WO2011052632A1 - リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池 - Google Patents

リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池 Download PDF

Info

Publication number
WO2011052632A1
WO2011052632A1 PCT/JP2010/069055 JP2010069055W WO2011052632A1 WO 2011052632 A1 WO2011052632 A1 WO 2011052632A1 JP 2010069055 W JP2010069055 W JP 2010069055W WO 2011052632 A1 WO2011052632 A1 WO 2011052632A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
secondary battery
lithium secondary
electrode active
Prior art date
Application number
PCT/JP2010/069055
Other languages
English (en)
French (fr)
Inventor
有希子 藤野
好伸 安永
田渕 徹
稲益 徳雄
温田 敏之
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to US13/505,123 priority Critical patent/US8822080B2/en
Priority to CN201080049401.6A priority patent/CN102612773B/zh
Publication of WO2011052632A1 publication Critical patent/WO2011052632A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/1027Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/121Borates of alkali metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/14Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
    • C01B35/143Phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a Li 3 V 2 (PO 4 ) 3 -based compound that can be used as a positive electrode active material for a lithium secondary battery, and a lithium secondary battery using the same.
  • non-aqueous electrolyte secondary batteries represented by lithium secondary batteries with high energy density, low self-discharge and good cycle characteristics as power sources for portable devices such as mobile phones and notebook computers and electric vehicles
  • the current mainstream of lithium secondary batteries is for consumer use, mainly for mobile phones of 2 Ah or less.
  • Many positive electrode active materials for lithium secondary batteries have been proposed.
  • the most commonly known positive electrode active materials are lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide whose operating voltage is around 4V. object is a (LiNiO 2), or lithium manganese oxide having a spinel structure lithium-containing transition metal oxide to basic configuration (LiMn 2 O 4) or the like.
  • lithium cobalt oxide is widely adopted as a positive electrode active material for small-capacity lithium secondary batteries up to a battery capacity of 2 Ah because of its excellent charge / discharge characteristics and energy density.
  • M a N b X c (1)
  • M represents one selected from H, Li, Na, Mg, Al, K, and Ca; And a transition metal, at least one selected from Al and Cu, X represents a polyanion, a represents 0 to 5, b represents 1 to 2, and c represents 1 to 3.
  • Patent Document 2 “in the formula (1), X is SiO 4 , PO 4 , SO 4 , MoO 4 , WO 4 , It is preferably at least one polyanion selected from BO 4 and BO 3, more preferably PO 4 and MoO 4 ”(paragraph [0023]), which is exemplified in the specification.
  • positive electrode active materials examples include “LiFePO 4 , LiCoPO 4, LiNa 2. PO 4 , Li 3 V 2 (PO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , LiVPO 4 F, NaVPO 4 F, etc. ”(paragraph [0024]), and examples include“ Li 3 V 2 (PO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , LiVPO 4 F ”(paragraph [0046] Table 1) is shown, and the PO of Li 3 V 2 (PO 4 ) 3 Replacing part of 4 with BO 3 is not shown.
  • Patent Document 2 has “an object is to provide a secondary battery using a liquid electrolyte having excellent storage characteristics” (paragraph [0007]), and “so-called NASICON structure as an active material at the same time.
  • a material with a material of the positive electrode and the negative electrode was found to be able to provide a secondary battery using an ionic liquid is excellent in storage characteristics and safety with electrolyte "(paragraph [0008]), but those, Li 3 It has not been suggested that the storage characteristics are improved by substituting a part of PO 4 of V 2 (PO 4 ) 3 with BO 3 .
  • the electrode active compound described in the above is “lithium insertion compound or sodium insertion compound such as LiFePO 4 , LiFeBO 3 or NaFeBO 3 ” (Claim 6), and Li 3 V 2 (PO 4 ) 3 , Li An electrode active compound in which a part of PO 4 of 3 V 2 (PO 4 ) 3 is substituted with BO 3 is not described at all.
  • composition formula Li 1 + a FeP 1-x M x O 4-b (M: one or more elements selected from trivalent elements, 0 ⁇ x ⁇ 1, 0 ⁇ a ⁇ 2x, 0 ⁇ b ⁇ x”) Where x, a, and b are selected so that the compound represented by the compositional formula maintains electrical neutrality), and a positive electrode active material, lithium and other alkali metals or ions thereof
  • a material that can be reversibly inserted / desorbed or occluded / released is used as a negative electrode active material, and a material that is chemically stable with respect to the positive electrode active material and the negative electrode active material and that can move for the electrochemical reaction of the ions.
  • Patent Document 4 The invention of a non-aqueous electrolyte secondary battery characterized in that it is an electrolyte substance (see Patent Document 4) is known, and Patent Document 4 states that “the compound M is one or more of B and Al”.
  • As a positive electrode active material ”(Claim 2). By replacing a part of PO 4 in LiFePO 4 in BO 3, the discharge capacity is also shown to increase (paragraph [0040] Table 1), Li 3 V 2 (PO 4) 3 of the PO There is no suggestion of substituting a part of 4 with BO 3 , and no preservation performance is suggested.
  • Patent Document 6 describes that the charge capacity and cycle life of a cathode material of a battery having a lithium metal polyanion powder is improved, and “a lithium metal polyanion powder is boron, phosphorus, silicon, aluminum, sulfur. , Having a polyanion containing fluorine, chlorine, or a combination thereof ”(Claim 2),“ the polyanion is BO 3 3 ⁇ , PO 4 3 ⁇ , AlO 3 3 ⁇ , AsCl 4 ⁇ , AsO 3 3 ⁇ , It includes “SiO 3 3 ⁇ , SO 4 2 ⁇ , BO 3 ⁇ , AlO 2 ⁇ , SiO 3 2 ⁇ , SO 4 2 ⁇ , or a combination thereof” (claim 3). will only lithium vanadium phosphate powder (example 2) are shown, any no suggestion about what to replace PO 4 3- of the part in BO 3 3-, also the storage performance It has not been suggested even.
  • the present invention provides a Li 3 V 2 (PO 4 ) 3 -based lithium secondary battery having a high discharge capacity and excellent storage performance, particularly high-temperature storage performance, as compared with the positive electrode active material shown in the above prior art. It is an object to provide a positive electrode active material for use and a lithium secondary battery using the positive electrode active material.
  • the present invention is a positive electrode active material for a lithium secondary battery characterized by having the general formula Li 3 V 2 (PO 4 ) 3-x (BO 3 ) x (0 ⁇ x ⁇ 2 ⁇ 2 ).
  • This positive electrode active material is characterized by excellent storage performance by replacing a part of the PO 4 anion of Li 3 V 2 (PO 4 ) 3 with a BO 3 anion.
  • the x is preferably 2 ⁇ 7 ⁇ x ⁇ 2 ⁇ 3 .
  • the present invention is a positive electrode for a lithium secondary battery including the positive electrode active material, and a lithium secondary battery including the positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the present invention by replacing a part of the PO 4 anion of the Li 3 V 2 (PO 4 ) 3 -based positive electrode active material for a lithium secondary battery with a BO 3 anion, excellent storage performance, particularly high temperature storage is achieved.
  • a positive electrode active material for a lithium secondary battery having performance can be provided.
  • the present inventors picked up lithium vanadium phosphate Li 3 V 2 (PO 4 ) 3 as a highly safe 4V class positive electrode active material replacing lithium iron phosphate, and substituted a part of its cation or anion.
  • the positive electrode active material obtained by substituting a part of the PO 4 anion of Li 3 V 2 (PO 4 ) 3 with a BO 3 anion is Li 3 V 2 (PO 4 ) It was found that the high-temperature storage performance was significantly improved as compared with 3 , and the present invention was reached.
  • the positive electrode active material for a lithium secondary battery of the present invention is represented by the general formula Li 3 V 2 (PO 4 ) 3-x (BO 3 ) x , where x is 0 ⁇ x ⁇ 2-2. is there.
  • x is 2-2 or less, the high-temperature storage performance is remarkably improved.
  • x exceeds 2-2 when stored at high temperature, as shown in a comparative example described later, the discharge capacity before storage becomes small and storage performance deteriorates, which is not preferable.
  • the positive electrode active material of the present invention does not exclude those in which a part of V or Li in the above general formula is substituted with a transition metal element other than V, such as Fe, Mn, and Ni.
  • the polyanion portion (PO 4 ) is a solid solution of a small amount of other anions such as (WO 4 ), (MoO 4 ), and (SiO 4 ) within a range not impairing the effects of the present invention due to BO 3 substitution. Such a thing may be included in the scope of rights of the present invention.
  • the method for synthesizing the polyanionic positive electrode active material according to the present invention is not particularly limited. Specific examples include a solid phase method, a liquid phase method, a sol-gel method, and a hydrothermal method. Basically, the raw material containing the metal elements (Li, V) constituting the active material and the raw material containing the phosphoric acid source and the boric acid source are prepared according to the composition of the active material, and this is fired. Can be obtained. At this time, the composition of the compound actually obtained may slightly vary compared to the composition calculated from the raw material composition ratio.
  • the present invention can be carried out without departing from the technical idea or main features thereof, and the scope of the present invention is only that the composition of the product obtained as a result of the production does not exactly match the above composition formula. Needless to say, it should not be construed as not belonging to. In particular, it is known that a part of the lithium source easily volatilizes during firing. For this reason, it is usually performed that a lithium source is charged in an amount larger than an equimolar amount with respect to V as a raw material before firing.
  • lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium nitrate (LiNO 3 ), lithium acetate (CH 3 COOLi), or the like is used.
  • vanadium pentoxide (V 2 O 5 ) is usually used.
  • a low oxidation state vanadium oxide such as V 2 O 3 or ammonium vanadate can also be used.
  • the phosphoric acid source ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate and the like can be used, and as the boric acid source, boric acid, anhydrous boric acid (B 2 O 3 ) and the like can be used.
  • lithium phosphate (Li 3 PO 4 ), lithium dihydrogen phosphate (LiH 2 PO 4 ), and lithium borate can be used as a phosphoric acid source and a boric acid source containing Li.
  • the lithium phosphate transition metal-based positive electrode active material according to the present invention it is important to sufficiently ensure the electron conduction between the particles by carbon or the like in order to sufficiently exhibit the effects of the present invention.
  • the method for adhering or coating the carbon on the surface of the positive electrode active material particles is not limited, but for example, it can be obtained by heat-treating the polymer organic material and the positive electrode active material particles.
  • the heat treatment temperature needs to be equal to or higher than the temperature at which the polymer organic substance is thermally decomposed, and is preferably equal to or lower than the temperature at which particle growth of the positive electrode active material particles occurs.
  • the polymer organic material include sucrose and polyvinyl alcohol.
  • a method may be employed in which the positive electrode active material particles are placed in a temperature rising atmosphere and carbon is deposited and vapor phase grown on the surface of the positive electrode active material particles by introducing a gaseous organic material.
  • gaseous organic substance monohydric alcohols, such as vaporized methanol, ethanol, isopropanol, butanol, are mentioned.
  • organic substances such as citric acid and ascorbic acid may be added to the water bath for the purpose of preventing oxidation.
  • the positive electrode active material which is the final product Since carbon derived from the organic matter may adhere or be coated on the surface, it can be used as it is.
  • the polyanion-type positive electrode active material is preferably used for a positive electrode for a lithium secondary battery as a powder having an average secondary particle size of 100 ⁇ m or less.
  • the particle size is small, the average particle size of the secondary particles is more preferably 0.5 to 20 ⁇ m, and the particle size of the primary particles constituting the secondary particles is preferably 1 to 500 nm.
  • the specific surface area of the powder particles is preferably large in order to improve the high rate discharge characteristics of the positive electrode, and preferably 1 to 100 m 2 / g. More preferably, it is 5 to 100 m 2 / g.
  • a pulverizer or a classifier can be used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like can be used.
  • wet pulverization in which an organic solvent such as water or alcohol or hexane coexists may be used.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used dry or wet as necessary.
  • conductive agent and the binder well-known ones can be used in a well-known prescription.
  • the amount of water contained in the positive electrode containing the positive electrode active material of the present invention is smaller, specifically, less than 500 ppm.
  • the thickness of the electrode mixture layer is preferably 20 to 500 ⁇ m in view of the energy density of the battery.
  • the negative electrode of the battery of the present invention is not limited in any way, but lithium metal, lithium alloy (lithium metal such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy) Alloys), alloys capable of inserting and extracting lithium, carbon materials (eg, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.), metal oxides, lithium metal oxides (Li 4 Ti 5 O 12) Etc.), polyphosphoric acid compounds and the like.
  • graphite is preferable as a negative electrode material because it has an operating potential very close to that of metallic lithium and can realize charge and discharge at a high operating voltage.
  • artificial graphite and natural graphite are preferable.
  • graphite in which the surface of the negative electrode active material particles is modified with amorphous carbon or the like is desirable because it generates less gas during charging.
  • the form of the lithium secondary battery is composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is contained in a non-aqueous solvent. Is provided.
  • non-aqueous solvent examples include cyclic carbonates such as propylene carbonate and ethylene carbonate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • cyclic carbonates such as propylene carbonate and ethylene carbonate
  • cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone
  • chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • Chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl dig Examples include ethers such as lime; nitriles such as acetonitrile and benzonitrile; dioxolane or a derivative thereof; ethylene sulfide, sulfolane, sultone or a derivative thereof alone or a mixture of two or more thereof. Limited to is not.
  • the electrolyte salt examples include ionic compounds such as LiBF 4 and LiPF 6 , and these ionic compounds can be used alone or in admixture of two or more.
  • the concentration of the electrolyte salt in the nonaqueous electrolyte is preferably 0.5 mol / l to 5 mol / l, more preferably 1 mol / l to 2.5 mol, in order to reliably obtain a nonaqueous electrolyte battery having high battery characteristics. / L.
  • the calcining temperature for pre-firing was 350 ° C.
  • the calcining time (the time for maintaining the calcining temperature) was 3 hours
  • the main calcining temperature was 850 ° C.
  • the calcining time was 6 hours.
  • the rate of temperature increase was 5 ° C./minute, and the temperature was naturally cooled.
  • a carbonaceous material derived from citric acid is arranged on the surface of the primary particles of Li 3 V 2 (PO 4 ) 3 . This also applies to the following examples and comparative examples. This is designated as active material a1 of the present invention.
  • the positive electrode active material, the conductive agent acetylene black and the binder polyvinylidene fluoride (PVdF) are contained in a weight ratio of 82: 10: 8, and N-methyl-2-pyrrolidone (NMP) is used as a solvent.
  • NMP N-methyl-2-pyrrolidone
  • a positive electrode paste was prepared. The positive electrode paste is applied on both sides of an aluminum mesh current collector to which aluminum terminals are attached, and after removing NMP at 80 ° C., the applied portions are doubled and folded so that the projected area of the applied portion is halved. Then, press working was performed so that the thickness after bending was 400 ⁇ m, to obtain a positive electrode.
  • the application area of the active material is 2,25 cm 2 and the application weight is 0.071 g.
  • the positive electrode was vacuum-dried at 150 ° C. for 5 hours or longer to remove moisture from the electrode plate.
  • a lithium metal foil having a thickness of 300 ⁇ m was attached to both surfaces of a SUS316 mesh current collector to which a SUS316 terminal was attached, and the negative electrode was used as a negative electrode.
  • a reference electrode was prepared by attaching a 300 ⁇ m-thick lithium metal foil to a SUS316 current collector rod.
  • a glass lithium ion secondary battery was assembled in an Ar box having a dew point of ⁇ 40 ° C. or lower.
  • Each of the positive electrode, the negative electrode, and the reference electrode was sandwiched between gold-plated clips whose conductors were previously fixed to the lid portion of the container, and then fixed so that the positive and negative electrodes were opposed to each other.
  • the reference electrode was fixed at a position on the back side of the positive electrode when viewed from the negative electrode.
  • a polypropylene cup containing a certain amount of electrolyte was placed in a glass container, and a battery was assembled by covering the positive electrode, the negative electrode, and the reference electrode so as to be immersed therein.
  • a positive electrode was prepared using each positive electrode active material of Examples 1 to 6 and Comparative Examples 1 to 7, and a lithium secondary battery was assembled according to the above procedure.
  • the lithium secondary battery was subjected to a charging / discharging process of charging / discharging two cycles at a temperature of 25 ° C.
  • the charging conditions were a constant current / constant voltage charging with a current of 0.9 mA and a voltage of 4.5 V for 15 hours, and the discharging conditions were a constant current discharge with a current of 0.9 mA and a final voltage of 2.7 V.
  • the discharge capacity obtained in the second cycle was recorded as “discharge capacity before high-temperature storage (mAh)”.
  • the high-temperature storage performance exceeds 70% and the discharge capacity after high-temperature storage exceeds 100 mAh / g. Therefore, it can be seen that the high-temperature storage performance is improved and the discharge capacity is large.
  • the high temperature storage performance is 73 to 78%, and the discharge capacity after high temperature storage is also 107 mAh. / G or more, and the high-temperature storage performance is significantly improved.
  • x exceeds 1/4 (2 ⁇ 2 )
  • the discharge capacity before high-temperature storage decreases and the high-temperature storage performance also decreases, so 0 ⁇ x ⁇ 2 ⁇ 2 is preferable.
  • the high-temperature storage performance exceeds 70%
  • a part of PO 4 of Li 3 V 2 (PO 4 ) 3 is converted to WO 4 or MoO.
  • the high-temperature storage performance exceeds 70% when the replacement amount is 2.1 mol%, but the high-temperature storage performance is high when the replacement amount is 8.3 mol%. because significantly less than 70%, a portion of the Li 3 V 2 (PO 4) 3 of PO 4 only lithium secondary battery was replaced by BO 3 is said to the effect in the range of a specific amount of substitution.
  • the lithium secondary battery using the positive electrode active material of the present invention is suitable for applications in fields where high capacity is particularly required in industrial batteries, such as electric vehicles that are expected to be developed in the future.
  • the potential is enormous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、放電容量が高く、かつ保存性能、特に高温保存性能に優れたLi32(PO43系のリチウム二次電池用正極活物質及び、その正極活物質を用いたリチウム二次電池を提供することを課題とする。 一般式Li(PO3-x(BO(0<x≦2-2)であることを特徴とするリチウム二次電池用正極活物質である。xは、2-7≦x≦2-3であることが好ましい。また、上記正極活物質を含有するリチウム二次電池用正極であり、上記正極を備えたリチウム二次電池である。

Description

リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池
 本発明は、リチウム二次電池用正極活物質として用いることのできるLi(PO系化合物及び、それを用いたリチウム二次電池に関するものである。
 近年、携帯電話、ノートパソコン等の携帯機器類用、電気自動車用などの電源としてエネルギー密度が高く、かつ自己放電が少なくてサイクル特性の良いリチウム二次電池に代表される非水電解質二次電池が注目されている。現在のリチウム二次電池の主流は、2Ah以下の携帯電話用を中心とした小型民生用である。リチウム二次電池用の正極活物質としては数多くのものが提案されているが、最も一般的に知られているのは、作動電圧が4V付近のリチウムコバルト酸化物(LiCoO)やリチウムニッケル酸化物(LiNiOあるいはスピネル構造を持つリチウムマンガン酸化物(LiMn)等を基本構成とするリチウム含有遷移金属酸化物である。なかでも、リチウムコバルト酸化物は、充放電特性とエネルギー密度に優れることから、電池容量2Ahまでの小容量リチウム二次電池の正極活物質として広く採用されている。
 しかしながら、今後の中型・大型、特に大きな需要が見込まれる産業用途への非水電解質電池の展開を考えた場合、より高容量であり、安全性を有し、しかも保存性能に正極活物質が望まれている。
 そこで、最近、高容量でかつ安全性を有する正極活物質としてLi(POで代表される式量ユニットあたりのリチウム含量の高いリチウム含有リン酸塩物質が提案されている(特許文献1参照)。
 また、「活物質として、M    (1)[式(1)中、Mは、H、Li、Na、Mg、Al、K及びCaから選択されるいずれかを表し、Nは、遷移金属、Al及びCuから選択される少なくとも一種を表し、Xはポリアニオンを表し、aは0~5、bは1~2、cは1~3を表す。]で表される物質を含有する二次電池。」(特許文献2参照)の発明が公知であり、特許文献2には、「式(1)中、Xは、SiO4、PO、SO、MoO4、WO4、BO4及びBO3から選択される少なくとも一種のポリアニオンであることが好ましい。より好ましくは、PO4及又はMoO4である。」(段落[0023])と記載されているが、明細書に例示されている正極活物質としては、「LiFePO4、LiCoPO4、LiNa2PO4、Li32(PO43、Na32(PO43、LiVPO4F、NaVPO4F等」(段落[0024])であり、しかも、実施例としては、「Li32(PO43、Na32(PO43、LiVPO4F」(段落[0046]表1)が示されているだけで、Li32(PO43のPO4の一部をBOで置換することは示されていない。
 特許文献2に記載された発明は、「保存特性に優れた液状電解質を用いた二次電池を提供することを一つの目的」(段落[0007])とし、「同時に、活物質としていわゆるNASICON構造を備える材料を正極及び負極の材料として用いることで、保存特性及び安全性に優れるイオン液体を電解質とする二次電池を提供できることを見出した」(段落[0008])ものであるが、Li32(PO43のPO4の一部をBOで置換することにより、保存特性が向上することは示唆されていない。
 また、「式A(式中、Aはアルカリ金属であり、Dは、アルカリ土類金属及び元素周期表の第3族元素(Bを除く)から選択され、Mは、遷移金属又は遷移金属の混合物であり、Zは、S、Se、P、As、Si、Ge、Sn及びBから選択される非金属であり、Oは酸素であり、Nは窒素であり、及びFはフッ素であり、a、d、m、z、o、n及びfは、0以上の実数であり、且つ電気的中性を保証するように選択される)の電極活性化合物と、炭素のような導電性化合物とを含む複合材料の調製方法であって、前記電極活性化合物を形成する全ての元素A、D、M、Z、O、N及びFと、また1つ以上の有機化合物及び/又は有機金属化合物とを含有する均質混合された前駆体を短時間で熱分解して前記複合材料を得る方法。」(特許文献3参照)の発明が公知であり、特許文献3には、「Aが、Li、Na及びK、並びにそれらの混合物から選択される」(請求項3)こと、「Mが、Fe、Ni、Co、Mn、V、Mo、Nb、W及びTi、並びにそれらの混合物から選択される」(請求項5)ことも記載されているが、具体的に記載されている電極活性化合物は、「LiFePO、LiFeBO又はNaFeBOのようなリチウム挿入化合物又はナトリウム挿入化合物」(請求項6)であり、Li32(PO43や、Li32(PO43のPO4の一部をBOで置換した電極活性化合物については、全く記載されていない。
 特許文献3には、「完全に制御され且つ均質な形態(モルフォロジ)を有する高純度の最終生成物を提供する複合材料の調製方法の必要性もある。この複合材料は、電気化学動態の優れた性質を示し、且つ高い充電/放電率で用いられることが可能である。」(段落[0035])と記載されているが、保存性能については何ら示唆されていない。
 さらに、「組成式Li1+aFeP1-x4-b(M:3価の元素から選択される一種以上の元素、0<x<1、0≦a≦2x、0≦b≦x、ここで、x、a、bは組成式で表される化合物が電気的中性を保つように選択される)で表される化合物を正極活物質とし、リチウムその他のアルカリ金属又はそのイオンを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を負極活物質とし、正極活物質及び負極活物質に対して化学的に安定でありそのイオンが電気化学反応するための移動を行いうる物質を電解質物質としたことを特徴とする非水電解質二次電池。」(特許文献4参照)の発明が公知であり、特許文献4には、「前記Mは、BおよびAlの一種以上である化合物を正極活物質としていること」(請求項2)が記載され、LiFePOのPOの一部をBOで置換することにより、放電容量が増大することも示されている(段落[0040]表1)が、Li32(PO43のPO4の一部をBOで置換することについては何ら示唆がなく、また、保存性能についても示唆されていない。
 特許文献5には、「下記式(1):
LiMP1-x       式(1)
(上記式中、Mは遷移金属であり、Aは酸化数が+4以下である元素であり、0<X<1である。)で表わされる化合物」(請求項1)を含んでなる電極活性物質(請求項4)が記載され、「前記式中、Mが、Fe,Co,Mn,Ni,V,Cu,及びTiからなる群から選択されてなる少なくとも一種の遷移金属である」(請求項2)こと、「前記式中、Aが、Ti(4+),Al(3+),B(3+),Zr(4+),Sn(4+),V(4+),Pb(4+),及びGe(4+)からなる群から選択されてなる元素である」(請求項3)ことも記載されているが、MをVとし、AをB(3+)とすることについては具体的な記載がなく、また、保存性能についても示唆されていない。
 特許文献6には、リチウム金属のポリアニオン系粉末を有する電池のカソード材料の充電容量およびサイクル寿命を改善することが記載され、「リチウム金属のポリアニオン系粉末は、ホウ素、リン、シリコン、アルミニウム、硫黄、フッ素、塩素、或いはその組み合わせを含んだポリアニオンを有する」(請求項2)こと、「ポリアニオンは、BO3 3-、PO4 3-、AlO3 3-、AsCl4 、AsO3 3-、SiO3 3-、SO4 2-、BO3 、AlO2 、SiO3 2-、SO4 2-、或いはその組み合わせを有する」(請求項3)ことが記載されているが、具体的には、リチウムバナジウムリン酸塩粉末(例2)が示されているだけで、PO4 3-の一部をBO3 3-で置換することについては何ら示唆がなく、また、保存性能についても示唆されていない。
特許第4292317号公報 特開2008-235260号公報 特表2007-520038号公報 特開2004-178835号公報 特表2008-506243号公報 特表2009-522749号公報
 本発明は、上記先行技術に示された正極活物質と比較して、放電容量が高く、かつ保存性能、特に高温保存性能に優れたLi32(PO43系のリチウム二次電池用正極活物質及び、その正極活物質を用いたリチウム二次電池を提供することを課題とする。
 本発明の構成及び作用効果は以下の通りである。但し、本明細書中に記載する作用機構には推定が含まれており、その正否は本発明を何ら制限するものではない。
 本発明は、一般式Li(PO3-x(BO(0<x≦2-2)であることを特徴とするリチウム二次電池用正極活物質である。この正極活物質は、Li(POのPOアニオンの一部をBOアニオンで置換することにより、保存性能に優れたことを特徴とする。前記xは、2-7≦x≦2-3であることが好ましい。
 また、本発明は、前記正極活物質を含むリチウム二次電池用正極、及び前記正極と、負極と、非水電解質を備えたリチウム二次電池である。
 本発明によれば、Li32(PO43系のリチウム二次電池用正極活物質のPOアニオンの一部をBOアニオンで置換することにより、優れた保存性能、特に高温保存性能を備えたリチウム二次電池用正極活物質を提供できる。
 本発明者らは、リン酸鉄リチウムに代わる高安全性を有する4V級正極活物質として、リン酸バナジウムリチウムLi(POを採り上げ、そのカチオンまたはアニオンの一部を置換することにより電池特性がどのように変化するのかを検討したが、Li(POのPOアニオンの一部をBOアニオンで置換した正極活物質が、Li(POよりも高温保存性能が顕著に向上することを見出し、本発明に到達した。
 本発明のリチウム二次電池用正極活物質は、一般式Li(PO3-x(BOで表されるが、xを0<x≦2-2とするものである。xが2-2以下で、高温保存性能が顕著に向上する。xが2-2を超えると、高温保存した場合、後述の比較例にあるように、保存前放電容量が小さくなり、保存性能も低下してくるので好ましくない。
 xが2-7≦x≦2-3の範囲では、実施例にあるように、x=0のLi(POと比較して、高温保存前放電容量はやや小さくなるものの、高温保存性能が顕著に向上するから、高温保存後放電容量が顕著に増大する。
 本発明の正極活物質は、上記一般式におけるV又はLiの一部が、Fe,Mn,Ni等の、V以外の遷移金属元素で置換されているものを排除するものではない。また、ポリアニオン部分(PO)は、BO置換による本発明の効果を損なわない範囲で、微量の(WO)、(MoO)、(SiO)等の他のアニオンが固溶していてもよく、そのようなものも本発明の権利範囲に含まれる。
 本発明に係るポリアニオン型正極活物質の合成方法については、特に限定されるものではない。具体的には、固相法、液相法、ゾル-ゲル法、水熱法等が挙げられる。
 基本的に、活物質を構成する金属元素(Li,V)を含む原料及びリン酸源、ホウ酸源となる原料を目的とする活物質の組成通りに含有する原料を調整し、これを焼成することによって得ることができる。このとき、実際に得られる化合物の組成は、原料の仕込み組成比から計算される組成に比べて若干変動することがある。本発明は、その技術思想又は主要な特徴から逸脱することなく実施することができるものであって、作製の結果得られたものの組成が上記組成式と厳密に一致しないことのみをもって本発明の範囲に属さないものと解釈してはならないことはいうまでもない。特にリチウム源については焼成中に一部が揮発しやすいことが知られている。このため、焼成前の原料としてリチウム源をVに対して等モルよりも多めに仕込んでおくことが通常行われる。
 Liを含む原料としては、炭酸リチウム(LiCO)、水酸化リチウム(LiOH)、硝酸リチウム(LiNO)、酢酸リチウム(CHCOOLi)等が使用される。Vを含む原料としては、通常、五酸化バナジウム(V)が使用されるが、例えばV等の低酸化状態のバナジウム酸化物や、バナジン酸アンモニウムも使用できる。リン酸源としては、リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム等が使用でき、ホウ酸源としては、ホウ酸、無水ホウ酸(B)等が使用できる。また、Liを含むリン酸源、ホウ酸源として、リン酸リチウム(LiPO)、リン酸二水素リチウム(LiHPO)、ホウ酸リチウムを使用することもできる。
 また、電子伝導性を補う目的で正極活物質粒子表面にカーボンを機械的にあるいは有機物の熱分解等により付着及び被覆させることが好ましい。
 特に、本発明に係るリン酸遷移金属リチウム化合物系の正極活物質においては、本発明の効果を充分に発現させるため、カーボン等により粒子同士の電子伝導を十分に確保することが重要である。
 本発明において、正極活物質粒子の表面にカーボンを付着又は被覆させる方法としては限定されるものではないが、例えば、ポリマー有機物と正極活物質粒子とを熱処理することにより得ることができる。前記熱処理温度は、ポリマー有機物が熱分解する温度以上とする必要があり、前記正極活物質粒子の粒子成長が生じる温度以下であることが好ましい。前記ポリマー有機物としては、ショ糖、ポリビニルアルコール等が挙げられる。あるいは、昇温雰囲気中に正極活物質粒子を載置し、ガス状有機物を導入することによって正極活物質粒子表面にカーボンを析出並びに気相成長させる方法を採用しても良い。前記ガス状有機物としては、気化したメタノール、エタノール、イソプロパノール、ブタノール等の1価アルコールが挙げられる。また、水熱法で合成する場合においては、水浴中に酸化防止の目的でクエン酸、アスコルビン酸等の有機物を添加することがあるが、このような場合には最終生成物である正極活物質表面に前記有機物に由来するカーボンが付着又は被覆されることがあるので、これをこのまま使用する事もできる。もちろん、さらに上記したポリマー有機物又はガス状有機物を用いる処方を併用しても良い。以上のいずれの処方についても、例えば国際公開第2007/043665号パンフレットの各実施例、比較例が参考になる。
 本発明において、ポリアニオン型正極活物質は、二次粒子の平均粒子サイズ100μm以下の粉体としてリチウム二次電池用正極に用いることが好ましい。特に、粒径が小さい方が好ましく、二次粒子の平均粒子径は0.5~20μmがより好ましく、前記二次粒子を構成する一次粒子の粒径は1~500nmであることが好ましい。また、粉体粒子の比表面積は正極の高率放電特性を向上させるために大きい方が良く、1~100m/gが好ましい。より好ましくは5~100m/gである。粉体を所定の形状で得るため、粉砕機や分級機を用いることができる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等を用いることができる。粉砕時には水、あるいはアルコール、ヘキサン等の有機溶剤を共存させた湿式粉砕を用いてもよい。分級方法としては、特に限定はなく、必要に応じて篩や風力分級機などを乾式あるいは湿式にて用いることができる。
 導電剤、結着剤については周知のものを周知の処方で用いることができる。
 本発明の正極活物質を含有する正極中に含まれる水分量は少ない方が好ましく、具体的には500ppm未満であることが好ましい。
 また、電極合材層の厚みは電池のエネルギー密度との兼ね合いから本発明を適用する電極合材層の厚みは20~500μmが好ましい。
 本発明電池の負極は、何ら限定されるものではなく、リチウム金属、リチウム合金(リチウム―アルミニウム、リチウム―鉛、リチウム―錫、リチウム―アルミニウム―錫、リチウム―ガリウム、およびウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)、金属酸化物、リチウム金属酸化物(LiTi12等)、ポリリン酸化合物等が挙げられる。これらの中でもグラファイトは、金属リチウムに極めて近い作動電位を有し、高い作動電圧での充放電を実現できるため負極材料として好ましい。例えば、人造黒鉛、天然黒鉛が好ましい。特に,負極活物質粒子表面を不定形炭素等で修飾してあるグラファイトは、充電中のガス発生が少ないことから望ましい。
 一般的に、リチウム二次電池の形態としては、正極、負極、電解質塩が非水溶媒に含有された非水電解質から構成され、一般的には、正極と負極との間に、セパレータとこれらを包装する外装体が設けられる。
 非水溶媒としては、プロピレンカーボネート、エチレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネ-ト等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエ-テル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
 電解質塩としては、例えば、LiBF、LiPF等のイオン性化合物が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.5mol/l~5mol/lが好ましく、さらに好ましくは、1mol/l~2.5mol/lである。
 以下に、実施例を例示して本発明をさらに詳細に説明するが、本発明は、以下の実施の形態に限定されるものではない。
 (実施例1)
 一般式Li(PO3-x(BOにおけるx=1/4に相当するLi(PO11/4(BO1/4の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:11/4:1/4になるように秤量した。これらを記載した順番に精製水に加えて撹拌し、それぞれの原料を加える度に溶解していることを確認した。次に80℃のホットプレート上にて溶媒を除去し、前駆体を得た。これを自動乳鉢でよく粉砕した。この前駆体をアルミナ製の匣鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(デンケン社製卓上真空ガス置換炉KDF-75)を用いて、窒素ガスの流通下(流速1.0l/min)で焼成を行った。仮焼成の焼成温度は350℃とし、焼成時間(前記焼成温度を維持する時間)は3時間、本焼成の焼成温度は850℃とし、焼成時間6時間とした。なお、昇温速度は5℃/分、降温は自然放冷とした。次に、自動乳鉢で1時間粉砕し、二次粒子径を50μm以下とした。この状態において、Li(POの一次粒子の表面にはクエン酸に由来する炭素質材料が配されている。この点については、以下の実施例、比較例でも同様である。これを本発明活物質a1とする。
 (実施例2)
 一般式Li(PO3-x(BOにおけるx=1/8に相当するLi(PO23/8(BO1/8の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:23/8:1/8になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを本発明活物質a2とする。
 (実施例3)
 一般式Li2(PO3-x(BO3におけるx=1/16に相当するLi(PO47/16(BO1/16の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:47/16:1/16になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを本発明活物質a3とする。
 (実施例4)
 一般式Li2(PO3-x(BO3におけるx=1/32に相当するLi(PO95/32(BO1/32の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:95/32:1/32になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを本発明活物質a4とする。
 (実施例5)
 一般式Li2(PO3-x(BO3におけるx=1/64に相当するLi(PO191/64(BO1/64の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:191/64:1/64になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを本発明活物質a5とする。
 (実施例6)
 一般式Li2(PO3-x(BO3におけるx=1/128に相当するLi(PO383/128(BO1/128の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:383/128:1/128になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを本発明活物質a6とする。
 (比較例1)
 一般式Li2(PO3-x(BO3におけるx=0に相当するLi(POの合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:3:0になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b1とする。
 (比較例2)
 一般式Li2(PO3-x(BO3におけるx=1/2に相当するLi(PO5/2(BO1/2の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:5/2:1/2になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b2とする。
 (比較例3)
 一般式Li2(PO3-x(BO3におけるx=1に相当するLi(PO(BOの合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:2:1になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b3とする。
 (比較例4)
 一般式Li2(PO3-x(WOにおけるx=1/4に相当するLi(PO11/4(WO1/4の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸の代わりにタングステン酸(HWO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HWO=3.03:2:1.5:11/4:1/4になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b4とする。
 (比較例5)
 一般式Li2(PO3-x(WOにおけるx=1/16に相当するLi(PO47/16(WO1/16の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸の代わりにタングステン酸(HWO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HWO=3.03:2:1.5:47/16:1/16になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b5とする。
 (比較例6)
 一般式Li2(PO3-x(MoOにおけるx=1/4に相当するLi(PO11/4(MoO1/4の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸の代わりにモリブデン酸(HMoO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HMoO=3.03:2:1.5:11/4:1/4になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b6とする。
 (比較例7)
 一般式Li2(PO3-x(MoOにおけるx=1/16に相当するLi(PO47/16(MoO1/16の合成
 水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸の代わりにモリブデン酸(HMoO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HMoO=3.03:2:1.5:47/16:1/16になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用正極活物質を合成した。これを比較活物質b7とする。
 以上の実施例及び比較例において合成した全ての活物質は、CuKα線を用いたエックス線回折測定によってLi(POを主相とする目的の結晶構造体が得られていることを確認した。また、BET比表面積及び粒度分布を測定した。前記粒度分布は、試料と界面活性剤とを十分に混練したのちに、イオン交換水を加えて超音波で分散させ、レーザー回折・散乱式の粒度分布測定装置(SALD-2000J、島津製作所社製)を用いて20℃において測定した。分析結果の一部を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (正極の作製)
 前記正極活物質、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVdF)を82:10:8の重量比で含有し、N-メチル-2-ピロリドン(NMP)を溶媒とする正極ペーストを調整した。該正極ペーストをアルミ端子を取り付けたアルミニウムメッシュ集電体上の両面に塗布し、80℃でNMPを除去した後、塗布部分同士が二重に重なり塗布部分の投影面積が半分になるように折り曲げ、折り曲げた後の厚みが400μmになるようにプレス加工を行い、正極とした。活物質の塗布面積は2,25cm、塗布重量は0.071gである。正極は150℃で5時間以上の真空乾燥を行い、極板中の水分を除去して使用した。
 (負極の作製)
 厚さ300μmのリチウム金属箔をSUS316端子を取り付けたSUS316メッシュ集電体の両面に貼り付けてプレス加工したものを負極とした。
 (参照極の作製)
 厚さ300μmのリチウム金属箔をSUS316集電棒に貼り付けたものを参照極とした。
 (電解液の調製)
 エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを体積比1:1:1の割合で混合した混合溶媒に、含フッ素系電解質塩であるLiPFを1.0mol/lの濃度で溶解させ、非水電解質を作製した。該非水電解質中の水分量は50ppm未満とした。
 (電池の組み立て)
 露点-40℃以下のArボックス中においてガラス製のリチウムイオン二次電池を組み立てた。予め容器の蓋部分に導線部を固定した金メッキクリップに正極と負極と参照極とを各1枚ずつ挟んだ後、正・負極が対向するように固定した。参照極は負極から見て正極の裏側となる位置に固定した。次に、一定量の電解液を入れたポリプロピレン製カップをガラス容器内に設置し、そこに正極、負極及び参照極が浸かるように蓋をすることで電池を組み立てた。
 実施例1~6、比較例1~7のそれぞれの正極活物質を用いて正極を作製し、上記の手順にてリチウム二次電池を組み立てた。
 (高温保存試験)
 まず、上記リチウム二次電池に対して温度25℃において、2サイクルの充放電を行う充放電工程に供した。充電条件は、電流0.9mA、電圧4.5V、15時間の定電流定電圧充電とし、放電条件は、電流0.9mA、終止電圧2.7Vの定電流放電とした。このとき、2サイクル目に得られた放電容量を「高温保存前放電容量(mAh)」として記録した。
 次に、温度25℃において、上記充放電工程と同一の条件で1サイクルの充電を行った後、露点-40℃以下のArボックス中で正極のみを取り出し、アルミラミネートの袋にこの正極と電解液1mlを入れて封をし、60℃の恒温槽に25日間保存した。
 恒温槽から取り出し、露点-40℃以下のArボックス中で空冷により温度25℃にした後、袋を開封し、高温保存による自己放電の程度を評価するため、再び上記の手順にてリチウム二次電池を組み立て、温度25℃において、残存している放電容量を確認した。放電条件は、電流0.9mA、終止電圧2.0Vの定電流放電とした。この放電容量を「高温保存後容量(mAh)」として記録し、前記「高温保存前放電容量(mAh)」に対する百分率を「高温保存性能(%)」とした。
 上記高温保存試験の結果を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2から、Li(PO(BO置換量x=0)である比較例1では、高温保存前放電容量が161.7mAh/gと最も大きいが、高温保存性能が52.7%(高温保存後放電容量は85.2mAh/g)であるのに対して、Li(POのPOアニオンの一部をBOアニオンで置換してLi(PO3-x(BOとすることにより、Li(POより高温保存前放電容量は低下するが、xが1/4(2-2)以下の実施例1~6では、高温保存性能が70%を超え、高温保存後放電容量も100mAh/gを超えるから、高温保存性能が向上し、放電容量も大きいことが分かる。特に、1/128(2-7)≦x≦1/8(2-3)の範囲(実施例2~6)では、高温保存性能が73~78%であり、高温保存後放電容量も107mAh/g以上であり、高温保存性能が顕著に向上する。
 しかし、xが1/4(2-2)を超えると、比較例2及び3に示されるように、高温保存前放電容量が低下し、高温保存性能も低下するので、0<x≦2-2とすることが好ましい。
 表3から、Li(POのPOの一部をBOで置換したリチウム二次電池では、置換量が2.1モル%(x=2-4)、8.3モル%(x=2-2)のいずれの場合も、高温保存性能が70%を超えているのに対して、Li(POのPOの一部をWOやMoOで置換したリチウム二次電池では、置換量が2.1モル%の場合は、高温保存性能が70%を超えているが、置換量が8.3モル%の場合は、高温保存性能が70%を大幅に下回るから、Li(POのPOの一部をBOで置換したリチウム二次電池のみが、特定の置換量の範囲で効果を奏するといえる。
 本発明の正極活物質を用いたリチウム二次電池は、今後の展開が期待される電気自動車等、産業用電池において特に高容量化が求められる分野への応用に適しており、産業上の利用可能性は極めて大である。

Claims (4)

  1.  一般式Li(PO3-x(BO(0<x≦2-2)であることを特徴とするリチウム二次電池用正極活物質。
  2.  前記xが、2-7≦x≦2-3であることを特徴とする請求項1に記載のリチウム二次電池用正極活物質。
  3.  請求項1又は2に記載の正極活物質を含むリチウム二次電池用正極。
  4.  請求項3記載の正極と、負極と、非水電解質を備えたリチウム二次電池。
PCT/JP2010/069055 2009-11-02 2010-10-27 リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池 WO2011052632A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/505,123 US8822080B2 (en) 2009-11-02 2010-10-27 Positive active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
CN201080049401.6A CN102612773B (zh) 2009-11-02 2010-10-27 锂二次电池用正极活性物质、锂二次电池用电极和锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-251953 2009-11-02
JP2009251953A JP5489063B2 (ja) 2009-11-02 2009-11-02 リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池

Publications (1)

Publication Number Publication Date
WO2011052632A1 true WO2011052632A1 (ja) 2011-05-05

Family

ID=43922057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069055 WO2011052632A1 (ja) 2009-11-02 2010-10-27 リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池

Country Status (5)

Country Link
US (1) US8822080B2 (ja)
JP (1) JP5489063B2 (ja)
CN (1) CN102612773B (ja)
TW (1) TWI492443B (ja)
WO (1) WO2011052632A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12027710B2 (en) 2018-02-27 2024-07-02 Tdk Corporation Active material and all-solid secondary battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5637102B2 (ja) * 2011-09-05 2014-12-10 昭栄化学工業株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、及びリチウムイオン二次電池
JP5839227B2 (ja) * 2011-11-10 2016-01-06 トヨタ自動車株式会社 リチウム二次電池とその製造方法
JP6181948B2 (ja) 2012-03-21 2017-08-16 株式会社半導体エネルギー研究所 蓄電装置及び電気機器
JP5888046B2 (ja) * 2012-03-27 2016-03-16 Tdk株式会社 正極活物質、正極及びリチウムイオン二次電池
CN102832390A (zh) * 2012-08-31 2012-12-19 天津大学 锂离子电池正极材料磷酸钒锂的制备方法
KR101994260B1 (ko) * 2012-10-15 2019-06-28 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지
CN103050690A (zh) * 2012-11-30 2013-04-17 东莞市翔丰华电池材料有限公司 一种锂离子电池正极材料磷酸钒锂的制备方法
KR101579251B1 (ko) * 2014-05-16 2015-12-22 동국대학교 산학협력단 리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지
CN105932331A (zh) * 2016-06-14 2016-09-07 东莞市联洲知识产权运营管理有限公司 一种绿色高容量锂离子二次电池
KR101938128B1 (ko) * 2017-06-20 2019-01-14 울산대학교 산학협력단 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
CN117623260A (zh) * 2022-08-10 2024-03-01 比亚迪股份有限公司 一种电池材料及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506243A (ja) * 2004-07-16 2008-02-28 エルジー・ケム・リミテッド リチウム2次電池用電極活性物質
JP2008235260A (ja) * 2007-02-24 2008-10-02 Kyushu Univ 二次電池
JP2009231206A (ja) * 2008-03-25 2009-10-08 Gs Yuasa Corporation 非水電解質電池
JP2010003593A (ja) * 2008-06-20 2010-01-07 Gs Yuasa Corporation リチウム二次電池用活物質及びリチウム二次電池

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206016A (en) * 1978-06-19 1980-06-03 E. I. Du Pont De Nemours And Company Sodium ion conducting sodium borophosphate glass
US4317874A (en) * 1980-10-24 1982-03-02 Ray-O-Vac Corporation Self healing cathodes
US5871866A (en) 1996-09-23 1999-02-16 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and use thereof
US6913821B2 (en) * 1999-03-04 2005-07-05 Honeywell International Inc. Fluidizing oxidation protection systems
JP2001256997A (ja) * 2000-03-13 2001-09-21 Sanyo Electric Co Ltd リチウム二次電池
US6878487B2 (en) * 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same
EP2367224B1 (en) * 2002-03-25 2013-01-09 Sumitomo Chemical Company, Limited Method for preparing positive electrode active material for non-aqueous secondary battery
JP4153288B2 (ja) * 2002-11-25 2008-09-24 日本電信電話株式会社 非水電解質二次電池
US7041239B2 (en) * 2003-04-03 2006-05-09 Valence Technology, Inc. Electrodes comprising mixed active particles
US7294435B2 (en) * 2003-05-15 2007-11-13 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
FR2865576B1 (fr) 2004-01-28 2006-04-28 Commissariat Energie Atomique Procede de preparation de materiaux composites comprenant un compose actif d'electrode et un compose conducteur electronique tel que le carbone notamment pour accumulateurs au lithium
WO2005124898A1 (ja) * 2004-06-16 2005-12-29 Seimi Chemical Co., Ltd. リチウム二次電池用正極活物質粉末
WO2006085588A1 (ja) * 2005-02-14 2006-08-17 Agc Seimi Chemical Co., Ltd. リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP2006339092A (ja) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびその負極
US20070160752A1 (en) 2006-01-09 2007-07-12 Conocophillips Company Process of making carbon-coated lithium metal phosphate powders
US7914932B2 (en) * 2006-02-24 2011-03-29 Ngk Insulators, Ltd. All-solid-state battery
US20080213674A1 (en) * 2007-02-24 2008-09-04 Ngk Insulators, Ltd. Secondary battery
JP5035834B2 (ja) * 2007-02-27 2012-09-26 国立大学法人東京工業大学 リチウムマンガン複合酸化物
JP4317239B2 (ja) * 2007-04-27 2009-08-19 Tdk株式会社 電極用複合粒子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506243A (ja) * 2004-07-16 2008-02-28 エルジー・ケム・リミテッド リチウム2次電池用電極活性物質
JP2008235260A (ja) * 2007-02-24 2008-10-02 Kyushu Univ 二次電池
JP2009231206A (ja) * 2008-03-25 2009-10-08 Gs Yuasa Corporation 非水電解質電池
JP2010003593A (ja) * 2008-06-20 2010-01-07 Gs Yuasa Corporation リチウム二次電池用活物質及びリチウム二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12027710B2 (en) 2018-02-27 2024-07-02 Tdk Corporation Active material and all-solid secondary battery

Also Published As

Publication number Publication date
JP5489063B2 (ja) 2014-05-14
TWI492443B (zh) 2015-07-11
CN102612773A (zh) 2012-07-25
US20120219862A1 (en) 2012-08-30
JP2011096598A (ja) 2011-05-12
TW201125196A (en) 2011-07-16
US8822080B2 (en) 2014-09-02
CN102612773B (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5489063B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池
JP5381024B2 (ja) リチウム二次電池用正極及びリチウム二次電池
JP5761617B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP5272756B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びに、その製造方法
ES2927465T3 (es) Materiales cátodos LMFP con rendimiento electroquímico mejorado
JP5434720B2 (ja) 非水電解質二次電池用電極及び非水電解質二次電池
JP5298659B2 (ja) リチウム二次電池用活物質及びリチウム二次電池
JP5434727B2 (ja) 非水電解質二次電池用電極及び非水電解質二次電池
US8431271B2 (en) Positive active material for lithium secondary battery and lithium secondary battery
TWI629823B (zh) Positive electrode mixture and non-aqueous electrolyte battery
JP5262318B2 (ja) リチウム二次電池用正極活物質およびリチウム二次電池。
JP2007502249A (ja) ホウ素置換されたリチウム挿入化合物、電極の活物質、電池およびエレクトロクロミックデバイス
JP5909131B2 (ja) リチウム二次電池用活物質、それを用いたリチウム二次電池用電極及びリチウム二次電池
JP5604962B2 (ja) 二次電池用正極活物質及び二次電池
JP5277707B2 (ja) リチウム二次電池用正極活物質及びリチウム二次電池
JP5055780B2 (ja) 正極活物質の製造方法およびそれを用いた電池
KR20160060856A (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 사용한 리튬 이차 전지
JP5445912B2 (ja) リチウム二次電池用正極活物質及びリチウム二次電池
JP2012054077A (ja) 二次電池用活物質及び二次電池用活物質の製造方法、並びに、それを用いた二次電池
JP5862172B2 (ja) 二次電池用活物質及び二次電池用活物質用電極、並びに、それを用いた二次電池
JP5446036B2 (ja) リチウム二次電池用正極活物質およびリチウム二次電池
JP2013089393A (ja) 二次電池用活物質及び二次電池用活物質の製造方法
JP5277929B2 (ja) リチウム二次電池用正極活物質及びリチウム二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049401.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826764

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13505123

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826764

Country of ref document: EP

Kind code of ref document: A1