WO2013154174A1 - ハイブリッド車両の管理システム及び管理方法 - Google Patents

ハイブリッド車両の管理システム及び管理方法 Download PDF

Info

Publication number
WO2013154174A1
WO2013154174A1 PCT/JP2013/061028 JP2013061028W WO2013154174A1 WO 2013154174 A1 WO2013154174 A1 WO 2013154174A1 JP 2013061028 W JP2013061028 W JP 2013061028W WO 2013154174 A1 WO2013154174 A1 WO 2013154174A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
deterioration
tank
content
refueling
Prior art date
Application number
PCT/JP2013/061028
Other languages
English (en)
French (fr)
Inventor
泰弘 小西
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013154174A1 publication Critical patent/WO2013154174A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/18Control strategies specially adapted for achieving a particular effect for avoiding ageing of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • F02D33/003Controlling the feeding of liquid fuel from storage containers to carburettors or fuel-injection apparatus ; Failure or leakage prevention; Diagnosis or detection of failure; Arrangement of sensors in the fuel system; Electric wiring; Electrostatic discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a hybrid vehicle management system and management method.
  • the present invention provides a management system and a management method for a hybrid vehicle that can improve the calculation accuracy of the deterioration degree.
  • the present invention solves the above problems by managing fuel refinement information, managing fuel degradation information remaining in the tank, and calculating the degree of fuel degradation in the tank based on the oil refinement information and degradation information. To do.
  • the degree of deterioration is calculated in consideration of information on the deterioration of the fuel from the time of refining the fuel, the calculation accuracy of the degree of deterioration can be increased.
  • FIG. 1 is a block diagram of a vehicle managed by a management system according to an embodiment of the present invention. It is a block of the integrated control unit of FIG. It is a block diagram of the management system which manages the vehicle of FIG. It is a schematic diagram for demonstrating the content of the database of FIG. It is a graph which shows the content of antioxidant, and the characteristic of a deterioration degree with respect to elapsed days regarding the fuel supplied in the tank of FIG. It is a graph which shows the characteristic of the deterioration degree with respect to elapsed time regarding the fuel supplied in the tank of FIG. FIG.
  • FIG. 2 is a graph showing an optimal antioxidant content characteristic with respect to the number of days elapsed until it is determined that the fuel has deteriorated with respect to the fuel supplied into the tank of FIG. 1. It is a graph which shows the characteristic of the oil level height of a tank with respect to the required oil supply quantity, and content of antioxidant regarding the fuel supplied in the tank of FIG. It is a flowchart which shows the control procedure of the controller of the server of FIG. It is a flowchart which shows the control procedure of the controller of the server of FIG. It is a flowchart which shows the control procedure of the controller of the server of FIG. It is a flowchart which shows the control procedure of the controller of the server of FIG.
  • the hybrid vehicle 1 of this example is a parallel electric vehicle that uses a plurality of power sources to drive the vehicle.
  • Hybrid vehicle 1 is a plug-in hybrid vehicle that can charge battery 30 provided in the vehicle with electric power from external charging device 200.
  • the hybrid vehicle 1 transmits and receives information to and from the management server 400 that manages the vehicle 1. First, the configuration of the hybrid vehicle 1 will be described.
  • the hybrid vehicle 1 includes an internal combustion engine (hereinafter referred to as “engine”) 10, a first clutch 15, a motor generator (electric motor / generator) 20, a second clutch 25, a battery 30, an inverter 35, An automatic transmission 40, a propeller shaft 51, a differential gear unit 52, a drive shaft 53, left and right drive wheels 54, and a display 90 are provided.
  • engine internal combustion engine
  • motor generator electric motor / generator
  • battery 30 a battery 30
  • an inverter 35 an automatic transmission 40
  • propeller shaft 51 a differential gear unit 52
  • drive shaft 53 left and right drive wheels 54
  • display 90 a display 90
  • CVT continuously variable transmission
  • Engine 10 is an internal combustion engine that is driven by gasoline or light oil as fuel, and based on a control signal from engine control module 70, the valve opening of the throttle valve, fuel injection amount, ignition timing, and the like are controlled.
  • the engine 10 is provided with an engine speed sensor 11 for detecting the engine speed Ne and a water temperature sensor (not shown) for detecting the temperature of the cooling water of the engine 10.
  • the fuel tank 12 is a tank that stores fuel for driving the engine 10.
  • the fuel tank sensor 13 is a sensor for detecting the amount of fuel remaining in the fuel tank 12 and is a sensor for measuring the oil level of the fuel in the fuel tank 12.
  • the first clutch 15 is interposed between the output shaft of the engine 10 and the rotation shaft of the motor generator 20, and connects and disconnects power transmission between the engine 10 and the motor generator 20.
  • a wet multi-plate clutch that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid can be exemplified.
  • the first clutch 15 controls the hydraulic pressure of the hydraulic unit 16 based on a control signal from the integrated control unit 60, thereby engaging / disengaging the clutch plate (including a slip state).
  • the motor generator 20 is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the motor generator 20 is provided with a motor rotation speed sensor 21 for detecting the rotor rotation speed Nm.
  • the motor generator 20 functions not only as an electric motor but also as a generator.
  • the motor generator 20 When three-phase AC power is supplied from the inverter 35, the motor generator 20 is driven to rotate (powering).
  • motor generator 20 When the rotor is rotated by an external force, motor generator 20 generates AC power by generating electromotive force at both ends of the stator coil (regeneration).
  • the AC power generated by the motor generator 20 is converted into a DC current by the inverter 35 and then charged to the battery 30.
  • the battery 30 include a lithium ion secondary battery and a nickel hydride secondary battery.
  • a current / voltage sensor 31 is attached to the battery 30, and these detection results can be output to the motor control unit 80.
  • the battery 30 is a battery that can be charged by an external charging device 200 provided outside the vehicle, and is connected to a charging port 34 via a charger 32 and a switch 33.
  • the battery 30 also acts as a battery for operating home electrical equipment, for example, and can be used as an emergency power source in the event of a power failure.
  • Sensor 31 is a voltage or current sensor for detecting the state of the battery.
  • the sensor 31 is electrically connected to the battery 30.
  • the charger 32 has a charging circuit that converts AC power supplied from the external charging device 200 into DC power and supplies power to the battery 30.
  • the charger 32 is controlled by the battery control unit 100.
  • the switch 33 is connected between the charger 32 and the charging port 34, and is a switch for switching between electrical connection and disconnection between the external charging device 200 and the battery 30.
  • the charging port 34 has a connector that can be connected to the tip of the charging cable of the external charging device 200, and is provided on the surface portion of the vehicle 1. When the leading end portion of the charging cable is connected to the charging port 34, a signal indicating that it is connected is transmitted to the battery control unit 100.
  • a power control device (not shown) for supplying power to the home is connected to the charging port 34, and the battery 30 and the house are connected via the power control device. Electrically connect to the distribution board. And in the state which switched on, the electric power of the battery 30 is supplied to a house through the said electric power control apparatus.
  • the power control device may be mounted on the vehicle 1.
  • the external charging device 200 is provided outside the vehicle 1 and is installed in a parking lot at home, a commercial facility such as a shopping center, a public facility such as a city hall, or a facility such as a factory.
  • a commercial facility such as a shopping center
  • a public facility such as a city hall
  • a facility such as a factory.
  • the external charging device 200 is connected to a home AC power source, converts power from the AC power source into power suitable for supply to the vehicle 1, and a charging cable (not shown). To the charging port 34.
  • the automatic transmission 40 is a transmission that automatically switches stepped gear ratios such as forward 7 speed, reverse 1 speed, etc. according to the vehicle speed, accelerator opening, and the like.
  • the automatic transmission 40 changes the gear ratio based on a control signal from the integrated control unit 60.
  • the output shaft of the automatic transmission 40 is connected to the left and right drive wheels 54 via a propeller shaft 51, a differential gear unit 52, and left and right drive shafts 53.
  • reference numeral 55 denotes left and right steering front wheels.
  • the telematics control unit 50 includes a communication device for performing transmission / reception with the outside of the server 400 and the like, and transmits / receives information to / from a server 400 that manages a vehicle to be described later.
  • the telematics control unit 50 is connected to the integrated control unit 60 by CAN communication.
  • the display 90 is a display device for displaying information or the like managed by the navigation system included in the integrated control unit 60 and notifying the passenger of the information.
  • the hybrid vehicle 1 in the present embodiment can be switched to three travel modes according to the engaged / released state of the first and second clutches 15 and 25.
  • the first travel mode is referred to as a motor use travel mode (hereinafter referred to as “EV travel mode”) in which the first clutch 15 is disengaged and the second clutch 25 is engaged to travel using only the power of the motor generator 20 as a power source. ).
  • EV travel mode motor use travel mode
  • the second travel mode is an engine use travel mode (hereinafter referred to as “HEV travel mode”) in which both the first clutch 15 and the second clutch 25 are engaged to travel while including the engine 10 as a power source in addition to the motor generator 20. .)
  • HEV travel mode engine use travel mode
  • the third travel mode is a slip travel mode in which the second clutch 25 is in a slip state and travels while including at least one of the engine 10 or the motor generator 20 as a power source (hereinafter referred to as “WSC travel mode”).
  • WSC travel mode a slip travel mode in which the second clutch 25 is in a slip state and travels while including at least one of the engine 10 or the motor generator 20 as a power source
  • the released first clutch 15 is engaged, and the engine 10 is started using the torque of the motor generator 20.
  • the “HEV travel mode” includes three travel modes of “engine travel mode”, “motor assist travel mode”, and “travel power generation mode”.
  • the drive wheels 54 are moved using only the engine 10 as a power source.
  • the drive wheels 54 are moved using two of the engine 10 and the motor generator 20 as power sources.
  • the motor generator 20 is caused to function as a generator at the same time as the drive wheels 54 are moved using the engine 10 as a power source.
  • a power generation mode for charging the battery 30 and supplying power to the electrical components by causing the motor generator 20 to function as a generator using the power of the engine 10 when the vehicle is stopped. May be.
  • the control system of the hybrid vehicle 1 in this embodiment includes an integrated control unit 60, an engine control module 70, a motor control unit 80, and a battery control unit 100, as shown in FIG. These control units 60, 70, 80, and 100 are connected to each other through, for example, CAN communication.
  • the engine control unit 70 inputs information from the engine speed sensor 11 and controls the engine operating point (engine speed Ne, engine torque Te) in response to a command such as the target engine torque tTe from the integrated control unit 60.
  • the command is output to a throttle valve actuator, an injector, a spark plug, etc. provided in the engine 10.
  • the engine control unit 70 controls the injector based on the temperature detected by the water temperature sensor 12 and adjusts the fuel injection amount.
  • Information on the engine speed Ne and the engine torque Te is supplied to the integrated control unit 60 via CAN communication.
  • the motor control unit 80 inputs information from the motor rotation speed sensor 21 provided in the motor generator 20, and receives a command such as a target motor generator torque tTm (may be a target motor generator rotation speed tNm) from the integrated control unit 60. In response, a command for controlling the operating point (motor rotation speed Nm, motor torque Tm) of motor generator 20 is output to inverter 35.
  • a command for controlling the operating point (motor rotation speed Nm, motor torque Tm) of motor generator 20 is output to inverter 35.
  • the motor control unit 80 calculates and manages the SOC of the battery 30 based on the current value and the voltage value detected by the current / voltage sensor 31.
  • the battery SOC information is used as control information for the motor generator 20 and is sent to the integrated control unit 60 via CAN communication.
  • the battery control unit 100 is a control unit for managing the state of the battery, calculates the state of charge (SOC) of the battery from the detection value of the sensor 31, and transmits it to the integrated control unit 60.
  • SOC state of charge
  • the battery control unit 100 controls the charger 32, manages the SOC of the battery 30 during charging of the battery 30 by the external charging device 200, and turns off the switch 33 when the battery 30 reaches the target SOC.
  • the integrated control unit 60 efficiently controls the hybrid vehicle 1 by integrally controlling the operating point of the power train composed of the engine 10, the motor generator 20, the automatic transmission 40, the first clutch 15, and the second clutch 25. It bears the function to make it run.
  • the integrated control unit 60 calculates the operating point of the power train based on information from each sensor acquired through CAN communication, and controls the operation of the engine according to a control command to the engine control module 70, and the motor control unit 80. Operation control of the motor generator 20 by the control command to the automatic transmission 40, operation control of the automatic transmission 40 by the control command to the automatic transmission 40, engagement / release of the first clutch 15 by the control command to the hydraulic unit 16 of the first clutch 15 Control and engagement / release control of the second clutch 25 by a control command to the hydraulic unit 26 of the second clutch 25 are executed.
  • FIG. 2 is a control block diagram of the integrated control unit 60.
  • the integrated control unit 60 includes a target driving force calculation unit 61, a mode selection unit 62, a target charge / discharge calculation unit 63, an operating point command unit 64, and a shift control unit 65.
  • the mode selection unit 62 refers to a predetermined mode map and selects a target mode.
  • FIG. 4 shows an example of the mode map.
  • EV travel mode, WSC travel mode, and HEV travel mode regions are set in accordance with the vehicle speed VSP and the accelerator opening APO.
  • an engine start line Lo is drawn at a predetermined position on the mode map, and the EV drive mode is assigned to the lower vehicle speed (VSP) and accelerator opening (APO) with the engine start line as a boundary.
  • the HEV travel mode is assigned to the vehicle with the higher vehicle speed (VSP) and accelerator opening (APO). Therefore, the mode selection unit 62 requests the operating point command unit 64 to start the engine 10 when the EV traveling mode is shifted to the HEV traveling mode beyond the starting line Lo.
  • the engine start line Lo corresponds to a threshold value for starting the engine 10, and the engine 10 is started when the accelerator opening APO or the vehicle speed VSP is larger than the threshold value.
  • the above-described WSC travel modes are assigned to low speed regions (for example, regions of 15 km / h or less) in both the EV travel mode and the HEV travel mode.
  • the predetermined vehicle speed VSP1 that defines the WSC travel mode is a vehicle speed at which the engine 10 can rotate independently. Therefore, in a region lower than the predetermined vehicle speed VSP1, the engine 10 cannot rotate independently while the second clutch 25 remains engaged. Even when the EV travel mode is selected, if the SOC of the battery 30 is equal to or less than a predetermined value, the mode may be forcibly shifted to the HEV travel mode.
  • the target charge / discharge calculation unit 63 calculates the target charge / discharge power tP from the SOC of the battery 30 using a predetermined target charge / discharge amount map.
  • the target charge / discharge calculation unit 63 calculates a target charging power for charging the battery 30 when the SOC of the battery 30 is low, and discharges the battery 30 when the SOC of the battery 30 is high.
  • the target discharge power to be calculated is calculated and transmitted to the operating point command unit 64. Further, the target charge / discharge calculation unit 63 sets the target charge / discharge power based on the external information received by the telematics control unit 50.
  • the operating point command unit 64 uses the target opening torque APO, the target driving force tFo0, the target mode, the vehicle speed VSP, and the target charge / discharge power tP as a target target for achieving the power train operating point tTe.
  • Target motor generator torque tTm may be target motor generator torque tNm
  • target first clutch transmission torque capacity tTc1 target second clutch transmission torque capacity tTc2
  • target gear stage of automatic transmission 40 are calculated.
  • the target engine torque tTe is sent from the integrated control unit 60 to the engine control unit 70, and the target motor generator torque tTm (may be the target motor generator rotational speed tNm) is sent from the integrated control unit 60 to the motor control unit 80.
  • the operating point command unit 64 calculates a target first clutch transmission torque capacity tTc1 and a target second clutch transmission torque capacity tTc2 in order to generate a target driving force under the target mode set by the mode selection unit 62.
  • the integrated control unit 60 For the target first clutch transmission torque capacity tTc1 and the target second clutch transmission torque capacity tTc2, the integrated control unit 60 generates solenoid currents corresponding to the target first clutch transmission torque capacity tTc1 and the target second clutch transmission torque capacity tTc2. Supply to the hydraulic units 16 and 26, respectively.
  • the operating point command unit 64 can start the engine 10 as a request on the system regardless of the selection mode by the mode selection unit 62, such as when the SOC is lowered. For example, when the mode selection unit 62 selects the EV mode, but the SOC of the battery 30 is reduced, and the target charge / discharge calculation unit 63 calculates the target charge power for charging the battery 30, The operating point command unit 64 calculates a target calculation torque and starts the engine 10 via the engine control module 70.
  • the shift control unit 65 drives and controls the solenoid valve in the automatic transmission 40 so as to achieve the target shift stage according to the shift schedule shown in the shift map.
  • the shift map used at this time is one in which a target shift speed is set in advance based on the vehicle speed VSP and the accelerator opening APO as shown in FIG.
  • FIG. 3 is a block diagram of the management system of this example.
  • the management system is a system that manages the hybrid vehicle 1 and the gas station 400 by transmitting and receiving information between the hybrid vehicle 1, the gas station 300, and the server 400. Note that the management system of this example manages not only the hybrid vehicle 1 but also a plurality of other vehicles, and also manages information on not only one gas station 400 but also other gas stations.
  • the integrated control unit 60 of the hybrid vehicle 1 has a fuel management unit 66 and a fuel supply notification unit 67.
  • the fuel management unit 66 measures the remaining amount of fuel in the fuel tank 12 based on the detection value of the fuel tank sensor 13.
  • the remaining amount of fuel may be measured from the height of the oil level by the fuel tank sensor 13 and may be measured by combining the detection values of a G sensor (not shown) that detects the inclination of the oil level. Or you may measure by calculation from the detected value of the fuel tank sensor 13, and the calculated value of the fuel consumption amount which drive
  • the fuel supply notification unit 67 is a control unit for reporting additional fuel supply in order to prevent deterioration of the fuel remaining in the tank 12.
  • the notification of additional refueling is not simply a notification when the remaining amount of fuel in the tank 12 is low, but a notification for recovering the deterioration of the remaining fuel by adding fuel. .
  • the deterioration of the fuel includes oxidative deterioration caused by the fuel in the tank 12 being combined with the oxygen in the tank.
  • the fuel contains an antioxidant. Even in a state where the fuel does not decrease, the content of the antioxidant contained in the fuel decreases with the passage of time, and further, the oxidative deterioration progresses, so that the fuel deteriorates. Further, in a vehicle with good fuel consumption, such as the vehicle 1 of this example, the fuel in the tank may not be consumed for a long period of time, so the fuel deterioration as described above occurs.
  • the content of the antioxidant in the tank 12 is increased by adding new fuel. Therefore, the amount of fuel remaining in the tank 12 before refueling is increased. Degradation can be recovered.
  • the refueling notification unit 67 also notifies the refueling amount (necessary refueling amount) necessary for recovering the deterioration when notifying the additional refueling for recovering the fuel deterioration. That is, depending on the user of the vehicle 1, traveling conditions such as the traveling time in the EV mode and the traveling time in the HEV mode are different, and the fuel consumption rate is different. Therefore, for example, when the user of the vehicle 1 with a low fuel consumption rate and a long refueling interval refuels more than necessary to recover the fuel deterioration, the fuel that is not consumed after the additional refueling Will remain, and the remaining fuel will deteriorate. Therefore, in this example, according to the user, the oil supply notification unit 67 notifies the oil supply amount necessary for recovering the deterioration. The calculation of the required oil supply amount will be described later.
  • the gas station 300 includes a controller 310 as a terminal for managing information on gasoline to be stored.
  • the controller 310 includes a refinery information management unit 311 and a communication unit 312.
  • the oil production information management unit 311 manages oil production information related to the production of fuel stored in a tank in the gas station 300.
  • the oil refinement information is information related to oil production when the fuel is refined, and includes the time when the oil was produced, the elapsed time since the oil was produced, and the content and concentration of substances such as antioxidants contained in the fuel. .
  • the oil production information management unit 311 updates the oil production information every time new fuel is stored in the tank.
  • the communication unit 312 communicates information with the server 400 at a request from the server 400 or at a predetermined cycle.
  • the communication unit 312 displays the oil production information managed by the oil production information management unit 311, and when the fuel is supplied to the tank 12 of the vehicle 1, the amount of fuel supplied, the type of fuel supplied, the time information when the fuel was supplied, and the like. Send
  • the server 400 functions as a center for managing the hybrid vehicle 1 and the gas station 300, and includes a database 410 and a controller 420.
  • the database 410 is a database that records information related to fuel in the tank 12 transmitted from the vehicle 1, fuel refinement information transmitted from the gas station 300, and the like.
  • the database 410 stores information as shown in FIG. 4 as an example.
  • FIG. 4 is a conceptual diagram for explaining an example of information recorded in the database 410.
  • the database 410 includes, for each vehicle, the number of days since refueling, the remaining amount of fuel in the tank 12, the content of the antioxidant contained in the fuel in the tank 12, the degree of deterioration of the fuel, the number of days until the next refueling, The refining time of the fuel in the tank 12 is recorded.
  • Vehicle ID is identification information for identifying individual vehicles.
  • the vehicle ID is assigned in advance for each vehicle. For example, information on the license plate is used as the vehicle ID.
  • the number of days since refueling is the number of days that have elapsed since the fuel remaining in the tank 12 was refueled.
  • the remaining amount of fuel in the tank is the amount of fuel remaining in the tank 12.
  • the degree of deterioration is the degree of fuel deterioration determined according to the content (concentration) of the antioxidant contained in the fuel in the tank 12.
  • the degree of deterioration is indicated, for example, by the ratio of the content (mass) of the antioxidant to the mass of the fuel.
  • the deterioration degree is 100%.
  • the number of days until the next refueling is the number of days from the present to the day when the next refueling is expected.
  • the prediction control for the next oiling date will be described later.
  • the controller 420 includes a deterioration information management unit 421, a deterioration degree calculation unit 422, a deterioration determination unit 423, a fuel supply timing prediction unit 424, a fuel supply amount calculation unit 425, and a communication unit 426.
  • the deterioration information management unit 421 manages deterioration information of the fuel remaining in the tank 12.
  • the deterioration information is information on fuel deterioration. For example, time information when the fuel is supplied, information on the remaining capacity of the fuel remaining in the tank 12, information on the antioxidant of the fuel in the tank 12 (contained) Amount, concentration, etc.). Further, the deterioration information management unit 421 manages deterioration for each vehicle by recording deterioration information in the database 101.
  • the deterioration degree calculation unit 422 calculates the fuel deterioration degree based on the oil production information managed by the oil refinement information management unit 311 and transmitted to the controller 420 and the deterioration information managed by the deterioration information management unit 421.
  • the deterioration degree calculated by the deterioration degree calculation unit 422 includes the deterioration degree of the fuel after refueling the tank 12 and the deterioration degree of the fuel in the tank 12 not only after refueling but in a normal vehicle state.
  • the deterioration determination unit 423 is a control unit that determines whether or not the fuel in the tank 12 has deteriorated by comparing the deterioration degree calculated by the deterioration degree calculation unit 422 with a deterioration degree threshold value.
  • the deterioration degree threshold is a threshold for determining that the fuel has deteriorated, and is a preset value.
  • the deterioration degree threshold corresponds to a deterioration degree that is determined to have an effect on the combustion of the engine 10 due to deterioration of the fuel.
  • the deterioration degree threshold value may be set for each vehicle identified by the vehicle type ID, or may be set for each vehicle type of the vehicle.
  • the fueling time prediction unit 424 is a control unit for predicting the next fueling time from the fuel consumption of the hybrid vehicle 1 and the like. The prediction of the refueling time is made for each vehicle and is managed in the database 410.
  • the fuel supply amount calculation unit 425 calculates the fuel supply amount necessary for preventing the deterioration level calculated by the deterioration level calculation unit 422 from being lower than the deterioration level threshold value. As described above, by adding fuel to the fuel remaining in the tank 12 and refueling, the deterioration of the fuel is recovered and the degree of deterioration is reduced. And the amount of decrease in the degree of deterioration due to additional fueling varies depending on the amount of fuel to be fueled and the content of antioxidant contained in the fuel. Therefore, the fuel supply amount calculation unit 425 needs to take these factors into account and reduce the content of the antioxidant in the fuel after the additional fuel supply so that the deterioration level does not exceed the deterioration level threshold value. Calculate the correct amount of oil.
  • the communication unit 426 communicates with the telematics control unit 50 of the vehicle 1 and the communication unit 312 of the gas station 300, and transmits / receives information to / from the vehicle 1 and the gas station 400.
  • the fuel in the tank 12 is oxidized and deteriorated by contact with oxygen in the tank, and as the number of days from refueling, the content of the antioxidant in the fuel decreases, so the deterioration degree depends on the passage of days. Become higher.
  • the amount of oxygen in the tank varies depending on the shape of the tank 12 and the remaining capacity of the fuel in the tank. Since the shape of the tank 12 is determined in advance for each vehicle type, if the remaining amount of fuel in the tank is known, the amount of oxygen touched on the surface of the fuel in the tank is also determined. And the time-dependent reduction
  • the integrated control unit 60 manages the remaining capacity of the fuel in the tank 12 by the fuel management unit 66. Further, when refueling is performed in the tank 12, the fuel management unit 66 also manages the volume of fuel in the tank 12 after refueling. The remaining amount of fuel managed by the fuel management unit 66 is transmitted to the controller 420 at a predetermined cycle.
  • the controller 310 supplies the controller 410 on the server 400 side with the refueling time (refueling time) and the volume of refueled fuel (refueling amount). Send.
  • the deterioration information management unit 421 calculates the remaining fuel capacity managed in the fuel management unit 66, the fueling time transmitted from the controller 310, the current fuel capacity in the tank of the vehicle 1, and The elapsed time can be grasped.
  • the server 400 manages information for each vehicle in the database 410, and also manages the characteristics of the antioxidant and the characteristics of the degree of deterioration with respect to the number of days elapsed since refueling.
  • the controller 420 stores, in the database 410, a table (hereinafter referred to as a “fuel supply deterioration table”) that indicates the relationship between the remaining capacity of fuel and the number of days elapsed since fuel supply, the content of antioxidants, and the degree of deterioration. is doing.
  • the deterioration degree calculation unit 422 refers to the fuel supply deterioration table using the remaining capacity of the fuel in the tank 12 and the number of days elapsed since the fuel supply, which is managed by the deterioration information management unit 421. Thus, the antioxidant content of the fuel in the tank 12 and the degree of deterioration are calculated. Thereby, the deterioration degree of the fuel in the tank 12 at a certain time is calculated.
  • the deterioration of the fuel has started from the time when the fuel is refined before the fuel is supplied to the tank 12 in the gas station 300, and the deterioration of the fuel progresses according to the elapsed time from the time of the refinement. ing.
  • FIG. 5 the characteristic of antioxidant content with respect to the elapsed days from essential oil and the characteristic of a deterioration degree are shown.
  • the graph a in FIG. 5 is a graph showing the characteristics of the antioxidant content
  • the graph b is a graph showing the characteristics of the degree of deterioration.
  • the content of the antioxidant decreases with the passage of time from the time of essential oil, and the degree of deterioration is the time from the time of essential oil. Rises over time.
  • the oil refinement information management unit 311 uses the controller to determine the time of oil refinement and the content of the antioxidant of the fuel refined as the oil refinement information of the fuel that has been supplied. To 420. Then, the controller 420 updates the number of days with the passage of time while storing the number of days from the essential oil of the fuel in the tank 12 in the database 410 from the time information of the refinement transmitted from the refinery information management unit 311. In addition, the controller 420 stores a table (hereinafter referred to as “oil refinement deterioration table”) indicating the relationship between the number of days elapsed since the refining of the fuel and the content of the antioxidant.
  • the content of the antioxidant in the oil refinement deterioration table is the content per unit volume of the fuel.
  • the deterioration degree calculation unit 422 can also calculate the deterioration degree of the fuel at a certain time using the oil refinement deterioration table.
  • the deterioration degree calculation unit 422 acquires information on the number of days that have elapsed since the refinement of the vehicle 1 from the database 410 at a certain time. Note that when calculating the degree of fuel deterioration of vehicles other than the vehicle 1, the number of days elapsed since the time of refinement may be acquired based on the vehicle ID corresponding to the other vehicle.
  • the deterioration degree calculation unit 422 acquires the remaining capacity of the fuel in the tank 12 from the database 410 at a certain time. Then, the deterioration degree calculation unit 422 calculates the content (concentration) of the antioxidant of the fuel with reference to the oil production deterioration table using the elapsed days from the essential oil of the fuel in the tank 12. Further, the deterioration degree calculation unit 422 uses the remaining capacity of the fuel in the tank 12 and the calculated content (concentration) of the antioxidant to calculate the content of the antioxidant contained in the fuel in the tank 12. Calculate.
  • the deterioration degree calculation unit 422 calculates the content of the antioxidant contained in the fuel in the tank 12. Thus, the degree of deterioration of the fuel can be calculated.
  • the refueling deterioration table shows the relationship between the remaining capacity of fuel and the number of days elapsed since refueling, the content of antioxidant and the degree of deterioration, but the content of antioxidant and the degree of deterioration of fuel are Depending on the content of the antioxidant contained in the fuel at the time of refueling and the degree of deterioration of the fuel. Then, the content of the antioxidant and the degree of deterioration of the fuel at the time of refueling vary according to the number of days elapsed from the time of oil refining to the time of refueling. Therefore, in this example, a fuel supply deterioration table is stored for each content (content rate) of the antioxidant of the fuel to be supplied.
  • the degree of fuel deterioration and antioxidant content differ depending on the conditions from refining to refueling and the conditions in the tank after refueling, so refer to the refueling deterioration table or the refining deterioration table, respectively.
  • the calculated degree of deterioration of the fuel and the antioxidant may be different. Therefore, for example, for fuel deterioration until refueling, the degree of fuel deterioration and the antioxidant content are calculated with reference to the oil refinement deterioration table. Thereby, the parameter (deterioration degree or antioxidant content) of fuel deterioration at the time of refueling is determined as an initial value. Then, after the fuel is supplied, the fuel deterioration degree and the antioxidant content are calculated with reference to the fuel deterioration table. As a result, the calculation accuracy of fuel deterioration increases.
  • the calculation control related to the deterioration degree of the fuel after refueling the tank 12 in the deterioration degree calculation control will be described.
  • the degree of deterioration of the fuel in the tank immediately before refueling and the content of the antioxidant are calculated as described above. That is, the deterioration degree calculation unit 422 uses the remaining capacity of the fuel in the tank at the time of refueling and the number of days elapsed from the previous refueling to refer to the refueling deterioration table to prevent the fuel in the tank 12 from being oxidized.
  • the content of is calculated.
  • the content of the antioxidant in the fuel to be refueled varies depending on the number of days elapsed since the time of refining.
  • the controller 310 of the gas station 300 transmits the refueling amount and the refining information of the refueled fuel to the server 400.
  • the deterioration degree calculation unit 422 on the server 400 side uses the oil supply information transmitted from the controller 310 on the gas station 300 side and the oil production information of the supplied fuel to prevent oxidation of the supplied fuel. The content of the agent is calculated.
  • the deterioration degree calculation unit 422 adds the antioxidant content of the fuel remaining in the tank immediately before refueling and the antioxidant content of the fuel supplied to prevent oxidation of the fuel after refueling.
  • the content of the agent is calculated. Since the content of the antioxidant contained in the fuel and the deterioration degree of the fuel have a correlation as shown in FIG. 5, the deterioration degree calculation unit 422 calculates the calculated antioxidant after the refueling.
  • the degree of deterioration of the fuel after refueling can be calculated from the content of.
  • FIG. 6 is a graph showing characteristics of the degree of deterioration of the fuel with respect to the elapsed time after refueling.
  • “more” and “small” in FIG. 6 indicate the content of the antioxidant, and the characteristics in which the content of the antioxidant decreases in the order from graph a to graph d.
  • the degree of deterioration of the fuel the higher the content of the antioxidant, the lower the degree of deterioration of the fuel at the time of refueling. And although the deterioration degree of fuel becomes high with progress of time, the deterioration degree rises from a point with a low deterioration degree, so that there is much content of antioxidant at the time of refueling. Therefore, as shown in the graph of FIG. 6, if the elapsed time from refueling is the same, the greater the content of the antioxidant at the time of refueling, the lower the degree of deterioration of the fuel.
  • the fuel supplied is a fuel having a short elapsed time from the time of refining and has a high content of antioxidant at the time of refueling
  • the fuel in the tank 12 is deteriorated. Advances along the graph a from the point a1 in FIG. And the deterioration degree of a fuel becomes high gradually with progress of time. Since the fuel deterioration level has reached the deterioration level threshold at point a2, fueling is performed.
  • fuel with a long elapsed time from the time of oil production is supplied as compared with the fuel supplied at the point a1, a fuel having a smaller antioxidant content than the fuel at the point a1 is supplied. Therefore, the degree of deterioration of the fuel after refueling does not return to the degree of deterioration at point a1, but is higher than the degree of deterioration at point a1 (corresponding to point b1 in FIG. 6).
  • the antioxidant content of the fuel in the tank 12 at the point a2 immediately before refueling is calculated.
  • the content of the antioxidant of the fuel supplied when making a line from the point a2 to the point b1 is calculated.
  • these contents are added together, and the degree of deterioration corresponding to the combined antioxidant contents is calculated as the degree of deterioration at the point b1 after refueling.
  • an oil supply deterioration table may be used.
  • the deterioration determination unit 423 compares the calculated deterioration degree with a deterioration degree threshold value. If the deterioration level is equal to or lower than the deterioration determination threshold value, the deterioration determination unit 423 determines that the fuel in the tank 12 has not deteriorated. On the other hand, when the deterioration level is higher than the deterioration determination threshold, the deterioration determination unit 423 determines that the fuel in the tank 12 has deteriorated, and the communication unit 426 provides a signal indicating that the fuel has deteriorated. To the vehicle 1.
  • the refueling notification unit 67 on the vehicle 1 side notifies the user to encourage additional refueling in order to recover the deteriorated fuel.
  • the refueling amount calculation unit 425 calculates the refueling amount necessary for recovering the fuel, as will be described below. I do.
  • the refueling time prediction unit 424 predicts the next refueling time for each vehicle from the fuel consumption of the vehicle and the past refueling time. For example, in order to predict the fueling timing from the fuel consumption of the vehicle, the fueling timing prediction unit 424 predicts the fueling timing from the fuel consumption managed by the fuel management unit 66, the remaining capacity in the tank 12, and the predicted travel distance. be able to. In addition, in order to predict from the past refueling timing, when calculating the degree of deterioration of fuel after refueling as described above, information on the time of refueling from the gas station 300 is transmitted to the server 400 side. The time prediction unit 424 stores this information in the database 410. And the oil supply time estimation part 424 can estimate the oil supply time from the history of the past oil supply.
  • the fuel supply amount calculation unit 425 predicts the number of days of fuel supply from the current fuel supply timing predicted by the fuel supply time prediction unit 424 to the next fuel supply. To do.
  • the deterioration level becomes lower than the deterioration level threshold.
  • the deterioration degree becomes equal to or more than the deterioration degree threshold after the additional refueling.
  • the next refueling days are short, it is better not to refuel more than necessary in order to prevent fuel waste during additional refueling.
  • the required amount of fueling is calculated at the time of additional fueling so that the deterioration level of the fuel does not become lower than the deterioration level threshold value. ing.
  • FIG. 7 shows the characteristics of the optimum antioxidant content with respect to the number of days elapsed until it is determined that the fuel has deteriorated.
  • the antioxidant content decreases with time. Therefore, in order to increase the number of days elapsed until it is determined that the fuel has deteriorated after the additional refueling, it is necessary to increase the content of the antioxidant contained in the fuel.
  • the elapsed days until it is determined that the fuel has deteriorated may be short, the content of the antioxidant contained in the fuel is at least good.
  • next oil supply time predicted by the oil supply timing prediction unit 424 This relationship will be described by using the next oil supply time predicted by the oil supply timing prediction unit 424.
  • next oil supply day is long (corresponding to Ta in FIG. 7)
  • additional oil supply is performed to recover the deterioration. Even if this is done, the time of refueling after the additional refueling will be long. Therefore, the number of days until it is determined that the fuel has deteriorated is set to a long number of days in accordance with the next refueling days, and a large amount of the antioxidant in the fuel is secured after the additional refueling (corresponding to Pa in FIG. 7). ).
  • the next oil supply day is short (corresponding to Tb in FIG.
  • the number of days until it is determined that the fuel has deteriorated is set to a short number of days in accordance with the next number of refueling days, and the content of the antioxidant in the fuel after the additional refueling is reduced (corresponding to Pb in FIG. 7). .
  • the oil supply amount calculation unit 425 calculates the optimum antioxidant content by using the next oil supply day predicted by the oil supply timing prediction unit 424 while referring to a table having a relationship as shown in FIG.
  • the optimal antioxidant is set to the content threshold.
  • the fuel supply amount calculation unit 425 After calculating the optimal antioxidant content, the fuel supply amount calculation unit 425 subtracts the antioxidant content of the fuel remaining in the tank 12 from the optimal antioxidant content. Calculate the antioxidant content to be increased by additional oiling. Then, the fuel supply amount calculation unit 425 calculates the fuel for the calculated antioxidant content as the required fuel supply amount. That is, the required amount of oil supply corresponds to the amount of oil supply that makes the content of the antioxidant contained in the fuel in the tank 12 after refueling larger than the content threshold value.
  • FIG. 8 shows the relationship between the antioxidant content and the oil level of the tank 12 with respect to the required amount of oil.
  • the horizontal axis of FIG. 8 shows the required amount of oil for additional oil supply.
  • the vertical axis on the right side of the vertical axis in FIG. 8 shows the optimum antioxidant content to correspond to the predicted number of days of refueling next time, and the vertical axis on the left side shows the height of the oil level in the tank 12. That's it.
  • the content of the antioxidant contained in the remaining fuel in the tank 12 is Ps, and the oil level of the tank 12 is high. Suppose that it was 25 percent.
  • the refueling amount calculation unit 425 calculates the optimum antioxidant content (Pa) due to the additional refueling (see FIG. 7), and set as the content threshold. Immediately before the additional refueling, the content of the antioxidant in the fuel remaining in the tank 12 is Ps, so that the remaining antioxidant content (Ps) is increased to the content threshold (Pa). The amount of oil required for the operation is Ga. At this time, the refueling amount calculation unit 425 determines the refueling amount with respect to the content of the antioxidant to be added based on the oil production information (the content (concentration) of the antioxidant of the fuel to be refueled). ).
  • the controller 420 transmits the required amount of oil (Ga) calculated by the amount of oil calculation unit 425 to the vehicle 1 via the communication unit 426.
  • the oil supply notification unit 67 notifies the additional oil supply for recovering the deterioration and the required oil supply amount for the additional oil supply.
  • the amount of fuel supplied is managed using the detected value of the fuel tank sensor 12. As shown in FIG. 8, in order to supply the required amount of fuel, the height of the oil level of the tank 12 is set to the height of the fuel remaining in the tank 12 (a height corresponding to 25%). Therefore, it is necessary to increase the height (Ha) corresponding to the required amount of oil supply.
  • the fueling notification unit 67 Notifies the user that the required amount of fuel has been supplied.
  • the controller 310 when managing the amount of refueling on the gas station side, when the vehicle 1 requiring additional refueling for recovery of deterioration stops on the gasoline sudund 300, the controller 310 sets the vehicle ID of the vehicle 1 to the controller 420. Send to. The controller 420 transmits to the controller 310 the required amount of fuel for the vehicle that matches the received vehicle ID. And when the amount of oil supply reaches the required amount of oil supply, the controller 310 may notify the user who is supplying fuel to that effect.
  • the oil supply amount calculation unit 425 calculates the optimum antioxidant content (Pb), Pb is set as the content threshold.
  • the oil supply amount calculation unit 425 calculates the required oil supply amount (Gb) using the content (Pb) and the content (Ps) of the remaining fuel antioxidant.
  • the required oil supply amount (Gb) is an oil supply amount that makes the content of the antioxidant contained in the fuel after the additional oil supply larger than the content threshold value (Pb).
  • the controller 420 transmits the required oil supply amount (Gb) calculated by the oil supply amount calculating unit 425 to the vehicle 1 via the communication unit 426. Further, the required amount of fuel (Gb) may be transmitted to the gas station 300.
  • this example predicts the fueling time according to the vehicle, sets the content threshold according to the predicted fueling time, and the content of the antioxidant contained in the fuel after fueling is the content threshold
  • the degree of deterioration is prevented from becoming lower than the deterioration degree threshold as much as possible even after additional oil supply for recovery from deterioration.
  • FIG. 9 is a flowchart of calculation control related to the degree of deterioration of fuel after refueling.
  • the controller 420 receives a signal including the vehicle ID of the vehicle 1 and information on the remaining capacity in the tank 12 at the communication unit 426 in step S1.
  • the fuel supply amount calculation unit 425 calculates the elapsed days from the fueling managed by the deterioration information management unit 421 and the remaining capacity of the tank 12 among the deterioration information of the fuel remaining in the tank 12. Using the fuel deterioration table, the content of the antioxidant contained in the fuel is calculated.
  • step S3 the controller 420 receives the signal including the oil refinement information managed by the oil refinement information management unit 311 by the communication unit 426.
  • step S ⁇ b> 4 the controller 420 receives a signal including information on the amount of oil supplied to the tank 12 from the controller 310.
  • step S5 the deterioration degree calculation unit 422 calculates the elapsed days from the refining of the supplied fuel from the oil refinement time information included in the oil refinement information, and refers to the oil refinement deterioration table using the elapsed days. From the amount of fuel supplied, the antioxidant content of the fuel supplied is calculated.
  • step S6 the deterioration degree calculation unit 422 adds the antioxidant content before refueling and the antioxidant content contained in the fuel that has been refueled to oxidize the fuel in the tank after refueling.
  • the content of the inhibitor is calculated, and the degree of deterioration corresponding to the calculated content is calculated as the degree of deterioration after refueling.
  • FIG. 10 is a flowchart showing the procedure of fuel deterioration determination control
  • FIG. 11 is a flowchart showing the procedure of calculation control of the required fuel supply amount.
  • step S11 the controller 420 receives the vehicle ID transmitted from the vehicle 1 at a predetermined cycle and the remaining fuel capacity in the tank 12 by the communication unit 426.
  • the fuel supply amount calculation unit 425 is included in the fuel by referring to the fuel supply deterioration table using the elapsed days since fuel supply and the remaining capacity of the tank 12 among the deterioration information of the fuel remaining in the tank 12. Calculate the antioxidant content.
  • the deterioration degree calculation unit 422 refers to the fuel supply deterioration table, and calculates the fuel deterioration degree from the calculated antioxidant content.
  • step S15 the deterioration degree determination unit 423 compares the calculated deterioration degree with a deterioration degree threshold value. If the deterioration level is equal to or lower than the deterioration level threshold, the process returns to step S11. If the deterioration level is higher than the deterioration level threshold value, the controller 420 performs a calculation process of the required oil supply amount in step S20.
  • step S21 the oil supply timing prediction unit 424 predicts the next oil supply timing.
  • step S22 the fuel supply amount calculation unit 425 calculates the optimum antioxidant content for preventing the fuel deterioration level from becoming lower than the deterioration level threshold by the next fuel supply time. And the oil supply amount calculating part 425 sets an optimal antioxidant to a content threshold value.
  • step S23 the refueling amount calculation unit 425 calculates the required refueling amount that makes the content of the antioxidant in the fuel after refueling larger than the content threshold value.
  • step S ⁇ b> 24 the required oil supply amount calculation unit 425 compares the calculated required oil supply amount with the empty capacity of the tank 12. If the required amount of fuel is equal to or less than the empty capacity, fuel for the required amount of fuel can be added and supplied, so in step S25, the controller 420 performs additional fueling for recovering the deterioration of the fuel and A signal indicating the required amount of oil for additional fueling is transmitted to the vehicle 1. And the oil supply alerting
  • step S ⁇ b> 26 the controller 420 transmits a signal indicating that the antioxidant should be injected directly into the tank 12 to the vehicle 1. And the fuel supply alerting
  • the present invention manages the refining information of the fuel and the deterioration information of the fuel remaining in the tank 12, respectively, and calculates the deterioration degree of the fuel supply of the tank 12 based on the refining information and the deterioration information. Therefore, since the information regarding the deterioration of the fuel from the time of refining the fuel can be added to the calculation control of the deterioration degree, the calculation accuracy of the deterioration degree can be improved.
  • this example refers to the oil refinement deterioration table, calculates the content of the antioxidant contained in the fuel, using the elapsed time from the production of the fuel remaining in the current tank 12, and deteriorates the fuel. Calculate the degree.
  • the information on the deterioration of the fuel over time from the time of refining to the refueling can be added to the calculation control of the deterioration degree, so that the calculation control of the deterioration degree can be enhanced.
  • this example refers to the oil refinement deterioration table, and uses the elapsed time from the production of the fuel remaining in the current tank 12 and the remaining capacity of the fuel in the tank 12 to determine the amount of antioxidant contained in the fuel. The content is calculated and the degree of deterioration of the fuel is calculated. As a result, the information on the deterioration of the fuel over time from the time of refining to the refueling can be added to the calculation control of the deterioration degree, so that the calculation control of the deterioration degree can be enhanced.
  • the current fuel deterioration degree is calculated by referring to the fuel deterioration table and using the calculated antioxidant content of the fuel and the elapsed time of the fuel since the fuel supply.
  • this example calculates the content of the antioxidant of the fuel remaining in the tank 12 before refueling, calculates the content of the antioxidant of the fuel to be supplied with reference to the oil refinement deterioration table, Using the antioxidant content before refueling and the antioxidant content of the fuel to be refueled to calculate the antioxidant content after refueling, calculate the degree of deterioration of the fuel after refueling To do. As a result, information on the deterioration of the fuel over time from refining to refueling can also be taken into account in the calculation control of the deterioration degree, so that the calculation accuracy of the deterioration degree can be improved.
  • the oil refinement information management unit 311 may be provided on the server 400 side. Thereby, the calculation load of the controller 310 can be reduced. Further, the deterioration information and the oil refinement information stored in the database 410 may store information other than the information shown in FIG.
  • the oil refinement information management unit 311 corresponds to the “oil refinement information management unit” of the present invention
  • the degradation information management unit 421 is the “degradation information management unit”
  • the degradation level calculation unit 422 is the “degradation level calculation unit”.
  • the deterioration table corresponds to a “first table”
  • the oil supply deterioration table corresponds to a “second table”.
  • Battery control unit 200 External charging device 300 ... Gas Sorin stand 310 ... Controller 311 ... Oil refinery information management unit 312 ... Communication unit 400 ... Server 410 ... Database 420 ... Controller 421 ... Database 422 ... Controller 423 ... Degradation judgment unit 424 ... Oil supply timing prediction unit 425 ... Oil supply amount calculation unit 426 ... Communication Part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 動力源としてエンジン10及びモータ20と、エンジン10の燃料を蓄積するタンクとを備えたハイブリッド車両を管理する管理システムにおいて、燃料の製油に関する製油情報を管理する製油情報管理手段と、タンク12に残っている燃料の劣化に関する劣化情報を管理する劣化情報管理手段と、製油情報及び劣化情報に基づいて、タンク12内の燃料の劣化度を演算する劣化度演算手段とを備える。

Description

ハイブリッド車両の管理システム及び管理方法
 本発明は、ハイブリッド車両の管理システム及び管理方法に関するものである。
 本出願は、2012年4月13日に出願された日本国特許出願の特願2012―091638に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
 燃料タンクへの複数回の燃料補給について各補給時期および各補給量の履歴を記憶し、当該履歴に基づき補給時期から所定期間を経過した燃料の、燃料タンク内の燃料に占める割合を算出し、算出された割合が高いほど燃料タンク内の燃料の劣化度合いを高く算出するハイブリッド車両の制御装置が知られている(特許文献1)。
特開2007-168512号公報
 しかしながら、燃料の製油時から給油時までの燃料の劣化度合いを考慮していないため、劣化度の算出精度が低いという問題があった。
 本発明は、劣化度の算出精度を高めることができるハイブリッド車両の管理システム及び管理方法を提供する。
 本発明は、燃料の製油情報を管理し、タンクに残っている燃料の劣化情報を管理し、製油情報及び劣化情報に基づいて、タンク内の燃料の劣化度を演算することによって上記課題を解決する。
 本発明は、燃料の製油時からの燃料の劣化に関する情報も加味した上で、劣化度を演算するため、劣化度の演算精度を高めることができる。
本発明の実施形態に係る管理システムにより管理される車両のブロック図である。 図1の統合コントロールユニットのブロックである。 図1の車両を管理する管理システムのブロック図である。 図3のデータベースの内容を説明するための概要図である。 図1のタンク内に給油される燃料に関して、経過日数に対する、酸化防止剤の含有量及び劣化度の特性を示すグラフである。 図1のタンク内に給油される燃料に関して、経過時間に対する劣化度の特性を示すグラフである。 図1のタンク内に給油される燃料に関して、燃料が劣化したと判定されるまでの経過日数に対して最適な酸化防止剤含有量の特性を示すグラフである。 図1のタンク内に給油される燃料に関して、必要給油量に対するタンクの油面高さと酸化防止剤の含有量の特性を示すグラフである。 図4のサーバのコントローラの制御手順を示すフローチャートである。 図4のサーバのコントローラの制御手順を示すフローチャートである。 図4のサーバのコントローラの制御手順を示すフローチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 本実施形態に係るハイブリッド車両の管理システムにより管理される車両の一例として、本例のハイブリッド車両1は、複数の動力源を車両の駆動に使用するパラレル方式の電気自動車である。また、ハイブリッド車両1は、外部充電装置200からの電力により、車両に設けられたバッテリ30を充電可能なプラグインハイブリッド車両である。また、ハイブリッド車両1は、車両1を管理する管理サーバ400との間で情報の送受信を行う。まず、ハイブリッド車両1の構成について説明する。
 ハイブリッド車両1は、図1に示すように、内燃機関(以下、「エンジン」という)10、第1クラッチ15、モータジェネレータ(電動機・発電機)20、第2クラッチ25、バッテリ30、インバータ35、自動変速機40、プロペラシャフト51、ディファレンシャルギアユニット52、ドライブシャフト53、左右の駆動輪54及びディスプレイ90を備えている。なお、以下、本発明をパラレル方式のハイブリッド車に適用した場合について説明するが、本発明は他の方式のハイブリッド車両にも適用可能である。また自動変速機40の代わりに、無段変速機(CVT)を用いてもよい。
 エンジン10は、ガソリン又は軽油を燃料として駆動する内燃機関であり、エンジンコントロールモジュール70からの制御信号に基づいて、スロットルバルブのバルブ開度、燃料噴射量、点火時期等が制御される。このエンジン10には、エンジン回転数Neを検出するためのエンジン回転数センサ11及びエンジン10の冷却水の温度を検出するための水温センサ(不図示)が設けられている。
 燃料タンク12は、エンジン10を駆動させるための燃料を貯蔵するタンクである。燃料タンクセンサ13は、燃料タンク12内に残存する燃料の量を検出するためのセンサであって、燃料タンク12内の燃料の油面を計測するセンサである。
 第1クラッチ15は、エンジン10の出力軸とモータジェネレータ20の回転軸との間に介装されており、エンジン10とモータジェネレータ20との間の動力伝達を断接する。この第1クラッチ15の具体例としては、例えば比例ソレノイドで油流量及び油圧を連続的に制御できる湿式多板クラッチ等を例示することができる。この第1クラッチ15は、統合コントロールユニット60からの制御信号に基づいて油圧ユニット16の油圧が制御されることで、クラッチ板を締結(スリップ状態も含む。)/解放させる。
 モータジェネレータ20は、ロータに永久磁石を埋設し、ステータにステータコイルが巻き付けられた同期型モータジェネレータである。このモータジェネレータ20には、ロータ回転数Nmを検出するためのモータ回転数センサ21が設けられている。このモータジェネレータ20は、電動機としても機能するし発電機としても機能する。インバータ35から三相交流電力が供給されている場合には、モータジェネレータ20は回転駆動する(力行)。一方、外力によってロータが回転している場合には、モータジェネレータ20は、ステータコイルの両端に起電力を生じさせることで交流電力を生成する(回生)。モータジェネレータ20によって発電された交流電力は、インバータ35によって直流電流に変換された後に、バッテリ30に充電される。
 バッテリ30の具体例としては、リチウムイオン二次電池やニッケル水素二次電池等を例示することができる。このバッテリ30には電流・電圧センサ31が取り付けられており、これらの検出結果をモータコントロールユニット80に出力することが可能となっている。バッテリ30は、車両の外部に設けられた外部充電装置200により充電可能なバッテリであり、充電器32及びスイッチ33を介して充電ポート34に接続されている。またバッテリ30は、例えば自宅の電気機器を動作ための蓄電器としても作用し、停電時の非常用の電源として用いることができる。
 センサ31はバッテリの状態を検出するための電圧または電流センサである。センサ31はバッテリ30と電気的に接続されている。充電器32は、外部充電装置200から供給される交流電力を直流電力に変換して、バッテリ30に電力を供給する充電回路を有している。充電器32はバッテリコントロールユニット100により制御される。スイッチ33は、充電器32と充電ポート34との間に接続され、外部充電装置200とバッテリ30との電気的な導通及び遮断を切り替えるためのスイッチである。
 充電ポート34は、外部充電装置200の充電ケーブルの先端部分と接続可能なコネクタを有し、車両1の表面部分に設けられている。充電ポート34に、当該充電ケーブルの先端部分が接続されると、接続されたことを示す信号が、バッテリコントロールユニット100に送信される。
 またバッテリ30を家庭用の電源として用いる場合には、充電ポート34に、家庭へ電力を供給するための電力制御装置(図示しない)を接続し、当該電力制御装置を介して、バッテリ30と住宅の分電盤とを電気的に接続する。そして、スイッチ33をオンにした状態で、当該電力制御装置を介して、バッテリ30の電力を住宅に供給する。なお、電力制御装置は車両1に搭載してもよい。
 外部充電装置200は、車両1の外部に設けられ、自宅の駐車場や、ショッピングセンタ等の商業施設、市役所などの公的施設、工場などの施設などに設置されている。外部充電装置200は、自宅の駐車場に設けられる場合には、家庭用の交流電源に接続され、交流電源からの電力を、車両1への供給に適した電力に変換し、図示しない充電ケーブルを介して、充電ポート34に供給する。
 自動変速機40は、前進7速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り換える変速機である。この自動変速機40は、統合コントロールユニット60からの制御信号に基づいて変速比を変化させる。自動変速機40の出力軸は、プロペラシャフト51、ディファレンシャルギアユニット52、及び左右のドライブシャフト53を介して、左右の駆動輪54に連結されている。なお、図1において55は左右の操舵前輪である。
 テレマティクスコントロールユニット50は、サーバ400等の外部との送受信を行うための通信機を備えており、後述する車両を管理するサーバ400との間で情報の送受信を行う。また、テレマティクスコントロールユニット50は統合コントローユニット60と、CAN通信により接続されている。
 ディスプレイ90は、統合コントローユニット60に含まれるナビゲーションシステムで管理された情報等を表示して、情報を乗員に報知するための表示装置である。
 本実施形態におけるハイブリッド車両1は、第1及び第2クラッチ15,25の締結/解放状態に応じて3つの走行モードに切り替えることが可能となっている。
 第1走行モードは、第1クラッチ15を解放させると共に第2クラッチ25を締結させて、モータジェネレータ20の動力のみを動力源として走行するモータ使用走行モード(以下、「EV走行モード」と称する。)である。
 第2走行モードは、第1クラッチ15及び第2クラッチ25のいずれも締結させて、モータジェネレータ20に加えてエンジン10を動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と称する。)である。
 第3走行モードは、第2クラッチ25をスリップ状態として、エンジン10又はモータジェネレータ20の少なくとも一方を動力源に含みながら走行するスリップ走行モード(以下、「WSC走行モード」と称する。)である。
 なお、EV走行モードからHEV走行モードに移行する際には、解放していた第1クラッチ15を締結し、モータジェネレータ20のトルクを利用してエンジン10を始動させる。
 さらに、上記の「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを含む。
 「エンジン走行モード」は、エンジン10のみを動力源として駆動輪54を動かす。「モータアシスト走行モード」は、エンジン10とモータジェネレータ20の2つを動力源として駆動輪54を動かす。「走行発電モード」は、エンジン10を動力源として駆動輪54を動かすと同時に、モータジェネレータ20を発電機として機能させる。
 なお、以上に説明したモードの他に、停車時において、エンジン10の動力を利用してモータジェネレータ20を発電機として機能させ、バッテリ30を充電したり電装品へ電力を供給する発電モードを備えてもよい。
 本実施形態におけるハイブリッド車両1の制御系は、図1に示すように、統合コントロールユニット60、エンジンコントロールモジュール70、及びモータコントロールユニット80、バッテリコントロールユニット100を備えている。これらの各コントロールユニット60,70,80、100は、例えばCAN通信を介して相互に接続されている。
 エンジンコントロールユニット70は、エンジン回転数センサ11からの情報を入力し、統合コントロールユニット60からの目標エンジントルクtTe等の指令に応じ、エンジン動作点(エンジン回転数Ne、エンジントルクTe)を制御する指令を、エンジン10に備えられたスロットルバルブアクチュエータ、インジェクタ、点火プラグ等に出力する。またエンジンコントロールユニット70は、水温センサ12の検出温度に基づいて、インジェクタを制御し、燃料噴射量を調整する。なお、エンジン回転数Ne、エンジントルクTeの情報は、CAN通信を介して統合コントロールユニット60に供給される。
 モータコントロールユニット80は、モータジェネレータ20に設けられたモータ回転数センサ21からの情報を入力し、統合コントロールユニット60からの目標モータジェネレータトルクtTm(目標モータジェネレータ回転数tNmでもよい)等の指令に応じて、モータジェネレータ20の動作点(モータ回転数Nm、モータトルクTm)を制御する指令をインバータ35に出力する。
 また、モータコントロールユニット80は、電流・電圧センサ31により検出された電流値及び電圧値に基づいてバッテリ30のSOCを演算及び管理する。このバッテリSOC情報は、モータジェネレータ20の制御情報に用いられると共に、CAN通信を介して統合コントロールユニット60に送出される。
 バッテリコントロールユニット100は、バッテリの状態を管理するためのコントロールユニットであり、センサ31の検出値からバッテリの充電状態(SOC)を算出し、統合コントロールユニット60に送信する。バッテリコントロールユニット100は、充電ポート34からの信号により、外部充電装置200が接続されてことを検出すると、スイッチ33をオンにする。
 また、バッテリコントロールユニット100は、充電器32を制御し、外部充電装置200によるバッテリ30の充電中、バッテリ30のSOCを管理し、バッテリ30が目標SOCに達すると、スイッチ33をオフにする。
 統合コントロールユニット60は、エンジン10、モータジェネレータ20、自動変速機40、第1クラッチ15、及び第2クラッチ25からなるパワートレインの動作点を統合的に制御することで、ハイブリッド車両1を効率的に走行させるための機能を担うものである。
 この統合コントロールユニット60は、CAN通信を介して取得される各センサからの情報に基づいてパワートレインの動作点を演算し、エンジンコントロールモジュール70への制御指令によるエンジンの動作制御、モータコントロールユニット80への制御指令によるモータジェネレータ20の動作制御、自動変速機40への制御指令による自動変速機40の動作制御、第1クラッチ15の油圧ユニット16への制御指令による第1クラッチ15の締結・解放制御、及び、第2クラッチ25の油圧ユニット26への制御指令による第2クラッチ25の締結・解放制御を実行する。
 次いで、統合コントロールユニット60により実行される制御のうち、エンジン10及びモータジェネレータ20の駆動制御について説明する。図2は統合コントロールユニット60の制御ブロック図である。
 図2に示すように、統合コントロールユニット60は、目標駆動力演算部61、モード選択部62、目標充放電演算部63、動作点指令部64、及び変速制御部65を備えている。
 目標駆動力演算部61は、予め定められた目標駆動力マップを用いて、アクセル開度センサ69により検出されたアクセル開度APOと、自動変速機40の出力回転センサ42により検出された変速機出力回転数No(=車速VSP)とに基づいて、目標駆動力tFo0を演算する。
 モード選択部62は、予め定められたモードマップを参照し、目標モードを選択する。図4にモードマップの一例を示す。モードマップ(シフトマップ)には、車速VSPとアクセル開度APOに応じて、EV走行モード、WSC走行モード、及びHEV走行モードの領域がそれぞれ設定されている。
 またモードマップ上の所定の位置にはエンジン始動線Loが引かれており、当該エンジン始動線を境界として、車速(VSP)及びアクセル開度(APO)が低い方にEV走行モード及びが割り当てられ、車速(VSP)及びアクセル開度(APO)が高い方にHEV走行モードが割り当てられている。従って、モード選択部62は、EV走行モードから始動線Loを超えてHEV走行モードに移行する場合に、動作点指令部64に対してエンジン10を始動させることを要求する。
 エンジン始動線Loが、エンジン10を始動させるための閾値に相当し、アクセル開度APO又は車速VSPが当該閾値より大きい場合には、エンジン10が始動することになる。
 また、EV走行モード及びHEV走行モード双方の低速領域(例えば15km/h以下の領域)には上述のWSC走行モードがそれぞれ割り当てられている。なお、このWSC走行モードを規定する所定車速VSP1は、エンジン10が自立回転可能な車速である。従って、この所定車速VSP1よりも低い領域では、第2クラッチ25を締結されたままの状態でエンジン10は自立回転することができない。なお、EV走行モードが選択されている場合であっても、バッテリ30のSOCが所定値以下である場合には、強制的にHEV走行モードに移行する場合もある。
 目標充放電演算部63は、予め定められた目標充放電量マップを用いて、バッテリ30のSOCから、目標充放電電力tPを演算する。目標充放電演算部63は、バッテリの30のSOCが低い場合には、バッテリ30を充電するための目標充電電力を演算し、また、バッテリの30のSOCが高い場合には、バッテリ30を放電するための目標放電電力を演算して、動作点指令部64に送信する。また、目標充放電演算部63は、テレマティクスコントロールユニット50により受信された外部情報に基づいて、目標充放電電電力を設定する。
 動作点指令部64は、アクセル開度APO、目標駆動力tFo0と、目標モードと、車速VSPと、目標充放電電力tPとから、パワートレインの動作点達成目標として、過渡的な目標エンジントルクtTe、目標モータジェネレータトルクtTm(目標モータジェネレータトルクtNmでもよい)、目標第1クラッチ伝達トルク容量tTc1、目標第2クラッチ伝達トルク容量tTc2、及び、自動変速機40の目標変速段を演算する。
 目標エンジントルクtTeは統合コントロールユニット60からエンジンコントロールユニット70に送出され、目標モータジェネレータトルクtTm(目標モータジェネレータ回転数tNmでもよい)は統合コントロールユニット60からモータコントロールユニット80に送出される。
 動作点指令部64は、モード選択部62により設定された目標モードの下、目標駆動力を発生させるために、目標第1クラッチ伝達トルク容量tTc1及び目標第2クラッチ伝達トルク容量tTc2を演算する。目標第1クラッチ伝達トルク容量tTc1及び目標第2クラッチ伝達トルク容量tTc2については、統合コントロールユニット60が、当該目標第1クラッチ伝達トルク容量tTc1及び目標第2クラッチ伝達トルク容量tTc2に対応したソレノイド電流を油圧ユニット16,26にそれぞれ供給する。
 また、動作点指令部64は、SOCが低下している場合等、モード選択部62による選択モードと関係なく、システム上の要求としてエンジン10を始動させることも可能である。例えば、モード選択部62がEVモードを選択しているが、バッテリ30のSOCが低下しており、目標充放電演算部63がバッテリ30を充電するための目標充電電力を演算した場合には、動作点指令部64は、目標演算トルクを演算して、エンジンコントロールモジュール70を介して、エンジン10を始動させる。
 変速制御部65は、シフトマップに示すシフトスケジュールに沿って目標変速段を達成するように自動変速機40内のソレノイドバルブを駆動制御する。なお、この際に用いられるシフトマップは、図4に示すように車速VSPとアクセル開度APOに基づいて予め目標変速段が設定されたものである。
 次に、ハイブリッド車両1を管理する、本例の管理システムについて、図3を用いて説明する。図3は、本例の管理システムのブロック図である。管理システムは、ハイブリッド車両1と、ガソリンスタンド300と、サーバ400との間で、情報を送受信することで、ハイブリッド車両1及びガソリンスタンド400を管理するシステムである。なお、本例の管理システムは、ハイブリッド車両1に限らず他の複数の車両も管理しており、また、1つのガソリンスタンド400に限らず他の複数のガソリンスタンドの情報も管理している。
 ハイブリッド車両1の統合コントロールユニット60は、燃料管理部66及び給油報知部67を有している。燃料管理部66は、燃料タンクセンサ13の検出値に基づいて、燃料タンク12内の燃料の残量を測定する。燃料の残量は、燃料タンクセンサ13による油面の高さから測定すればよく、また油面の傾斜を検出するGセンサ(図示しない)の検出値を合わせて測定すればよい。あるいは、燃料タンクセンサ13の検出値と、エンジン10を駆動させて走行中の燃料消費量との演算値とから演算により測定してもよい。また、燃料管理部66は、エンジン10を駆動させることで、消費される燃料の消費率、いわゆる燃費も管理している。
 給油報知部67は、タンク12内に残存している燃料の劣化を防ぐために、追加の給油を報知するための制御部である。追加の給油の報知は、単にタンク12内の燃料の残量が少なくなった場合に報知するものではなく、燃料を追加することで、残存していた燃料の劣化を回復させるための報知である。
 ここで、燃料の劣化について説明する。燃料の劣化には、タンク12内の燃料がタンク内の酸素と結びつくことによる酸化劣化がある。燃料には、この酸化劣化を防ぐために、酸化防止剤が入っている。そして、燃料が減らない状態でも、時間の経過と共に、燃料に含まれる酸化防止剤の含有量は減りつつ、さらに酸化劣化も進行するため、燃料は劣化してしまう。さらに、本例の車両1のように、燃費のよい車両では、長期間に渡って、タンク内の燃料が消費されない場合があるため、上記のような燃料の劣化が発生する。タンク12内に残っている燃料が劣化した場合には、新たに燃料を追加することで、タンク12内の酸化防止剤の含有量が増えるため、給油前にタンク12内に残っていた燃料の劣化を回復させることができる。
 図3に戻り、給油報知部67は、燃料の劣化を回復させるための追加給油を報知する際に、劣化を回復させるために必要な給油量(必要給油量)も報知する。すなわち、車両1のユーザに応じて、EVモードでの走行時間、HEVモードでの走行時間などの走行状態は異なっており、燃料の消費率は異なる。そのため、例えば燃料の消費率が低く、給油する間隔が長い車両1のユーザが、燃料劣化を回復させるために、必要以上に多くの燃料を給油した場合には、追加給油の後、消費されない燃料が多く残ってしまい、残った燃料が劣化してしまう。そのため、本例では、ユーザに応じて、劣化を回復させるために必要な給油量を、給油報知部67で報知している。なお、必要給油量の演算は、後述する。
 ガソリンスタンド300は、貯蔵するガソリンの情報を管理する端末として、コントローラ310を備えている。コントローラ310は、製油情報管理部311と、通信部312を有している。製油情報管理部311は、ガソリンスタンド300内のタンクに貯蔵される燃料の製油に関する製油情報を管理している。製油情報は、燃料が製油された時の製油に関する情報であり、製油された時間、製油されてからの経過時間、燃料に含まれる、酸化防止剤等の物質の含有量や濃度を含んでいる。製油情報管理部311は、タンク内に新たな燃料が貯蔵させる度に、当該製油情報を更新する。通信部312は、サーバ400からの要求、又は、所定の周期で、サーバ400と情報の通信を行う。通信部312は、製油情報管理部311で管理されている製油情報、車両1のタンク12に給油された場合には、給油量、給油した燃料の種別、給油した際の時間情報などをサーバ400に送信する。
 サーバ400は、ハイブリッド車両1及びガソリンスタンド300を管理するセンターとし機能し、データベース410及びコントローラ420を有している。データベース410は、車両1から送信されるタンク12内の燃料に関する情報、ガソリンスタンド300から送信される、燃料の製油情報などを記録するデータベースである。
 データベース410には、一例として、図4に示すような情報が記憶されている。図4は、データベース410で記録されている情報の一例を説明するための概念図である。データベース410には、車両毎に、給油からの日数、タンク12内の燃料の残容量、タンク12内の燃料に含まれる酸化防止剤の含有量、燃料の劣化度、次回の給油までの日数、タンク12内の燃料の製油時間などが記録されている。
 車両IDは、個々の車両を識別するための識別情報である。車両IDは各車両毎に予め割当てられており、例えばナンバープレートの情報を車両IDとして用いられる。給油からの日数は、タンク12内に残っている燃料が給油された時からの経過日数である。タンク内の燃料の残容量は、タンク12内に残っている燃料の容量である。
 劣化度は、タンク12内の燃料に含まれる酸化防止剤の含有量(濃度)に応じて決まる、燃料の劣化の度合いである。劣化度が高い燃料を使用した場合には、エンジン10の始動性が悪くなったり、燃料の燃焼状態が不安定になったりする可能性が高くなる。劣化度は、例えば、燃料の質量に対する酸化防止剤の含有量(質量)の割合などで示される。本例では、燃料の酸化防止剤の含有量がゼロになった状態、あるいは、これ以上時間が経過しても、燃料の酸化防止剤の含有量の減少傾向が収束したと判断可能な状態を、劣化度100パーセントとしている。
 次回までの給油までの日数は、現在から、次に給油されると予想される日まで日数である。なお、次回の給油日の予想制御については、後述する。
 コントローラ420は、劣化情報管理部421、劣化度演算部422、劣化判定部423、給油時期予測部424、給油量演算部425及び通信部426を有している。劣化情報管理部421は、タンク12内に残っている燃料の劣化情報を管理している。劣化情報は、燃料の劣化に関する情報であり、例えば、燃料を給油した時の時間情報、タンク12内に残っている燃料の残容量の情報、タンク12内の燃料の酸化防止剤に関する情報(含有量、濃度など)等を含んでいる。また劣化情報管理部421は、劣化情報をデータベース101に記録することで車両毎に管理している。
 劣化度演算部422は、製油情報管理部311で管理され、コントローラ420に送信される製油情報と、劣化情報管理部421で管理されている劣化情報に基づいて、燃料の劣化度を演算する。劣化度演算部422で演算される劣化度は、タンク12への給油後の燃料の劣化度と、給油後に限らず通常の車両状態でのタンク12内の燃料の劣化度とを含む。
 劣化判定部423は、劣化度演算部422で演算された劣化度と、劣化度閾値とを比較して、タンク12内の燃料が劣化したか否かを判定する制御部である。劣化度閾値は、燃料が劣化したことを判定するための閾値であって、予め設定されている値である。劣化度閾値は、燃料が劣化することでエンジン10の燃焼等に影響がある判断される劣化度に相当する。劣化度閾値は、車種IDで識別された車両毎に設定してもよく、あるいは、車両の車種毎に設定してもよい。
 給油時期予測部424は、ハイブリッド車両1の燃費などから、次回の給油時期を予想するための制御部である。給油時期の予想は、車両毎に行われ、データベース410で管理される。給油量演算部425は、劣化度演算部422により演算された劣化度を、劣化度閾値より低くしないために必要な燃料の給油量を演算する。上記の通り、タンク12内に残っている燃料に対して、燃料を追加して給油することで、燃料の劣化は回復し、劣化度が下がる。そして、追加給油による劣化度の減少量は、給油される燃料の量や、燃料に含まれる酸化防止剤の含有量によっても異なる。そのため、給油量演算部425は、これらの要素も加味した上で、追加給油の後に、燃料内の酸化防止剤の含有量が減少して、劣化度が劣化度閾値以上にならないようにする必要な給油量を演算する。
 通信部426は、車両1のテレマティクスコントロールユニット50及びガソリンスタンド300の通信部312との間で通信を行い、車両1及びガソリンスタンド400と情報を送受信する。
 次に、本例のハイブリッド車両の管理システムにおける制御について説明する。まず、タンク12内の劣化度の演算制御について、説明する。劣化度の演算制御のうち、通常の車両状態において、タンク12内の燃料の劣化度に係る演算制御について説明する。
 タンク12内の燃料は、タンク内の酸素に触れることで酸化劣化し、また給油からの日数が経過するほど、燃料の酸化防止剤の含有量も少なくなるため、劣化度は日数の経過に応じて高くなる。この時、タンク内の酸素の量は、タンク12の形状や、タンク内の燃料の残容量に応じて異なる。タンク12の形状は車種ごとで予め決まっているため、タンク内の燃料の残容量が分かれば、タンク内の燃料の表面において触れる酸素量も決まる。そして、酸化防止剤の経時的な減少特性は、燃料の性質に応じて予め決まっている。
 本例において、統合コントロールユニット60は、燃料管理部66により、タンク12内の燃料の残容量を管理している。また、タンク12内に給油が行われると、燃料管理部66は、給油後のタンク12内の燃料の容量も管理する。そして、燃料管理部66で管理されている燃料の残容量は、所定の周期で、コントローラ420に送信される。
 また、ガソリンスタンド300において、コントローラ310は車両1に対して給油が行われると、給油が行われた時間(給油時間)と、給油した燃料の容量(給油量)をサーバ400側のコントローラ410に送信する。劣化情報管理部421は、燃料管理部66で管理されている燃料の残容量、コントローラ310から送信される給油時間から、現在の車両1のタンク内に残っている燃料の容量と、給油からの経過時間を把握することができる。
 また、サーバ400は、データベース410にて、車両毎に情報を管理しており、給油からの経過日数に対する、酸化防止剤の特性及び劣化度の特性も車両毎で管理している。コントローラ420は、燃料の残容量及び給油からの経過日数と、酸化防止剤の含有量及び劣化度との関係を示すテーブル(以下、給油劣化テーブルと称す。)を、車両毎でデータベース410に記憶している。そして、劣化度演算部422は、劣化情報管理部421により管理されている、タンク12内の燃料の残容量及び当該燃料の給油時からの経過日数を用いて、当該給油劣化テーブルを参照することで、タンク12内の燃料の酸化防止剤の含有量及び劣化度を演算する。これにより、ある時刻における、タンク12内の燃料の劣化度が演算される。
 燃料の劣化は、ガソリンスタンド300において、タンク12に給油される時点よりも前であって、燃料の精油時から既に始まっており、精油時からの経過時間に応じて、燃料の劣化は進行している。図5に、精油からの経過日数に対する酸化防止剤の含有量の特性及び劣化度の特性を示す。図5のグラフaが酸化防止剤の含有量の特性を、グラフbが劣化度の特性を示すグラフである。
 タンク12内の燃料の残容量が一定の量であるとすると、図5に示すように、酸化防止剤の含有量は精油時からの時間の経過とともに減少し、劣化度は精油時からの時間の経過とともに上昇する。
 本例において、製油情報管理部311は、タンク12内に燃料が給油されると、給油された燃料の製油情報として、製油された時間及び製油された燃料の酸化防止剤の含有量を、コントローラ420に送信する。そして、コントローラ420は、製油情報管理部311から送信される製油の時間情報から、タンク12内の燃料の精油からの日数をデータベース410に記憶しつつ、時間の経過とともに、この日数を更新する。またコントローラ420は、燃料の製油からの経過日数と、酸化防止剤の含有量との関係を示すテーブル(以下、製油劣化テーブルと称す)を記憶している。ここで、製油劣化テーブルにおける、酸化防止剤の含有量は、燃料の単位容量当たりの含有量とする。
 劣化度演算部422は、ある時刻における燃料の劣化度を、製油劣化テーブルを用いて演算することも可能できる。劣化度演算部422は、ある時刻において、データベース410から、車両1の精油時からの経過日数の情報を取得する。なお、車両1以外の他の車両の燃料の劣化度を演算する際には、当該他の車両に対応する車両IDに基づいて、精油時からの経過日数を取得すればよい。
 また、劣化度演算部422は、ある時刻において、データベース410から、タンク12内の燃料の残容量を取得する。そして、劣化度演算部422は、タンク12内の燃料の精油からの経過日数を用いて、製油劣化テーブルを参照して、燃料の酸化防止剤の含有量(濃度)を演算する。また、劣化度演算部422は、タンク12内の燃料の残容量と、演算した酸化防止剤の含有量(濃度)を用いることで、タンク12内の燃料に含まれる酸化防止剤の含有量を演算する。上記のとおり、酸化防止剤の含有量は、燃料の劣化度と相関性を有しているため、劣化度演算部422は、タンク12内の燃料に含まれる酸化防止剤の含有量を演算することで、燃料の劣化度を演算することができる。
 ここで、給油劣化テーブルは、燃料の残容量及び給油からの経過日数と、酸化防止剤の含有量及び劣化度との関係を示しているが、酸化防止剤の含有量及び燃料の劣化度は、給油時点の燃料に含まれる酸化防止剤の含有量及び燃料の劣化度に応じて異なる。そして、給油時点の酸化防止剤の含有量及び燃料の劣化度は、製油時から給油時点までの経過日数に応じて変化する。そのため、本例は、給油される燃料の酸化防止剤の含有量(含有率)毎に、給油劣化テーブルを記憶している。すなわち、給油からの経過日数を同じ日数でみた場合には、給油された燃料の酸化防止剤の含有量が多いほど、当該日数を経過後の酸化防止剤含有量は多くなり、劣化度は低くなる。
 なお、燃料の劣化度及び酸化防止剤の含有量は、製油から給油までの条件と、給油してからのタンク内の条件とで異なっているため、給油劣化テーブルまたは製油劣化テーブルをそれぞれ参照し演算された、燃料の劣化度及び酸化防止剤は異なる場合がある。そのため、例えば、給油までの燃料の劣化については、製油劣化テーブルを参照して、燃料の劣化度及び酸化防止剤の含有量を演算する。これにより、初期値として、給油時の燃料の劣化のパラメータ(劣化度または酸化防止剤の含有量)が定まる。そして、給油された後は、給油劣化テーブルを参照して燃料の劣化度及び酸化防止剤の含有量を演算する。これにより、燃料の劣化の演算精度が高まる。
 次に、劣化度の演算制御のうち、タンク12への給油後の燃料の劣化度に係る演算制御について説明する。給油直前のタンク内の燃料の劣化度及び酸化防止剤の含有量は、上記により演算される。すなわち、劣化度演算部422は、給油時のタンク内の燃料の残容量と、前回の給油時からの経過日数を用いて、給油劣化テーブルを参照して、タンク12内の燃料の酸化防止剤の含有量を演算する。
 給油時に、給油される燃料の酸化防止剤の含有量は、製油時からの経過日数に応じて異なる。ガソリンスタンド300のコントローラ310は、タンク12への給油が終わると、給油量及び給油された燃料の製油情報を、サーバ400に送信する。サーバ400側の劣化度演算部422は、ガソリンスタンド300側のコントローラ310から送信された給油量及び給油された燃料の製油情報を用いて、製油劣化テーブルを用いて、給油された燃料の酸化防止剤の含有量を演算する。劣化度演算部422は、給油直前にタンク内に残っていた燃料の酸化防止剤の含有量と、給油された燃料の酸化防止剤の含有量を合算することで、給油後の燃料の酸化防止剤の含有量を演算する。そして、燃料に含まれる酸化防止剤の含有量と燃料の劣化度には、図5に示すように相関性を有しているから、劣化度演算部422は、演算した給油後の酸化防止剤の含有量から、給油後の燃料の劣化度を演算することができる。
 図6を用いて、給油前後の燃料の劣化度の変化について、説明する。図6は、給油後の経過時間に対する燃料の劣化度の特性を示すグラフである。なお、図6の「多」及び「少」は酸化防止剤の含有量を示しており、グラフaからグラフdの順で、酸化防止剤の含有量が順に少なくなる特性を示す。
 燃料の劣化度は、酸化防止剤の含有量が多いほど、給油時点の燃料の劣化度は低くなる。そして、燃料の劣化度は時間の経過とともに高くなっていくが、給油時点の酸化防止剤の含有量が多いほど、劣化度が低い地点から劣化度が上昇していく。そのため、図6のグラフで示されるように、給油からの経過時間が同じであれば、給油時点の酸化防止剤の含有量が多いほど、燃料の劣化度は低くなることになる。
 例えば、ガソリンスダンド300において、給油された燃料が、製油時からの経過時間の短い燃料であり、給油時点の酸化防止剤の含有量が多い燃料である場合には、タンク12内の燃料の劣化は、図6の点a1から、グラフaに沿って進行する。そして、時間の経過とともに燃料の劣化度は徐々に高くなる。そして、点a2で、燃料の劣化度が劣化度閾値に達ししたため、給油を行う。点a1で給油された燃料と比較して、製油時からの経過時間が長い燃料を給油する場合には、点a1の時点の燃料より酸化防止剤の含有量が少ない燃料が給油される。そのため、給油後の燃料の劣化度は、点a1の劣化度には戻らず、点a1の劣化度より高くなる(図6の点b1に相当)。
 本例の給油後の劣化度演算制御では、まず、給油直前である点a2でのタンク12内の燃料の酸化防止剤の含有量を演算する。そして、点a2から点b1に線にする際に給油される燃料の酸化防止剤の含有量を演算する。そして、これらの含有量を合算し、合算された酸化防止剤の含有量に対応する劣化度を、給油後である点b1での劣化度として演算する。なお、酸化防止剤の含有量から燃料の劣化度を演算する際には、給油劣化テーブルを用いればよい。
 次に、劣化度の判定制御について説明する。劣化度演算部422により、通常の車両状態で、劣化度の演算制御が行われると、劣化判定部423は、演算された劣化度と、劣化度閾値とを比較する。そして、劣化度が劣化判閾値以下である場合には、劣化判定部423は、タンク12内の燃料は劣化していないと判定する。一方、劣化度が劣化判閾値より高い場合には、劣化判定部423は、タンク12内の燃料が劣化していると判断し、通信部426は、燃料が劣化していることを示す信号を、車両1に送信する。そして、車両1側の給油報知部67は、劣化した燃料を回復させるために、追加の給油を促すようユーザに報知する。また、劣化判定部423により、燃料が劣化していると判定された場合には、以下に説明するように、給油量演算部425は、燃料を回復させるために必要な給油量を演算する制御を行う。
 次に、本例の必要給油量の演算制御について説明する。給油時期予測部424は、車両の燃費や、過去の給油時期などから、車両毎に次回の給油時期を予測している。例えば、車両の燃費から給油時期を予測するには、給油時期予測部424は、燃料管理部66で管理されている燃費とタンク12内の残容量及び予想される走行距離から給油時期を予測することができる。また、過去の給油時期から予測するには、上記のように給油後の燃料の劣化度を演算する際に、ガソリンスタンド300から給油した時間に関する情報が、サーバ400側に送信されるため、給油時期予測部424は、この情報をデータベース410に蓄積する。そして、給油時期予測部424は、過去の給油の履歴から、給油時期を予測することができる。
 劣化判定部423により燃料が劣化していると判定された後、給油量演算部425は、給油時期予測部424で予想された次回の給油時期から、現在から次回の給油までの給油日数を予測する。
 追加給油により、燃料の酸化防止剤の含有量が増えれば、劣化度は劣化度閾値より低くなる。しかしながら、次回の給油日数が長い場合には、追加の給油後に、再び劣化度が劣化度閾値以上になってしまう。また、次回の給油日数が短い場合には、追加の給油の際、燃料の無駄を防ぐために、必要以上に多くの燃料を給油しない方がよい。
 そのため、本例では、給油時期予測部424で予測された給油時期のタイミングに合わせて、燃料の劣化度が劣化度閾値より低くならないように、追加給油の際に、必要な給油量を演算している。
 図7に、燃料が劣化したと判定されるまでの経過日数に対する最適な酸化防止剤の含有量の特性を示す。上記のとおり、時間の経過とともに酸化防止剤の含有量は少なくなる。そのため、追加給油後に、燃料が劣化したと判定されるまでの経過日数を長くするには、燃料に含まれる酸化防止剤の含有量を多くする必要がある。一方、燃料が劣化したと判定されるまでの経過日数が短くてもよい場合には、燃料に含まれる酸化防止剤の含有量は少なくともよい。
 この関係を、給油時期予測部424で予測された次回の給油日数を用いて説明すると、次回の給油日数が長い場合(図7のTaに相当)には、劣化の回復のために追加給油を行ったとしても、追加給油の次に給油される時期は長くなってしまう。そのため、燃料が劣化したと判定されるまでの日数を、次の給油日数に合わせて長い日数にして、追加給油後に、燃料の酸化防止剤の含有量を多く確保する(図7のPaに相当)。一方、次回の給油日数が短い場合(図7のTbに相当)には、劣化の回復のために追加給油を行った後、比較的短い日数で、給油が行われる可能性が高い。そのため、燃料が劣化したと判定されるまでの日数は、次の給油日数に合わせて短い日数にし、追加給油後の、燃料の酸化防止剤の含有量を少なくする(図7のPbに相当)。
 すなわち、給油時期予測部424で予測された次回の給油までの日数が長いほど、劣化の回復のための給油の際(追加給油の際)に、給油後の燃料の最適な酸化防止剤の含有量は多くなる。
 給油量演算部425は、図7に示すような関係をもつテーブルを参照しつつ、給油時期予測部424で予測された次回の給油日数を用いて、最適な酸化防止剤の含有量を演算し、最適な酸化防止剤を含有量閾値に設定する。
 給油量演算部425は、最適な酸化防止剤の含有量を演算した後、当該最適な酸化防止剤の含有量から、タンク12内に残っていた燃料の酸化防止剤の含有量を差し引くことで、追加給油により増加させる酸化防止剤の含有量を演算する。そして、給油量演算部425は、演算された酸化防止剤の含有量分の燃料を必要給油量として演算する。すなわち、必要給油量は、給油後のタンク12内の燃料に含まれる酸化防止剤の含有量を含有量閾値より多くする、給油量に相当する。
 図8に、必要給油量に対する、酸化防止剤の含有量及びタンク12の油面の高さの関係を示す。図8の横軸は追加給油の際の必要給油量を示す。図8の縦軸のうち右側の縦軸は、予測された次回の給油日数に対応するための、最適な酸化防止剤の含有量を示し、左側の縦軸はタンク12内の油面の高さである。燃料の劣化を回復するために追加の給油が必要であると判断された場合に、タンク12内の残りの燃料に含まれる酸化防止剤の含有量がPsであり、タンク12の油面の高さが25パーセントであった、と仮定する。
 給油時期予測部424により、次回の給油までの日数がTaであると予想された場合に、給油量演算部425は、追加給油による最適な酸化防止剤の含有量(Pa)を演算し(図7を参照)、含有量閾値として設定する。追加給油の直前に、タンク12内に残っていた燃料の酸化防止剤の含有量はPsであるから、残っていた酸化防止剤の含有量(Ps)から含有量閾値(Pa)まで増加させるために必要な給油量はGaとなる。この時、給油量演算部425は、製油情報(給油される燃料の酸化防止剤の含有量(濃度))に基づいて、追加すべき酸化防止剤の含有量に対する給油量を必要給油量(Ga)として演算する。
 そして、コントローラ420は、給油量演算部425により演算された必要給油量(Ga)を、通信部426を介して車両1に送信する。給油報知部67は、劣化を回復するための追加給油の報知と、追加給油の際の必要給油量を報知する。給油量を車両1側で管理する場合には、ガソリンスタンド300で追加給油する際に、燃料タンクセンサ12の検出値を用いて、給油量を管理する。図8に示すように、必要給油量分の燃料を給油するためには、タンク12の油面の高さを、タンク12内に残っていた燃料の高さ(25%に相当する高さ)から、必要給油量に相当する高さ(Ha)分、上げる必要がある。そして、追加給油が行われ、燃料タンクセンサ12の検出値が、残容量(25%)の高さに高さ(Ha)を加えた高さ以上になったことを検出すると、給油報知部67は、必要給油量分の燃料が給油されたことをユーザに報知する。
 また、給油量をガソリンスタンド側で管理する場合には、劣化の回復のために追加給油を要する車両1がガソリンスダンド300に停車した際に、コントローラ310は、当該車両1の車両IDをコントローラ420に送信する。コントローラ420は、受信された車両IDに合致する車両の必要給油量をコントローラ310に送信する。そして、コントローラ310は、給油量が必要給油量に達した場合に、その旨を、給油しているユーザに報知すればよい。
 同様に、給油時期予測部424により、次回の給油までの日数がTbであると予想された場合には、給油量演算部425は、最適な酸化防止剤の含有量(Pb)を演算し、Pbを含有量閾値として設定する。給油量演算部425は、含有量(Pb)及び残っていた燃料の酸化防止剤の含有量(Ps)を用いて、必要給油量(Gb)を演算する。必要給油量(Gb)は、追加給油後に燃料に含まれる酸化防止剤の含有量を含有量閾値(Pb)より多くする給油量となる。次に、コントローラ420は、給油量演算部425により演算された必要給油量(Gb)を、通信部426を介して車両1に送信する。また、必要給油量(Gb)をガソリンスタンド300に送信してもよい。
 これにより、本例は、車両に応じた給油時期を予測し、予測された給油時期に応じて含有量閾値を設定し、給油後の燃料に含まれる酸化防止剤の含有量が当該含有量閾値より多くなるように必要給油量を演算することで、劣化回復のための追加給油の後も、可能な限り、劣化度が劣化度閾値より低くならないようにする。
 次に、図9を用いて、本例のハイブリッド車両の管理システムの制御手順のうち、給油後の燃料の劣化度に係る演算制御の手順について説明する。図9は、給油後の燃料の劣化度に係る演算制御のフローチャートである。
 車両1が給油のために、ガソリンスタンド300に停車すると、ステップS1にて、コントローラ420は、車両1の車両ID及びタンク12内の残容量の情報を含む信号を、通信部426で受信する。ステップS2にて、給油量演算部425は、タンク12内に残っている燃料の劣化情報のうち、劣化情報管理部421で管理されている給油からの経過日数と、タンク12の残容量とを用いて、給油劣化テーブルを参照して、燃料に含まれる酸化防止剤の含有量を演算する。
 ステップS3にて、コントローラ420は、製油情報管理部311で管理されている製油情報を含む信号を、通信部426で受信する。ステップS4にて、コントローラ420は、コントローラ310よりタンク12に給油された給油量の情報を含む信号を受信する。ステップS5にて、劣化度演算部422は、製油情報に含まれる製油の時間情報から、給油された燃料の製油からの経過日数を演算し、当該経過日数を用いて製油劣化テーブルを参照しつつ、給油量から、給油された燃料の酸化防止剤の含有量を演算する。
 ステップS6にて、劣化度演算部422は、給油前の酸化防止剤の含有量と給油した燃料に含まれる酸化防止剤の含有量とを合算することで、給油後のタンク内の燃料の酸化防止剤の含有量を演算し、演算された含有量に対応する劣化度を、給油後の劣化度として演算する。
 次に図10及び図11を用いて、燃料の劣化の判定制御と必要給油量の演算制御について、説明する。図10は燃料の劣化の判定制御の手順を示すフローチャートであり、図11は必要給油量の演算制御の手順を示すフローチャートである。
 ステップS11にて、コントローラ420は、車両1から所定の周期で送信される車両ID及びタンク12内の燃料の残容量を、通信部426で受信する。給油量演算部425は、タンク12内に残っている燃料の劣化情報のうち、給油からの経過日数と、タンク12の残容量とを用いて、給油劣化テーブルを参照して、燃料に含まれる酸化防止剤の含有量を演算する。ステップS13にて、劣化度演算部422は、給油劣化テーブルを参照し、演算した酸化防止剤の含有量から燃料の劣化度を演算する。
 ステップS15にて、劣化度判定部423は、演算された劣化度と劣化度閾値とを比較する。劣化度が劣化度閾値以下である場合には、ステップS11に戻る。劣化度が劣化度閾値より高い場合には、ステップS20にて、コントローラ420は必要給油量の演算処理を行う。
 図11に示すように、ステップS21にて、給油時期予測部424は、次回の給油時期を予測する。ステップS22にて、給油量演算部425は、次回の給油時期までに、燃料の劣化度が劣化度閾値より低くならないための最適な酸化防止剤の含有量を演算する。そして、給油量演算部425は、最適な酸化防止剤を、含有量閾値に設定する。ステップS23にて、給油量演算部425は、給油後の燃料の酸化防止剤の含有量を含有量閾値より多くする必要給油量を演算する。
 ステップS24にて、必要給油量演算部425は、演算した必要給油量とタンク12の空容量とを比較する。必要給油量が空容量以下である場合には、必要給油量分の燃料を追加して給油することができるため、ステップS25にて、コントローラ420は、燃料の劣化を回復させるための追加給油及び追加給油の際の必要給油量を示す信号を車両1に送信する。そして、車両1側の給油報知部67は、必要給油量と追加給油を報知する。
 一方、必要給油量が空容量未満である場合には、追加給油を行っても、給油後にタンク内の燃料に残っている酸化防止剤の含有量が含有量閾値以上にならない。そのため、ステップS26にて、コントローラ420は、タンク12内に、直接、酸化防止剤を注入すべき旨を示す信号を車両1に送信する。そして、給油報知部67は、燃料が劣化していること、及び、酸化防止剤を注入すべきであることを報知する。
 上記のように本発明は、燃料の製油情報とタンク12内に残っている燃料の劣化情報をそれぞれ管理し、製油情報及び劣化情報に基づいて、タンク12の給油の劣化度を演算する。これにより、燃料の製油時からの燃料の劣化に関する情報を、劣化度の演算制御に加味させることができるため、劣化度の演算精度を高めることができる。
 また、本例は、製油劣化テーブルを参照し、現在のタンク12内に残っている燃料の製油からの経過時間を用いて、燃料に含まれる酸化防止剤の含有量を演算し、燃料の劣化度を演算する。これにより、製油時から給油までの経時的な燃料の劣化の情報を、劣化度の演算制御に加味させることができるため、劣化度の演算制御を高めることができる。
 また、本例は、製油劣化テーブルを参照し、現在のタンク12内に残っている燃料の製油からの経過時間とタンク12内の燃料の残容量を用いて、燃料に含まれる酸化防止剤の含有量を演算し、燃料の劣化度を演算する。これにより、製油時から給油までの経時的な燃料の劣化の情報を、劣化度の演算制御に加味させることができるため、劣化度の演算制御を高めることができる。
 また、本例は、給油劣化テーブルを参照し、演算された燃料の酸化防止剤の含有量と、給油してからの燃料の経過時間を用いて、現在の燃料の劣化度を演算する。これにより、給油前の製油情報を劣化度の演算制御に加味させることができるため、劣化度の演算精度を高めることができる。
 また、本例は、給油前にタンク12内に残っていた燃料の酸化防止剤の含有量を演算し、製油劣化テーブルを参照して給油される燃料の酸化防止剤の含有量を演算し、給油前の酸化防止剤の含有量と給油される燃料の酸化防止剤の含有量とを用いて、給油後の酸化防止剤の含有量を演算することで、給油後の燃料の劣化度を演算する。これにより、製油から給油されるまでの燃料の経時的な劣化の情報も、劣化度の演算制御に加味させることができるため、劣化度の演算精度を高めることができる。
 なお、本例は、製油情報管理部311をサーバ400側に設けもよい。これにより、コントローラ310の演算負荷を軽減させることができる。またデータベース410で記憶される劣化情報及び製油情報は、図4に示す情報以外の情報を記憶してもよい。
 上記の製油情報管理部311が本発明の「製油情報管理手段」に相当し、劣化情報管理部421が「劣化情報管理手段」に、劣化度演算部422が「劣化度演算手段」に、製油劣化テーブルが「第1テーブル」に、給油劣化テーブルは「第2テーブル」に相当する。
1…ハイブリッド車両
 10…エンジン
  11…エンジン回転数センサ
  12…燃料タンク
13…燃料タンクセンサ
 15…第1クラッチ
 20…モータジェネレータ
  21…モータ回転数センサ
 25…第2クラッチ
 30…バッテリ
 35…インバータ
 40…自動変速機
  41…入力回転センサ
  42…出力回転センサ
 50…テレマティクスコントロールユニット
 60…統合コントロールユニット
  61…目標駆動力演算部
  62…モード選択部
  63…目標充放電演算部
  64…動作点指令部
  65…変速制御部
  66…燃料管理部
  67…給油報知部
  69…アクセル開度センサ
 70…エンジンコントロールユニット
 80…モータコントロールユニット
 90…ディスプレイ
 100…バッテリコントロールユニット
 200…外部充電装置
300…ガソリンスタンド
 310…コントローラ
  311…製油情報管理部
  312…通信部
400…サーバ
 410…データベース
 420…コントローラ
  421…データベース
  422…コントローラ
  423…劣化判定部
  424…給油時期予測部
  425…給油量演算部
  426…通信部

Claims (9)

  1.  動力源としてエンジン及びモータと、前記エンジンの燃料を蓄積するタンクとを備えたハイブリッド車両を管理する管理システムにおいて、
     前記燃料の製油に関する製油情報を管理する製油情報管理手段と、
     前記タンクに残っている燃料の劣化に関する劣化情報を管理する劣化情報管理手段と、
     前記製油情報及び前記劣化情報に基づいて、前記タンク内の燃料の劣化度を演算する劣化度演算手段とを備える
    ことを特徴とするハイブリッド車両の管理システム。
  2.  前記燃料に含まれる酸化防止剤の含有量と、製油からの経過時間とを対応づけた第1テーブルをさらに備える
    ことを特徴とする請求項1記載のハイブリッド車両の管理システム。
  3. 前記劣化度演算手段は、
     前記製油情報に含まれる燃料が製油された時間から、現在の前記タンクに残っている燃料の製油からの経過時間を演算し、
     前記第1テーブルを参照して、前記経過時間を用いて、前記タンク内の燃料の酸化防止剤の含有量を演算することで、前記タンク内の燃料の劣化度を演算する
    ことを特徴とする請求項2記載のハイブリッド車両の管理システム。
  4. 前記劣化度演算手段は、
     前記劣化情報に含まれる前記タンクに残っている燃料の残容量を取得し、
     前記第1テーブルを参照して、前記経過時間及び前記残容量を用いて、前記タンクに残っている燃料の酸化防止剤の含有量を演算することで、前記タンクに残っている燃料の劣化度を演算する
    ことを特徴とする請求項2記載のハイブリッド車両の管理システム。
  5.  前記酸化防止剤の含有率毎に、給油してからの前記燃料の経過時間と前記劣化度とを対応づけた第2テーブルをさらに備えることを特徴とする
    請求項2~4のいずれか一項に記載のハイブリッド車両の管理システム。
  6. 前記劣化度演算手段は、
     前記第2テーブルを参照して、演算された前記酸化防止剤の含有量及び前記給油してからの燃料の経過時間を用いて、現在の燃料の劣化度を演算する
    ことを特徴とする請求項5記載のハイブリッド車両の管理システム。
  7. 前記劣化度演算手段は、
     給油時より前に前記タンクに残っている燃料の酸化防止剤の第1含有率を演算し、
     前記第1テーブルを参照し、前記製油情報を用いて、給油される前記燃料の酸化防止剤の第2含有率を演算し、
     前記第1含有率及び前記第2含有率を用いて給油後の前記燃料の酸化防止剤の含有量を演算することで、給油後の前記タンク内の燃料の劣化度を演算する
    ことを特徴とする請求項2~6のいずれか一項に記載のハイブリッド車両の管理システム。
  8.  請求項1~7のいずれか一項に記載のハイブリッド車両の管理システムにおいて、
    前記車両を管理するサーバを有し、
     前記製油情報管理手段、前記劣化情報管理手段及び前記劣化度演算手段は、前記サーバに設けられている
    ことを特徴とするハイブリッド車両の管理システム。
  9.  動力源としてエンジン及びモータと、前記エンジンの燃料を蓄積するタンクとを備えたハイブリッド車両を管理する管理方法において、
     前記燃料の製油に関する製油情報を管理する工程と、
     前記タンクに残っている燃料の劣化に関する劣化情報を管理する工程と、
     前記製油情報及び前記劣化情報に基づいて、前記タンク内の燃料の劣化度を演算する工程とを含む
    ことを特徴とするハイブリッド車両の管理方法。
PCT/JP2013/061028 2012-04-13 2013-04-12 ハイブリッド車両の管理システム及び管理方法 WO2013154174A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-091638 2012-04-13
JP2012091638 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013154174A1 true WO2013154174A1 (ja) 2013-10-17

Family

ID=49327732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061028 WO2013154174A1 (ja) 2012-04-13 2013-04-12 ハイブリッド車両の管理システム及び管理方法

Country Status (1)

Country Link
WO (1) WO2013154174A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226896A (ja) * 1995-02-22 1996-09-03 Showa Shell Sekiyu Kk 潤滑油の劣化検出方法
JP2009008059A (ja) * 2007-06-29 2009-01-15 Honda Motor Co Ltd エンジンオイルの酸化防止性能の推定装置
JP2009041476A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 内燃機関の燃料制御装置
JP2009255680A (ja) * 2008-04-15 2009-11-05 Toyota Motor Corp ハイブリッド車両の制御装置
JP2011133370A (ja) * 2009-12-24 2011-07-07 Horiba Ltd 精製油劣化度測定装置及び精製油劣化度測定方法
WO2012014845A1 (ja) * 2010-07-26 2012-02-02 日産自動車株式会社 車両
JP2012066716A (ja) * 2010-09-24 2012-04-05 Nissan Motor Co Ltd 車両

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226896A (ja) * 1995-02-22 1996-09-03 Showa Shell Sekiyu Kk 潤滑油の劣化検出方法
JP2009008059A (ja) * 2007-06-29 2009-01-15 Honda Motor Co Ltd エンジンオイルの酸化防止性能の推定装置
JP2009041476A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 内燃機関の燃料制御装置
JP2009255680A (ja) * 2008-04-15 2009-11-05 Toyota Motor Corp ハイブリッド車両の制御装置
JP2011133370A (ja) * 2009-12-24 2011-07-07 Horiba Ltd 精製油劣化度測定装置及び精製油劣化度測定方法
WO2012014845A1 (ja) * 2010-07-26 2012-02-02 日産自動車株式会社 車両
JP2012066716A (ja) * 2010-09-24 2012-04-05 Nissan Motor Co Ltd 車両

Similar Documents

Publication Publication Date Title
JP5360306B2 (ja) ハイブリッド車両の制御装置
KR101836290B1 (ko) 차량 중량 추정 장치 및 방법
US8862376B2 (en) Cruising distance calculation apparatus for a hybrid vehicle
KR101464895B1 (ko) 차량
JP5605122B2 (ja) 車両
EP2808213B1 (en) Hybrid vehicle management system, hybrid vehicle control apparatus, and hybrid vehicle control method
JP5966691B2 (ja) 車両制御システム、サーバ及び車両制御装置
JP5552944B2 (ja) ハイブリッド車両の制御装置
CN104066956A (zh) 车辆控制装置、车辆以及车辆控制方法
JP5413606B2 (ja) ハイブリッド車両の制御装置
WO2014065309A1 (ja) 変速機の暖機装置
KR102189188B1 (ko) 하이브리드 차량의 제어 장치 및 하이브리드 차량의 제어 방법
JP2012240668A (ja) ハイブリッド車両の走行不可を判断する装置
WO2013154094A1 (ja) ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法
JP6308038B2 (ja) 推奨給油量提示装置
WO2013154175A1 (ja) ハイブリッド車両の管理システム及び管理方法
CN115593278B (zh) 燃料电池车辆动力系统模式切换控制方法、车辆及存储介质
WO2013154174A1 (ja) ハイブリッド車両の管理システム及び管理方法
JP2014211315A (ja) ハイブリッド車両の案内装置及び案内システム
EP2397385A1 (en) Method for controlling a parallel hybrid driving system for a vehicle equiped with a manual transmission and corresponding driving system
WO2013154093A1 (ja) ハイブリッド車両の制御装置、ハイブリッド車両の管理システム、及びハイブリッド車両の管理方法
JP2017100469A (ja) ハイブリッド車両の制御装置
KR20090108325A (ko) 하이브리드 자동차의 비상 구동장치 및 방법
JP3622291B2 (ja) 車両の走行可能距離表示装置
JP6790805B2 (ja) ハイブリッド車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP