * | 2004-07-16 | 2008-02-28 | エルジー・ケム・リミテッド | リチウム2次電池用電極活性物質 |
JP2008235260A (ja) * | 2007-02-24 | 2008-10-02 | Kyushu Univ | 二次電池 |
JP2009231206A (ja) * | 2008-03-25 | 2009-10-08 | Gs Yuasa Corporation | 非水電解質電池 |
JP2010003593A (ja) * | 2008-06-20 | 2010-01-07 | Gs Yuasa Corporation | リチウム二次電池用活物質及びリチウム二次電池 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12027710B2 (en) | 2018-02-27 | 2024-07-02 | Tdk Corporation | Active material and all-solid secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP5489063B2 (ja) | 2014-05-14 |
TWI492443B (zh) | 2015-07-11 |
CN102612773A (zh) | 2012-07-25 |
US20120219862A1 (en) | 2012-08-30 |
JP2011096598A (ja) | 2011-05-12 |
TW201125196A (en) | 2011-07-16 |
US8822080B2 (en) | 2014-09-02 |
CN102612773B (zh) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5489063B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池 | |
JP5381024B2 (ja) | リチウム二次電池用正極及びリチウム二次電池 | |
JP5761617B2 (ja) | 非水電解質二次電池用正極活物質及び非水電解質二次電池 | |
JP5272756B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びに、その製造方法 | |
ES2927465T3 (es) | Materiales cátodos LMFP con rendimiento electroquímico mejorado | |
JP5434720B2 (ja) | 非水電解質二次電池用電極及び非水電解質二次電池 | |
JP5298659B2 (ja) | リチウム二次電池用活物質及びリチウム二次電池 | |
JP5434727B2 (ja) | 非水電解質二次電池用電極及び非水電解質二次電池 | |
US8431271B2 (en) | Positive active material for lithium secondary battery and lithium secondary battery | |
TWI629823B (zh) | Positive electrode mixture and non-aqueous electrolyte battery | |
JP5262318B2 (ja) | リチウム二次電池用正極活物質およびリチウム二次電池。 | |
JP2007502249A (ja) | ホウ素置換されたリチウム挿入化合物、電極の活物質、電池およびエレクトロクロミックデバイス | |
JP5909131B2 (ja) | リチウム二次電池用活物質、それを用いたリチウム二次電池用電極及びリチウム二次電池 | |
JP5604962B2 (ja) | 二次電池用正極活物質及び二次電池 | |
JP5277707B2 (ja) | リチウム二次電池用正極活物質及びリチウム二次電池 | |
JP5055780B2 (ja) | 正極活物質の製造方法およびそれを用いた電池 | |
KR20160060856A (ko) | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 사용한 리튬 이차 전지 | |
JP5445912B2 (ja) | リチウム二次電池用正極活物質及びリチウム二次電池 | |
JP2012054077A (ja) | 二次電池用活物質及び二次電池用活物質の製造方法、並びに、それを用いた二次電池 | |
JP5862172B2 (ja) | 二次電池用活物質及び二次電池用活物質用電極、並びに、それを用いた二次電池 | |
JP5446036B2 (ja) | リチウム二次電池用正極活物質およびリチウム二次電池 | |
JP2013089393A (ja) | 二次電池用活物質及び二次電池用活物質の製造方法 | |
JP5277929B2 (ja) | リチウム二次電池用正極活物質及びリチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080049401.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10826764 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13505123 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10826764 Country of ref document: EP Kind code of ref document: A1 |