WO2011046143A1 - 積層体の製造方法及び積層体、それを用いた包装容器 - Google Patents

積層体の製造方法及び積層体、それを用いた包装容器 Download PDF

Info

Publication number
WO2011046143A1
WO2011046143A1 PCT/JP2010/067955 JP2010067955W WO2011046143A1 WO 2011046143 A1 WO2011046143 A1 WO 2011046143A1 JP 2010067955 W JP2010067955 W JP 2010067955W WO 2011046143 A1 WO2011046143 A1 WO 2011046143A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
adhesive
laminate
film
substrate
Prior art date
Application number
PCT/JP2010/067955
Other languages
English (en)
French (fr)
Inventor
篤司 真鍋
純子 府中
知子 久保田
小国 盛稔
Original Assignee
藤森工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤森工業株式会社 filed Critical 藤森工業株式会社
Priority to EP20100823411 priority Critical patent/EP2489511B1/en
Priority to US13/501,724 priority patent/US20120205387A1/en
Publication of WO2011046143A1 publication Critical patent/WO2011046143A1/ja
Priority to US13/942,374 priority patent/US20130299079A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B2037/0092Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding in which absence of adhesives is explicitly presented as an advantage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • B32B37/203One or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0011Pre-treatment or treatment during printing of the recording material, e.g. heating, irradiating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Definitions

  • the present invention relates to a method for producing a laminate using a surface-modified film, a laminate, and a packaging container using the laminate.
  • the present invention claims priority based on Japanese Patent Application No. 2009-236158 filed in Japan on October 13, 2009, the contents of which are incorporated herein by reference. More specifically, the present invention relates to a method for producing a laminate and a laminate that eliminates the generation of VOC (volatile organic compounds) by using neither an adhesive nor an anchor coat agent, and is excellent in environmental measures and energy saving measures.
  • the present invention relates to a clean packaging container that is produced using the same and that does not generate low-molecular components due to an adhesive and an anchor coating agent that can be a source of contamination to contents.
  • the laminate according to the present invention can be used for various uses such as a decorative sheet, an optical film, a protective film, and a packaging container.
  • the packaging container prepared using the laminate according to the present invention includes liquid seasonings, liquid detergents, liquid bleaches, liquid waxes, hair care products (including shampoos, rinses, conditioners, etc.), chemicals, liquids It can be widely used for packaging containers for various liquid products such as cosmetics and packaging containers for refilling, as well as various packaging containers for food, electronic parts, medical parts, medical equipment parts, precision machine parts and the like.
  • seasonings such as salt and pepper, powdered powder such as coffee milk powder should be stored in a plastic packaging container for refilling, and transferred to a desktop container etc. when using these. Has been done.
  • liquid seasonings such as cooking sauces, liquid detergents for tableware and clothing, liquid bleach, liquid wax, hair care products (including shampoos, rinses, conditioners, etc.), liquid cosmetics, etc.
  • Refillable packaging containers are used for the sale of liquid products. For example, instead of conventional cans, bottles, or plastic bottles equipped with hand pumps, they are stored in refillable plastic packaging containers made of multilayer film and sold to general consumers. Consumers who have purchased the product are refilling the contents with special bottles made of plastic.
  • Electronic parts such as semiconductors and liquid crystal monitors, medical parts, medical equipment parts, precision machine parts, and the like are transported on plastic trays or stored in boxes.
  • the transportation of the parts is required to maintain a high cleanliness. Therefore, it is necessary to protect the parts from dirt, dust, microorganisms, chemicals, etc. during transportation, moisture, extreme temperature changes, ultraviolet rays, and the like. Therefore, the parts are transported in a state where the entire tray and storage box are covered with a highly clean packaging container.
  • packaging containers used for packaging electronic components include plastic bags and sheet-molded containers. Electronic parts and the like are housed in the packaging container, and are shipped in a state where the opening of the packaging container is sealed and sealed.
  • the packaging container uses a laminate that combines two or more types of films, aluminum foil, and vapor-deposited film (a laminated thin film of aluminum, silica, alumina, etc.) on the packaging container. ing.
  • the laminate for example, after filling the contents, when the filling port of the packaging container is sealed by welding with a heating bar, so-called heat sealing, polyethylene having excellent heat sealability on the inner surface of the laminate that becomes the heat seal surface
  • polyamide, polyester, aluminum foil, a vapor deposition film, etc. are laminated
  • a packaging container can be used selecting it suitably from the shape of a well-known packaging container according to the form and property of the content to fill.
  • a standing pouch shape for example, refer to Patent Documents 1 and 2
  • a three- or four-side sealed flat bag shape for example, refer to Patent Document 3
  • a gusset bag body for example, a pillow packaging shape, a storage case, etc.
  • packaging materials using a base film whose cleanliness is maintained under a specially cleanliness-controlled work environment are produced.
  • a clean packaging body using the laminated body hereinafter, a packaging bag and a packaging container are collectively referred to as a packaging body
  • a dry laminating method using an adhesive or an anchor coat agent is used to combine two or more kinds of films and bond the films together.
  • a laminate in which films are laminated is produced by an extrusion lamination method or the like. If no adhesive or anchor coating agent is used, the adhesive strength of the laminate may be insufficient.
  • the VOC (volatile organic compound) generated by evaporating and drying the organic solvent during the laminating process of these films is dissipated into the atmosphere. It has become. Therefore, as a more preferable method for producing a laminate for a packaging container, there is a demand for a method capable of producing a laminate having a required adhesive strength without using an adhesive or an anchor coat agent.
  • Patent Document 4 For the above problems, various proposals have been made as a method for producing a laminate without using an adhesive or an anchor coat agent by performing a treatment for increasing the adhesive strength (for example, Patent Document 4). ⁇ 10).
  • Patent Document 4 at least one surface of a plastic substrate is oxidized by corona treatment, plasma treatment, flame plasma treatment, electron beam irradiation, ultraviolet irradiation, etc., and at least one surface of a melt-extruded film is subjected to ozone treatment.
  • An extrusion laminating method in which both are brought into contact and pressure-bonded is disclosed.
  • Patent Document 5 at least one surface of a plastic substrate is subjected to electron beam irradiation treatment, low pressure plasma treatment, atmospheric pressure plasma treatment in an atmosphere of an inert gas such as argon, helium, krypton, neon, xenon, nitrogen, etc.
  • an extrusion laminating method is disclosed in which surface treatment is performed by corona discharge treatment, and at least one surface of a melt-extruded film is subjected to ozone treatment, and then both are brought into contact and pressure-bonded.
  • Patent Document 6 in order to activate the surface of the synthetic resin and improve the adhesion to printing ink and metal deposition film, a mixed gas atmosphere substantially composed of nitrogen and carbon dioxide (preferably an oxygen concentration of 0.1 vol. %)), A surface treatment method for a synthetic resin, characterized by corona discharge treatment.
  • Patent Document 7 discloses nitrogen and carbon atoms on the surface of a substrate film by ESCA method by corona discharge treatment in an atmosphere of nitrogen gas (oxygen concentration of 3 vol% or less), carbon dioxide gas or nitrogen / carbon dioxide mixed gas.
  • a surface to be processed having a number ratio (N / C) in the range of 0.001 to 0.1 is generated, and a water / lower alcohol mixed solution or water is used as a solvent on the surface to be processed.
  • a method for producing a gas barrier film is disclosed in which a coating containing an inorganic layered compound as a main constituent is applied and then dried to form a coating film.
  • Patent Document 8 discloses a method of laminating at least two layers of polyolefin resins such as unstretched polyethylene (PE) and unstretched polypropylene (CPP) without using an adhesive. Specifically, a method is disclosed in which a low-temperature plasma treatment is performed on the surface of a resin to be laminated using a scanning glow discharge plasma apparatus, and then laminated by thermocompression bonding.
  • the base materials obtained by plasma-treating the surfaces of the fluororesin sheets with an atmospheric pressure plasma processing apparatus are used without using an adhesive and without changing the structure and composition of the base materials and below the melting point of the base material.
  • a bonding apparatus and a bonding method are disclosed in which bonding is performed by pressure bonding at a temperature.
  • Patent Document 10 an aramid paper made of plasma-treated aramid fiber and aramid pulp and a plasma-treated polyester film are continuously laminated and bonded using a pressure roll at a temperature of room temperature to 200 ° C.
  • An adhesive-free aramid-polyester laminate is disclosed.
  • Patent Documents 6 and 7 describe a method for improving adhesion by modifying the surface of a synthetic resin by corona discharge treatment in an atmosphere containing nitrogen and substantially no oxygen.
  • Patent Documents 6 and 7 only describe adhesiveness to printing inks, metal vapor deposition films, water-soluble polymers, and coating films mainly composed of inorganic layered compounds.
  • the present inventor has performed a corona discharge treatment in a nitrogen gas atmosphere.
  • an attempt was made to produce a laminate by thermally laminating a resin film having an untreated surface. As a result, sufficient adhesive strength of the laminate could not be obtained.
  • a non-polar thermoplastic resin for example, a surface of a polyolefin resin such as unstretched polyethylene (PE) is subjected to low-temperature plasma treatment using a scanning glow discharge plasma apparatus, and then subjected to thermocompression bonding.
  • a method of laminating is disclosed.
  • a polar thermoplastic resin such as polyester and a nonpolar thermoplastic resin
  • it is processed only with the nonpolar thermoplastic resin by the modulated magnetic field plasma apparatus, but the polar thermoplastic resin.
  • the surface is preferably used without plasma treatment because a high interlayer adhesion strength can be obtained.
  • thermocompression bonding temperature when thermocompression bonding PP and LDPE is 100 ° C., but the value of the applied pressure is not shown. Therefore, industrial use cannot be achieved.
  • Patent Document 9 uses an atmospheric pressure plasma processing apparatus in which a lower alcohol which is a primary alcohol or a secondary alcohol having 4 or less carbon atoms is vaporized and mixed with an inert gas and supplied to an electrode.
  • a method is disclosed in which surface modification is performed on substrates whose surfaces are made of a fluororesin, and the surface-modified substrates are thermocompression bonded at a temperature equal to or lower than the melting point of the substrates.
  • Patent Document 9 discloses that hydrophilicity is imparted to the surface fluororesin by surface modification, but a standard for determining a preferable treatment state of the plasma-treated resin surface is not defined.
  • the thermocompression bonding temperature at the time of thermocompression bonding is, for example, 200 ° C. or less for polytetrafluoroethylene (PTFE) having a melting point of 327 ° C., but the value of the applied pressure is not shown. Therefore, industrial use cannot be achieved.
  • PTFE polytetrafluoroethylene
  • Patent Document 10 discloses that an aramid paper composed of plasma-treated aramid fibers and aramid pulp and plasma-treated polyethylene terephthalate or polyethylene naphthalate at a temperature of room temperature to 200 ° C. under a pressure of 200 kgf / cm or more. A method of continuously laminating using a pressure roll is disclosed.
  • a certain kind of functional group for example, a COOH group or an OH group is formed on the film surface by surface modification and can be firmly bonded at a low temperature.
  • a criterion for judging a preferable treatment state of the plasma-treated resin surface is not defined. Further, the plasma treatment is omitted because it is a well-known method for enhancing the adhesiveness of various resins. Therefore, industrial use cannot be achieved.
  • the dry laminating method using an adhesive and the extrusion laminating method using an anchor coating agent have problems in terms of environmental measures and energy saving measures because organic solvents are used. Furthermore, since there is a risk of migration of residual solvent and low molecular components, there is a problem that the influence of mixing into the contents is unavoidable. Therefore, when manufacturing a laminated body by laminating
  • thermocompression bonding between the same type of films is used for thermocompression bonding between the same type of films, but thermocompression bonding between different types of films has weak adhesive force and is difficult to put into practical use.
  • dissimilar films are laminated using thermocompression bonding without using an adhesive and an anchor coating agent, and generation of VOC (volatile organic compound) is completely eliminated, and environmental measures and A laminate excellent in energy saving measures is not known.
  • the packaging container produced using the laminated body is not known.
  • the present invention is a method for manufacturing a laminate by bonding a first base material and a second base material made of different types of thermoplastic resin films or cellophane films. Then, the surface is modified using an atmospheric pressure plasma treatment apparatus, the surface on which the thermal adhesion modified layer is formed by the surface modification of the substrate, and the air corona treated surface of the substrate subjected to the air corona treatment Is provided, and the manufacturing method of the laminated body which carries out the thermocompression bonding with a heating roll and is continuously bonded, without apply
  • surface modification is performed on both the first substrate and the second substrate using an atmospheric pressure plasma processing apparatus, and a heat adhesion modified layer is formed by surface modification of both substrates.
  • the manufacturing method of the laminated body which heat-presses with a heating roll and continuously bonds, without making the surface opposite and applying an adhesive agent and an anchor agent is provided.
  • the present invention provides a method for producing a laminate by bonding a first base material and a second base material made of different types of thermoplastic resin films or cellophane films.
  • a first base material and a second base material made of different types of thermoplastic resin films or cellophane films.
  • Each of the first base and the second base each of which is made of a long film having a thickness of 10 to 500 ⁇ m and a length of 3 to 10,000 m.
  • one of the first substrate and the second substrate has a surface on which a heat-adhesive modified layer is formed by surface modification using an atmospheric pressure plasma processing apparatus, and the other
  • the surface of the substrate has an air corona-treated surface, the surface on which the heat-adhesive modified layer is formed, and the air-corona-treated surface are opposed to each other, and heating is performed without applying an adhesive and an anchor agent.
  • the present invention provides a method for producing a laminate by bonding a first base material and a second base material made of different types of thermoplastic resin films or cellophane films.
  • Each of the first base and the second base each of which is made of a long film having a thickness of 10 to 500 ⁇ m and a length of 3 to 10,000 m.
  • both the first base material and the second base material have a surface on which a heat adhesion modified layer is formed by surface modification by an atmospheric pressure plasma processing apparatus, and the heat adhesion modified layer
  • coating an adhesive agent and an anchor agent is provided.
  • the treatment surfaces are opposed to each other, and after applying heat and pressure without applying an adhesive and an anchor coating agent to obtain a test laminate, the adhesive force on the bonding surface of the test laminate is measured, and the first laminate is measured.
  • Method for confirming quality of formation state of base material and / or thermal adhesive property modified layer of second base material It may be adopted.
  • the first base material is selected from the group consisting of polyethylene terephthalate (PET), polyamide (PA), polyethylene naphthalate (PEN), polyacrylonitrile (PAN), polycarbonate (PC), polyimide (PI), and cellophane film.
  • the second base material is selected from unstretched polyethylene (PE) or unstretched polypropylene (CPP).
  • a printed layer may be formed on at least one side of the film serving as the first substrate.
  • the present invention also provides a laminate produced by the above-described laminate production method.
  • the present invention also provides a packaging container manufactured by using the above laminate so that the second base material is an inner surface as a sealant layer.
  • this invention is the laminated body which bonded the 1st base material and 2nd base material which consist of a different kind of thermoplastic resin film or a cellophane film,
  • the said 1st base material is polyethylene. It is one kind selected from the group consisting of terephthalate (PET), polyamide (PA), polyethylene naphthalate (PEN), polyacrylonitrile (PAN), polycarbonate (PC), polyimide (PI), cellophane film
  • the second substrate is unstretched polyethylene (PE) or unstretched polypropylene (CPP), and the first substrate and the second substrate have a thickness of 10 to 500 ⁇ m and a length of 3 It consists of a long film of up to 10,000 m, and one of the first substrate and the second substrate is large on the bonding surface of the laminate.
  • a surface on which a heat-adhesive modified layer is formed by surface modification by a pressure plasma treatment apparatus, and the other substrate has a surface on which an air corona treatment has been performed, and the surface on which the heat-adhesive modified layer is formed
  • the air corona-treated surface does not include an adhesive and an anchor agent, and provides a laminate that is bonded by thermocompression bonding.
  • the present invention is a laminate in which a first base material and a second base material made of different types of thermoplastic resin films or cellophane films are bonded, wherein the first base material is polyethylene terephthalate.
  • PET polyethylene terephthalate
  • PA polyamide
  • PEN polyethylene naphthalate
  • PAN polyacrylonitrile
  • PC polycarbonate
  • PI polyimide
  • 2 is unstretched polyethylene (PE) or unstretched polypropylene (CPP)
  • the first substrate and the second substrate have a thickness of 10 to 500 ⁇ m and a length of 3 to It consists of a long film of 10,000 m, and both the first base material and the second base material are subjected to atmospheric pressure plasma treatment on the bonding surface of the laminate.
  • the surfaces on which the heat-adhesive modified layer is formed by surface modification by placing, and the surfaces on which the heat-adhesive modified layer is formed do not include an adhesive and an anchor agent, and are subjected to thermocompression bonding.
  • a laminated body that is bonded is provided.
  • this invention provides the packaging container manufactured using the said laminated body so that a said 2nd base material may become an inner surface side as a sealant layer.
  • the laminate since the laminate is manufactured without using an adhesive and an anchor coating agent, it is not necessary to take environmental measures for VOC (volatile organic compounds) generated by evaporating and drying the organic solvent described above. Become. Further, according to the method for producing a laminate of the present invention, since an adhesive and an anchor coating agent are not used, an organic solvent is not used, so a drying furnace for drying and removing the solvent is not required, and environmental measures and Environmental load can be reduced in terms of energy saving measures. Further, according to the laminate of the present invention, when compared with a laminate produced by a film sand method or an extrusion laminate method, the resin does not need to be heated up to its melting temperature, so that a resin melting furnace is not required and energy saving is achieved.
  • VOC volatile organic compounds
  • the laminate production method does not use an organic solvent, and therefore a drying furnace and exhaust gas for drying and removing the solvent. Does not require processing equipment. In other words, from the viewpoint of environmental measures and energy saving measures, the environmental load can be reduced, which is very good.
  • the laminate manufacturing method of the present invention does not heat the extruded resin to its melting temperature, and therefore requires a resin melting furnace. It is energy saving and can reduce environmental impact.
  • a thermal adhesive modified layer having a necessary adhesive force is formed on the surface of the film used for the laminate by surface modification using an atmospheric pressure plasma processing apparatus, and is practically used.
  • a laminate that can be used in a typical packaging container is obtained.
  • a laminate excellent in environmental measures and energy saving measures can be obtained in which no adhesive or anchor coating agent is used.
  • no adhesive or anchor coating agent is used.
  • a laminate excellent in environmental measures and energy saving measures it can be a source of contamination to the contents, derived from the adhesive and anchor coating agent. It is possible to obtain a clean packaging container free from the generation of low molecular components.
  • the laminate of the present invention is a laminated body by bonding the 1st base material which consists of a different kind of thermoplastic resin film or a cellophane film, and a 2nd base material, Comprising: An adhesive agent and an anchor coat agent are An unused laminate can be provided. Therefore, compared to a laminate produced by dry lamination using an adhesive, the laminate of the present invention does not use an organic solvent, and therefore requires a drying furnace and an exhaust gas treatment apparatus for drying and removing the solvent. And not. That is, from the viewpoint of environmental measures and energy saving measures, it is excellent in that the environmental load can be reduced.
  • the laminate of the present invention does not heat the extruded resin up to its melting temperature, and therefore does not require a resin melting furnace and saves energy. It can reduce the environmental load.
  • a clean packaging container using a laminate excellent in environmental measures and energy saving measures and free from the generation of low-molecular components derived from adhesives and anchor coat agents, which can be a source of contamination to contents. can be obtained.
  • An example of the laminated body concerning this invention is shown, and it is a schematic sectional drawing after carrying out thermocompression bonding.
  • An example of the laminated body by a prior art is shown, and it is a schematic sectional drawing before dry-laminating.
  • An example of the laminated body by a prior art is shown, and it is a schematic sectional drawing after carrying out dry lamination.
  • the untreated first base material 1 and the second base material 6 and the surface-treated first base material 5 and the second base material 8 are distinguished by reference numerals, "" Or “surface treated” may be omitted.
  • the same reference numerals are used without distinguishing between the case where the surface treatment is atmospheric pressure plasma treatment and the case where the surface treatment is air corona treatment.
  • symbol 7 is used for the surface modification layer 7 of the 2nd base material 8, and the thermoadhesive modification layer 7 in particular, without distinguishing.
  • the first base material 5 can also have a heat adhesion modified layer instead of the surface modified layer 2.
  • the surface modified layer is provided on the second base material 8.
  • the untreated first base material 1 and the second base material 6 are also objects to be processed (that is, before processing).
  • the same reference numerals are used to represent portions that have not been processed after processing.
  • FIG. 1 is a conceptual diagram showing an example of a manufacturing method of a laminate according to the present invention, in which a first substrate 1 and a second substrate 6 made of different kinds of films are bonded and laminated. It shows a method of manufacturing a body.
  • the first base material 1 and the second base material 6 are each made of a long film, and a roll body 21 around which the first base material 1 is wound and a roll body around which the second base material 6 is wound. 22 is fed out respectively.
  • the first base material 5 is provided with a heat adhesion modified layer by surface modification using an atmospheric pressure plasma processing device 23, and the second base material 8 is subjected to air corona treatment by an air corona treatment device 24. Is given.
  • FIG. 1 is a conceptual diagram showing an example of a manufacturing method of a laminate according to the present invention, in which a first substrate 1 and a second substrate 6 made of different kinds of films are bonded and laminated. It shows a method of manufacturing a body.
  • FIG. 1 shows a case where the surface modification is performed online using the atmospheric pressure plasma processing apparatus 23 and the air corona treatment apparatus 24.
  • a roll body 32 may be used. With the heating roll 25 and the backup roll 26 held at a predetermined temperature, the surface of the first base material 5 on which the heat-adhesive modified layer is formed and the air corona treatment surface of the second base material 8 face each other.
  • the laminate 10 is obtained by thermocompression bonding while applying pressure.
  • the obtained laminated body 10 may be wound around the roll body 28, or may be cut into a predetermined size to form a sheet-like laminated body (not shown).
  • the first base material 5 in contact with the heating roll 25 needs to have a melting point higher than the set temperature of the heating roll 25. If the melting point of the first base material 5 is lower than the set temperature of the heating roll 25, the first base material 5 is fused to the heating roll 25, so that the problem that good thermocompression bonding is not performed is solved.
  • an air corona treatment apparatus can be used for the surface treatment of the first substrate, and an atmospheric pressure plasma treatment apparatus can be used for the surface treatment of the second substrate.
  • the heating roll 25 is used on the side which contacts the base material to be air corona treated and the backup roll 26 is used on the base material side to be subjected to the atmospheric pressure plasma treatment is shown, on the contrary, It is also possible to use a backup roll on the side in contact with the substrate to be air corona-treated and a heating roll on the side in contact with the substrate to be subjected to the atmospheric pressure plasma treatment. Moreover, both the upper and lower rolls 25 and 26 can be heated rolls as necessary.
  • FIG. 2 is a conceptual diagram showing another example of the manufacturing method of the laminate according to the present invention, in which both the first base material 1 and the second base material 6 made of different types of films are large. It shows a method of manufacturing a laminated body by applying surface modification by an atmospheric pressure plasma processing apparatus and then bonding by thermocompression bonding.
  • the first base material 1 and the second base material 6 are each made of a long film, and a roll body 21 around which the first base material 1 is wound and a roll body around which the second base material 6 is wound. 22 is fed out respectively.
  • the first base material 5 and the second base material 8 are each formed with a heat adhesion modified layer by surface modification using an atmospheric pressure plasma processing apparatus 23.
  • the surface modification using the atmospheric pressure plasma processing apparatus is performed in advance.
  • the roll bodies 31 and 32 around which the first base material 5 and the second base material 8 on which the heat-adhesive modified layer is formed may be used.
  • the surfaces of the first base material 5 and the second base material 8 on which the heat-adhesive modified layer is formed are opposed to each other, and heated while being pressurized with the heating roll 25 and the backup roll 26 held at a predetermined temperature.
  • the laminated body 10 is obtained by pressure bonding.
  • the obtained laminated body 10 may be wound around the roll body 28, or may be cut into a predetermined size to form a sheet-like laminated body (not shown). Further, if necessary, both the upper and lower rolls 25 and 26 may be heating rolls.
  • FIG. 4A and 4B are schematic cross-sectional views showing an example of a laminate according to the present invention.
  • 4A is a schematic cross-sectional view before thermocompression bonding
  • FIG. 4B is a schematic cross-sectional view after thermocompression bonding.
  • at least one surface of the first base material 5 is subjected to surface modification by an atmospheric pressure plasma processing apparatus, so that the thermal adhesion modified layer 2 is formed.
  • a surface modification layer 7 by air corona treatment or a surface modification by an atmospheric pressure plasma treatment apparatus is performed on one surface of the second substrate 8 to form a heat adhesion modified layer 7.
  • the laminate 10 according to the present invention is obtained by performing thermocompression bonding by facing each other and holding at a predetermined heating temperature and pressure.
  • This laminated body 10 includes a thermal adhesion portion 9 derived from the thermal adhesion modified layer 2 of the first substrate 5 and the surface modified layer 7 or the thermal adhesion modified layer 7 of the second substrate 8. Is a laminated body in which the first base material 5 and the second base material 8 are laminated, in which an adhesive and an anchor coating agent are not used.
  • one resin film of the laminate 10 is a thermoplastic resin film having heat sealing properties
  • the laminate 10 is cut into a predetermined shape and size, and the resin of the heat seal layer is disposed on the inner surface.
  • a packaging container can be produced by sealing with heat sealing as the side.
  • FIG. 5A and 5B are schematic cross-sectional views showing another example of a laminate according to the present invention, and are schematic cross-sectional views showing a laminate made of a film having a printing layer.
  • FIG. 5A is a schematic cross-sectional view before thermocompression bonding
  • FIG. 5B is a schematic cross-sectional view after thermocompression bonding.
  • the printing layer 3 is formed in the single side
  • the surface modification treatment is performed using the atmospheric pressure plasma processing apparatus, and the printing layer and the printing layer of the first base material are not formed. In the portion, the heat adhesion modified layer 2 is formed.
  • the laminated body 20 having the printed layer according to the present invention is obtained by facing each other and holding at a predetermined heating temperature and pressure to perform thermocompression bonding.
  • This laminate 20 is derived from the first substrate 5 and the thermal adhesion modified layer 2 of the printing layer 3 and the surface modified layer 7 or the thermal adhesion modified layer 7 of the second substrate 8. It is a laminated body in which the first base material 5 and the second base material 8 are laminated, in which the heat bonding part 9 is formed and the adhesive and the anchor coating agent are not used.
  • one resin film of the laminate 20 is a thermoplastic resin film having heat sealing properties
  • the laminate 20 is cut into a predetermined shape and size, and the resin of the heat seal layer is disposed on the inner surface.
  • a practical packaging container having a printed layer can be produced by sealing with a heat seal on the side.
  • FIGS. 6A and 6B are schematic cross-sectional views illustrating an example of a laminated body according to a conventional technique.
  • 6A is a schematic cross-sectional view before dry lamination
  • FIG. 6B is a schematic cross-sectional view after dry lamination.
  • a surface modification layer 43 is formed on one surface of the first base film 41 by air corona treatment, and an adhesive layer 45 is laminated on the surface modification layer 43.
  • the first base film 41 is dry-laminated with the surface of the second base film 42 on which the surface modification layer 44 is formed by the air corona treatment via the adhesive layer 45, whereby the laminate 40 is obtained. .
  • the film used in the laminate of the present invention has a thickness of 10 to 500 ⁇ m, on which at least one surface has a heat-adhesive modified layer formed by surface modification using an atmospheric pressure plasma processing apparatus.
  • 1 film (referred to as a modified first substrate), a 10-500 ⁇ m thick air corona-treated first substrate (referred to as air corona-treated first substrate) ),
  • a film serving as a second substrate subjected to air corona treatment having a thickness of 10 to 500 ⁇ m referred to as a second substrate subjected to air corona treatment
  • at least one surface is subjected to surface modification using an atmospheric pressure plasma treatment apparatus.
  • a film (referred to as a modified second substrate) having a thickness of 10 to 500 ⁇ m, on which a heat-adhesive modified layer is formed by the quality, and the laminate of the present invention Set of films
  • the Align is the following three. (1): (Modified first substrate) / (Air corona-treated second substrate) (2): (modified first substrate) / (modified second substrate) (3): (Air corona-treated first substrate) / (Modified second substrate)
  • the laminate according to the present invention is used for a packaging container
  • the laminate is produced by using a film having a film thickness of about 10 to 100 ⁇ m for each of the first substrate and the second substrate.
  • the thickness of the laminate used in the packaging container is preferably about 30 to 200 ⁇ m from the viewpoint of touch.
  • Such a laminate can be suitably used for a packaging container.
  • this laminated body is folded in half so that unstretched polyethylene (PE) is used as a heat seal layer, and a bag body is obtained by sealing three sides with heat seal.
  • PE unstretched polyethylene
  • a self-standing standing pouch is provided, and further, a packaging container that simplifies the refilling operation of the contents can be obtained by arranging a spout having a shape that is easy to pour. .
  • a base film with cleanliness maintained is used in the work environment in a cleanroom with special cleanliness control. After producing the laminate according to the present invention, a clean package using the laminate can be produced.
  • the surface on which the heat adhesion modified layer is formed by the surface modification of the film of the first substrate or the second substrate by the atmospheric pressure plasma treatment apparatus is the air corona of the thermoplastic resin film subjected to the air corona treatment.
  • Adhesive strength when thermocompression bonding is performed without applying an adhesive and an anchor coating agent so as to face the treated surface is JIS K 6854-1 “Adhesive Peeling Adhesive Strength Test Method” Part 1: 90 degree peeling It is necessary that surface modification using an atmospheric pressure plasma processing apparatus is performed so that the value measured by the measurement method defined in “1” is equal to or greater than a predetermined value.
  • the present inventors have noticed that the adhesive strength of the films laminated by thermocompression bonding differs according to the subtle difference in the state of atmospheric pressure plasma treatment.
  • the atmospheric pressure plasma processing apparatus can be obtained by facing the surface of the atmospheric pressure plasma-treated film on which the heat-adhesive modified layer is formed and the air corona-treated surface of the air-corona-treated thermoplastic resin film so as to face each other. It has been found that the quality of the finished surface modification used can be judged, and the present invention has been achieved.
  • thermocompression bonding the surface on which the thermal adhesion modified layer of the film serving as the first substrate subjected to the atmospheric pressure plasma treatment is formed, and the thermal adhesion of the film serving as the second substrate subjected to the atmospheric pressure plasma treatment.
  • a laminate that can be used in a packaging container can be obtained by facing the surface on which the modified layer is formed and then thermocompression bonding.
  • thermoplastic resins such as polyethylene terephthalate (PET) resin, polyamide (PA) resin, polyethylene naphthalate (PEN) resin, polyacrylonitrile (PAN) resin, polycarbonate (PC) resin, polyimide ( PI) resin, unstretched polyethylene (PE) resin, polypropylene (CPP) resin and other resin films.
  • the melting points of these thermoplastic resins are polyethylene terephthalate (252 ° C.), polyamide (220 ° C.), polyethylene naphthalate (about 270 ° C.), polyacrylonitrile (no melting point), polycarbonate (no melting point), polyimide (no melting point), respectively.
  • Polyamide resin is a linear polymer whose main chain is composed of repeated amide bonds (-CONH-) formed by the reaction of an acid and an amine. Yes.
  • the heat seal temperature of the laminated film needs to be lower than the melting point of the resin to be bonded to the resin to be the heat seal layer. If heat-pressing is performed at a temperature higher than the melting point of the resin to be bonded to the resin to be the heat seal layer, the resin adheres to the heating roll and the surface of the resin becomes rough. In the heat bonding step, it is preferable to select a thermocompression bonding temperature and a pressing force. Adhesive strength can be improved by increasing the thermocompression bonding temperature, time and pressure. What is necessary is just to select suitably the conditions from which the target adhesive strength is obtained.
  • a cellophane film can be used instead of the resin film.
  • a resin film such as an unstretched polyethylene (PE) resin or a polypropylene (CPP) resin to be a heat seal layer as the second substrate.
  • PE unstretched polyethylene
  • CPP polypropylene
  • the thickness of the thermoplastic resin film or cellophane film used in the present invention is preferably about 10 to 500 ⁇ m. If the thickness is less than 10 ⁇ m, it tends to be wrinkled, and it is difficult to perform roll-to-roll processing, resulting in inconvenience in handling. On the other hand, when the thickness exceeds 500 ⁇ m, the rigidity is high and the flexibility is lost, and similarly to the case where the thickness is too thin, it is difficult to carry out processing with a roll-to-roll, resulting in inconvenience in handling.
  • the thickness of the film to be used should be about 10 to 100 ⁇ m in order to maintain the flexibility of the laminate and improve the processability of the packaging container. Is preferred.
  • a printed layer can also be formed on at least one side of the film to be the first substrate.
  • the position of the printed layer is not particularly limited, such as the surface on the side where the surface treatment of the first substrate is performed, the surface on the side where the surface treatment of the first substrate is not performed, the inside of the first substrate, etc.
  • the heat adhesion modified layer 2 is also formed on the printed layer 3. Can be formed.
  • the printing ink constituting the print layer 3 needs to contain a resin component that can be modified by atmospheric pressure plasma treatment.
  • a resin component examples include various types of ink binder resins such as urethane resins and acrylic resins, in addition to the thermoplastic resins used in the base film. Furthermore, additives such as various pigments, drying agents and stabilizers can be added to the ink.
  • the printing layer is formed by a known printing method such as an offset printing method, a gravure printing method, or a screen printing method. The thickness of the printing layer is usually about 0.05 to 2.0 ⁇ m. Further, when the occupation area of the printing layer is sufficiently narrow as compared with the surface area of the first base material, the second adhesive layer 2 can be formed even if the thermal adhesion modifying layer 2 is not sufficiently formed on the printing layer. It can be bonded to a substrate.
  • a resin film of a second substrate made of another thermoplastic resin is pasted on the surface of a film of a first substrate made of a thermoplastic resin or a cellophane film.
  • it can be performed by the following steps (1) to (3).
  • the surface of the film of the first base material is subjected to surface treatment using an atmospheric pressure plasma treatment apparatus to form a heat-adhesive modified layer, or corona discharge treatment in an air atmosphere (air corona treatment) ) To perform surface treatment.
  • the surface of the film of the second base material is subjected to surface treatment using an atmospheric pressure plasma treatment apparatus to form a heat-adhesive modified layer, or corona discharge treatment (air corona treatment in an air atmosphere) ) To perform surface treatment.
  • (3) Use the adhesive and the anchor coat agent by superimposing the surface of the second film on which the surface treatment has been performed on the surface of the film of the first base material on which the thermal adhesive layer is formed. Instead, laminate by thermocompression bonding.
  • either one of the first base material and the second base material has a surface on which a heat-adhesive modified layer is formed by surface modification by an atmospheric pressure plasma processing apparatus
  • (1) In the case of performing surface treatment on the surface of the film of the first base material by corona discharge treatment (air corona treatment) in an air atmosphere, in (2), on the surface of the film of the second base material, Surface treatment is performed using an atmospheric pressure plasma treatment apparatus to form a heat-adhesive modified layer.
  • the reactive gas used in the atmospheric pressure plasma processing apparatus is not limited to the one based on nitrogen gas, but may be based on oxygen gas or carbon dioxide gas.
  • the two films to be bonded are laminated by, for example, using polyamide (PA) and unstretched polyethylene (PE) by thermocompression bonding without using an adhesive and an anchor coat agent. Is obtained.
  • polyamide (PA) and unstretched polyethylene (PE) are used as two films to be bonded, and are laminated by thermocompression bonding without using an adhesive and an anchor coat agent. The body is obtained.
  • PET polyethylene terephthalate
  • PE unstretched polyethylene
  • the body is obtained.
  • a practical adhesive strength is not obtained for a laminate of polyethylene terephthalate (PET) and polyamide (PA).
  • the surface modification treatment for the two films used in the laminate of the present invention may be performed first as long as it is a stage prior to lamination. Further, the surface modification treatment may be performed simultaneously or in parallel on the two films to be laminated. Moreover, when laminating three or more films, it is possible to produce a laminated film of three or more layers by repeating the surface modification treatment and laminating process on the surface to be laminated as many times as necessary. In addition, after the surface modification treatment is performed on both surfaces of the substrate film, two other films subjected to the surface modification treatment are superimposed and laminated on each surface of the substrate film, thereby laminating the substrate film. It is also possible to produce a three-layer laminated film in which another film is laminated on each of both sides. At present, in the laminate according to the present invention, a practical adhesive strength is not obtained for a laminate of polyethylene terephthalate (PET) and polyamide (PA).
  • PET polyethylene terephthalate
  • PA polyamide
  • Thermoplastic polyolefin resin films such as polyethylene and polypropylene do not have a polar group in the surface layer, and therefore have low ink printability and adhesion to other resins. For this reason, in order to improve the printability of ink and the adhesion to other resins, the surface of the resin film is modified by corona discharge treatment.
  • a corona discharge is generated in the atmosphere using a high-frequency power supply voltage, and the electrons and ions generated along with the corona discharge are irradiated to the surface of the resin film, and functional groups are formed on the surface of the resin film.
  • the surface modification of the resin film is performed by adding.
  • nitrogen functional groups such as amino groups (—NH 2 ) that are thought to contribute to adhesion are mainly attached to the main chain and side chain of the polymer on the surface of the resin film. It is thought to generate. Furthermore, unlike corona discharge treatment (air corona treatment) in a normal air atmosphere, corona discharge treatment in a nitrogen gas atmosphere causes discharge in a nitrogen gas atmosphere, so corona discharge in an air atmosphere. Generation of a fragile layer due to impurities in the air, which occurs when processing (air corona processing) is performed, is suppressed. In some patent documents, there is a description that nitrogen gas can be used as an atmospheric gas for atmospheric pressure glow plasma treatment.
  • corona discharge in a nitrogen gas atmosphere is streamer-like (linear) like lightning by adjusting discharge conditions. That is, since it is possible to perform discharge that is milder than mild corona discharge in an air atmosphere and close to glow plasma discharge, it can be used for surface modification that is more uniform than air corona treatment.
  • an atmospheric pressure plasma processing apparatus capable of generating a glow discharge state that can only be generated only in a vacuum state at atmospheric pressure and performing surface modification using a reaction radical, an electron, etc. generated thereby is a resin. It is easily used to improve the wettability and adhesion of the film.
  • Atmospheric pressure glow plasma treatment uses a rare gas element such as helium or argon as the atmospheric gas, so that glow discharge is stably maintained and a streamer shape (linear shape) like lightning is obtained. That is, uniform surface modification without unevenness is possible as compared with corona discharge in an air atmosphere.
  • nitrogen gas can be used as an atmospheric gas for atmospheric pressure glow plasma treatment. However, as a result of observing the discharge state, it is not atmospheric pressure glow plasma discharge.
  • the atmospheric pressure plasma treatment in the present invention is a corona discharge treatment in a nitrogen gas atmosphere or an atmospheric pressure glow plasma treatment in a rare gas atmosphere such as helium or argon.
  • oxygen functional groups such as carbonyl groups (> CO) and carboxyl groups (-COOH) are mainly formed on the main chain and side chain of the polymer on the surface of the resin film.
  • nitrogen-based gas for example, N 2 , N 2 O, NH 3, etc., and further mixing hydrogen (H 2 ), oxygen (O 2 ), etc., amino groups, amide groups, etc.
  • the present inventors have confirmed that it can be intentionally introduced. Further, CH 4 , CO 2 or the like may be added to the reaction gas.
  • the plasma generated by the atmospheric pressure plasma processing apparatus is irradiated on the surface of the film so as to form a heat adhesion modified layer on the film surface, and the applied power. Adjust the frequency and so on.
  • the processing conditions such as time for applying plasma to the film surface, applied power, frequency, etc., for example, to search for plasma processing conditions for polyamide (PA) resin, PA resin
  • PA polyamide
  • PA resin PA resin
  • the surface of the film on which the heat-adhesive modified layer is formed is opposed to the air corona-treated surface of an unstretched polyethylene (PE) resin film (Tamapoly Co., Ltd., trade name: SK615P) that has been subjected to air corona treatment.
  • PE unstretched polyethylene
  • PET polyethylene terephthalate
  • the adhesive force when held for 10 seconds and thermocompression bonded is peeled off at a speed of 5 mm / min by the measurement method specified in JIS K 6854-1 “Adhesive Peeling Adhesive Strength Test Method, Part 1: 90 degree peeling”.
  • the surface using the atmospheric pressure plasma processing apparatus so that the strength when measured is 5.9 N / 25.4 mm or more It can be carried out by examining the process conditions the quality is made.
  • PET polyethylene terephthalate
  • the surface of the PET resin film on which the heat-adhesive modified layer is formed and the unstretched polyethylene (PE) resin film treated with air corona (Tamapoly Co., Ltd. unstretched polyethylene film, trade name: SK615P) facing the air corona-treated surface and holding for 10 seconds at a temperature of 160 ° C. and a pressure of 0.4 MPa without applying an adhesive and an anchor coating agent.
  • air corona Teamapoly Co., Ltd. unstretched polyethylene film, trade name: SK615P
  • the adhesive strength when thermocompression bonding was performed was peeled off at a speed of 5 mm / min by the measurement method specified in JIS K 6854-1 “Adhesive Peeling Adhesive Strength Test Method Part 1: 90 ° Peeling”.
  • Surface modification using an atmospheric pressure plasma processing apparatus is performed so that the strength is 5.9 N / 25.4 mm or more. The processing conditions that are can be carried out by the investigation. *
  • the adhesive force when held for 10 seconds and thermocompression bonded is peeled off at a speed of 5 mm / min by the measurement method specified in JIS K 6854-1 “Adhesive Peeling Adhesive Strength Test Method, Part 1: 90 degree peeling”.
  • the atmospheric pressure plasma processing apparatus is used so that the strength at the time of heating is 5.9 N / 25.4 mm or more.
  • the processing conditions the surface modification has been made can be done by examining.
  • the surface of the cellophane film on which the heat-adhesive modified layer is formed and an unstretched polyethylene (PE) resin film (manufactured by Tamapoly Co., Ltd.) that has been subjected to air corona treatment Without facing the air-corona-treated surface of the unstretched polyethylene film, trade name: SK615P), it was thermocompression-bonded by holding at a temperature of 160 ° C. and a pressure of 0.4 MPa for 10 seconds without applying an adhesive and an anchor coating agent.
  • PE polyethylene
  • thermoplastic resins such as polyethylene naphthalate (PEN) resin, polyacrylonitrile (PAN) resin, polycarbonate (PC) resin, polyimide (PI) resin
  • PEN polyethylene naphthalate
  • PAN polyacrylonitrile
  • PC polycarbonate
  • PI polyimide
  • the present invention preferably includes an aging step in which the laminate is allowed to stand at room temperature for 10 days to 1 month, or at 40 to 60 ° C. for 1 to 3 days after the bonding step. Thereby, adhesive force can be increased.
  • -Measurement of adhesion (peeling) strength Measured according to the measurement method defined in JIS K 6854-1, "Test method for adhesive peel strength, part 1: 90 degree peeling".
  • -Measurement of heat seal strength Conforms to the measurement method defined in JIS Z 0238 “Test method of heat-sealed soft packaging bag and semi-rigid container 7. Heat seal test of bag”. Measurement of tensile strength and tensile elongation: According to JIS K 7127 “Plastics—Testing method of tensile properties”.
  • -Drop strength According to JIS Z 0238 "Test method of heat-sealing soft packaging bag and semi-rigid container 9. Drop strength test”.
  • the bag was filled with 200 ml of water, the drop height was 1.2 m, and the product temperature and test environment were 5 ° C. The number of drops was 30 times each in the horizontal direction and then in the vertical direction.
  • Measurement of puncture strength According to JIS Z 1707, “Measurement method for puncture strength of plastic film general rules for food packaging 7.4”.
  • the test laminate is obtained by heat-pressing, By measuring the adhesive force on the bonding surface, the quality of the heat-adhesive modified layer of the substrate A can be confirmed.
  • the adhesive strength on the bonding surface of the test laminate of the substrate A is a low value, a problem may occur when the laminate of the present invention is produced using the substrate A.
  • a packaging container is produced using a laminate in which the substrate A is used, it is practical to peel from the bonding surface of the laminate or to be damaged without being able to withstand a drop impact. It becomes difficult to obtain a simple laminate.
  • the substrate A on which the heat-adhesive modified layer by surface modification is formed in advance using the atmospheric pressure plasma processing apparatus to be used. It is necessary to confirm whether the formation state of the adhesive property modification layer is appropriate. In addition, whether the formation state of the heat-adhesive property-modified layer is appropriate is determined based on whether the substrate A is a different type of film and is subjected to air corona treatment, and the substrate A is thermally bonded.
  • the test laminate After the surface on which the property-modified layer is formed and the air corona-treated surface of the base material B are opposed to each other, the test laminate is obtained by heat-pressing without applying the adhesive and the anchor coat agent, It can be determined whether or not the adhesive force on the bonding surface of the body exceeds a predetermined value.
  • a polyamide (PA) resin film was surface-modified using an atmospheric pressure plasma treatment apparatus.
  • the processing conditions were an irradiation time of 0.12 s, an applied power of 1.0 kW, and a frequency of 20 kHz.
  • a polyamide (PA) resin film with a thickness of 15 ⁇ m (biaxially stretched polyamide film manufactured by Kojin Co., Ltd., trade name: Bonil RX)
  • surface modification treatment by atmospheric pressure plasma treatment was performed.
  • a surface-modified polyamide (PA) resin film was obtained.
  • Example of surface modification by atmospheric pressure plasma treatment 2 The surface modification of the surface modification example 2 is performed by performing the same operation as the surface modification example 1 except that the atmospheric pressure plasma irradiation time, applied power, and frequency are changed in a weak direction in the atmospheric pressure plasma processing apparatus.
  • a polyamide (PA) resin film was obtained.
  • the processing conditions were an irradiation time of 0.10 s, an applied power of 20 W, and a frequency of 13.56 MHz.
  • the same air corona-treated unstretched polyethylene (PE) resin film as in surface modification example 1 was used, and the same as in surface modification example 1 Bonding was performed under conditions to obtain a test laminate of surface modification example 2.
  • the obtained test laminate of surface modification example 2 had a measured peel strength of 7.8 N / 25.4 mm.
  • An unstretched polyethylene (PE) resin film was surface-modified using an atmospheric pressure plasma treatment apparatus.
  • the processing conditions were an irradiation time of 0.05 s, an applied power of 10 W, and a frequency of 13.56 MHz.
  • a non-stretched polyethylene (PE) resin film having a thickness of 100 ⁇ m (Tamapoly Co., Ltd. unstretched polyethylene film, trade name: SK615P)
  • surface modification treatment was performed using an atmospheric pressure plasma treatment apparatus, and surface modification example 3
  • the surface-modified unstretched polyethylene (PE) resin film was obtained.
  • the surface of the resin film of surface modification example 3 on which the heat adhesion modified layer was formed and a commercially available air corona-treated polyethylene terephthalate (PET) resin film (biaxially stretched polyethylene manufactured by Toyobo Co., Ltd.)
  • PET polyethylene terephthalate
  • a surface modification example 3 is made by facing the air corona-treated surface of a terephthalate film, trade name: E5102) and applying the same conditions as in surface modification example 1 without applying an adhesive and an anchor coat agent.
  • a laminate was obtained.
  • the obtained test laminate of Surface Modification Example 3 had a measured peel strength of 8.0 N / 25.4 mm.
  • Example of surface modification by atmospheric pressure plasma treatment 4 The surface modification of the surface modification example 4 is performed by performing the same operation as the surface modification example 3 except that the atmospheric pressure plasma irradiation time, applied power, and frequency are changed in a weak direction in the atmospheric pressure plasma processing apparatus.
  • An unstretched polyethylene (PE) resin film was obtained.
  • the processing conditions were an irradiation time of 0.005 s, an applied power of 20 W, and a frequency of 13.56 MHz.
  • PET polyethylene terephthalate
  • Example of surface modification by atmospheric pressure plasma treatment 5 A polyethylene terephthalate (PET) resin film was surface-modified using an atmospheric pressure plasma treatment apparatus.
  • the processing conditions were an irradiation time of 0.05 s, an applied power of 10 W, and a frequency of 13.56 MHz.
  • PET polyethylene terephthalate
  • surface modification is performed by an atmospheric pressure plasma treatment apparatus.
  • the surface-modified polyethylene terephthalate (PET) resin film of Example 5 was obtained.
  • Example of surface modification by atmospheric pressure plasma treatment 6 The surface modification of the surface modification example 6 is performed by performing the same operation as the surface modification example 5 except that the atmospheric pressure plasma irradiation time, applied power, and frequency are changed in a weak direction in the atmospheric pressure plasma processing apparatus.
  • a polyethylene terephthalate (PET) resin film was obtained.
  • the processing conditions were an irradiation time of 0.01 s, an applied power of 10 W, and a frequency of 13.56 MHz.
  • PET polyethylene terephthalate
  • the processing conditions were an irradiation time of 0.01 s, an applied power of 10 W, and a frequency of 13.56 MHz.
  • PE air-corona-treated unstretched polyethylene
  • Example of surface modification by atmospheric pressure plasma treatment 7 An unstretched polypropylene (CPP) resin film was surface-modified using an atmospheric pressure plasma treatment apparatus.
  • the processing conditions were an irradiation time of 0.27 s, an applied power of 2.2 kW, and a frequency of 40 kHz.
  • an unstretched polypropylene (CPP) resin film having a thickness of 60 ⁇ m unstretched polypropylene film manufactured by Toyobo Co., Ltd., trade name: Pyrene P1146)
  • surface modification treatment is performed using an atmospheric pressure plasma treatment apparatus.
  • the surface-modified polypropylene (CPP) resin film of Example 7 was obtained.
  • the surface of the resin film of surface modification example 7 on which the heat adhesion modified layer was formed and a commercially available 12 ⁇ m polyethylene terephthalate (PET) resin film treated with air corona (biaxially manufactured by Toyobo Co., Ltd.) Stretched polyethylene terephthalate film, trade name: E5102) facing the air corona-treated surface and pasting under the same conditions as in Surface Modification Example 1 without applying an adhesive and an anchor coat agent.
  • the test laminate of Example 7 was obtained.
  • the obtained test laminate of surface modification example 7 had a measured peel strength of 16.4 N / 25.4 mm.
  • Example 8 of surface modification by atmospheric pressure plasma treatment The surface modification of the surface modification example 8 is performed by performing the same operation as the surface modification example 7, except that the atmospheric pressure plasma irradiation time, applied power, and frequency are changed in a weak direction in the atmospheric pressure plasma processing apparatus.
  • An unstretched polypropylene (CPP) resin film was obtained.
  • the processing conditions were an irradiation time of 0.12 s, an applied power of 1.0 kW, and a frequency of 20 kHz.
  • PET polyethylene terephthalate
  • a laminate of surface modification example 8 was obtained.
  • the obtained test laminate of Surface Modification Example 8 had a measured peel strength of 0.2 N / 25.4 mm.
  • Example 9 of surface modification by atmospheric pressure plasma treatment The cellophane film was surface modified using an atmospheric pressure plasma treatment apparatus.
  • the processing conditions were an irradiation time of 0.15 s, an applied power of 1.2 kW, and a frequency of 30 kHz.
  • a cellophane film having a thickness of # 300 (cellophane film manufactured by Nimura Chemical Co., Ltd., trade name: Dazai PF-3), surface modification treatment was performed with an atmospheric pressure plasma treatment apparatus, and the surface of surface modification example 9 A modified cellophane film was obtained.
  • test laminate of Surface Modification Example 9 had a measured peel strength of 2.3 N / 25.4 mm.
  • Example 10 of surface modification by atmospheric pressure plasma treatment The surface modification of the surface modification example 10 is performed by performing the same operation as in the surface modification example 9 except that the atmospheric pressure plasma irradiation time, applied power, and frequency are changed in a weak direction in the atmospheric pressure plasma processing apparatus. Obtained cellophane film. The processing conditions were an irradiation time of 0.15 s, an applied power of 300 W, and a frequency of 10 kHz. Next, using the film of the surface modification example 10 obtained, under the same conditions as the surface modification example 9, it is bonded with a commercially available air-corona-treated unstretched polyethylene (PE) resin film, A laminate of surface modification example 10 was obtained. The obtained test laminate of surface modification example 10 had a measured peel strength of 1.3 N / 25.4 mm.
  • PE polyethylene
  • Example 1 The surface on which the heat-adhesive modified layer of the polyamide (PA) resin film of the surface modification example 1 is formed, and a commercially available air-corona-treated unstretched polyethylene (PE) resin film (manufactured by Tamapoly Co., Ltd.) Without facing the air-corona-treated surface of the unstretched polyethylene film, trade name: SK615P), without applying an adhesive and an anchor coating agent, at a speed of 5 m / min, a temperature of 150 ° C., and a pressure of 0.23 MPa, The laminate of Example 1 was obtained by thermocompression bonding. The obtained laminate of Example 1 had a measured peel strength of 15.1 N / 25.4 mm. Moreover, after producing the packaging container of a standing pouch type
  • Comparative Example 1 Using the surface of the polyamide (PA) resin film of the surface modification example 2 on which the heat adhesion modified layer was formed and the air-corona-treated unstretched polyethylene (PE) resin film of the example 1, the example was used. 1 was performed under the same conditions as in Example 1 to obtain a laminate of Comparative Example 1. The obtained laminate of Comparative Example 1 had a measured peel strength value of 6.7 N / 25.4 mm. Moreover, after producing the packaging container of a standing pouch type
  • Example 2 The surface on which the heat-adhesive modified layer of the unstretched polyethylene (PE) resin film of the surface modification example 3 is formed, and a commercially available polyethylene terephthalate (PET) resin film treated with air corona (Toyobo Co., Ltd.) Using the biaxially stretched polyethylene terephthalate film manufactured under the trade name; E5102), heat lamination was performed under the same conditions as in Example 1 to obtain a laminate of Example 2. The obtained laminate of Example 2 had a measured peel strength of 7.8 N / 25.4 mm. Moreover, after producing the packaging container of a four-sided seal bag using the obtained laminated body of Example 2, the various tests regarding a packaging container were done.
  • PET polyethylene terephthalate
  • Comparative Example 2 Using the surface of the unstretched polyethylene (PE) resin film of the surface modification example 4 on which the heat-adhesive modified layer was formed and the air corona-treated polyethylene terephthalate (PET) resin film of the example 2 Thermal lamination was performed under the same conditions as in Example 1 to obtain a laminate of Comparative Example 2.
  • the obtained laminate of Comparative Example 2 had a measured peel strength of 2.4 N / 25.4 mm.
  • the various tests regarding a packaging container were done.
  • Example 3 The surface on which the heat adhesion modified layer of the polyethylene terephthalate (PET) resin film of the surface modification example 5 is formed, and a commercially available air-corona-treated unstretched polyethylene (PE) resin film (manufactured by Tamapoly Co., Ltd.) Using an unstretched polyethylene film, trade name: SK615P), heat lamination was performed under the same conditions as in Example 1 to obtain a laminate of Example 3. The obtained laminate of Example 3 had a measured peel strength of 8.0 N / 25.4 mm. Moreover, after producing the packaging container of a four-sided seal bag using the obtained laminated body of Example 3, the various tests regarding a packaging container were done.
  • PE polyethylene terephthalate
  • SK615P unstretched polyethylene
  • Comparative Example 3 Using the surface of the polyethylene terephthalate (PET) resin film of the surface modification example 6 on which the heat adhesion modified layer was formed and the air-corona-treated unstretched polyethylene (PE) resin film of the example 3 Thermal lamination was performed under the same conditions as in Example 1 to obtain a laminate of Comparative Example 3.
  • the obtained laminate of Comparative Example 3 had a measured peel strength of 2.4 N / 25.4 mm.
  • the various tests regarding a packaging container were done.
  • Example 4 The surface on which the heat-adhesive modified layer of the unstretched polypropylene (CPP) resin film of the surface modification example 7 is formed, and a commercially available air-corona-treated polyethylene terephthalate (PET) resin film (Toyobo Co., Ltd.) Made biaxially stretched polyethylene terephthalate film, trade name: E5102) Heated with a heating roll at a speed of 5 m / min, a temperature of 185 ° C., and a pressure of 0.23 MPa without applying an adhesive and an anchor coating agent.
  • the laminate of Example 4 was obtained by pressure bonding.
  • the obtained laminate of Example 4 had a measured peel strength value of 12.8 N / 25.4 mm.
  • the various tests regarding a packaging container were done.
  • Comparative Example 4 Using the surface of the unstretched polypropylene (CPP) resin film of the surface modification example 8 formed with the heat adhesion modified layer and the air corona-treated polyethylene terephthalate (PET) resin film of the example 4 Thermal lamination was performed under the same conditions as in Example 4 to obtain a laminate of Comparative Example 4.
  • the obtained laminate of Comparative Example 4 had a measured peel strength of 0.3 N / 25.4 mm.
  • the various tests regarding a packaging container were done.
  • Example 5 The surface on which the heat-adhesive modified layer of the cellophane film of the surface modification example 9 is formed, and a commercially available air-corona-treated unstretched polyethylene (PE) resin film (unstretched polyethylene film manufactured by Tamapoly Co., Ltd., Using the product name; SK615P), heat lamination was performed under the same conditions as in Example 1 to obtain a laminate of Example 5.
  • the obtained laminate of Example 5 had a measured peel strength of 2.5 N / 25.4 mm.
  • the various tests regarding a packaging container were done.
  • Comparative Example 5 Using the surface of the cellophane film of the surface modification example 10 formed with the heat adhesion modified layer and the air-corona-treated unstretched polyethylene (PE) resin film of the example 5, the same as the example 1 Thermal lamination was performed under conditions to obtain a laminate of Comparative Example 5.
  • the obtained laminate of Comparative Example 5 had a measured peel strength of 1.0 N / 25.4 mm.
  • the various tests regarding a packaging container were done.
  • Example 6 Using the surface of the polyamide (PA) resin film of the surface modification example 1 on which the heat adhesion modified layer is formed and the surface-modified surface modification example 3 of the unstretched polyethylene (PE) resin film Thermal lamination was performed under the same conditions as in Example 1 to obtain a laminate of Example 6.
  • the obtained laminate of Example 6 had a measured peel strength value of 16.7 N / 25.4 mm.
  • the various tests regarding a packaging container were done.
  • Comparative Example 6 Using the surface of the polyamide (PA) resin film of the surface modification example 2 on which the heat adhesion modified layer is formed and the surface-modified surface modification example 4 of the unstretched polyethylene (PE) resin film Thermal lamination was performed under the same conditions as in Example 1 to obtain a laminate of Comparative Example 6.
  • the obtained laminate of Comparative Example 6 had a measured peel strength of 6.4 N / 25.4 mm.
  • the various tests regarding a packaging container were done.
  • Table 2 shows the results of various tests conducted on the standing type and the packaging container for the four-side seal bag, which were produced using the laminates of Examples 1 to 6 and Comparative Examples 1 to 7 which are laminates according to the present invention. It is a result.
  • the comparative example 7 is a test result of the packaging container produced using the laminated body produced by the dry lamination system using the adhesive agent by a prior art.
  • Examples 1 to 6 are test results of packaging containers produced using the laminates produced by thermocompression bonding according to the present invention. Even when the test results of Comparative Example 7 which is a packaging container manufactured by the conventional technique are compared with the test results of Examples 1 to 6 which are packaging containers according to the present invention, no significant difference is observed. Therefore, the laminate according to the present invention has the same level of properties as the laminate by the dry laminate method using an adhesive according to the prior art, and can be used without causing any problems as a constituent material of the packaging container. Is possible.
  • Table 3 shows the results of the boil / retort test.
  • the boil test was performed on the packaging containers of Examples 1, 2, 3, and 6, and the retort test was performed on the packaging container of Example 4. In all cases, the occurrence of the delamination (peeling from the bonding surface) phenomenon did not occur, and the same as the packaging container produced using the laminate produced by the dry laminating method using the usual conventional adhesive It has durability.
  • Table 4 shows the content resistance product suitability test for the packaging container of Comparative Example 7 produced by the conventional technique and the packaging container of Example 1 according to the present invention, filled with the contents and stored at 50 ° C. for 1 month. It is the result of having evaluated the adhesive strength of the laminated body after the storage period between.
  • the packaging container of Example 1 was produced using a laminate produced by a dry laminating method using an adhesive according to a conventional conventional technique without causing the occurrence of the delamination (peeling from the bonding surface) phenomenon. It has the same excellent durability as the packaging container.
  • Table 5 shows a dry laminate method of Comparative Example 7 which is a packaging container made using a laminate produced by a dry laminate method using an adhesive according to the prior art.
  • the amount of solvent required for dry lamination was 38.7 (kg).
  • a packaging container can be produced without using any solvent.
  • the adhesive force of the heat-adhesive modified layer by surface modification applied to the film using an atmospheric pressure plasma processing apparatus is appropriately determined as follows. You just have to control it. As a result, it is possible to obtain a film on which a heat adhesion modified layer is formed by surface modification by atmospheric pressure plasma treatment, which is suitable for carrying out the present invention.
  • the polyamide (PA) resin film Surface with heat-adhesive modified layer formed by surface modification and air corona-treated surface of commercially available air-corona-treated unstretched polyethylene (PE) resin film (Tamapoly Co., Ltd. unstretched polyethylene film, trade name: SK615P) Adhesive strength when heated and pressure-bonded by holding for 10 seconds at a temperature of 160 ° C.
  • Posma treatment for unstretched polyethylene resin In order to determine the quality of the surface on which the heat-adhesive modified layer is formed by surface modification using an atmospheric pressure plasma treatment apparatus with respect to an unstretched polyethylene (PE) resin film, unstretched polyethylene (PE) A surface on which a heat adhesion modified layer is formed by surface modification of a resin film, and a commercially available air corona-treated polyethylene terephthalate (PET) resin film (biaxially stretched polyethylene terephthalate film manufactured by Toyobo Co., Ltd., trade name; E5102 The adhesive strength when heated and pressure-bonded by holding at a temperature of 160 ° C.
  • PET polyethylene terephthalate
  • the value measured by the measuring method specified in “Adhesive Peeling Bond Strength Test Method Part 1: 90 degree peeling” is 5.9 N /
  • the surface modification using an atmospheric pressure plasma processing apparatus may be performed so as to be 25.4 mm or more.
  • a polyethylene terephthalate (PET) resin film is used to determine the quality of a surface on which a heat-adhesive modified layer is formed by surface modification using an atmospheric pressure plasma treatment apparatus with respect to a polyethylene terephthalate (PET) resin film.
  • the cellophane film is modified by thermal modification of the cellophane film.
  • PE air corona-treated unstretched polyethylene
  • SK615P Adhesive strength when heated and pressure-bonded for 10 seconds at a temperature of 160 ° C.
  • the surface may be modified.
  • thermal adhesiveness of a film subjected to atmospheric pressure plasma treatment which is necessary for obtaining a laminated body bonded by thermocompression bonding without using an adhesive and an anchor coating agent on the film.
  • the atmospheric pressure plasma treatment can be effectively performed.
  • the manufacturing method of the laminated body bonded without using an adhesive agent and an anchor coating agent, a laminated body, and the packaging container produced using it are obtained.
  • the laminated body by this invention can be used for various uses, such as a decorative sheet, an optical film, a protective film, and a packaging container.
  • the packaging container prepared using the laminate according to the present invention includes liquid seasonings, liquid detergents, liquid bleaches, liquid waxes, hair care products (including shampoos, rinses, conditioners, etc.), chemicals, liquids It can be used for packaging containers for various liquid products such as cosmetics and packaging containers for refilling, as well as various packaging containers for foods, electronic parts, medical parts, medical equipment parts, precision machine parts and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

 異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材(1)及び第2の基材(6)が巻かれたロール体(21,22)からそれぞれ繰り出され、第1の基材及び第2の基材のいずれか一方の基材(5)が、大気圧プラズマ処理装置(23)による表面改質により熱接着性改質層が形成された面を有し、他方の基材(8)がエアコロナ処理装置(24)によりエアコロナ処理された面を有し、前記熱接着性改質層が形成された面と、前記エアコロナ処理された面を対向させて、接着剤及びアンカー剤を塗布することなく、加熱ロール(25)にて加熱圧着して連続貼合する。

Description

積層体の製造方法及び積層体、それを用いた包装容器
  本発明は、表面改質されたフィルムを用いた積層体の製造方法及び積層体、それを用いた包装容器に関する。本発明は、2009年10月13日に、日本に出願された特願2009-236158号に基づき優先権を主張し、その内容をここに援用する。より詳細には、接着剤及びアンカーコート剤を使用しないことにより、VOC(揮発性有機化合物)の発生を完全に無くし、環境対策や省エネルギー対策に優れた積層体の製造方法及び積層体に関する。また、それを用いて作製された、内容品への汚染源となりうる、接着剤及びアンカーコート剤に起因する低分子成分の発生が無い、クリーンな包装容器に関する。
  また、本発明による積層体は、化粧シート、光学フィルム、保護フィルム、包装容器などの各種用途に使用できる。また、本発明による積層体を用いて作製される包装容器は、液体調味料、液体洗剤、液体漂白剤、液体ワックス、ヘアケア用品(シャンプー、リンス、コンディショナーなどが含まれる)、薬液、液体状の化粧品等の種々の液体状製品の包装容器及び詰替え用包装容器、さらには、食品、電子部品、医療用部品、医療用機器部品、精密機械部品などの各種包装容器に広く使用できる。
 従来、食塩や胡椒などの調味料、コーヒー用粉ミルク等の粉粒物を詰め替え用プラスチック製包装容器に収納して保存し、これらを使用する時に手持ちの卓上用容器等に移し替えて利用することが行われている。
 また、料理用のソースなどの液体調味料、食器用や衣料用の液体洗剤、液体漂白剤、液体ワックス、ヘアケア用品(シャンプー、リンス、コンディショナーなどが含まれる)、液体状の化粧品等の種々の液体状製品の販売には、詰替え用包装容器が使用されている。例えば、従来の缶、ビン、あるいは手押しポンプを備えたプラスチック製ボトルなどに代えて、多層フィルムを用いて製造された詰替え用プラスチック製包装容器に収納して、一般消費者に販売し、それを購入した一般消費者が、内容物を手持ちのプラスチック製専用ボトルなどに詰替えることが行われている。
 このような現象の起きる社会的な背景としては、これらの製品を製造販売する企業に対して、製品の包装容器に使用される合成樹脂の重量を低減することで、包装容器の軽量化とコスト低減を図ると共に、内容物を使い切った後の廃棄物となる包装容器を、廃棄し易くするために減容積化を図ることなど、経済性を追求するだけでなく、省資源化及び地球環境の保護対策へも充分な配慮が、強く求められているからである。
 また、半導体や液晶モニター等の電子部品、医療用部品、医療用機器部品、精密機械部品などは、プラスチック製等のトレイに載せて、あるいは箱に収納して輸送されている。前記部品の輸送には、高い清浄度に維持することが要求される。そのため、前記部品を、輸送中の塵、埃、微生物、薬品等による汚れ、湿気、極端な気温変化、紫外線等から保護する必要がある。従って、前記部品はトレイや収納箱の全体を清浄度の高い包装容器で覆った状態で輸送されている。
 電子部品などの包装に使用される包装容器には、プラスチック製の袋体やシート成型された容器等がある。電子部品等は、前記包装容器に収納され、前記包装容器の開口部を封鎖して密封された状態で出荷されている。
 包装容器には、包装容器の構成材料として、2種類以上のフィルム、アルミ箔、蒸着フィルム(基材にアルミ、シリカ、アルミナなどの蒸着薄膜を積層したもの)などを組み合わせた積層体が用いられている。積層体としては、例えば、内容物を充填した後、包装容器の充填口を加熱バーによる溶着、いわゆるヒートシールにより密封する場合、ヒートシール面となる積層体の内面にヒートシール性に優れたポリエチレン等のポリオレフィン樹脂層がヒートシール層として使用されている。
 そして、積層体には、強度を補強したり、他の機能を付与したりするためにポリアミド、ポリエステル、アルミ箔、蒸着フィルムなどが積層されている。従って、前もってヒートシール性に優れたポリエチレン樹脂と、例えば、ポリアミド樹脂フィルムを積層した積層体を準備し、その積層体を用いて最終的な包装容器に成型することが行われている。
 また、包装容器の使用方法に応じて、包装容器に各種の機能を付与することが必要とされている。例えば、遮光性を持たせること、再封用のチャックを備えること、自立性を持たせた形状にすることなどの、種々の機能を包装容器にすることが必要とされている。
 また、包装容器は、充填する内容物の形態及び性状に応じて、公知の包装容器の形状から適宜選択して使用できる。例えば、スタンディングパウチ形状(例えば、特許文献1、2を参照)、三方又は四方シールの平袋形状(例えば、特許文献3を参照)、ガゼット袋体、ピロー包装形状、収納ケースなどが好適に用いられている。
 また、電子部品、医療用部品、医療用機器部品、精密機械部品などの用途としては、特別に清浄度管理された作業環境下において、清浄度の維持管理された基材フィルムを用いて包装材料用の積層体を作製した後、それを用いたクリーンな包装体(以下、包装袋と包装容器を総称して包装体と呼称する)が作製されている。
 従来の積層体に使用されるフィルムの積層方法としては、2種類以上のフィルムを組み合わせて、フィルム同士を貼り合わせるのに、接着剤を用いて行うドライラミネート方式、あるいはアンカーコート剤を用いて行う押出ラミネート方式などにより、フィルムを積層した積層体が作製されている。
 接着剤やアンカーコート剤を用いないと、積層体の接着強度が不足する場合がある。しかし、接着剤やアンカーコート剤を用いる場合、それらのフィルムの積層工程に際し、有機溶剤を蒸発、乾燥させることにより発生するVOC(揮発性有機化合物)が大気中に散逸することが、環境問題となっている。従って、より好ましい包装容器用の積層体の製造方法として、接着剤やアンカーコート剤を用いずに、必要とされる接着強度を有する積層体を製造できる方法が求められている。
 上記の課題に対しては、接着強度を増加させるための処理を行い、接着剤やアンカーコート剤を用いないで積層体を製造する方法として、様々な提案がなされている(例えば、特許文献4~10を参照)。
 特許文献4には、プラスチック基材の少なくとも一面にコロナ処理、プラズマ処理、フレームプラズマ処理、電子線照射、紫外線照射などにより表面を酸化処理するとともに、溶融押出したフィルムの少なくとも一面にオゾン処理したのち、両者を接触させ圧着する押出ラミネート方法が開示されている。
 特許文献5には、プラスチック基材の少なくとも一方の一面に、アルゴン、ヘリウム、クリプトン、ネオン、キセノン、窒素等の不活性気体の雰囲気下で、電子線照射処理、低圧プラズマ処理、大気圧プラズマ処理またはコロナ放電処理により表面処理するとともに、溶融押出したフィルムの少なくとも一方の一面にオゾン処理したのち、両者を接触させ圧着する押出ラミネート方式が開示されている。
 特許文献6には、合成樹脂の表面を活性化し、印刷インキや金属蒸着膜に対する接着性を向上させるため、実質的に窒素と二酸化炭素とからなる混合気体雰囲気(望ましくは酸素濃度が0.1vol%以下)中で、コロナ放電処理することを特徴とする合成樹脂の表面処理方法が開示されている。
 特許文献7には、窒素ガス(酸素濃度が3vol%以下)、炭酸ガスあるいは窒素/炭酸ガスの混合ガス雰囲気下でのコロナ放電処理により、ESCA法による基材フィルムの表面の窒素と炭素の原子数比(N/C)が、0.001~0.1の範囲である被処理面を生成し、前記被処理面に、水/低級アルコール混合溶液や水を溶媒とし、水溶性高分子及び無機系層状化合物を主たる構成成分とする塗剤を塗布した後、乾燥させて塗膜を形成する、ガスバリアフィルムの製造方法が開示されている。
 特許文献8には、少なくとも二層以上の、例えば、未延伸ポリエチレン(PE)、未延伸ポリプロピレン(CPP)などのポリオレフィン樹脂を、接着剤を用いないで積層する方法が開示されている。具体的には、積層する樹脂の表面に走査型グロー放電プラズマ装置を用いて低温プラズマ処理をした後、熱圧着により積層する方法が開示されている。
 特許文献9には、大気圧プラズマ処理装置によりフッ素樹脂シートの表面をプラズマ処理した基材同士を、接着剤を使用しないで、かつ、その構造及び組成を変化させないで、基材の融点以下の温度で圧着することにより接着させる、接着装置及び接着方法が開示されている。
 特許文献10には、プラズマ表面処理されたアラミド繊維とアラミドパルプとからなるアラミド紙と、プラズマ処理したポリエステルフィルムとを、室温~200℃の温度で、加圧ロールを用いて連続的に積層接着された、無接着剤アラミド-ポリエステル積層体が開示されている。
日本国特開2001-058655号公報 日本国特開平08-324590号公報 日本国特開平11-059704号公報 日本国特開平7-314629号公報 日本国特開平9-234845号公報 日本国特公昭57-30854号公報 日本国特開平9-111017号公報 日本国特開平3-162420号公報 日本国特開2008-075030号公報 日本国特開2008-183868号公報
 特許文献4、5に開示された方法においては、公知の技術である、空気雰囲気下でのコロナ処理とUV/オゾン処理とを組み合わせて処理を行うだけでは、積層体の接着強度が不充分な場合がある。
 特許文献6、7には、窒素を含み、実質的に酸素を含まない雰囲気下でのコロナ放電処理により、合成樹脂の表面を改質して接着性を向上する方法が記載されている。しかしながら、特許文献6、7には、印刷インキや金属蒸着膜、水溶性高分子及び無機系層状化合物を主たる構成成分とする塗膜、に対する接着性が記載されているのみである。本発明者は、このような表面処理方法により活性化された合成樹脂の表面処理面と樹脂フィルムとの熱圧着による接着性を確認するため、窒素ガス雰囲気下のコロナ放電処理をした合成樹脂フィルムに対して、表面が未処理である樹脂フィルムを熱ラミネートする方式で積層体の製造を試みた。その結果、充分な積層体の接着強度を得ることができなかった。
 特許文献8には、無極性の熱可塑性樹脂である、例えば、未延伸ポリエチレン(PE)などのポリオレフィン樹脂の表面に、走査型グロー放電プラズマ装置を用いて低温プラズマ処理をした後、熱圧着により積層する方法が開示されている。また、ポリエステルなどの極性を有する熱可塑性樹脂と、無極性の熱可塑性樹脂とを積層する場合には、無極性の熱可塑性樹脂のみに変調磁界プラズマ装置で処理するが、極性を有する熱可塑性樹脂の表面は、プラズマ処理しないで用いた方が高強度の層間接着強度が得られるので好ましいとしている。この場合、変調磁界プラズマ装置で処理すると、C-O基及びC=O基が生成することがESCA分析により確認できたことから、これらの生成した官能基が接着に寄与していると開示されている。
 しかし、実施例によると、例えば、PPとLDPEとを熱圧着するときの熱圧着温度は、100℃としているが加圧力の値は示されていない。そのため、産業上の利用を図ることができない。
 特許文献9には、炭素数4以下の第1級アルコール又は第2級アルコールである低級アルコールを気化して不活性ガスと混合して電極に供給して行う大気圧プラズマ処理装置を用いて、表面がフッ素樹脂で構成された基材の表面改質を行い、その表面改質された基材同士を、基材の融点以下の温度で熱圧着する方法が開示されている。しかしながら、特許文献9は、表面改質により表面のフッ素樹脂に親水性が与えられると開示しているが、プラズマ処理した樹脂表面の好ましい処理状態を判断する基準が、定義されていない。また、熱圧着するときの熱圧着温度は、例えば、融点が327℃であるポリテトラフルオロエチレン(PTFE)では200℃以下としているが、加圧力の値は示されていない。そのため、産業上の利用を図ることができない。
 特許文献10には、プラズマ表面処理されたアラミド繊維とアラミドパルプとからなるアラミド紙と、プラズマ処理したポリエチレンテレフタレート又はポリエチレンナフタレートとを、室温~200℃の温度で、200kgf/cm以上の圧力下の加圧ロールを用いて、連続的に積層する方法が開示されている。
 特許文献10では、表面改質により、ある種の官能基、例えば、COOH基やOH基をフィルム表面に形成し、低温において、強固に接着できるとしている。しかしながら、プラズマ処理した樹脂表面の好ましい処理状態を判断する基準が、定義されていない。また、プラズマ処理は、種々の樹脂の接着性を高めるための方法として良く知られた方法であることを理由にして、プラズマ処理の具体的な説明を省いている。そのため、産業上の利用を図ることができない。
 また、接着剤を用いたドライラミネート方式や、アンカーコート剤を用いた押出ラミネート方式では、有機溶剤を用いることから環境対策や省エネルギー対策の点で問題がある。さらには、残留溶剤及び低分子成分の移行の恐れが伴うことから、内容物への混入の影響が避けられないという問題がある。従って、フィルムを積層して積層体を製造する際に、接着剤及びアンカーコート剤の使用量を可能な限り低減することが求められている。
 同種のフィルム同士を加熱圧着することは、例えば、ヒートラミOPP/CPP等では使用されているが、異種フィルム同士の加熱圧着は接着力が弱く、実用化が困難である。
 前述したように、従来技術においては、異種フィルム同士を、接着剤及びアンカーコート剤を使用しないで加熱圧着を用いて積層し、VOC(揮発性有機化合物)の発生を完全に無くし、環境対策や省エネルギー対策に優れた積層体は、知られていない。また、その積層体を用いて作製された包装容器は、知られていない。
 本発明は、上述した事情に鑑みて成されたものである。すなわち、本発明は、接着剤及びアンカーコート剤を使用しないことにより、VOC(揮発性有機化合物)の発生を完全に無くし、環境対策や省エネルギー対策に優れた積層体の製造方法及び積層体を提供することを課題とする。また、その積層体を用いた、内容品への汚染源となりうる、接着剤及びアンカーコート剤由来の低分子成分の発生が無い、クリーンな包装容器を提供することを課題とする。
 本発明は、上述した課題を解決するために、異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材とを貼合して積層体を製造する方法であって、大気圧プラズマ処理装置を用いて表面改質が成され、基材の表面改質により熱接着性改質層が形成された面と、エアコロナ処理された基材のエアコロナ処理された面とを対向させて、接着剤及びアンカー剤を塗布することなく、加熱ロールにて加熱圧着して連続貼合する積層体の製造方法を提供する。
 また、第1の基材と第2の基材の両方に、大気圧プラズマ処理装置を用いて表面改質が成され、両方の基材の表面改質により熱接着性改質層が形成された面を対向させて、接着剤及びアンカー剤を塗布することなく、加熱ロールにて加熱圧着して連続貼合する積層体の製造方法を提供する。
 また、上述した課題を解決するために、本発明は、異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材とを貼合して積層体を製造する方法であって、厚みが10~500μmであり、長さが3~10,000mの長尺のフィルムからなる前記第1の基材及び前記第2の基材の巻かれたロール体からそれぞれ繰り出された、前記第1の基材及び前記第2の基材のいずれか一方の基材が、大気圧プラズマ処理装置による表面改質により熱接着性改質層が形成された面を有し、他方の基材がエアコロナ処理された面を有し、前記熱接着性改質層が形成された面と、前記エアコロナ処理された面を対向させて、接着剤及びアンカー剤を塗布することなく、加熱ロールにて加熱圧着して連続貼合する積層体の製造方法を提供する。
 また、上述した課題を解決するために、本発明は、異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材とを貼合して積層体を製造する方法であって、厚みが10~500μmであり、長さが3~10,000mの長尺のフィルムからなる前記第1の基材及び前記第2の基材の巻かれたロール体からそれぞれ繰り出された、前記第1の基材及び前記第2の基材の両方が大気圧プラズマ処理装置による表面改質により熱接着性改質層が形成された面を有し、前記熱接着性改質層が形成された面同士を対向させて、接着剤及びアンカー剤を塗布することなく、加熱ロールにて加熱圧着して連続貼合する積層体の製造方法を提供する。
 また、上述した積層体の製造方法においては、前記第1の基材と前記第2の基材とを貼合するに際し、事前に、大気圧プラズマ処理装置を用いてフィルムの表面改質により熱接着性改質層が形成された前記第1の基材及び/又は前記第2の基材と、前記第1の基材及び前記第2の基材と同一又は異なる種類のフィルムであってエアコロナ処理されてなる第3の基材とを用い、前記第1の基材及び/又は前記第2の基材の熱接着性改質層が形成された面と、前記第3の基材のエアコロナ処理面を対向させて、接着剤及びアンカーコート剤を塗布することなく加熱圧着させて試験積層体を得た後、前記試験積層体の貼合面における接着力を測定して、前記第1の基材及び/又は前記第2の基材の熱接着性改質層の形成状態の良否を確認する方法を採用しても良い。
 前記第1の基材が、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリエチレンナフタレート(PEN)、ポリアクリロニトリル(PAN)、ポリカーボネート(PC)、ポリイミド(PI)、セロファンフィルムからなる群の中から選ばれた1種類であり、前記第2の基材が、未延伸ポリエチレン(PE)、又は未延伸ポリプロピレン(CPP)であることが好ましい。
 第1の基材となるフィルムの少なくとも片面には、印刷層が形成されていても良い。
 また、本発明は、上記の積層体の製造方法により製造された積層体を提供する。
 また、本発明は、上記の積層体を用いて、前記第2の基材がシーラント層として内側面となるように製造されている包装容器を提供する。
 また、本発明は、異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材とを貼合された積層体であって、前記第1の基材が、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリエチレンナフタレート(PEN)、ポリアクリロニトリル(PAN)、ポリカーボネート(PC)、ポリイミド(PI)、セロファンフィルムからなる群の中から選ばれた1種類であり、前記第2の基材が、未延伸ポリエチレン(PE)、又は未延伸ポリプロピレン(CPP)であり、前記第1の基材及び第2の基材は、厚みが10~500μmであり、長さが3~10,000mの長尺のフィルムからなり、前記積層体の貼合面において、前記第1の基材及び前記第2の基材のいずれか一方の基材が大気圧プラズマ処理装置による表面改質により熱接着性改質層が形成された面を有し、他方の基材がエアコロナ処理された面を有し、前記熱接着性改質層が形成された面と、前記エアコロナ処理された面とが、接着剤及びアンカー剤を含まないで、加熱圧着されて貼合されている積層体を提供する。
 また、本発明は、異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材が貼合された積層体であって、前記第1の基材が、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリエチレンナフタレート(PEN)、ポリアクリロニトリル(PAN)、ポリカーボネート(PC)、ポリイミド(PI)、セロファンフィルムからなる群の中から選ばれた1種類であり、前記第2の基材が、未延伸ポリエチレン(PE)、又は未延伸ポリプロピレン(CPP)であり、前記第1の基材及び第2の基材は、厚みが10~500μmであり、長さが3~10,000mの長尺のフィルムからなり、前記積層体の貼合面において、前記第1の基材及び前記第2の基材の両方が大気圧プラズマ処理装置による表面改質により熱接着性改質層が形成された面を有し、前記熱接着性改質層が形成された面同士が、接着剤及びアンカー剤を含まないで、加熱圧着されて貼合されている積層体を提供する。
 また、本発明は、上記の積層体を用いて、前記第2の基材がシーラント層として内面側となるように製造されている包装容器を提供する。
 本発明によれば、接着剤及びアンカーコート剤を用いないで積層体を製造するので、前述した有機溶剤を蒸発、乾燥させることにより発生する、VOC(揮発性有機化合物)の環境対策が不要となる。
 また、本発明の積層体の製造方法によれば、接着剤及びアンカーコート剤を用いないので、有機溶剤を用いないことから、溶剤を乾燥除去するための乾燥炉を必要とせず、環境対策及び省エネルギー対策の点から環境負荷を低減できる。
 また、本発明の積層体によれば、フィルムサンド方式や押出しラミネート方式によって製造された積層体と比較した場合、押出樹脂をその溶融温度まで加熱しないために、樹脂溶融炉を必要とせず、省エネルギーであり、環境負荷を低減できる。
 さらに、接着剤及びアンカーコート剤を使用しないため、ヘアケア、ハウスホールド、農薬などの反応性の化学物質を含有することにより、従来、接着剤及びアンカーコート剤を侵し、デラミネーションが発生する原因となるために使用できなかった、内容品の包装容器としても好適に使用できる。
 本発明によれば、異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材とを貼合して積層体を製造する方法であって、接着剤及びアンカーコート剤が使用されていない積層体を得る製造方法を提供できる。
 このため、接着剤を用いたドライラミネートによって積層体を製造する方法と比較して、本発明による積層体の製造方法では、有機溶剤を用いないため、溶剤を乾燥除去するための乾燥炉及び排ガス処理装置を必要としない。すわなち、環境対策及び省エネルギー対策の観点から見れば、環境負荷を低減できるので非常に優れている。
 また、アンカーコート剤を用いて行う押出しラミネートによって積層体を製造する方法と比較して、本発明の積層体の製造方法では、押出樹脂をその溶融温度まで加熱しないため、樹脂溶融炉を必要とせず、省エネルギーであり、環境負荷を低減できる。
 また、本発明によれば、積層体に使用されるフィルムの表面には、必要な接着力を有する熱接着性改質層が、大気圧プラズマ処理装置を用いた表面改質により形成され、実用的な包装容器に使用できる積層体を得られる。
 また、本発明によれば、接着剤及びアンカーコート剤が使用されていない、環境対策や省エネルギー対策に優れた積層体を得られる。
 また、本発明によれば、接着剤及びアンカーコート剤が使用されていない、環境対策や省エネルギー対策に優れた積層体を用いることにより、内容品への汚染源となりうる、接着剤及びアンカーコート剤由来の低分子成分の発生が無い、クリーンな包装容器を得られる。
 また、本発明によれば、異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材とを貼合して積層体であって、接着剤及びアンカーコート剤が使用されていない積層体を提供できる。
 従って、接着剤を用いて行うドライラミネートによって製造された積層体と比較して、本発明の積層体では、有機溶剤を用いないため、溶剤を乾燥除去するための乾燥炉及び排ガス処理装置を必要としない。すなわち、環境対策及び省エネルギー対策の観点から見れば、環境負荷を低減できる点で非常に優れている。
 また、アンカーコート剤を用いて行う押出しラミネートによって製造された積層体と比較して、本発明の積層体では、押出樹脂をその溶融温度まで加熱しないことから、樹脂溶融炉を必要とせず、省エネルギーであり、環境負荷を低減できる。
 また、本発明によれば、環境対策や省エネルギー対策に優れた積層体を用いた、内容品への汚染源となりうる、接着剤及びアンカーコート剤由来の低分子成分の発生が無い、クリーンな包装容器を得られる。
本発明に係わる積層体の、製造方法の一例を示す概念図である。 本発明に係わる積層体の、製造方法の別の例を示す概念図である。 本発明に係わる積層体の、製造方法のさらに別の例を示す概念図である。 本発明に係わる積層体の一例を示しており、加熱圧着する前の概略断面図である。 本発明に係わる積層体の一例を示しており、加熱圧着した後の概略断面図である。 本発明に係わる印刷層を有する積層体の一例を示しており、加熱圧着する前の概略断面図である。 本発明に係わる積層体の一例を示しており、加熱圧着した後の概略断面図である。 従来技術による積層体の一例を示しており、ドライラミネートする前の概略断面図である。 従来技術による積層体の一例を示しており、ドライラミネートした後の概略断面図である。
 以下、本発明の好適な実施の形態について説明する。以下の説明においては、未処理の第1の基材1及び第2の基材6と、表面処理した第1の基材5及び第2の基材8とを符号によって区別し、「未処理の」または「表面処理した」なる文言を省略している場合がある。
 表面処理した第1の基材5及び第2の基材8としては、表面処理が大気圧プラズマ処理による場合とエアコロナ処理である場合とを区別せず、同一の符号を用いている。また、図4Aから図5Bでは、第2の基材8の表面改質層7と熱接着性改質層7には特に区別せず、同一の符号7を用いている。なお、本発明では、第1の基材5が表面改質層2の代わりに熱接着性改質層を有することもでき、この場合には、第2の基材8に表面改質層が設けられる。
 また、未処理の第1の基材1及び第2の基材6としては、図1及び図2に示すように、処理の対象となる(つまり処理前の)ものである場合にも、図4Aから図5Bに示すように、処理後において処理が及んでいない部分を表す場合にも、同一の符号を用いている。
 図1は、本発明に係わる積層体の、製造方法の一例を示す概念図であって、異なる種類のフィルムからなる第1の基材1と第2の基材6とを貼合して積層体を製造する方法を示している。
 第1の基材1及び第2の基材6は、それぞれ長尺のフィルムからなり、第1の基材1の巻かれたロール体21と、第2の基材6の巻かれたロール体22から、それぞれ繰り出される。
 第1の基材5には、大気圧プラズマ処理装置23を用いた表面改質により熱接着性改質層が形成され、また、第2の基材8には、エアコロナ処理装置24によりエアコロナ処理が施されている。
 なお、図1には、大気圧プラズマ処理装置23と、エアコロナ処理装置24とを用いて、オンラインで表面改質する場合を示しているが、図3に示すように、事前に、大気圧プラズマ処理装置を用いた表面改質により熱接着性改質層が形成された、第1の基材5が巻かれたロール体31、及びエアコロナ処理された、第2の基材8が巻かれたロール体32を用いても良い。
 第1の基材5の熱接着性改質層が形成された面と、第2の基材8のエアコロナ処理面とを対向させ、所定温度に保持された加熱ロール25及びバックアップロール26にて、加圧しながら加熱圧着され、積層体10が得られる。得られた積層体10は、ロール体28に巻き取っても良く、又は、所定の寸法に裁断してシート状の積層体(図示は省略)としても良い。
 なお、加熱ロール25に接触する第1の基材5は、加熱ロール25の設定温度よりも高い融点を有することが必要である。加熱ロール25の設定温度よりも第1の基材5の融点が低い場合は、加熱ロール25に融着してしまうので、良好な加熱圧着が施されないという課題を解決するためである。
 また、特に図示しないが、第1の基材の表面処理にエアコロナ処理装置を用い、第2の基材の表面処理に大気圧プラズマ処理装置を用いることもできる。
 また、図1では、エアコロナ処理される基材と接触する側に加熱ロール25を、大気圧プラズマ処理される基材と側にバックアップロール26を用いた場合を示しているが、その反対で、エアコロナ処理される基材と接触する側にバックアップロールを、大気圧プラズマ処理される基材に接触する側に加熱ロールを用いることも可能である。
 また、必要に応じて上下両方のロール25、26を共に加熱ロールとすることも可能である。
 図2は、本発明に係わる積層体の、製造方法の別の例を示す概念図であって、異なる種類のフィルムからなる第1の基材1と第2の基材6の両方が、大気圧プラズマ処理装置による表面改質が施された後、加熱圧着により貼合して積層体を製造する方法を示している。
 第1の基材1及び第2の基材6は、それぞれ長尺のフィルムからなり、第1の基材1の巻かれたロール体21と、第2の基材6の巻かれたロール体22から、それぞれ繰り出される。
 第1の基材5及び第2の基材8には、それぞれ、大気圧プラズマ処理装置23を用いた表面改質により、熱接着性改質層が形成されている。なお、図2には、大気圧プラズマ処理装置23を用いて、オンラインで表面改質する場合を示しているが、図3に示すように、事前に、大気圧プラズマ処理装置を用いた表面改質により、熱接着性改質層が形成された第1の基材5、及び第2の基材8が巻かれたロール体31、32を用いても良い。
 第1の基材5及び第2の基材8の熱接着性改質層が形成された面同士を対向させ、所定温度に保持された加熱ロール25及びバックアップロール26にて、加圧しながら加熱圧着され、積層体10が得られる。得られた積層体10は、ロール体28に巻き取っても良く、又は、所定の寸法に裁断してシート状の積層体(図示は省略)としても良い。
 また、必要に応じて、上下両方のロール25、26を、共に加熱ロールとしても良い。
 図4A及び図4Bは、本発明に係わる積層体の一例を示す概略断面図である。図4Aは、加熱圧着する前の概略断面図であり、図4Bは、加熱圧着した後の概略断面図である。
 この場合、第1の基材5の少なくとも片面には、大気圧プラズマ処理装置による表面改質が行われて、熱接着性改質層2が形成されている。また、第2の基材8の片面には、エアコロナ処理による表面改質層7もしくは、大気圧プラズマ処理装置による表面改質が行われて、熱接着性改質層7が形成されている。
 第1の基材5の熱接着性改質層2が形成されている面と、第2の基材8の表面改質層7もしくは、熱接着性改質層7が形成されている面とを、対向させて、所定の加熱温度、加圧力で保持することにより加熱圧着を行うことにより、本発明に係わる積層体10が得られる。この積層体10は、第1の基材5の熱接着性改質層2と、第2の基材8の表面改質層7もしくは熱接着性改質層7とに由来する熱接着部9が形成され、接着剤及びアンカーコート剤が使用されていない、第1の基材5と、第2の基材8が積層された積層体である。
 この積層体10の一方の樹脂フィルムには、ヒートシール性を有する熱可塑性樹脂フィルムが用いられていることから、この積層体10を所定の形状・寸法に裁断し、ヒートシール層の樹脂を内面側としてヒートシールで密閉することにより、包装容器を作製できる。
 図5A及び図5Bは、本発明に係わる積層体の他の例を示す概略断面図であり、印刷層を有するフィルムによる積層体を示す概略断面図である。図5Aは、加熱圧着する前の概略断面図であり、図5Bは、加熱圧着した後の概略断面図である。
 図5A及び図5Bにおいて、第1の基材となるフィルム1の片面には、印刷層3が形成されている。印刷層3が形成されているフィルム1の印刷層3の上に、大気圧プラズマ処理装置を用いて表面改質処理が成され、印刷層及び第1の基材の印刷層が形成されていない部分には、熱接着性改質層2が形成されている。第1の基材5の熱接着性改質層2が形成されている面と、第2の基材8の表面改質層7もしくは、熱接着性改質層7が形成されている面とを、対向させて、所定の加熱温度、加圧力で保持して加熱圧着を行うことにより、本発明に係わる印刷層を有する積層体20が得られる。この積層体20は、第1の基材5及び印刷層3の熱接着性改質層2と、第2の基材8の表面改質層7もしくは熱接着性改質層7とに由来する熱接着部9が形成され、接着剤及びアンカーコート剤が使用されていない、第1の基材5と、第2の基材8が積層された積層体である。
 この積層体20の一方の樹脂フィルムには、ヒートシール性を有する熱可塑性樹脂フィルムが用いられていることから、この積層体20を所定の形状・寸法に裁断し、ヒートシール層の樹脂を内面側としてヒートシールで密閉することにより、印刷層を有する実用的な包装容器を作製できる。
 図6A及び図6Bは、従来技術による積層体の一例を示す概略断面図である。図6Aはドライラミネートする前の概略断面図であり、図6Bは、ドライラミネートした後の概略断面図である。
 第1の基材フィルム41の片面には、エアコロナ処理による表面改質層43が形成されていて、表面改質層43の上には、接着剤層45が積層されている。第1の基材フィルム41は、接着剤層45を介して、第2の基材フィルム42のエアコロナ処理による表面改質層44が形成されている面とドライラミネートされ、積層体40が得られる。
 ところで、本発明の積層体に用いられるフィルムは、少なくとも一方の面には、大気圧プラズマ処理装置を用いた表面改質により熱接着性改質層が形成された、厚みが10~500μmの第1の基材となるフィルム(改質処理した第1の基材と呼ぶ)、厚みが10~500μmのエアコロナ処理された第1の基材となるフィルム(エアコロナ処理した第1の基材と呼ぶ)、厚みが10~500μmのエアコロナ処理された第2の基材となるフィルム(エアコロナ処理した第2の基材と呼ぶ)、少なくとも一方の面には、大気圧プラズマ処理装置を用いた表面改質により熱接着性改質層が形成された、厚みが10~500μmの第2の基材となるフィルム(改質処理した第2の基材と呼ぶ)とであって、本発明の積層体を構成するフィルムの組み合わせとしては、次の3通りである。
(1): (改質処理した第1の基材)/(エアコロナ処理した第2の基材)
(2): (改質処理した第1の基材)/(改質処理した第2の基材)
(3): (エアコロナ処理した第1の基材)/(改質処理した第2の基材)
 また、本発明による積層体を包装容器に用いる場合には、第1の基材及び第2の基材のフィルムの厚みが、それぞれ、10~100μm程度のフィルムを用いて積層体を作製するのが、積層体の柔軟性を維持し、包装容器を製造工程での加工性を良くする上で好ましい。また、包装容器を使用する消費者にとっては、手触り感の面から、包装容器に使用されている積層体の厚みが、30~200μm程度であることが好ましい。
 このような積層体は、包装容器に好適に使用できる。例えば、この積層体を、未延伸ポリエチレン(PE)をヒートシール層とするために内面にして2つ折りし、三方をヒートシールで密閉することにより袋体が得られる。
 また、所定寸法に裁断された2枚の積層体を重ねて、両側端部をヒートシールで密閉し、さらに、2つ折りした底部用の積層体をヒートシールで密閉することによりスタンディングパウチ形式の自立型をした、包装容器が得られる。
 また、詰替え用包装容器においては、自立型のスタンディングパウチとし、さらに、様々な注ぎ易い形状をした注出口を配設することにより、内容物の詰替え作業を簡便化した包装容器を得られる。
 また、電子部品、医療用部品、医療用機器部品、精密機械部品などの用途向けとして、特別に清浄度管理されたクリーンルーム内の作業環境下において、清浄度の維持管理された基材フィルムを用いて本発明に係わる積層体を作製した後、それを用いたクリーンな包装体が作製できる。
 なお、大気圧プラズマ処理装置により、第1の基材または第2の基材のフィルムの表面改質により熱接着性改質層が形成された表面は、エアコロナ処理された熱可塑性樹脂フィルムのエアコロナ処理面と対向させて、接着剤及びアンカーコート剤を塗布することなく、加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が所定値以上となるように、大気圧プラズマ処理装置を用いた表面改質が成されていることが必要である。
 従来技術においては、大気圧プラズマ処理を用いた表面改質により、ある種の官能基、例えば、COOH基やOH基をフィルム表面に形成し、低温において、強固に接着できるとしているが、大気圧プラズマ処理したフィルム表面の好ましい処理状態を判断する基準や方法が、定義されていない。
 本発明者らは、大気圧プラズマ処理の状態の微妙な差異に応じて、加熱圧着で積層したフィルムの接着強度が異なることに気付いた。大気圧プラズマ処理されたフィルムの熱接着性改質層が形成された表面と、エアコロナ処理された熱可塑性樹脂フィルムのエアコロナ処理面とを対向させて、加熱圧着すれば、大気圧プラズマ処理装置を用いた表面改質の仕上がり状況の良否を判定できることを見出し、本発明を成し得るに至った。
 また、上記の大気圧プラズマ処理された第1の基材となるフィルムの熱接着性改質層が形成された表面と、大気圧プラズマ処理された第2の基材となるフィルムの熱接着性改質層が形成された表面とを対向させて、加熱圧着すれば、包装容器体に使用可能な積層体を得られる。
 また、エアコロナ処理された第1の基材または第2の基材のフィルムのエアコロナ処理面と、上記の大気圧プラズマ処理された第2の基材または第1の基材のフィルムの熱接着性改質層が形成された表面とを対向させて、加熱圧着すれば、包装容器に使用可能な積層体を得られる。
(樹脂フィルム)
 本発明で使用できる樹脂フィルムは、熱可塑性樹脂であるポリエチレンテレフタレート(PET)樹脂、ポリアミド(PA)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリアクリロニトリル(PAN)樹脂、ポリカーボネート(PC)樹脂、ポリイミド(PI)樹脂、未延伸ポリエチレン(PE)樹脂、ポリプロピレン(CPP)樹脂などの樹脂フィルムである。これらの熱可塑性樹脂の融点は、それぞれ、ポリエチレンテレフタレート(252℃)、ポリアミド(220℃)、ポリエチレンナフタレート(約270℃)、ポリアクリロニトリル(融点なし)、ポリカーボネート(融点なし)、ポリイミド(融点なし)、未延伸ポリエチレン(105~140℃)、未延伸ポリプロピレン(130~165℃)である。なお、ポリアミド樹脂は、酸とアミンが反応してできるアミド結合(-CONH-)の繰り返しによって主鎖が構成される線状高分子のことで、一般的な商品名としてはナイロンと呼ばれている。
 積層フィルムのヒートシール温度は、ヒートシール層となる樹脂に貼合する樹脂の融点よりも低い温度で行う必要がある。ヒートシール層となる樹脂に貼合する樹脂の融点よりも高い温度で加熱圧着すると、樹脂が加熱ロールに付着して樹脂の表面が肌荒れを起してしまう。熱接着の工程では、加熱圧着温度及び加圧力を選定して行うことが好ましい。接着力は加熱圧着温度・時間・圧力を上げることで向上する。目標とする接着強度が得られる条件を、適宜選定すればよい。
(セロファンフィルム)
 本発明では、上記の樹脂フィルムの代わりに、セロファンフィルムを使用できる。この場合、セロファンフィルムを第1の基材に用いて、ヒートシール層となる未延伸ポリエチレン(PE)樹脂、ポリプロピレン(CPP)樹脂などの樹脂フィルムを第2の基材に用いることが好ましい。
(フィルムの厚み)
 本発明で使用される熱可塑性樹脂フィルムまたはセロファンフィルムの厚みは、10~500μm程度が好ましい。厚みが10μm未満であると皺に成り易く、ロールtoロールでの加工を行うことが困難であり、取扱いに不自由が生じる。また、厚みが500μmを超えると、剛性が高くて可撓性がなくなり、薄すぎる場合と同様に、ロールtoロールでの加工を行うことが困難であり、取扱いに不自由が生じる。従って、本発明による表面改質されたフィルム同士を、加熱圧着により積層して、積層フィルムを作製する場合、積層後のフィルムをロール体として巻き取るには、全体の厚みが500μmを超えないように配慮する必要がある。
 また、積層された後のフィルムの厚みが500μmを超える場合には、積層されたフィルムをロール体に巻き取ることが困難である。そのため、一定の寸法長さで切断された積層フィルムのシートとして作製する。また、本発明による積層体を包装容器に用いる場合には、使用するフィルムの厚みは、10~100μm程度にするのが、積層体の柔軟性を維持し、包装容器の加工性を向上させるためには好ましい。
(印刷層)
 第1の基材となるフィルムの、少なくとも片面には、印刷層を形成することもできる。印刷層の位置は、第1の基材の表面処理がされる側の面、第1の基材の表面処理がされない側の面、第1の基材の内部など、特に限定されないが、特に、図5A及び図5Bに示すように、第1の基材5の表面処理がされた側の面に印刷層3を有する場合には、印刷層3の上にも熱接着性改質層2が形成され得る。
 印刷層3の上に熱接着性改質層2を形成するためには、印刷層3を構成する印刷用インキが、大気圧プラズマ処理によって改質可能な樹脂成分を含有する必要がある。このような樹脂成分としては、上記の基材フィルムに用いられる熱可塑性樹脂のほか、ウレタン樹脂、アクリル樹脂などの各種インキバインダー樹脂が挙げられる。さらにインキには、各種顔料、乾燥剤、安定剤等の添加剤などが添加できる。
 印刷層は、例えば、オフセット印刷法、グラビア印刷法、スクリーン印刷法などの、公知の印刷方法にて形成される。印刷層の厚さは、通常、0.05~2.0μm程度で良い。
 また、印刷層の占有面積が、第1の基材の表面積に比して十分狭い場合には、印刷層の上に熱接着性改質層2が十分に形成されなくても、第2の基材と貼合することが可能である。
(積層体の製造方法)
 本発明を用いて積層体を製造する方法として、熱可塑性樹脂またはセロファンフィルムからなる第1の基材のフィルムの面上に、他の熱可塑性樹脂からなる第2の基材の樹脂フィルムを貼合する場合、下記の(1)~(3)の工程により行える。(1)第1の基材のフィルムの表面に、大気圧プラズマ処理装置を用いて表面処理を行い、熱接着性改質層を形成する、または、空気雰囲気下でのコロナ放電処理(エアコロナ処理)により、表面処理を行う。(2)第2の基材のフィルムの表面に、大気圧プラズマ処理装置を用いて表面処理を行い、熱接着性改質層を形成する、または、空気雰囲気下でのコロナ放電処理(エアコロナ処理)により、表面処理を行う。(3)第1の基材のフィルムの前記熱接着剤層が形成された面に、第2のフィルムの前記表面処理が行われた面を重ね合わせて、接着剤及びアンカーコート剤を用いることなく、加熱圧着によりラミネートする。
 ただし、第1の基材及び第2の基材のいずれか一方の基材が、大気圧プラズマ処理装置による表面改質により熱接着性改質層が形成された面を有するため、(1)において第1の基材のフィルムの表面に、空気雰囲気下でのコロナ放電処理(エアコロナ処理)により、表面処理を行う場合は、(2)においては、第2の基材のフィルムの表面に、大気圧プラズマ処理装置を用いて表面処理を行い、熱接着性改質層を形成する。
 なお、大気圧プラズマ処理装置に用いる反応ガスは、窒素ガスをベースにするものに限らず、酸素ガスや炭酸ガスをベースにしても良い。
 本発明において、貼合する2枚のフィルムは、例えば、ポリアミド(PA)と未延伸ポリエチレン(PE)を用いて、接着剤及びアンカーコート剤を用いることなく、加熱圧着により貼合して積層体が得られる。また、本発明において、貼合する2枚のフィルムとして、ポリエチレンテレフタレート(PET)と未延伸ポリエチレン(PE)を用いて、接着剤及びアンカーコート剤を用いることなく、加熱圧着により貼合して積層体が得られる。なお、現在のところ、本発明による積層体において、ポリエチレンテレフタレート(PET)とポリアミド(PA)とのラミネートは、実用的な接着強度が得られていない。
 本発明の積層体に使用する2枚のフィルムに対する表面改質の処理は、ラミネートの前段階であれば、どちらを先に行っても良い。また、ラミネートする2枚のフィルムに対して表面改質の処理を同時に、もしくは並行して行っても良い。また、3枚以上のフィルムをラミネートする場合は、積層する側の面への表面改質の処理及びラミネートの工程を必要な回数繰り返して、3層以上の積層フィルムを製造できる。また、基材フィルムの両面を表面改質の処理をした後、前記基材フィルムの各面に、表面改質の処理をした別のフィルム2枚を重ね合わせ、ラミネートすることによって、基材フィルムの両面それぞれに別のフィルムがラミネートされた、3層の積層フィルムを製造することもできる。なお、現在のところ、本発明による積層体において、ポリエチレンテレフタレート(PET)とポリアミド(PA)とのラミネートは、実用的な接着強度が得られていない。
(コロナ放電処理)
 ポリエチレン、ポリプロピレン等の熱可塑性ポリオレフィン樹脂フィルムは、表面層に極性基を持たないので、インキの印刷性、他の樹脂との接着性が低い。このため、インキの印刷性、他の樹脂との接着性を高めるために、コロナ放電処理による樹脂フィルム表面の改質が行われている。コロナ放電による表面改質の処理では、高周波電源電圧を用いて大気中にコロナ放電を発生させ、それに伴って発生する電子やイオンを樹脂フィルムの表面に照射し、樹脂フィルムの表面に官能基を付加することによって、樹脂フィルムの表面改質を行う。
(空気雰囲気下でのコロナ放電処理(エアコロナ処理))
 通常の、空気雰囲気下で行われるコロナ放電による表面改質の処理では、コロナ放電処理した樹脂フィルムの表面が酸化され、前記樹脂フィルムの表面において、高分子の主鎖や側鎖に、カルボニル基(>CO)やカルボキシル基(-COOH)などの酸素官能基が、主に形成すると考えられる。
(窒素ガス雰囲気下でのコロナ放電処理)
 窒素ガス雰囲気下でのコロナ放電処理を行うことで、樹脂フィルム表面の高分子の主鎖や側鎖に、接着に寄与すると思われるアミノ基(-NH)等の窒素官能基が、主に生成すると考えられる。さらに、窒素ガス雰囲気下でのコロナ放電処理は、通常の空気雰囲気下でのコロナ放電処理(エアコロナ処理)と異なり、窒素ガス雰囲気中で放電が起こっているために、空気雰囲気下でのコロナ放電処理(エアコロナ処理)を行った場合に発生する、空気中の不純物による脆弱層の発生が抑えられる。幾つかの特許文献では、窒素ガスも大気圧グロープラズマ処理の雰囲気ガスとして使用できるような記載があるが、放電状態を観察した結果では、大気圧グロープラズマ放電ではない。しかしながら、窒素ガス雰囲気下でのコロナ放電は、放電条件の調整によって雷のようなストリーマー状(線状)である。すなわち、空気雰囲気下でのコロナ放電よりは緩やかな(マイルドな)、グロープラズマ放電に近い放電が可能であるため、エアコロナ処理よりも均一な表面改質として利用できる。
(大気圧グロープラズマ処理)
 従来、真空状態で放電させる、低温プラズマ処理が表面改質に用いられているが、真空設備を要することから装置が大掛かりとなり、操作が煩雑であるという欠点がある。従って、通常、真空状態でしか発生できないグロー放電状態を大気圧下で発生させ、それにより生じる反応ラジカル、電子などを用いて表面改質を行うことが可能な、大気圧プラズマ処理装置が、樹脂フィルムの濡れ性改善・接着性改善に簡便に使用される。
 大気圧グロープラズマ処理は、雰囲気ガスとしてヘリウム、アルゴンなどの希ガス元素を用いることで、安定にグロー放電が保持され、雷のようなストリーマー状(線状)が得られる。すなわち、空気雰囲気下でのコロナ放電よりも、むらの無い均一な表面改質が可能である。幾つかの特許文献では、窒素ガスも大気圧グロープラズマ処理の雰囲気ガスとして使用できるような記載があるが、放電状態を観察した結果では、大気圧グロープラズマ放電ではない。
 本発明での大気圧プラズマ処理とは、窒素ガス雰囲気下でのコロナ放電処理、あるいはヘリウム、アルゴンなどの希ガス雰囲気下での大気圧グロープラズマ処理である。
 酸素を反応ガスとする大気圧プラズマ処理では、樹脂フィルムの表面において、高分子の主鎖や側鎖に、カルボニル基(>CO)やカルボキシル基(-COOH)などの酸素官能基が主に形成する。また、窒素系ガスを反応ガスとする、例えば、N、NO、NHなど、さらに水素(H)、酸素(O)などを混合することにより、アミノ基、アミド基なども意図的に導入できることを、本発明者らは確認している。
 また、反応ガスには、CH、CO等を添加してもよい。
 これらを考慮して本発明では、フィルムの表面に大気圧プラズマ処理を用いて表面改質処理を行う場合、窒素ガス雰囲気下でのコロナ放電処理、あるいはヘリウム、アルゴンなどの希ガス雰囲気下での大気圧グロープラズマ処理を用いて行う。
 さらに、本発明ではフィルム表面に、熱接着性改質層が形成されるように、大気圧プラズマ処理において、大気圧プラズマ処理装置で発生したプラズマをフィルムの表面に対して照射する時間、印加電力、周波数などを調整して行う。
 大気圧プラズマ処理において、プラズマをフィルムの表面に対して照射する時間、印加電力、周波数などの処理条件は、例えば、ポリアミド(PA)樹脂に対してのプラズマ処理条件を探索するには、PA樹脂フィルムの熱接着性改質層が形成された表面と、エアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着したときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で速度5mm/minではく離させた時の強度として、9.8N/25.4mm以上となるように、大気圧プラズマ処理装置を用いた表面改質が成されている処理条件を調査することによって行うことができる。
 また、未延伸ポリエチレン(PE)樹脂に対してのプラズマ処理条件を探索するには、PE樹脂フィルムの熱接着性改質層が形成された表面と、エアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルム(東洋紡績株式会社製二軸延伸ポリエチレンテレフタレートフィルム、商品名;E5102)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着したときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で速度5mm/minではく離させた時の強度として、5.9N/25.4mm以上となるように、大気圧プラズマ処理装置を用いた表面改質が成されている処理条件を調査することによって行うことができる。
 また、ポリエチレンテレフタレート(PET)樹脂に対してのプラズマ処理条件を探索するには、PET樹脂フィルムの熱接着性改質層が形成された表面と、エアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着したときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で速度5mm/minではく離させた時の強度として、5.9N/25.4mm以上となるように、大気圧プラズマ処理装置を用いた表面改質が成されている処理条件を調査することによって行うことができる。   
 また、未延伸ポリプロピレン(CPP)樹脂に対してのプラズマ処理条件を探索するには、CPP樹脂フィルムの熱接着性改質層が形成された表面と、エアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルム(東洋紡績株式会社製二軸延伸ポリエチレンテレフタレートフィルム、商品名;E5102)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、温度190℃、加圧力0.4MPaで10秒間保持して加熱圧着したときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で速度5mm/minではく離させた時の強度として、5.9N/25.4mm以上となるように、大気圧プラズマ処理装置を用いた表面改質が成されている処理条件を調査することによって行うことができる。
 また、セロファンフィルムに対してのプラズマ処理条件を探索するには、セロファンフィルムの熱接着性改質層が形成された表面と、エアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着したときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で速度5mm/minではく離させた時の強度として、2.0N/25.4mm以上となるように、大気圧プラズマ処理装置を用いた表面改質が成されている処理条件を調査することによって行うことができる。
 また、ポリエチレンナフタレート(PEN)樹脂、ポリアクリロニトリル(PAN)樹脂、ポリカーボネート(PC)樹脂、ポリイミド(PI)樹脂など他の熱可塑性樹脂からなるフィルムに対してのプラズマ処理条件を探索する場合も、同様の手法により接着力を測定して、大気圧プラズマ処理装置を用いた処理条件を調査することによって行うことができる。
(エージング処理)
 本発明は、貼合工程後に、積層体を常温で10日~1ヶ月間、または40~60℃で1~3日間静置するエージング工程を含むことが好ましい。これにより、接着力を増大できる。
 以下、実施例をもって本発明を具体的に説明する。
(測定機器、測定方法)
 本発明の効果を確認するために、実施した実験は、次の測定機器及び測定方法を用いて行った。・大気圧プラズマ処理による処理条件
  周波数 3kHz~13.56MHz
  照射時間 0.001~10秒
  電極間距離 1~4mm
 なお、印加電力は装置規模に依存するため、以下の表面改質例において挙げた印加電力の値は、絶対的な数値としてよりも、相対的な強弱を示す参考として理解すべきである。
・接着(剥離)強度の測定:JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法に準じた。
・ヒートシール強さの測定:JIS Z 0238「ヒートシール軟包装袋及び半剛性容器の試験方法 7.袋のヒートシール試験」に規定された測定方法に準じた。
・引張強度及び引張伸度の測定:JIS K 7127「プラスチック-引張特性の試験方法」に規定された測定方法に準じた。
・落下強さ:JIS Z 0238「ヒートシール軟包装袋及び半剛性容器の試験方法 9.落下強さ試験」に規定された測定方法に準じた。袋に水200mlを充填して、落下高さは1.2m、品温・試験環境は5℃で実施した。落下回数は、水平方向、続いて鉛直方向の各30回ずつとした。
・突刺し強さの測定:JIS Z 1707「食品包装用プラスチックフィルム通則 7.4 突刺し強さ試験」に規定された測定方法に準じた。
・ゲルボフレックステスター試験:MIL-B-131Gに規定された測定方法に準じた。・ボイル試験及びレトルト試験:四方袋(130mm×170mm)に水200mlを充填して、ボイル条件は97℃×40min、レトルト条件は121℃×30minの処理を行った後、積層体の外観を評価した。
・耐内容品適性試験:接着剤及びアンカーコート剤の性能を劣化させる内容品を使って、四方袋(130mm×170mm)に200ml充填して、所定日数を経過(50℃にて保存1ヶ月)後に積層体の接着強度を評価した。
(熱接着性改質層の良否の確認)
 本発明による積層体を作製するに際して、まず、各種のフィルムに対して、大気圧プラズマ処理装置を用いて表面改質を行った後、熱接着性改質層の良否が確認された基材を準備する。
 ここで、熱接着性改質層が形成された基材Aと、その基材Aと異なる種類のフィルムであってエアコロナ処理されてなる基材Bとを用い、基材Aの熱接着性改質層が形成された面と、基材Bのエアコロナ処理面を対向させて、接着剤及びアンカーコート剤を塗布することなく、加熱圧着させて試験積層体を得た後、前記試験積層体の貼合面における接着力を測定して、基材Aの熱接着性改質層の良否が確認できる。
 基材Aの試験積層体の貼合面における接着力が低い値であると、その基材Aを用いて本発明の積層体を作製した場合に不具合が生じることがある。例えば、その基材Aが用いられた積層体を使用して包装容器を作製した場合、積層体の貼合面からの剥離が生じることや、落下衝撃に耐えられないで破損するなど、実用的な積層体を得ることが困難となる。
 従って、本発明による積層体の製造方法を実施するには、事前に、使用する大気圧プラズマ処理装置を用いて、表面改質による熱接着性改質層が形成された基材Aの、熱接着性改質層の形成状態が適切であるかどうかを確認して置く必要がある。
 なお、熱接着性改質層の形成状態が適切であるかどうかは、その基材Aと異なる種類のフィルムであって、エアコロナ処理されてなる基材Bとを用い、基材Aの熱接着性改質層が形成された面と、基材Bのエアコロナ処理面を対向させて、接着剤及びアンカーコート剤を塗布することなく、加熱圧着させて試験積層体を得た後、前記試験積層体の貼合面における接着力が所定値を超えているかどうかで判定できる。
(大気圧プラズマ処理による表面改質例1)
 ポリアミド(PA)樹脂フィルムを、大気圧プラズマ処理装置を用いて表面改質した。処理条件は、照射時間0.12s、印加電力1.0kW、周波数20kHzとした。
 厚みが15μmのポリアミド(PA)樹脂フィルム(株式会社興人製二軸延伸ポリアミドフィルム、商品名;ボニールRX)を用いて、大気圧プラズマ処理による表面改質処理を行い、表面改質例1の表面改質されたポリアミド(PA)樹脂フィルムを得た。
 次に、表面改質例1のポリアミド(PA)樹脂フィルムの熱接着性改質層が形成された表面と、市販されているエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着し、表面改質例1の試験積層体を得た。得られた表面改質例1の試験積層体について、貼合したフィルム同士の接着力を測定すると、はく離強度の測定結果は、22.5N/25.4mmであった。
(大気圧プラズマ処理による表面改質例2)
 大気圧プラズマ処理装置での、大気圧プラズマの照射時間、印加電力、周波数を弱い方向に変更した以外には、表面改質例1と同じ操作を行い、表面改質例2の表面改質されたポリアミド(PA)樹脂フィルムを得た。処理条件は、照射時間0.10s、印加電力20W、周波数13.56MHzとした。
 次に、得られた表面改質例2の樹脂フィルムを用いて、表面改質例1と同一のエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルムを用いて、表面改質例1と同一の条件で貼合して、表面改質例2の試験積層体を得た。得られた表面改質例2の試験積層体は、はく離強度の測定値が7.8N/25.4mmであった。
(大気圧プラズマ処理による表面改質例3)
 未延伸ポリエチレン(PE)樹脂フィルムを、大気圧プラズマ処理装置を用いて表面改質した。処理条件は、照射時間0.05s、印加電力10W、周波数13.56MHzとした。
 厚みが100μmの未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)を用いて、大気圧プラズマ処理装置にて表面改質処理を行い、表面改質例3の表面改質された未延伸ポリエチレン(PE)樹脂フィルムを得た。
 次に、表面改質例3の樹脂フィルムの熱接着性改質層が形成された表面と、市販されているエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルム(東洋紡績株式会社製二軸延伸ポリエチレンテレフタレートフィルム、商品名;E5102)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、表面改質例1と同一の条件で貼合して、表面改質例3の積層体を得た。得られた表面改質例3の試験積層体は、はく離強度の測定値が8.0N/25.4mmであった。
(大気圧プラズマ処理による表面改質例4)
 大気圧プラズマ処理装置での、大気圧プラズマの照射時間、印加電力、周波数を弱い方向に変更した以外には、表面改質例3と同じ操作を行い、表面改質例4の表面改質された未延伸ポリエチレン(PE)樹脂フィルムを得た。処理条件は、照射時間0.005s、印加電力20W、周波数13.56MHzとした。
 次に、得られた表面改質例4の樹脂フィルムを用いて、表面改質例3と同一のエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルムと、表面改質例1と同一条件で貼合して、表面改質例4の積層体を得た。得られた表面改質例4の試験積層体は、はく離強度の測定値が2.5N/25.4mmであった。
(大気圧プラズマ処理による表面改質例5)
 ポリエチレンテレフタレート(PET)樹脂フィルムを、大気圧プラズマ処理装置を用いて表面改質した。処理条件は、照射時間0.05s、印加電力10W、周波数13.56MHzとした。
 厚みが12μmのポリエチレンテレフタレート(PET)樹脂フィルム(東洋紡績株式会社製二軸延伸ポリエチレンテレフタレートフィルム、商品名;E5102)を用いて、大気圧プラズマ処理装置にて表面改質処理を行い、表面改質例5の表面改質されたポリエチレンテレフタレート(PET)樹脂フィルムを得た。
 次に、表面改質例5の樹脂フィルムの熱接着性改質層が形成された表面と、市販されているエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、表面改質例1と同一の条件で貼合して、表面改質例5の試験積層体を得た。得られた表面改質例5の試験積層体は、はく離強度の測定値が7.9N/25.4mmであった。
(大気圧プラズマ処理による表面改質例6)
 大気圧プラズマ処理装置での、大気圧プラズマの照射時間、印加電力、周波数を弱い方向に変更した以外には、表面改質例5と同じ操作を行い、表面改質例6の表面改質されたポリエチレンテレフタレート(PET)樹脂フィルムを得た。処理条件は、照射時間0.01s、印加電力10W、周波数13.56MHzとした。
 次に、得られた表面改質例6の樹脂フィルムを用いて、表面改質例5と同一の条件で、市販されているエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルムと貼合して、表面改質例6の積層体を得た。得られた表面改質例6の試験積層体は、はく離強度の測定値が3.9N/25.4mmであった。
(大気圧プラズマ処理による表面改質例7)
 未延伸ポリプロピレン(CPP)樹脂フィルムを、大気圧プラズマ処理装置を用いて表面改質した。処理条件は、照射時間0.27s、印加電力2.2kW、周波数40kHzとした。
 厚みが60μmの未延伸ポリプロピレン(CPP)樹脂フィルム(東洋紡績株式会社製未延伸ポリプロピレンフィルム、商品名;パイレンP1146)を用いて、大気圧プラズマ処理装置にて表面改質処理を行い、表面改質例7の表面改質されたポリプロピレン(CPP)樹脂フィルムを得た。
 次に、表面改質例7の樹脂フィルムの熱接着性改質層が形成された表面と、市販されているエアコロナ処理された12μmのポリエチレンテレフタレート(PET)樹脂フィルム(東洋紡績株式会社製二軸延伸ポリエチレンテレフタレートフィルム、商品名;E5102)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、表面改質例1と同一の条件で貼合して、表面改質例7の試験積層体を得た。得られた表面改質例7の試験積層体は、はく離強度の測定値が16.4N/25.4mmであった。
(大気圧プラズマ処理による表面改質例8)
 大気圧プラズマ処理装置での、大気圧プラズマの照射時間、印加電力、周波数を弱い方向に変更した以外には、表面改質例7と同じ操作を行い、表面改質例8の表面改質された未延伸ポリプロピレン(CPP)樹脂フィルムを得た。処理条件は、照射時間0.12s、印加電力1.0kW、周波数20kHzとした。
 次に、得られた表面改質例8の樹脂フィルムを用いて、表面改質例7と同一の条件で、市販されているエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルムと貼合して、表面改質例8の積層体を得た。得られた表面改質例8の試験積層体は、はく離強度の測定値が0.2N/25.4mmであった。
(大気圧プラズマ処理による表面改質例9)
 セロファンフィルムを、大気圧プラズマ処理装置を用いて表面改質した。処理条件は、照射時間0.15s、印加電力1.2kW、周波数30kHzとした。
 厚みが#300のセロファンフィルム(二村化学工業株式会社製セロファンフィルム、商品名;太閤PF-3)を用いて、大気圧プラズマ処理装置にて表面改質処理を行い、表面改質例9の表面改質されたセロファンフィルムを得た。
 次に、表面改質例9のフィルムの熱接着性改質層が形成された表面と、市販されているエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、表面改質例1と同一の条件で貼合して、表面改質例9の試験積層体を得た。得られた表面改質例9の試験積層体は、はく離強度の測定値が2.3N/25.4mmであった。
(大気圧プラズマ処理による表面改質例10)
 大気圧プラズマ処理装置での、大気圧プラズマの照射時間、印加電力、周波数を弱い方向に変更した以外には、表面改質例9と同じ操作を行い、表面改質例10の表面改質されたセロファンフィルムを得た。処理条件は、照射時間0.15s、印加電力300W、周波数10kHzとした。
 次に、得られた表面改質例10のフィルムを用いて、表面改質例9と同一の条件で、市販されているエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルムと貼合して、表面改質例10の積層体を得た。得られた表面改質例10の試験積層体は、はく離強度の測定値が1.3N/25.4mmであった。
 以上のとおり、大気圧プラズマ処理装置を用いて各種フィルム表面の表面改質を行い、表面改質例1~10の表面改質されたフィルムを得た。得られた表面改質例1~10の熱接着性改質層と、エアコロナ処理された樹脂フィルムとを、加熱圧着により貼合し、表面改質例1~10の試験積層体を得た。
 得られた表面改質例1~10の試験積層体の積層フィルムについて、はく離強度を測定した結果を、表1に示した。
Figure JPOXMLDOC01-appb-T000001
 次に、得られた表面改質例1~10の表面改質されたフィルムと、エアコロナ処理された熱可塑性樹脂フィルムとを、接着剤やアンカーコート剤を用いないで、加熱圧着のみにより貼合して実施例1~5及び比較例1~5の積層体を作製した。
 また、得られた表面改質例1~4の表面改質されたフィルム同士を用いて、接着剤やアンカーコート剤を用いないで、加熱圧着のみにより貼合して実施例6及び比較例6の積層体を作製した。
 更に、本発明により作製された積層体と比較するため、従来技術である接着剤を用いたドライラミネート方式により貼合して、比較例7の積層体を作製した。
 また、スタンディングパウチ形式の包装容器は、実施例1、6及び比較例1、6、7において作製した。また、四方シール袋の包装容器は、実施例1~6及び比較例1~7において作製した。
(実施例1)
 上記の、表面改質例1のポリアミド(PA)樹脂フィルムの熱接着性改質層が形成された表面と、市販されているエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面とを対向させて、接着剤及びアンカーコート剤を塗布することなく、速度5m/min、温度150℃、圧力0.23MPaで、加熱ロールにて加熱圧着し、実施例1の積層体を得た。得られた実施例1の積層体は、はく離強度の測定値が15.1N/25.4mmであった。また、得られた実施例1の積層体を用いて、スタンディングパウチ形式及び四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(比較例1)
 上記の表面改質例2のポリアミド(PA)樹脂フィルムの熱接着性改質層が形成された表面と、実施例1のエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルムを用いて、実施例1と同一条件で熱ラミネートを行い、比較例1の積層体を得た。得られた比較例1の積層体は、はく離強度の測定値が6.7N/25.4mmであった。また、得られた比較例1の積層体を用いて、スタンディングパウチ形式及び四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(実施例2)
 上記の表面改質例3の未延伸ポリエチレン(PE)樹脂フィルムの熱接着性改質層が形成された表面と、市販されているエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルム(東洋紡績株式会社製二軸延伸ポリエチレンテレフタレートフィルム、商品名;E5102)を用いて、実施例1と同一の条件で熱ラミネートを行い、実施例2の積層体を得た。得られた実施例2の積層体は、はく離強度の測定値が7.8N/25.4mmであった。また、得られた実施例2の積層体を用いて、四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(比較例2)
 上記の表面改質例4の未延伸ポリエチレン(PE)樹脂フィルムの熱接着性改質層が形成された表面と、実施例2のエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルムを用いて、実施例1と同一の条件で熱ラミネートを行い、比較例2の積層体を得た。得られた比較例2の積層体は、はく離強度の測定値が2.4N/25.4mmであった。また、得られた比較例2の積層体を用いて、四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(実施例3)
 上記の表面改質例5のポリエチレンテレフタレート(PET)樹脂フィルムの熱接着性改質層が形成された表面と、市販されているエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)を用いて、実施例1と同一の条件で熱ラミネートを行い、実施例3の積層体を得た。得られた実施例3の積層体は、はく離強度の測定値が8.0N/25.4mmであった。また、得られた実施例3の積層体を用いて、四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(比較例3)
 上記の表面改質例6のポリエチレンテレフタレート(PET)樹脂フィルムの熱接着性改質層が形成された表面と、実施例3のエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルムを用いて、実施例1と同一の条件で熱ラミネートを行い、比較例3の積層体を得た。得られた比較例3の積層体は、はく離強度の測定値が2.4N/25.4mmであった。また、得られた比較例3の積層体を用いて、四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(実施例4)
 上記の表面改質例7の未延伸ポリプロピレン(CPP)樹脂フィルムの熱接着性改質層が形成された表面と、市販されているエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルム(東洋紡績株式会社製二軸延伸ポリエチレンテレフタレートフィルム、商品名;E5102)フィルムを用いて、接着剤及びアンカーコート剤を塗布することなく、速度5m/min、温度185℃、圧力0.23MPaで、加熱ロールにて加熱圧着し、実施例4の積層体を得た。得られた実施例4の積層体は、はく離強度の測定値が12.8N/25.4mmであった。また、得られた実施例4の積層体を用いて、四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(比較例4)
 上記の表面改質例8の未延伸ポリプロピレン(CPP)樹脂フィルムの熱接着性改質層が形成された表面と、実施例4のエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルムを用いて、実施例4と同一の条件で熱ラミネートを行い、比較例4の積層体を得た。得られた比較例4の積層体は、はく離強度の測定値が0.3N/25.4mmであった。また、得られた比較例4の積層体を用いて、四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(実施例5)
 上記の表面改質例9のセロファンフィルムの熱接着性改質層が形成された表面と、市販されているエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)を用いて、実施例1と同一の条件で熱ラミネートを行い、実施例5の積層体を得た。得られた実施例5の積層体は、はく離強度の測定値が2.5N/25.4mmであった。また、得られた実施例5の積層体を用いて、四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(比較例5)
 上記の表面改質例10のセロファンフィルムの熱接着性改質層が形成された表面と、実施例5のエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルムを用いて、実施例1と同一の条件で熱ラミネートを行い、比較例5の積層体を得た。得られた比較例5の積層体は、はく離強度の測定値が1.0N/25.4mmであった。また、得られた比較例5の積層体を用いて、四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(実施例6)
 上記の表面改質例1のポリアミド(PA)樹脂フィルムの熱接着性改質層が形成された表面と、表面改質された表面改質例3の未延伸ポリエチレン(PE)樹脂フィルムを用いて、実施例1と同一の条件で熱ラミネートを行い、実施例6の積層体を得た。得られた実施例6の積層体は、はく離強度の測定値が16.7N/25.4mmであった。
 また、得られた実施例6の積層体を用いて、スタンディングパウチ形式及び四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(比較例6)
 上記の表面改質例2のポリアミド(PA)樹脂フィルムの熱接着性改質層が形成された表面と、表面改質された表面改質例4の未延伸ポリエチレン(PE)樹脂フィルムを用いて、実施例1と同一の条件で熱ラミネートを行い、比較例6の積層体を得た。得られた比較例6の積層体は、はく離強度の測定値が6.4N/25.4mmであった。また、得られた比較例6の積層体を用いて、スタンディングパウチ形式及び四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
(比較例7)
 従来技術により、エアコロナ処理されたポリアミド(PA)樹脂フィルムと、エアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルムを、接着剤を用いたドライラミネートにより積層体を得た後、その積層体を用いて、スタンディングパウチ形式及び四方シール袋の包装容器を作製した。
 市販されている厚みが15μmのポリアミド(PA)樹脂フィルム(株式会社興人製二軸延伸ポリアミドフィルム、商品名;ボニールRX)のエアコロナ処理面と、市販されているエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面とを対向させて、接着剤を塗布した後、加圧ロールで圧着し、エージングを経て比較例7の積層体を得た。得られた比較例7の積層体は、はく離強度の測定値が12.2N/25.4mmであった。また、得られた比較例7の積層体を用いて、スタンディングパウチ形式及び四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。
 上記のようにして得られた実施例1~6及び比較例1~7の積層体を用いて、スタンディング形式及び四方シール袋の包装容器を作製した後、包装容器に関する各種の試験を行った。得られた試験結果を、表2に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2は、本発明による積層体である実施例1~実施例6及び比較例1~比較例7の積層体を用いて、作製したスタンディング形式及び四方シール袋の包装容器について行った各種試験の結果である。
 比較例7は、従来技術による接着剤を用いて、ドライラミネート方式で作製した積層体を用いて作製した包装容器の試験結果である。
 実施例1~実施例6は、本発明による加熱圧着で作製した積層体を用い作製した包装容器の試験結果である。従来技術により作製した包装容器である比較例7の試験結果と、本発明による包装容器である実施例1~実施例6の試験結果とを比較しても、顕著な差異は見られない。
 したがって、本発明による積層体は、従来技術による接着剤を用いたドライラミネート方式による積層体と同等レベルの性状を有しており、包装容器の構成材料として何ら問題を生じることなく利用することが可能である。
 また、表3は、ボイル・レトルト試験の結果であり、実施例1、2、3、6の包装容器についてボイル試験を行い、実施例4の包装容器についてレトルト試験を行った。
 いずれも、デラミ(貼り合わせ面からの剥離)現象の発生が起きておらず、通常の従来技術による接着剤を用いて、ドライラミネート方式で作製した積層体を用いて作製した包装容器と同様な耐久性を有している。
 また、表4は、耐内容品適性試験として、従来技術により作製した比較例7の包装容器と、本発明による実施例1の包装容器について、内容品を充填して50℃にて保存1ヶ月間の保存期間経過後に積層体の接着強度を評価した結果である。
 実施例1の包装容器は、デラミ(貼り合わせ面からの剥離)現象の発生も起きておらず、通常の従来技術による接着剤を用いて、ドライラミネート方式で作製した積層体を用いて作製した包装容器と同様以上の優れた耐久性を有している。
 また、表5は、従来技術による接着剤を用いて、ドライラミネート方式で作製した積層体を用いて作製した包装容器である比較例7の、ドライラミネート方式で、基材巾1,000mmで1,000m加工した場合に必要とされる溶剤量(kg)を算出したものである。ドライラミネート加工に必要とされる溶剤量は38.7(kg)であった。
 これに対して、本発明の場合には、接着剤を使用しないため、溶剤も全く使用しないで包装容器を作製することが可能になった。
 また、表1と表2の試験結果を総合的に判断すると、大気圧プラズマ処理装置を用いてフィルムに施した、表面改質による熱接着性改質層の接着力を、次のように適切にコントロールすれば良い。その結果、本発明を実施するのに適した、大気圧プラズマ処理の表面改質による、熱接着性改質層が形成されたフィルムを得られる。
(ポリアミド樹脂に対するプラズマ処理)
 ポリアミド(PA)樹脂フィルムに対して、大気圧プラズマ処理装置を用いた表面改質により、熱接着性改質層が形成された表面の良否を判定するには、ポリアミド(PA)の樹脂フィルムの表面改質により熱接着性改質層が形成された表面と、市販のエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面と対向させて、接着剤及びアンカーコート剤を塗布することなく、温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が、9.8N/25.4mm以上となるように、大気圧プラズマ処理装置を用いた表面改質をすれば良い。
(未延伸ポリエチレン樹脂に対するプラズマ処理)
 未延伸ポリエチレン(PE)樹脂フィルムに対して、大気圧プラズマ処理装置を用いた表面改質により、熱接着性改質層が形成された表面の良否を判定するには、未延伸ポリエチレン(PE)樹脂フィルムの表面改質により熱接着性改質層が形成された表面と、市販のエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルム(東洋紡績株式会社製二軸延伸ポリエチレンテレフタレートフィルム、商品名;E5102)のエアコロナ処理面と対向させて、接着剤及びアンカーコート剤を塗布することなく、温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が5.9N/25.4mm以上となるように、大気圧プラズマ処理装置を用いた表面改質をすれば良い。
(ポリエチレンテレフタレート樹脂に対するプラズマ処理)
 ポリエチレンテレフタレート(PET)樹脂フィルムに対して、大気圧プラズマ処理装置を用いた表面改質により、熱接着性改質層が形成された表面の良否を判定するには、ポリエチレンテレフタレート(PET)樹脂フィルムの表面改質により熱接着性改質層が形成された表面と、市販のエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面と対向させて、接着剤及びアンカーコート剤を塗布することなく、温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が、5.9N/25.4mm以上となるように、大気圧プラズマ処理装置を用いた表面改質をすれば良い。
(未延伸ポリプロピレン樹脂に対するプラズマ処理)
 未延伸ポリプロピレン(CPP)樹脂フィルムに対して、大気圧プラズマ処理装置を用いた表面改質により、熱接着性改質層が形成された表面の良否を判定するには、未延伸ポリプロピレン(CPP)樹脂フィルムの表面改質により熱接着性改質層が形成された表面と、市販のエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルム(東洋紡績株式会社製二軸延伸ポリエチレンテレフタレートフィルム、商品名;E5102)のエアコロナ処理面と対向させて、接着剤及びアンカーコート剤を塗布することなく、温度190℃、加圧力0.4MPaで10秒間保持して加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が、5.9N/25.4mm以上となるように、大気圧プラズマ処理装置を用いた表面改質をすれば良い。
(セロファンフィルムに対するプラズマ処理)
 セロファンフィルムに対して、大気圧プラズマ処理装置を用いたにより表面改質により、熱接着性改質層が形成された表面の良否を判定するには、セロファンフィルムの表面改質により熱接着性改質層が形成された表面と、市販のエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルム(タマポリ株式会社製未延伸ポリエチレンフィルム、商品名;SK615P)のエアコロナ処理面と対向させて、接着剤及びアンカーコート剤を塗布することなく、温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が、2.0N/25.4mm以上となるように、大気圧プラズマ装置を用いた表面改質をすれば良い。
 本発明によれば、フィルムに対して、接着剤及びアンカーコート剤を用いることなく加熱圧着して貼合された積層体を得るために必要な、大気圧プラズマ処理されたフィルムの、熱接着性改質層の形成状態の良否を判定することにより、大気圧プラズマ処理を効果的に実施できる。
 また、本発明によれば、接着剤及びアンカーコート剤を用いることなく貼合された積層体の製造方法、積層体、及びそれを用いて作製した包装容器が得られる。本発明による積層体は、化粧シート、光学フィルム、保護フィルム、包装容器などの各種用途に使用できる。
 また、本発明による積層体を用いて作製される包装容器は、液体調味料、液体洗剤、液体漂白剤、液体ワックス、ヘアケア用品(シャンプー、リンス、コンディショナーなどが含まれる)、薬液、液体状の化粧品等の種々の液体状製品の包装容器及び詰替え用包装容器、さらには、食品、電子部品、医療用部品、医療用機器部品、精密機械部品などの各種包装容器に使用できる。
 また、本発明によれば、接着剤及びアンカーコート剤を全く用いないで、即ち有機溶剤を全く使用しないで、積層体及びそれを用いた包装容器を作製できるため、環境対策及び省エネルギー対策として有効である。
1 未処理である第1の基材、2 熱接着性改質層、3 印刷層、5 表面処理した第1の基材、6 未処理である第2の基材、7 エアコロナ処理面(または熱接着性改質層)、8 表面処理した第2の基材、9 熱接着部、10 本発明の積層体、20 本発明の印刷層を有する積層体、21 処理の対象となる第1の基材のロール体、22 処理の対象となる第2の基材のロール体、23 大気圧プラズマ処理装置、24 エアコロナ処理装置、25 加熱ロール、26 バックアップロール(または加熱ロール)、27 移送ロール、28 積層体のロール体、29 冷却ロール、31 表面処理した第1の基材のロール体、32 表面処理した第2の基材のロール体、40 従来技術による積層体、41 第1の基材フィルム、42 第2の基材フィルム、43,44 エアコロナ処理面、45 接着剤層。

Claims (12)

  1.  異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材とを貼合して積層体を製造する方法であって、
     厚みが10~500μmであり、長さが3~10,000mの長尺のフィルムからなる前記第1の基材及び前記第2の基材の巻かれたロール体からそれぞれ繰り出された、前記第1の基材及び前記第2の基材のいずれか一方の基材が、
     大気圧プラズマ処理装置による表面改質により熱接着性改質層が形成された面を有し、他方の基材がエアコロナ処理された面を有し、
     前記熱接着性改質層が形成された面と、前記エアコロナ処理された面を対向させて、
     接着剤及びアンカー剤を塗布することなく、加熱ロールにて加熱圧着して連続貼合する積層体の製造方法。
  2.  異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材とを貼合して積層体を製造する方法であって、
     厚みが10~500μmであり、長さが3~10,000mの長尺のフィルムからなる前記第1の基材及び前記第2の基材の巻かれたロール体からそれぞれ繰り出された、前記第1の基材及び前記第2の基材の両方が
     大気圧プラズマ処理装置による表面改質により熱接着性改質層が形成された面を有し、
     前記熱接着性改質層が形成された面同士を対向させて、接着剤及びアンカー剤を塗布することなく、加熱ロールにて加熱圧着して連続貼合する積層体の製造方法。
  3.  前記第1の基材と前記第2の基材とを貼合するに際し、
     事前に、大気圧プラズマ処理装置を用いてフィルムの表面改質により熱接着性改質層が形成された前記第1の基材及び/又は前記第2の基材と、前記第1の基材及び前記第2の基材と同一又は異なる種類のフィルムであってエアコロナ処理されてなる第3の基材とを用い、前記第1の基材及び/又は前記第2の基材の熱接着性改質層が形成された面と、前記第3の基材のエアコロナ処理面を対向させて、接着剤及びアンカーコート剤を塗布することなく加熱圧着させて試験積層体を得た後、
     前記試験積層体の貼合面における接着力を測定して、前記第1の基材及び/又は前記第2の基材の熱接着性改質層の形成状態の良否を確認する請求項1または2に記載の積層体の製造方法。
  4.  大気圧プラズマ処理装置を用いて熱接着性改質層が形成される基材がポリアミド(PA)樹脂フィルムである場合には、前記第3の基材としてエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルムを用い、
     温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が9.8N/25.4mm以上となることを確認し、
     大気圧プラズマ処理装置を用いて熱接着性改質層が形成される基材が未延伸ポリエチレン(PE)樹脂フィルムである場合には、前記第3の基材としてエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルムを用い、
     温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が5.9N/25.4mm以上となることを確認し、
     大気圧プラズマ処理装置を用いて熱接着性改質層が形成される基材がポリエチレンテレフタレート(PET)樹脂フィルムである場合には、前記第3の基材としてエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルムを用い、
     温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が5.9N/25.4mm以上となることを確認し、
     大気圧プラズマ処理装置を用いて熱接着性改質層が形成される基材が未延伸ポリプロピレン(CPP)樹脂フィルムである場合には、前記第3の基材としてエアコロナ処理されたポリエチレンテレフタレート(PET)樹脂フィルムを用い、
     温度190℃、加圧力0.4MPaで10秒間保持して加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が5.9N/25.4mm以上となることを確認し、
     大気圧プラズマ処理装置を用いて熱接着性改質層が形成される基材がセロファンフィルムである場合には、前記第3の基材としてエアコロナ処理された未延伸ポリエチレン(PE)樹脂フィルムを用い、
     温度160℃、加圧力0.4MPaで10秒間保持して加熱圧着させたときの接着力が、JIS K 6854-1「接着剤 はく離接着強さ試験方法 第一部:90度はく離」に規定された測定方法で測定した値が2.0N/25.4mm以上となることを確認する請求項3に記載の積層体の製造方法。
  5.  本発明は、貼合工程後に、積層体を常温で10日~1ヶ月間、または40~60℃で1~3日間静置するエージング工程を含む請求項1から4のいずれかに記載の積層体の製造方法。
  6.  前記第1の基材が、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリエチレンナフタレート(PEN)、ポリアクリロニトリル(PAN)、ポリカーボネート(PC)、ポリイミド(PI)、セロファンフィルムからなる群の中から選ばれた1種類であり、
     前記第2の基材が、未延伸ポリエチレン(PE)、又は未延伸ポリプロピレン(CPP)である請求項1から5のいずれか1項に記載の積層体の製造方法。
  7.  前記第1の基材となるフィルムの少なくとも片面には、印刷層が形成されている請求項1から6のいずれか1項に記載の積層体の製造方法。
  8.  請求項1から7のいずれか1項に記載の積層体の製造方法により製造された積層体。
  9.  請求項8に記載の積層体を用いて、
     前記第2の基材がシーラント層として内側面となるように製造されてなる包装容器。
  10.  異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材とを貼合された積層体であって、
     前記第1の基材が、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリエチレンナフタレート(PEN)、ポリアクリロニトリル(PAN)、ポリカーボネート(PC)、ポリイミド(PI)、セロファンフィルムからなる群の中から選ばれた1種類であり、
     前記第2の基材が、未延伸ポリエチレン(PE)、又は未延伸ポリプロピレン(CPP)であり、前記第1の基材及び第2の基材は、厚みが10~500μmであり、長さが3~10,000mの長尺のフィルムからなり、
     前記積層体の貼合面において、前記第1の基材及び前記第2の基材のいずれか一方の基材が大気圧プラズマ処理装置による表面改質により熱接着性改質層が形成された面を有し、
     他方の基材がエアコロナ処理された面を有し、
     前記熱接着性改質層が形成された面と、前記エアコロナ処理された面とが、接着剤及びアンカー剤を含まないで、加熱圧着されて貼合されている積層体。
  11.  異なる種類の熱可塑性樹脂フィルムまたはセロファンフィルムからなる第1の基材と第2の基材が貼合された積層体であって、
     前記第1の基材が、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリエチレンナフタレート(PEN)、ポリアクリロニトリル(PAN)、ポリカーボネート(PC)、ポリイミド(PI)、セロファンフィルムからなる群の中から選ばれた1種類であり、
     前記第2の基材が、未延伸ポリエチレン(PE)、又は未延伸ポリプロピレン(CPP)であり、前記第1の基材及び第2の基材は、厚みが10~500μmであり、長さが3~10,000mの長尺のフィルムからなり、
     前記積層体の貼合面において、前記第1の基材及び前記第2の基材の両方が大気圧プラズマ処理装置による表面改質により熱接着性改質層が形成された面を有し、
     前記熱接着性改質層が形成された面同士が、接着剤及びアンカー剤を含まないで、加熱圧着されて貼合されている積層体。
  12.  請求項10または11に記載の積層体を用いて、前記第2の基材がシーラント層として内面側となるように製造されてなる包装容器。
PCT/JP2010/067955 2009-10-13 2010-10-13 積層体の製造方法及び積層体、それを用いた包装容器 WO2011046143A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20100823411 EP2489511B1 (en) 2009-10-13 2010-10-13 Laminate production method, laminate, and packaging container using same
US13/501,724 US20120205387A1 (en) 2009-10-13 2010-10-13 Laminate production method, laminate, and packaging container using same
US13/942,374 US20130299079A1 (en) 2009-10-13 2013-07-15 Laminate Production Method Using Surface-Modified Film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-236158 2009-10-13
JP2009236158A JP5455539B2 (ja) 2009-10-13 2009-10-13 積層体の製造方法及び積層体、それを用いた包装容器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/942,374 Division US20130299079A1 (en) 2009-10-13 2013-07-15 Laminate Production Method Using Surface-Modified Film

Publications (1)

Publication Number Publication Date
WO2011046143A1 true WO2011046143A1 (ja) 2011-04-21

Family

ID=43876192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067955 WO2011046143A1 (ja) 2009-10-13 2010-10-13 積層体の製造方法及び積層体、それを用いた包装容器

Country Status (4)

Country Link
US (2) US20120205387A1 (ja)
EP (2) EP2489511B1 (ja)
JP (1) JP5455539B2 (ja)
WO (1) WO2011046143A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125689A1 (ja) * 2014-02-18 2015-08-27 株式会社クラレ ポリビニルアセタール溶液からなる接着性改良剤
KR20160124171A (ko) 2014-02-17 2016-10-26 주식회사 쿠라레 세라믹 성형용 또는 도전 페이스트용 결합제, 및 이들의 용도
KR20190038864A (ko) 2016-07-28 2019-04-09 주식회사 쿠라레 세라믹 그린 시트 및 도포 시트
JP7558756B2 (ja) 2020-10-30 2024-10-01 藤森工業株式会社 樹脂積層体の製造方法及び包装容器の製造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2295132T3 (en) 2009-05-15 2016-12-05 Interface Biologics Inc Antithrombogenic hollow-fiber membranes, molding material and blood long
KR101286952B1 (ko) * 2011-11-08 2013-07-23 (주)에스피에스 피디엠에스칩 인라인 제조장치
DE102013013495A1 (de) * 2013-08-16 2015-02-19 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zur Herstellung eines Verbundwerkstoffs
JP2015115335A (ja) * 2013-12-09 2015-06-22 イビデン株式会社 プリント配線板及びプリント配線板の製造方法
JP2015115334A (ja) * 2013-12-09 2015-06-22 イビデン株式会社 プリント配線板及びプリント配線板の製造方法
WO2015187161A1 (en) * 2014-06-05 2015-12-10 Illinois Tool Works Inc. System and method for cleaning an object
WO2016054733A1 (en) * 2014-10-06 2016-04-14 Interface Biologics, Inc. Packaging materials including a barrier film
WO2016147828A1 (ja) * 2015-03-19 2016-09-22 ウシオ電機株式会社 ワークの貼り合わせ方法
EP3072669B1 (en) * 2015-03-23 2019-05-08 Hayat Kimya Sanayi Anonim Sirketi Application of atmospheric pressure plasma for improving adhesion capacity of disposable absorbent article components
EP3273833A1 (de) 2015-03-27 2018-01-31 Arrola AG Gefässsystem, verfahren und vorrichtung zur automatischen bereitstellung einer nahrungsmittelzubereitung
WO2016189467A1 (en) * 2015-05-26 2016-12-01 Incussus, Llc Thermoplastic laminate sheet
CN104985905A (zh) * 2015-08-05 2015-10-21 贵州劲瑞新型包装材料有限公司 一种干式复合机及利用该复合机进行镀铝膜复合的方法
CN107921770B (zh) * 2015-10-23 2020-09-29 惠普印迪戈股份公司 柔性包装材料
JP6668704B2 (ja) * 2015-11-24 2020-03-18 東洋製罐株式会社 多層構造フィルム及びその製造方法
JP6627457B2 (ja) * 2015-11-27 2020-01-08 東洋製罐株式会社 包装体
JP6748420B2 (ja) * 2015-12-02 2020-09-02 花王株式会社 積層体及びその製造方法
BR112019007896B1 (pt) 2016-10-18 2022-11-08 Interface Biologics, Inc Composição misturada, artigo e seu método de produção
US11383543B2 (en) * 2017-03-07 2022-07-12 Toray Industries, Inc. Method for producing printed matter and printing machine
NL2019329B1 (en) * 2017-07-24 2019-02-18 Quinlyte Holding B V Multilayer laminate film assembly and standing pouch
PL239679B1 (pl) * 2017-11-02 2021-12-27 Bednarek Aleksander Albed Przed Produkcyjno Handlowo Uslugowe Sposób wytwarzania laminatu z dzianin i pianki polietylenowej, o podwyższonej wytrzymałości na rozrywanie
US11396161B2 (en) * 2017-12-28 2022-07-26 3M Innovative Properties Company Method for preparing multi-layer optical laminates
CN108906526A (zh) * 2018-09-11 2018-11-30 安徽捷诚包装制品有限公司 一种保护膜均匀涂胶工艺
JP7213047B2 (ja) * 2018-09-25 2023-01-26 藤森工業株式会社 包装材料積層体の製造方法、包装材料積層体及びそれを用いた包装体
JP7296050B2 (ja) * 2018-09-28 2023-06-22 大日本印刷株式会社 バリア性積層フィルム及びバリア性積層フィルムの製造方法、並びにバリア性積層フィルムを備える包装材料
CN110683086A (zh) * 2019-11-15 2020-01-14 河北晓进机械制造股份有限公司 锚固剂横向灌装生产线

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730854A (en) 1980-07-31 1982-02-19 Ricoh Co Ltd Copying and printing method
JPH03162420A (ja) 1989-11-20 1991-07-12 Showa Denko Kk 多層積層体の製造方法
JPH07314629A (ja) 1993-09-21 1995-12-05 Sumitomo Chem Co Ltd 積層フィルム及び積層シートの製造方法
JPH08324590A (ja) 1995-05-26 1996-12-10 Fujimori Kogyo Kk 詰め替え用プラスチックパック
JPH09111017A (ja) 1995-10-23 1997-04-28 Toray Ind Inc ガスバリアフィルム及びその製造方法
JPH09234845A (ja) 1995-12-27 1997-09-09 Sumitomo Chem Co Ltd 積層体の製造法
JPH1159704A (ja) 1997-08-22 1999-03-02 Fujimori Kogyo Kk 補強注出口を有する液体用包装袋
JP2000218675A (ja) * 1999-01-29 2000-08-08 Toppan Printing Co Ltd 積層体の製造方法およびその積層体
JP2001058655A (ja) 1999-08-25 2001-03-06 Fujimori Kogyo Co Ltd 包装袋
JP2003266626A (ja) * 2002-03-18 2003-09-24 Sumitomo Chem Co Ltd 積層体の製造方法
JP2007181943A (ja) * 2006-01-05 2007-07-19 Toppan Printing Co Ltd 積層体
JP2008075030A (ja) 2006-09-22 2008-04-03 Uinzu:Kk 接着装置及び接着方法
JP2008183868A (ja) 2007-01-31 2008-08-14 Hitachi Engineering & Services Co Ltd 無接着剤アラミド−ポリエステル積層体、その製造方法及び製造装置
JP2009236158A (ja) 2008-03-26 2009-10-15 Bando Chem Ind Ltd オートテンショナ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3188265A (en) * 1957-11-12 1965-06-08 Minnesota Mining & Mfg Packaging films
US3959567A (en) * 1974-09-12 1976-05-25 Surface Activation Corporation Method and apparatus for making laminates
JPS5550034A (en) 1978-10-05 1980-04-11 Toray Ind Inc Surface-treatment of plastic
ATE59811T1 (de) * 1984-10-19 1991-01-15 Biflex Dev Partners Ltd Verfahren zum verbinden von schichten ohne klebemittel.
SE503200C2 (sv) * 1993-10-05 1996-04-15 Tetra Laval Holdings & Finance Sätt att framställa ett laminerat material
US8227062B2 (en) * 2007-02-01 2012-07-24 Coating Excellence International Llc Package having a printed laminate

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730854A (en) 1980-07-31 1982-02-19 Ricoh Co Ltd Copying and printing method
JPH03162420A (ja) 1989-11-20 1991-07-12 Showa Denko Kk 多層積層体の製造方法
JPH07314629A (ja) 1993-09-21 1995-12-05 Sumitomo Chem Co Ltd 積層フィルム及び積層シートの製造方法
JPH08324590A (ja) 1995-05-26 1996-12-10 Fujimori Kogyo Kk 詰め替え用プラスチックパック
JPH09111017A (ja) 1995-10-23 1997-04-28 Toray Ind Inc ガスバリアフィルム及びその製造方法
JPH09234845A (ja) 1995-12-27 1997-09-09 Sumitomo Chem Co Ltd 積層体の製造法
JPH1159704A (ja) 1997-08-22 1999-03-02 Fujimori Kogyo Kk 補強注出口を有する液体用包装袋
JP2000218675A (ja) * 1999-01-29 2000-08-08 Toppan Printing Co Ltd 積層体の製造方法およびその積層体
JP2001058655A (ja) 1999-08-25 2001-03-06 Fujimori Kogyo Co Ltd 包装袋
JP2003266626A (ja) * 2002-03-18 2003-09-24 Sumitomo Chem Co Ltd 積層体の製造方法
JP2007181943A (ja) * 2006-01-05 2007-07-19 Toppan Printing Co Ltd 積層体
JP2008075030A (ja) 2006-09-22 2008-04-03 Uinzu:Kk 接着装置及び接着方法
JP2008183868A (ja) 2007-01-31 2008-08-14 Hitachi Engineering & Services Co Ltd 無接着剤アラミド−ポリエステル積層体、その製造方法及び製造装置
JP2009236158A (ja) 2008-03-26 2009-10-15 Bando Chem Ind Ltd オートテンショナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2489511A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160124171A (ko) 2014-02-17 2016-10-26 주식회사 쿠라레 세라믹 성형용 또는 도전 페이스트용 결합제, 및 이들의 용도
WO2015125689A1 (ja) * 2014-02-18 2015-08-27 株式会社クラレ ポリビニルアセタール溶液からなる接着性改良剤
JPWO2015125689A1 (ja) * 2014-02-18 2017-03-30 株式会社クラレ ポリビニルアセタール溶液からなる接着性改良剤
KR20190038864A (ko) 2016-07-28 2019-04-09 주식회사 쿠라레 세라믹 그린 시트 및 도포 시트
JP7558756B2 (ja) 2020-10-30 2024-10-01 藤森工業株式会社 樹脂積層体の製造方法及び包装容器の製造方法

Also Published As

Publication number Publication date
US20120205387A1 (en) 2012-08-16
JP2011083906A (ja) 2011-04-28
EP2671719A1 (en) 2013-12-11
EP2489511A1 (en) 2012-08-22
JP5455539B2 (ja) 2014-03-26
US20130299079A1 (en) 2013-11-14
EP2489511B1 (en) 2015-04-29
EP2489511A4 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2011046143A1 (ja) 積層体の製造方法及び積層体、それを用いた包装容器
JP5554996B2 (ja) 包装材料積層体の製造方法、包装材料積層体及びそれを用いた包装体
JP2014100917A (ja) 積層体の製造方法及び積層体、それを用いた包装容器
EP3317095B1 (en) Barrier film or sheet and laminated packaging material comprising the film or sheet and packaging container made therefrom
JP5386309B2 (ja) 積層体の製造方法及び積層体、それを用いた包装容器
JP2021054078A (ja) バリア性積層体、該バリア性積層体を備える包装容器
JP7290966B2 (ja) 包装材料積層体の製造方法、包装材料積層体及びそれを用いた包装体
JP2024050712A (ja) 積層体および包装容器
JP7213047B2 (ja) 包装材料積層体の製造方法、包装材料積層体及びそれを用いた包装体
JP2024117796A (ja) 包装袋
JP5568284B2 (ja) 包装材料積層体の製造方法、及び包装材料積層体
JP5015732B2 (ja) 積層フィルムの製造方法
JP5412072B2 (ja) 表面改質された樹脂フィルム、及び樹脂フィルムの表面改質方法
JP5084983B2 (ja) バリア性フィルムおよびそれを使用した積層材
JP3820041B2 (ja) 透明バリアフィルムとこれを用いた積層材および包装用容器
JP5073378B2 (ja) 透明バリア性ポリプロピレンフィルムの製造法
JP4028046B2 (ja) 透明バリア性ポリプロピレンフィルム、それを使用した積層体および包装用容器
JP2022191722A (ja) 積層体およびそれを用いた包装袋
JP4774577B2 (ja) バリア性フィルムおよびそれを使用した積層材
JP2012166560A (ja) 積層フィルムの製造方法
JP4372965B2 (ja) バリア性フィルムおよびそれを使用した積層材
JP7286923B2 (ja) エージングレス補強フィルム、およびそれを用いた積層体、包装材料
JP4911237B2 (ja) 過酸化水素バリア性フィルムおよびそれを使用した積層材
JP2023111750A (ja) 包装袋
JP2023023643A (ja) バリア性積層体、蓋材及び包装容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13501724

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010823411

Country of ref document: EP