WO2011048876A1 - 金属ナノ粒子含有複合体、その分散液、及びこれらの製造方法 - Google Patents

金属ナノ粒子含有複合体、その分散液、及びこれらの製造方法 Download PDF

Info

Publication number
WO2011048876A1
WO2011048876A1 PCT/JP2010/065194 JP2010065194W WO2011048876A1 WO 2011048876 A1 WO2011048876 A1 WO 2011048876A1 JP 2010065194 W JP2010065194 W JP 2010065194W WO 2011048876 A1 WO2011048876 A1 WO 2011048876A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
group
acrylic polymer
carbon atoms
represented
Prior art date
Application number
PCT/JP2010/065194
Other languages
English (en)
French (fr)
Inventor
義之 佐野
関根 信博
金 仁華
博 米原
将史 魚田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to EP10824728.9A priority Critical patent/EP2492033B1/en
Priority to CN201080047289.2A priority patent/CN102574206B/zh
Priority to US13/502,564 priority patent/US8388870B2/en
Priority to KR1020127006733A priority patent/KR101665464B1/ko
Priority to JP2010544514A priority patent/JP4697356B1/ja
Publication of WO2011048876A1 publication Critical patent/WO2011048876A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a composite of a metal nanoparticle and a polymer obtained by a liquid phase reduction method, a dispersion thereof, and a production method thereof, and more specifically, at room temperature (1 to 1) without undergoing a substantial heating operation.
  • the polymer is dried at 30 ° C.
  • the polymer as the protective agent is detached from the surface of the metal nanoparticles, and the metal nanoparticles are easily fused to produce a metal film having a practically low volume resistivity on the order of 10 ⁇ 5 ⁇ cm.
  • the present invention relates to a composite of metal nanoparticles and a polymer, a dispersion of the composite, a production method thereof, and a plastic substrate obtained using the composite.
  • metal nanoparticles may exhibit different thermal and magnetic properties from ordinary bulk metal (metal bulk).
  • metal nanoparticles may exhibit different thermal and magnetic properties from ordinary bulk metal (metal bulk).
  • New reactions and material developments are actively conducted.
  • ordinary gold particles are nonmagnetic, but ferromagnetic spin polarization appears in gold nanoparticles of several nanometers.
  • Lewis acid appears in gold clusters of several nanometers, and coupling reactions based on this property and oxidation catalytic reactions due to activation of oxygen molecules are actively studied. ing.
  • metal nanoparticles have the property of being fused together at a temperature significantly lower than the melting point of the elemental element.
  • the melting point of silver exceeds 960 ° C.
  • the fusion proceeds even at a temperature of 200 ° C. or less. Therefore, if this is converted into an ink or paint, it can be a conductive paint capable of printing and forming an electronic circuit even on a polymer film having low heat resistance.
  • the adhesion between the substrate and the metal nanoparticles cannot be guaranteed, and the metal nanoparticles cannot be removed from the substrate.
  • the expression of low resistivity only by drying at room temperature as a local phenomenon is not practical.
  • the problem to be solved by the present invention is that a metal film having a practically low resistance value can be formed simply by drying at room temperature without providing a special heating and baking step or a protective agent removing step with a solvent. It is to provide a composite of metal nanoparticles such as gold, silver, platinum group, and copper and a polymer, a dispersion of the composite, a production method thereof, and a plastic substrate using the composite.
  • metal nanoparticles In order to use metal nanoparticles as a conductive material, it must be made into a dispersion. Therefore, it is an essential condition for the metal nanoparticles to maintain stable dispersion for a long period of time without aggregation, fusion or precipitation in the dispersion.
  • the protective agent must be removed to cause sufficient fusion between the metal nanoparticles. The only way to maintain stability in the dispersion is to protect the surface of the metal nanoparticles with an organic compound. Generally, in the metal nanoparticle thin film after being applied / printed on the substrate, since the protective agent remains coated with the metal nanoparticles, the fusion of the metal nanoparticles does not proceed. Heating is most effective for removing the protective agent.
  • the organic compound protecting agent is thermally decomposed or thermally desorbed.
  • the present inventors have found that a metal nanoparticle-containing complex obtained by adding a reducing agent to an aqueous solution of a metal compound in the presence of a protective agent containing a specific functional group is long-term in a solvent.
  • the inventors have found that the metal nanoparticles can be spontaneously fused to form a highly conductive thin film only by drying at room temperature after coating, as well as stable dispersion, and the present invention has been completed.
  • the present invention (I) a (meth) acrylate macromonomer (x1) having a polyethylene glycol chain (b1), —SR (R represents an alkyl group having 1 to 18 carbon atoms, a phenyl group which may have a substituent on the benzene ring, or a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms.
  • R represents an alkyl group having 1 to 18 carbon atoms, a phenyl group which may have a substituent on the benzene ring, or a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms.
  • the (meth) acrylate monomer (x2) having a phosphate ester residue (b2) represented by —OP (O) (OH) 2 is represented by —SR (R is the same as described above).
  • a step of dropping an aqueous solution containing a polymer (B2) and a reducing agent (C) The present invention provides a method for producing a composite containing metal nanoparticles and a method for producing a dispersion of the composite.
  • the present invention provides (I ′) a (meth) acrylate-based macromonomer (x1) having a polyethylene glycol chain (b1) and a phosphate ester residue (b2) represented by —OP (O) (OH) 2 (meth) It is obtained by polymerizing an acrylate monomer (x2) in the presence of a chain transfer agent (x3) having a functional group (b3) represented by -SR (R is the same as described above) (meta ) A step of dissolving the acrylic polymer (B3) in an aqueous medium; (II ′) adding the metal compound (A) or an aqueous solution of the metal compound (A) to the aqueous solution obtained in (I ′), (III ′) The mixed solution obtained in (II ′) is added to the reducing agent (C) or an aqueous solution of the reducing agent (C), or the (meth) acrylic polymer (B1) or the (meth) acrylic.
  • An aqueous solution containing at least one (meth) acrylic polymer selected from the group consisting of the polymer (B2) and the (meth) acrylic polymer (B3) and the reducing agent (C) is dropped.
  • the present invention provides a method for producing a composite containing metal nanoparticles and a method for producing a dispersion of the composite.
  • the present invention is a metal nanoparticle-containing composite formed by coating metal nanoparticles (A ′) having a particle diameter of 2 to 50 nm with a (meth) acrylic polymer (B),
  • a functional group (b3) represented by —SR (R is the same as described above
  • a side chain includes a polyethylene glycol chain (Meth) acrylic polymer (B1) having (b1)
  • At least one terminal is a phosphate represented by —SR (R is as defined above) and a functional group (b3) represented by —OP (O) (OH) 2 in the side chain A (meth) acrylic polymer (B2) having a residue (b2), and a metal nanoparticle-containing composite containing the residue, and this selected from the group consisting of water and an organic solvent having a hydroxy group
  • the present invention also provides a dispersion of a metal nanoparticle-containing composite dispersed in one or more kinds of solvents, and a plastic
  • a metal film having a volume resistivity of 10 ⁇ 5 to 10 ⁇ 6 ⁇ cm can be produced only by drying at room temperature. That is, according to the present invention, the firing step after coating the dispersion containing metal nanoparticles can be omitted or simplified, and there is no need for a step of eluting and removing the compound covering the metal nanoparticles. , Significant efficiency improvement of the process can be achieved. Furthermore, since a metal film can be formed on a substrate with poor heat resistance, it can be applied to a fine wiring technique on various substrates.
  • the metal nanoparticle-containing composite dispersion obtained in Example 1 was coated on a glass plate, dried at room temperature, and after 12 hours and a half, the metal nanoparticles obtained by small-angle X-ray diffraction of the coating obtained Particle size distribution.
  • 2 is a result of observing a crystallite diameter with time obtained by a wide angle X-ray diffraction method of the metal film obtained in Example 1.
  • FIG. The results of observation of the crystallite diameter with time obtained by the wide-angle X-ray diffraction method of the metal film obtained in Example 1 are summarized as numerical values.
  • 2 is a differential scanning calorimetry chart of a dried product of the metal nanoparticle-containing composite obtained in Example 1.
  • FIG. 3 is a differential scanning calorimetry chart in which the initial sweep of the dried product of the metal nanoparticle-containing composite obtained in Example 1 is performed at 100 ° C., 150 ° C., and 180 ° C.
  • FIG. 2 is a differential scanning calorimetric analysis chart of a dried product of an acrylic copolymer obtained in Synthesis Example 1.
  • FIG. 19 is a SEM photograph image of a thin film cross section on a PET film obtained in Example 18.
  • 2 is a SEM photograph image of a thin film cross section on a PET film obtained in Example 19.
  • FIG. It is a TEM photograph image just after dripping the comparative metal nanoparticle containing complex dispersion liquid obtained by comparative example 1 on the copper grid for electron microscope observation, and room temperature drying.
  • FIG. 1 It is a SEM photograph image of the membrane
  • 2 is a particle size distribution of metal nanoparticles obtained by small-angle X-ray diffraction of a comparative metal nanoparticle-containing composite dispersion obtained in Comparative Example 1.
  • FIG. It is the particle size distribution of the metal nanoparticles obtained by small-angle X-ray diffraction of the coating obtained by applying the composite dispersion containing metal nanoparticles for comparison obtained in Comparative Example 1 onto a glass plate and drying again at room temperature. .
  • the metal nanoparticle-containing composite dispersion liquid for comparison obtained in Comparative Example 1 was applied onto a glass plate, dried at room temperature, and after 6 hours had elapsed, the metal nanoparticles obtained by small-angle X-ray diffraction of the film obtained
  • the particle size distribution of A metal nanoparticle-containing composite dispersion liquid for comparison obtained in Comparative Example 1 was applied on a glass plate, dried at room temperature, and after 12 hours and a half, metal nanometers obtained by small-angle X-ray diffraction of the film obtained
  • the particle size distribution of the particles. 3 is a result of observation of a crystallite diameter with time obtained by a wide-angle X-ray diffraction method of a metal film obtained in Comparative Example 1.
  • FIG. The results of observation of the crystallite diameter over time obtained by the wide-angle X-ray diffraction method of the metal film obtained in Comparative Example 1 are summarized as numerical values.
  • a thiol group is most commonly used as a sulfur-containing group, but it tends to have too high affinity for the metal surface and may cause blackening due to sulfide formation when preparing silver particles. . Therefore, as the sulfur-containing group, —SR (R is an alkyl group having 1 to 18 carbon atoms, a phenyl group optionally having a substituent on the benzene ring, a hydroxy group, or an alkoxy group having 1 to 18 carbon atoms.
  • Group (b3) [hereinafter sometimes referred to as sulfide-type sulfur functional group (b3). It was considered that a phosphoric acid group having a phosphoric acid ester residue (b2) represented by —OP (O) (OH) 2 was easily available.
  • both the sulfide-type sulfur functional group and the phosphate ester residue are soft ligands. And they can be coordinately bound to the surface of the metal nanoparticles.
  • the bond is not a fixed bond but a bond in a fast dynamic equilibrium state. That is, the sulfide-type sulfur functional group and the phosphate ester residue form a bonded state in which they are coordinated or decoordinated to the surface of the metal nanoparticles.
  • the polyethylene glycol chain in the same molecule is linked to the sulfide-type sulfur functional group and the phosphate ester residue and adsorbs to or disengages from the metal nanoparticle surface. Therefore, fusion of metal nanoparticles can be prevented.
  • Such a state in the solution collapses by removing the aqueous medium, and the decoordinated protective agent associates with itself and causes phase separation with the metal nanoparticles. Therefore, in a dry state, there are few protective agents which cover a metal nanoparticle, and many metal nanoparticle surfaces will be in an exposed state. On the exposed surface, the fusion of the metal nanoparticles proceeds, and as a result, a film-like conductor is considered.
  • the dispersion thereof, and the metal film obtained using these it has been confirmed that the above three physicochemical properties are combined, Confirmation that fusion at room temperature ( ⁇ 30 ° C) is in progress. This is not possible only with the idea of developing a compound known as a polymer pigment dispersant into metal nanoparticles.
  • the first method for producing the metal nanoparticle-containing composite of the present invention is as follows.
  • the (meth) acrylate monomer (x2) having a phosphate ester residue (b2) represented by —OP (O) (OH) 2 is represented by —SR (R is the same as described above).
  • the second manufacturing method is (I ′) a (meth) acrylate-based macromonomer (x1) having a polyethylene glycol chain (b1) and a phosphate ester residue (b2) represented by —OP (O) (OH) 2 (meth) It is obtained by polymerizing an acrylate monomer (x2) in the presence of a chain transfer agent (x3) having a functional group (b3) represented by -SR (R is the same as described above) (meta ) A step of dissolving the acrylic polymer (B3) in an aqueous medium; (II ′) adding the metal compound (A) or an aqueous solution of the metal compound (A) to the aqueous solution obtained in (I ′), (III ′) The mixed solution obtained in (II ′) is added to the reducing agent (C) or an aqueous solution of the reducing agent (C), or the (meth) acrylic polymer (B1) or the (meth) acrylic.
  • metal nanoparticles are those having a particle size of nanometer order, particularly 2 to 50 nm.
  • the average particle diameter of the metal nanoparticles was dropped on a copper grid with a form bar film for electron microscope observation, which was used as a dispersion described later, and this was added to a JEM-2200FS transmission electron microscope (200 kv, manufactured by JEOL Ltd.). , Hereinafter abbreviated as TEM), and 100 arbitrary particles were taken out from the obtained photographic image and obtained as an average of their particle diameters. Therefore, the metal nanoparticles do not need to be a perfect sphere, and when observed in an elliptical shape, the particle diameter of the particles is defined as the longest diameter.
  • the (meth) acrylic polymer stabilizes the metal nanoparticles in an aqueous medium.
  • the (meth) acrylic polymer is designed so that sulfide-type sulfur functional groups, phosphate ester residues, and polyethylene glycol chains are present in the (meth) acrylic polymer as described above.
  • the sulfide-type sulfur functional group is present at the end of the polymer, and the phosphate ester residue and the polyethylene glycol chain are present as side chains of the (meth) acrylic polymer.
  • the phosphate ester residue and the polyethylene glycol chain are present in separate molecules
  • a copolymer existing in the same molecule is also included. .
  • the (meth) acrylate macromonomer (x1) having a polyethylene glycol chain (b1) used as a raw material for the (meth) acrylic polymer as a protective agent has a degree of polymerization of 2 (Meth) acrylates such as block copolymers of ethylene glycol and propylene oxide having ethylene glycol and propylene oxide having 2 to 50 repeating units as ethylene glycol (hereinafter referred to as both acrylates and methacrylates).
  • 2 (Meth) acrylates such as block copolymers of ethylene glycol and propylene oxide having ethylene glycol and propylene oxide having 2 to 50 repeating units as ethylene glycol (hereinafter referred to as both acrylates and methacrylates).
  • a polyethylene glycol having a degree of polymerization of 2 to 50 capped with an alkyl group having 1 to 6 carbon atoms, or a block copolymer of ethylene oxide and propylene oxide having 2 to 50 repeating units as ethylene oxide Such as (meth) acrylate It is below.
  • Commercially available products include NK Esters M-20G, M-40G, M-90G, M-230G, M-450G, AM-90G, 1G, 2G, 3G, 4G, 9G manufactured by Shin-Nakamura Chemical Co., Ltd. 14G, 23G, 9PG, A-200, A-400, A-600, APG-400, APG-700, Nippon Oil & Fats Co., Ltd.
  • Examples of the (meth) acrylate monomer (x2) having a phosphate ester residue (b2) represented by —OP (O) (OH) 2 include, for example, Light Ester P-1M manufactured by Kyoeisha Chemical Co., Ltd. Unichemical Co., Ltd. Phosmer M, Phosmer PE, and the like are listed as commercially available monomers.
  • a phosphate esterifying reagent such as phosphorus oxychloride or phenyl dichlorophosphate
  • (meth) acrylic acid ester phosphate having an arbitrary structure can be easily obtained, it is also possible to use these. These may be used alone or in combination of two or more.
  • a (meth) acrylic polymer when synthesized, by using a chain transfer agent (x3) having a functional group (b3) represented by —SR (R is the same as described above), The said functional group (b3) can be introduce
  • the alkyl group having 1 to 18 carbon atoms may be linear or branched, and may have an alicyclic structure.
  • alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, hexyl group, 2-ethylhexyl group, octyl group, decyl group and dodecyl group.
  • an octyl group, a decyl group, and a dodecyl group are preferable in terms of the adsorption effect on the metal surface and the low volatility of the thiol compound (low odor).
  • a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, an aralkyloxy group having 1 to 18 carbon atoms, a phenyloxy group optionally having a substituent on the benzene ring One or more selected from the group consisting of a carboxy group, a salt of a carboxy group, a monovalent or polyvalent alkylcarbonyloxy group having 1 to 18 carbon atoms and a monovalent or polyvalent alkoxycarbonyl group having 1 to 18 carbon atoms
  • the alkyl group having 1 to 8 carbon atoms having a functional group include 2-hydroxyethyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 8-hydroxyoctyl group, and 2,3-dihydroxypropyl.
  • 2- (methoxycarbonyl) ethyl group 2- (2-ethylhexyloxycarbonyl) ethyl group, from the viewpoint of easy availability, conductivity of the obtained metal nanoparticles and smoothness when a film is formed, 2,3-dihydroxypropyl group, 2-hydroxyethyl group and carboxymethyl group are preferred.
  • thioglycol, 2,3-dihydroxypropanethiol, thioglycolic acid, ⁇ -mercaptopropionic acid, ethyl ⁇ -mercaptopropionate, 2-ethylhexyl ⁇ -mercaptopropionate are reactive, readily available, and formed into a film. It is preferable from the viewpoint of surface smoothness.
  • all of the (meth) acrylic polymers (B1), (B2), and (B3) used as the protective agent use gel permeation chromatography and have a small weight average molecular weight determined as a polystyrene equivalent value. If it is too large, the ability to hold the metal nanoparticles in the form of fine particles will be insufficient, and fusion between the metal nanoparticles may proceed during storage as a dispersion, and if too large, in the dispersion In view of the possibility of precipitation of the complex, etc., it is preferably in the range of 3,000 to 10,000, particularly preferably in the range of 4,000 to 8,000. For this reason, it is preferable to use more in this invention than the usage-amount of the chain transfer agent generally used when synthesize
  • the amount of the chain transfer agent (x3) used is preferably in the range of 0.05 to 0.5 times the total number of moles of the (meth) acrylate monomer used as a raw material, The preferred range is 0.08 to 0.3 times mole.
  • the presence ratio of the polyethylene glycol chain (b1), the phosphate ester residue (b2), and the sulfide-type sulfur functional group (b3) in the (meth) acrylic polymer that functions as a protective agent is a composite.
  • the polyethylene glycol chain: phosphate ester residue: sulfide type sulfur functional group 1.0 to 15.0: An abundance ratio of 0.3 to 5.0: 1.0 is preferable, and an abundance ratio of 2.0 to 10.0: 0.5 to 3.0: 1.0 is more preferable. It is preferable.
  • the mixing ratio of the meth (acrylic) polymer (B1) and the (meth) acrylic polymer (B2) is generally 20/1 to 1/1 (moles). Ratio), preferably in the range of 20/1 to 2/1, and most preferably in the range of 20/1 to 10/1.
  • the (meth) acrylate-based monomer (x1) having the polyethylene glycol chain (b1) used as a raw material and the (meth) acrylate-based monomer having the phosphate ester residue (b2) are used.
  • the use ratio with (x2) is preferably in the range of 1/2 to 10/1 in terms of the molar ratio represented by (x1) / (x2), particularly in the range of 2/3 to 7/1. It is preferable to use it.
  • the acrylic polymer (B1), (B2) or (B3) used in the present invention may have the above-mentioned functional group as essential, and other functional groups, etc. within a range not impairing the effects of the present invention. May be included at the same time. That is, when obtaining as a copolymer of acrylic monomers, radically polymerizable monomers (x) other than the above-mentioned monomers (x1) and (x2) may be used in combination.
  • Examples of the other radical polymerizable monomer (x) include (meth) acrylic acid, methyl (meth) acrylate, benzyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, sulfoethyl (methacrylate) and the like. Can be mentioned. When these other radical polymerizable monomers (x) are used in combination, it is preferable to use them at a ratio of 10 mol% or less based on the total monomers.
  • the (meth) acrylic polymer (B3) is a homopolymer of a (meth) acrylate macromonomer (x1) having a polyethylene glycol chain (b1).
  • Copolymer (B1), (meth) acrylic polymer (B2) which is a homopolymer of (meth) acrylate monomer (x2) having phosphate ester residue (b2), and polyethylene glycol chain (b1) and phosphorus This is a mixture of a (meth) acrylic copolymer having an acid ester residue (b2) in the side chain. From this mixture, only the (meth) acrylic copolymer may be separated and purified and used for the following steps. However, considering the time and cost for purification, the mixture is used in the following steps as it is. It is preferable.
  • concentration of the acrylic polymer (B3) the progress of the reduction reaction in the step of forming the metal nanoparticles by the viewpoint of uniform solubility and the step (III) or (III ′), that is, the reduction reaction of metal ions. It is preferable to adjust to 3 to 15% by mass from the viewpoint of being mild and easily forming metal nanoparticles having a uniform particle diameter.
  • the aqueous medium used here can be arbitrarily mixed with water in order to adjust the solubility of the (meth) acrylic polymer (B1), (B2) or (B3) in addition to water alone.
  • Various organic solvents preferably alcohols, water-soluble ethers, water-soluble ketones, carboxyamides, phosphoramides, sulfoxides, and the like may be used by mixing with water.
  • the phosphate ester residue (b1) can be bonded to the surface of the metal nanoparticle that is effectively generated in the aqueous medium, and the particle of the metal nanoparticle
  • organic amines can be added.
  • the reaction is performed at a high concentration, it is preferable to add the organic amines.
  • organic amines examples include triethylamine, butylamine, dibutylamine, diisopropylethylamine, N-methylmorpholine and the like, and these may be used alone or in combination of two or more.
  • the amount added is 0. 0 with respect to the measured acid value of the mixture of the (meth) acrylic polymer (B1) and (meth) acrylic polymer (B2) to be used or the (meth) acrylic polymer (B3). It is preferably in the range of 5 to 2 equivalents.
  • metal nanoparticles (A ′) are produced by reduction reaction in the aqueous solution of the (meth) acrylic polymer obtained in the step (I) or (I ′).
  • the aqueous solution refers to a solution dissolved in the above-described aqueous medium.
  • nanoparticles are formed by a reduction reaction and protected with the above-mentioned (meth) acrylic polymer (B1) and (B2) mixture or (meth) acrylic polymer (B3).
  • the above-mentioned (meth) acrylic polymer (B1) and (B2) mixture or (meth) acrylic polymer (B3) There is no particular limitation as long as it is possible.
  • gold, silver, copper and platinum group elements ruthenium, rhodium, palladium, osmium, Iridium and platinum
  • silver, gold, platinum, palladium, ruthenium, rhodium and copper are more preferable, and silver, gold, platinum and copper are most preferable.
  • metal compound (A) various salts and oxides can be used. From the viewpoint of solubility, acetates, nitrates, sulfates, chlorides, acetylacetonates and the like are preferable examples. Of these, nitrate or acetate is preferred. However, even if it is an insoluble compound, it can be used as a complexing agent such as ammonia, amine compounds, hydrazines, hydroxylamines, etc. Insoluble compounds such as can also be used.
  • the metal element is gold or a platinum group
  • tetrachloroauric acid tetrachloroplatinic acid
  • palladium nitrate palladium acetate
  • palladium chloride palladium oxide
  • palladium sulfate or the like
  • the metal species is copper, Cu (OAc) 2 , Cu (NO 3 ) 2 , CuCl 2 , Cu (HCOO) 2 , Cu (CH 3 COO) 2 , Cu (CH 3 CH 2 COO) 2 , CuCO 3 , CuSO 4 , C 5 H 7 CuO 2 , and a basic salt obtained by heating a carboxylate, such as Cu (OAc) 2 .CuO, can be used in the same manner.
  • the metal species is silver, silver nitrate, silver oxide, silver acetate, silver chloride, silver sulfide and the like can be used. However, when handled as an aqueous solution, silver nitrate is preferable in terms of its solubility.
  • the use ratio of the metal compound (A) is not particularly limited, but a mixture of the (meth) acrylic polymer (B1) and (B2) prepared in the step (I) or (I ′), or It is preferable to be in the range of 3 to 15% by mass with respect to the total mass of the polymer in the aqueous solution of the (meth) acrylic polymer (B3).
  • the concentration of the metal compound (A) can be appropriately set depending on the solubility of the metal compound to be used in the aqueous medium, but generally it is easy to handle by adjusting the concentration within the range of 5 to 20% by mass. And the volume efficiency of the reactor is preferable.
  • the step (III) or (III ') is a metal ion reduction reaction.
  • the reducing agent (C) may be made into an aqueous solution in advance for the purpose of allowing the reduction reaction to proceed gently and stabilizing the resulting metal nanoparticles, and the reducing agent (C) and (meth). You may use as an aqueous solution which mixed acrylic polymer (B1), (B2), or (B3).
  • the reduction reaction proceeds by dropping them into the aqueous solution prepared in the step (II) or (II ′) and mixing them.
  • the compound that can be used as the reducing agent (C) is not particularly limited.
  • the inorganic reducing agent includes hydrazine and hydroxylamine.
  • Organic reducing agents include hydroxylamine compounds such as N, N-dialkylhydroxylamine, hydrazine compounds such as N, N-dialkylhydrazine, phenols such as hydroquinone and aminophenol, and phenylenediamines, 2-hydroxy Hydroxy ketones and hydroxycarboxylic acids such as acetone, 2-hydroxyhexane-1,3-dione and malic acid, and enediols such as ascorbic acid and 2,3-dihydroxymaleic acid can be used.
  • amino alcohols and amine compounds such as triethanolamine used as a reducing agent in the electroless plating method can also be used.
  • the medium is preferably water alone.
  • the reducing agent may be used in any amount that can reduce the metal ions upon completion of the dropping, and is generally preferably used in an amount of 1 to 10 times the number of moles of metal ions.
  • the use ratio of the (meth) acrylic polymer (B1), (B2) or (B3) is preferably in the range of 1 to 50% by weight with respect to the theoretical yield of the reduced metal.
  • the rate at which the reducing agent is added is not particularly limited, and may be adjusted according to the reducing ability of the reducing agent with respect to the metal species. If a reducing agent having a high reducing power is diluted and slowly added, particles having a narrow particle size distribution can be obtained. In this case, from the viewpoint of productivity, it is desirable to complete the dropping in the range of 0.5 hours to 3 hours. Moreover, when using the mild reducing agent which a reaction advances by heating, the prescription added at a stretch may be sufficient.
  • the stirring method is not particularly limited, and the stirring time is not limited.
  • the metal nanoparticle-containing composite is obtained through the above-described steps. At this time, the metal nanoparticle content in the composite is 90% by mass or more, and the content is 92 to 98% by mass, which can be suitably used as a conductive material. Can also be easily obtained. In addition, metal nanoparticles having an average particle diameter of 2 to 50 nm can be obtained.
  • the metal nanoparticle-containing composite obtained here as a conductive material, by-product impurities or (meth) acrylic polymers not involved in the protection (coating) of metal nanoparticles ( It is preferable to use after removing B1), (B2) or (B3), a reducing agent, etc., and then dispersing in a desired medium. At this time, if the metal nanoparticle-containing composite is precipitated (dried), the (meth) acrylic polymer (B1) or (B2) which is a protective agent gradually from the surface of the metal nanoparticle as the medium disappears.
  • (B3) peels off and fusion of the metal nanoparticles proceeds, so that it is necessary to purify and concentrate at least in the presence of water so that these phenomena do not occur.
  • a specific purification method it is preferable to apply a method such as ultrafiltration or centrifugation.
  • a cross flow method using a flat membrane type or hollow fiber type module is a general industrial method, and the same applies to the present invention.
  • the purification may be performed in combination with an ultrafiltration method, a centrifugal separation method and other purification methods such as a precipitation method by adding a water-soluble solvent.
  • a centrifugal separation method such as a centrifugal separation method
  • other purification methods such as a precipitation method by adding a water-soluble solvent.
  • the dispersion of the metal nanoparticle-containing composite is composed of water and an organic solvent having a hydroxy group after being purified and concentrated in the presence of water without precipitating the metal nanoparticle-containing composite. It is obtained by dispersing in one or more solvents selected from the group. This dispersion makes it possible to adjust the concentration and change the solvent according to the purpose.
  • organic solvent having a hydroxy group examples include alcohols such as methanol, ethanol, isopropyl alcohol and n-propyl alcohol, and glycols such as ethylene glycol, propylene glycol, ethylene glycol monomethyl ether and propylene glycol monomethyl ether. It can be used alone, in combination of two or more, or in a mixture with water.
  • An aromatic hydrocarbon solvent is also a good dispersion medium for the metal nanoparticle composite, and examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, and the like.
  • the content of the metal nanoparticle-containing composite in the dispersion can be appropriately selected depending on the use of the dispersion, but is generally preferably 10 to 85% by mass, particularly at room temperature. From the standpoint of facilitating the heat treatment and improving the conductivity of the resulting metal film, it is preferable to adjust the content within the range of 20 to 70% by mass.
  • the metal nanoparticle-containing composite of the present invention is a metal nanoparticle-containing composite in which metal nanoparticles (A ′) having a particle diameter of 2 to 50 nm are coated with a (meth) acrylic polymer (B).
  • the (meth) acrylic polymer (B) has at least one functional group (b3) represented by —SR (where R is the same as described above) and polyethylene in the side chain.
  • At least one terminal is a functional group (b3) represented by —SR (R is the same as above), and polyethylene is present in the side chain. It may contain a (meth) acrylic copolymer having a glycol chain (b1) and a phosphate ester residue (b2) represented by —OP (O) (OH) 2 .
  • the metal nanoparticle (A ′) is obtained by the reduction reaction of the metal ion in the metal compound (A) described above, and the metal species is the same as the metal species in the metal compound (A) to be used.
  • the (meth) acrylic polymer (B) is a mixture of the aforementioned (meth) acrylic polymers (B1) and (B2), or a (meth) acrylic polymer (B3), and has a weight average molecular weight. Is preferably in the range of 3,000 to 10,000.
  • the content of the metal nanoparticles (A ′) in the metal nanoparticle-containing composite is preferably 90% by mass or more from the viewpoint that it can be suitably used as a conductive material.
  • the content is preferably -98% by mass.
  • the dispersion of the metal nanoparticle-containing composite of the present invention is obtained by dispersing the metal nanoparticle-containing composite in one or more solvents selected from the group consisting of water and an organic solvent having a hydroxy group. .
  • Dispersion in an organic solvent having no hydroxy group is possible as long as the solvent is replaced with an organic solvent having a hydroxy group once and the solvent is further changed.
  • the concentration is not particularly limited and can be set as appropriate according to the use and the like, but is preferably in the range of 10 to 85% by mass from the viewpoint of easy handling. Any of the aforementioned organic solvents having a hydroxy group can be used.
  • the method for producing the dispersion is preferably the above-described method from the viewpoint of efficiently obtaining a dispersion.
  • Metal film Applying the dispersion of the metal nanoparticle-containing composite of the present invention as it is, or applying various compositions containing the dispersion (coating composition, adhesive composition, water-based ink, etc.) to the substrate and drying.
  • a conductive metal film can be obtained.
  • a metal film includes the coating film coated extensively, the thing filled between joining parts, and the thin line
  • the base material that can be used at this time is not particularly limited. Since the dispersion of the metal nanoparticle-containing composite of the present invention does not require heating or solvent treatment for fusion, the substrate can be selected without further consideration for heat resistance and solvent resistance, It can be applied on various substrates and electrical wiring can be drawn. That is, the substrate is not limited, and materials such as thermoplastic resin, thermosetting resin, glass, paper, metal, and ceramics can be used.
  • thermoplastic resin examples include resins such as polyethylene terephthalate, polyethylene naphthalate, aromatic polyamide, polycarbonate, and thermoplastic polyimide, and compatibility with these is important from the viewpoint of flexibility.
  • thermosetting resin examples include a phenol resin, an epoxy resin, an unsaturated polyester, and a thermosetting polyimide resin.
  • the drying conditions after coating are not particularly limited as long as the volatile components in the dispersion or the composition containing the dispersion can be removed, and a conductive metal film can be obtained without heating or heating.
  • a conductive metal film can be obtained without heating or heating.
  • the dispersion of the metal nanoparticle-containing composite of the present invention obtained as described above when used as it is, it exhibits a volume resistivity of 50 ⁇ cm or less after drying at 1 to 30 ° C., and the metal The film has a property that was not observed in the composition containing conventional metal nanoparticles, that the film does not show an exothermic peak derived from fusion between metal nanoparticles by differential scanning calorimetry at ⁇ 20 to 150 ° C.
  • exothermic peak derived from the fusion between the metal nanoparticles is not shown means that, in the temperature range, the endotherm considered to be derived from the (meth) acrylic polymer as a protective agent (in a low temperature region of 10 to 30 ° C., This means that a clear peak of 1 J / g or more cannot be observed other than the endotherm considered to be caused by the glass transition of the (meth) acrylic copolymer.
  • the volume resistivity after 10 hours at 20 to 30 ° C. becomes 10 ⁇ cm or less, so that the dispersion obtained in the present invention proceeds with the fusion of the metal nanoparticles (A) only by leaving at room temperature.
  • Example 1 As means for confirming the fusion of the metal nanoparticles (A) at room temperature (20 to 30 ° C.), the present inventor further advanced the analysis using differential scanning calorimetry, small angle X-ray diffraction, and wide angle X-ray diffraction. .
  • a metal film using the composite dispersion obtained in Example 1 will be described as an example.
  • the particle size of the composite in this dispersion has a distribution of 10 to 50 nm (Fig. 3.1), but once dried, the particle size distribution becomes completely different. It was found that the distribution range was expanded to 100 nm or more at a stretch (Fig. 3.2). Moreover, this distribution shows a tendency to gradually spread over 12.5 hours (FIGS. 3.3 and 3.4), and the progress of fusion over time can be seen.
  • the silver nanoparticles immediately after the coating film formation had a crystallite diameter of 11 nm, but 12 nm in 6 hours and 15 nm in 12.5 hours. It grew to about 36% (Fig. 5). This indicates that the particles have an amorphous part (amorphous) even immediately after drying.
  • the -SR group and phosphate ester residue of the (meth) acrylic polymer which is a protective agent, strongly adsorbs to the surface of the metal nanoparticles in the dispersion, preventing aggregation and sedimentation and stabilizing small particle size particles.
  • FIG. 7 and 8 show a TEM image and an SEM image of a comparative silver nanoparticle-containing composite produced using a polymer compound that does not contain a phosphate ester residue.
  • FIG. 9.1 to FIG. 9.4 show the particle size distribution and the change with time by small-angle X-ray diffraction. I could't.
  • FIG. 10 shows the observation result by wide-angle X-ray diffraction, but the crystallite diameter is fixed, and no growth was observed.
  • the volume resistivity of the room temperature dry coating film obtained from this dispersion was only 9.2 ⁇ 10 0 ⁇ cm, and it did not show room temperature fusibility.
  • the use of the metal nanoparticle-containing composite of the present invention and the dispersion thereof is not particularly limited, but it is used to form a conductive film on a substrate or part that cannot be heated or heated. It is preferable.
  • organic solvents various resins, additives, coloring compounds such as dyes, fillers, etc., in combination and mixed within the range that does not impair the effects of the present invention. It is.
  • Metal nanoparticle-containing composite, dispersion, and metal film evaluation method [production of metal film for evaluation] About 0.5 mL of the dispersion was dropped approximately 1 cm from one end of a clean glass slide of 7.6 ⁇ 2.6 cm, and developed using a bar coater (# 8) to form a thin metal film. Or, take a few drops of the dispersion on a 7.6 ⁇ 2.6 cm piece of polyethylene naphthalate (PEN), polyethylene terephthalate (PET) and polyimide (PI), and apply a bar coater (No. 8) as above. A thin metal film was used. The produced metal film was air-dried at room temperature (25 ° C.) for 30 minutes and 1 day to obtain a room temperature dry metal film. Moreover, after 30 minutes of air drying, it heated for 30 minutes in a 100 and 150 degreeC hot-air dryer, and it was set as the baked metal film by each temperature.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PI
  • Cellophane tape was affixed to the metal film immediately after preparation on the glass plate by the above-mentioned method, and the metal film which was left to stand at room temperature for 6 hours and 12 hours and a half, and after being well pressed with a finger, the metal film was peeled off.
  • the metal film on the cellophane tape was measured using a RINT TTR2 type X-ray small angle scattering measuring device (50 kv, 300 mA, manufactured by Rigaku Corporation).
  • particle size measurement by dynamic light scattering method A part of the dispersion was diluted with purified water, and the particle size distribution and average particle size were measured with an FPAR-1000 type dense particle size analyzer (manufactured by Otsuka Electronics Co., Ltd.).
  • a film sample on which a metal thin film is formed is cut into small pieces of about 0.3 ⁇ 1 cm, embedded in a visible light curable resin (D-800 manufactured by JEOL Ltd.), and then a visible light irradiation device (ICI Japan).
  • LUX-SPOT LS-800 was used to cure by irradiation with light from two directions at room temperature for 30 seconds each time to obtain an embedded sample.
  • This embedded sample was cut in the direction including the cross section of the film sample using an ultramicrotome (Ultracut S manufactured by Leica Microsystems) equipped with a diamond knife for trimming (Cryotrim 45 ° manufactured by Diatom). A sample was obtained.
  • Example 1 [Synthesis of (meth) acrylic polymer (B3-1) containing methoxycarbonylethylthio group, phosphate ester residue, polyethylene glycol chain]
  • MEK methyl ethyl ketone
  • 20 parts of phosphooxyethyl methacrylate (Kyoeisha Chemical Co., Ltd.
  • a reducing agent solution comprising 463 g (4.41 mol) of 85% N, N-diethylhydroxylamine, the (meth) acrylic polymer (B3-1) obtained above (equivalent to 23.0 g of non-volatiles), and 1250 g of water was prepared.
  • a (meth) acrylic polymer (B3-1) equivalent to 11.5 g of non-volatiles was dissolved in 333 g of water, and a solution of 500 g (2.94 mol) of silver nitrate in 833 g of water was added thereto and stirred well. did.
  • the reducing agent solution was added dropwise to this mixture at room temperature (25 ° C.) over 2 hours.
  • the obtained reaction mixture was filtered with a membrane filter (pore diameter 0.45 micrometer), and the filtrate was in a hollow fiber type ultrafiltration module (MOLSEP module FB-02, manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000).
  • the amount of water corresponding to the amount of the filtrate flowing out was added at any time for purification. After confirming that the electric conductivity of the filtrate was 100 ⁇ S / cm or less, water injection was stopped and the filtrate was concentrated.
  • a dispersion of a silver nanoparticle-containing composite having a nonvolatile content of 36.7% (the dispersion medium is water) was obtained (742.9 g).
  • the average particle size of the composite by the dynamic light scattering method was estimated to be 39 nm and 10-40 nm from the TEM image (FIG. 1).
  • FIG. 2 The obtained SEM image of the film immediately after film formation is shown in FIG. 2, and the particle size distribution of silver nanoparticles in the film immediately after film formation obtained by small angle X-ray diffraction is shown in FIG. 3.3 and 3.4 are the particle size distributions after 6 hours and 12 and a half hours, respectively.
  • FIG. 3.1 is a particle size distribution of silver nanoparticles obtained by small-angle X-ray diffraction when in a solution state.
  • FIG. 4 shows the crystallite size of the dried product of the composite obtained above, measured over time by wide angle X-ray diffraction. According to this, growth of crystallite diameter with time was recognized.
  • FIG. 5 shows a differential scanning calorimetry chart.
  • An endothermic peak is observed in the low temperature range of 10 to 30 ° C. from the time of the first sweep, which is considered to be derived from the (meth) acrylic polymer (B3-1) which is a protective agent.
  • the phenomenon of the protective agent peeling at room temperature has not been reported so far.
  • the scanning range up to 200 ° C. no sharp exothermic peak corresponding to the fusion of silver nanoparticles was observed, and only a broad exotherm starting from about 70 ° C. was observed.
  • FIG. 6 shows an analysis chart when the upper limit of the first temperature increase is changed to 100, 150, and 180 ° C. It can be seen that the peak derived from the (meth) acrylic polymer (B3-1) appearing in the second sweep gradually increases as the initial upper limit temperature rises and converges to a peak around 30 ° C.
  • Example 2 [Synthesis of (meth) acrylic polymer (B3-2) containing 2- (2-ethylhexyloxycarbonyl) ethylthio group and phosphate residue] Instead of 4.1 parts of methyl mercaptopropionate in Example 1, 11.2 parts of mercaptopropionic acid 2-ethylhexyl were used, and the same procedure as in Example 1 was carried out, and (meth) having a nonvolatile content of 73.2% An aqueous solution of an acrylic polymer (B3-2) was obtained. The polymer had a weight average molecular weight of 4,100 and an acid value of 98.1 mgKOH / g.
  • a reducing agent solution consisting of 5.56 g (53.0 mmol) of 85% N, N-diethylhydroxylamine, the (meth) acrylic polymer (B3-2) obtained above (corresponding to 106 mg of non-volatile matter), and 15 g of water. was prepared. Separately, a (meth) acrylic polymer (B3-2) equivalent to 106 mg of non-volatiles was dissolved in 5 g of water, and a solution of 6.00 g (35.3 mmol) of silver nitrate dissolved in 10 g of water was added thereto and stirred well. did.
  • the reducing agent solution was added dropwise to this mixture at room temperature (25 ° C.) over 2 hours.
  • the obtained reaction mixture was filtered with a membrane filter (pore diameter 0.45 micrometer), and the filtrate was in a hollow fiber type ultrafiltration module (MOLSEP module HIT-1 type, manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000).
  • the amount of water corresponding to the amount of the filtrate flowing out was added at any time for purification.
  • water injection was stopped and the filtrate was concentrated.
  • a dispersion of a composite containing silver nanoparticles having a nonvolatile content of about 30% was obtained. This dispersion was applied to a glass slide using a bar coater (# 8) and dried at room temperature.
  • the volume resistivity of the film immediately after drying was 4.1 ⁇ 10 ⁇ 5 ⁇ cm.
  • Example 3 (Production of (meth) acrylic polymer (B3-3) containing 2,3-dihydroxypropylthio group and phosphate ester residue and silver nanoparticle-containing composite dispersion using the same)
  • aqueous solution of the polymer (B3-3) was obtained.
  • the polymer had a weight average molecular weight of 5,500 and an acid value of 95.1 mgKOH / g.
  • Example 4 [Production of (meth) acrylic polymer (B3-4) containing 2-hydroxyethylthio group and phosphate ester residue and silver nanoparticle-containing composite dispersion using the same] (Meth) acrylic polymer having a non-volatile content of 56.4%, except that 11.2 parts of 2-ethylhexyl mercaptopropionate in Example 2 was replaced with 2 parts of thioglycol, and the other operations were the same as in Example 2. An aqueous solution of (B3-4) was obtained. The weight average molecular weight was 6,700, and the acid value was 94.9 mgKOH / g.
  • Example 5 (Production of (meth) acrylic polymer (B3-5) containing a carboxymethylthio group and a phosphate ester residue, and a silver nanoparticle-containing composite dispersion using the same)
  • 2 parts of thioglycolic acid was used, and the other operations were carried out in the same manner as in Example 2 to produce a (meth) acrylic compound having a nonvolatile content of 65.1%.
  • An aqueous solution of the polymer (B3-5) was obtained.
  • the weight average molecular weight was 6,800, and the acid value was 92.1 mgKOH / g.
  • Example 6 (Production of (meth) acrylic polymer (B3-6) containing dodecylthio group and phosphate ester residue, and silver nanoparticle-containing composite dispersion using the same)
  • 6 parts of dodecyl mercaptan was used, and the other operations were carried out in the same manner as in Example 2 to produce a (meth) acrylic heavy polymer having a nonvolatile content of 77.7%.
  • An aqueous solution of the union (B3-6) was obtained.
  • the weight average molecular weight was 9,600, and the acid value was 97.0 mgKOH / g.
  • Example 7 [Production of copper nanoparticle-containing composite]
  • the (meth) acrylic polymer (B3-1) obtained in Example 1 (2.00 g in terms of solid content) was dissolved in 40 mL of water, and 10.0 g (50.09 mmol) of copper acetate hydrate was added. What was dissolved in 500 mL of water was added. An 80% aqueous hydrazine solution (about 160 mmol) was added dropwise over about 2 hours so that foaming occurred gently, and the mixture was further stirred for 1 hour at room temperature until the foaming stopped, to obtain a reddish brown solution.
  • Example 8 [Production of gold nanoparticle-containing composite]
  • the (meth) acrylic polymer (B3-1) obtained in Example 1 (0.102 g in terms of solid content) was dissolved in 5 mL of water, and 1.00 g of tetrachloroauric acid / trihydrate (2 .54 mmol) dissolved in 5 mL of water was added.
  • 5 mL of an aqueous solution of 1.81 g (20.31 mmol) of dimethylaminoethanol was added and stirred at room temperature for 2 hours to obtain a dark red solution. This was put into an ultrafiltration unit (Sartorius Stedim Vivaspin 20, 50,000 molecular weight cut off, 2 pieces) and filtered by centrifugal force (5800 G).
  • Example 9 [Reduction with Triethanolamine]
  • the (meth) acrylic polymer (B3-1) obtained in Example 1 (0.106 g in terms of solid content) was dissolved in 12 mL of water, to which 12 mL of 1 mol / L nitric acid was added, and then silver nitrate 6 A solution in which 0.000 g (35.3 mmol) was dissolved in 24 mL of water and 13.2 g (88.3 mmol) of triethanolamine were added and stirred at 60 ° C. for 2 hours to obtain a cloudy brown solution.
  • Example 10 [Reduction with 2-dimethylaminoethanol]
  • the (meth) acrylic polymer (B3-1) obtained in Example 1 (0.106 g in terms of solid content) was dissolved in 12 mL of water, to which 12 mL of 1 mol / L nitric acid was added, and then silver nitrate 6 A solution of 0.000 g (35.3 mmol) dissolved in 24 mL of water was added.
  • a solution prepared by dissolving 7.87 g (88.3 mmol) of 2-dimethylaminoethanol in 15 mL of water was slowly added dropwise to this solution at room temperature. After dropping, the mixture was stirred at room temperature for 3 days to obtain a cloudy brown solution.
  • Example 11 [Solvent Exchange 1 to Ethanol] 85% N, N-diethylhydroxylamine 5.55 g (53.0 mmol), (meth) acrylic copolymer (B3-1) obtained in Example 1 (corresponding to 106 mg of non-volatile matter), and 15 g of water A reducing agent solution was prepared. Separately, a (meth) acrylic polymer (B3-1) equivalent to 106 mg of a non-volatile material was dissolved in 5 g of water, and a solution obtained by dissolving 6.00 g (35.3 mmol) of silver nitrate in 10 g of water was added thereto and stirred well. did.
  • the above-mentioned reducing agent solution was added dropwise to the mixture over 2 hours under ice cooling.
  • the obtained reaction mixture is circulated in a hollow fiber type ultrafiltration module (MOLSEP module HIT-1 type, manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000), and an amount of water corresponding to the amount of the filtrate flowing out is supplied. It was added at any time for purification. After confirming that the electric conductivity of the filtrate was 100 ⁇ S / cm or less, water injection was stopped and the filtrate was concentrated to about 10 mL. While adding ethanol to the ultrafiltration system, an amount of ethanol corresponding to the amount of the filtrate flowing out was added at any time to perform solvent exchange.
  • Example 12 [Solvent exchange to ethanol 2] 100 g of the dispersion obtained in Example 1 was again circulated through the hollow fiber ultrafiltration module (MOLSEP module HIT-1-FUS-1582, manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000) and distilled. The amount of ethanol corresponding to the amount of filtrate to be added was added as needed to perform solvent exchange. This operation was continued until turbidity did not occur even when hexane was added to 1 part of the distillate, and about 200 mL was distilled further. When the ethanol dispersion was recovered, an ethanol dispersion of a silver nanoparticle-containing composite having a nonvolatile content of 30.4% was obtained (121 g).
  • MOLSEP module HIT-1-FUS-1582 manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000
  • the average particle size of the composite according to the dynamic light scattering method was 55 nm, and there was no change in the TEM image before the solvent exchange, and the particle size was estimated to be 10 to 40 nm.
  • a small amount of this dispersion was placed on a slide glass, developed with a No. 8 bar coater, and dried at room temperature.
  • the volume resistivity of the dried coating film was 2.2 ⁇ 10 ⁇ 5 ⁇ cm.
  • Example 13 [Solvent exchange to 2-propanol] In the same manner as in Example 12, except that about 15 g of the dispersion obtained in Example 1 was used and the solvent to be exchanged was 2-propanol, 2 of the composite containing silver nanoparticles having a nonvolatile content of 23.3% was obtained. A propanol dispersion was obtained. A small amount of this dispersion was placed on a slide glass, developed with a No. 8 bar coater, and dried at room temperature. The volume resistivity of the dried coating film was 5.3 ⁇ 10 ⁇ 5 ⁇ cm.
  • Example 14 [Solvent exchange from ethanol to toluene] 20 g of the ethanol dispersion obtained in Example 12 was placed in a 200 mL concentration flask, 50 mL of toluene was added, and the mixture was concentrated under reduced pressure using an evaporator set to a water bath temperature of 40 ° C. When the liquid volume reached approximately 20 mL, 50 mL of toluene was added again and concentrated under reduced pressure. This operation was repeated once more to obtain a toluene dispersion of a silver nanoparticle-containing composite having a nonvolatile content of 20.0%. A small amount of this dispersion was placed on a slide glass, developed with a No. 8 bar coater, and dried at room temperature. The volume resistivity of the dried coating film was 7.6 ⁇ 10 ⁇ 5 ⁇ cm.
  • Example 15 [Synthesis of (meth) acrylic polymer (B1-1) having carboxymethylthio group and polyethylene glycol chain] MEK (64 parts) was charged into a four-necked flask equipped with a thermometer, a stirrer and a reflux condenser, and the temperature was raised to 80 ° C. with stirring in a nitrogen stream. Next, 80 parts of methoxypolyethylene glycol methacrylate (PME-1000), 4.1 parts of mercaptoacetic acid, 80 parts of MEK, and a mixture of 0.5 parts of polymerization initiator V-65 and 5 parts of MEK were taken over 2 hours. And dripped.
  • PME-1000 methoxypolyethylene glycol methacrylate
  • MEK methoxypolyethylene glycol methacrylate
  • MEK methoxypolyethylene glycol methacrylate
  • a solution prepared by dissolving 500 g (2.94 mol) of silver nitrate in 833 g of water was added and stirred well.
  • the reducing agent solution was added dropwise to this mixture at room temperature (25 ° C.) over 2 hours.
  • the obtained reaction mixture was filtered with a membrane filter (pore diameter 0.45 micrometer), and the filtrate was in a hollow fiber type ultrafiltration module (MOLSEP module FB-02, manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000).
  • the amount of water corresponding to the amount of the filtrate flowing out was added at any time for purification. After confirming that the electric conductivity of the filtrate was 100 ⁇ S / cm or less, water injection was stopped and the filtrate was concentrated.
  • a dispersion of a composite containing silver nanoparticles having a nonvolatile content of 48.3% was obtained (561.7 g).
  • the average particle size of the composite by dynamic light scattering was estimated to be 49 nm, and 10 to 40 nm from the TEM image. It was 94.2 w / w% when the silver content in a non-volatile material was measured by the thermogravimetric analysis.
  • Example 16 [Solvent exchange to ethanol 2] The medium was converted to ethanol in the same manner as in Example 12 except that 100 g of the aqueous dispersion obtained in Example 15 was used. The obtained ethanol dispersion had a nonvolatile content of 26.5% (152 g). The average particle size of the composite by the dynamic light scattering method was 47 nm, and there was no change in the TEM image before the solvent exchange, and it was estimated to be 10 to 40 nm. A small amount of this dispersion was placed on a slide glass, developed with a No. 8 bar coater, and dried at room temperature. The volume resistivity of the dried coating film was 7.2 ⁇ 10 ⁇ 5 ⁇ cm.
  • Example 17 [Preparation of high concentration product]
  • the dispersion 558 g obtained in Example 1 was further circulated and concentrated in a hollow fiber type ultrafiltration module (MOLSEP module HIT-1-FUS-1582, manufactured by Daisen Membrane Systems Co., Ltd., molecular weight cut off 150,000).
  • a dispersion of a composite containing silver nanoparticles having a nonvolatile content of 73.6% was obtained (236 g).
  • the average particle size of the composite by the dynamic light scattering method was 43 nm, and there was no change in the TEM image before the concentration, and it was estimated to be 10 to 40 nm.
  • the silver content in the nonvolatile material was measured by thermogravimetric analysis, it was 94.1 w / w%.
  • Example 18 [Production of plastic substrate] Polyimide (PI) film (Toray DuPont Kapton 200V 200 ⁇ m), polyethylene naphthalate (PEN) film (Teijin DuPont) having a size of 7.6 ⁇ 22.6 cm using the dispersion obtained in Example 1 The film is taken on Teonex Q-65FA (100 ⁇ m) manufactured by Film Co., Ltd., polyethylene terephthalate (PET) film (Toyobo Co., Ltd., Toyobo Ester Film E5101 50 ⁇ m), developed and dried with a No. 8 bar coater, and surface resistivity (immediately after drying ( About 30 minutes after film formation) and 7 days later) were evaluated.
  • PI Polyimide
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • Example 19 [Production of plastic substrate by coating using gravure coater]
  • 2-propanol corresponding to 20% by weight and polyvinyl alcohol corresponding to 1.4% by weight of the solid content (Wako Pure Chemical Industries, Ltd., degree of polymerization about 500) were added.
  • the added coating solution was prepared, and this was applied by a small-diameter gravure coating machine (Hirano Techseed Co., Ltd.
  • Multicoater M200-L type coating speed 0.5 m / min, drying length 4.5 m, drying temperature, 85 ° C.
  • the coating was applied to a PET roll film (Toyobo Co., Ltd., Toyobo Ester Film E5101 50 ⁇ m, width 40 cm) and evaluated in the same manner as in Example 18. Even after 7 days, the adhesion was completely maintained. Furthermore, when this was immersed in 40 degreeC warm water for 4 hours, it confirmed that it was closely_contact
  • Comparative Example 1 [Synthesis of Comparative (Meth) acrylic Polymer (B′-1) Containing Hydroxyethylthio Group and Dimethylaminoethyl Group and Production of Silver Nanoparticle-Containing Complex Dispersion Using the Same] 70 parts of MEK was kept at 80 ° C. in a nitrogen stream, and while stirring, 10 parts of dimethylaminoethyl methacrylate, 9 parts of 4-hydroxybutyl acrylate, 81 parts of methoxypolyethylene glycol methacrylate (molecular weight 1000), 2 parts of thioglycol, MEK80 And a polymerization initiator (a mixture of 4 parts of “perbutyl O” was added dropwise over 2 hours.
  • a polymerization initiator a mixture of 4 parts of “perbutyl O” was added dropwise over 2 hours.
  • the comparative (meth) acrylic polymer (B′-1) (non-volatile matter equivalent to 0.73 g) obtained above was dissolved in 10 mL of water, and 5.00 g (29.4 mmol) of silver nitrate was dissolved in 20 mL of water. The dissolved one was added to this, and N, N-diethylhydroxylamine (3.94 g, 44.2 mmol), comparative (meth) acrylic polymer (B′-1) (non-volatile equivalent to 0.73 g) and water 100 g The solution consisting of was added dropwise over 3 hours. The obtained reaction mixture was filtered with an ultrafiltration unit (Sartorius Stedim Vivaspin 20, fractional molecular weight 100,000, 8).
  • FIG. 11.1 shows the particle size distribution of silver nanoparticles determined by small-angle X-ray scattering when in a dispersion. There was no significant difference between the dispersion and the metal film as described in Example 1. Further, no increase in the particle size distribution over time was observed.
  • FIG. 12 shows the crystallite diameter of the silver nanoparticles obtained in Comparative Example 1 measured over time by wide-angle X-ray diffraction. There was no growth of crystallite size over time as described in Example 1.
  • Comparative Example 2 Synthesis of Comparative (Meth) acrylic Polymer (B′-2) Containing No-SR and Phosphate Ester Residue and Production of Silver Nanoparticle-Containing Complex Dispersion Using the Same] While maintaining 70 parts of MEK at 80 ° C. in a nitrogen stream, 10 parts of dimethylaminoethyl methacrylate, 8 parts of 2-hydroxyethyl methacrylate, 80 parts of methoxypolyethylene glycol methacrylate (molecular weight 1000), MEK 80 parts, and a polymerization initiator A mixture of 4 parts of “perbutyl O”) was added dropwise over 2 hours.
  • the comparative (meth) acrylic polymer (B′-2) (0.578 g in terms of solid content) obtained above was dissolved in 12 mL of water, and 12 mL of 1 mol / L nitric acid was added thereto.
  • a solution prepared by dissolving 2.00 g (11.77 mmol) of silver nitrate in 35 mL of water was added thereto, and 8.78 g (58.85 mmol) of triethanolamine was added thereto, followed by stirring at 60 ° C. for 2.5 hours. When the reaction end point was confirmed, it was found that the reduction was slightly insufficient.
  • the obtained suspension was filtered through an ultrafiltration unit (Sartorius Stedim Vivaspin 20, fractional molecular weight 100,000, 4).
  • This dispersion was applied to a glass plate with a spin coater (coating thickness of about 0.3 ⁇ m) and air-dried. At this point, the film did not show a resistance value that could be measured with a low resistivity meter. It was the same even after baking at 150 ° C. for 30 minutes. Further, when baked at 180 ° C. for 30 minutes, a film having a volume resistivity of 8.7 ⁇ 10 ⁇ 4 ⁇ cm was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 特段の加熱焼成工程や、溶媒による保護剤除去工程を設けることなく、室温で乾燥するだけで実用上十分な低抵抗値を有する金属皮膜を形成できるような、金、銀、白金族、銅などの金属ナノ粒子とポリマーとの複合体、該複合体の分散液、それらの製造方法並びにこれを用いるプラスチック基板を提供する。ポリエチレングリコール鎖と、-OP(O)(OH)で表されるリン酸エステル残基を側鎖に有し、分子鎖の少なくとも片末端が-SR(Rはアルキル基など)で表される(メタ)アクリル系共重合体の存在下で、水性媒体中で金属イオンを還元させることで得られる金属ナノ粒子含有複合体の分散液は、これを基材に塗布した後、室温での乾燥のみでも導電性を有する皮膜を形成する。

Description

金属ナノ粒子含有複合体、その分散液、及びこれらの製造方法
 本発明は、液相還元法によって得られる金属ナノ粒子とポリマーとの複合体およびその分散液、並びにそれらの製造方法に関し、更に詳しくは、実質的な加熱操作を経ることなく、室温(1~30℃)での乾燥により、金属ナノ粒子表面から保護剤であるポリマーがはずれ、金属ナノ粒子が容易に融合し、10-5Ωcmオーダーの実用上十分な低体積抵抗率を示す金属皮膜を作製することが出来る、金属ナノ粒子とポリマーとの複合体、その複合体の分散液、それらの製造方法並びにそれらを用いて得られるプラスチック基板に関する。
 近年、ナノメートルレベルの金属微粒子(以下、金属ナノ粒子と称する。)が通常の塊状金属(金属バルク)とは異なる熱的、磁気的性質を示すことがあることが明らかとなり、これらの性質を利用した新規な反応や素材開発が盛んに行われている。例えば、通常の金粒子は非磁性であるが、数ナノメートルの金ナノ粒子には強磁性スピン偏極が現れることが知られている。また、塊状では化学的に不活性な金であるが、数ナノメートルの金クラスターにはルイス酸性が現れ、この性質に基づくカップリング反応や酸素分子の活性化による酸化触媒反応が盛んに研究されている。
 また、金属ナノ粒子は、一般的なミリメートルオーダーの金属粉末とは異なり、元素単体が示す融点より著しく低温で相互融着する性質を有する。例えば、銀の融点は960℃を超えるが、100nm以下の粒子径を有する銀ナノ粒子では、200℃以下の温度においても融着が進行するようになる。従って、これをインキ化・塗料化すれば、耐熱性の低い高分子フィルム上へも電子回路を印刷成形できる導電性塗料となりうる為、とりわけ注目されている素材である。
 低温融着現象を発現させるためには、金属の粒子径をなるべく小さく製造することが必要であり、この目的のため、真空蒸発法や、さまざまなコロイド保護剤の共存下において溶液状の金属化合物を還元する液相法の開発がなされてきた。後者においては生成する粒子の比表面積に応じた大量のコロイド保護剤がしばしば必要となるが、金属ナノ粒子上に残留する有機物は融着温度を高める要因となるため、その使用量は必要最小限に止める必要がある。しかしながら、コロイド保護剤を少なくすると、得られる金属ナノ粒子分散体が不安定になって保存中に凝集して粗粒化したり、沈殿が発生したりする不都合が生じやすい。
 例えば、銀ナノ粒子の分散液から金属塗膜を形成する場合、200℃以下の低温焼成を実現するためには、粒子上に残存するコロイド保護剤を5質量%以下に制御することが望ましく、これ以上であると200℃の焼成によっても10-5Ωcmレベルの低抵抗率を達成することが困難であることが知られている(例えば、特許文献1参照。)。従って、少量で金属ナノ粒子の安定分散を維持できるようなコロイド保護剤の選定が、低温焼成を実現する上での要点となる。このような努力にもかかわらず、10-5Ωcmレベルの低抵抗率を達成するためには、やはり塗工後に150℃以上の加熱焼成が必要となる場合がほとんどである。
 わずかに、国立大学法人大阪大学と財団法人大阪産業振興機構のグループが、ドデシルアミンで被覆された銀ナノ粒子のテトラデカン分散体から薄膜を作製し、その膜を極性溶剤に浸漬し、その溶剤中で金属ナノ粒子表面に配位したドデシルアミンを外した後、その膜を室温で乾燥することによって10-5Ωcmレベルの体積抵抗率を具現化した例がある(例えば、特許文献2参照。)。しかしながら、塗工物を予め極性溶剤に数時間浸漬して、保護剤を溶解除去する工程は、被塗工物(基板)上での導電性配線、導電性電極作製などの実装技術への応用には向いてない。また、極性溶剤に浸漬する工程では、基板と金属ナノ粒子との密着性は保証出来ず、金属ナノ粒子の基板からの脱落も避けられない。局所現象としての室温乾燥のみでの低抵抗率の発現は、実用性に欠けるものである。
特開2003-103158号公報 特開2008-072052号公報
 本発明が解決しようとする課題は、特段の加熱焼成工程や、溶媒による保護剤除去工程を設けることなく、室温で乾燥するだけで実用上十分な低抵抗値を有する金属皮膜を形成できるような、金、銀、白金族、銅などの金属ナノ粒子とポリマーとの複合体、該複合体の分散液、それらの製造方法並びにこれを用いるプラスチック基板を提供することにある。
 金属ナノ粒子を導電性材料として用いるには、それを分散液にしなければならない。従って、金属ナノ粒子は分散液中、凝集、融合、沈殿することなく、長期間の安定分散を保つことが必須条件である。しかし、一旦それを基板に塗布または印刷した後では、保護剤を外し、金属ナノ粒子間の十分な融合を引き起こさなければならない。分散液中での安定性を保つには、金属ナノ粒子表面は有機化合物で保護するしかない。一般的に、基板上に塗布/印刷した後の金属ナノ粒子薄膜には、保護剤が金属ナノ粒子を被覆したままであるので、金属ナノ粒子同士の融合は進まない。保護剤を外すには、加熱することがもっとも有効である。即ち、有機化合物保護剤を加熱分解または加熱脱離することである。本発明者らは、鋭意研究の結果、特定の官能基を含む保護剤の存在下で、金属化合物の水溶液に還元剤を添加して得られる金属ナノ粒子含有複合体が、溶剤中では長期間安定分散できると同時に、塗布後の室温での乾燥だけで、金属ナノ粒子同士が自発的に融合し、高導電性の薄膜になることを見出し、本発明を完成するに至った。
 即ち、本発明は、
(I)ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)を、
-SR(Rは、炭素数1~18のアルキル基、ベンゼン環上に置換基を有していても良いフェニル基、又は、ヒドロキシ基、炭素数1~18のアルコキシ基、炭素数1~18のアラルキルオキシ基、ベンゼン環上に置換基を有していても良いフェニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素数1~18の1価若しくは多価のアルキルカルボニルオキシ基及び炭素数1~18の1価若しくは多価のアルコキシカルボニル基からなる群から選ばれる1つ以上の官能基を有する炭素数1~8のアルキル基である。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B1)と、
-OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)を-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B2)と、を水性媒体中に溶解する工程、
(II)(I)で得られた水性溶液に金属化合物(A)又は金属化合物(A)の水性溶液を加える工程、
(III)(II)で得られた混合液に、還元剤(C)若しくは還元剤(C)の水性溶液、又は、前記(メタ)アクリル系重合体(B1)及び/又は前記(メタ)アクリル系重合体(B2)と還元剤(C)とを含有する水性溶液を滴下する工程、
を有することを特徴とする金属ナノ粒子含有複合体の製造方法並びに該複合体の分散液の製造方法を提供するものである。
 更に、本発明は、
(I’)ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)と、-OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)とを、-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B3)を水性媒体中に溶解する工程、
(II’)(I’)で得られた水性溶液に金属化合物(A)又は金属化合物(A)の水性溶液を加える工程、
(III’)(II’)で得られた混合液に、還元剤(C)若しくは還元剤(C)の水性溶液、又は、前記(メタ)アクリル系重合体(B1)、前記(メタ)アクリル系重合体(B2)及び前記(メタ)アクリル系重合体(B3)からなる群から選ばれる1種以上の(メタ)アクリル系重合体と還元剤(C)とを含有する水性溶液を滴下する工程、
を有することを特徴とする金属ナノ粒子含有複合体の製造方法並びに該複合体の分散液の製造方法を提供するものである。
 更に又、本発明は、粒子径が2~50nmの金属ナノ粒子(A’)が、(メタ)アクリル系重合体(B)で被覆されてなる金属ナノ粒子含有複合体であって、
前記(メタ)アクリル系重合体(B)が、少なくとも一つの末端が-SR(Rは、前記と同じである。)で表される官能基(b3)であり、且つ側鎖にポリエチレングリコール鎖(b1)を有する(メタ)アクリル系重合体(B1)と、
少なくとも一つの末端が-SR(Rは、前記と同じである。)で表される官能基(b3)であり、且つ側鎖に-OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリル系重合体(B2)と、を含有することを特徴とする金属ナノ粒子含有複合体と、これを水およびヒドロキシ基を有する有機溶剤からなる群から選ばれる1種以上の溶剤に分散してなる金属ナノ粒子含有複合体の分散液、並びにこれらをプラスチック基材に塗布して得られるプラスチック基板をも提供するものである。
 本発明の金属ナノ粒子複合体およびその分散液を用いることで、室温での乾燥のみで10-5~10-6Ωcmの体積抵抗率を有する金属皮膜を製造することができる。即ち、本発明によれば、金属ナノ粒子を含む分散液を塗工した後の焼成工程は不要または簡略化できるし、金属ナノ粒子を被覆している化合物を溶出除去する工程なども必要が無く、工程の大幅な効率化が達成できる。更に、耐熱性の乏しい基材上への金属皮膜形成も可能であることから、各種基材上への微細配線技術への応用も可能である。
実施例1で得られた金属ナノ粒子含有複合体分散液を電子顕微鏡観察用銅グリッドに滴下し、室温乾燥直後のTEM写真像である。 実施例1で得られた金属ナノ粒子含有複合体分散液をガラス板上に塗布し、室温乾燥して得られた皮膜のSEM写真像である。 実施例1で得られた金属ナノ粒子含有複合体分散液の小角X線回折により求めた金属ナノ粒子の粒径分布である。 実施例1で得られた金属ナノ粒子含有複合体分散液をガラス板上に塗布し、室温乾燥直後に得られた皮膜の小角X線回折により求めた金属ナノ粒子の粒径分布である。 実施例1で得られた金属ナノ粒子含有複合体分散液をガラス板上に塗布し、室温乾燥後、6時間経過してから得られた皮膜の小角X線回折により求めた金属ナノ粒子の粒径分布である。 実施例1で得られた金属ナノ粒子含有複合体分散液をガラス板上に塗布し、室温乾燥後、12時間半経過してから得られた皮膜の小角X線回折により求めた金属ナノ粒子の粒径分布である。 実施例1で得られた金属皮膜の広角X線回折法により求めた結晶子径の経時観察結果である。 実施例1で得られた金属皮膜の広角X線回折法により求めた結晶子径の経時観察結果を数値でまとめたものである。 実施例1で得られた金属ナノ粒子含有複合体の乾固物の示差走査熱量分析チャートである。 実施例1で得られた金属ナノ粒子含有複合体の乾固物の初回掃引を100℃、150℃及び180℃で行った示差走査熱量分析チャートである。 合成例1で得られたアクリル系共重合体の乾固物の示差走査熱量分析チャートである。 実施例18で得られたPETフィルム上の薄膜断面のSEM写真像である。 実施例19で得られたPETフィルム上の薄膜断面のSEM写真像である。 比較例1で得られた比較用金属ナノ粒子含有複合体分散液を電子顕微鏡観察用銅グリッドに滴下し、室温乾燥直後のTEM写真像である。 比較例1で得られた比較用金属ナノ粒子含有複合体分散液をガラス板上に塗布し、室温乾燥して得られた皮膜のSEM写真像である。 比較例1で得られた比較用金属ナノ粒子含有複合体分散液の小角X線回折により求めた金属ナノ粒子の粒径分布である。 比較例1で得られた比較用金属ナノ粒子含有複合体分散液をガラス板上に塗布し、室温乾燥直して得られた皮膜の小角X線回折により求めた金属ナノ粒子の粒径分布である。 比較例1で得られた比較用金属ナノ粒子含有複合体分散液をガラス板上に塗布し、室温乾燥後、6時間経過してから得られた皮膜の小角X線回折により求めた金属ナノ粒子の粒径分布である。 比較例1で得られた比較用金属ナノ粒子含有複合体分散液をガラス板上に塗布し、室温乾燥後、12時間半経過してから得られた皮膜の小角X線回折により求めた金属ナノ粒子の粒径分布である。 比較例1で得られた金属皮膜の広角X線回折法により求めた結晶子径の経時観察結果である。 比較例1で得られた金属皮膜の広角X線回折法により求めた結晶子径の経時観察結果を数値でまとめたものである。
 以下、本発明について詳述する。本発明者は、金属ナノ粒子の合成に際し、良好な保護剤が保有すべき官能基について、よく知られているR.G.Pearsonの考案したHSAB原理に立脚して考察した。これによれば、イオウ含有基およびリン酸基はソフトな塩基、銀イオンはソフトな酸として、また銀粒子のような還元金属もソフトな酸として整理分類されている。イオウ含有基およびリン酸基はソフトな塩基、銀イオンのような還元金属はソフトな酸として整理分類されている。これらは相互に親和性が高く、安定な結合を形成する傾向が強いので、還元反応場においては、これら官能基が金属イオンとごく近接した状態になると考えられ、また、生成した金属表面に対しても強いアンカー効果を発揮し、粒子成長を抑制して微粒子を形成するとともに、金属ナノ粒子を含有するコロイド溶液の安定化にも寄与すると予想した。
 イオウ含有基としてはチオール基が最も汎用されているが、金属表面に対しては親和性が高すぎる傾向がある上、銀粒子を調製する場合には硫化物形成により黒化を起こす懸念がある。そこで、イオウ含有基としては-SR(Rは、炭素数1~18のアルキル基、ベンゼン環上に置換基を有していても良いフェニル基、又は、ヒドロキシ基、炭素数1~18のアルコキシ基、炭素数1~18のアラルキルオキシ基、ベンゼン環上に置換基を有していても良いフェニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素数1~18の1価若しくは多価のアルキルカルボニルオキシ基及び炭素数1~18の1価若しくは多価のアルコキシカルボニル基からなる群から選ばれる1つ以上の官能基を有する炭素数1~8のアルキル基である。)で表される官能基(b3)〔以下、スルフィド型イオウ官能基(b3)ということがある。〕を、リン酸基としては-OP(O)(OH)で表されるリン酸エステル残基(b2)を有するものが入手しやすく良好と考えた。
 更に、保護剤中には、ポリエチレングリコールを分散安定化の溶媒和向上のための官能基として組み入れた。この様な保護剤を用いることで得られた金属ナノ粒子含有複合体において、水性媒体に分散された状態では、スルフィド型イオウ官能基とリン酸エステル残基とは何れもソフトな配位子であり、それらは金属ナノ粒子表面に配位的に結合することができる。しかし、その結合というのは、固定された結合ではなく、高速の動的平衡状態での結合である。即ち、スルフィド型イオウ官能基とリン酸エステル残基とは金属ナノ粒子の表面に配位したり、脱配位したりする結合状態を形成する。その際、同一分子内のポリエチレングリコール鎖は、スルフィド型イオウ官能基とリン酸エステル残基とに連動し、金属ナノ粒子表面に吸着したり、外れたりするが、吸着した状態では、立体排斥機能を発揮するため、金属ナノ粒子同士の融合を防ぐことができる。溶液中のこのような状態は、水性の媒体が除去されることより崩れ、脱配位した保護剤は自分同士で会合し、金属ナノ粒子と相分離を引き起こす。そのため、乾燥状態では、金属ナノ粒子を覆う保護剤は少なく、多くの金属ナノ粒子表面は露出状態になる。この露出された表面では、金属ナノ粒子同士の融合が進行し、結果的には皮膜状の導体となると考えられる。これは、本発明が室温で導電性皮膜を形成する構造的モデルである。
 又、室温で融着が可能な金属ナノ粒子複合体やその分散液、並びにこれを用いて得られる金属皮膜について考慮した結果、下記のような物理化学的性質を具備することが必要であると推定した。
・小角X線散乱法により、液状と、これを室温で乾燥塗膜とした時の粒子径分布を比較した時、両者の間に大きな差異が発生すること。
・広角X線回折法を用いて室温乾燥した粒子の結晶子径を測定した時、経時的に該結晶子径が成長する特性を有すること。
・室温乾燥した固体の示差走査熱量分析において、200℃までの昇温分析においては、融点に相当するピーク状の発熱を観測できないこと。
 後記するように、本発明の金属ナノ粒子含有複合体、その分散液並びにこれらを用いて得られる金属皮膜においては、上記した3つの物理化学的性質を兼備していることを確認しており、室温(~30℃)での融着が進行していることの確証を得ている。このことは、従来、高分子顔料分散剤として知られていた化合物を金属ナノ粒子に展開するような発想のみでは為し得なかったことである。
〔金属ナノ粒子含有複合体の製造方法〕
 本発明の金属ナノ粒子含有複合体の第一の製造方法は、
(I)ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)を、
-SR(Rは、炭素数1~18のアルキル基、ベンゼン環上に置換基を有していても良いフェニル基、又は、ヒドロキシ基、炭素数1~18のアルコキシ基、炭素数1~18のアラルキルオキシ基、ベンゼン環上に置換基を有していても良いフェニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素数1~18の1価若しくは多価のアルキルカルボニルオキシ基及び炭素数1~18の1価若しくは多価のアルコキシカルボニル基からなる群から選ばれる1つ以上の官能基を有する炭素数1~8のアルキル基である。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B1)と、
-OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)を-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B2)と、を水性媒体中に溶解する工程、
(II)(I)で得られた水性溶液に金属化合物(A)又は金属化合物(A)の水性溶液を加える工程、
(III)(II)で得られた混合液に、還元剤(C)若しくは還元剤(C)の水性溶液、又は、前記(メタ)アクリル系重合体(B1)及び/又は前記(メタ)アクリル系重合体(B2)と還元剤(C)とを含有する水性溶液を滴下する工程、
を有することを特徴とする。
 第二の製造方法は、
(I’)ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)と、-OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)とを、-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B3)を水性媒体中に溶解する工程、
(II’)(I’)で得られた水性溶液に金属化合物(A)又は金属化合物(A)の水性溶液を加える工程、
(III’)(II’)で得られた混合液に、還元剤(C)若しくは還元剤(C)の水性溶液、又は、前記(メタ)アクリル系重合体(B1)、前記(メタ)アクリル系重合体(B2)及び前記(メタ)アクリル系重合体(B3)からなる群から選ばれる1種以上の(メタ)アクリル系重合体と還元剤(C)とを含有する水性溶液を滴下する工程、
を有することを特徴とする。
 本発明において、金属ナノ粒子は、ナノメートルオーダー、特には2~50nmの粒子径を有するものを言う。金属ナノ粒子の平均粒子径は、後述する分散液としたときの一滴を電子顕微鏡観察用ホルムバール膜付銅グリッドに滴下し、これをJEM-2200FS型透過型電子顕微鏡(200kv、日本電子株式会社製、以下TEMと略記する。)にて観察し、得られた写真像から任意の粒子を100個取り出し、それらの粒子径の平均として求めた。従って、金属ナノ粒子は完全な球体であることを必要とせず、また楕円状に観測された場合にはその最も長い径をもって該粒子の粒子径としている。
 前記の第一の製造方法で得られる金属ナノ粒子含有複合体、第二の製造方法で得られる同複合体共に、(メタ)アクリル系重合体が金属ナノ粒子を水性媒体中で安定化する保護剤の働きをするものであって、前述のように該(メタ)アクリル系重合体中にスルフィド型イオウ官能基、リン酸エステル残基、及びポリエチレングリコール鎖が存在するように設計したものである。スルフィド型イオウ官能基は重合体の末端に存在し、リン酸エステル残基とポリエチレングリコール鎖は、(メタ)アクリル系重合体の側鎖として存在している。第一の製造方法では、このリン酸エステル残基とポリエチレングリコール鎖とは別々の分子中に存在しており、第二の製造方法では、同一分子内に存在する共重合体をも含んでいる。
 前記第一及び第二の製造方法において、保護剤である(メタ)アクリル系重合体の原料として用いるポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)としては、重合度2~50のポリエチレングリコール、エチレンオキシドとしての繰り返し単位数が2~50のエチレンオキシドとプロピレンオキシドとのブロック共重合体等の(メタ)アクリレート(以後この表現はアクリレートとメタクリレートの両方を総称するものとする。)、若しくは末端が炭素数1~6のアルキル基によってキャップされた重合度2~50のポリエチレングリコール、エチレンオキシドとしての繰り返し単位数が2~50のエチレンオキシドとプロピレンオキシドとのブロック共重合体等の(メタ)アクリレート等が挙げられる。また、市販品としては、新中村化学工業株式会社社製NKエステルM-20G、M-40G、M-90G、M-230G、M-450G、AM-90G、1G、2G、3G、4G、9G、14G、23G、9PG、A-200、A-400、A-600、APG-400、APG-700、日本油脂株式会社社製ブレンマーPE-90、PE-200、PE-350、PME-100、PME-200、PME-400、PME-4000、70FEP-350B、55PET-800、50POEP-800B、NKH-5050、PDE-50、PDE-100、PDE-150、PDE-200、PDE-400、PDE-600、AP-400、AE-350、ADE-200、ADE-400等が挙げられる。これらは単独でも2種以上を併用して用いても良い。
 又、-OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)としては、例えば、共栄社化学株式会社製ライトエステルP-1M、ユニケミカル株式会社製ホスマーM、ホスマーPE等が市販モノマーとして挙げられるが、(メタ)アクリル酸ヒドロキシエステルと、オキシ塩化リンやジクロロリン酸フェニルのようなリン酸エステル化試薬を反応させることにより、任意の構造の(メタ)アクリル酸エステルホスファートを容易に得ることが出来るので、これらを用いることも可能である。これらは単独でも2種以上を併用して用いても良い。
 本発明において、(メタ)アクリル系重合体を合成する際に-SR(Rは前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)を用いることにより、得られる(メタ)アクリル系重合体の末端に当該官能基(b3)を導入することができる。即ち、(メタ)アクリル系共重合体(B)をラジカル重合によって製造する際に、-SR(Rは前記と同じである。)で表される構造を有する連鎖移動剤(x3)、例えば、各種のチオール化合物(アルカンチオール類、チオールアルコール類、チオールカルボン酸、チオールエステル類)を用いることが必須である。
 前記官能基(b3)として、炭素原子数1~18のアルキル基としては、直鎖状であっても分岐状であっても良く、又脂環式構造を有するものであっても良く、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基、デシル基、ドデシル基等のアルキル基が挙げられる。中でもオクチル基、デシル基、ドデシル基は、金属表面に対する吸着効果とチオール化合物の揮発性の低さ(臭気の低さ)の面から好ましい。
 また、前記官能基(b3)のうち、ヒドロキシ基、炭素数1~18のアルコキシ基、炭素数1~18のアラルキルオキシ基、ベンゼン環上に置換基を有していても良いフェニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素数1~18の1価若しくは多価のアルキルカルボニルオキシ基及び炭素数1~18の1価若しくは多価のアルコキシカルボニル基からなる群から選ばれる1つ以上の官能基を有する炭素数1~8のアルキル基とは、具体的には、2-ヒドロキシエチル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、8-ヒドロキシオクチル基、2,3-ジヒドロキシプロピル基、2-メトキシエチル基、2-エトキシエチル基、2-ヘキシルオキシエチル基、2-(2-エチルヘキシルオキシ)エチル基、2-ベンジルオキシエチル基、2-(4-メトキシベンジルオキシ)エチル基、2-フェニルオキシエチル基、2-(4-メトキシフェニルオキシ)エチル基、2-(2,4-ジメトキシフェニルオキシ)エチル基、6-(4-ヒドロキシメチルフェニルオキシ)ヘキシル基、2-アセトキシエチル基、2-ヘプタノイルオキシエチル基、2-オクタノイルオキシエチル基、2-オクタデカノイルオキシエチル基、2-イソブチリルオキシエチル基、2-ピバロイルオキシエチル基、カルボキシメチル基、2-カルボキシエチル基、7-カルボキシヘプチル基、1-カルボキシエチル基、1,2-ジカルボキシエチル基、およびこれらカルボン酸の無機塩、アンモニウム塩および有機アミンの塩、メトキシカルボニルメチル基、エトキシカルボニルメチル基、オクチルオキシカルボニルメチル基、2-(メトキシカルボニル)エチル基、2-(オクチルオキシカルボニル)エチル基、2-(ドデシルオキシカルボニル)エチル基、2-(2-(メトキシエトキシ)カルボニル)エチル基、2-(メトキシエトキシエトキシカルボニル)エチル基、2-(4-メトキシブトキシカルボニル)エチル基、2-(2-エチルヘキシルオキシカルボニル)メチル基、2-(2-エチルヘキシルオキシカルボニル)エチル基、2-(3-メトキシブトキシカルボニル)エチル基などが挙げられる。
 これらの中でも入手の容易さ、得られる金属ナノ粒子の導電性と皮膜を形成した時の平滑性の観点から、2-(メトキシカルボニル)エチル基、2-(2-エチルヘキシルオキシカルボニル)エチル基、2,3-ジヒドロキシプロピル基、2-ヒドロキシエチル基、カルボキシメチル基であることが好ましい。
 本発明で用いることができる連鎖移動剤(x3)の具体的化合物としては、例えば、チオグリコール、2-メルカプトプロパノール、3-メルカプトプロパノール、8-メルカプトオクタノール、2,3-ジヒドロキシプロパンチオール、2-メトキシエタンチオール、2-エトキシエタンチオール、2-ヘキシルオキシエタンチオール、2-(2-エチルヘキシルオキシ)エタンチオール、2-ベンジルオキシエタンチオール、2-(4-メトキシベンジルオキシ)エタンチオール、2-フェニルオキシエタンチオール、2-(4-メトキシフェニルオキシ)エタンチオール、2-(2,4-ジメトキシフェニルオキシ)エタンチオール、6-(4-ヒドロキシメチルフェニルオキシ)ヘキサンチオール、2-アセトキシエタンチオール、2-ヘプタノイルオキシエタンチオール、2-オクタノイルオキシエタンチオール、2-オクタデカノイルオキシエタンチオール、2-イソブチリルオキシエタンチオール、2-ピバロイルオキシエタンチオール、チオグリコール酸、β-メルカプトプロピオン酸、7-メルカプトオクタン酸、2-メルカプトプロピオン酸、2-メルカプトコハク酸、及びこれらカルボン酸の無機塩、アンモニウム塩及び有機アミンの塩、チオグリコール酸メチル、チオグリコール酸エチル、チオグリコール酸オクチル、β-メルカプトプロピオン酸エチル、β-メルカプトプロピオン酸オクチル、β-メルカプトプロピオン酸ドデシル、β-メルカプトプロピオン酸-2-(メトキシエチル)、β-メルカプトプロピオン酸-2-(メトキシエトキシエトキシ)、β-メルカプトプロピオン酸-2-(4-メトキシブトキシ)、チオグリコール酸-2-エチルヘキシル、β-メルカプトプロピオン酸-2-エチルヘキシル、β-メルカプトプロピオン酸-3-メトキシブトキシ等が挙げられ、単独でも2種以上を併用しても良い。これらの中でもチオグリコール、2,3-ジヒドロキシプロパンチオール、チオグリコール酸、β-メルカプトプロピオン酸、β-メルカプトプロピオン酸エチル、β-メルカプトプロピオン酸2-エチルヘキシルが、反応性、入手容易さおよび皮膜化した時の面平滑性の点から好ましい。
 本発明において、保護剤として用いる(メタ)アクリル系重合体(B1)、(B2)、(B3)共に、ゲルパーミュレーションクロマトグラフィーを用い、ポリスチレン換算値として求められる重量平均分子量としては、小さすぎると金属ナノ粒子を微粒子の状態で保持する際のその能力が不足し、分散液として保存中に金属ナノ粒子同士の融着が進行してしまうことがあり、大きすぎると、分散液中で複合体の沈殿等が生じる可能性がある観点から、3,000~10,000の範囲であることが好ましく、特に4,000~8,000の範囲であることが好ましい。このため、一般的にラジカル重合でアクリル系重合体を合成するときに使用される連鎖移動剤の使用量よりも、本発明では多めに使用することが好ましい。
 前記連鎖移動剤(x3)の使用量として具体的には、原料として用いる(メタ)アクリレート系モノマーの合計モル数に対して0.05~0.5倍モルの範囲であることが好ましく、より好ましい範囲は0.08~0.3倍モルの範囲である。
 また、本発明において保護剤として機能する(メタ)アクリル系重合体中のポリエチレングリコール鎖(b1)、リン酸エステル残基(b2)、スルフィド型イオウ官能基(b3)の存在比率としては、複合体の分散状態での保存安定性と、室温での融着性とを良好に兼備できる点から、ポリエチレングリコール鎖:リン酸エステル残基:スルフィド型イオウ官能基=1.0~15.0:0.3~5.0:1.0の存在比率であることが好ましく、また、より好ましくは、2.0~10.0:0.5~3.0:1.0の存在比率であることが好ましい。
 従って、第一の製造方法においては、メタ(アクリル)系重合体(B1)と(メタ)アクリル系重合体(B2)との混合割合としては、一般的に20/1~1/1(モル比)の範囲であり、好ましくは20/1~2/1の範囲であり、最も好ましくは、20/1~10/1の範囲である。
 また、第二の製造方法においては、原料として用いる前記ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)と前記リン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)との使用割合としては、(x1)/(x2)で表されるモル比で1/2~10/1の範囲であることが好ましく、特に2/3~7/1の範囲で用いることが好ましい。
 又、本発明で用いるアクリル系重合体(B1)、(B2)または(B3)としては、前述の官能基を必須とすればよく、本発明の効果を損なわない範囲において、その他の官能基等を同時に有していても良い。即ち、アクリル系モノマーの共重合体として得る場合には、前述のモノマー(x1)、(x2)以外の、ラジカル重合性モノマー(x)を併用しても良い。
 前記その他のラジカル重合性モノマー(x)としては、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、スルホエチル(メタアクリレート)等が挙げられる。これらのその他のラジカル重合性モノマー(x)を併用する場合には、その使用割合を、全モノマーに対して10モル%以下で用いることが好ましい。
 第二の製造方法においては、(メタ)アクリル系重合体(B3)は、ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)の単独重合体である(メタ)アクリル系重合体(B1)、リン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)の単独重合体である(メタ)アクリル系重合体(B2)、及びポリエチレングリコール鎖(b1)とリン酸エステル残基(b2)とを側鎖に有する(メタ)アクリル系共重合体の混合物となっている。この混合物の中から、(メタ)アクリル系共重合体のみを分離精製して以下の工程に供しても良いが、精製に係る時間・コスト等を考慮すると、混合物のまま、以下の工程に用いることが好ましい。
 前記工程(I)における(メタ)アクリル系重合体(B1)と(メタ)アクリル系重合体(B2)との混合物を水性媒体中に溶解させる際の濃度、又は工程(I’)における(メタ)アクリル系重合体(B3)の濃度としては、均一溶解性の観点と、工程(III)又は(III’)、すなわち金属イオンの還元反応により金属ナノ粒子の生成工程における該還元反応の進行が穏やかであり、粒径のそろった金属ナノ粒子が生成しやすい観点から、3~15質量%に調整することが好ましい。尚、ここで用いる水性媒体は、水単独の他に、(メタ)アクリル系重合体(B1)、(B2)又は(B3)の溶解性を調整するために水と任意に混合することができる各種有機溶剤、好ましくはアルコール類、水溶性エーテル類、水溶性ケトン類、カルボキシアミド類、ホスホロアミド類、スルホキシド類等を水と混合して用いることもできる。
 又、工程(I)又は(I’)において、前記リン酸エステル残基(b1)が、水性媒体中で効果的に生成する金属ナノ粒子表面へ結合することができ、該金属ナノ粒子の粒子径の生長を制御しやすくするために、有機アミン類を添加することもできる。特に高濃度で反応を行う場合には、該有機アミン類を添加することが好ましい。
 前記有機アミン類としては、例えば、トリエチルアミン、ブチルアミン、ジブチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン等が挙げられ、単独でも2種以上を併用しても良い。添加量としては、用いる(メタ)アクリル系重合体(B1)と(メタ)アクリル系重合体(B2)との混合物又は(メタ)アクリル系重合体(B3)の実測酸価に対して0.5~2当量の範囲であることが好ましい。
 前記工程(II)および(II’)は、工程(I)又は(I’)で得られた(メタ)アクリル系重合体の水性溶液に、還元反応によって金属ナノ粒子(A’)を生成しうる金属化合物(A)又は金属化合物(A)の水性溶液を加える工程である。尚、水性溶液とは、前記した水性媒体に溶解した溶液を言うものである。
 金属化合物(A)における金属種としては、還元反応によってナノ粒子となり、前述の(メタ)アクリル系重合体(B1)と(B2)の混合物、または(メタ)アクリル系重合体(B3)で保護できるものであれば良く、特に限定されるものではない。原料の入手容易性、並びに得られる金属ナノ粒子含有複合体やその分散液の導電性材料としての有用性の観点からは、金、銀、銅および白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、および白金)であることが好ましく、銀、金、白金、パラジウム、ルテニウム、ロジウム、銅であることがより好ましく、銀、金、白金または銅であることが最も好ましい。
 金属化合物(A)としては、各種の塩や酸化物を用いることが出来るが、溶解性の点から、酢酸塩、硝酸塩、硫酸塩、塩化物、アセチルアセトナート等が好例として挙げられる。中でも硝酸塩または酢酸塩が好ましい。ただし、不溶性の化合物であっても錯化剤としてアンモニア、アミン化合物、ヒドラジン類、ヒドロキシルアミン類のように金属イオンに配位して溶解性のある錯化合物を形成できる場合には、金属酸化物のような不溶性化合物も使用することができる。
 例えば金属元素が金、白金族の場合は、テトラクロロ金酸、テトラクロロ白金酸、硝酸パラジウム、酢酸パラジウム、塩化パラジウム、酸化パラジウム、硫酸パラジウム等を用いることが出来る。また金属種が銅の場合は、Cu(OAc)、Cu(NO、CuCl、Cu(HCOO)、Cu(CHCOO)、Cu(CHCHCOO)、CuCO、CuSO、CCuOのほか、カルボン酸塩を加熱して得られる塩基性塩、たとえばCu(OAc)・CuOも同様に用いることができる。金属種が銀の場合は、硝酸銀、酸化銀、酢酸銀、塩化銀、硫化銀などを用いることができるが、水溶液として取り扱う場合には硝酸銀が、その溶解度の点で好ましい。
 金属化合物(A)の使用割合としては、特に限定されるものではないが、工程(I)又は(I’)で調整した(メタ)アクリル系重合体(B1)と(B2)の混合物、または(メタ)アクリル系重合体(B3)の水性溶液中における該重合体の合計質量に対して、3~15質量%の範囲になるようにすることが好ましい。又、金属化合物(A)の濃度としては、用いる金属化合物の水性媒体への溶解性によって適宜設定できるが、一般的には5~20質量%の範囲に調整しておくことが、取り扱いの容易さと、反応器の容積効率の点から好ましい。
 前記工程(III)又は(III’)は、金属イオンの還元反応である。還元反応を穏やかに進行させ、もって生成する金属ナノ粒子を安定化させることを目的として、予め還元剤(C)を水性溶液にしておいても良く、また、還元剤(C)と(メタ)アクリル系重合体(B1)、(B2)、または(B3)とを混合した水性溶液として用いても良い。これらを工程(II)又は(II’)で調整した水性溶液に滴下して混合することにより、還元反応が進行する。
 還元剤(C)として用いることができる化合物は、特に限定されるものではない。例えば、無機還元剤としては、ヒドラジン及びヒドロキシルアミンが挙げられる。また有機還元剤としてはN,N-ジアルキルヒドロキシルアミン等のヒドロキシルアミン系化合物類、N,N-ジアルキルヒドラジン等のヒドラジン系化合物類、ハイドロキノン、アミノフェノール等のフェノール類およびフェニレンジアミン類、2-ヒドロキシアセトン、2-ヒドロキシヘキサン-1,3-ジオン、リンゴ酸等のヒドロキシケトン類やヒドロキシカルボン酸類、及びアスコルビン酸や2,3-ジヒドロキシマレイン酸等のエンジオール類を用いることが出来る。また、貴金属化合物の還元には、無電解めっき法において還元剤として用いられるトリエタノールアミンのようなアミノアルコール類やアミン化合物も使用することが出来る。
 予め用意する還元剤と(メタ)アクリル系重合体(B1)、(B2)または(B3)との混合溶液において、媒体は水単独であることが好ましい。又、還元剤の使用量としては、滴下完了時に金属イオンを還元できる量であれば良く、一般的に金属イオンのモル数に対して1~10倍モル使用することが好ましい。また、(メタ)アクリル系重合体(B1)、(B2)または(B3)の使用割合としては、還元金属の理論収量に対して、1~50重量%の範囲であることが好ましい。
 還元剤を添加する速度としては、特に限定されるものではなく、金属種に対する還元剤の還元能力に応じて調節すればよい。還元力の高い還元剤は、希釈してゆっくり添加すれば粒度分布の狭い粒子が得られ都合がよい。この場合、生産性の観点からは0.5時間から3時間の範囲で滴下を完了することが望ましい。また、加熱することで反応が進行するような温和な還元剤を用いる場合には、一気に添加する処方であっても良い。
 添加終了後、還元反応を完結させ、生成した金属ナノ粒子の保護を確実とするためには、更に攪拌を行なうことが好ましい。攪拌の方法としては特に限定されるものではなく、又攪拌時間としても限定されない。
 前述の工程を経ることにより、金属ナノ粒子含有複合体が得られる。このとき、当該複合体中における金属ナノ粒子の含有率は、90質量%以上のものが得られ、特に導電性材料として好適に用いることが可能な、該含有率が92~98質量%のものも容易に得ることができる。また、金属ナノ粒子の平均粒子径としては2~50nmのものを得ることができる。
 ここで得られた金属ナノ粒子含有複合体を導電材料として用いるためには、副生成物である夾雑イオンや、金属ナノ粒子の保護(被覆)に関与していない(メタ)アクリル系重合体(B1)、(B2)又は(B3)、還元剤等を除去し、引き続き所望の媒体中に分散させてから使用することが好ましい。このとき、金属ナノ粒子含有複合体を析出(乾燥)させてしまうと、媒体の消失に伴って徐々に金属ナノ粒子表面から保護剤である(メタ)アクリル系重合体(B1)、(B2)又は(B3)が剥がれると共に、金属ナノ粒子同士の融着が進行してしまうので、これらの現象が起こらないように、少なくとも水の存在下で精製・濃縮することが必要である。具体的な精製方法としては、限外濾過、遠心分離等の方法を適用することが好ましい。
 限外濾過法の具体的手段としては、特に限定されるものでない。平膜型または中空糸型モジュールを用いたクロスフロー方式が工業的方法としては一般的であり、本発明の場合も同様である。
 又、限外濾過法と、遠心分離法およびそのほかの精製法、例えば、水溶性溶剤を添加することによる沈殿法などと組み合わせて精製を行なっても良い。但し、本発明の複合体は室温において乾燥することにより容易に融着が進行する点から、媒体を完全に除去する工程を含ませない方が良い。
 金属ナノ粒子含有複合体の分散液は、前述のように、金属ナノ粒子含有複合体を析出させずに、少なくとも水の存在下で精製・濃縮し、その後水及びヒドロキシ基を有する有機溶剤からなる群から選ばれる1種以上の溶剤に分散することによって得られる。この分散液は、目的に応じて濃度調整や溶剤の変更を可能とする。
 前記ヒドロキシ基を有する有機溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール等のアルコール類、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のグリコール類等を挙げることができ、単独でも、2種以上を混合して用いても、又水と混合して用いても良い。また、芳香族炭化水素溶剤も金属ナノ粒子複合体のよい分散媒であり、前記芳香族炭化水素溶剤としては、たとえば、ベンゼン、トルエン、キシレン等を挙げることができる。
 分散液中の金属ナノ粒子含有複合体の含有率としては、当該分散液の用途によって適宜選択できるものであるが、一般的には10~85質量%であることが好ましく、特に室温での乾燥が容易である点と、得られる金属皮膜の導電性が良好になる観点から、20~70質量%の範囲に調整することが好ましい。
〔金属ナノ粒子含有複合体及びその分散液〕
 本発明の金属ナノ粒子含有複合体は、粒子径が2~50nmの金属ナノ粒子(A’)が、(メタ)アクリル系重合体(B)で被覆されてなる金属ナノ粒子含有複合体であって、前記(メタ)アクリル系重合体(B)が、少なくとも一つの末端が-SR(Rは、前記と同じである。)で表される官能基(b3)であり、且つ側鎖にポリエチレングリコール鎖(b1)を有する(メタ)アクリル系重合体(B1)と、少なくとも一つの末端が-SR(Rは、前記と同じである)で表される官能基(b3)であり、且つ側鎖に-OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリル系重合体(B2)とを含有するものである。
 更に、前記(メタ)アクリル系重合体(B)に、少なくとも一つの末端が-SR(Rは、前記と同じである。)で表される官能基(b3)であり、且つ側鎖にポリエチレングリコール鎖(b1)と、-OP(O)(OH)で表されるリン酸エステル残基(b2)とを有する(メタ)アクリル系共重合体を含有するものであっても良い。
 金属ナノ粒子(A’)は、前述の金属化合物(A)中の金属イオンの還元反応によって得られるものであり、金属種としては、用いる金属化合物(A)中の金属種と同じである。
 また、(メタ)アクリル系重合体(B)は、前述の(メタ)アクリル系重合体(B1)と(B2)の混合物、又は(メタ)アクリル系重合体(B3)であり、重量平均分子量は3,000~10,000の範囲であることが好ましい。
 さらにまた、金属ナノ粒子含有複合体中における該金属ナノ粒子(A’)の含有率としては、導電性材料として好適に用いることができる点から、90質量%以上であることが好ましく、特に92~98質量%であることが好ましい。
 本発明の金属ナノ粒子含有複合体の分散液は、前記金属ナノ粒子含有複合体を水、及びヒドロキシ基を有する有機溶剤からなる群から選ばれる1種以上の溶剤に分散してなるものである。ヒドロキシ基を有さない有機溶剤への分散は、1度ヒドロキシ基を有する有機溶剤へ溶剤置換をした後に更に溶剤変更する手法であれば可能である。その濃度としては、特に限定されるものではなく、用途等に応じて適宜設定できるものであるが、10~85質量%の範囲にすることが、取り扱いが容易である点から好ましい。ヒドロキシ基を有する有機溶剤としては、前述のものがいずれも使用可能である。該分散液の製造方法は前述の方法であることが効率よく分散体が得られる点から好ましい。
〔金属皮膜〕
 本発明の金属ナノ粒子含有複合体の分散液をそのまま、又は該分散液を配合した各種組成物(塗料用組成物、接着用組成物、水性インキ等)を基材に塗布し、乾燥することによって導電性を有する金属皮膜を得ることができる。尚、本願において金属皮膜は、広範囲に塗装された塗膜、接合部位間に充填されてなるもの、微細配線等のマイクロメートルオーダーの細線をも含むものである。
 このとき使用できる基材としては、特に限定されるものではない。本発明の金属ナノ粒子含有複合体の分散液は、融着のための加熱や溶媒処理等を要しないので、耐熱性や耐溶剤性についてことさらに配慮することなく基板を選択することが出来、さまざまな基材上に塗布し、また電気配線を描画することができる。即ち、基材は限定されず、熱可塑性樹脂、熱硬化性樹脂、ガラス、紙、金属、セラミックスなどの素材を使用することができる。
 熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、芳香族ポリアミド、ポリカーボネート、熱可塑性ポリイミドなどの樹脂が挙げられ、柔軟性の点からこれらへの適合性は重要である。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル、熱硬化性ポリイミド樹脂などが挙げられる。これらの樹脂を基材として用いることにより、本発明のプラスチック基板を容易に得ることができる。また、アルミナ、窒化アルミ、窒化ケイ素、シリコンカーバイドなどの集積回路基板としての利用の多いセラミックスも、基板として使用することができる。
 塗布後の乾燥条件については、分散液もしくはこれを含む組成物中の揮発成分が除去できる条件であれば良く、加温・加熱等を行なわなくても導電性を有する金属皮膜となる。特に前述で得られた本願の金属ナノ粒子含有複合体の分散液をそのまま用いる場合には、塗布後、1~30℃の乾燥で50μΩcm以下の体積抵抗率を示すものであり、また、その金属皮膜が、-20~150℃における示差走査熱量測定で、金属ナノ粒子間融合に由来する発熱ピークを示さないという、従来の金属ナノ粒子を含む組成物では観測されなかった性質を有する。
 前記の金属ナノ粒子間融合に由来する発熱ピークを示さないということは、当該温度範囲において、保護剤である(メタ)アクリル系重合体由来と考えられる吸熱(10~30℃の低温領域における、(メタ)アクリル系共重合体のガラス転移によって生じると考えられる吸熱)以外に、1J/g以上の明確なピークを観測することができないことを言うものである。
 更に塗布後、20~30℃で6時間経過後の体積抵抗率は10μΩcm以下になるため、本発明で得られる分散液は、室温に放置するのみで金属ナノ粒子(A)の融着が進行していることが確認できる。具体的には、塗膜を形成して室温で乾燥すると、塗膜化直後において10-5Ωcmレベルの体積抵抗率を示した。また、これを数時間放置することにより7~9×10-6Ωcm、1週間以上経過すると4~6×10-6Ωcm程度の低抵抗値になることを確認している。
 室温(20~30℃)での金属ナノ粒子(A)の融着を確認する手段として、本発明者は示差走査熱量分析、小角X線回折、広角X線回折を用い、更に解析を進めた。以下、実施例1で得られた複合体の分散液を用いた金属皮膜を例として記載する。
 小角X線散乱法によると、この分散液中の複合体の粒子径は10~50nmに分布を持つが(図3.1)、一旦乾燥してしまうと粒径分布は全く異なったものになり、一気に100nm以上にまで分布範囲を広げることが分った(図3.2)。また、この分布は12.5時間かけて次第に広がる傾向をみせており(図3.3、図3.4)、経時的な融着の進行が見て取れる。
 室温で乾燥した金属皮膜について示差走査熱量分析を行うと、初回の掃引においても保護剤である(メタ)アクリル系重合体由来と考えられる吸熱が見られた(図5)。金属表面に吸着した状態の保護剤はTgを示さない為、金属ナノ粒子を含む組成物から得られる金属皮膜の初回掃引においては、通例、保護剤由来の吸熱はみられない。従って、明らかに本発明の複合体は、室温において保護剤が剥離しているのである。初回掃引の上限温度を変えて測定すると、高温ほど樹脂の剥離量が増加してくることが第2回目の掃引により知ることができ、剥離量が増えるほど保護剤単体から得られたDSCパターンと一致してくる(図6.1および図6.2)。
 一方、広角X線回折法による結晶子径の経時観察によると、塗膜形成直後の当該銀ナノ粒子は11nmの結晶子径を有していたが、6時間で12nm、12.5時間では15nmへと約36%成長した(図5)。このことは当該粒子が乾燥直後においても非晶性部分(アモルファス性)を有していることを示している。保護剤である(メタ)アクリル系重合体の-SR基およびリン酸エステル残基は、分散液中では金属ナノ粒子表面に強く吸着して、凝集沈降を防止するとともに、小粒径粒子を安定化させる能力がアモルファス性の維持にも寄与しているものと考えられるが、一旦塗膜として乾燥すると保護剤は急速に金属表面から剥離してしまい、その後、徐々に結晶化が進行するものと考えられる。室温融着性の発現は、乾燥することで容易に起こる保護剤の剥離と、微小粒子のアモルファス性に起因するといえる。
 図7、図8に、リン酸エステル残基を含まない高分子化合物を用いて製造した、比較用の銀ナノ粒子含有複合体のTEM像、SEM像を示した。また、図9.1から図9.4に小角X線回折による粒径分布および経時変化を示したが、前述のような乾燥前後の粒径分布の大きな変化や、経時的な分布拡大は見られなかった。また、図10には広角X線回折による観察結果を示したが、結晶子径は固定的であり、成長する様子は観察されなかった。この分散液から得られる室温乾燥塗膜の体積抵抗率は9.2×10Ωcmにすぎず、室温融着性を示すものではなかった。
 本発明の金属ナノ粒子含有複合体並びにその分散液の用途等には特に限定されるものではないが、特に加熱や加温ができない基材や部位に、導電性の皮膜を形成させるために用いることが好ましい。又、必要とされる性能に応じて、有機溶剤、各種樹脂、添加剤、染料等の着色性化合物、充填剤等を本発明の効果を損なわない範囲で併用・混合して使用することも可能である。
 以下、本発明を実施例により説明する。特に断わりのない限り「部」、「%」は質量基準である。
 金属ナノ粒子含有複合体、分散液、金属皮膜の評価方法
〔評価用金属皮膜の作製〕
 分散液を、7.6×2.6cmの清浄なスライドガラスの一端からおよそ1cm付近に約0.5mL滴下し、バーコーター(8番)を用いて展開して薄膜状の金属皮膜とした。または、7.6×2.6cmのポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)およびポリイミド(PI)の薄片上に、分散液を数滴とり、前記と同様にバーコーター(8番)を用いて薄膜状の金属皮膜とした。作製した金属皮膜を室温(25℃)で30分および1日風乾して室温乾燥金属皮膜とした。また、30分の風乾後100、150℃の熱風乾燥器中で30分間加熱して、それぞれの温度による焼成金属皮膜とした。
〔金属皮膜の抵抗率の測定〕
 上記で得られた金属皮膜の厚みを、1LM15型走査型レーザー顕微鏡(レーザーテック株式会社製)を用いて計測し、続いて表面抵抗率(Ω/□)をロレスタ-GP MCP-T610型低抵抗率計(三菱化学株式会社製)を用いJIS K7194「導電性プラスチックの4探針法による抵抗率試験」に準拠して測定した。金属皮膜厚み(cm)と表面抵抗率(Ω/□)から体積抵抗率(Ωcm)を次式により算出した。
 体積抵抗率(Ωcm)=表面抵抗率(Ω/□)×厚み(cm)
〔粒子径、粒子径分布の測定〕
・TEM観察
 希釈した分散液の一滴を電子顕微鏡観察用ホルムバール膜付銅グリッドに滴下し、これをJEM-2200FS型透過型電子顕微鏡(加速電圧200kv、日本電子株式会社製)で観察し、得られた写真像から粒子径を計測した。任意に取り出した100個の粒子径から平均値を算出した。
・SEM観察
 前述の方法でガラス板上に作製した金属皮膜を、JSM-7500F型走査電子顕微鏡(加速電圧20kv、日本電子株式会社製)で観察した。
〔小角X線散乱法による粒子径分布の見積もり〕
・金属ナノ粒子含有複合体の分散液
 ポリプロピレンフィルムを窓材とする厚さ1mmの液体試料用ホルダーに、分散液を充填し、RINT TTR2型小角X線散乱測定装置(50kv、300mA、株式会社リガク製)を用いて透過法により測定した。回折角(2θ)が0から5°の領域における散漫散乱強度を記録し、得られる曲線をNANO-Solver解析ソフトウエア(株式会社リガク製)によりBorn近似理論へとフィッティングを行うことで、粒子径分布を見積もった。
〔金属皮膜中の粒子〕
 前述の方法でガラス板上に作製直後の金属皮膜、および室温で6時間並びに12時間半放置した金属皮膜に、セロハンテープを貼り付け、指でよく圧着した後はがし、金属皮膜を剥離した。セロハンテープ上の金属皮膜をRINT TTR2型X線小角散乱測定装置(50kv、300mA、株式会社リガク製)を用いて測定した。回折角(2θ)が0から5°の領域における散漫散乱強度を記録し、得られる曲線をNANO-Solver解析ソフトウエア(株式会社リガク製)によりBorn近似理論へとフィッティングを行うことで、粒子径分布を見積もった。
〔広角X線回折法による結晶子径の測定〕
 試料台に分散液を塗布し、乾燥させた後、直ちにRINT Ultima(40kv、40mA、株式会社リガク製)を用いて測定した。標準試料としてシリコンを用い、回折角(2θ)に対する回折X線の強度を記録した時、得られたピークの半値幅(b)および標準試料の半値幅(b’)から、結晶子径(DX)を以下のScherrerの式により求めた。同様にして、乾燥後の試料を経時的に観察した。
 DX=Kλ/βcosθ(K=0.9)
 ここで、β(補正半値幅)は、β=(b+b’1/2とした。
〔動的光散乱法による粒径測定〕
 分散液の一部を精製水で希釈し、FPAR-1000型濃厚系粒径アナライザー(大塚電子株式会社製)により、粒子径分布、平均粒子径を測定した。
 熱分析
〔熱重量分析による金属銀含量〕
 得られた分散体1mLをガラスサンプル瓶にとり、35~40℃の温水上で窒素気流下加熱濃縮し、残渣を更に40℃、8時間真空乾燥して乾固物を得た。この乾固物2~10mgを熱重量分析用アルミパンに精密にはかり、EXTAR TG/DTA6300型示差熱重量分析装置(セイコーインスツル株式会社製)に載せ、空気気流下、室温から500℃まで毎分10℃の割合で昇温して、加熱に伴う重量減少率を測定した。金属含有量は以下の式で計算した。
 金属含有量(%)=100-重量減少率(%)
〔示差走査熱量分析〕
 アルミニウム製熱量分析用試料パンに、上記と同様にして得られた乾固物約10mgを精密に量り、EXTAR DSC7200型示差走査熱量分析計(エスアイアイ・ナノテクノロジー株式会社製)で、窒素気流下、-20℃から設定温度まで毎分10℃の割合で昇温して、これに伴う吸発熱を分析した。
 〔SEMによる断面観察〕
 金属薄膜が形成されたフィルム試料を、およそ0.3×1cmの小片に切り出し、可視光硬化性樹脂(日本電子株式会社製D-800)中に包埋した後、可視光照射装置(ICIジャパン製LUX-SPOT LS-800)を用いて、室温下、30秒ずつ2方向から光照射して硬化させ、包埋試料とした。この包埋試料を、トリミング用ダイヤモンドナイフ(ダイヤトーム社製クライオトリム45°)を装着したウルトラミクロトーム(ライカマイクロシステムズ社製ウルトラカットS)を用い、フィルム試料の断面が含まれる方向に切削し、観察用試料を得た。
 実施例1〔メトキシカルボニルエチルチオ基、リン酸エステル残基、ポリエチレングリコール鎖を含有する(メタ)アクリル系重合体(B3-1)の合成〕
 温度計、攪拌機および還流冷却器を備えた四つ口フラスコに、メチルエチルケトン(以下、MEK)32部およびエタノール32部を仕込んで、窒素気流中、攪拌しながら80℃に昇温した。次に、ホスホオキシエチルメタクリレート(共栄社化学株式会社ライトエステルP-1M)20部、メトキシポリエチレングリコールメタクリレート(分子量1,000、日油株式会社 ブレンマー〔登録商標〕PME-1000)80部、メルカプトプロピオン酸メチル4.1部、MEK80部からなる混合物、および重合開始剤「2,2’-アゾビス(2,4-ジメチルバレロニトリル)〔和光純薬株式会社製品V-65〕0.5部、MEK5部からなる混合物をそれぞれ2時間かけて滴下した。滴下終了後、4時間ごとに「日油パーブチル(登録商標)O」〔日油株式会社製〕0.3部を2回添加し、80℃で12時間攪拌した。得られた樹脂溶液に水を加え転相乳化し、減圧脱溶剤した後、水を加えて濃度を調整すると、不揮発物含量76.8%の(メタ)アクリル系重合体(B3-1)の水溶液が得られた。該樹脂のゲルパーミエーション・クロマトグラフィーにより測定された重量平均分子量はポリスチレン換算で4,300、酸価は97.5mgKOH/gであった。
 〔銀ナノ粒子含有複合体分散液の製造〕
 85%N,N-ジエチルヒドロキシルアミン463g(4.41mol)、上記で得られた(メタ)アクリル系重合体(B3-1)(不揮発物23.0g相当)、および水1250gからなる還元剤溶液を調製した。別に、不揮発物11.5g相当の(メタ)アクリル系重合体(B3-1)を水333gに溶解し、これに硝酸銀500g(2.94mol)を水833gに溶かした溶液を加えて、よく攪拌した。この混合物に前記の還元剤溶液を室温(25℃)で2時間かけて滴下した。得られた反応混合物をメンブレンフィルター(細孔径0.45マイクロメートル)で濾過し、濾液を中空糸型限外濾過モジュール(ダイセンメンブレンシステムズ社製MOLSEPモジュールFB-02型、分画分子量15万)中を循環させ、流出する濾液の量に対応する量の水を随時添加して精製した。濾液の電導度が100μS/cm以下になったことを確認した後、注水を中止して濃縮した。濃縮物を回収すると、不揮発物含量36.7%の銀ナノ粒子含有複合体の分散液(分散媒体は水)が得られた(742.9g)。動的光散乱法による複合体の平均粒子径は39nm、TEM像からは10-40nmと見積もられた(図1)。
 不揮発物中の銀含有量を、熱重量分析により測定したところ94.8w/w%であった(収率81%)。得られた分散体を、スライドガラス上に取り、バーコーターで薄膜状の金属皮膜として乾燥直後に体積抵抗率を測定すると1.1×10-5Ωcmであった。また、この皮膜を室温で7日間放置した後に測定すると、4.1×10-6Ωcmであった。
 得られた、成膜直後の皮膜のSEM像を図2に、小角X線回折により求めた成膜直後の皮膜中の銀ナノ粒子の粒子径分布を図3.2に示した。図3.3および図3.4は、それぞれ6時間後、12時間半後の粒子径分布である。図3.1は、溶液状態にあるときの小角X線回折により求めた銀ナノ粒子の粒子径分布である。図4は上記で得られた複合体の乾固物を、経時的に広角X線回折法により結晶子径を測定したものである。これによると、結晶子径の経時的成長が認められた。
 図5に示差走査熱量分析のチャートを示した。初回掃引の時から10~30℃の低温領域に吸熱ピークが見られるが、これは保護剤である(メタ)アクリル系重合体(B3-1)由来のものと考えられる。銀ナノ粒子から剥離した(メタ)アクリル系重合体(B3-1)が示すTgに対応すると考えられるが、室温において保護剤が剥離する現象はこれまで報告されていない。また、200℃までの走査範囲においては、銀ナノ粒子の融着に対応する急峻な発熱ピークは見られず、70℃程度から始まるブロードな発熱が見られるのみであった。
 図6に初回昇温の上限を100,150,180℃までに変えた場合の分析チャートを示した。2回目の掃引で現れる(メタ)アクリル系重合体(B3-1)由来のピークが、初回上限温度の上昇に伴って次第に大きくなり、30℃付近のピークに収束してくる様子が見て取れる。
 〔実施例1で得られた分散液の保存安定性評価〕
 実施例1で得られた分散液約100mLを、ねじ蓋付きポリエチレン製容器(100mL)に入れ、3~7℃の保冷庫中で静置保存した。1日後、容器に振動を与えないようにしながら保冷庫から取り出し、ポリエチレンピペットを用いて液面付近の分散液約2mLを静かに採取した。そのうち約500mgを5mLガラスサンプルびんに精密に量り、約40℃の水浴上で窒素気流により濃縮乾固した後、40~50℃の真空乾燥機中で更に8時間減圧乾燥した。以下の式により不揮発物含量を計算した。
 不揮発物含量(%)=分散液の濃縮乾固物の量(mg)/採取した分散液の量(mg)×100
 また、採取したサンプルの一部をスライドガラス上にバーコーターで塗布し、乾燥した後、体積抵抗率を測定した。また、少量のサンプルを水で希釈し、光散乱法により粒径分布を測定した。残りの分散液は静かに保冷庫に戻し、7日後、14日後、21日後、28日後、60日後、90日後、120日後、150日後及び180日後に、再び同様にして試料を採取し、不揮発物含量を測定した。結果を以下の表に示した。分散液上面の不揮発物含量、塗膜の体積抵抗率、平均粒子径はほぼ一定の値であった。
Figure JPOXMLDOC01-appb-T000001
 実施例2〔2-(2-エチルヘキシルオキシカルボニル)エチルチオ基およびリン酸エステル残基を含有する(メタ)アクリル系重合体(B3-2)の合成〕
 実施例1のメルカプトプロピオン酸メチル4.1部のかわりに、メルカプトプロピオン酸2-エチルヘキシル11.2部とし、他は実施例1と同様に操作し、不揮発物含量73.2%の(メタ)アクリル系重合体(B3-2)の水溶液を得た。該重合体の重量平均分子量は4,100、酸価は98.1mgKOH/gであった。
 〔銀ナノ粒子含有複合体分散液の製造〕
 85%N,N-ジエチルヒドロキシルアミン5.56g(53.0mmol)、上記で得られた(メタ)アクリル系重合体(B3-2)(不揮発物106mg相当)、および水15gからなる還元剤溶液を調製した。別に、不揮発物106mg相当の(メタ)アクリル系重合体(B3-2)を水5gに溶解し、これに硝酸銀6.00g(35.3mmol)を水10gに溶かした溶液を加えて、よく攪拌した。この混合物に前記の還元剤溶液を室温(25℃)で2時間かけて滴下した。得られた反応混合物をメンブレンフィルター(細孔径0.45マイクロメートル)で濾過し、濾液を中空糸型限外濾過モジュール(ダイセンメンブレンシステムズ社製MOLSEPモジュールHIT-1型、分画分子量15万)中を循環させ、流出する濾液の量に対応する量の水を随時添加して精製した。濾液の電導度が100μS/cm以下になったことを確認した後、注水を中止して濃縮した。濃縮物を回収すると、不揮発物含量約30%の銀ナノ粒子含有複合体の分散液が得られた。バーコーター(8番)を用いてこの分散液をスライドガラスに塗布し、室温で乾燥した。乾燥直後の皮膜における体積抵抗率は4.1×10-5Ωcmであった。
 実施例3〔2,3-ジヒドロキシプロピルチオ基およびリン酸エステル残基を含有する(メタ)アクリル系重合体(B3-3)と、これを用いた銀ナノ粒子含有複合体分散液の製造〕
 実施例2のメルカプトプロピオン酸2-エチルヘキシル11.2部のかわりに、チオグリセリン4.1部とし、他は実施例2と同様に操作し、不揮発物含量70.1%の(メタ)アクリル系重合体(B3-3)の水溶液を得た。該重合体の重量平均分子量は5,500、酸価は95.1mgKOH/gであった。得られた(メタ)アクリル系重合体(B3-3)を用いて、実施例2と同様に銀ナノ粒子含有複合体分散液を調製し、この分散液から得られる乾燥直後の皮膜の体積抵抗率を測定すると、8.9×10-5Ωcmであった。
 実施例4〔2-ヒドロキシエチルチオ基およびリン酸エステル残基を含有する(メタ)アクリル系重合体(B3-4)と、これを用いた銀ナノ粒子含有複合体分散液の製造〕
 実施例2のメルカプトプロピオン酸2-エチルヘキシル11.2部のかわりに、チオグリコール2部とし、他は実施例2と同様に操作し、不揮発物含量56.4%の(メタ)アクリル系重合体(B3-4)の水溶液を得た。重量平均分子量は6,700、酸価は94.9mgKOH/gであった。得られた(メタ)アクリル系重合体(B3-4)を用いて、実施例2と同様に銀ナノ粒子含有複合体分散液を調製し、この分散液から得られる乾燥直後の皮膜の体積抵抗率を測定すると、6.2×10-5Ωcmであった。
 実施例5〔カルボキシメチルチオ基およびリン酸エステル残基を含有する(メタ)アクリル系重合体(B3-5)と、これを用いた銀ナノ粒子含有複合体分散液の製造〕
 実施例2のメルカプトプロピオン酸2-エチルヘキシル11.2部のかわりに、チオグリコール酸2部とし、他は実施例2と同様に操作して、不揮発物含量65.1%の(メタ)アクリル系重合体(B3-5)の水溶液を得た。重量平均分子量は6,800、酸価は92.1mgKOH/gであった。得られた(メタ)アクリル系重合体(B3-5)を用いて、実施例2と同様に銀ナノ粒子含有複合体分散液を調製し、この分散液から得られる乾燥直後の皮膜の体積抵抗率を測定すると、1.4×10-5Ωcmであった。
 実施例6〔ドデシルチオ基およびリン酸エステル残基を含有する(メタ)アクリル系重合体(B3-6)と、これを用いた銀ナノ粒子含有複合体分散液の製造〕
 実施例2のメルカプトプロピオン酸2-エチルヘキシル11.2部のかわりに、ドデシルメルカプタン6部とし、他は実施例2と同様に操作して、不揮発物含量77.7%の(メタ)アクリル系重合体(B3-6)の水溶液を得た。重量平均分子量は9,600、酸価は97.0mgKOH/gであった。得られた(メタ)アクリル系重合体(B3-6)を用いて、実施例2と同様に銀ナノ粒子含有複合体分散液を調製し、この分散液から得られる乾燥直後の皮膜の体積抵抗率を測定すると、9.0×10-5Ωcmであった。
 実施例7〔銅ナノ粒子含有複合体の製造〕
 実施例1で得た(メタ)アクリル系重合体(B3-1)(固形分に換算して2.00g)を水40mLに溶解し、酢酸銅水和物10.0g(50.09mmol)を水500mLに溶解したものを加えた。これに穏やかに発泡が起こるよう80%ヒドラジン水溶液10g(約160mmol)を約2時間かけて滴下し、発泡が止むまで更に室温で1時間攪拌すると、赤褐色の溶液が得られた。
 これを限外濾過モジュール(ダイセンメンブレンシステムズ社製、分画分子量15万、1個)に通し、更に限外濾過ユニットから約1Lの滲出液がでるまで、窒素バブリングにより脱気した精製水を通過させて精製した。脱気水の供給を止め、濃縮すると15gの分散液が得られた(固形分約20w/w%)。この分散液一滴をエタノール(50mL)に溶解して紫外可視吸収スペクトルを測定すると、600nm付近にプラズモン共鳴に由来する吸収がみられ、銅ナノ粒子の生成を確認した。この分散液を、窒素雰囲気下バーコーターでガラス板に塗布した後、窒素気流中室温で乾燥すると、銅色の金属光沢塗膜が得られた。
 実施例8〔金ナノ粒子含有複合体の製造〕
 実施例1で得た(メタ)アクリル系重合体(B3-1)(固形分に換算して0.102g)を水5mLに溶解し、テトラクロロ金酸・三水和物1.00g(2.54mmol)を水5mLに溶解したものを加えた。これにジメチルアミノエタノール1.81g(20.31mmol)の水溶液5mLを加えて室温で2時間攪拌すると、暗赤色の溶液が得られた。これを限外濾過ユニット(ザルトリウス・ステディム社ビバスピン20、分画分子量5万、2個)に分け入れ、遠心力(5800G)により濾過を行った。濾過残渣に精製水を加えて再び遠心濾過することを4回繰り返し、得られた残渣に水を加えて4.0gの水分散液とした(固形分約12w/w%)。この分散液一滴をエタノール(50mL)に溶解して紫外可視吸収スペクトルを測定すると、530nm付近にプラズモン共鳴に由来する吸収がみられ、金ナノ粒子の生成を確認した。この分散液をガラスに塗布し、室温乾燥すると、金色の金属光沢膜が得られた。
 実施例9〔トリエタノールアミンによる還元〕
 実施例1で得た(メタ)アクリル系重合体(B3-1)(固形分に換算して0.106g)を水12mLに溶解し、これに1mol/L硝酸12mLを加え、次に硝酸銀6.00g(35.3mmol)を水24mLに溶解した溶液、およびトリエタノールアミン13.2g(88.3mmoL)を加えて、60℃で2時間攪拌すると、濁った褐色の溶液が得られた。冷却後、限外濾過モジュール(ダイセンメンブレンシステムズ社製MOLSEPモジュールHIT-1型、分画分子量15万、1個)に通し、更に限外濾過ユニットから約1Lの滲出液がでるまで、精製水を通過させて精製した。精製水の供給を止め、濃縮すると12.5gの分散液が得られた(固形分30w/w%)。この分散液から得られる乾燥塗膜の体積抵抗率を測定すると、9.9×10-5Ωcmであった。
 実施例10〔2-ジメチルアミノエタノールによる還元〕
 実施例1で得た(メタ)アクリル系重合体(B3-1)(固形分に換算して0.106g)を水12mLに溶解し、これに1mol/L硝酸12mLを加え、次に硝酸銀6.00g(35.3mmol)を水24mLに溶解した溶液を添加した。この溶液に、2-ジメチルアミノエタノール7.87g(88.3mmoL)を水15mLに溶かした溶液を、室温でゆっくり滴下した。滴下後、室温で3日間攪拌すると、濁った褐色の溶液が得られた。これを限外濾過モジュール(ダイセンメンブレンシステムズ社製MOLSEPモジュールHIT-1型、分画分子量15万、1個)に通し、更に限外濾過ユニットから約1Lの滲出液がでるまで、精製水を通過させて精製した。精製水の供給を止め、濃縮すると12.5gの分散液が得られた(固形分30w/w%)。この分散液から得られる乾燥塗膜の体積抵抗率を測定すると、2.8×10-5Ωcmであった。
 実施例11〔エタノールへの溶剤交換1〕
 85%N,N-ジエチルヒドロキシルアミン5.56g(53.0mmol)、実施例1で得られた(メタ)アクリル系共重合体(B3-1)(不揮発物106mg相当)、および水15gからなる還元剤溶液を調製した。別に、不揮発物106mg相当の(メタ)アクリル系重合体(B3-1)を水5gに溶解し、これに硝酸銀6.00g(35.3mmol)を水10gに溶かした溶液を加えて、よく攪拌した。この混合物を氷冷下、前記の還元剤溶液を2時間かけて滴下した。得られた反応混合物を、中空糸型限外濾過モジュール(ダイセンメンブレンシステムズ社製MOLSEPモジュールHIT-1型、分画分子量15万)中を循環させ、流出する濾液の量に対応する量の水を随時添加して精製した。濾液の電導度が100μS/cm以下になったことを確認した後、注水を中止して約10mLになるまで濃縮した。限外濾過系にエタノールを加えながら、流出する濾液の量に相当する量のエタノールを随時添加して溶剤交換をおこなった。100mLのエタノール濾液を留出させた後、濃縮すると不揮発物含量約60%の銀ナノ粒子含有複合体のエタノール分散液が得られた。バーコーター(8番)を用いてこの分散液をスライドガラスに塗布し、室温で乾燥した。乾燥塗膜の体積抵抗率は9.8×10-5Ωcmであった。
 実施例12〔エタノールへの溶剤交換2〕
 実施例1で得られた分散液100gを、再び中空糸型限外濾過モジュール(ダイセンメンブレンシステムズ社製MOLSEPモジュールHIT-1-FUS-1582型、分画分子量15万)中を循環させ、留出する濾液の量に対応した量のエタノールを随時添加して溶剤交換をおこなった。留出液の1部にヘキサンを加えても濁りが生じなくなるまでこの操作を続け、更に約200mLを留出させた。エタノール分散液を回収すると、不揮発物量30.4%の銀ナノ粒子含有複合体のエタノール分散液が得られた(121g)。動的光散乱法による複合体の平均粒子径は55nmであり、溶剤交換前とTEM像には変化がなく、10~40nmの粒子径であると見積もられた。この分散液の少量をスライドガラスにとり、8番のバーコーターで展開後、室温で乾燥した。乾燥塗膜の体積抵抗率は、2.2×10-5Ωcmであった。
 実施例13〔2-プロパノールへの溶剤交換〕
 実施例1で得られた分散液約15gを用い、交換する溶媒を2-プロパノールにすること以外は実施例12と同様にして、不揮発物含量23.3%の銀ナノ粒子含有複合体の2-プロパノール分散液が得られた。この分散液の少量をスライドガラスにとり、8番のバーコーターで展開後、室温で乾燥した。乾燥塗膜の体積抵抗率は、5.3×10-5Ωcmであった。
 実施例14〔エタノールからトルエンへの溶剤交換〕
 実施例12で得られたエタノール分散液20gを200mLの濃縮用フラスコに取り、トルエン50mLを加えて、水浴の温度を40℃に設定したエバポレーターで減圧濃縮した。液量がおよそ20mLになったら、再びトルエン50mLを加えて減圧濃縮した。この操作をもう一度繰り返し、不揮発物含量20.0%の銀ナノ粒子含有複合体のトルエン分散液を得た。この分散液の少量をスライドガラスにとり、8番のバーコーターで展開後、室温で乾燥した。乾燥塗膜の体積抵抗率は、7.6×10-5Ωcmであった。
 実施例15〔カルボキシメチルチオ基およびポリエチレングリコール鎖を有する(メタ)アクリル系重合体(B1-1)の合成〕
 温度計、攪拌機および還流冷却器を備えた四つ口フラスコに、MEK64部を仕込んで、窒素気流中、攪拌しながら80℃に昇温した。次に、メトキシポリエチレングリコールメタクリレート(PME-1000)80部、メルカプト酢酸4.1部、MEK80部からなる混合物、および重合開始剤 V-65 0.5部、MEK5部からなる混合物をそれぞれ2時間かけて滴下した。滴下終了後、4時間ごとに「パーブチルO」0.3部を2回添加し、80℃で12時間攪拌した。得られた樹脂溶液に水を加え転相乳化し、減圧脱溶剤した後、水を加えて濃度を調整すると、不揮発物含量54.9%の(メタ)アクリル系重合体(B1-1)の水溶液が得られた。該樹脂のゲルパーミエーション・クロマトグラフィーにより測定された重量平均分子量はポリスチレン換算で7,500であった。
 〔カルボキシエチルチオ基およびリン酸エステル残基を有する(メタ)アクリル系重合体(B2-1)の合成〕
 温度計、攪拌機および還流冷却器を備えた四つ口フラスコに、水32部および2-プロパノール32部を仕込み、攪拌しながら窒素気流中で80℃に昇温した。ホスホオキシエチルメタクリレート(P-1M)20部と3-メルカプトプロピオン酸4部と水50部からなる混合物、および重合開始剤V-65 0.5部と2-プロパノール5部からなる混合物をそれぞれ2時間かけて滴下した。4時間毎に重合開始剤V-65 0.3部と2-プロパノール3部からなる混合物を2回添加し、更に80℃で8時間攪拌した。水および2-プロパノールを減圧留去して、2-プロパノールで濃度を調整すると、不揮発物45.2%のリン酸エステル残基を有するメタクリル系重合体(B2-1)が得られた。ゲルパーミエーション・クロマトグラフィーにより測定された重量平均分子量はポリスチレン換算で3,500、酸価は431mgKOH/gであった。
 〔銀ナノ粒子含有複合体分散液の製造〕
 85%N,N-ジエチルヒドロキシルアミン463g(4.41mol)、上記で得られた(メタ)アクリル系重合体(B1-1)(不揮発物18.4g相当)、(メタ)アクリル系重合体(B2-1)(不揮発物4.6g相当)、および水1250gからなる還元剤溶液を調製した。別に、不揮発物9.2g相当の(メタ)アクリル系重合体(B1-1)と不揮発物2.3g相当の(メタ)アクリル系重合体(B2-1)を水333gに溶解し、これに硝酸銀500g(2.94mol)を水833gに溶かした溶液を加えて、よく攪拌した。この混合物に前記の還元剤溶液を室温(25℃)で2時間かけて滴下した。得られた反応混合物をメンブレンフィルター(細孔径0.45マイクロメートル)で濾過し、濾液を中空糸型限外濾過モジュール(ダイセンメンブレンシステムズ社製MOLSEPモジュールFB-02型、分画分子量15万)中を循環させ、流出する濾液の量に対応する量の水を随時添加して精製した。濾液の電導度が100μS/cm以下になったことを確認した後、注水を中止して濃縮した。濃縮物を回収すると、不揮発物含量48.3%の銀ナノ粒子含有複合体の分散液が得られた(561.7g)。動的光散乱法による複合体の平均粒子径は49nm、TEM像からは10~40nmと見積もられた。不揮発物中の銀含量を、熱重量分析により測定したところ94.2w/w%であった。
 〔実施例15で得られた分散液の保存安定性評価〕
 実施例15で得られた分散液約100mLを、ねじ蓋付きポリエチレン製容器(100mL)に入れ、3~7℃の保冷庫中で静置保存した。これを用いて実施例1と同様にして保存安定性の評価を行なった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例16〔エタノールへの溶剤交換2〕
 実施例15で得られた水分散液100gを用いる以外は実施例12と同様にして、媒体をエタノールへ変換した。得られたエタノール分散液の不揮発物含量は26.5%(152g)であった。動的光散乱法による複合体の平均粒子径は47nmであり、溶剤交換前とTEM像には変化がなく、10~40nmと見積もられた。この分散液の少量をスライドガラスにとり、8番のバーコーターで展開後、室温で乾燥した。乾燥塗膜の体積抵抗率は、7.2×10-5Ωcmであった。
 実施例17〔高濃度品の調製〕
 実施例1で得られた分散液558gを、更に中空糸型限外濾過モジュール(ダイセンメンブレンシステムズ社製MOLSEPモジュールHIT-1-FUS-1582型、分画分子量15万)中に循環させ、濃縮した。濃縮物を回収すると、不揮発物含量73.6%の銀ナノ粒子含有複合体の分散液が得られた(236g)。動的光散乱法による複合体の平均粒子径は43nmであり、濃縮前とTEM像には変化がなく、10~40nmと見積もられた。不揮発物中の銀含量を熱重量分析により測定したところ94.1w/w%であった。
 〔高濃度分散液の保存安定性評価〕
 実施例17で得られた高濃度の分散液約100mLを用いて、実施例1と同様にして保存安定性試験を行なった。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例18〔プラスチック基板の製造〕
 実施例1で得られた分散液を用いて、7.6×22.6cmの大きさにしたポリイミド(PI)フィルム(東レデュポン株式会社カプトン200V 200μm)、ポリエチレンナフタレート(PEN)フィルム(帝人デュポンフィルム株式会社製テオネックスQ-65FA 100μm)、ポリエチレンテレフタレート(PET)フィルム(東洋紡績株式会社製東洋紡エステルフィルムE5101 50μm)上にとり、8番バーコーターで展開して乾燥し、表面抵抗率(乾燥直後(成膜後約30分後)、7日後)を評価した。またフィルムの断面を走査型電子顕微鏡(SEM)で観察し、膜厚を決定した(図7)。また、引きはがし試験方法(JIS H8504、めっきの接着性試験方法)に準拠してテープ剥離による密着性評価を行なったところ、7日後のPI上の塗膜、PEN上の塗膜では、実用上問題ないレベルで維持されていることを確認した。
Figure JPOXMLDOC01-appb-T000004
 実施例19〔グラビアコーターを用いた塗工によるプラスチック基板の製造〕
 実施例1で得られた分散液について、その20重量%に相当する2-プロパノールおよび固形分含量の1.4重量%に相当するポリビニルアルコール(和光純薬工業株式会社、重合度約500)を加えた塗工液を調製し、これを小径グラビア塗工機(株式会社ヒラノテクシード製マルチコーターM200-L型 塗工速度0.5m/分、乾燥長さ4.5m、乾燥温度、85℃)によりPETロールフィルム(東洋紡績株式会社製東洋紡エステルフィルムE5101 50μm、幅40cm)に塗工して、実施例18と同様に評価した。7日後の塗膜でも密着性は完全に維持されていた。更に、これを40℃の温水に4時間浸漬したところ、実用上問題のないレベルで密着していることを確認した(図8)。
Figure JPOXMLDOC01-appb-T000005
 比較例1〔ヒドロキシエチルチオ基およびジメチルアミノエチル基を含有する比較用(メタ)アクリル系重合体(B’-1)の合成と、これを用いた銀ナノ粒子含有複合体分散液の製造〕
 MEK70部を、窒素気流中80℃に保ち、攪拌しながらメタクリル酸ジメチルアミノエチル10部、アクリル酸4-ヒドロキシブチル9部、メトキシポリエチレングリコールメタクリレート(分子量1000)を81部、チオグリコール2部、MEK80部、および重合開始剤(「パーブチル O」4部からなる混合物を2時間かけて滴下した。滴下終了後、「パーブチル O」2部を添加し、80℃で22時間攪拌した。得られた反応混合物に水を加え、減圧脱溶剤した後、水で濃度を調整した。このようにして、不揮発物含量44.1%の比較用(メタ)アクリル系重合体(B’-1)の水溶液を得た。該樹脂のゲルパーミエーション・クロマトグラフィーにより測定された重量平均分子量は8,900、アミン価は32.5mgKOH/gであった。
 上記で得られた比較用(メタ)アクリル系重合体(B’-1)(不揮発物0.73g相当)を水10mLに溶解し、これに硝酸銀5.00g(29.4mmol)を水20mLに溶解したものをこれに加え、N,N-ジエチルヒドロキシルアミン3.94g(44.2mmol)と比較用(メタ)アクリル系重合体(B’-1)(不揮発物0.73g相当)並びに水100gからなる溶液を、3時間かけて滴下した。得られた反応混合物を限外濾過ユニット(ザルトリウス・ステディム社ビバスピン20、分画分子量10万、8個)で濾過した。濾過残渣に精製水を加えて再び遠心濾過することを4回繰り返し、得られた残渣に水を加えて10gの分散液とした(不揮発物含量30w/w%)、不揮発物中の銀含有量を、熱重量分析により測定したところ96.8%であった。得られた複合体の平均粒子径は動的光散乱法では74nm、TEM像からは40-80nmと見積もられた(図9)。
 この分散液をスピンコーターでガラス板に塗布すると0.30マイクロメートルの薄膜状の金属皮膜が得られた。風乾した直後は9.2×10Ωcmの皮膜にすぎなかったが、その後100℃で30分間焼成すると2.0×10-5Ωcm、150℃で30分間焼成すると7.7×10-6Ωcmの体積抵抗率を示す皮膜となった。
 成膜直後の金属皮膜のSEM像を図10に、小角X線散乱法により求めた成膜直後の皮膜中の銀ナノ粒子の粒子径分布を図11.2に示した。図11.3および図11.4は、それぞれ6時間後、12.5時間後の粒子径分布である。図11.1は、分散液にあるときの小角X線散乱により求めた銀ナノ粒子の粒子径分布である。実施例1で述べたような、分散液と金属皮膜との間の大きな差異はなかった。また、経時的な粒子径分布の拡大も認められなかった。図12は比較例1で得られた銀ナノ粒子を経時的に広角X線回折法により結晶子径を測定したものである。実施例1で述べたような結晶子径の経時的成長はなかった。
 比較例2〔-SRとリン酸エステル残基とを含まない比較用(メタ)アクリル系重合体(B’-2)の合成と、これを用いた銀ナノ粒子含有複合体分散液の製造〕
 MEK70部を窒素気流中80℃に保ち、攪拌しながらメタクリル酸ジメチルアミノエチル10部、メタクリル酸2-ヒドロキシエチル8部、メトキシポリエチレングリコールメタクリレート(分子量1000)を80部、MEK80部、および重合開始剤「パーブチル O」)4部からなる混合物を2時間かけて滴下した。滴下終了後、「パーブチル O」2部を添加し、95℃で22時間攪拌した。得られた反応混合物に水を加え、減圧脱溶剤した後、水で不揮発分量を調整した。このようにして、-SRとリン酸エステル残基とを含まない比較用(メタ)アクリル系重合体(B’-2)の水溶液を得た(不揮発物含量33%)。該樹脂のゲルパーミエーション・クロマトグラフィーにより測定された重量平均分子量は7,200、アミン価は27.6mgKOH/gであった。
 上記で得た比較用(メタ)アクリル系重合体(B’-2)(固形分に換算して0.578g)を水12mLに溶解し、これに1mol/L硝酸12mLを加えた。硝酸銀2.00g(11.77mmol)を水35mLに溶解したものをこれに加え、トリエタノールアミン8.78g(58.85mmol)を加えて60℃で2.5時間攪拌した。反応終点確認をすると、還元がやや不足であることが分かった。得られた懸濁液を限外濾過ユニット(ザルトリウス・ステディム社ビバスピン20、分画分子量10万、4個)で濾過した。濾過残渣に精製水を加えて再び遠心濾過することを4回繰り返し、得られた残渣に水を加えて4.23gの分散液とした(固形分約30w/w%)。固形分中の銀含有量は96.0%、TEM像から求められる複合体の粒子径は30nmであった。
 この分散液をスピンコーターでガラス板に塗布(塗布厚約0.3マイクロメートル)、風乾した。この時点では、低抵抗率計で測定できる抵抗値を示す膜とはならなかった。その後150℃で30分焼成しても同様であった。また、180℃で30分焼成した場合は、8.7×10-4Ωcmの体積抵抗率を示す皮膜となった。

Claims (16)

  1. (I)ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)を、
    -SR(Rは、炭素数1~18のアルキル基、ベンゼン環上に置換基を有していても良いフェニル基、又は、ヒドロキシ基、炭素数1~18のアルコキシ基、炭素数1~18のアラルキルオキシ基、ベンゼン環上に置換基を有していても良いフェニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素数1~18の1価若しくは多価のアルキルカルボニルオキシ基及び炭素数1~18の1価若しくは多価のアルコキシカルボニル基からなる群から選ばれる1つ以上の官能基を有する炭素数1~8のアルキル基である。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B1)と、
    -OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)を-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B2)と、を水性媒体中に溶解する工程、
    (II)(I)で得られた水性溶液に金属化合物(A)又は金属化合物(A)の水性溶液を加える工程、
    (III)(II)で得られた混合液に、還元剤(C)若しくは還元剤(C)の水性溶液、又は、前記(メタ)アクリル系重合体(B1)及び/又は前記(メタ)アクリル系重合体(B2)と還元剤(C)とを含有する水性溶液を滴下する工程、
    を有することを特徴とする金属ナノ粒子含有複合体の製造方法。
  2. (I’)ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)と、-OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)とを、-SR(Rは、炭素数1~18のアルキル基、ベンゼン環上に置換基を有していても良いフェニル基、又は、ヒドロキシ基、炭素数1~18のアルコキシ基、炭素数1~18のアラルキルオキシ基、ベンゼン環上に置換基を有していても良いフェニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素数1~18の1価若しくは多価のアルキルカルボニルオキシ基及び炭素数1~18の1価若しくは多価のアルコキシカルボニル基からなる群から選ばれる1つ以上の官能基を有する炭素数1~8のアルキル基である。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B3)を水性媒体中に溶解する工程、
    (II’)(I’)で得られた水性溶液に金属化合物(A)又は金属化合物(A)の水性溶液を加える工程、
    (III’)(II’)で得られた混合液に、還元剤(C)若しくは還元剤(C)の水性溶液、又は、
    ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)を、-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B1)、
    -OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)を-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B2)
    及び前記(メタ)アクリル系重合体(B3)からなる群から選ばれる1種以上の(メタ)アクリル系重合体と還元剤(C)とを含有する水性溶液を滴下する工程、
    を有することを特徴とする金属ナノ粒子含有複合体の製造方法。
  3. 前記(メタ)アクリル系重合体(B1)および(B2)の重量平均分子量が3,000~10,000の範囲である請求項1記載の金属ナノ粒子含有複合体の製造方法。
  4. 前記(メタ)アクリル系重合体(B3)の重量平均分子量が3,000~10,000の範囲である請求項2記載の金属ナノ粒子含有複合体の製造方法。
  5. 前記金属化合物(A)における金属種が、銀、金、白金、パラジウム、ルテニウム、ロジウム、又は銅である請求項1~4の何れか1項記載の金属ナノ粒子含有複合体の製造方法。
  6. 前記(メタ)アクリル系重合体(B1)と前記(メタ)アクリル系重合体(B2)との混合割合が、(B1)/(B2)で表されるモル比で20/1~1/1の範囲である請求項1記載の金属ナノ粒子含有複合体の製造方法。
  7. 前記(メタ)アクリル系重合体(B3)が、
    前記ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)と前記リン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)とを、(x1)/(x2)で表されるモル比で1/2~10/1の比率で用い、且つ、前記-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)を、(メタ)アクリレート系マクロモノマー(x1)と(メタ)アクリレート系モノマー(x2)との合計モル数に対して0.05~0.5倍モル使用して得られる重合体である請求項2記載の金属ナノ粒子含有複合体の製造方法。
  8. (I)ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)を、
    -SR(Rは、炭素数1~18のアルキル基、ベンゼン環上に置換基を有していても良いフェニル基、又は、ヒドロキシ基、炭素数1~18のアルコキシ基、炭素数1~18のアラルキルオキシ基、ベンゼン環上に置換基を有していても良いフェニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素数1~18の1価若しくは多価のアルキルカルボニルオキシ基及び炭素数1~18の1価若しくは多価のアルコキシカルボニル基からなる群から選ばれる1つ以上の官能基を有する炭素数1~8のアルキル基である。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B1)と、
    -OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)を-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B2)と、を水性媒体中に溶解する工程、
    (II)(I)で得られた水性溶液に金属化合物(A)又は金属化合物(A)の水性溶液を加える工程、
    (III)(II)で得られた混合液に、還元剤(C)若しくは還元剤(C)の水性溶液、又は、前記(メタ)アクリル系重合体(B1)及び/又は前記(メタ)アクリル系重合体(B2)と還元剤(C)とを含有する水性溶液を滴下する工程、
    (IV)(III)で得られた生成物から金属ナノ粒子含有複合体を析出させずに、少なくとも水の存在下で精製・濃縮し、続いて水及びヒドロキシ基を有する有機溶剤からなる群から選ばれる1種以上の溶剤に分散する工程、
    を有することを特徴とする金属ナノ粒子含有複合体の分散液の製造方法。
  9. (I’)ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)と、-OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)とを、-SR(Rは、炭素数1~18のアルキル基、ベンゼン環上に置換基を有していても良いフェニル基、又は、ヒドロキシ基、炭素数1~18のアルコキシ基、炭素数1~18のアラルキルオキシ基、ベンゼン環上に置換基を有していても良いフェニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素数1~18の1価若しくは多価のアルキルカルボニルオキシ基及び炭素数1~18の1価若しくは多価のアルコキシカルボニル基からなる群から選ばれる1つ以上の官能基を有する炭素数1~8のアルキル基である。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B3)を水性媒体中に溶解する工程、
    (II’)(I’)で得られた水性溶液に金属化合物(A)又は金属化合物(A)の水性溶液を加える工程、
    (III’)(II’)で得られた混合液に、還元剤(C)若しくは還元剤(C)の水性溶液、又は、
    ポリエチレングリコール鎖(b1)を有する(メタ)アクリレート系マクロモノマー(x1)を、-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B1)、
    -OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリレート系モノマー(x2)を-SR(Rは、前記と同じである。)で表される官能基(b3)を有する連鎖移動剤(x3)の存在下で重合させて得られる(メタ)アクリル系重合体(B2)
    及び前記(メタ)アクリル系重合体(B3)からなる群から選ばれる1種以上の(メタ)アクリル系重合体と還元剤(C)とを含有する水性溶液を滴下する工程、
    (IV’)(III’)で得られた生成物から金属ナノ粒子含有複合体を析出させずに、少なくとも水の存在下で精製・濃縮し、続いて水及びヒドロキシ基を有する有機溶剤からなる群から選ばれる1種以上の溶剤に分散する工程、
    を有することを特徴とする金属ナノ粒子含有複合体の分散液の製造方法。
  10. 粒子径が2~50nmの金属ナノ粒子(A’)が、(メタ)アクリル系重合体(B)で被覆されてなる金属ナノ粒子含有複合体であって、
    前記(メタ)アクリル系重合体(B)が、少なくとも一つの末端が-SR(Rは、炭素数1~18のアルキル基、ベンゼン環上に置換基を有していても良いフェニル基、又は、ヒドロキシ基、炭素数1~18のアルコキシ基、炭素数1~18のアラルキルオキシ基、ベンゼン環上に置換基を有していても良いフェニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素数1~18の1価若しくは多価のアルキルカルボニルオキシ基及び炭素数1~18の1価若しくは多価のアルコキシカルボニル基からなる群から選ばれる1つ以上の官能基を有する炭素数1~8のアルキル基である。)で表される官能基(b3)であり、且つ側鎖にポリエチレングリコール鎖(b1)を有する(メタ)アクリル系重合体(B1)と、
    少なくとも一つの末端が-SR(Rは、前記と同じである。)で表される官能基(b3)であり、且つ側鎖に-OP(O)(OH)で表されるリン酸エステル残基(b2)を有する(メタ)アクリル系重合体(B2)と、を含有することを特徴とする金属ナノ粒子含有複合体。
  11. 前記(メタ)アクリル系重合体中(B)に、更に少なくとも一つの末端が-SR(Rは、前記と同じである。)で表される官能基(b3)であり、且つ側鎖にポリエチレングリコール鎖(b1)と、-OP(O)(OH)で表されるリン酸エステル残基(b2)とを有する(メタ)アクリル系共重合体を含有するものである請求項10記載の金属ナノ粒子含有複合体。
  12. 複合体中における金属ナノ粒子(A’)の含有率が92~98質量%である請求項10又は11記載の金属ナノ粒子含有複合体。
  13. 請求項10~12の何れか1項記載の金属ナノ粒子含有複合体が、水、ヒドロキシ基を有する有機溶剤、および芳香族炭化水素溶剤からなる群から選ばれる1種以上の溶剤に分散していることを特徴とする金属ナノ粒子含有複合体の分散液。
  14. 請求項8又は9に記載の製造方法で得られるものである請求項13記載の分散液。
  15. 金属ナノ粒子含有複合体の含有率が10~85質量%である請求項13又は14記載の分散液。
  16. 請求項13~15の何れか1項記載の分散液をプラスチック基材に直接塗布し、100℃以下で乾燥して得られることを特徴とするプラスチック基板。
PCT/JP2010/065194 2009-10-20 2010-09-06 金属ナノ粒子含有複合体、その分散液、及びこれらの製造方法 WO2011048876A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10824728.9A EP2492033B1 (en) 2009-10-20 2010-09-06 Metal nanoparticle containing complex, fluid dispersion thereof and production methods for metal nanoparticle containing complex and fluid dispersion thereof
CN201080047289.2A CN102574206B (zh) 2009-10-20 2010-09-06 含有金属纳米粒子的复合物、其分散液以及它们的制造方法
US13/502,564 US8388870B2 (en) 2009-10-20 2010-09-06 Metal-nanoparticle-containing composite, dispersion liquid thereof, and methods for producing the metal-nanoparticle-containing composite and the dispersion liquid
KR1020127006733A KR101665464B1 (ko) 2009-10-20 2010-09-06 금속 나노 입자 함유 복합체, 그 분산액, 및 이들의 제조 방법
JP2010544514A JP4697356B1 (ja) 2009-10-20 2010-09-06 金属ナノ粒子含有複合体、その分散液、及びこれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009241371 2009-10-20
JP2009-241371 2009-10-20

Publications (1)

Publication Number Publication Date
WO2011048876A1 true WO2011048876A1 (ja) 2011-04-28

Family

ID=43900116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065194 WO2011048876A1 (ja) 2009-10-20 2010-09-06 金属ナノ粒子含有複合体、その分散液、及びこれらの製造方法

Country Status (6)

Country Link
US (1) US8388870B2 (ja)
EP (1) EP2492033B1 (ja)
JP (1) JP4697356B1 (ja)
KR (1) KR101665464B1 (ja)
CN (1) CN102574206B (ja)
WO (1) WO2011048876A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508856A (ja) * 2011-01-14 2014-04-10 ケアストリーム ヘルス インク ナノワイヤ調製方法、組成物、および物品
JP2014196556A (ja) * 2013-03-07 2014-10-16 Dic株式会社 導電性材料の製造方法及び導電性材料
JP2014205905A (ja) * 2013-03-19 2014-10-30 Dic株式会社 導電性材料の製造方法及び導電性材料
EP2812139A4 (en) * 2012-02-10 2015-07-01 Lockheed Corp NANOPARTICLE PASTE FORMULATIONS AND METHOD FOR THE PRODUCTION AND USE THEREOF
JP2016000842A (ja) * 2014-06-11 2016-01-07 Dic株式会社 めっき物の製造方法
WO2016052043A1 (ja) * 2014-10-03 2016-04-07 株式会社コムラテック 電子回路基板の製造方法およびそれにより得られた電子回路基板
WO2016052292A1 (ja) * 2014-09-29 2016-04-07 トッパン・フォームズ株式会社 金属銀、金属銀の製造方法及び積層体
CN106807936A (zh) * 2015-12-01 2017-06-09 中国科学院大连化学物理研究所 一种有机官能团保护的金纳米颗粒的处理方法
JP2017183247A (ja) * 2016-03-31 2017-10-05 Jx金属株式会社 導電性金属粉ペースト
WO2017183624A1 (ja) * 2016-04-22 2017-10-26 Dic株式会社 金属ナノ粒子水分散液
JP6269909B1 (ja) * 2016-08-25 2018-01-31 Dic株式会社 金属ナノ粒子水分散液
WO2018038086A1 (ja) * 2016-08-25 2018-03-01 Dic株式会社 金属ナノ粒子水分散液
JP2018535321A (ja) * 2015-10-30 2018-11-29 クラリアント・インターナシヨナル・リミテツド 高められた安定性を有する金属分散体

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2900409B1 (en) 2012-09-27 2019-05-22 Rhodia Operations Process for making silver nanostructures and copolymer useful in such process
US9953740B2 (en) 2012-10-18 2018-04-24 Dai Nippon Printing Co., Ltd. Dispersant, metal particle dispersion for electroconductive substrates, and method for producing electroconductive substrate
JP5648232B1 (ja) * 2013-06-21 2015-01-07 Dic株式会社 無電解めっき用触媒、これを用いた金属皮膜及びその製造方法
KR101439363B1 (ko) 2013-09-23 2014-09-11 순천향대학교 산학협력단 이온교환수지와 액상환원법을 이용한 나노입자 제조방법
JP5738464B1 (ja) * 2013-12-10 2015-06-24 Dowaエレクトロニクス株式会社 銀微粒子分散液
WO2015098658A1 (ja) * 2013-12-24 2015-07-02 Dic株式会社 金属ナノ粒子を含有する接合用材料
WO2015136449A1 (en) * 2014-03-13 2015-09-17 Cima Nanotech Israel Ltd. Process for preparing conductive coatings using metal nanoparticles
CN104084597B (zh) * 2014-07-08 2015-05-20 青岛大学 含有金纳米粒子的分形树枝图案聚集体的制备方法
JP6592246B2 (ja) * 2015-01-27 2019-10-16 株式会社コムラテック 電子回路基板およびその製造方法
CN109195731B (zh) 2016-05-16 2021-07-06 Dic株式会社 金属纳米粒子水分散液
WO2017199833A1 (ja) * 2016-05-17 2017-11-23 Dic株式会社 無電解ニッケルめっき方法
US9873153B1 (en) * 2017-03-21 2018-01-23 King Saud University Synthesis of metal nanoparticles using modified MPEG polymer
TWI707923B (zh) * 2017-05-19 2020-10-21 日商迪愛生股份有限公司 金屬奈米粒子水分散液
JP7434786B2 (ja) 2019-09-27 2024-02-21 Dic株式会社 銅/酸化銅微粒子ペースト
CN113593750B (zh) * 2021-06-18 2023-05-02 西湖未来智造(杭州)科技发展有限公司 水溶性纳米金属浆料及其制备方法与应用
CN113649587A (zh) * 2021-07-14 2021-11-16 上海涂固安高科技有限公司 一种包含金属纳米颗粒的无机/聚合物复合纳米颗粒及应用
CN115070058B (zh) * 2022-08-16 2022-11-01 西安锐创微米科技有限公司 一种抗氧化能力强的高结晶度高球形度钯粉的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281845A (ja) * 2004-03-28 2005-10-13 Yukio Nagasaki 金属コロイド分散液および金属コロイド分散液の製造方法
JP2005534810A (ja) * 2002-08-01 2005-11-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー エチレングリコール単層膜保護ナノ粒子
JP2009127092A (ja) * 2007-11-26 2009-06-11 Konica Minolta Holdings Inc 金属ナノワイヤ、及び金属ナノワイヤを含む透明導電体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834800A (en) * 1986-10-15 1989-05-30 Hoeganaes Corporation Iron-based powder mixtures
US6054507A (en) * 1997-03-10 2000-04-25 Japan Science And Technology Corporation Metal-organic polymer composite structure and production thereof
JP2003103158A (ja) 2001-09-28 2003-04-08 Nippon Paint Co Ltd 高濃度金属コロイド粒子溶液、その製造方法及び金属性被膜の形成方法
CN100494290C (zh) * 2005-07-28 2009-06-03 上海三瑞化学有限公司 一种高分散纳米银颗粒的制备方法
US20070144305A1 (en) * 2005-12-20 2007-06-28 Jablonski Gregory A Synthesis of Metallic Nanoparticle Dispersions
EP2050792B1 (en) * 2006-08-09 2013-11-20 DIC Corporation Metal nanoparticle dispersion and production process of the same
JP4505825B2 (ja) 2006-09-15 2010-07-21 国立大学法人大阪大学 金属ナノ粒子の焼結方法およびその焼結方法を用いた基板上に配線を形成する方法
US20080145545A1 (en) * 2006-12-15 2008-06-19 Bret Ja Chisholm Metal oxide and sulfur-containing coating compositions, methods of use, and articles prepared therefrom
US7922939B2 (en) * 2008-10-03 2011-04-12 The Board Of Trustees Of The University Of Illinois Metal nanoparticle inks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534810A (ja) * 2002-08-01 2005-11-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー エチレングリコール単層膜保護ナノ粒子
JP2005281845A (ja) * 2004-03-28 2005-10-13 Yukio Nagasaki 金属コロイド分散液および金属コロイド分散液の製造方法
JP2009127092A (ja) * 2007-11-26 2009-06-11 Konica Minolta Holdings Inc 金属ナノワイヤ、及び金属ナノワイヤを含む透明導電体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2492033A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508856A (ja) * 2011-01-14 2014-04-10 ケアストリーム ヘルス インク ナノワイヤ調製方法、組成物、および物品
EP2812139A4 (en) * 2012-02-10 2015-07-01 Lockheed Corp NANOPARTICLE PASTE FORMULATIONS AND METHOD FOR THE PRODUCTION AND USE THEREOF
JP2014196556A (ja) * 2013-03-07 2014-10-16 Dic株式会社 導電性材料の製造方法及び導電性材料
JP2014205905A (ja) * 2013-03-19 2014-10-30 Dic株式会社 導電性材料の製造方法及び導電性材料
JP2016000842A (ja) * 2014-06-11 2016-01-07 Dic株式会社 めっき物の製造方法
WO2016052292A1 (ja) * 2014-09-29 2016-04-07 トッパン・フォームズ株式会社 金属銀、金属銀の製造方法及び積層体
JPWO2016052292A1 (ja) * 2014-09-29 2017-07-13 トッパン・フォームズ株式会社 金属銀、金属銀の製造方法及び積層体
WO2016052043A1 (ja) * 2014-10-03 2016-04-07 株式会社コムラテック 電子回路基板の製造方法およびそれにより得られた電子回路基板
JP2016076538A (ja) * 2014-10-03 2016-05-12 株式会社コムラテック 電子回路基板の製造方法およびそれにより得られた電子回路基板
JP2018535321A (ja) * 2015-10-30 2018-11-29 クラリアント・インターナシヨナル・リミテツド 高められた安定性を有する金属分散体
CN106807936A (zh) * 2015-12-01 2017-06-09 中国科学院大连化学物理研究所 一种有机官能团保护的金纳米颗粒的处理方法
JP2017183247A (ja) * 2016-03-31 2017-10-05 Jx金属株式会社 導電性金属粉ペースト
WO2017183624A1 (ja) * 2016-04-22 2017-10-26 Dic株式会社 金属ナノ粒子水分散液
JP6255635B1 (ja) * 2016-04-22 2018-01-10 Dic株式会社 金属ナノ粒子水分散液
JP6269909B1 (ja) * 2016-08-25 2018-01-31 Dic株式会社 金属ナノ粒子水分散液
WO2018038086A1 (ja) * 2016-08-25 2018-03-01 Dic株式会社 金属ナノ粒子水分散液
KR20190020789A (ko) * 2016-08-25 2019-03-04 디아이씨 가부시끼가이샤 금속 나노 입자 수분산액
KR102283387B1 (ko) 2016-08-25 2021-07-30 디아이씨 가부시끼가이샤 금속 나노 입자 수분산액

Also Published As

Publication number Publication date
CN102574206A (zh) 2012-07-11
JP4697356B1 (ja) 2011-06-08
CN102574206B (zh) 2014-06-04
EP2492033A1 (en) 2012-08-29
KR20120098599A (ko) 2012-09-05
JPWO2011048876A1 (ja) 2013-03-07
KR101665464B1 (ko) 2016-10-12
EP2492033B1 (en) 2017-03-08
EP2492033A4 (en) 2014-07-23
US8388870B2 (en) 2013-03-05
US20120280186A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP4697356B1 (ja) 金属ナノ粒子含有複合体、その分散液、及びこれらの製造方法
US10071426B2 (en) Coated metal fine particle and manufacturing method thereof
CN101909786B (zh) 银微粉、银油墨及银涂料以及它们的制造方法
JP5394749B2 (ja) 金属ナノ粒子分散物の合成
JP5735788B2 (ja) 圧膜用超低溶融金属ナノ粒子組成物
KR101494045B1 (ko) 금속 구리 분산액 및 그 제조 방법 그리고 그것을 사용하여 형성한 전극, 배선 패턴, 도막, 그 도막을 형성한 장식 물품, 항균성 물품 및 그들의 제조 방법
JP2009295965A (ja) 導電性インク用の二金属ナノ粒子
JP2009535497A (ja) ナノ粒子、その製造方法、およびその用途
JP5493398B2 (ja) 金属ナノ粒子用保護剤、金属ナノ粒子分散体及び金属ナノ粒子分散体の製造方法
JP5657469B2 (ja) 低融点有機アミンで安定化された銀ナノ粒子を大スケールで製造するための処理量の向上
KR101375703B1 (ko) 유기 화합물과 나노 구리 입자의 복합체, 유기 화합물과 나노 산화구리(ⅰ) 입자의 복합체, 및 그것들의 제조 방법
JP2008169474A (ja) 液中分散性および耐食性に優れた銅粉並びにその製造法
KR101927766B1 (ko) 금속 나노 입자 보호 폴리머, 금속 콜로이드 용액 및 그들의 제조 방법
JP5861912B2 (ja) 有機化合物とナノ銅粒子との複合体、有機化合物とナノ酸化銅(i)粒子との複合体、並びにそれらの製造方法
JP6036185B2 (ja) 高純度の金属ナノ粒子分散体ならびにその製造方法
JP2009138242A (ja) 低温焼結性銀微粉および銀塗料ならびにそれらの製造法
TWI777044B (zh) 丙烯酸樹脂及其製造方法、以及金屬微粒子分散體
TW201807102A (zh) 導電性墨水
JP2021055127A (ja) 銅/酸化銅微粒子ペースト

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047289.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010544514

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127006733

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010824728

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010824728

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13502564

Country of ref document: US