WO2011045925A1 - 電源装置および車両 - Google Patents

電源装置および車両 Download PDF

Info

Publication number
WO2011045925A1
WO2011045925A1 PCT/JP2010/006085 JP2010006085W WO2011045925A1 WO 2011045925 A1 WO2011045925 A1 WO 2011045925A1 JP 2010006085 W JP2010006085 W JP 2010006085W WO 2011045925 A1 WO2011045925 A1 WO 2011045925A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
vehicle
unit
power supply
storage battery
Prior art date
Application number
PCT/JP2010/006085
Other languages
English (en)
French (fr)
Inventor
行實良太
児玉宣貴
野阪茂聖
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP10823193.7A priority Critical patent/EP2490317A4/en
Priority to JP2011536036A priority patent/JPWO2011045925A1/ja
Priority to CN201080045087.4A priority patent/CN102577022B/zh
Publication of WO2011045925A1 publication Critical patent/WO2011045925A1/ja
Priority to US13/445,762 priority patent/US20120193983A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/22Arrangements for adjusting, eliminating or compensating reactive power in networks in cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present invention relates to a power supply device and a vehicle that realize power supply at the time of a power failure in a house.
  • a blackout backup system which supplies power to a minimum electric device such as a telephone at the time of blackout.
  • electric power is supplied from a power generation apparatus provided in a vehicle body of an internal combustion engine type automobile outside the house at the time of blackout (see, for example, Patent Document 1).
  • An internal combustion engine type vehicle is equipped with an engine operated by fuel such as gasoline.
  • a vehicle body is provided with a storage battery, and the electric power of the storage battery is used to drive a motor as a drive device to rotate wheels. Since this storage battery has a large capacity, it can be considered to use it as a backup power supply.
  • an object of the present invention is to improve the reliability as a backup at the time of a power failure, even when the power of the vehicle is used at the time of a power failure.
  • a power supply apparatus is a power supply apparatus connectable to a vehicle capable of supplying electric power through a power line, and a power failure detection unit for detecting a power failure; Power control unit for transmitting control information for controlling power supply performed by the vehicle based on the detection result of the power line communication unit performing communication and the power failure detection unit to the vehicle using the power line communication unit And.
  • a vehicle according to the present invention is a vehicle connectable to a power supply device through a power line, and a power storage unit storing power supplied from the power supply device, and a power line communication unit performing communication through the power line.
  • a vehicle control unit configured to control input / output of power of the storage unit based on control information transmitted from the vehicle received using the power line communication unit.
  • the power supply apparatus is a power supply apparatus connectable to a vehicle capable of supplying electric power through a power line, and performs power line communication that communicates with a power failure detection unit that detects a power failure, and the power line.
  • a power supply unit for transmitting control information for controlling power supply performed by the vehicle based on the detection result of the power failure detection unit to the vehicle using the power line communication unit; Can transmit control information for controlling the vehicle at the time of a power failure via the power line, receive power supply from the vehicle via the power line, and can receive remaining amount information of the storage battery of the vehicle.
  • a vehicle according to the present invention is a vehicle connectable to a power supply device through a power line, and a power storage unit storing power supplied from the power supply device, and a power line communication unit performing communication through the power line.
  • a vehicle control unit for controlling input / output of power of the power storage unit based on control information transmitted from the vehicle received using the power line communication unit; Power can be received from the vehicle.
  • Schematic configuration diagram of a power failure backup system Block diagram showing the configuration of the power supply unit of the same blackout backup system
  • An explanatory view of a display example of a display device in the same blackout backup system Schematic configuration diagram of the same blackout backup system vehicle Block diagram showing the configuration of the same blackout backup system vehicle Block diagram showing configuration of on-vehicle charging device of vehicle in same blackout backup system Flow chart for explaining the operation of the power supply device of the same blackout backup system Flow chart explaining operation of vehicle of same blackout backup system Flow chart for explaining display operation of remaining battery level of vehicle in same blackout backup system Explanatory drawing which shows the example of a display of the battery residual amount of the vehicle in the same blackout backup system Explanatory drawing which shows the other display example of the battery remaining charge of the vehicle in the same blackout backup system Block diagram showing the configuration of the power supply unit in the same blackout backup system Block diagram showing the configuration of the power conversion unit of the power supply unit in the same blackout backup system Block diagram showing the configuration of the vehicle in
  • FIG. 1 is a schematic configuration diagram of a power failure backup system 1 according to an embodiment of the present invention.
  • the power supply device 3 in the house 2 is connected to a power cable 8 a drawn from the transformer 8 provided at the top of the pole 7 to the inside of the house.
  • the power supply device 3 can use the power of the commercial power supplied from the power company, and supplies power to each electric device in the house 2, for example, the light 2a, the television 2b, the air conditioner 2c and the like.
  • the commercial power source is distributed with high voltage alternating current to suppress power loss, and the voltage is converted into a predetermined voltage by the transformer 8, for example, converted into alternating current with a voltage of 100 to 200 volts for the house 2 and distributed.
  • the power failure backup system 1 includes the power supply device 3 in the house 2 and the vehicle 6 which is connected to the power supply device 3 so as to be freely connected and disconnected via the power line 5 and backs up the power at the time of the power failure.
  • the electric power of the vehicle 6 is used to supply power to the electric device.
  • An electric car is used as the vehicle 6.
  • the electric vehicle mounts the storage battery 10 and an electric motor as a wheel drive unit for rotating the wheels, and drives the motor using charging power of the storage battery 10.
  • the vehicle 6 is not limited to the electric car.
  • a hybrid vehicle may be used which uses both an internal combustion engine and an electric motor.
  • the storage battery 10 of the vehicle 6 does not have to be activated as in the case of a power generator, power can be supplied immediately at the time of a power failure. As a result, even if the power of the house 2 is suddenly cut off immediately after a disaster occurs, for example, in the middle of the night, power can be supplied to the lamp 2a immediately, so that the residents can evacuate while confirming safety.
  • the amount of power charged in storage battery 10 (for example, 20 kWh to 50 kWh) is very large, during a major disaster, it takes until the initial disaster recovery starts, that is, until safety confirmation of the power facility can be obtained.
  • the power used in the house 2 can be backed up for several days. For example, in the case where the amount of power charged in storage battery 10 is 48 kWh and the average amount of used power in house 2 is 2 kWh, it is assumed from storage battery 10 for three days, assuming that the electric device is used for eight hours a day. Power can be supplied to each electrical device in the house 2.
  • the power supply device 3 and the vehicle 6 are connected freely via the power line 5 so as to be freely connected and disconnected, and the storage battery 10 of the vehicle 6 is used at the time of the blackout. Back up.
  • a storage unit 4 is installed outside the house 2, and the storage unit 4 stores a power line 5 connected to a power supply in the house 2.
  • the resident takes out the power line 5 with a power plug from the storage unit 4 and connects the power plug of the taken power line 5 to the power supply port 19 of the vehicle 6.
  • the power supply device 3 and the vehicle 6 can be detachably connected by a power plug. As a result, the vehicle 6 can be used alone, and the power of the vehicle 6 can be supplied (supplied) to the house 2 at the time of a power failure.
  • power supply device 3 transmits control information for switching between charging and feeding of vehicle 6 to vehicle 6, and vehicle 6 controls input / output of storage battery 10 based on the received control information. That is, the power supply device 3 controls switching of charging or feeding operation of the vehicle 6 according to the control information. Details of the control information will be described later.
  • the display device 9 is connected to the power supply device 3.
  • the display device 9 displays the remaining amount information of the storage battery 10 notified from the vehicle 6 via the power supply device 3.
  • the amount of used power in the house 2 may be displayed on the display device 9.
  • a display example for displaying the remaining amount information of the storage battery 10 of the vehicle 6 and a notification method of the remaining amount information will be described later.
  • FIG. 2 is a block diagram showing the configuration of the power supply device 3 of the power failure backup system 1 according to the embodiment of the present invention.
  • the power supply device 3 connects the power supply cable 8 a and the distribution board 12 via the connection portion 11.
  • the power distribution board 12 distributes power, and the distributed power is supplied to each electrical device in the house through the circuit breaker 12a.
  • the circuit breaker 12a is a device that automatically shuts off the circuit when an abnormal current flows.
  • connection unit 11 connects or opens the power supply cable 8 a to which the power of the commercial power is supplied and the distribution board 12. When the connection part 11 is opened, the power supply in the house is released from the power supply cable 8a. The control of the connection unit 11 will be described later.
  • the power supply device 3 includes a power supply unit 3a, and includes a small-capacity storage battery 3b capable of charging power to the power supply unit 3a.
  • the storage battery 3b is charged at the time of non-power failure, and supplies power to each circuit at the time of power failure.
  • the power supply 3 can operate even at the time of a power failure.
  • the power supply device 3 automatically backs up power from the vehicle 6 at the time of a power failure. That is, the power supply device 3 detects a power failure of the power used in the house 2, the first power line communication unit 14 that communicates with the vehicle 6 using the power line 5, and the power failure detection unit 13.
  • the power supply control unit 15 transmits control information for controlling the vehicle 6 through the first power line communication unit 14 based on the detection result of the above, and transmits control information to the vehicle 6 at the time of a power failure.
  • Vehicle 6 controls input / output of storage battery 10 based on the received control information. The configuration of the vehicle 6 will be described later.
  • the power supply control unit 15 disconnects the connection unit 11 and disconnects the distribution board 12 from the power supply cable 8a. After disconnecting the distribution board 12 from the power supply cable 8a, the power supply control unit 15 transmits control information to the vehicle 6, and causes the vehicle 6 to supply power to the distribution board 12.
  • the power supply cable 8a and the distribution board 12 even if the power supply of the vehicle 6 is supplied with power in the power supply device 3 even if the blackout of the commercial power supply is canceled, the power of the commercial power supply collides with the power of the vehicle 6. Avoid fires and the like due to collisions. Thereby, the safety of the power supply device 3 is enhanced.
  • the power supply device 3 further includes a timer 16 which is a time counting unit that counts time.
  • the power supply control unit 15 counts time by the timer 16 while a power failure is detected by the power failure detection unit 13 and determines that the power failure is a case where the counted time is equal to or more than a predetermined time.
  • the predetermined time is set to 0.5 seconds, and the blackout backup system 1 does not operate even when the blackout occurs only momentarily (less than 0.5 seconds) due to the occurrence of lightning strike. Thereby, the stability and reliability of the blackout backup system 1 are improved.
  • the display device 9 may be provided integrally with the power supply 3 or may be provided independently of the power supply 3.
  • FIG. 3 is an explanatory diagram of a display example of the display device 9 in the power failure backup system 1 according to the embodiment of the present invention.
  • the display device 9 displays, for example, "Power can be supplied from the vehicle for ⁇ hours" on the display panel 9b.
  • the display device 9 displays a message that can be intuitively grasped at the time of a power failure based on the notified remaining amount information of the storage battery 10, that is, a message of the remaining amount information converted to a time when power can be used.
  • the message update interval may be automatically updated at a predetermined interval, for example, at one minute intervals.
  • FIG. 4 is a schematic configuration view showing the configuration of the vehicle 6 of the power failure backup system 1 according to the embodiment of the present invention.
  • the vehicle 6 includes a storage battery 10 for storing the power supplied to the power supply port 19 and an electric motor 18 as a wheel drive unit for rotating the wheels 17 by the power stored in the storage battery 10. ing. Further, the vehicle 6 also supplies the power stored in the storage battery 10 to the on-vehicle device.
  • the vehicle 6 in the power failure backup system 1 controls the input / output of the power of the storage battery 10 based on the control information of the power supply device 3 (FIG. 1). Thereby, even when the vehicle 6 is charging the storage battery 10, power can be supplied (power supplied) at the time of a power failure of the house 2.
  • FIG. 5 is a block diagram showing the configuration of the vehicle 6 of the power failure backup system 1 according to the embodiment of the present invention.
  • the vehicle 6 supplies the power supplied from the power supply device 3 to the power supply port 19 to the storage battery 10 via the on-vehicle charging device 21.
  • the on-vehicle charging device 21 may use approximately 300 volts as a voltage used for direct current (for example, the electric motor 18 in FIG. 5) or alternating current (e.g., 100 to 200 volts) power supplied to the power supply port 19 during charging.
  • the voltage (12 to 14 volts) is used as a voltage to be used for the device, and the converted power (direct current) is supplied to the storage battery 10.
  • the storage battery 10 internally boosts the charged power of approximately 300 volts, for example, to a voltage of 500 volts to 700 volts, and outputs the boosted voltage to the electric motor 18.
  • the vehicle 6 supplies the power stored in the storage battery 10 to the power supply port 19 via the on-vehicle charging device 21. Since the power supply plug of the power line 5 is connected to the power supply port 19, power is supplied to the power supply 3 side. Since direct-current power is output from the storage battery 10 of the vehicle 6, the on-vehicle charging device 21 converts direct current (for example, voltage 12 to 14 volts or 300 volts) to alternating current (for example, voltage 100 to 200 volts) when supplying power. Power supply to the power supply port 19.
  • direct current for example, voltage 12 to 14 volts or 300 volts
  • alternating current for example, voltage 100 to 200 volts
  • FIG. 6 is a block diagram showing the configuration of the on-board charging device 21 of the vehicle 6 in the power failure backup system 1 according to the embodiment of the present invention.
  • the on-vehicle charging device 21 includes an AC / DC conversion unit 22 that converts power from alternating current to direct current, a DC / AC conversion unit 23 that converts power from direct current to alternating current, and AC.
  • the switching unit 24 connects one of the / DC conversion unit 22 and the DC / AC conversion unit 23 to the power supply port 19, and the second power line communication unit 25 communicates with the power line 5.
  • the switching unit 24 is controlled by the vehicle control unit 26.
  • vehicle control unit 26 receives control information from power supply device 3 via second power line communication unit 25, and switching unit 24 based on the received control information. Control.
  • the vehicle control unit 26 connects the power supply port 19 and the AC / DC conversion unit 22 by the switching unit 24 when the received control information indicates charge permission. Thereby, the power supplied from the power supply port 19 is charged to the storage battery 10 via the AC / DC conversion unit 22.
  • the vehicle control unit 26 connects the feed port 19 and the DC / AC conversion unit 23 by the switching unit 24. Thereby, the electric power of the storage battery 10 is supplied to the feed port 19 via the DC / AC conversion unit 23.
  • the power supply to the on-vehicle devices such as the electric motor 18 and the car navigation system 31 is stopped.
  • the switch 27 provided in the middle of the power line 10b is opened, that is, disconnected, and the storage battery 10 transfers electric power from the storage battery 10 to the electric motor 18 and various in-vehicle devices. Stop the supply.
  • the switch 27 is closed, that is, connected, and power is supplied from the storage battery 10 to on-vehicle devices such as the electric motor 18 and the car navigation system 31.
  • the power line 10 a is a feed path from the on-board charging device 21 to the storage battery 10.
  • the remaining amount information of the storage battery 10 of the vehicle 6 is notified to the power supply device 3 so that the resident can accurately grasp the remaining amount of the storage battery 10.
  • the control information transmitted from the power supply device 3 via the second power line communication unit 25 is To receive.
  • the vehicle 6 supplies the power of the storage battery 10 to the power supply device 3 of the house 2 and detects the remaining battery level of the storage battery 10 by the battery remaining amount detection unit 29.
  • Information on the remaining amount of the storage battery 10 is transmitted to the power supply device 3 via the second power line communication unit 25 based on the detected battery remaining amount.
  • the power supply device 3 notifies the display device 9 of the received remaining amount information, and causes the display device 9 to display the remaining amount of the storage battery 10.
  • the resident can know how long the electric power of the vehicle 6 can be used by looking at the remaining amount information displayed on the display device 9, and the resident is using it when the remaining power of the storage battery 10 is small. Power saving measures such as reducing the number of electrical devices can be performed. Further, displaying the remaining amount information of the electric power of the vehicle 6 has an effect of prompting the charging of the vehicle 6, and also has an effect of enhancing the awareness of crisis management such as a disaster. Thereby, a resident can grasp the battery residual quantity of storage battery 10 correctly, and can raise the sense of confidence as backup at the time of a power failure.
  • the battery remaining amount detection unit 29 detects the output voltage of the storage battery 10 to detect the battery remaining amount.
  • the monitor 20 displays remaining amount information obtained from the conversion table 30 a preset and registered in the storage unit 30, that is, the remaining time that can be used when the storage battery 10 fails. By displaying in this manner, the remaining amount can be intuitively grasped, and a sense of security can be obtained, and a sense of trust is enhanced. Note that time information may be displayed on the car navigation system 31.
  • the power used on average in the house 2 is defined as the power setting amount, and the remaining time information corresponding to the battery remaining amount is recorded based on the power setting amount. For example, when the power consumption setting amount used in the house 2 is 2 kWh and the remaining battery capacity is a detected value corresponding to 50 kWh (for example, the detected value is a voltage value), the conversion table 30a is 25 hours similarly The remaining usable time is recorded as remaining amount information such as the remaining amount of 40 kWh for 20 hours and the remaining amount of 20 kWh for 10 hours.
  • the conversion table 30 a may store remaining amount information for a plurality of power consumption setting amounts.
  • the remaining time corresponding to the remaining battery capacity of each of the used power setting amounts of 1 kWh, 2 kWh, 3 kWh and 4 kWh may be recorded.
  • one of the plurality of power consumption setting amounts can be selected in accordance with the power consumption of each house 2, and can be set and registered in advance in the vehicle 6 according to the power consumption of the house 2.
  • the reliability can be enhanced by increasing the accuracy of the remaining battery time.
  • the vehicle control unit 26 may interpolate a numerical value (for example, a numerical value in an hour unit) obtained from the conversion table 30a to calculate time information in a minute unit.
  • FIG. 7 is a flow chart for explaining the operation of the power supply device 3 of the power failure backup system 1 according to the embodiment of the present invention.
  • the power supply device 3 detects the voltage of the power cable 8a by the power failure detection unit 13 and detects a power failure (S100).
  • the power supply control unit 15 of the power supply device 3 detects that there is a power failure (S102)
  • the control information of the power supply request is transmitted to the vehicle 6 via the power line 5 using the first power line communication unit 14 (S104). If there is no response from the vehicle 6 (S106), it is determined that the vehicle 6 is not connected, and the process returns to (S100). That is, in the house 2, the power supply from the vehicle 6 can not be received, and a power failure state occurs.
  • the power supply control unit 15 controls information for canceling the power supply request to the vehicle 6, ie normal charging.
  • the control information of permission is transmitted (S110).
  • the power supply control unit 15 of the power supply device 3 notifies the display device 9 of the power shortage of the vehicle 6, and the display device 9 displays a message such as "The vehicle can not be used because of the power shortage" (S112) ), Return to S100.
  • the power control unit 15 disconnects the power cable 8a and the distribution board 12 by the connection unit 11 (S114) ). Thereby, even if the power failure is canceled and the power from the commercial power supply is supplied, the collision between the power of the vehicle 6 and the power of the commercial power is avoided.
  • the power supply control unit 15 of the power supply device 3 receives supply of power from the vehicle 6, and supplies power to the light 2a, the television 2b and the air conditioner 2c in the house. Furthermore, the power supply control unit 15 of the power supply device 3 receives the remaining amount information of the storage battery 10 from the vehicle 6 using the first power line communication unit 14, notifies the display device 9 of the remaining amount information (S116). The power supply from the vehicle 6 to the power supply device 3 is repeatedly performed until the power failure of the commercial power supply is canceled (S118, S120).
  • the power supply control unit 15 of the power supply device 3 transmits control information for canceling the power supply request to the vehicle 6 using the first power line communication unit 14 (S122). After responding to the request cancellation, the power cable 8a and the distribution board 12 are connected again by the connection unit 11 (S124). Then, the process returns to (S100) again to detect a power failure. Note that the power supply device 3 supplies power to the vehicle 6 during a power failure.
  • the power supply device 3 supplies power to the electric device using the power of the storage battery 10 of the vehicle 6 when the home 2 fails. Further, the power supply device 3 receives the remaining amount information of the storage battery 10 from the vehicle 6 and causes the display device 9 to display the information.
  • FIG. 8 is a flow chart for explaining the operation of the vehicle 6 of the power failure backup system 1 according to the embodiment of the present invention.
  • the vehicle 6 detects the connection of the power plug of the power line 5 to the power supply port 19 by the connection detection unit 28 (S200).
  • the vehicle control unit 26 When the power plug is connected to the power supply port 19 of the vehicle 6 (S202), the vehicle control unit 26 receives the control information transmitted from the power supply device 3 via the second power line communication unit 25 and returns the reception completion (S204).
  • the vehicle control unit 26 of the vehicle 6 connects the power supply port 19 and the AC / DC conversion unit 22 by the switching unit 24 (S208).
  • the storage battery 10 is charged via the AC / DC conversion unit 22 (S210).
  • the vehicle control unit 26 of the vehicle 6 detects the battery remaining amount of the storage battery 10 by the battery remaining amount detection unit 29 (S212). In the vehicle 6, when the battery remaining amount is insufficient (S214), the power supply port 19 and the AC / DC conversion unit 22 are connected by the switching unit 24 to be charged (S216). Then, the vehicle 6 notifies the power supply device 3 of the shortage of the remaining amount of the storage battery 10 (S218).
  • the vehicle control unit 26 of the vehicle 6 has a battery remaining amount equal to or higher than a predetermined value (for example, a standard remaining amount capable of traveling about 20 km by the vehicle 6) and power can be supplied (S214).
  • a predetermined value for example, a standard remaining amount capable of traveling about 20 km by the vehicle 6) and power can be supplied (S214).
  • 19 and the DC / AC conversion unit 23 are connected by the switching unit 24, and the power of the storage battery 10 is supplied to the feed port 19 via the DC / AC conversion unit 23 (S220).
  • the vehicle 6 detects the battery remaining amount of the storage battery 10, and notifies the power source device 3 of the remaining amount information of the storage battery 10 (S222).
  • the vehicle 6 supplies power to the power supply device 3 through the power line 5 of the power plug connected to the power supply port 19 at the time of a power failure.
  • the vehicle 6 receives the control information transmitted from the power supply device 3 (S224), and repeatedly executes (S222) to (S226) until the power supply request is cancelled
  • the vehicle control unit 26 of the vehicle 6 connects the power supply port 19 and the AC / DC conversion unit 22 by the switching unit 24 and sets the power supply state (S228). Then, the process returns to (S200), and (S200) to (S228) are repeatedly executed.
  • FIG. 9 is a flow chart for explaining the display operation of the remaining battery level of the vehicle 6 in the power failure backup system 1 according to the embodiment of the present invention.
  • the vehicle 6 detects that the vehicle is starting from the rotational position after the insertion of the vehicle key (S300).
  • the battery remaining amount detection unit 29 detects the battery remaining amount (S304).
  • the vehicle 6 refers to the conversion table 30a of the storage unit 30 according to the detected battery remaining amount, and acquires the remaining time available in the house 2 at the time of a power failure as remaining amount information (S306). Then, the remaining amount information is displayed on the monitor 20 provided on the front side of the driver's seat (S308). Thereby, the driver can always check the remaining amount information of the storage battery 10 on the monitor 20 during driving. Here, it is assumed that the driver sets and registers the amount of used power used in the house 2 in advance in the vehicle 6.
  • FIG. 10 is an explanatory view showing a display example of the battery remaining amount of the vehicle 6 in the power failure backup system 1 according to the embodiment of the present invention.
  • the display area 20b of the display panel 20a of the monitor 20 displays, for example, "Power can be supplied to the house for ⁇ hours".
  • FIG. 11 is an explanatory view showing another display example of the battery remaining amount of the vehicle 6 in the power failure backup system 1 according to the embodiment of the present invention.
  • the monitor 20 may be provided with a dedicated area 20c, and the remaining amount may be reported by the remaining battery level meter 20d which is displayed over time.
  • it is not limited to a display message.
  • a speaker 20e may be provided in the dedicated area 20c, and voice notification may be given such as "power can be supplied to the house for ⁇ hours".
  • voice notification may be given such as "power can be supplied to the house for ⁇ hours".
  • the power supply device 3 is a power failure that detects a power failure of the power used in the house 2 Control information for controlling the vehicle 6 based on the detection result of the power failure of the detection unit 13, the first power line communication unit 14 communicating with the power line 5, and the power failure detection unit 13 via the first power line communication unit 14 And the power supply control unit 15 for transmitting the electric power, and the vehicle 6 includes the storage battery 10 for storing the power supplied to the power supply port 19 of the vehicle main body 6a via the power line 5, and the wheels 17 with the power stored in the storage battery 10.
  • the vehicle control unit 26 for transmitting the remaining amount information of the storage battery 10 detected by the battery remaining amount detection unit 29 via the second power line communication unit 25. 3 transmits control information to the vehicle 6, receives power supply from the vehicle 6 via the power line 5, and can receive remaining amount information of the storage battery 10 of the vehicle 6.
  • the resident can know how many hours the power of the vehicle 6 can be used by displaying the remaining amount information of the storage battery 10 of the vehicle 6 received by the display device 9, and the remaining power of the storage battery 10 is When the number is small, it is possible to save electricity by reducing the number of electric devices used.
  • the storage battery 10 for storing the power supplied to the power supply port 19 of the vehicle main body 6a and the wheels 17 with the power stored in the storage battery 10 are used.
  • the electric motor 18 to be rotated is provided, and the remaining amount of the storage battery 10 detected by the battery remaining amount detection unit 29 for detecting the remaining amount of the storage battery 10 and the battery remaining amount detection unit 29 can be used at the time of a power failure.
  • the monitor 20 displays the remaining amount information converted into time
  • the driver of the vehicle 6 can accurately grasp the remaining amount of the storage battery 10 which can be used at the time of the power failure by the monitor 20, and the remaining amount at the time of the power failure By displaying in time, it is possible to confirm intuitively, and has an effect of prompting charging of storage battery 10.
  • the sense of security when using the vehicle 6 as a backup power supply at the time of a power failure can be enhanced, and the reliability can be enhanced.
  • FIG. 12 is a block diagram showing a configuration of a power supply 300 that can be used instead of the above-described power supply 3 in the power failure backup system 1. Note that, in FIG. 12, the same reference numerals as in FIG. 2 are given to parts that are common to the power supply device 3 shown in FIG.
  • the power supply device 300 connects the power cable 8 a and the distribution board 12 via the connection portion 11.
  • the power distribution board 12 distributes power, and the distributed power is supplied to each electrical device in the house through the circuit breaker 12a.
  • the circuit breaker 12a is a device that automatically shuts off the circuit when an abnormal current flows.
  • connection unit 11 connects or opens the power supply cable 8 a to which the power of the commercial power is supplied and the distribution board 12. When the connection part 11 is opened, the power supply in the house is released from the power supply cable 8a.
  • the power supply device 300 includes the power supply unit 3a, and includes the small-capacity storage battery 3b capable of charging the power supply unit 3a with electric power.
  • the storage battery 3b is charged at the time of non-power failure, and supplies power to each circuit at the time of power failure.
  • the power supply device 300 can operate even at the time of a power failure.
  • the power supply device 300 automatically backs up power from the vehicle 600 (FIG. 14) at the time of a power failure. That is, power supply apparatus 300 includes a power failure detection unit 13 that detects a power failure of power used in house 2, a first power line communication unit 14 that communicates with vehicle 600 using power line 5, and a power failure of power failure detection unit 13.
  • the power supply control unit 15 transmits control information for controlling the vehicle 600 through the first power line communication unit 14 based on the detection result of the above, and transmits control information to the vehicle 600 at the time of a power failure.
  • Vehicle 600 controls input / output of storage battery 10 based on the received control information. The configuration of the vehicle 600 will be described later.
  • the power control unit 15 disconnects the connection unit 11 and disconnects the distribution board 12 from the power cable 8 a. After disconnecting the distribution board 12 from the power cable 8 a, the power control unit 15 transmits control information to the vehicle 600 and causes the vehicle 600 to supply power to the distribution board 12.
  • the power supply cable 8a By disconnecting the power supply cable 8a from the distribution board 12, even if the power supply of the vehicle 600 is supplied with power in the power supply apparatus 300, even if the blackout of the commercial power supply is canceled, the power of the commercial power supply collides with the power of the vehicle 600. Avoid fires and the like due to collisions. Thereby, the safety of the power supply device 300 is enhanced.
  • the power supply control unit 15 controls the power conversion unit 400 connected in the middle of the power line 5 to convert the power of the power line 5 into direct current or alternating current, that is, from alternating current to direct current during charging, and from direct current to alternating current during power failure. Do. Details of the power conversion unit 400 will be described later.
  • the power supply device 300 also includes a timer 16 which is a time counting unit that counts time.
  • the power supply control unit 15 counts time by the timer 16 while the power failure detection unit 13 detects a power failure, and determines that a power failure occurs when the counted time is equal to or longer than a predetermined time.
  • the predetermined time is set to 0.5 seconds, and the blackout backup system 1 does not operate even when the blackout occurs only momentarily (less than 0.5 seconds) due to the occurrence of lightning strike. Thereby, the stability and reliability of the blackout backup system 1 are improved.
  • the remaining amount information of the power notified from the vehicle 600 via the power supply device 300 is displayed on the display device 9.
  • FIG. 13 is a block diagram showing a configuration of power converter 400 of power supply apparatus 300 in power failure backup system 1 according to the embodiment of the present invention.
  • the power conversion unit 400 is connected to the middle of the power line 5 and converts an AC power to an DC power, and an AC / DC conversion unit 4 a converts the power from DC power to an AC power. And a selection unit 4c for selecting one of the AC / DC conversion unit 4a and the DC / AC conversion unit 4b.
  • the power supply control unit 15 selects the AC / DC conversion unit 4a when power is supplied to the vehicle 600 at the time of charging (when the control information indicates permission for charging the vehicle 600), and power is supplied from the vehicle 600 at the time of power failure.
  • the selection unit 4c is controlled to select the DC / AC conversion unit 4b.
  • the power conversion unit 400 converts an alternating current (e.g., voltage of 100 to 200 volts) electric power into a direct current (e.g., about 300 volts for electric motor use) or a voltage for use for in-vehicle devices.
  • the converted electric power (direct current) is output to the vehicle 600 through the power line 5.
  • power conversion unit 400 converts direct current (for example, voltage 12 volts to 14 volts or 300 volts) supplied from vehicle 600 at the time of a power failure into alternating current (for example, voltage 100 volts to 200 volts) power. It is supplied to each electric device in the house through the board 12.
  • the capacitor 4d is a bypass element for passing high frequency of power line communication. Therefore, even when power conversion unit 400 is provided in the middle of power line 5, the high frequency of power line communication can pass, and communication can be performed between power supply device 300 and vehicle 600.
  • FIG. 14 is a block diagram showing a configuration of a vehicle 600 that can be used instead of the above-described vehicle 6 in the power failure backup system 1.
  • the same reference numerals are given to parts common to FIG. 5.
  • vehicle control unit 26 of vehicle 600 receives control information from power supply apparatus 300 via second power line communication unit 25, The switching unit 24 is controlled based on the received control information.
  • vehicle control unit 26 connects power supply port 19 and the input terminal of storage battery 10 by switching section 24, and supplies power supplied to power supply port 19.
  • the storage battery 10 is charged.
  • the storage battery 10 internally boosts the charged power of approximately 300 volts, for example, to a voltage of 500 volts to 700 volts, and outputs the boosted voltage to the electric motor 18.
  • the vehicle control unit 26 connects the feed port 19 and the output terminal of the storage battery 10 by the switching unit 24 and supplies the power of the storage battery 10 to the feed port 19. Supply. Since the power supply plug of the power line 5 is connected to the power supply port 19, power is supplied to the power supply apparatus 300 side.
  • the power supply to the on-vehicle devices such as the electric motor 18 and the car navigation system 31 is stopped.
  • the switch 27 provided in the middle of the power line 10b is opened, that is, disconnected, and the storage battery 10 transfers electric power from the storage battery 10 to the electric motor 18 and various in-vehicle devices. Stop the supply.
  • the switch 27 is closed, i.e., connected, and power is supplied from the storage battery 10 to on-vehicle devices such as the electric motor 18 and the car navigation system 31.
  • Power line 10 a is a feed path from switching unit 24 to storage battery 10.
  • the power supply device 300 is notified of the remaining amount information of the storage battery 10 of the vehicle 600 so that the resident can accurately grasp the remaining amount of the storage battery 10.
  • vehicle 600 detects that the power supply plug of power line 5 is connected to power supply port 19 by connection detection unit 28, control information transmitted from power supply apparatus 300 via second power line communication unit 25 is detected. To receive. Then, when the received control information is a power supply request, vehicle 600 supplies the power of storage battery 10 to power supply device 300 of house 2 and detects the remaining battery capacity of storage battery 10 by battery remaining power detection unit 29, Information on the remaining amount of the storage battery 10 is transmitted to the power supply device 300 via the second power line communication unit 25 based on the detected battery remaining amount. The power supply device 300 notifies the display device 9 of the received remaining amount information, and causes the display device 9 to display the remaining amount of the storage battery 10.
  • the resident can see how much time the power of the vehicle 600 can be used by looking at the remaining amount information displayed on the display device 9, and the resident is using it when the remaining power of the storage battery 10 is small. Power saving measures such as reducing the number of electrical devices can be performed.
  • displaying the remaining amount information of the power of the vehicle 600 has an effect of prompting the charging of the vehicle 600, and also has an effect of enhancing awareness of crisis management such as a disaster. Thereby, a resident can grasp the battery residual quantity of storage battery 10 correctly, and can raise the sense of confidence as backup at the time of a power failure.
  • the battery remaining amount detection unit 29 detects the output voltage of the storage battery 10 to detect the battery remaining amount.
  • the monitor 20 displays remaining amount information obtained from the conversion table 30 a preset and registered in the storage unit 30, that is, the remaining time that can be used when the storage battery 10 fails. By displaying in this manner, the remaining amount can be intuitively grasped, and a sense of security can be obtained, and a sense of trust is enhanced. Note that time information may be displayed on the car navigation system 22.
  • the power used on average in the house 2 is defined as the power setting amount, and the remaining time information corresponding to the battery remaining amount is recorded based on the power setting amount. For example, when the power consumption setting amount used in the house 2 is 2 kWh and the remaining battery capacity is a detected value corresponding to 50 kWh (for example, the detected value is a voltage value), the conversion table 30a is 25 hours similarly The remaining usable time is recorded as remaining amount information such as the remaining amount of 40 kWh for 20 hours and the remaining amount of 20 kWh for 10 hours.
  • the conversion table 30 a may store remaining amount information for a plurality of power consumption setting amounts.
  • the remaining time corresponding to the remaining battery capacity of each of the used power setting amounts of 1 kWh, 2 kWh, 3 kWh and 4 kWh may be recorded.
  • one of the plurality of power consumption setting amounts can be selected in accordance with the power consumption of each house 2, and can be set and registered in advance in the vehicle 600 according to the power consumption of the house 2.
  • the reliability can be enhanced by increasing the accuracy of the remaining battery time.
  • the vehicle control unit 26 may interpolate a numerical value (for example, a numerical value in an hour unit) obtained from the conversion table 30a to calculate time information in a minute unit.
  • FIG. 15 is a block diagram of the power failure backup system 1.
  • the blackout backup system 1 includes a charging device 1002 and a vehicle 6 (600) connected to the charging device 1002 via the power line 5.
  • the charging device 1002 is installed outside a general house and connected to a power supply 1003a in the house. Thus, power is supplied from the power supply 1003a in the house to the charging device 1002, and the charging device 1002 supplies the supplied power to the vehicle 6 (600). Thereby, in the blackout backup system 1, power is supplied from the charging device 1002 to the vehicle 6 (600) through the power line 5, and the storage battery 10 of the vehicle 6 (600) is charged with power.
  • FIG. 15 shows an example in which the power supply device 3 (300) or the like shown in FIG. 1 or 12 is stored in the charging device 1002.
  • storage battery 10 and electric motor 18 of a wheel drive unit for rotating wheels 17 are mounted on vehicle main body 1004a, and electric motor 18 using charging power of storage battery 10 Drive an electric car.
  • the electric vehicle charges the storage battery 10 with the power supplied via the power line 5.
  • the storage battery 10 supplies power to the engine control unit 1006, the electric motor 18, the car navigation system 31 and the like via the power line 1016.
  • Power line 1016 is also used as a communication line, and storage battery 10, engine control unit 1006, electric motor 18, and car navigation system 31 perform power line communication via power line 1016.
  • the information for performing power line communication includes, for example, battery information such as the remaining amount of the storage battery 10, the usage period, the number of times of charging, the usage period of the electric motor 18 of the vehicle drive unit, motor information such as the winding temperature of the electric motor 18. Then, using these pieces of information, for example, the engine control unit 1006 controls the rotational speed, acceleration, and the like of the electric motor 18 in accordance with the battery remaining amount of the storage battery 10 and the winding temperature of the electric motor 18. Further, the car navigation system 31 displays information on the remaining amount of the battery of the storage battery 10 obtained through the power line 1016. The display information of the remaining battery amount has an effect of prompting the driver to charge the storage battery 10.
  • the vehicle 6 (600) may be communicated with an external information device (for example, a personal computer or the like installed in a maintenance shop of a dealer of the vehicle 6 (600)) through a power line.
  • an external information device for example, a personal computer or the like installed in a maintenance shop of a dealer of the vehicle 6 (600)
  • the storage battery 10 and the vehicle drive unit of the vehicle 6 (600) transmit the above-described battery information and motor information as maintenance information to an external information device via the power line 1016.
  • the external information device can easily acquire the part replacement time of the storage battery 10 and the electric motor 18 of the vehicle 6 (600), so that the deterioration degree is managed to notify the part replacement time or the deteriorated part is replaced immediately. You can take prompt action.
  • power line 1016 and power line 5 are used as communication lines.
  • the main parts of the vehicle 6 (600), that is, the storage battery 10, the engine control unit 1006, the electric motor 18 and the car navigation system 31 which are engines are concentrated forward with respect to the traveling direction of the vehicle 6 (600).
  • the power line 5 needs to be routed to wire from the feed port 19 to each main part in the vehicle body 1004a.
  • power feed port 19 is provided only on one of both side surfaces of vehicle body 1004a, it is necessary to draw power line 5 of charging device 1002 depending on the direction when vehicle 6 (600) is stopped. It was necessary to make the power line 5 longer. For this reason, it becomes easy to generate a transmission error, when communicating using the power line 5, such as noise becoming easy to be superimposed on the power line 5, for example.
  • the power supply ports 19 are provided on both front sides of the vehicle main body 1004a.
  • the feed port 19 can be brought close to the storage battery 10 and the electric motor 18, and the wiring length of the power line 5 in the vehicle body 1004a can be shortened. Further, by providing the feed ports 19 on both side surfaces of the vehicle body 1004a, power can be supplied from any direction on both side surfaces of the vehicle body 1004a, and the vehicle 6 (600) is directed to the external charging device 1002 whichever direction. Even when turning in the direction and stopping, the power supply port 19 of the vehicle 6 (600) and the charging device 1002 can be connected without pulling around the power line 5. Thus, the length of the power line related to communication can be shortened, noise superimposed on the power line can be suppressed, and the occurrence of a communication error can be suppressed.
  • the power supply port 19 is provided in the main body of the rear view mirror 1007 on the both sides in front of the traveling direction of the vehicle main body 1004a.
  • FIG. 16 is a front view of a vehicle 6 (600) of the power failure backup system 1 according to the embodiment of this invention. As shown in FIG. 16, the vehicle 6 (600) is provided with rearview mirrors 1007 on both sides in front of the traveling direction of the vehicle main body 1004a.
  • FIG. 17 is a block diagram of the rearview mirror 1007 of the vehicle 6 (600) in the power failure backup system 1 according to the embodiment of the present invention
  • FIG. 18 is a state in which the mirror portion 1008 of the rearview mirror 1007 shown in FIG. FIG.
  • the rearview mirror 1007 is provided with an openable / closable mirror portion 1008, and two power supply ports 19 are provided on the rear side of the mirror portion 1008, that is, in the rearview mirror main body 1007a.
  • the feed port 19 is exposed when the mirror unit 1008 is opened. That is, when power is supplied (charged) to the vehicle 6 (600), the mirror unit 1008 is opened as shown in FIG. 18, and when the battery is not charged, the mirror unit 1008 is closed as shown in FIG.
  • the mirror unit 1008 not only checks the rear of the vehicle 6 (600), but also prevents exposure when the two feed ports 19 are not in use, and protects the feed port 19 from rain and the like.
  • the feed port 19 is disposed obliquely downward on the back side (inside) from the surface of the mirror portion 1008, and it is difficult for rain or the like to enter the feed port 19 during charging. As a result, an accident such as a short circuit of the power due to a short circuit or the like is prevented and safety is enhanced.
  • the mirror unit 1008 of the rearview mirror 1007 is attached to the rearview mirror main body 1007a so as to be openable and closable.
  • Stop portions 1008b and 1008c for fixing the mirror portion 1008 are provided on the rear view mirror main body 1007a and the mirror back surface 1008a, respectively, and the lock portions 1008b and 1008c can be unlocked to rotate the mirror portion 1008 from the upper side.
  • the mirror portion 1008 is opened, the two power supply ports 19 are exposed.
  • the power plug of the power line 5 from the charging device 1002 is inserted (connected) to one of the two power supply ports 19 to supply power.
  • the two feed ports 19 have different supply currents at the time of charging, and can charge the feed port 19 with the larger supply current at high speed.
  • one of the two power supply ports 19 is selected in accordance with the capability of the supply current of the charging device 1002. That is, since charging device 1002 installed in a feeding station or the like can use a device having a short charging time for business, that is, a device with a large supply current at the time of charging, one with a large supply current (a rapid supply port in FIG. ) Power supply port 19 is selected.
  • the power supply port 19 of the one which suppresses the supply current is selected.
  • FIG. 19 is a cross-sectional view of the rearview mirror 1007 of the vehicle 6 (600) in the power failure backup system 1 according to the embodiment of the present invention.
  • the feed port 19 is provided at a position deeper than the surface of the mirror portion 1008, and the back side of the feed port 19 is higher than the entrance side, that is, inclined downward from horizontal. This can prevent rain and the like from directly entering the power supply port 19.
  • vehicle 6 (600) includes storage battery 10 for storing power supplied to power supply port 19 of vehicle main body 1004a, and storage battery 10 And the wheel drive unit for rotating the wheel by the electric power stored in the vehicle, and the power supply port 19 is provided on both sides in front of the traveling direction of the vehicle main body 1004a. 10 and the wheel drive unit can be brought close to each other, and the wiring length of the power line 5 in the vehicle body 1004a can be shortened. Further, by providing the feed ports 19 on both side surfaces of the vehicle body 1004a, power can be supplied from any direction on both side surfaces of the vehicle body 1004a, and the vehicle 6 (600) is directed to the external charging device 1002 whichever direction.
  • the power supply port 19 of the vehicle 6 (600) and the charging device 1002 can be connected without pulling around the power line 5.
  • the length of the power line related to communication can be shortened, noise superimposed on the power line can be suppressed, and the occurrence of a communication error can be suppressed.
  • FIG. 20 is a block diagram showing another example of the rearview mirror 1007 of the vehicle 6 (600) in the power failure backup system 1 according to the embodiment of the present invention.
  • the lower side of the mirror unit 1011 of the rear view mirror 1010 may be freely opened and closed.
  • stoppers 1011 b and 1011 c are provided on the lower side of the rear surface of the rear view mirror main body 1010 a and the mirror unit 1008.
  • the mirror unit 1011 may be automatically opened and closed by electric operation.
  • FIG. 21 is an explanatory diagram of a direction indicator 1012 of the rearview mirror 1007 of the vehicle 6 (600) in the power failure backup system 1 according to the embodiment of the present invention.
  • the rearview mirror body 1007a is provided with a direction indicator 1012 for informing the other motor vehicle of the traveling direction of the vehicle 6 (600), and the charging state of the direction indicator 1012 is made different when charging. It may be possible to know that charging is in progress and charging completion.
  • the direction indicator 1012 may be provided with a red light emitting diode and a yellow light emitting diode, the red light emitting diode may be turned on during charging, and the yellow light emitting diode may be turned on when charging is completed. .
  • the lighting state may be made different by blinking of the direction indicator 1012.
  • the number of blinks of the direction indicator 1012 may be made different such that interval display in which the direction indicator 1012 blinks once during charging, and interval display in which two blinks each time continuously is performed when charging is completed. . Either configuration can distinguish between charging and charging completion.
  • the present invention is not limited to this.
  • the present invention can be applied to a hybrid vehicle that uses both an electric motor and an internal combustion engine.
  • the blackout backup system includes a power supply device in a house and a vehicle connected to the power supply device via the power line so as to be freely connected and disconnected.
  • a power supply control unit for transmitting via a power line communication unit, and a vehicle rotates a wheel with a storage battery for storing power supplied to a power supply port of a vehicle body via a power line, and power stored in the storage battery.
  • Power of the storage battery based on the control information received by the second power line communication unit and the second power line communication unit communicating with the power line.
  • Control the input and output of The power supply apparatus transmits control information to the vehicle at the time of a power failure since the configuration includes the vehicle control unit that notifies the remaining amount information of the storage battery detected by the battery remaining amount detection unit via the second power line communication unit.
  • the vehicle according to the present invention displays the remaining charge information detecting unit for detecting the remaining charge of the storage battery, and the remaining charge information obtained by converting the remaining charge of the storage battery detected by the battery remaining detection unit into usable time at power failure. Since the display unit is provided, the driver of the vehicle can know the remaining amount of the storage battery in time by the display portion, and can easily grasp the remaining amount of the storage battery capable of backing up the house power at the time of a power failure be able to.

Abstract

 停電時に車両の電力を用いる場合であっても、停電時のバックアップとしての信頼性を高めることができる電源装置および車両。停電バックアップシステム(1)は、住宅(2)内の電源装置(3)と、この電源装置(3)と電力線(5)を介して離接自在に接続される車両(6)とを備え、電源装置(3)は、停電時に車両(6)を制御する制御情報を電力線(5)を介して送信し、車両(6)は受信した制御情報に従って蓄電池(10)の電力を電源装置(3)に電力線(5)を介して供給すると共に、蓄電池(10)の残量情報を電源装置(3)に通知する。また、電源装置(3)は、蓄電池(10)の電力を住宅(2)内の各電気機器、例えば、電灯(2a)、テレビ(2b)、エアコン(2c)等に供給する。表示装置(9)は蓄電池(10)の残量情報を表示する。

Description

電源装置および車両
 本発明は、住宅における停電時の電力供給を実現する電源装置および車両に関する。
 台風や地震等の自然災害が発生し停電により住宅の電源が絶たれた場合、住民は住宅内の電灯、テレビまたは電話等の家庭用の電気機器を使用できなくなる。このため、停電時に電話等の最小限の電気機器に電力を供給する停電バックアップシステムが提案されている。この停電バックアップシステムでは、例えば、停電時に宅外の内燃機関式自動車の車両本体に備えた発電装置から電力を供給していた(例えば、特許文献1参照)。内燃機関式自動車は、ガソリン等の燃料で動作するエンジンを搭載している。
特開平2-142329号公報
 従来の停電バックアップシステムでは、内燃機関式自動車のエンジンを起動させ、このエンジンの回転により発電する発電装置から電力を供給していた。このため、住居者は内燃機関式自動車の燃料メータを見て燃料の残量を正確に把握でき、停電時のバックアップ電源として信頼性が高かった。
 ところで、環境にやさしい自動車として電気自動車が普及しつつある。この電気自動車では、車両本体に蓄電池を備え、この蓄電池の電力を用いて駆動装置であるモータを駆動し車輪を回転させる。この蓄電池は大容量であるため、バックアップ電源として利用することも考えられる。
 しかしながら、電気自動車は運転状態により蓄電池の消費量は大きく変動するため、内燃機関式自動車に比べて移動距離等から蓄電池の電力残量の予測が困難であった。このため、停電時に車両から電力を住宅に供給する場合に蓄電池の残量が不足していると、住宅に電力を供給できなくなると共に電気自動車も使用できなくなる等、停電時のバックアップ電源として信頼性が低いといった課題があった。
 そこで本発明は、停電時に車両の電力を用いる場合であっても、停電時のバックアップとしての信頼性を高めることを目的とする。
 この目的を達成するために、本発明の電源装置は、電力線を介して、電力供給が可能な車両と接続自在な電源装置であって、電力の停電を検出する停電検出部と、前記電力線を介して、通信を行う電力線通信部と、前記停電検出部の検出結果に基づいて、前記車両が行う電力供給を制御する制御情報を、前記電力線通信部を用いて前記車両へ送信する電源制御部と、を備えることを特徴とする。
 また本発明の車両は、電力線を介して、電源装置と接続自在な車両であって、前記電源装置から供給される電力を蓄電する蓄電部と、前記電力線を介して通信を行う電力線通信部と、前記電力線通信部を用いて受信した、前記車両から送信された制御情報に基づいて前記蓄電部の電力の入出力を制御する車両制御部と、を備えたことを特徴とする。
 本発明の電源装置は、電力線を介して、電力供給が可能な車両と接続自在な電源装置であって、電力の停電を検出する停電検出部と、前記電力線を介して、通信を行う電力線通信部と、前記停電検出部の検出結果に基づいて、前記車両が行う電力供給を制御する制御情報を、前記電力線通信部を用いて前記車両へ送信する電源制御部と、を備えるので、電源装置は、停電時に車両を制御する制御情報を電力線を介して送信し、車両から電力線を介して電力の供給が受けられると共に車両の蓄電池の残量情報を受信でき、例えば、住居者は表示装置等に受信した蓄電池の残量情報を表示することで、車両の電力を何時間使用できるかを知ることができ、蓄電池の電力残量が少ない場合には使用する電気機器を減らす等の節電対応ができる。これにより、停電時に車両の電力を用いる場合であっても、停電時のバックアップとしての信頼性を高めることができる。
 また本発明の車両は、電力線を介して、電源装置と接続自在な車両であって、前記電源装置から供給される電力を蓄電する蓄電部と、前記電力線を介して通信を行う電力線通信部と、前記電力線通信部を用いて受信した、前記車両から送信された制御情報に基づいて前記蓄電部の電力の入出力を制御する車両制御部と、を備えるので、停電時において、住宅等は、車両から電力の供給を受けることが可能になる。
本発明の実施の形態における停電バックアップシステムの概略構成図 同停電バックアップシステムの電源装置の構成を示すブロック図 同停電バックアップシステムにおける表示装置の表示例の説明図 同停電バックアップシステムの車両の概略構成図 同停電バックアップシステムの車両の構成を示すブロック図 同停電バックアップシステムにおける車両の車載充電装置の構成を示すブロック図 同停電バックアップシステムの電源装置の動作を説明するフローチャート 同停電バックアップシステムの車両の動作を説明するフローチャート 同停電バックアップシステムにおける車両の電池残量の表示動作を説明するフローチャート 同停電バックアップシステムにおける車両の電池残量の表示例を示す説明図 同停電バックアップシステムにおける車両の電池残量の他の表示例を示す説明図 同停電バックアップシステムにおける電源装置の構成を示すブロック図 同停電バックアップシステムにおける電源装置の電力変換部の構成を示すブロック図 同停電バックアップシステムにおける車両の構成を示すブロック図 本発明の実施の形態における停電バックアップシステムの概略構成図 車両の正面図 車両のバックミラーの構成図 図17に示したバックミラーのミラー部を開けた状態の構成図 車両のバックミラーの断面図 車両のバックミラーの他の実施例を示す構成図 車両のバックミラーの方向指示器の説明図 車両の電力線通信する機器の説明図
 以下、本発明の一実施の形態について図面を参照しながら説明する。なお、各図において同一または相当の部分には同一の符号を付して説明する。
 (実施の形態)
 まず、本実施の形態における停電バックアップシステムの概要について説明する。図1は、本発明の実施の形態における停電バックアップシステム1の概略構成図である。
 図1に示すように、住宅2内の電源装置3が電柱7の柱上部に設けられた変圧器8から宅内側に引き込んだ電源ケーブル8aと接続されている。これにより、電源装置3は電力会社から供給される商用電源の電力を利用でき、住宅2内の各電気機器、例えば、電灯2a、テレビ2b、エアコン2c等に電力を供給する。商用電源は電力損失を抑えるため高圧の交流で配電され、変圧器8により電圧を所定の電圧に変換、例えば、住宅2に電圧100ボルト~200ボルトの交流に変換して配電される。
 しかしながら、台風や地震等の自然災害が発生し停電により住宅2の電源が絶たれた場合、住民は図1に示す住宅2内の電灯2a、テレビ2bまたはエアコン2c等の電気機器を使用できなくなる。
 そこで停電バックアップシステム1では、住宅2内の電源装置3と、電源装置3と電力線5を介して離接自在に接続されると共に停電時に電力をバックアップする車両6とを備え、住宅2への電力供給がストップした場合に、車両6の電力を用いて電気機器に電力を供給する。
 車両6として電気自動車を用いる。電気自動車は、蓄電池10と車輪を回転させる車輪駆動部としての電気モータとを搭載し、蓄電池10の充電電力を用いてモータを駆動する。なお、車両6は電気自動車に限定されるものではない。例えば、内燃機関のエンジンと電気モータとを併用するハイブリッド自動車を使用するようにしても良い。
 車両6の蓄電池10は、発電装置のように起動させる必要もないため、停電時にすぐに電力の供給を行うことができる。これにより、災害発生直後、例えば夜中に住宅2の電源が突然絶たれた場合であっても、電灯2aへ直ぐに電力を供給できるので、住民は安全を確認しながら避難することができる。
 また、蓄電池10に充電されている電力量(例えば、20kWh~50kWh)は非常に大きいため、大災害時には、初期の災害復旧が開始されるまでの間、すなわち電力設備の安全確認がとれるまでの数日の間、住宅2内で使用される電力をバックアップすることができる。例えば、蓄電池10に充電されている電力量が48kWh、住宅2内の平均的な使用電力量が2kWhである場合、1日に8時間だけ電気機器を使用すると仮定すると、3日間、蓄電池10から住宅2内の各電気機器に電力を供給することができる。
 このように、本実施の形態の停電バックアップシステム1では、電源装置3と車両6とを電力線5を介して離接自在に接続し、停電時に車両6の蓄電池10を用いて住宅2内の電力をバックアップする。
 また、住宅2の外部に収納部4が設置され、収納部4には住宅2内の電源と接続されている電力線5が収納されている。住居者は収納部4から電源プラグ付の電力線5を取り出し、取り出された電力線5の電源プラグを車両6の給電口19に接続する。電源装置3と車両6とは電源プラグにより離接自在に接続できる。これにより、車両6を単独で使用できると共に、停電時に車両6の電力を住宅2へ供給(給電)することができる。
 また電源装置3は、車両6の充電と給電とを切り替えるための制御情報を車両6に送信し、車両6は受信された制御情報に基づいて蓄電池10の入出力を制御する。すなわち、電源装置3は、制御情報により車両6の充電または給電動作の切り替えを制御する。制御情報の詳細については後述する。
 また、表示装置9が電源装置3に接続されている。この表示装置9には、車両6から電源装置3を介して通知される蓄電池10の残量情報を表示する。なお、表示装置9には住宅2内の使用電力量を表示するようにしても良い。車両6の蓄電池10の残量情報を表示する表示例および残量情報の通知方法については後述する。
 次に、停電バックアップシステム1の電源装置3と車両6の具体的な構成について説明する。
 まず、停電バックアップシステム1の電源装置3の構成について説明する。図2は本発明の実施の形態における停電バックアップシステム1の電源装置3の構成を示すブロック図である。
 図2に示すように、電源装置3は電源ケーブル8aと分電盤12とを接続部11を介して接続する。分電盤12では電力が分配され、分配されたそれぞれの電力が遮断器12aを介して宅内の各電気機器に供給される。遮断器12aは異常電流が流れた場合に自動的に回路を遮断する装置である。
 接続部11は、商用電源の電力が供給される電源ケーブル8aと分電盤12とを接続または開放する。接続部11が開放された場合には、電源ケーブル8aから宅内の電源が開放される。接続部11の制御については後述する。
 また、電源装置3は電源部3aを備え、電源部3aに電力を充電できる小容量の蓄電池3bを有している。蓄電池3bは非停電時に充電され、停電時に各回路部に電力を供給する。これにより、電源装置3は停電時でも動作することができる。
 次に、電源装置3の全体構成が理解されたところで、電源装置3の特徴的な構成について説明する。
 図2に示すように、電源装置3は停電時に自動的に車両6から電力をバックアップするようにしている。すなわち、電源装置3は、住宅2内で使用される電力の停電を検出する停電検出部13と、電力線5を用いて車両6と通信する第1電力線通信部14と、停電検出部13の停電の検出結果に基づいて車両6を制御するための制御情報を第1電力線通信部14を介して送信する電源制御部15とを備え、停電時に車両6へ制御情報を送信する。車両6は受信した制御情報に基づいて蓄電池10の入出力を制御する。車両6の構成については後述する。
 また電源制御部15は、停電検出部13により停電が検出された場合、接続部11を非接続状態にし、電源ケーブル8aから分電盤12を切り離す。電源制御部15は、電源ケーブル8aから分電盤12を切り離した後、車両6に制御情報を送信し、車両6から分電盤12に電力を供給させる。電源ケーブル8aと分電盤12とを切り離すことにより、電源装置3内で車両6の電力を給電中に商用電源の停電が解除された場合でも、商用電源の電力と車両6の電力とが衝突するのを回避し、衝突による火災等の発生を防止する。これにより、電源装置3の安全性を高めている。
 また電源装置3は、時間を計数する時間計数部であるタイマー16を備えている。電源制御部15は、停電検出部13で停電が検出されている間、タイマー16により時間を計数し、計数された時間が所定の時間以上ある場合を停電と判断する。例えば、所定の時間を0.5秒とし、落雷の発生により瞬時(0.5秒未満)だけ停電した場合でも、停電バックアップシステム1が作動しないようにしている。これにより、停電バックアップシステム1の安定性と信頼性を向上させている。
 また、表示装置9には車両6から電源装置3を介して通知された電力の残量情報を表示する。なお、表示装置9は、電源装置3と一体に設けてもよいし、電源装置3と独立に設けても良い。
 図3は、本発明の実施の形態における停電バックアップシステム1における表示装置9の表示例の説明図である。図3に示すように、表示装置9は車両情報ボタン9aが押されると表示パネル9bに、例えば、「車両から電力を○○時間給電可能です」と表示する。表示装置9は、通知された蓄電池10の残量情報に基づき停電時に直感的に把握しやすいメッセージ、すなわち電力を使用できる時間に変換した残量情報のメッセージを表示する。なお、メッセージの更新間隔を所定の間隔、例えば、1分間隔で自動的に更新するようにしても良い。
 次に、停電バックアップシステム1の車両6の構成について説明する。図4は本発明の実施の形態における停電バックアップシステム1の車両6の構成を示す概略構成図である。
 図4に示すように、車両6は、給電口19に供給される電力を蓄電する蓄電池10と、蓄電池10に蓄電された電力により車輪17を回転させる車輪駆動部としての電気モータ18とを備えている。また、車両6は、蓄電池10に蓄電された電力を車載機器にも供給する。
 停電バックアップシステム1における車両6は、電源装置3(図1)の制御情報に基づいて蓄電池10の電力の入出力を制御する。これにより、車両6は蓄電池10の充電中であっても、住宅2の停電時には電力を供給(給電)することができる。
 次に、車両6の詳細な構成について説明する。図5は本発明の実施の形態における停電バックアップシステム1の車両6の構成を示すブロック図である。
 図5に示すように、車両6は、電源装置3から送信された制御情報が充電許可である場合、電源装置3から給電口19に供給される電力を車載充電装置21を介して蓄電池10に充電する。車載充電装置21は、充電時には給電口19に供給された交流(例えば、電圧100ボルト~200ボルト)の電力を直流(例えば、図5の電気モータ18用に使用する電圧として約300ボルトまたは車載機器用に使用する電圧として12ボルト~14ボルト)に変換し、変換された電力(直流)を蓄電池10に供給する。蓄電池10は、充電した約300ボルトの電力を、例えば電圧500ボルト~700ボルトに内部昇圧し、電気モータ18に出力する。
 一方、車両6は電源装置3から送信された制御情報が給電要求である場合、蓄電池10に蓄電されている電力を車載充電装置21を介して給電口19に供給する。給電口19には電力線5の電源プラグが接続されているので、電源装置3側に電力が供給される。車両6の蓄電池10からは直流の電力が出力されるため、車載充電装置21は、給電時には直流(例えば、電圧12ボルト~14ボルトまたは300ボルト)を交流(例えば、電圧100ボルト~200ボルト)の電力に変換して給電口19に給電する。
 次に、車載充電装置21の詳細について説明する。図6は本発明の実施の形態における停電バックアップシステム1における車両6の車載充電装置21の構成を示すブロック図である。
 図6に示すように、車載充電装置21は、電力を交流から直流に電力を変換するAC/DC変換部22と、電力を直流から交流に電力を変換するDC/AC変換部23と、AC/DC変換部22およびDC/AC変換部23のいずれか一方を給電口19と接続する切替部24と、電力線5を用いて通信する第2電力線通信部25とを備えている。
 切替部24は、車両制御部26により制御される。車両制御部26は、給電口19に電力線5の電源プラグが接続されると、電源装置3から第2電力線通信部25を介して制御情報を受信し、受信した制御情報に基づいて切替部24を制御する。
 車両制御部26は、受信された制御情報が充電許可である場合、給電口19とAC/DC変換部22とを切替部24により接続する。これにより、給電口19から供給される電力がAC/DC変換部22を介して蓄電池10に充電される。
 一方、車両制御部26は受信された制御情報が給電要求である場合、給電口19とDC/AC変換部23とを切替部24により接続する。これにより、蓄電池10の電力がDC/AC変換部23を介して給電口19に供給される。
 図5に戻り、車両6で充電を行う場合、電気モータ18やカーナビ31等の車載機器への電力供給を停止する。車両制御部26は、車両6を停止状態にする場合、電力線10bの途中に設けられたスイッチ27を開状態、すなわち非接続状態にし、蓄電池10から電気モータ18や各種の車載機器への電力の供給を停止する。一方、車両制御部26は車両6を始動状態にする場合、スイッチ27を閉状態、すなわち接続状態にし、蓄電池10から電気モータ18やカーナビ31等の車載機器に電力を供給する。電力線10aは、車載充電装置21から蓄電池10への給電路である。
 次に、停電バックアップシステム1の車両6の全体構成が理解されたところで、特徴的な構成について説明する。
 図1、図5に示すように、車両6では、すべての車載機器や電気モータ18が蓄電池10に蓄電された電力を用いて動作する。また、ブレーキ時に発生する回生電力を蓄電池10に充電する。このため、走行距離だけでなく、運転状態によって蓄電池10の電力消費量は大きく変動するので、移動距離からのみ蓄電池10の電力残量を予測することは困難である。このため、停電時に車両6から電力を住宅2に供給する場合に蓄電池10の電力残量が不足していると、住宅2に電力供給ができなくなると共に車両6も使用できなくなる等、停電時のバックアップシステムとしての信頼性が低くなる。
 そこで本実施の形態では、車両6の蓄電池10の残量情報を電源装置3に通知し、住居者が正確な蓄電池10の残量を把握できるようにした。
 具体的には、車両6は給電口19に電力線5の電源プラグが接続されたことを接続検出部28により検出すると、第2電力線通信部25を介して電源装置3から送信される制御情報を受信する。そして車両6は、受信された制御情報が給電要求である場合、蓄電池10の電力を住宅2の電源装置3に供給すると共に、電池残量検出部29で蓄電池10の電池残量を検出し、検出された電池残量に基づいて蓄電池10の残量情報を第2電力線通信部25を介して電源装置3に送信する。電源装置3側では、受信された残量情報を表示装置9に通知し、表示装置9で蓄電池10の残量を表示させる。
 住居者は表示装置9に表示された残量情報を見て車両6の電力を何時間使用できるかを知ることができ、住居者は蓄電池10の電力残量が少ない場合には使用している電気機器の数を減らす等の節電対応を行うことができる。また、車両6の電力の残量情報を表示することで、車両6の充電を促す効果があり、さらに災害等の危機管理意識を高める効果もある。これにより、住居者は、蓄電池10の電池残量を正確に把握でき、停電時のバックアップとしての信頼感を高めることができる。
 電池残量検出部29は、例えば、蓄電池10の出力電圧を検出して電池残量を検出する。
 またモニタ20は、記憶部30に予め設定登録された変換テーブル30aから得られた残量情報、すなわち、蓄電池10の停電時に使用できる残り時間を表示する。このように表示することで直感的に残量を把握でき、これにより安心感が得られ、信頼感が高まる。なお、カーナビ31に時間情報を表示させるようにしても良い。
 変換テーブル30aには、住宅2内で平均的に使用される電力を使用電力設定量と定義し、この使用電力設定量に基づいて電池残量に対応する残りの時間情報が記録される。例えば、住宅2で使用される使用電力設定量を2kWh、電池残量が50kWh相当の検出値(例えば、検出値は電圧値である)である場合、変換テーブル30aには25時間、同様に、残量が40kWhで20時間、残量が20kWhで10時間といったように、使用できる残りの時間が残量情報として記録されている。なお、変換テーブル30aに複数の使用電力設定量における残量情報を記憶するようにしても良い。例えば、1kWh、2kWh、3kWhおよび4kWhの使用電力設定量それぞれの電池残量に対応する残り時間を記録しても良い。これにより、複数の使用電力設定量の内、各住宅2の使用電力量に合わせて一つを選択でき、住宅2の使用電力に応じて車両6に予め設定登録できる。これにより、電池残量の時間の精度を上げることで、信頼性を高めることができる。また、車両制御部26で変換テーブル30aから得られる数値(例えば、1時間単位の数値)を補間し、分単位の時間情報を算出するようにしても良い。
 次に、停電バックアップシステム1の電源装置3と車両6の動作についてそれぞれ説明する。
 まず、停電バックアップシステム1の電源装置3側の動作について説明する。図7は本発明の実施の形態における停電バックアップシステム1の電源装置3の動作を説明するフローチャートである。
 図1、図2および図7に示すように、電源装置3は電源ケーブル8aの電圧を停電検出部13により検出し、停電を検出する(S100)。
 電源装置3の電源制御部15は、停電ありと検出すると(S102)、第1電力線通信部14を用いて、車両6へ電力線5を介して給電要求の制御情報を送信する(S104)。車両6から応答がなければ(S106)、車両6と接続されていないと判断し、(S100)に戻る。すなわち、住宅2内では車両6からの電力供給が受けられずに停電状態となる。
 一方、車両6から応答は得られたが(S106)、車両6が電力不足で給電できなければ(S108)、電源制御部15は、車両6に対する給電要求を解除する制御情報、すなわち通常の充電許可の制御情報を送信する(S110)。そして、電源装置3の電源制御部15は、表示装置9に車両6の電力不足を通知し、表示装置9では、例えば「車両は電力不足のため、使用できません」等のメッセージ表示を行い(S112)、S100に戻る。
 一方、車両6から応答があり(S106)、車両6から給電可能の応答があった場合(S108)、電源制御部15は、電源ケーブル8aと分電盤12とを接続部11により切り離す(S114)。これにより、停電が解除され商用電源の電力が供給された場合であっても、車両6の電力と商用電源の電力との衝突を回避する。
 次に、電源装置3の電源制御部15は、車両6から電力の供給を受け、宅内の電灯2a、テレビ2bおよびエアコン2cに電力を供給する。さらに、電源装置3の電源制御部15は、第1電力線通信部14を用いて車両6から蓄電池10の残量情報を受信し、表示装置9に通知し表示させる(S116)。なお、商用電源の停電が解除されるまで車両6から電源装置3への電力供給は繰り返し行われる(S118、S120)。
 商用電源の停電が解除されると(S120)、電源装置3の電源制御部15は、第1電力線通信部14を用いて車両6に給電要求を解除する制御情報を送信し(S122)、給電要求解除に対する応答があった後、電源ケーブル8aと分電盤12を接続部11により再び接続状態にする(S124)。そして、再び(S100)に戻り、停電を検出する。なお、非停電中は、電源装置3は車両6に電力を供給する。
 以上のように、停電バックアップシステム1では、電源装置3は住宅2が停電した場合に、車両6の蓄電池10の電力を用いて電気機器に電力を供給する。また、電源装置3は車両6から蓄電池10の残量情報を受信し、表示装置9に表示させる。
 次に、停電バックアップシステム1の車両6側の動作について説明する。図8は本発明の実施の形態における停電バックアップシステム1の車両6の動作を説明するフローチャートである。
 図1、図4、図5、図6および図8に示すように、車両6は、給電口19に電力線5の電源プラグの接続を接続検出部28により検出する(S200)。
 車両6は給電口19に電源プラグが接続されると(S202)、車両制御部26は、第2電力線通信部25を介して電源装置3から送信される制御情報を受信すると共に受信完了を返信する(S204)。
 車両6の車両制御部26は、受信した制御情報が充電許可である場合(S206)、給電口19とAC/DC変換部22とを切替部24により接続し(S208)、給電口19から供給される電力をAC/DC変換部22を介して蓄電池10に充電する(S210)。
 一方、車両6の車両制御部26は、制御情報が給電要求である場合(S206)、電池残量検出部29により蓄電池10の電池残量を検出する(S212)。車両6では電池残量が不足すると(S214)、給電口19とAC/DC変換部22とを切替部24により接続し、充電状態にする(S216)。そして、車両6は電源装置3に蓄電池10の残量不足を通知する(S218)。
 一方、車両6の車両制御部26は、電池残量が所定の値(例えば、車両6で約20kmの走行ができる標準的な残量値)以上あり給電可能であれば(S214)、給電口19とDC/AC変換部23とを切替部24により接続し、蓄電池10の電力をDC/AC変換部23を介して給電口19に供給する(S220)。また、車両6は蓄電池10の電池残量を検出し、電源装置3に蓄電池10の残量情報を通知する(S222)。このようにして、車両6は停電時に給電口19に接続されている電源プラグの電力線5を介して電源装置3に電力を供給する。車両6は電源装置3から送信される制御情報を受信し(S224)、給電要求が解除されるまで、(S222)~(S226)を繰り返し実行する。
 次に、車両6の車両制御部26は、給電要求が解除された場合(S226)、給電口19とAC/DC変換部22とを切替部24により接続し、充電状態にする(S228)。そして、(S200)に戻り、(S200)~(S228)を繰り返し実行する。
 次に、車両6の運転中に電池残量をモニタ20に表示させる表示動作について説明する。図9は、本発明の実施の形態における停電バックアップシステム1における車両6の電池残量の表示動作を説明するフローチャートである。
 図4、図5および図9に示すように、車両6は、車両キーの挿入後の回転位置から始動中であることを検出する(S300)。車両6は始動中の場合(S302)、電池残量検出部29で電池残量を検出する(S304)。
 車両6は、検出された電池残量に応じて記憶部30の変換テーブル30aを参照して、停電時に住宅2で使用できる残り時間を残量情報として取得する(S306)。そして、運転席の前側に設けられたモニタ20に残量情報を表示する(S308)。これにより、運転者は、運転中に蓄電池10の残量情報をモニタ20でいつでも確認できる。ここで、運転者は、住宅2で使用される使用電力設定量を車両6に予め設定登録するものとする。
 図10は本発明の実施の形態における停電バックアップシステム1における車両6の電池残量の表示例を示す説明図である。図10に示すように、モニタ20の表示パネル20aの表示エリア20bに、例えば、「住宅に電力を○○時間給電可能です」と表示する。
 図11は本発明の実施の形態における停電バックアップシステム1における車両6の電池残量の他の表示例を示す説明図である。図11に示すように、モニタ20に専用エリア20cを設け、時間で残量が表示されている電池残量メータ20dで報知するようにしても良い。なお、表示メッセージに限定されるものでない。例えば、専用エリア20cにスピーカ20eを設け、「住宅に電力を○○時間給電可能です」等と音声により知らせても良い。音声で報知することにより、運転中に視線を前方の道路から逸らすことがなくなるので、安全性を高めることができる。いずれの方法でも、停電時の正確な蓄電池10の残り時間を報知でき、安心感を持たせ、信頼感を高めることができる。
 以上のように本発明の実施の形態によれば、図1、図2、図4、図5および図6に示すように、本実施の形態の停電バックアップシステム1は、住宅2内の電源装置3と、この電源装置3と電力線5を介して離接自在に接続される車両6とを備えた構成であって、電源装置3は、住宅2内で使用される電力の停電を検出する停電検出部13と、電力線5を用いて通信する第1電力線通信部14と、停電検出部13の停電の検出結果に基づいて車両6を制御するための制御情報を第1電力線通信部14を介して送信する電源制御部15とを有し、車両6は、車両本体6aの給電口19に電力線5を介して供給される電力を蓄電する蓄電池10と、蓄電池10に蓄電された電力により車輪17を回転させる電気モータ18と、蓄電池10の残量を検出する電池残量検出部29と、電力線5を用いて通信する第2電力線通信部25と、第2電力線通信部25で受信された制御情報に基づいて蓄電池10の電力の入出力を制御すると共に、電池残量検出部29で検出された蓄電池10の残量情報を第2電力線通信部25を介して送信する車両制御部26とを有した構成としたので、住宅2の停電時に電源装置3は車両6に制御情報を送信し、車両6から電力線5を介して電力の供給を受けると共に車両6の蓄電池10の残量情報を受信することができる。これにより、住居者は表示装置9に受信した車両6の蓄電池10の残量情報を表示することで、車両6の電力を何時間使用できるかを知ることができ、蓄電池10の電力残量が少ない場合には使用する電気機器を減らす等の節電対応ができる。
 また本実施の形態の車両6は、図4、図5に示すように、車両本体6aの給電口19に供給される電力を蓄電する蓄電池10と、蓄電池10に蓄電された電力により車輪17を回転させる電気モータ18とを備えたものであって、蓄電池10の残量を検出する電池残量検出部29と、電池残量検出部29で検出された蓄電池10の残量を停電時に使用できる時間に変換した残量情報で表示するモニタ20とを備えているので、車両6の運転者は、モニタ20で停電時に使用できる蓄電池10の残量を正確に把握でき、停電時の残量を時間で表示することにより直感的に確認でき、蓄電池10の充電を促す効果がある。これにより、車両6を停電時のバックアップ電源として利用する場合の安心感を高め、信頼性を高めることができる。
 なお、本発明の具体的な構成は、上述した実施の形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更および修正が可能である。
 図12は、停電バックアップシステム1において、上述した電源装置3の代わりに用いることができる電源装置300の構成を示すブロック図である。なお、図12では、図2で示した電源装置3と共通する部分については、図2と同一の符号を付している。
 図12に示すように、電源装置300は電源ケーブル8aと分電盤12とを接続部11を介して接続する。分電盤12では電力が分配され、分配されたそれぞれの電力が遮断器12aを介して宅内の各電気機器に供給される。遮断器12aは異常電流が流れた場合に自動的に回路を遮断する装置である。
 接続部11は、商用電源の電力が供給される電源ケーブル8aと分電盤12とを接続または開放する。接続部11が開放された場合には、電源ケーブル8aから宅内の電源が開放される。
 また、電源装置300は電源部3aを備え、電源部3aに電力を充電できる小容量の蓄電池3bを有している。蓄電池3bは非停電時に充電され、停電時に各回路部に電力を供給する。これにより、電源装置300は停電時でも動作することができる。
 次に、電源装置300の全体構成が理解されたところで、電源装置300の特徴的な構成について説明する。
 図12に示すように、電源装置300は停電時に自動的に車両600(図14)から電力をバックアップするようにしている。すなわち、電源装置300は、住宅2内で使用される電力の停電を検出する停電検出部13と、電力線5を用いて車両600と通信する第1電力線通信部14と、停電検出部13の停電の検出結果に基づいて車両600を制御するための制御情報を第1電力線通信部14を介して送信する電源制御部15とを備え、停電時に車両600へ制御情報を送信する。車両600は受信した制御情報に基づいて蓄電池10の入出力を制御する。車両600の構成については後述する。
 また、電源制御部15は停電検出部13により停電が検出された場合、接続部11を非接続状態にし、電源ケーブル8aから分電盤12を切り離す。電源制御部15は、電源ケーブル8aから分電盤12を切り離した後、車両600に制御情報を送信し、車両600から分電盤12に電力を供給させる。電源ケーブル8aと分電盤12とを切り離すことにより、電源装置300内で車両600の電力を給電中に商用電源の停電が解除された場合でも、商用電源の電力と車両600の電力とが衝突するのを回避し、衝突による火災等の発生を防止する。これにより、電源装置300の安全性を高めている。
 また、電源制御部15は電力線5の途中に接続されている電力変換部400を制御し、電力線5の電力を直流または交流に変換、すなわち、充電時には交流から直流、停電時には直流から交流に変換する。電力変換部400の詳細については後述する。
 また、電源装置300は時間を計数する時間計数部であるタイマー16を備えている。電源制御部15は停電検出部13で停電が検出されている間、タイマー16により時間を計数し、計数された時間が所定の時間以上ある場合を停電と判断する。例えば、所定の時間を0.5秒とし、落雷の発生により瞬時(0.5秒未満)だけ停電した場合でも、停電バックアップシステム1が作動しないようにしている。これにより、停電バックアップシステム1の安定性と信頼性を向上させている。
 また、表示装置9には車両600から電源装置300を介して通知された電力の残量情報を表示する。
 次に、停電バックアップシステム1の電力変換部400の構成について説明する。図13は本発明の実施の形態における停電バックアップシステム1における電源装置300の電力変換部400の構成を示すブロック図である。
 図13に示すように、電力変換部400は電力線5の途中に接続され、電力を交流から直流に変換するAC/DC変換部4aと、電力を直流から交流に変換するDC/AC変換部4bと、AC/DC変換部4aおよびDC/AC変換部4bのいずれか一方を選択する選択部4cとを備えている。
 電源制御部15は、充電時に車両600に電力を供給する場合(制御情報が車両600に対する充電許可である場合)、AC/DC変換部4aを選択し、停電時に車両600から電力が給電される場合(制御情報が車両600に対する給電要求である場合)、DC/AC変換部4bを選択するように選択部4cを制御する。
 この構成により、電力変換部400は、充電時には交流(例えば、電圧100ボルト~200ボルト)の電力を直流(例えば、電気モータ用に使用する電圧として約300ボルトまたは車載機器用に使用する電圧として12ボルト~14ボルト)に変換し、変換された電力(直流)を電力線5を介して車両600に出力する。一方、電力変換部400は、停電時に車両600から給電される直流(例えば、電圧12ボルト~14ボルトまたは300ボルト)を交流(例えば、電圧100ボルト~200ボルト)の電力に変換し、分電盤12を介して宅内の各電気機器に供給される。
 また、コンデンサ4dは電力線通信の高周波を通過させるためのバイパス用素子である。これにより、電力線5の途中に電力変換部400を設けた場合であっても、電力線通信の高周波が通過でき、電源装置300と車両600との間で通信を行うことができる。
 次に、車両600の詳細な構成について説明する。図14は、停電バックアップシステム1において、上述した車両6の代わりに用いることができる車両600の構成を示すブロック図である。なお、図14において、図5と共通する部分については、同一の符号を付している。
 図14に示すように、車両600の車両制御部26は、給電口19に電力線5の電源プラグが接続されると、電源装置300から第2電力線通信部25を介して制御情報を受信し、受信した制御情報に基づいて切替部24を制御する。
 すなわち、車両制御部26は電源装置300から送信された制御情報が充電許可である場合、給電口19と蓄電池10の入力端子とを切替部24により接続し、給電口19に供給される電力を蓄電池10に充電する。蓄電池10は、充電した約300ボルトの電力を、例えば電圧500ボルト~700ボルトに内部昇圧し、電気モータ18に出力する。
 一方、車両制御部26は電源装置300から送信された制御情報が給電要求である場合、給電口19と蓄電池10の出力端子とを切替部24により接続し、蓄電池10の電力を給電口19に供給する。給電口19には電力線5の電源プラグが接続されているため、電源装置300側に電力が供給される。
 また、車両600で充電を行う場合、電気モータ18やカーナビ31等の車載機器への電力供給を停止する。車両制御部26は、車両600を停止状態にする場合、電力線10bの途中に設けられたスイッチ27を開状態、すなわち非接続状態にし、蓄電池10から電気モータ18や各種の車載機器への電力の供給を停止する。一方、車両制御部26は車両600を始動状態にする場合、スイッチ27を閉状態、すなわち接続状態にし、蓄電池10から電気モータ18やカーナビ31等の車載機器に電力を供給する。電力線10aは、切替部24から蓄電池10への給電路である。
 次に、停電バックアップシステム1の車両600の全体構成が理解されたところで、特徴的な構成について説明する。
 図14に示すように、車両600では、すべての車載機器や電気モータ18が蓄電池10に蓄電された電力を用いて動作する。また、ブレーキ時に発生する回生電力を蓄電池10に充電する。このため、走行距離だけでなく、運転状態によって蓄電池10の電力消費量は大きく変動するので、移動距離からのみ蓄電池10の電力残量を予測することは困難である。このため、停電時に車両600から電力を住宅2に供給する場合に蓄電池10の電力残量が不足していると、住宅2に電力供給ができなくなると共に車両600も使用できなくなる等、停電時のバックアップシステムとしての信頼性が低くなる。
 そこで本実施の形態では、車両600の蓄電池10の残量情報を電源装置300に通知し、住居者が正確な蓄電池10の残量を把握できるようにした。
 具体的には、車両600は給電口19に電力線5の電源プラグが接続されたことを接続検出部28により検出すると、第2電力線通信部25を介して電源装置300から送信される制御情報を受信する。そして車両600は、受信された制御情報が給電要求である場合、蓄電池10の電力を住宅2の電源装置300に供給すると共に、電池残量検出部29で蓄電池10の電池残量を検出し、検出された電池残量に基づいて蓄電池10の残量情報を第2電力線通信部25を介して電源装置300に送信する。電源装置300側では、受信された残量情報を表示装置9に通知し、表示装置9で蓄電池10の残量を表示させる。
 住居者は表示装置9に表示された残量情報を見て車両600の電力を何時間使用できるかを知ることができ、住居者は蓄電池10の電力残量が少ない場合には使用している電気機器の数を減らす等の節電対応を行うことができる。また、車両600の電力の残量情報を表示することで、車両600の充電を促す効果があり、さらに災害等の危機管理意識を高める効果もある。これにより、住居者は、蓄電池10の電池残量を正確に把握でき、停電時のバックアップとしての信頼感を高めることができる。
 電池残量検出部29は、例えば、蓄電池10の出力電圧を検出して電池残量を検出する。
 またモニタ20は、記憶部30に予め設定登録された変換テーブル30aから得られた残量情報、すなわち、蓄電池10の停電時に使用できる残り時間を表示する。このように表示することで直感的に残量を把握でき、これにより安心感が得られ、信頼感が高まる。なお、カーナビ22に時間情報を表示させるようにしても良い。
 変換テーブル30aには、住宅2内で平均的に使用される電力を使用電力設定量と定義し、この使用電力設定量に基づいて電池残量に対応する残りの時間情報が記録される。例えば、住宅2で使用される使用電力設定量を2kWh、電池残量が50kWh相当の検出値(例えば、検出値は電圧値である)である場合、変換テーブル30aには25時間、同様に、残量が40kWhで20時間、残量が20kWhで10時間といったように、使用できる残りの時間が残量情報として記録されている。なお、変換テーブル30aに複数の使用電力設定量における残量情報を記憶するようにしても良い。例えば、1kWh、2kWh、3kWhおよび4kWhの使用電力設定量それぞれの電池残量に対応する残り時間を記録しても良い。これにより、複数の使用電力設定量の内、各住宅2の使用電力量に合わせて一つを選択でき、住宅2の使用電力に応じて車両600に予め設定登録できる。これにより、電池残量の時間の精度を上げることで、信頼性を高めることができる。また、車両制御部26で変換テーブル30aから得られる数値(例えば、1時間単位の数値)を補間し、分単位の時間情報を算出するようにしても良い。
 以下に、上記実施の形態における車両6(600)の給電口19を車両の前方に設けた場合について、図15~図22を用いて説明する。
 図15は、停電バックアップシステム1の構成図である。図15において、停電バックアップシステム1は、充電装置1002と、充電装置1002と電力線5を介して接続される車両6(600)とを備えている。
 充電装置1002は、一般の住宅の外部に設置され、住宅内の電源1003aに接続されている。これにより、住宅内の電源1003aから充電装置1002に電力が供給され、充電装置1002は供給された電力を車両6(600)に供給する。これにより、停電バックアップシステム1では、充電装置1002から電力線5を介して車両6(600)に電力が供給され、車両6(600)の蓄電池10に電力が充電される。
 なお図15は、図1や図12で示した電源装置3(300)等を充電装置1002に格納した例を示している。
 車両6(600)として、図22に示すように、車両本体1004aに蓄電池10と、車輪17を回転させる車輪駆動部の電気モータ18とを搭載し、蓄電池10の充電電力を用いて電気モータ18を駆動する電気自動車を用いる。電気自動車は、電力線5を介して供給される電力を蓄電池10に充電する。
 また、蓄電池10はエンジン制御部1006、電気モータ18、カーナビ31等に電力を電力線1016を介して供給する。また、電力線1016は通信線としても用いられ、蓄電池10、エンジン制御部1006、電気モータ18およびカーナビ31は電力線1016を介して電力線通信を行う。
 電力線通信する情報として、例えば、蓄電池10のバッテリー残量、使用期間、充電回数等の電池情報、車両駆動部の電気モータ18の使用期間、電気モータ18の巻線温度等のモータ情報がある。そして、これらの情報を用いて、例えば、エンジン制御部1006は蓄電池10のバッテリー残量および電気モータ18の巻線温度に応じて電気モータ18の回転速度、加速度等を制御する。また、カーナビ31では電力線1016を介して得られる蓄電池10のバッテリー残量の情報を表示する。バッテリー残量の表示情報は、運転者に蓄電池10の充電を促す効果がある。
 さらに、車両6(600)と外部の情報機器(例えば、車両6(600)の販売店の整備工場に設置されたパーソナルコンピュータ等)とを電力線を介して通信させても良い。例えば、車両6(600)の蓄電池10および車両駆動部からメンテナンス情報として上述の電池情報およびモータ情報を電力線1016を介して外部の情報機器に送信する。これにより、外部の情報機器は車両6(600)の蓄電池10および電気モータ18の部品交換時期を容易に取得できるので、劣化度合の管理を行い部品交換時期を知らせる、または劣化部品をすぐに交換する等、迅速な対応ができる。このように、電力線1016および電力線5は通信線として用いられている。
 ところで、車両6(600)の主要部、すなわち、蓄電池10、エンジン制御部1006、エンジンである電気モータ18およびカーナビ31等は車両6(600)の進行方向に対して前方側に集中しており、給電口19から車両本体1004a内の各主要部に配線するのに電力線5を引き回す必要があった。
 また、車両本体1004aの両側面のいずれか一方にのみ給電口19があると、車両6(600)を停止したときの向きによって充電装置1002の電力線5を引き回す必要があるため、充電装置1002の電力線5を長くしておく必要があった。このため、電力線5にはノイズが重畳しやすくなる等、電力線5を用いて通信する場合に送信エラーが発生しやすくなる。
 そこで、本実施の形態の停電バックアップシステム1では、給電口19を車両本体1004aの前方の両側面に設けた。
 このような構成により、給電口19と蓄電池10および電気モータ18とを近づけることができ、車両本体1004a内の電力線5の配線長を短くできる。また、給電口19を車両本体1004aの両側面に設けたことにより車両本体1004aの両側面のいずれの方向からでも給電でき、車両6(600)の向きが外部の充電装置1002に対してどちらの方向を向いて停止しても電力線5を引き回すことなく車両6(600)の給電口19と充電装置1002とを接続できる。このように、通信に係る電力線の長さを短くでき、電力線に重畳されるノイズが抑えられ、通信エラーの発生を抑えることができる。
 具体的には、図15に示すように、給電口19を車両本体1004aの進行方向に対して前方の両側面にあるバックミラー1007の本体内に設けた。
 図16は、本発明の実施の形態における停電バックアップシステム1の車両6(600)の正面図である。図16に示すように、車両6(600)は車両本体1004aの進行方向に対して前方の両側面にバックミラー1007を備えている。
 また、図17は本発明の実施の形態における停電バックアップシステム1における車両6(600)のバックミラー1007の構成図、図18は図17に示したバックミラー1007のミラー部1008を開けた状態の構成図である。
 図17に示すように、バックミラー1007は開閉自在のミラー部1008を備え、このミラー部1008の背面側、すなわち、バックミラー本体1007a内に二つの給電口19を設けている。給電口19はミラー部1008を開けた場合に露出される。すなわち、車両6(600)に電力を供給(充電)するときに図18のようにミラー部1008が開けられ、それ以外の非充電時には図17のようにミラー部1008は閉じられている。これにより、ミラー部1008は車両6(600)の後方を確認するだけでなく、二つの給電口19が未使用の場合に露出を防ぎ、雨等から給電口19を保護する。
 また、ミラー部1008の面より奥側(内部側)に給電口19が斜め下向きに配置されていて、充電中に雨等が給電口19に入りにくい構造としている。これにより、電力が漏電によりショートする等の事故を未然に防止し、安全性を高めている。
 次に、ミラー部1008の開閉について説明する。図18に示すように、バックミラー1007のミラー部1008はバックミラー本体1007aに開閉自在に取り付けられている。バックミラー本体1007aおよびミラー裏面1008aにそれぞれミラー部1008を固定する止め部1008b、1008cを設け、この止め部1008b、1008cのロックを解除し、ミラー部1008を上側から回転させて開けることができる。ミラー部1008を開けると、二つの給電口19が露出されるようになっている。充電装置1002からの電力線5の電源プラグを二つの給電口19のいずれか一方に挿入(接続)し、電力を供給する。
 二つの給電口19は、充電時の供給電流がそれぞれ異なり、供給電流の大きい方の給電口19を高速に充電できる。これにより、充電装置1002の供給電流の能力に合わせて二つの給電口19の内のいずれか一方を選択する。すなわち、給電スタンド等に設置されている充電装置1002では、業務用の充電時間の短い、すなわち充電時の供給電流が大きい装置を使用できるので、供給電流が大きい方(図18中の急速給電口)の給電口19を選択する。一方、一般家庭の電源1003aに接続される充電装置1002では、充電時の供給電流は大きくできないので、供給電流を抑えた方(図18中のホーム用給電口)の給電口19を選択する。
 次に、図19は本発明の実施の形態における停電バックアップシステム1における車両6(600)のバックミラー1007の断面図である。図19に示すように、給電口19はミラー部1008の面よりも奥側の位置に設けられ、さらに給電口19の奥側が入り口側より高くなる、すなわち水平より下向きに傾斜させている。これにより、雨等が直接給電口19の中に入るのを防止できる。
 以上のように本実施の形態によれば、図15、図17に示すように、車両6(600)は、車両本体1004aの給電口19に供給される電力を蓄電する蓄電池10と、蓄電池10に蓄電された電力により車輪を回転させる車輪駆動部とを備えたものであって、給電口19を車両本体1004aの進行方向に対して前方の両側面に設けたことにより、給電口19と蓄電池10および車輪駆動部とを近づけることができ、車両本体1004a内の電力線5の配線長を短くできる。また、給電口19を車両本体1004aの両側面に設けたことにより車両本体1004aの両側面のいずれの方向からでも給電でき、車両6(600)の向きが外部の充電装置1002に対してどちらの方向を向いて停止しても電力線5を引き回すことなく車両6(600)の給電口19と充電装置1002とを接続できる。このように、通信に係る電力線の長さを短くでき、電力線に重畳されるノイズが抑えられ、通信エラーの発生を抑えることができる。
 これにより、車両本体1004a内の電力線5を用いて通信する場合であっても、通信エラーの発生を抑えることができる。
 なお、バックミラー1007のミラー部1008を、上側から開閉自在に開閉するようにしたが本発明はこれに限定されない。図20は本発明の実施の形態における停電バックアップシステム1における車両6(600)のバックミラー1007の他の実施例を示す構成図である。図20に示すように、バックミラー1010のミラー部1011の、例えば、下側を開閉自在にしても良い。この場合、バックミラー本体1010aおよびミラー部1008の背面の下側に止め部1011b、1011cを設けている。また、ミラー部1011を電動により自動で開閉しても良い。
 また、図21は本発明の実施の形態における停電バックアップシステム1における車両6(600)のバックミラー1007の方向指示器1012の説明図である。図21に示すように、バックミラー本体1007aに車両6(600)の進行方向を他の自動車に知らせるための方向指示器1012を設け、充電する際に方向指示器1012の点灯状態を異ならせて充電中と充電完了とが分かるようにしても良い。例えば、方向指示器1012に赤色発光ダイオードと黄色発光ダイオードとを設け、充電中は赤色発光ダイオードを点灯させ、充電完了時には黄色発光ダイオードを点灯させる等、発光色で点灯状態を異ならせても良い。なお、方向指示器1012の点滅により点灯状態を異ならせても良い。例えば、充電中には方向指示器1012の点滅を1回にしたインターバル表示、充電完了時には点滅を2回ずつ連続したインターバル表示を行うといったように方向指示器1012の点滅数を異ならせても良い。いずれの構成によっても、充電中と充電完了とを区別できる。
 なお、本発明の具体的な構成は、上述した実施の形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更および修正が可能である。
 例えば、電気自動車を例に説明したが、本発明はこれに限定されない。例えば、電気モータと内燃機関式のエンジンとを併用するハイブリッド自動車にも適用することができる。
 2009年10月13日出願の特願2009-236390の日本出願、2009年10月13日出願の特願2009-236391の日本出願、および、2009年10月13日出願の特願2009-236392の日本出願の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 以上のように、本発明の停電バックアップシステムは、住宅内の電源装置と、この電源装置と電力線を介して離接自在に接続される車両とを備えた構成であって、電源装置は、住宅内で使用される電力の停電を検出する停電検出部と、電力線を用いて通信する第1電力線通信部と、停電検出部の停電の検出結果に基づいて車両を制御するための制御情報を第1電力線通信部を介して送信する電源制御部とを有し、車両は、車両本体の給電口に電力線を介して供給される電力を蓄電する蓄電池と、蓄電池に蓄電された電力により車輪を回転させる車輪駆動部と、蓄電池の残量を検出する電池残量検出部と、電力線を用いて通信する第2電力線通信部と、第2電力線通信部で受信された制御情報に基づいて蓄電池の電力の入出力を制御すると共に、電池残量検出部で検出された蓄電池の残量情報を第2電力線通信部を介して通知する車両制御部とを有した構成としたので、電源装置は、停電時に車両に制御情報を送信し、車両の電力の入出力を制御して電力の供給を受けると共に車両の蓄電池の残量情報を受信することができ、住居者は、表示装置等に蓄電池の残量情報を表示させて車両の電力を何時間使用できるかを知ることができ、蓄電池の残量が少ない場合には使用する電気機器を減らす等の節電対応ができる。
 また、本発明の車両は、蓄電池の残量を検出する電池残量検出部と、電池残量検出部で検出された蓄電池の残量を停電時に使用できる時間に変換した残量情報を表示する表示部とを備えているので、車両の運転者は、表示部で蓄電池の残量を時間で知ることができ、停電時に住宅の電力をバックアップできる蓄電池の残量を直感的に把握しやすくすることができる。
 これにより、住宅の停電時の電力をバックアップする停電バックアップシステムおよび電気自動車やハイブリッド自動車等の車両に有用なものである。

Claims (14)

  1.  電力線を介して、電力供給が可能な車両と接続自在な電源装置であって、
     電力の停電を検出する停電検出部と、
     前記電力線を介して、通信を行う電力線通信部と、
     前記停電検出部の検出結果に基づいて、前記車両が行う電力供給を制御する制御情報を、前記電力線通信部を用いて前記車両へ送信する電源制御部と、
     を備える電源装置。
  2.  前記電力線通信部は、前記車両が行う電力供給に関する情報を前記車両から受信し、
     前記車両が行う電力供給に関する情報を表示する表示部、をさらに備える、
     請求項1記載の電源装置。
  3.  屋外の商用電源と屋内の電源とを接続または非接続にする接続部、をさらに備え、
     前記電源制御部は、前記停電検出部によって停電が検出された場合、前記接続部を用いて前記商用電源と前記屋内の電源を非接続にする、
     請求項1記載の電源装置。
  4.  電力を蓄電する蓄電部、をさらに備え、
     前記蓄電部は、非停電時に充電され、停電時に当該電源装置に電力を供給する、
     請求項1記載の電源装置。
  5.  前記停電検出部が停電を検出している時間を計数する時間計数部、をさらに備え、
     前記電源制御部は、前記時間計数部が計数した時間が所定の時間を超えた場合、停電が発生したと判定する、
     請求項1記載の電源装置。
  6.  前記表示部は、前記車両が搭載する蓄電部の残量情報を表示する、
     請求項2記載の電源装置。
  7.  前記表示部は、前記蓄電池の残量情報を更新して表示する、
     請求項6記載の電源装置。
  8.  前記電力線上の電力を直流または交流に変換する電力変換部、をさらに備え、
     前記電源制御部は、前記停電検出部の検出結果に基づいて、前記電力変換部を制御する、
     請求項1記載の電源装置。
  9.  前記電力変換部は、
     前記電力を直流から交流に変換する第1の電力変換部と、
     前記電力を交流から直流に変換する第2の電力変換部と、
     前記第1の電力変換部および前記第2の電力変換部のいずれか一方を選択する選択部と、を備え、
     前記電源制御部は、
     前記制御情報が前記車両への充電許可である場合は、前記第1の電力変換部を選択し、
     前記制御情報が前記車両への給電要求である場合は、前記第2の電力変換部を選択するように前記選択部を制御する、
     請求項8記載の電源装置。
  10.  電力線を介して、電源装置と接続自在な車両であって、
     前記電源装置から供給される電力を蓄電する蓄電部と、
     前記電力線を介して通信を行う電力線通信部と、
     前記電力線通信部を用いて受信した、前記車両から送信された制御情報に基づいて前記蓄電部の電力の入出力を制御する車両制御部と、
     を備える車両。
  11.  前記蓄電部の蓄電残量を検出する蓄電残量検出部、をさらに備え、
     前記電力制御部は、前記蓄電残量検出部で検出された前記蓄電残量に関する情報を、前記電力線通信部を用いて前記電源装置に送信する、
     請求項10記載の車両。
  12.  電力を交流から直流に変換する第3の電力変換部と、
     電力を直流から交流に変換する第4の電力変換部と、
     前記第3の電力変換部および前記第4の電力変換部のいずれか一方と前記電力線とを接続する切替部と、さらに備え、
     前記車両制御部は、
     前記制御情報が充電情報である場合は、前記電力線から供給される電力を、前記第3の電力変換部を介して前記蓄電池に充電し、
     前記制御情報が給電情報である場合は、前記蓄電池の電力を、前記第4の電力変換部を介して前記電力線に給電するように前記切替部を制御する、
     請求項10記載の車両であって、
  13.  前記蓄電部の蓄電残量を停電時に使用可能な時間として表示する表示部、をさらに備える、
     請求項10記載の車両。
  14.  前記表示部は、前記蓄電残量と宅内の使用電力設定量に基づいて前記時間を決定する、
     請求項13記載の車両。
PCT/JP2010/006085 2009-10-13 2010-10-13 電源装置および車両 WO2011045925A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10823193.7A EP2490317A4 (en) 2009-10-13 2010-10-13 POWER SOURCE AND VEHICLE
JP2011536036A JPWO2011045925A1 (ja) 2009-10-13 2010-10-13 電源装置および車両
CN201080045087.4A CN102577022B (zh) 2009-10-13 2010-10-13 车辆和停电备用系统
US13/445,762 US20120193983A1 (en) 2009-10-13 2012-04-12 Power source device and vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-236391 2009-10-13
JP2009236392 2009-10-13
JP2009236390 2009-10-13
JP2009-236390 2009-10-13
JP2009236391 2009-10-13
JP2009-236392 2009-10-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/445,762 Continuation-In-Part US20120193983A1 (en) 2009-10-13 2012-04-12 Power source device and vehicle

Publications (1)

Publication Number Publication Date
WO2011045925A1 true WO2011045925A1 (ja) 2011-04-21

Family

ID=43875981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006085 WO2011045925A1 (ja) 2009-10-13 2010-10-13 電源装置および車両

Country Status (5)

Country Link
US (1) US20120193983A1 (ja)
EP (1) EP2490317A4 (ja)
JP (1) JPWO2011045925A1 (ja)
CN (1) CN102577022B (ja)
WO (1) WO2011045925A1 (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009488A (ja) * 2011-06-23 2013-01-10 Toyota Motor Corp 電力復旧システム
JP2013017313A (ja) * 2011-07-04 2013-01-24 Denso Corp 電動車両用制御装置
JP2013074762A (ja) * 2011-09-29 2013-04-22 Mitsubishi Motors Corp 送電回路の保護構造
JP2013074720A (ja) * 2011-09-28 2013-04-22 Mitsubishi Motors Corp 電力供給装置の起動用電源確保構造
JP2013081290A (ja) * 2011-10-03 2013-05-02 Panasonic Corp 配電システム
JP2013081289A (ja) * 2011-10-03 2013-05-02 Panasonic Corp 電力制御装置
JP2013081323A (ja) * 2011-10-05 2013-05-02 Mitsubishi Motors Corp 電力供給装置の給電制御装置
CN103094951A (zh) * 2011-10-31 2013-05-08 丰田自动车株式会社 充放电连接器以及充放电通过充放电连接器成为可能的车辆
JP2013094026A (ja) * 2011-10-27 2013-05-16 Toyota Motor Corp 電力供給システムおよび車両
JP2013099078A (ja) * 2011-10-31 2013-05-20 Toyota Motor Corp 外部負荷に放電(給電)可能な蓄電部を備えた車両、同車両と電力ケーブルとを含む放電システム、同蓄電部の放電制御方法、及び、同放電システムに用いられる車両外部の装置。
DE102012001396A1 (de) * 2012-01-26 2013-08-01 Elektro-Bauelemente Gmbh Ladestation zum Bereitstellen elektrischer Energie für Fahrzeuge und Verfahren zum Betrieb einer Ladestation
JP2013198282A (ja) * 2012-03-19 2013-09-30 Honda Motor Co Ltd 燃料電池システム
JP2013233020A (ja) * 2012-04-27 2013-11-14 Mazda Motor Corp 車両用給電システム
JP2013255360A (ja) * 2012-06-07 2013-12-19 Sharp Corp 充放電装置
JP2014042387A (ja) * 2012-08-22 2014-03-06 Toyota Motor Corp 車両用電力制御装置
JP2014075852A (ja) * 2012-10-02 2014-04-24 Toyota Motor Corp 車両
WO2014068782A1 (ja) * 2012-11-05 2014-05-08 トヨタ自動車株式会社 車両
WO2014148054A1 (ja) * 2013-03-22 2014-09-25 パナソニック株式会社 蓄電システム、監視装置、電力制御システム
JP2014204484A (ja) * 2013-04-01 2014-10-27 パナソニック株式会社 系統保護装置、電路切替装置、および電力供給システム
JP2014236601A (ja) * 2013-06-03 2014-12-15 石田 秀樹 制御装置及び電力デマンド抑制システム
JP2015202050A (ja) * 2012-05-29 2015-11-12 三菱電機株式会社 電源切替装置及び電源切替システム
EP2779395A4 (en) * 2011-11-08 2016-01-06 Panasonic Ip Man Co Ltd ELECTRIC CONVERSION DEVICE
CN105216652A (zh) * 2015-11-13 2016-01-06 李杰波 一种电动载具的剩余电量管理方法及系统
JPWO2013171844A1 (ja) * 2012-05-15 2016-01-07 トヨタ自動車株式会社 車両の走行制御支援装置
JP2016167908A (ja) * 2015-03-09 2016-09-15 三菱自動車工業株式会社 車両の充電制御装置
JP6029713B1 (ja) * 2015-06-17 2016-11-24 三菱電機株式会社 電力管理装置、装置システム、電力管理方法、およびプログラム
JP2016226293A (ja) * 2015-07-01 2016-12-28 三菱電機株式会社 電源切替装置及び住宅
EP2692569A3 (en) * 2012-07-31 2017-05-17 Mitsubishi Jidosha Kogyo K.K. External power supply apparatus of electric vehicle
US9692483B2 (en) 2011-09-27 2017-06-27 Peugeot Citroën Automobiles SA Communication device using power line communication and frequency-division multiplexing on a pilot line, and related systems
WO2017126047A1 (ja) * 2016-01-20 2017-07-27 三菱電機株式会社 パワーコンディショナ
JP2018019571A (ja) * 2016-07-29 2018-02-01 本田技研工業株式会社 外部給電装置、輸送機器及び監視方法
JP6552769B1 (ja) * 2018-10-15 2019-07-31 三菱電機株式会社 エネルギー表示システム、表示装置およびエネルギー表示方法
JP2020127357A (ja) * 2012-05-29 2020-08-20 三菱電機株式会社 充放電装置及び電源切替システム
JP7468479B2 (ja) 2021-07-16 2024-04-16 トヨタ自動車株式会社 支援サーバ、災害支援システムおよびプログラム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083205B2 (en) * 2010-01-29 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Vehicle charging device and vehicle charging system using same
EP2624468B1 (en) * 2010-09-30 2016-11-30 Panasonic Intellectual Property Management Co., Ltd. Power line communication system and vehicle
DE102013200102A1 (de) * 2013-01-07 2014-07-10 Siemens Aktiengesellschaft Ladestation mit Notbetriebsart, Verfahren zum Betreiben einer Ladestation und Elektroauto
CN104249630B (zh) * 2013-06-28 2017-08-04 比亚迪股份有限公司 电动汽车及电动汽车向外供电的系统
JP5735050B2 (ja) * 2013-06-28 2015-06-17 トヨタ自動車株式会社 車両および受電装置
JP2015058827A (ja) * 2013-09-19 2015-03-30 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
US20180034271A1 (en) * 2014-04-01 2018-02-01 Detroit Electric EV Ltd. Home charging and power back up unit
US20150280432A1 (en) * 2014-04-01 2015-10-01 Detroit Electric Holdings, Limited Home charging and power backup unit
EP3215003A4 (en) 2014-11-07 2018-08-22 Welch Allyn, Inc. Medical device
JP6137127B2 (ja) 2014-11-13 2017-05-31 トヨタ自動車株式会社 車両の電源装置
CN104319865B (zh) * 2014-11-14 2017-09-01 国家电网公司 一种停电状况下的用户紧急供电方法
DE102015213029A1 (de) * 2015-07-13 2017-01-19 Bayerische Motoren Werke Aktiengesellschaft Versorgungssystem, Kraftfahrzeug und Verfahren zur Bereitstellung von elektrischer Energie
KR102027983B1 (ko) * 2017-04-05 2019-10-04 한국전력공사 지상변압기를 이용한 전기차 충전 장치 및 전기차 충전 방법
DE102018104273A1 (de) * 2018-02-26 2019-08-29 Innogy Se Ladestecker für ein Kraftfahrzeug
JP2020117178A (ja) * 2019-01-28 2020-08-06 トヨタ自動車株式会社 車両
US11132847B2 (en) 2019-03-15 2021-09-28 Ford Global Technologies, Llc Time to empty prediction system for vehicle power source
CN111016698A (zh) * 2019-12-31 2020-04-17 宁波吉利汽车研究开发有限公司 一种电动汽车充电故障显示装置
WO2021207985A1 (zh) * 2020-04-15 2021-10-21 华为技术有限公司 一种充放电切换装置、方法及双向充电系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178241A (ja) * 1997-12-15 1999-07-02 Mitsubishi Electric Corp 停電時電力供給装置
JP2002315193A (ja) * 2001-04-10 2002-10-25 Mitsubishi Heavy Ind Ltd 電力制御システム
JP2007236023A (ja) * 2006-02-27 2007-09-13 Toyota Motor Corp 建物の電力供給システム
JP2007252117A (ja) * 2006-03-16 2007-09-27 Chugoku Electric Power Co Inc:The 電力供給システムおよび電力供給方法
JP2007259573A (ja) * 2006-03-23 2007-10-04 Chugoku Electric Power Co Inc:The 系統電力代替電源装置、系統電力代替電源装置を用いたレンタルシステム、および系統電力代替方法
JP2007288894A (ja) * 2006-04-14 2007-11-01 Hitachi Constr Mach Co Ltd 作業車両の状態表示装置
WO2008023536A1 (en) * 2006-08-25 2008-02-28 Toyota Jidosha Kabushiki Kaisha Power system
JP2009236391A (ja) 2008-03-27 2009-10-15 Japan Atom Power Co Ltd:The 高温雰囲気炉内観察装置
JP2009236390A (ja) 2008-03-27 2009-10-15 Taiheiyo Cement Corp 可燃性廃棄物の燃料化システム及び燃料化方法
JP2009236392A (ja) 2008-03-27 2009-10-15 Sanyo Electric Co Ltd 空気調和機

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233720A (ja) * 1996-02-20 1997-09-05 Sumitomo Electric Ind Ltd 充電コントローラ
ID23796A (id) * 1997-01-31 2000-05-11 Silver Power Conversion Llc Pemasok daya yang tak dapat terputus
JPH11178234A (ja) * 1997-12-10 1999-07-02 Nissan Motor Co Ltd 電気自動車を用いた家庭用電力供給システム
JP3985390B2 (ja) * 1999-06-17 2007-10-03 日産自動車株式会社 電力マネジメントシステム
JP4164996B2 (ja) * 2000-01-05 2008-10-15 日産自動車株式会社 電力マネジメントシステム
JP2005129800A (ja) * 2003-10-24 2005-05-19 Chugoku Electric Power Co Inc:The 発電システム
CN1808162A (zh) * 2005-01-17 2006-07-26 上海乐金广电电子有限公司 根据使用环境提供电池信息的方法
JP3838258B2 (ja) * 2005-03-10 2006-10-25 ソニー株式会社 バッテリー残量表示方法
JP5063036B2 (ja) * 2006-06-09 2012-10-31 中国電力株式会社 電力供給システム
JP4644163B2 (ja) * 2006-07-04 2011-03-02 トヨタ自動車株式会社 車両の電力制御装置
JP5072378B2 (ja) * 2007-01-25 2012-11-14 中国電力株式会社 電力貯蔵装置及びシステム
JP2008278740A (ja) * 2007-04-04 2008-11-13 Furukawa Electric Co Ltd:The 電池状態検知システム
JP2009027772A (ja) * 2007-07-17 2009-02-05 Toyota Motor Corp 電池の余力表示装置及び方法
JP4997010B2 (ja) * 2007-07-24 2012-08-08 トヨタ自動車株式会社 緊急配電システム
JP4410278B2 (ja) * 2007-10-04 2010-02-03 レノボ・シンガポール・プライベート・リミテッド 電子機器、電子機器の電力制御方法、およびコンピュータが実行するためのプログラム
US20100017045A1 (en) * 2007-11-30 2010-01-21 Johnson Controls Technology Company Electrical demand response using energy storage in vehicles and buildings
JP2009213301A (ja) * 2008-03-05 2009-09-17 Rohm Co Ltd 車両用の充電ユニット

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178241A (ja) * 1997-12-15 1999-07-02 Mitsubishi Electric Corp 停電時電力供給装置
JP2002315193A (ja) * 2001-04-10 2002-10-25 Mitsubishi Heavy Ind Ltd 電力制御システム
JP2007236023A (ja) * 2006-02-27 2007-09-13 Toyota Motor Corp 建物の電力供給システム
JP2007252117A (ja) * 2006-03-16 2007-09-27 Chugoku Electric Power Co Inc:The 電力供給システムおよび電力供給方法
JP2007259573A (ja) * 2006-03-23 2007-10-04 Chugoku Electric Power Co Inc:The 系統電力代替電源装置、系統電力代替電源装置を用いたレンタルシステム、および系統電力代替方法
JP2007288894A (ja) * 2006-04-14 2007-11-01 Hitachi Constr Mach Co Ltd 作業車両の状態表示装置
WO2008023536A1 (en) * 2006-08-25 2008-02-28 Toyota Jidosha Kabushiki Kaisha Power system
JP2009236391A (ja) 2008-03-27 2009-10-15 Japan Atom Power Co Ltd:The 高温雰囲気炉内観察装置
JP2009236390A (ja) 2008-03-27 2009-10-15 Taiheiyo Cement Corp 可燃性廃棄物の燃料化システム及び燃料化方法
JP2009236392A (ja) 2008-03-27 2009-10-15 Sanyo Electric Co Ltd 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2490317A4

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009488A (ja) * 2011-06-23 2013-01-10 Toyota Motor Corp 電力復旧システム
JP2013017313A (ja) * 2011-07-04 2013-01-24 Denso Corp 電動車両用制御装置
US9692483B2 (en) 2011-09-27 2017-06-27 Peugeot Citroën Automobiles SA Communication device using power line communication and frequency-division multiplexing on a pilot line, and related systems
EP2761717B1 (fr) * 2011-09-27 2018-10-31 PSA Automobiles SA Dispositif de communication par courants porteurs en ligne et multiplexage fréquentiel dans une ligne pilote, et systèmes associés
JP2013074720A (ja) * 2011-09-28 2013-04-22 Mitsubishi Motors Corp 電力供給装置の起動用電源確保構造
JP2013074762A (ja) * 2011-09-29 2013-04-22 Mitsubishi Motors Corp 送電回路の保護構造
JP2013081290A (ja) * 2011-10-03 2013-05-02 Panasonic Corp 配電システム
JP2013081289A (ja) * 2011-10-03 2013-05-02 Panasonic Corp 電力制御装置
JP2013081323A (ja) * 2011-10-05 2013-05-02 Mitsubishi Motors Corp 電力供給装置の給電制御装置
JP2013094026A (ja) * 2011-10-27 2013-05-16 Toyota Motor Corp 電力供給システムおよび車両
JP2013099078A (ja) * 2011-10-31 2013-05-20 Toyota Motor Corp 外部負荷に放電(給電)可能な蓄電部を備えた車両、同車両と電力ケーブルとを含む放電システム、同蓄電部の放電制御方法、及び、同放電システムに用いられる車両外部の装置。
US9466999B2 (en) 2011-10-31 2016-10-11 Toyota Jidosha Kabushiki Kaisha Vehicle with an electric storage section capable of discharging (supplying) an electric power to an external electric load, discharge system including the vehicle and a power cable, method for discharging the electric storage section, and equipment external to the vehicle used in the discharge system
CN103094951A (zh) * 2011-10-31 2013-05-08 丰田自动车株式会社 充放电连接器以及充放电通过充放电连接器成为可能的车辆
EP2779395A4 (en) * 2011-11-08 2016-01-06 Panasonic Ip Man Co Ltd ELECTRIC CONVERSION DEVICE
DE102012001396A1 (de) * 2012-01-26 2013-08-01 Elektro-Bauelemente Gmbh Ladestation zum Bereitstellen elektrischer Energie für Fahrzeuge und Verfahren zum Betrieb einer Ladestation
EP2641773A3 (de) * 2012-01-26 2017-10-11 Elektro-Bauelemente GmbH Ladestation zum Bereitstellen elektrischer Energie für Fahrzeuge und Verfahren zum Betrieb einer Ladestation
EP4109711A1 (de) 2012-01-26 2022-12-28 Compleo Charging Solutions AG Ladestation zum bereitstellen elektrischer energie für fahrzeuge und verfahren zum betrieb einer ladestation
JP2013198282A (ja) * 2012-03-19 2013-09-30 Honda Motor Co Ltd 燃料電池システム
JP2013233020A (ja) * 2012-04-27 2013-11-14 Mazda Motor Corp 車両用給電システム
JPWO2013171844A1 (ja) * 2012-05-15 2016-01-07 トヨタ自動車株式会社 車両の走行制御支援装置
JP2015202050A (ja) * 2012-05-29 2015-11-12 三菱電機株式会社 電源切替装置及び電源切替システム
JP2020127357A (ja) * 2012-05-29 2020-08-20 三菱電機株式会社 充放電装置及び電源切替システム
JP2022051909A (ja) * 2012-05-29 2022-04-01 三菱電機株式会社 充放電装置及び電源切替システム
JP7175580B2 (ja) 2012-05-29 2022-11-21 三菱電機株式会社 充放電装置及び電源切替システム
JP7251908B2 (ja) 2012-05-29 2023-04-04 三菱電機株式会社 充放電装置及び電源切替システム
JP2013255360A (ja) * 2012-06-07 2013-12-19 Sharp Corp 充放電装置
EP2692569A3 (en) * 2012-07-31 2017-05-17 Mitsubishi Jidosha Kogyo K.K. External power supply apparatus of electric vehicle
JP2014042387A (ja) * 2012-08-22 2014-03-06 Toyota Motor Corp 車両用電力制御装置
JP2014075852A (ja) * 2012-10-02 2014-04-24 Toyota Motor Corp 車両
JPWO2014068782A1 (ja) * 2012-11-05 2016-09-08 トヨタ自動車株式会社 車両
US9469210B2 (en) 2012-11-05 2016-10-18 Toyota Jidosha Kabushiki Kaisha Vehicle
WO2014068782A1 (ja) * 2012-11-05 2014-05-08 トヨタ自動車株式会社 車両
US9923398B2 (en) 2013-03-22 2018-03-20 Panasonic Intellectual Property Management Co., Ltd. Electricity-storage system, monitoring device, and power control system
JPWO2014148054A1 (ja) * 2013-03-22 2017-02-16 パナソニックIpマネジメント株式会社 蓄電システム、監視装置、電力制御システム
WO2014148054A1 (ja) * 2013-03-22 2014-09-25 パナソニック株式会社 蓄電システム、監視装置、電力制御システム
US10651666B2 (en) 2013-03-22 2020-05-12 Panasonic Intellectual Property Management Co., Ltd. Electricity-storage system, monitoring device, and power control system
US10862322B2 (en) 2013-03-22 2020-12-08 Panasonic Intellectual Property Management Co., Ltd. Electricity-storage system, monitoring device, and power control system
JP2014204484A (ja) * 2013-04-01 2014-10-27 パナソニック株式会社 系統保護装置、電路切替装置、および電力供給システム
JP2014236601A (ja) * 2013-06-03 2014-12-15 石田 秀樹 制御装置及び電力デマンド抑制システム
JP2016167908A (ja) * 2015-03-09 2016-09-15 三菱自動車工業株式会社 車両の充電制御装置
JP6029713B1 (ja) * 2015-06-17 2016-11-24 三菱電機株式会社 電力管理装置、装置システム、電力管理方法、およびプログラム
JP2016226293A (ja) * 2015-07-01 2016-12-28 三菱電機株式会社 電源切替装置及び住宅
CN105216652A (zh) * 2015-11-13 2016-01-06 李杰波 一种电动载具的剩余电量管理方法及系统
WO2017126047A1 (ja) * 2016-01-20 2017-07-27 三菱電機株式会社 パワーコンディショナ
JPWO2017126047A1 (ja) * 2016-01-20 2018-04-12 三菱電機株式会社 パワーコンディショナ
JP2018019571A (ja) * 2016-07-29 2018-02-01 本田技研工業株式会社 外部給電装置、輸送機器及び監視方法
US10994625B2 (en) 2018-10-15 2021-05-04 Mitsubishi Electric Corporation Energy display system, display device, and energy display method
WO2020079725A1 (ja) * 2018-10-15 2020-04-23 三菱電機株式会社 エネルギー表示システム、表示装置およびエネルギー表示方法
JP6552769B1 (ja) * 2018-10-15 2019-07-31 三菱電機株式会社 エネルギー表示システム、表示装置およびエネルギー表示方法
JP7468479B2 (ja) 2021-07-16 2024-04-16 トヨタ自動車株式会社 支援サーバ、災害支援システムおよびプログラム

Also Published As

Publication number Publication date
EP2490317A1 (en) 2012-08-22
CN102577022A (zh) 2012-07-11
JPWO2011045925A1 (ja) 2013-03-04
EP2490317A4 (en) 2014-12-24
US20120193983A1 (en) 2012-08-02
CN102577022B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2011045925A1 (ja) 電源装置および車両
US8548659B2 (en) Vehicle and system for charging the same
EP2784905B1 (en) Vehicle, vehicle control method, and power-receiving facility
JP4769779B2 (ja) 電気自動車の充電状態表示装置
EP3092149B1 (en) Hybrid vehicle with means for disconnection of a depleted auxiliary battery in order to allow for more rapid main battery charging
US20160352120A1 (en) Electric vehicle high-voltage system alert
JP5229184B2 (ja) 車両用照明装置
WO2012090928A1 (ja) 車両用充電装置
JP2008279938A (ja) 車両
WO2012049559A2 (en) Electromotive vehicle
US8258651B2 (en) Methods and circuits for controlling a battery disconnect switch
JP5870282B2 (ja) 充電制御装置及び充電制御システム
KR20130081973A (ko) 전기 자동차용 충전기의 제어 시스템 및 그 방법
CN109532496A (zh) 一种基于can总线网络的智能高压配电盒
US9108522B2 (en) Vehicle-mounted controller
JP2012135111A (ja) 車両用充電ケーブル管理システム
JP5900744B2 (ja) 車両用給電システム
WO2013034960A1 (ja) 電動車両用充電装置
JP2008298537A (ja) 車両管理装置および車両管理システム
JP4963904B2 (ja) 車載システム及び給電制御装置
CN210881973U (zh) 无人车电源系统及无人车
JP6062700B2 (ja) 建物の給電システム
WO2013154093A1 (ja) ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法
JP5842125B2 (ja) セキュリティシステム
JP2013081290A (ja) 配電システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045087.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823193

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536036

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010823193

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010823193

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE