WO2013154093A1 - ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法 - Google Patents

ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法 Download PDF

Info

Publication number
WO2013154093A1
WO2013154093A1 PCT/JP2013/060698 JP2013060698W WO2013154093A1 WO 2013154093 A1 WO2013154093 A1 WO 2013154093A1 JP 2013060698 W JP2013060698 W JP 2013060698W WO 2013154093 A1 WO2013154093 A1 WO 2013154093A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
engine
battery
priority mode
motor
Prior art date
Application number
PCT/JP2013/060698
Other languages
English (en)
French (fr)
Inventor
隆三 野口
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013154093A1 publication Critical patent/WO2013154093A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/21External power supplies
    • B60Y2400/214External power supplies by power from domestic supply, e.g. plug in supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a hybrid vehicle control device, a hybrid vehicle management system, and a hybrid vehicle management method.
  • Hybrid vehicles that reduce costs are known (Patent Document 1).
  • a problem to be solved by the present invention is that when a power failure occurs in a specific area, the use time of a battery mounted on the vehicle can be extended in the specific area, and the hybrid vehicle control device and hybrid A vehicle management system and a management method are provided.
  • the present invention provides a power failure among an EV priority mode in which power is supplied from the battery to the motor and travels with the driving force of the motor, or an HEV priority mode in which the engine is prioritized and travels with the driving force of the motor and the engine. Based on the information, the above problem is solved by selecting the HEV priority mode.
  • the present invention when a power failure occurs in a specific area, battery consumption is suppressed, so that the battery usage time in the specific area can be extended.
  • FIG. 1 is a block diagram of a hybrid vehicle according to an embodiment of the present invention. It is a block diagram of the integrated control unit of FIG. 3 is a graph showing characteristics of target driving force with respect to vehicle speed in the target driving force calculation unit of FIG. 2. 3 is a graph showing a map of a driving mode with respect to a vehicle speed and an accelerator opening degree in the mode selection unit of FIG. 2. It is a block diagram of the hybrid vehicle of FIG. 1, a center, and an electric power company. It is a figure for demonstrating the relationship of the driving mode with respect to SOC in the target charging / discharging calculating part of FIG. It is a flowchart which shows the control procedure of the integrated control unit of FIG.
  • the hybrid vehicle 1 is a parallel electric vehicle that uses a plurality of power sources for driving the vehicle.
  • the hybrid vehicle of this example is a plug-in hybrid vehicle that can charge the battery 30 provided in the vehicle with the electric power from the external charging device 200.
  • the hybrid vehicle 1 includes an internal combustion engine (hereinafter referred to as “engine”) 10, a first clutch 15, a motor generator (electric motor / generator) 20, a second clutch 25, a battery 30, and an inverter 35.
  • An automatic transmission 40 a propeller shaft 51, a differential gear unit 52, a drive shaft 53, left and right drive wheels 54, and a display 90.
  • a continuously variable transmission (CVT) may be used instead of the automatic transmission 40.
  • Engine 10 is an internal combustion engine that is driven by gasoline or light oil as fuel, and based on a control signal from engine control module 70, the valve opening of the throttle valve, fuel injection amount, ignition timing, and the like are controlled.
  • the engine 10 is provided with an engine speed sensor 11 for detecting the engine speed Ne and a water temperature sensor 12 for detecting the temperature of the cooling water of the engine 10.
  • the first clutch 15 is interposed between the output shaft of the engine 10 and the rotation shaft of the motor generator 20, and connects and disconnects power transmission between the engine 10 and the motor generator 20.
  • a wet multi-plate clutch that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid can be exemplified.
  • the first clutch 15 controls the hydraulic pressure of the hydraulic unit 16 based on a control signal from the integrated control unit 60, thereby engaging / disengaging the clutch plate (including a slip state).
  • the motor generator 20 is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the motor generator 20 is provided with a motor rotation speed sensor 21 for detecting the rotor rotation speed Nm.
  • the motor generator 20 functions not only as an electric motor but also as a generator.
  • the motor generator 20 When three-phase AC power is supplied from the inverter 35, the motor generator 20 is driven to rotate (powering).
  • motor generator 20 When the rotor is rotated by an external force, motor generator 20 generates AC power by generating electromotive force at both ends of the stator coil (regeneration).
  • the AC power generated by the motor generator 20 is converted into a DC current by the inverter 35 and then charged to the battery 30.
  • the battery 30 include a lithium ion secondary battery and a nickel hydride secondary battery.
  • a current / voltage sensor 31 is attached to the battery 30, and these detection results can be output to the motor control unit 80.
  • the battery 30 is a battery that can be charged by an external charging device 200 provided outside the vehicle, and is connected to a charging port 34 via a charger 32 and a switch 33.
  • the battery 30 also acts as a battery for operating home electrical equipment, for example, and can be used as an emergency power source in the event of a power failure.
  • Sensor 31 is a voltage or current sensor for detecting the state of the battery.
  • the sensor 31 is electrically connected to the battery 30.
  • the charger 32 has a charging circuit that converts AC power supplied from the external charging device 200 into DC power and supplies power to the battery 30.
  • the charger 32 is controlled by the battery control unit 100.
  • the switch 33 is connected between the charger 32 and the charging port 34, and is a switch for switching between electrical connection and disconnection between the external charging device 200 and the battery 30.
  • the charging port 34 has a connector that can be connected to the tip of the charging cable of the external charging device 200, and is provided on the surface portion of the vehicle 1. When the leading end portion of the charging cable is connected to the charging port 34, a signal indicating that it is connected is transmitted to the battery control unit 100.
  • a power control device (not shown) for supplying power to the home is connected to the charging port 34, and the battery 30 and the house are connected via the power control device. Electrically connect to the distribution board. And in the state which switched on, the electric power of the battery 30 is supplied to a house through the said electric power control apparatus.
  • the power control device may be mounted on the vehicle 1.
  • the external charging device 200 is provided outside the vehicle 1 and is installed in a parking lot at home, a commercial facility such as a shopping center, a public facility such as a city hall, or a facility such as a factory.
  • a commercial facility such as a shopping center
  • a public facility such as a city hall
  • a facility such as a factory.
  • the external charging device 200 is connected to a home AC power source, converts power from the AC power source into power suitable for supply to the vehicle 1, and a charging cable (not shown). To the charging port 34.
  • the automatic transmission 40 is a transmission that automatically switches stepped gear ratios such as forward 7 speed, reverse 1 speed, etc. according to the vehicle speed, accelerator opening, and the like.
  • the automatic transmission 40 changes the gear ratio based on a control signal from the integrated control unit 60.
  • the output shaft of the automatic transmission 40 is connected to the left and right drive wheels 54 via a propeller shaft 51, a differential gear unit 52, and left and right drive shafts 53.
  • reference numeral 55 denotes left and right steering front wheels.
  • the telematics control unit 50 includes a communication device for performing transmission / reception with the outside of the center 300 and the like, and transmits / receives information to / from the center 300 that manages a vehicle to be described later.
  • the telematics control unit 50 is connected to the integrated control unit 60 by CAN communication.
  • the display 90 is a display device for displaying information or the like managed by the navigation system included in the integrated control unit 60 and notifying the passenger of the information.
  • the hybrid vehicle 1 in the present embodiment can be switched to three travel modes according to the engaged / released state of the first and second clutches 15 and 25.
  • the first travel mode is referred to as a motor use travel mode (hereinafter referred to as “EV travel mode”) in which the first clutch 15 is disengaged and the second clutch 25 is engaged to travel using only the power of the motor generator 20 as a power source. ).
  • EV travel mode motor use travel mode
  • the second travel mode is an engine use travel mode (hereinafter referred to as “HEV travel mode”) in which both the first clutch 15 and the second clutch 25 are engaged to travel while including the engine 10 as a power source in addition to the motor generator 20. .)
  • HEV travel mode engine use travel mode
  • the third travel mode is a slip travel mode in which the second clutch 25 is in a slip state and travels while including at least one of the engine 10 or the motor generator 20 as a power source (hereinafter referred to as “WSC travel mode”).
  • WSC travel mode a slip travel mode in which the second clutch 25 is in a slip state and travels while including at least one of the engine 10 or the motor generator 20 as a power source
  • the released first clutch 15 is engaged, and the engine 10 is started using the torque of the motor generator 20.
  • the “HEV travel mode” includes three travel modes of “engine travel mode”, “motor assist travel mode”, and “travel power generation mode”.
  • the drive wheels 54 are moved using only the engine 10 as a power source.
  • the drive wheels 54 are moved using two of the engine 10 and the motor generator 20 as power sources.
  • the motor generator 20 is caused to function as a generator at the same time as the drive wheels 54 are moved using the engine 10 as a power source.
  • a power generation mode for charging the battery 30 and supplying power to the electrical components by causing the motor generator 20 to function as a generator using the power of the engine 10 when the vehicle is stopped. May be.
  • the control system of the hybrid vehicle 1 in this embodiment includes an integrated control unit 60, an engine control module 70, a motor control unit 80, and a battery control unit 100, as shown in FIG. These control units 60, 70, 80, and 100 are connected to each other through, for example, CAN communication.
  • the engine control unit 70 inputs information from the engine speed sensor 11 and controls the engine operating point (engine speed Ne, engine torque Te) in response to a command such as the target engine torque tTe from the integrated control unit 60.
  • the command is output to a throttle valve actuator, an injector, a spark plug, etc. provided in the engine 10.
  • the engine control unit 70 controls the injector based on the temperature detected by the water temperature sensor 12 and adjusts the fuel injection amount.
  • Information on the engine speed Ne and the engine torque Te is supplied to the integrated control unit 60 via CAN communication.
  • the motor control unit 80 inputs information from the motor rotation speed sensor 21 provided in the motor generator 20, and receives a command such as a target motor generator torque tTm (may be a target motor generator rotation speed tNm) from the integrated control unit 60. In response, a command for controlling the operating point (motor rotation speed Nm, motor torque Tm) of motor generator 20 is output to inverter 35.
  • a command for controlling the operating point (motor rotation speed Nm, motor torque Tm) of motor generator 20 is output to inverter 35.
  • the motor control unit 80 calculates and manages the SOC of the battery 30 based on the current value and the voltage value detected by the current / voltage sensor 31.
  • the battery SOC information is used as control information for the motor generator 20 and is sent to the integrated control unit 60 via CAN communication.
  • the battery control unit 100 is a control unit for managing the state of the battery, calculates the state of charge (SOC) of the battery from the detection value of the sensor 31, and transmits it to the integrated control unit 60.
  • SOC state of charge
  • the battery control unit 100 controls the charger 32, manages the SOC of the battery 30 during charging of the battery 30 by the external charging device 200, and turns off the switch 33 when the battery 30 reaches the target SOC.
  • the integrated control unit 60 efficiently controls the hybrid vehicle 1 by integrally controlling the operating point of the power train composed of the engine 10, the motor generator 20, the automatic transmission 40, the first clutch 15, and the second clutch 25. It bears the function to make it run.
  • the integrated control unit 60 calculates the operating point of the power train based on information from each sensor acquired through CAN communication, and controls the operation of the engine according to a control command to the engine control module 70, and the motor control unit 80. Operation control of the motor generator 20 by the control command to the automatic transmission 40, operation control of the automatic transmission 40 by the control command to the automatic transmission 40, engagement / release of the first clutch 15 by the control command to the hydraulic unit 16 of the first clutch 15 Control and engagement / release control of the second clutch 25 by a control command to the hydraulic unit 26 of the second clutch 25 are executed.
  • FIG. 2 is a control block diagram of the integrated control unit 60.
  • the integrated control unit 60 includes a target driving force calculation unit 61, a mode selection unit 62, a target charge / discharge calculation unit 63, an operating point command unit 64, and a shift control unit 65.
  • FIG. 3 shows an example of the target driving force map.
  • the mode selection unit 62 refers to the mode map and selects the target mode.
  • FIG. 4 shows an example of the mode map.
  • regions of the EV travel mode, the WSC travel mode, and the HEV travel mode are set according to the vehicle speed VSP and the accelerator opening APO.
  • the mode selection unit 62 requests the operating point command unit 64 to start the engine 10 when the EV traveling mode is shifted to the HEV traveling mode beyond the starting line Lo.
  • the engine start line Lo corresponds to a threshold value for starting the engine 10, and the engine 10 is started when the accelerator opening APO or the vehicle speed VSP is larger than the threshold value.
  • the above-mentioned WSC travel modes are assigned to low speed regions (for example, regions of 15 km / h or less) in both the EV travel mode and the HEV travel mode.
  • the predetermined vehicle speed VSP1 that defines the WSC travel mode is a vehicle speed at which the engine 10 can rotate independently. Therefore, in a region lower than the predetermined vehicle speed VSP1, the engine 10 cannot rotate independently while the second clutch 25 remains engaged.
  • the mode may be forcibly shifted to the HEV travel mode.
  • the target charge / discharge calculation unit 63 calculates the target charge / discharge power tP from the SOC of the battery 30 using a predetermined target charge / discharge amount map.
  • the target charge / discharge calculation unit 63 calculates a target charging power for charging the battery 30 when the SOC of the battery 30 is low, and discharges the battery 30 when the SOC of the battery 30 is high.
  • the target discharge power to be calculated is calculated and transmitted to the operating point command unit 64. Further, the target charge / discharge calculation unit 63 sets the target charge / discharge power based on the external information received by the telematics control unit 50. The detailed control contents of the target charge / discharge calculation unit 63 based on the external information will be described later.
  • the operating point command unit 64 uses the target opening torque APO, the target driving force tFo0, the target mode, the vehicle speed VSP, and the target charge / discharge power tP as a target target for achieving the power train operating point tTe.
  • Target motor generator torque tTm may be target motor generator torque tNm
  • target first clutch transmission torque capacity tTc1 target second clutch transmission torque capacity tTc2
  • target gear stage of automatic transmission 40 are calculated.
  • the target engine torque tTe is sent from the integrated control unit 60 to the engine control unit 70, and the target motor generator torque tTm (may be the target motor generator rotational speed tNm) is sent from the integrated control unit 60 to the motor control unit 80.
  • the operating point command unit 64 calculates a target first clutch transmission torque capacity tTc1 and a target second clutch transmission torque capacity tTc2 in order to generate a target driving force under the target mode set by the mode selection unit 62.
  • the integrated control unit 60 For the target first clutch transmission torque capacity tTc1 and the target second clutch transmission torque capacity tTc2, the integrated control unit 60 generates solenoid currents corresponding to the target first clutch transmission torque capacity tTc1 and the target second clutch transmission torque capacity tTc2. Supply to the hydraulic units 16 and 26, respectively.
  • the operating point command unit 64 can start the engine 10 as a request on the system regardless of the selection mode by the mode selection unit 62, such as when the SOC is lowered. For example, when the mode selection unit 62 selects the EV mode, but the SOC of the battery 30 is reduced, and the target charge / discharge calculation unit 63 calculates the target charge power for charging the battery 30, The operating point command unit 64 calculates a target calculation torque and starts the engine 10 via the engine control module 70.
  • the shift control unit 65 drives and controls the solenoid valve in the automatic transmission 40 so as to achieve the target shift stage according to the shift schedule shown in the shift map.
  • the shift map used at this time is one in which a target shift speed is set in advance based on the vehicle speed VSP and the accelerator opening APO as shown in FIG.
  • FIG. 5 shows a block diagram of hybrid vehicle 1, center 300, and electric power company 500.
  • the center 300 communicates with the hybrid vehicle 1.
  • the center 300 has a database 301 and a controller 302.
  • the database 301 records map data and the like.
  • the controller 302 is a control unit that records information in the database 301 and transmits information to the vehicle 1.
  • the center 300 is connected to the power company 500 in a state where the center 300 can communicate with the power company 500 by wire or wirelessly, and receives information transmitted from the power company 500 and records it in the database 301 or the hybrid vehicle 1. Send.
  • the power company 500 is a company for supplying power to power demand facilities such as homes and factories.
  • the power company 500 manages the amount of power supply, power outage information, and the like as power supply information to power consumers.
  • the power outage information includes information on a power outage area indicating an area where a power outage occurs and information on a time related to the power outage.
  • power outage information includes information on the expected power outage caused by a shortage of power supply relative to the expected consumption per area, information on the time when power outage is expected, or the time expected to recover from power outage. Information may be included.
  • the power company 500 transmits power outage information including at least a power outage area to the center 300 when a power outage occurs in a specific range.
  • Center 300 transmits the power failure information received from electric power company 500 to hybrid vehicle 1.
  • the integrated control unit 60 of the hybrid vehicle 1 includes a navigation system 66 and a priority mode selection unit 67 as shown in FIG. 5 in addition to the configuration shown in FIG.
  • the navigation system 66 is a system that manages position information such as the current position of the vehicle, the destination, and the position registered by the user as a home on map data, and has a GPS function.
  • the priority mode selection unit 67 is a control unit for selecting which mode is to be given priority between the EV traveling mode and the HEV traveling mode set by the integrated control unit 60, and setting the priority mode. Select either the priority mode or the EV priority mode.
  • the EV priority mode is a mode in which the driving of the engine is prioritized over the power supply from the battery 30 and the vehicle 1 is driven by the driving force of the motor generator 20 and the engine 10.
  • the HEV priority mode is a mode in which the engine 10 is not driven and the vehicle 1 is driven by the driving force of the motor generator 20 by giving priority to the power supply from the battery 30 to the motor generator 20 over the driving of the engine 10.
  • FIGS. 6A and 6B are diagrams for explaining the relationship of the travel mode with respect to the SOC of the battery 30.
  • FIG. 6A shows the EV priority mode
  • FIG. 6B shows the HEV priority mode.
  • the registration point such as the user's home or the user's destination is within the range of the power failure area indicated by the power failure information using the navigation system 66. It is determined whether or not.
  • the priority mode selection unit 67 selects the HEV priority mode when the user's home or destination is within the power outage area.
  • a mode switching threshold (SOC ch ) and a target charging state (SOC m ) for switching between the HEV traveling mode and the EV traveling mode are set in advance.
  • the mode switching threshold (SOC ch ) and the target charging state (SOC m ) are defined by the SOC.
  • the integrated control unit 60 sets the charging power for charging the battery 10 as a system request by the target charge / discharge calculation unit 63, and operates the operating point command By setting the target engine torque so as to start the engine 10 at the value 64, the engine 10 is driven to generate electric power by the motor generator 20, and the battery 10 is charged.
  • the target charging / discharging calculation unit 63 outputs charging power so as to drive the engine until the SOC of the battery 10 reaches the target charging state (SOC m ).
  • the target charge / discharge calculation unit 63 sets the target charge / discharge power to zero.
  • the target charge / discharge calculation unit 63 discharges the battery 10 so that the battery 10 is actively used, and the SOC of the battery 10 is Calculate the target discharge power to achieve the target charge state (SOC m ).
  • target charge / discharge calculation unit 63 charges battery 10 during regeneration of motor generator 20. The target charging power is calculated.
  • the target charge / discharge calculation unit 63 sets the mode switching threshold (SOC ch ) and the target charge state (SOC m ) according to the priority mode selected by the priority mode selection unit 67.
  • the target charge / discharge calculation unit 63 sets the mode switching threshold (SOC ch ) to 40% as shown in FIG. Set the state (SOC m ) to 60 percent.
  • the target charge / discharge calculation unit 63 sets the mode switching threshold (SOC ch ) to 50%. Set the target state of charge (SOC m ) to 70 percent.
  • the mode switching threshold (SOC ch ) in the HEV priority mode is higher than the mode switching threshold (SOC ch ) in the EV priority mode
  • the mode target charging state (SOC m ) in the EV priority mode is the EV priority mode.
  • the target charge / discharge calculation unit 63 sets a mode switching threshold (SOC ch ) and a target charge state (SOC m ) according to the priority mode so as to be higher than the target charge state (SOC m ) in the case of.
  • the mode switching threshold (SOC ch ) when the mode switching threshold (SOC ch ) is increased, the engine 10 is controlled to drive even when the SOC of the battery 10 is high, and the region operated in the HEV traveling mode increases.
  • the HEV priority mode is given priority to driving.
  • the mode target charging state (SOC m ) when the mode target charging state (SOC m ) is increased, the driving time of the engine 10 becomes longer when the engine 10 is driven and the battery 30 is charged. Therefore, the HEV priority mode in which the operation of the engine 10 is prioritized is set. Become. Thereby, based on the power failure information received from the center 300, the integrated controller 60, when the home or the destination is within the range of the power failure region, the mode switching threshold (SOC ch ) and the target charging state (SOC m ). Is set to the HEV priority mode.
  • FIG. 7 is a flowchart showing a control procedure of the integrated control unit 60.
  • the telematics control unit 50 acquires power outage information from the center 300.
  • the integrated control unit 60 determines whether or not the home is within the range of the power outage area. If the home is within the power outage area, the process proceeds to step S4. If the home is outside the range of the power outage area, in step S3, the integrated control unit 60 determines whether or not the destination is within the range of the power outage area.
  • the integrated control unit 60 selects the HEV priority mode by the priority mode selection unit 67 in step S4. Then, the target charge / discharge calculation unit 63 sets the mode switching threshold (SOC ch ) and the target charge state (SOC m ) to a higher value than the value in the EV priority mode, thereby setting the HEV priority mode. .
  • the integrated control unit 60 selects the EV priority mode by the priority mode selection unit 67 in step S5, and performs target charge / discharge calculation.
  • the unit 63 sets the mode switching threshold (SOC ch ) and the target charging state (SOC m ) to values lower than those in the HEV priority mode, thereby setting the EV priority mode.
  • control for selecting the HEV priority mode or the EV priority mode is performed, and the HEV priority mode is selected based on the power failure information received from the center 300.
  • the HEV priority mode is selected. Thereby, consumption of the battery 30 can be suppressed until returning home.
  • the usage time of the battery 30 can be extended.
  • the HEV priority mode is selected. Thereby, consumption of the battery 30 can be suppressed until it arrives at the destination. Moreover, when the battery 30 is used as a power source at the destination, the usage time of the battery 30 can be lengthened.
  • the power failure information does not necessarily need to be information transmitted from the power company.
  • the center 300 receives disaster information from the Japan Meteorological Agency, etc.
  • the possibility of power outage and the power outage area are identified from the disaster scale (earthquake intensity, etc.) and disaster occurrence area included in the disaster information, and the identified information is used as power outage information. May be transmitted to the hybrid vehicle 1.
  • the home and destination are registered points, and the priority mode is selected depending on whether or not the registered point is within the power outage area, but either the home or the destination is registered.
  • the priority mode may be selected. It may also be the current location of the vehicle.
  • the mode switching threshold (SOC ch ) and the target charging state (SOC m ) are set to high values, but the mode switching threshold (SOC ch ) or the target charging state (SOC) is set. Any one value of m ) may be set to a high value.
  • the priority mode selection control is performed on the vehicle 1 side, but may be performed on the center 300 side.
  • the integrated control unit 60 of the vehicle 1 transmits position information regarding the home or destination to the center 300 via the telematics control unit 50.
  • the controller 302 stores the received position information in the database 301 while corresponding to the received position information and the identification information of the vehicle that transmitted the position information.
  • the controller 302 receives the power failure information from the electric power company 500, the controller 302 specifies the range of the power failure area using the map data of the database 301.
  • the controller 302 determines whether or not the registration point based on the position information transmitted from the hybrid vehicle 1 is within the power outage area.
  • the controller 302 selects the HEV priority mode so that the hybrid vehicle 1 corresponding to the registration point within the power failure area is controlled in the HEV priority mode.
  • the controller 302 transmits a control signal indicating the HEV priority mode, which is the selected mode, to the hybrid vehicle 1 (the hybrid vehicle 1 whose home or destination is in the range of the power outage region).
  • the hybrid vehicle 1 that has received the control signal similarly to the above, sets the mode switching threshold (SOC ch) and the target state of charge (SOC m) to a higher value.
  • SOC ch mode switching threshold
  • SOC m target state of charge
  • the above integrated control unit 60 corresponds to the “control means” of the present invention
  • the telematics control unit 50 corresponds to the “reception means” of the present invention
  • the navigation system 66 corresponds to the “management means” of the present invention.
  • FIG. 8 shows a mode map stored in the mode selection unit 62 of the hybrid vehicle 1 according to another embodiment of the invention. This example differs from the first embodiment described above in that the engine start line is set according to the priority mode. Other configurations are the same as those in the first embodiment described above, and the description thereof is incorporated.
  • the mode selection unit 62 sets the engine start line to one of the start line Lo and the start line Lp according to the priority mode selected by the priority mode selection unit 67. Specifically, when the HEV priority mode is selected by the priority mode selection unit 67, the mode selection unit 62 sets the start line Lp, and when the EV priority mode is selected, the mode selection unit 62 Set to start line Lo.
  • the operation region in the HEV travel mode is wider than the operation region in the HEV travel mode when the start line Lo is set.
  • the driving of the engine 10 is prioritized.
  • the starting line Lo is set
  • the driving region of the EV traveling mode is wider than the operating region of the EV traveling mode when the starting line Lp is set.
  • the power supply of the battery 30 is prioritized.
  • this example performs control for selecting the HEV priority mode or the EV priority mode, selects the HEV priority mode based on the power failure information received from the center 300, and sets the engine start line to the start line Lp. By doing so, the HEV priority mode is set. Thereby, when the power failure has generate
  • FIG. 9 is a diagram for explaining a driving state of the engine 10 with respect to the water temperature of the engine 10 controlled by the engine 10 control unit 70 of the hybrid vehicle 1 according to another embodiment of the invention.
  • the point which controls the engine drive point with respect to the water temperature of the engine 10 differs with respect to 1st Embodiment mentioned above according to priority mode.
  • Other configurations are the same as those in the first embodiment described above, and the descriptions of the first and second embodiments are incorporated as appropriate.
  • ON indicates that the engine 10 is driving, and OFF indicates that the engine 10 is stopped.
  • the solid line indicates the characteristic in the EV priority mode, and the dotted line indicates the characteristic in the HEV priority mode.
  • the integrated control unit 60 may control the engine 10 in the HEV running mode by driving the engine 10 even when the battery SOC is high when the water temperature of the engine 10 is lowered as a system request.
  • the starting point of the engine 10 has a hysteresis relationship with respect to the water temperature of the engine 10. Referring to the solid line graph in FIG. 9, when the engine 10 is driven and the water temperature tends to rise, the engine 10 is stopped when the water temperature of the engine 10 exceeds 50 ° C. On the other hand, when the engine 10 is stopped and the water temperature tends to decrease, the engine 10 is driven when the water temperature of the engine 10 becomes lower than 30 ° C.
  • the engine control unit 70 sets the threshold temperature of the water temperature at which the engine 10 is stopped according to the priority mode selected by the priority mode selection unit 67. Specifically, when the HEV priority mode is selected by the priority mode selection unit 67, the threshold temperature (Tp) of the water temperature at which the engine 10 is stopped is set to the threshold temperature (Tp), and the EV priority mode is selected. Is set to a threshold temperature (To). The threshold temperature (Tp) is higher than the threshold temperature (To).
  • the engine 10 When the threshold temperature (Tp) is set, the engine 10 is started before the water temperature of the engine 10 becomes so low that the engine 10 is easily driven, and the engine 10 is more driven than the battery 30 is supplied with power. The driving of 10 will be prioritized.
  • the threshold temperature (To) when the threshold temperature (To) is set, the engine 10 is not started unless the water temperature of the engine 10 is lowered, so that the engine 10 is difficult to be driven, and the power supply of the battery 30 is supplied rather than the driving of the engine 10. Will be given priority.
  • the integrated controller 60 sets the threshold temperature (Tp) of the water temperature at which the engine 10 is stopped when the home or the destination is within the range of the power failure area. By setting to, the threshold temperature of the water temperature is set higher than the threshold temperature in the EV priority mode, and the HEV priority mode is set.
  • this example performs control for selecting the HEV priority mode or the EV priority mode, selects the HEV priority mode based on the power failure information received from the center 300, and starts the engine 10 with the threshold temperature of the water temperature. Is set to the threshold temperature (Tp) to set the HEV priority mode.
  • Tp threshold temperature
  • the threshold temperature of the water temperature for starting the engine 10 is set on the graph of FIG. 9 according to the priority mode, but the threshold temperature of the water temperature for stopping the engine 10 (corresponding to 50 ° C. in FIG. 9). ) May be set. That is, when the HEV priority mode is selected, the threshold temperature of the water temperature at which the engine 10 is stopped is set to a temperature higher than the threshold temperature in the EV priority mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 動力源としてエンジン10及びモータ20を備えたハイブリッド車両の制御装置において、外部電源と接続可能で、当該外部電源からの電力により充電されるバッテリ30と、バッテリ30からモータ20への電力の供給を優先しモータ20の駆動力で走行するEV優先モード、または、エンジン10の駆動を優先しモータ20及びエンジン10の駆動力で走行するHEV優先モードを選択する制御手段と、電力会社からの電力供給が停止したことを示す停電情報を、外部から受信する受信手段とを備え、制御手段は、停電情報に基づいてHEV優先モードを選択する。

Description

ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法
 本発明は、ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法に関するものである。
 本出願は、2012年4月9日に出願された日本国特許出願の特願2012―088242に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
 動力源として内燃機関および回転電機を搭載するハイブリッド自動車であって、車両外部から与えられる電力を受けてバッテリを充電するための電力入力部と、所定の制御範囲内または制御目標値にバッテリのSOCを制御する制御装置とを備え、制御装置は、充電可能地点(自宅など)への到着時刻を予測し、到着予想時刻が夜になると判定すると、HV走行重視モード用のSOC制御上下限値よりも低いEV走行重視モード用のSOC制御上下限値を設定し、その上下限値に基づいてバッテリのSOCを制御することで、帰宅時には、深夜電力をバッテリの充電により多く充てることができ、電力コストを低減するハイブリッド自動車が知られている(特許文献1)。
特開2007-62638号公報
 しかしながら、バッテリを充電する予定の場所で停電が発生した時には、バッテリを充電することができず、当該場所において、バッテリの使用時間が短くなる、という問題があった。
 本発明が解決しようとする課題は、特定のエリアで停電が発生した場合に、当該特定のエリアにおいて、車両に搭載されたバッテリの使用時間を長くすることができる、ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及び管理方法を提供することである。
 本発明は、バッテリからモータへの電力の供給を優先しモータの駆動力で走行するEV優先モード、または、エンジンの駆動を優先しモータ及びエンジンの駆動力で走行するHEV優先モードのうち、停電情報に基づいて、HEV優先モードを選択することによって上記課題を解決する。
 本発明によれば、特定のエリアで停電が発生した場合には、バッテリの消費が抑制されるため、当該特定のエリア内におけるバッテリの使用時間を長くすることができる、という効果を奏する。
本発明の実施形態に係るハイブリッド車両のブロック図である。 図1の統合コントロールユニットのブロック図である。 図2の目標駆動力演算部における、車速に対する目標駆動力の特性を示すグラフである。 図2のモード選択部における、車速及びアクセル開度に対する走行モードのマップを示すグラフである。 図1のハイブリッド車両、センター及び電力会社のブロック図である。 図2の目標充放電演算部における、SOCに対する走行モードの関係を説明するための図である。 図1の統合コントロールユニットの制御手順を示すフローチャートである。 本発明の他の実施形態に係るハイブリッド車両の目標駆動力演算部における、車速に対する目標駆動力の特性を示すグラフである。 本発明の他の実施形態に係るハイブリッド車両における、エンジンの水温に対するエンジンの駆動状態を説明するための図である。
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 本実施形態に係るハイブリッド車両1は、複数の動力源を車両の駆動に使用するパラレル方式の電気自動車である。また、本例のハイブリッド車両は、外部充電装置200からの電力により、車両に設けられたバッテリ30を充電可能なプラグインハイブリッド車両である。このハイブリッド車両1は、図1に示すように、内燃機関(以下、「エンジン」という)10、第1クラッチ15、モータジェネレータ(電動機・発電機)20、第2クラッチ25、バッテリ30、インバータ35、自動変速機40、プロペラシャフト51、ディファレンシャルギアユニット52、ドライブシャフト53、左右の駆動輪54及びディスプレイ90を備えている。なお、以下、本発明をパラレル方式のハイブリッド車に適用した場合について説明するが、本発明は他の方式のハイブリッド車両にも適用可能である。また自動変速機40の代わりに、無段変速機(CVT)を用いてもよい。
 エンジン10は、ガソリン又は軽油を燃料として駆動する内燃機関であり、エンジンコントロールモジュール70からの制御信号に基づいて、スロットルバルブのバルブ開度、燃料噴射量、点火時期等が制御される。このエンジン10には、エンジン回転数Neを検出するためのエンジン回転数センサ11及びエンジン10の冷却水の温度を検出するための水温センサ12が設けられている。
 第1クラッチ15は、エンジン10の出力軸とモータジェネレータ20の回転軸との間に介装されており、エンジン10とモータジェネレータ20との間の動力伝達を断接する。この第1クラッチ15の具体例としては、例えば比例ソレノイドで油流量及び油圧を連続的に制御できる湿式多板クラッチ等を例示することができる。この第1クラッチ15は、統合コントロールユニット60からの制御信号に基づいて油圧ユニット16の油圧が制御されることで、クラッチ板を締結(スリップ状態も含む。)/解放させる。
 モータジェネレータ20は、ロータに永久磁石を埋設し、ステータにステータコイルが巻き付けられた同期型モータジェネレータである。このモータジェネレータ20には、ロータ回転数Nmを検出するためのモータ回転数センサ21が設けられている。このモータジェネレータ20は、電動機としても機能するし発電機としても機能する。インバータ35から三相交流電力が供給されている場合には、モータジェネレータ20は回転駆動する(力行)。一方、外力によってロータが回転している場合には、モータジェネレータ20は、ステータコイルの両端に起電力を生じさせることで交流電力を生成する(回生)。モータジェネレータ20によって発電された交流電力は、インバータ35によって直流電流に変換された後に、バッテリ30に充電される。
 バッテリ30の具体例としては、リチウムイオン二次電池やニッケル水素二次電池等を例示することができる。このバッテリ30には電流・電圧センサ31が取り付けられており、これらの検出結果をモータコントロールユニット80に出力することが可能となっている。バッテリ30は、車両の外部に設けられた外部充電装置200により充電可能なバッテリであり、充電器32及びスイッチ33を介して充電ポート34に接続されている。またバッテリ30は、例えば自宅の電気機器を動作ための蓄電器としても作用し、停電時の非常用の電源として用いることができる。
 センサ31はバッテリの状態を検出するための電圧または電流センサである。センサ31はバッテリ30と電気的に接続されている。充電器32は、外部充電装置200から供給される交流電力を直流電力に変換して、バッテリ30に電力を供給する充電回路を有している。充電器32はバッテリコントロールユニット100により制御される。スイッチ33は、充電器32と充電ポート34との間に接続され、外部充電装置200とバッテリ30との電気的な導通及び遮断を切り替えるためのスイッチである。
 充電ポート34は、外部充電装置200の充電ケーブルの先端部分と接続可能なコネクタを有し、車両1の表面部分に設けられている。充電ポート34に、当該充電ケーブルの先端部分が接続されると、接続されたことを示す信号が、バッテリコントロールユニット100に送信される。
 またバッテリ30を家庭用の電源として用いる場合には、充電ポート34に、家庭へ電力を供給するための電力制御装置(図示しない)を接続し、当該電力制御装置を介して、バッテリ30と住宅の分電盤とを電気的に接続する。そして、スイッチ33をオンにした状態で、当該電力制御装置を介して、バッテリ30の電力を住宅に供給する。なお、電力制御装置は車両1に搭載してもよい。
 外部充電装置200は、車両1の外部に設けられ、自宅の駐車場や、ショッピングセンタ等の商業施設、市役所などの公的施設、工場などの施設などに設置されている。外部充電装置200は、自宅の駐車場に設けられる場合には、家庭用の交流電源に接続され、交流電源からの電力を、車両1への供給に適した電力に変換し、図示しない充電ケーブルを介して、充電ポート34に供給する。
 自動変速機40は、前進7速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り換える変速機である。この自動変速機40は、統合コントロールユニット60からの制御信号に基づいて変速比を変化させる。自動変速機40の出力軸は、プロペラシャフト51、ディファレンシャルギアユニット52、及び左右のドライブシャフト53を介して、左右の駆動輪54に連結されている。なお、図1において55は左右の操舵前輪である。
 テレマティクスコントロールユニット50は、センター300等の外部との送受信を行うための通信機を備えており、後述する車両を管理するセンター300との間で情報の送受信を行う。また、テレマティクスコントロールユニット50は統合コントローユニット60と、CAN通信により接続されている。
 ディスプレイ90は、統合コントローユニット60に含まれるナビゲーションシステムで管理された情報等を表示して、情報を乗員に報知するための表示装置である。
 本実施形態におけるハイブリッド車両1は、第1及び第2クラッチ15,25の締結/解放状態に応じて3つの走行モードに切り替えることが可能となっている。
 第1走行モードは、第1クラッチ15を解放させると共に第2クラッチ25を締結させて、モータジェネレータ20の動力のみを動力源として走行するモータ使用走行モード(以下、「EV走行モード」と称する。)である。
 第2走行モードは、第1クラッチ15及び第2クラッチ25のいずれも締結させて、モータジェネレータ20に加えてエンジン10を動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と称する。)である。
 第3走行モードは、第2クラッチ25をスリップ状態として、エンジン10又はモータジェネレータ20の少なくとも一方を動力源に含みながら走行するスリップ走行モード(以下、「WSC走行モード」と称する。)である。
 なお、EV走行モードからHEV走行モードに移行する際には、解放していた第1クラッチ15を締結し、モータジェネレータ20のトルクを利用してエンジン10を始動させる。
 さらに、上記の「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを含む。
 「エンジン走行モード」は、エンジン10のみを動力源として駆動輪54を動かす。「モータアシスト走行モード」は、エンジン10とモータジェネレータ20の2つを動力源として駆動輪54を動かす。「走行発電モード」は、エンジン10を動力源として駆動輪54を動かすと同時に、モータジェネレータ20を発電機として機能させる。
 なお、以上に説明したモードの他に、停車時において、エンジン10の動力を利用してモータジェネレータ20を発電機として機能させ、バッテリ30を充電したり電装品へ電力を供給する発電モードを備えてもよい。
 本実施形態におけるハイブリッド車両1の制御系は、図1に示すように、統合コントロールユニット60、エンジンコントロールモジュール70、及びモータコントロールユニット80、バッテリコントロールユニット100を備えている。これらの各コントロールユニット60,70,80、100は、例えばCAN通信を介して相互に接続されている。
 エンジンコントロールユニット70は、エンジン回転数センサ11からの情報を入力し、統合コントロールユニット60からの目標エンジントルクtTe等の指令に応じ、エンジン動作点(エンジン回転数Ne、エンジントルクTe)を制御する指令を、エンジン10に備えられたスロットルバルブアクチュエータ、インジェクタ、点火プラグ等に出力する。またエンジンコントロールユニット70は、水温センサ12の検出温度に基づいて、インジェクタを制御し、燃料噴射量を調整する。なお、エンジン回転数Ne、エンジントルクTeの情報は、CAN通信を介して統合コントロールユニット60に供給される。
 モータコントロールユニット80は、モータジェネレータ20に設けられたモータ回転数センサ21からの情報を入力し、統合コントロールユニット60からの目標モータジェネレータトルクtTm(目標モータジェネレータ回転数tNmでもよい)等の指令に応じて、モータジェネレータ20の動作点(モータ回転数Nm、モータトルクTm)を制御する指令をインバータ35に出力する。
 また、モータコントロールユニット80は、電流・電圧センサ31により検出された電流値及び電圧値に基づいてバッテリ30のSOCを演算及び管理する。このバッテリSOC情報は、モータジェネレータ20の制御情報に用いられると共に、CAN通信を介して統合コントロールユニット60に送出される。
 バッテリコントロールユニット100は、バッテリの状態を管理するためのコントロールユニットであり、センサ31の検出値からバッテリの充電状態(SOC)を算出し、統合コントロールユニット60に送信する。バッテリコントロールユニット100は、充電ポート34からの信号により、外部充電装置200が接続されてことを検出すると、スイッチ33をオンにする。
 また、バッテリコントロールユニット100は、充電器32を制御し、外部充電装置200によるバッテリ30の充電中、バッテリ30のSOCを管理し、バッテリ30が目標SOCに達すると、スイッチ33をオフにする。
 統合コントロールユニット60は、エンジン10、モータジェネレータ20、自動変速機40、第1クラッチ15、及び第2クラッチ25からなるパワートレインの動作点を統合的に制御することで、ハイブリッド車両1を効率的に走行させるための機能を担うものである。
 この統合コントロールユニット60は、CAN通信を介して取得される各センサからの情報に基づいてパワートレインの動作点を演算し、エンジンコントロールモジュール70への制御指令によるエンジンの動作制御、モータコントロールユニット80への制御指令によるモータジェネレータ20の動作制御、自動変速機40への制御指令による自動変速機40の動作制御、第1クラッチ15の油圧ユニット16への制御指令による第1クラッチ15の締結・解放制御、及び、第2クラッチ25の油圧ユニット26への制御指令による第2クラッチ25の締結・解放制御を実行する。
 次いで、統合コントロールユニット60により実行される制御のうち、エンジン10及びモータジェネレータ20の駆動制御について説明する。図2は統合コントロールユニット60の制御ブロック図である。
 図2に示すように、統合コントロールユニット60は、目標駆動力演算部61、モード選択部62、目標充放電演算部63、動作点指令部64、及び変速制御部65を備えている。
 目標駆動力演算部61は、予め定められた目標駆動力マップを用いて、アクセル開度センサ69により検出されたアクセル開度APOと、自動変速機40の出力回転センサ42により検出された変速機出力回転数No(=車速VSP)とに基づいて、目標駆動力tFo0を演算する。図3に目標駆動力マップの一例を示す。
 モード選択部62は、モードマップを参照し、目標モードを選択する。図4にモードマップの一例を示す。この図4のモードマップ(シフトマップ)には、車速VSPとアクセル開度APOに応じて、EV走行モード、WSC走行モード、及びHEV走行モードの領域がそれぞれ設定されている。
 このモードマップにおいて、エンジン始動線Loの内側にEV走行モードが割り当てられ、当該エンジン始動線Loの外側にHEV走行モードが割り当てられている。従って、モード選択部62は、EV走行モードから始動線Loを超えてHEV走行モードに移行する場合に、動作点指令部64に対してエンジン10を始動させることを要求する。
 エンジン始動線Loが、エンジン10を始動させるための閾値に相当し、アクセル開度APO又は車速VSPが当該閾値より大きい場合には、エンジン10が始動することになる。
 図4に示すように、EV走行モード及びHEV走行モード双方の低速領域(例えば15km/h以下の領域)には上述のWSC走行モードがそれぞれ割り当てられている。なお、このWSC走行モードを規定する所定車速VSP1は、エンジン10が自立回転可能な車速である。従って、この所定車速VSP1よりも低い領域では、第2クラッチ25を締結されたままの状態でエンジン10は自立回転することができない。
 なお、EV走行モードが選択されている場合であっても、バッテリ30のSOCが所定値以下である場合には、強制的にHEV走行モードに移行する場合もある。
 目標充放電演算部63は、予め定められた目標充放電量マップを用いて、バッテリ30のSOCから、目標充放電電力tPを演算する。目標充放電演算部63は、バッテリの30のSOCが低い場合には、バッテリ30を充電するための目標充電電力を演算し、また、バッテリの30のSOCが高い場合には、バッテリ30を放電するための目標放電電力を演算して、動作点指令部64に送信する。また、目標充放電演算部63は、テレマティクスコントロールユニット50により受信された外部情報に基づいて、目標充放電電電力を設定する。なお、外部情報に基づく、目標充放電演算部63の詳細な制御内容は後述する。
 動作点指令部64は、アクセル開度APO、目標駆動力tFo0と、目標モードと、車速VSPと、目標充放電電力tPとから、パワートレインの動作点達成目標として、過渡的な目標エンジントルクtTe、目標モータジェネレータトルクtTm(目標モータジェネレータトルクtNmでもよい)、目標第1クラッチ伝達トルク容量tTc1、目標第2クラッチ伝達トルク容量tTc2、及び、自動変速機40の目標変速段を演算する。
 目標エンジントルクtTeは統合コントロールユニット60からエンジンコントロールユニット70に送出され、目標モータジェネレータトルクtTm(目標モータジェネレータ回転数tNmでもよい)は統合コントロールユニット60からモータコントロールユニット80に送出される。
 動作点指令部64は、モード選択部62により設定された目標モードの下、目標駆動力を発生させるために、目標第1クラッチ伝達トルク容量tTc1及び目標第2クラッチ伝達トルク容量tTc2を演算する。目標第1クラッチ伝達トルク容量tTc1及び目標第2クラッチ伝達トルク容量tTc2については、統合コントロールユニット60が、当該目標第1クラッチ伝達トルク容量tTc1及び目標第2クラッチ伝達トルク容量tTc2に対応したソレノイド電流を油圧ユニット16,26にそれぞれ供給する。
 また、動作点指令部64は、SOCが低下している場合等、モード選択部62による選択モードと関係なく、システム上の要求としてエンジン10を始動させることも可能である。例えば、モード選択部62がEVモードを選択しているが、バッテリ30のSOCが低下しており、目標充放電演算部63がバッテリ30を充電するための目標充電電力を演算した場合には、動作点指令部64は、目標演算トルクを演算して、エンジンコントロールモジュール70を介して、エンジン10を始動させる。
 変速制御部65は、シフトマップに示すシフトスケジュールに沿って目標変速段を達成するように自動変速機40内のソレノイドバルブを駆動制御する。なお、この際に用いられるシフトマップは、図4に示すように車速VSPとアクセル開度APOに基づいて予め目標変速段が設定されたものである。
 次に、ハイブリッド車両1との間で通信を行うセンター300の構成を、図5を用いて説明する。図5に、ハイブリッド車両1と、センター300と、電力会社500のブロック図を示す。
 図5に示すように、センター300は、ハイブリッド車両1と通信を行う。センター300は、データベース301とコントローラ302とを有している。データベース301は地図データなどを記録している。コントローラ302はデータベース301への情報の記録や車両1への情報の発信等を行う制御部である。センター300は、電力会社500と有線又は無線により通信可能な状態で、電力会社500とつながっており、電力会社500から送信される情報を受信して、データベース301に記録、または、ハイブリッド車両1へ送信する。
 電力会社500は、家庭や工場などの電力の需要施設に対して電力を供給するための会社である。電力会社500は、電力需要者への電力の供給情報として、電力供給量や停電情報などを管理している。停電情報は、停電している領域を示す停電領域の情報、停電に関する時間の情報を含む。また停電情報は、エリアあたりの予想消費量に対して電力供給量が不足すること等により生じる停電の見込みの情報や、停電が予想される時間の情報、あるいは、停電の復帰が見込まれる時間の情報などを含んでもよい。
 電力会社500は、ある特定の範囲で停電が発生すると少なくとも停電領域を含む停電情報をセンター300に送信する。センター300は、電力会社500から受信した停電情報をハイブリッド車両1に送信する。
 ハイブリッド車両1の統合コントロールユニット60は、図2で示した構成の他に、図5に示すように、ナビゲーションシステム66と、優先モード選択部67とを有している。ナビゲーションシステム66は、車両の現在地、目的地及びユーザが自宅として登録した位置等の位置情報を地図データ上で管理するシステムであり、GPS機能を有している。
 優先モード選択部67は、統合コントロールユニット60で設定されるEV走行モードとHEV走行モードのうち、どちらのモードを優先させるかを選択して、優先モードを設定するための制御部であり、HEV優先モードまたはEV優先モードのいずれかを選択する。EV優先モードは、バッテリ30からの電力供給よりもエンジンの駆動を優先し、モータジェネレータ20及びエンジン10の駆動力で車両1を走行させる、モードである。またHEV優先モードは、エンジン10を駆動せず、エンジン10の駆動よりもバッテリ30からモータジェネレータ20への電力の供給を優先しモータジェネレータ20の駆動力で車両1を走行させる、モードである。
 次に、図1、2、5、6を用いて、本例のハイブリッド車両1の制御を説明する。図6は、バッテリ30のSOCに対する走行モードの関係を説明するための図であり、(a)はEV優先モードを(b)はHEV優先モードを示す。
 統合コントローラ60は、センター300から停電情報をテレマティクスコントロールユニット50により受信すると、ナビゲーションシステム66を用いて、ユーザの自宅またはユーザの目的地等の登録地点が、停電情報で示される停電領域の範囲内であるか否かを判定する。ユーザの自宅または目的地が停電領域の範囲内にある場合には、車両1を運転して自宅に戻っても、自宅の外部充電装置200を用いて、充電することができず、目的地に到着しても、目的地に設置された外部充電装置200を用いることができない。そのため、優先モード選択部67は、ユーザの自宅または目的地が停電領域の範囲内にある場合には、HEV優先モードを選択する。
 目標充放電演算部63には、HEV走行モードとEV走行モードとを切り替えるためのモード切替閾値(SOCch)及び目標充電状態(SOC)が予め設定されている。モード切替閾値(SOCch)及び目標充電状態(SOC)は、SOCで規定されている。統合コントールユニット60は、バッテリ30のSOCがモード切替閾値(SOCch)より低い場合には、目標充放電演算部63によりシステム要求としてバッテリ10を充電するための充電電力を設定し、動作点指令値64でエンジン10を始動させるよう目標エンジントルクを設定することで、エンジン10を駆動させてモータジェネレータ20で電力を発生させて、バッテリ10を充電する。
 目標充放電演算部63は、バッテリ10のSOCが目標充電状態(SOC)に達するまで、エンジンを駆動するよう充電電力を出力している。そして、バッテリ10のSOCが目標充電状態(SOC)に達すると、目標充放電演算部63は目標充放電電力をゼロにする。
 また、目標充放電演算部63は、バッテリ10のSOCが目標充電状態(SOC)より高い場合には、バッテリ10を積極的に使用するよう、バッテリ10を放電させて、バッテリ10のSOCが目標充電状態(SOC)になる目標放電電力を演算する。また、バッテリ10のSOCが目標充電状態(SOC)より低くモード切替閾値(SOCch)より高い場合には、目標充放電演算部63は、モータジェネレータ20の回生時に、バッテリ10を充電するよう、目標充電電力を演算する。
 目標充放電演算部63は、優先モード選択部67で選択された優先モードに応じて、モード切替閾値(SOCch)及び目標充電状態(SOC)を設定する。優先モード選択部67によりEV優先モードが選択されている場合には、図6(a)に示すように、目標充放電演算部63は、モード切替閾値(SOCch)を40パーセントに、目標充電状態(SOC)を60パーセントに設定する。一方、優先モード選択部67によりHEV優先モードが設定されている場合には、図6(b)に示すように、目標充放電演算部63は、モード切替閾値(SOCch)を50パーセントに、目標充電状態(SOC)を70パーセントに設定する。
 すなわち、HEV優先モードの場合のモード切替閾値(SOCch)はEV優先モードの場合のモード切替閾値(SOCch)より高く、EV優先モードの場合のモード目標充電状態(SOC)はEV優先モードの場合の目標充電状態(SOC)より高くなるように、目標充放電演算部63は、優先モードに応じて、モード切替閾値(SOCch)及び目標充電状態(SOC)をそれぞれ設定する。
 図6に示すように、モード切替閾値(SOCch)を高くすると、バッテリ10のSOCが高い状態でもエンジン10が駆動するよう制御され、HEV走行モードで運転される領域が増えるため、エンジン10の駆動を優先させたHEV優先モードになる。また、モード目標充電状態(SOC)を高くすると、エンジン10を駆動させてバッテリ30を充電する際に、エンジン10の駆動時間が長くなるため、エンジン10の稼働を優先させたHEV優先モードになる。これにより、統合コントローラ60は、センター300から受信した停電情報に基づいて、自宅または目的地が停電領域の範囲内にある場合には、モード切替閾値(SOCch)及び目標充電状態(SOC)を高くすることで、HEV優先モードに設定する。
 次に、図7を用いて、本例の統合コントローラ60の制御フローを説明する。図7は、統合コントロールユニット60の制御手順を示すフローチャートである。ステップS1にて、テレマティクスコントロールユニット50は、センター300から停電情報を取得する。ステップS2にて、統合コントロールユニット60は、自宅が停電領域の範囲内にあるか否かを判定する。自宅が停電領域の範囲内である場合にはステップS4に遷る。自宅が停電領域の範囲外である場合には、ステップS3にて、統合コントロールユニット60は、目的地が停電領域の範囲内にあるか否かを判定する。
 自宅が停電領域の範囲内にある場合、または、目的地が停電領域の範囲内にある場合には、ステップS4にて統合コントロールユニット60は、優先モード選択部67により、HEV優先モードを選択し、目標充放電演算部63により、モード切替閾値(SOCch)及び目標充電状態(SOC)を、EV優先モード時の値と比較して高い値に設定することで、HEV優先モードに設定する。
 ステップS3に戻り、自宅及び目的地が停電領域の範囲外にある場合には、ステップS5にて、統合コントロールユニット60は、優先モード選択部67により、EV優先モードを選択し、目標充放電演算部63により、モード切替閾値(SOCch)及び目標充電状態(SOC)を、HEV優先モード時の値と比較して低い値に設定することで、EV優先モードに設定する。
 上記のように、本例は、HEV優先モードまたはEV優先モードを選択する制御を行い、センター300から受信した停電情報に基づいて、HEV優先モードを選択する。これにより、停電が発生している場合には、バッテリ30の消費を抑制することができる。また車両の運転中、バッテリ30の消費を抑える分、車両の運転の終了時には、バッテリ30に充電される電力量は多くなっているため、例えば家庭用の電源として用いた場合に、バッテリ30の使用時間を長くすることができる。
 また本例は、自宅が停電領域の範囲内にある場合には、HEV優先モードを選択する。これにより、自宅に戻るまでバッテリ30の消費を抑えることができる。また、例えば家庭用の電源としてバッテリ30を用いた場合には、バッテリ30の使用時間を長くすることができる。
 また本例は、目的地が停電領域の範囲内にある場合には、HEV優先モードを選択する。これにより、目的地に到着するまでバッテリ30の消費を抑えることができる。また、目的地にて電源としてバッテリ30を用いた場合には、バッテリ30の使用時間を長くすることができる。
 なお、本例は、電力会社から送信される情報に基づいて、停電情報を取得したが、停電情報は、必ずしも電力会社から送信される情報である必要はない。例えば、地震などの大災害が発生した場合には、停電が発生する可能性がある。そのため、センター300は気象庁などから災害情報を受信すると、災害情報に含まれる災害規模(震度等)や災害発生地域などから、停電発生の可能性及び停電領域を特定し、特定した情報を停電情報として、ハイブリッド車両1に送信してもよい。
 また本例は、自宅及び目的地を登録地点とし、登録地点が停電領域の範囲内にあるか否かに応じて、優先モードを選択したが、自宅または目的地のいずれか一方を登録地点とし、優先モードを選択してもよい。また車両の現在地であってもよい。
 また本例は、HEV優先モードを設定する際に、モード切替閾値(SOCch)及び目標充電状態(SOC)を高い値に設定したが、モード切替閾値(SOCch)または目標充電状態(SOC)のいずれか一方の値を高い値に設定してもよい。
 また本例は、優先モードの選択制御を車両1側で行ったが、センター300側で行ってもよい。車両1の統合コントロールユニット60は、ユーザの自宅又は目的地が設定されると、自宅または目的地に関する位置情報を、テレマティクスコントロールユニット50を介して、センター300に送信する。コントローラ302は、受信した位置情報、位置情報を送信した車両の識別情報と対応させつつ、データベース301に記憶する。コントローラ302は、電力会社500から停電情報を受信すると、停電領域の範囲内をデータベース301の地図データを用いて特定する。
 そして、コントローラ302は、ハイブリッド車両1から送信された位置情報に基づく登録地点が停電領域の範囲内にあるか否かを判定する。コントローラ302は、停電領域の範囲内にある登録地点と対応するハイブリッド車両1がHEV優先モードで制御されるように、HEV優先モードを選択する。そして、コントローラ302は、このハイブリッド車両1(自宅または目的地が停電領域の範囲内にあるハイブリッド車両1)に対して、選択したモードであるHEV優先モードを示す制御信号を送信する。そして、当該制御信号を受信したハイブリッド車両1は、上記と同様に、モード切替閾値(SOCch)及び目標充電状態(SOC)を高い値に設定する。これにより、本例は、停電情報に基づいたHEV優先モードの選択制御を、センター300側で行うこともできる。
 上記の統合コントロールユニット60が本発明の「制御手段」に相当し、テレマティクスコントロールユニット50が本発明の「受信手段」に相当し、ナビゲーションシステム66が本発明の「管理手段」に相当する。
《第2実施形態》
 図8は、発明の他の実施形態に係るハイブリッド車両1のモード選択部62に格納されているモードマップを示す。本例では、上述した第1実施形態に対して、優先モードに応じてエンジン始動線を設定する点が異なる。これ以外の構成は上述した第1実施形態と同じであり、その記載を援用する。
 図8に示すように、本例のエンジン始動線は動線Loと始動線Lpの二本ある。モード選択部62は、優先モード選択部67で選択された優先モードに応じて、エンジン始動線を始動線Loまたは始動線Lpのいずれか一方の始動線に設定する。具体的には、優先モード選択部67によりHEV優先モードが選択された場合には、モード選択部62は始動線Lpに設定し、EV優先モードが選択された場合には、モード選択部62は始動線Loに設定する。
 始動線Lpが設定された場合には、HEV走行モードの運転領域が、始動線Loが設定された場合のHEV走行モードの運転領域と比較して広くなっているため、バッテリ30の電力供給よりもエンジン10の駆動が優先されることになる。一方、始動線Loが設定された場合には、EV走行モードの運転領域が、始動線Lpが設定された場合のEV走行モードの運転領域と比較して広くなっているため、エンジン10の駆動よりもバッテリ30の電力供給が優先されることになる。これにより、統合コントローラ60は、センター300から受信した停電情報に基づいて、自宅または目的地が停電領域の範囲内にある場合には、エンジン始動線を始動線Lpに設定することで、エンジンの始動閾値をEV優先モード時の始動閾値より低くし、HEV優先モードに設定する。
 上記のように、本例は、HEV優先モードまたはEV優先モードを選択する制御を行い、センター300から受信した停電情報に基づいて、HEV優先モードを選択し、エンジン始動線を始動線Lpに設定することで、HEV優先モードに設定する。これにより、停電が発生している場合には、バッテリ30の消費を抑制することができる。また車両の運転中、バッテリ30の消費を抑える分、車両の運転の終了時には、バッテリ30に充電される電力量は多くなっているため、家庭用の電源として用いた場合に、バッテリ30の使用時間を長くすることができる。
《第3実施形態》
 図9は、発明の他の実施形態に係るハイブリッド車両1のエンジン10コントロールニット70で制御される、エンジン10の水温に対するエンジン10の駆動状態を説明するための図である。本例では、上述した第1実施形態に対して、優先モードに応じて、エンジン10の水温に対するエンジン駆動点を制御する点が異なる。これ以外の構成は上述した第1実施形態と同じであり、第1及び第2実施形態の記載を適宜、援用する。なお、図9の縦軸について、ONはエンジン10が駆動している状態と示し、OFFはエンジン10が停止している状態を示す。また実線はEV優先モード時の特性を示し、点線はHEV優先モード時の特性を示す。
 統合コントロールユニット60は、システム要求として、エンジン10の水温が低下している場合には、バッテリのSOCが高い場合でも、エンジン10を駆動させて、HEV走行モードで制御する場合がある。図9に示すように、エンジン10の水温に対して、エンジン10の始動点はヒステリシスの関係になっている。図9の実線のグラフを参照し、エンジン10が駆動し水温が上昇傾向にある場合には、エンジン10の水温が50℃を超えた場合に、エンジン10を停止させる。一方、エンジン10が停止状態で水温が下降傾向にある場合には、エンジン10の水温が30℃より低くなった場合に、エンジン10を駆動させる。
 エンジンコントロールユニット70は、優先モード選択部67で選択された優先モードに応じて、エンジン10を停止させる水温の閾値温度を設定する。具体的には、優先モード選択部67によりHEV優先モードが選択された場合には、エンジン10を停止させる水温の閾値温度を閾値温度(Tp)に設定し、EV優先モードが選択された場合には、閾値温度(To)に設定する。閾値温度(Tp)は閾値温度(To)より高い温度である。
 閾値温度(Tp)が設定された場合には、エンジン10の水温がそれほど低くなる前に、エンジン10が始動されるため、エンジン10が駆動され易い状態になり、バッテリ30の電力供給よりもエンジン10の駆動が優先されることになる。一方、閾値温度(To)が設定された場合には、エンジン10の水温が低くならないとエンジン10が始動されないため、エンジン10が駆動されにくい状態となり、エンジン10の駆動よりもバッテリ30の電力供給が優先されることになる。これにより、統合コントローラ60は、センター300から受信した停電情報に基づいて、自宅または目的地が停電領域の範囲内にある場合には、エンジン10を停止させる水温の閾値温度を閾値温度(Tp)に設定することで、水温の閾値温度をEV優先モード時の閾値温度より高くして、HEV優先モードに設定する。
 上記のように、本例は、HEV優先モードまたはEV優先モードを選択する制御を行い、センター300から受信した停電情報に基づいて、HEV優先モードを選択し、エンジン10を始動させる水温の閾値温度を閾値温度(Tp)に設定することで、HEV優先モードに設定する。これにより、停電が発生している場合には、バッテリ30の消費を抑制することができる。また車両の運転中、バッテリ30の消費を抑える分、車両の運転の終了時には、バッテリ30に充電されている電力量が多くなっているため、家庭用の電源として用いた場合に、バッテリ30の使用時間を長くすることができる。
 なお、本例は、優先モードに応じて、図9のグラフ上で、エンジン10を始動させる水温の閾値温度を設定したが、エンジン10を停止させる水温の閾値温度(図9の50℃に相当)を設定してもよい。すなわち、HEV優先モードを選択した場合には、エンジン10を停止させる水温の閾値温度を、EV優先モード時の閾値温度より高い温度に設定する。
1…ハイブリッド車両
 10…エンジン
  11…エンジン回転数センサ
  12…水温センサ
 15…第1クラッチ
 20…モータジェネレータ
  21…モータ回転数センサ
 25…第2クラッチ
 30…バッテリ
 35…インバータ
 40…自動変速機
  41…入力回転センサ
  42…出力回転センサ
 50…テレマティクスコントロールユニット
 60…統合コントロールユニット
  61…目標駆動力演算部
  62…モード選択部
  63…目標充放電演算部
  64…動作点指令部
  65…変速制御部
  66…ナビゲーションシステム
  67…優先モード選択部
  69…アクセル開度センサ
 70…エンジンコントロールユニット
 80…モータコントロールユニット
 90…ディスプレイ
 100…バッテリコントロールユニット
 200…外部充電装置
 300…センター
  301…データベース
  302…コントローラ
 500…電力会社

Claims (5)

  1.  動力源としてエンジン及びモータを備えたハイブリッド車両の制御装置において、
     外部電源と接続可能で、当該外部電源からの電力により充電されるバッテリと、
     前記バッテリから前記モータへの電力の供給を優先し前記モータの駆動力で走行するEV優先モード、または、前記エンジンの駆動を優先し前記モータ及び前記エンジンの駆動力で走行するHEV優先モードを選択する制御手段と、
     電力会社からの電力供給が停止したことを示す停電情報を、外部から受信する受信手段とを備え、
    前記制御手段は、前記停電情報に基づいて前記HEV優先モードを選択する
    ことを特徴とするハイブリッド車両の制御装置。
  2.  ユーザの自宅の情報を管理する管理手段をさらに備え、
    前記制御手段は、
     前記自宅が前記停電情報で示される停電領域の範囲内にある場合には、前記HEV優先モードを選択する
    ことを特徴とする請求項1記載のハイブリッド車両の制御装置。
  3.  目的地の情報を管理する管理手段をさらに備え、
    前記制御手段は、
     前記目的地が前記停電情報で示される停電領域の範囲内にある場合には、前記HEV優先モードを選択する
    ことを特徴とする請求項1または2記載のハイブリッド車両の制御装置。
  4.  動力源としてエンジン及びモータと、外部電源と接続可能で、当該外部電源からの電力により充電されるバッテリとを備えたハイブリッド車両を管理する管理システムにおいて、
     前記バッテリから前記モータへの電力の供給を優先し前記モータの駆動力で前記車両を走行させるEV優先モード、または、前記エンジンの駆動を優先し前記モータ及び前記エンジンの駆動力で前記車両を走行させるHEV優先モードを選択する制御手段と、
     電力会社からの電力供給が停止したことを示す停電情報を、外部から受信する受信手段とを備え、
    前記制御手段は、前記停電情報に基づいて前記HEV優先モードを選択し、選択したモードを示す信号を前記車両に送信することを特徴とするハイブリッド車両の管理システム。
  5.  動力源としてエンジン及びモータと、外部電源と接続可能で、当該外部電源からの電力により充電されるバッテリとを備えたハイブリッド車両を管理する管理方法において、
     前記バッテリから前記モータへの電力の供給を優先し前記モータの駆動力で前記車両を走行させるEV優先モード、または、前記エンジンの駆動を優先し前記モータ及び前記エンジンの駆動力で前記車両を走行させるHEV優先モードを選択する選択工程と、
     電力会社からの電力供給が停止したことを示す停電情報を、外部から受信する工程と、
     前記車両に信号を送信する送信工程とを含み、
    前記選択工程は、前記停電情報に基づいて前記HEV優先モードを選択し、
    前記送信工程は、前記選択工程により選択したモードを示す信号を前記車両に送信する
    ことを特徴とするハイブリッド車両の管理方法。
PCT/JP2013/060698 2012-04-09 2013-04-09 ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法 WO2013154093A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-088242 2012-04-09
JP2012088242 2012-04-09

Publications (1)

Publication Number Publication Date
WO2013154093A1 true WO2013154093A1 (ja) 2013-10-17

Family

ID=49327655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060698 WO2013154093A1 (ja) 2012-04-09 2013-04-09 ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法

Country Status (1)

Country Link
WO (1) WO2013154093A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111483454A (zh) * 2019-01-28 2020-08-04 丰田自动车株式会社 车辆
CN113821101A (zh) * 2020-06-18 2021-12-21 丰田自动车株式会社 机器学习装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062638A (ja) * 2005-09-01 2007-03-15 Toyota Motor Corp ハイブリッド自動車
JP2007099223A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp ハイブリッド自動車
JP2007223462A (ja) * 2006-02-23 2007-09-06 Toyota Motor Corp ハイブリッド車両
JP2010058640A (ja) * 2008-09-03 2010-03-18 Toyota Motor Corp 車両の制御装置
JP2011196826A (ja) * 2010-03-19 2011-10-06 Aisin Aw Co Ltd 車載バッテリ充電支援装置、車載バッテリ充電支援方法及びコンピュータプログラム
JP2012053821A (ja) * 2010-09-03 2012-03-15 Toyota Motor Corp 充電施設情報提供装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062638A (ja) * 2005-09-01 2007-03-15 Toyota Motor Corp ハイブリッド自動車
JP2007099223A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp ハイブリッド自動車
JP2007223462A (ja) * 2006-02-23 2007-09-06 Toyota Motor Corp ハイブリッド車両
JP2010058640A (ja) * 2008-09-03 2010-03-18 Toyota Motor Corp 車両の制御装置
JP2011196826A (ja) * 2010-03-19 2011-10-06 Aisin Aw Co Ltd 車載バッテリ充電支援装置、車載バッテリ充電支援方法及びコンピュータプログラム
JP2012053821A (ja) * 2010-09-03 2012-03-15 Toyota Motor Corp 充電施設情報提供装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111483454A (zh) * 2019-01-28 2020-08-04 丰田自动车株式会社 车辆
JP2020117178A (ja) * 2019-01-28 2020-08-06 トヨタ自動車株式会社 車両
US11345252B2 (en) * 2019-01-28 2022-05-31 Toyota Jidosha Kabushiki Kaisha Vehicle including a hybrid electric control unit
CN113821101A (zh) * 2020-06-18 2021-12-21 丰田自动车株式会社 机器学习装置
CN113821101B (zh) * 2020-06-18 2024-05-14 丰田自动车株式会社 机器学习装置

Similar Documents

Publication Publication Date Title
KR101836290B1 (ko) 차량 중량 추정 장치 및 방법
US9884618B2 (en) Vehicle, and control method for vehicle
JP5360306B2 (ja) ハイブリッド車両の制御装置
US9045136B2 (en) Systems and methods for implementing dynamic operating modes and control policies for hybrid electric vehicles
JP5459411B2 (ja) ハイブリッド車輌の制御装置及び制御方法
US9643512B2 (en) Vehicle battery charge preparation for post-drive cycle power generation
JP5966691B2 (ja) 車両制御システム、サーバ及び車両制御装置
WO2014192391A1 (ja) プラグインハイブリッド車両の制御装置
US9430887B2 (en) Hybrid vehicle management system, hybrid vehicle control apparatus, and hybrid vehicle control method
US9663098B2 (en) Control system for a plug-in hybrid vehicle
KR101730712B1 (ko) 하이브리드 차량
JP6179193B2 (ja) プラグインハイブリッド車両の制御装置
JP2018090153A (ja) ハイブリッド車両
KR20120062340A (ko) 하이브리드 자동차의 변속 제어장치 및 방법
WO2014065309A1 (ja) 変速機の暖機装置
WO2013111828A1 (ja) ハイブリッド車両の管理システム、ハイブリッド車両の制御装置及びハイブリッド車両の制御方法
WO2013154094A1 (ja) ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法
WO2013111829A1 (ja) ハイブリッド車両の制御装置及びハイブリッド車両の制御方法
WO2013154093A1 (ja) ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法
JP2014211315A (ja) ハイブリッド車両の案内装置及び案内システム
WO2013154175A1 (ja) ハイブリッド車両の管理システム及び管理方法
JP2014233142A (ja) 車両の制御装置
WO2013154174A1 (ja) ハイブリッド車両の管理システム及び管理方法
KR101734233B1 (ko) 친환경 차량용 엔진 클러치 학습 장치 및 방법
JP2014079103A (ja) 車両用発電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP