WO2011040376A1 - 光拡散用単中空粒子 - Google Patents

光拡散用単中空粒子 Download PDF

Info

Publication number
WO2011040376A1
WO2011040376A1 PCT/JP2010/066725 JP2010066725W WO2011040376A1 WO 2011040376 A1 WO2011040376 A1 WO 2011040376A1 JP 2010066725 W JP2010066725 W JP 2010066725W WO 2011040376 A1 WO2011040376 A1 WO 2011040376A1
Authority
WO
WIPO (PCT)
Prior art keywords
single hollow
monomer
weight
light diffusion
light
Prior art date
Application number
PCT/JP2010/066725
Other languages
English (en)
French (fr)
Inventor
真章 中村
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to JP2011534235A priority Critical patent/JP5401553B2/ja
Publication of WO2011040376A1 publication Critical patent/WO2011040376A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores

Definitions

  • the present invention relates to a single hollow particle for light diffusion. More specifically, the present invention relates to a single hollow particle for light diffusion having excellent light diffusibility.
  • the single hollow particle for light diffusion of the present invention is suitable as a raw material for a light diffusing plate or a light guide plate used for a TV screen, a lighting cover, a liquid crystal backlight, or the like, or a paint.
  • the present invention also relates to a lighting cover in which single hollow particles for light diffusion are blended in a transparent resin. Since the illumination cover of the present invention is excellent in light diffusibility, it can be suitably used as an illumination cover using various light sources such as fluorescent lamps and LEDs.
  • polymer particles produced by suspension polymerization have been used as light diffusing agents such as light reflecting materials such as paints and cosmetics, and light diffusing plates for liquid crystal backlights. That is, in paints and cosmetics, the light diffusing agent imparts whiteness by refracting and reflecting light. In the light diffusing plate, the light diffusing agent scatters the incident light so that light incident from the side of the light diffusing plate by a cold cathode tube or the like can be emitted from the surface of the light diffusing plate with uniform brightness. Yes.
  • polymer particles for example, acrylic polymer particles and styrene polymer particles are used. Here, it is known that the acrylic polymer particles have a slightly low refractive index although they have excellent weather resistance.
  • styrene polymer particles are known to have a high refractive index but poor weather resistance. Therefore, acrylic-styrene polymer particles having both characteristics are also used. Furthermore, polymer particles are also known which have an effect of reflecting or scattering light by having pores inside.
  • JP-A-59-193901 Patent Document 1
  • JP-A-4217515 Patent Document 2
  • JP-A-2006-117920 Patent Document 3.
  • the method described in 3 is known.
  • JP-A-59-193901 when a hydrophobic monomer is polymerized in an aqueous medium, an ionic surfactant is added to the aqueous medium, and a nonionic surfactant is added to the hydrophobic monomer. It is said that hollow polymer particles can be obtained by the addition.
  • hollow polymer particles are obtained by polymerizing a hydrophobic monomer and a (meth) acrylic hydrophilic monomer in an aqueous medium.
  • polymer particles having a plurality of pores are obtained by polymerizing a (meth) acrylate monomer in an aqueous medium containing a surfactant having a specific structure. It is supposed to be
  • JP 59-193901 A Japanese Patent No. 4217515 JP 2006-117920 A
  • Japanese Patent Application Laid-Open No. 59-193901 and Japanese Patent No. 4217515 there is an example in which single hollow particles are obtained when an acrylic monomer is used as a crosslinkable vinyl monomer. There has been no report of a technique for obtaining single hollow particles when a group-based crosslinkable vinyl monomer is used. The inventor of the present invention has confirmed that it is difficult to obtain single hollow particles when an aromatic crosslinkable vinyl monomer is used.
  • Japanese Patent Application Laid-Open No. 2006-117920 describes a plurality of hollow particles, but a technique for obtaining single hollow particles when an aromatic crosslinkable vinyl monomer is used is reported. It wasn't.
  • the hydrophilic (meth) acrylic monomer is contained in an amount of 40 to 10% by weight, and the aromatic monomer at least containing a crosslinkable styrene monomer is contained in an amount of 60 to 90% by weight.
  • single hollow particles for light diffusion derived from a monomer mixture containing 10% by weight or more of a crosslinkable styrene monomer, having a porosity of 30% or more and an average particle diameter of 3 to 100 ⁇ m.
  • single hollow particles having excellent light diffusibility can be provided even when an aromatic crosslinkable vinyl monomer is used.
  • the single hollow particles of the present invention are derived from the hydrophilic (meth) acrylic monomer and the aromatic monomer, the excellent weather resistance derived from the (meth) acrylic monomer and the aromatic
  • This single hollow particle for light diffusion can be suitably used as a raw material for a TV screen, a lighting cover, a light diffusion plate, a light guide plate and a paint of a backlight type liquid crystal display panel.
  • hydrophilic (meth) acrylic monomer is methyl acrylate and the following formula 1
  • R 1 is H or CH 3
  • R 2 and R 3 are different and have 2 to 5 carbon atoms selected from C 2 H 4 , C 3 H 6 , C 4 H 8 and C 5 H 10.
  • m is 0 to 50
  • n is 0 to 50 (provided that m and n are not 0 at the same time
  • R 4 is H or CH 3 ).
  • acrylic acid esters having an alkylene oxide group represented by the formula (1) it is possible to provide single hollow particles for light diffusion having better light diffusibility.
  • crosslinkable styrene monomer is divinylbenzene or divinylnaphthalene
  • the aromatic monomer contains an aromatic monofunctional vinyl monomer selected from styrene, ⁇ -methylstyrene, vinyltoluene and chlorostyrene
  • a single hollow for light diffusion having better light diffusibility Particles can be provided.
  • FIG. 2 is an electron micrograph of a cross section of a single hollow particle of Example 1.
  • FIG. 2 is an electron micrograph of a cross section of a single hollow particle of Example 2.
  • FIG. 4 is an electron micrograph of a cross section of a particle of Comparative Example 1.
  • 4 is an electron micrograph of a cross section of a particle of Comparative Example 2.
  • the “single hollow particle for light diffusion” refers to a substantially spherical particle having a single pore inside.
  • the single hollow particle of this invention is equipped with the void
  • reference numeral 1 means a single hollow particle.
  • the single hollow particles are derived from a monomer mixture containing 40 to 10% by weight of a hydrophilic (meth) acrylic monomer and 60 to 90% by weight of an aromatic monomer.
  • the aromatic monomer includes at least a cross-linkable styrene monomer.
  • the crosslinkable styrene monomer is contained in an amount of 10% by weight or more based on the monomer mixture.
  • This single hollow particle is obtained, for example, by subjecting the monomer mixture to suspension polymerization in an aqueous medium in the presence of a surfactant composed of a comb polymer having a hydrophilic part and a hydrophobic part in the molecule. be able to.
  • (meth) acryl means acryl or methacryl.
  • Hydrophilic (meth) acrylic monomer As the hydrophilic (meth) acrylic monomer contained in the monomer mixture, a hydrophilic substituent such as an alkyl acrylate, a carboxyl group or a hydroxyl group is used. Examples thereof include (meth) acrylic monomers.
  • acrylic acid derivatives such as 2-hydroxypropyl acid, acrylic acid, and (meth) acrylic acid esters having an alkylene oxide group.
  • (meth) acrylic acid ester having an alkyl acrylate and / or an alkylene oxide group is
  • alkyl acrylate Compared with alkyl methacrylate, alkyl acrylate has an advantage of relatively high hydrophilicity and easy to obtain single hollow particles.
  • alkyl acrylate methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate and the like are preferable.
  • the (meth) acrylic acid ester having an alkylene oxide group include a compound of the following formula 1.
  • R 1 is H or CH 3
  • R 2 and R 3 are different and have 2 to 5 carbon atoms selected from C 2 H 4 , C 3 H 6 , C 4 H 8 and C 5 H 10 .
  • An alkylene group m is 0 to 50
  • n is 0 to 50 (provided that m and n are not 0 simultaneously)
  • R 4 is H or CH 3 .
  • the monomer of Formula 1 when m is larger than 50 and when n is larger than 50, the polymerization stability may be lowered and coalescence particles may be generated.
  • a preferable range of m and n is 0 to 30, and a more preferable range of m and n is 0 to 15.
  • a commercially available product can be used as the (meth) acrylic acid ester having an alkylene oxide group.
  • the hydrophilic (meth) acrylic monomer is contained in an amount of 40 to 10% by weight based on the total of the hydrophilic (meth) acrylic monomer and the aromatic monomer.
  • the content is more than 40% by weight, the refractive index of the obtained particles tends to be low. Also, the weather resistance of the single hollow particles tends to be low.
  • the amount is less than 10% by weight, it is difficult to form a single hollow and tends to be solid particles.
  • a more preferable content of the hydrophilic (meth) acrylic monomer is 10 to 35% by weight.
  • Aromatic monomer The aromatic monomer is preferably contained in the monomer mixture in an amount of 60 to 90% by weight. When it is less than 60% by weight, the refractive index of the obtained single hollow particles tends to be low. When it is more than 90% by weight, it is difficult to form a single hollow, and the weather resistance of the obtained particles tends to be insufficient.
  • the aromatic monomer contains at least a crosslinkable styrene monomer.
  • the crosslinkable styrenic monomer is contained in an amount of 10% by weight or more based on the monomer mixture. When the content is less than 10% by weight, the porosity of a single hollow tends to be low and multi-hollow particles tend to be mixed.
  • the upper limit of the content of the crosslinkable styrene monomer is 90% by weight which is the upper limit of the content of the aromatic monomer.
  • the crosslinkable styrene monomer one having two or more polymerizable double bonds can be used. For example, divinylbenzene, divinylnaphthalene and derivatives thereof can be mentioned. These monomers may be used alone or in combination of two or more.
  • the aromatic monomer preferably further contains an aromatic monofunctional vinyl monomer.
  • the aromatic monofunctional vinyl monomer include styrene, ⁇ -methylstyrene, vinyl toluene, chlorostyrene and the like.
  • the aromatic monofunctional vinyl monomer is preferably contained in an amount of 30 to 60% by weight based on the monomer mixture. When the aromatic monofunctional vinyl monomer is contained within this range, single hollow particles having a high porosity tend to be obtained.
  • trimethylolpropane triacrylate ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, decaethylene glycol dimethacrylate, pentadecaethylene glycol dimethacrylate, Pentamethaethylene glycol dimethacrylate, 1,3-butylene dimethacrylate, allyl methacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate, diethylene glycol dimethacrylate, triethylene glycol triacrylate, N , N-divinylaniline, divinyl ether, divinyl sulfite, and other divinyl compounds and trivinyl compounds may be included.
  • the monomer mixture preferably contains a polymerization initiator that accelerates the polymerization of the contained monomers.
  • a polymerization initiator generally used for suspension polymerization can be used.
  • Peroxide polymerization initiators such as diisopropylbenzene hydroperoxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3-
  • Benzoyl peroxide, lauroyl peroxide, 2,2'-azobisisobutyronitrile, and 2,2'-azobis (2,4-dimethylvaleronitrile) are easy to dissolve in the monomer and easy to handle. It is preferable in a certain point.
  • the amount of the polymerization initiator is usually 0.01 to 1 part by weight with respect to 100 parts by weight of the monomer mixture, although it depends on the type of monomer used.
  • the surfactant is a comb polymer having a hydrophilic part and a hydrophobic part in the molecule.
  • the comb polymer means a polymer having a large number of trident branch points in which a linear side chain is bonded to a linear main chain.
  • a shape in which two or more hydrophobic portions are combined in a comb shape on a main chain composed of a hydrophilic portion, or a shape in which two or more hydrophilic portions are combined in a comb shape on a main chain composed of the opposite hydrophobic portion. can be used.
  • the polymer having the former shape is preferable from the viewpoint that the aqueous medium for forming a single hollow dispersed in the monomer mixture can be stably held in a granular form.
  • the bond form between the main chain and the side chain is not particularly limited, but is usually a graft bond form.
  • the side chain is two or more carbonyl-C3 to C6 alkyleneoxy chains containing 3 to 80 alkyleneoxy groups and is linked to the main chain by an amide or salt bridging group;
  • Examples thereof include a polymer in which the main chain is a chain derived from a reaction product of poly (lower alkylene imine) and polyester having a free carboxylic acid group.
  • Examples of lower alkylene include ethylene, triethylene, and tetraethylene.
  • comb polymers examples include commercially available comb polymers from the UK company Lubrizol as “Solsperse” series. Specific examples include product numbers 11200, 13240, 13650, 13940, 24000SC, 24000GR, 26000, 28000, 32000, 32500, 32550, 32600, 33000, 34750, 35100, 35200, 36000, 36600, 37500, and the like.
  • a polymer having a weight average molecular weight of 2,000 to 100,000 can be used. A more preferred weight average molecular weight is 20000-30000. The weight average molecular weight is a value measured by gel permeation chromatography.
  • the comb polymer may have a functional group composed of an acid group and / or a functional group composed of a base.
  • a plurality of acid groups and / or bases may be present.
  • the acid group may be present so as to give an acid value of 20 to 80.
  • the base may be present so as to give a basicity of 1000 to 2000.
  • the acid value can be measured based on JIS K 0070 as the number of mg of KOH required to neutralize the free carboxylic acid contained in 1 g of the comb polymer.
  • the base number can be measured as the number of mg of potassium hydroxide equivalent to hydrochloric acid required for neutralizing the basic component contained in 1 g of the comb polymer.
  • the compounding amount of the comb polymer material is 0.01 to 4 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • the blending amount is less than 0.01 part by weight, there is a tendency that the polymer particles do not have a single pore inside. Even if the amount exceeds 4 parts by weight, not only the pore formation effect (ease of forming pores) commensurate with the amount is obtained, but also the purity of the polymer derived from the monomer mixture in the polymer particles As a result, the characteristics of the polymer particles may be impaired.
  • a preferred blending amount is 0.01 to 3 parts by weight.
  • the aqueous medium is not particularly limited, and examples thereof include water and a mixture of water and a water-soluble organic solvent (for example, lower alcohols such as methanol and ethanol).
  • the aqueous medium is usually used in an amount of 150 to 1000 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • a dispersion stabilizer and a surfactant for the aqueous medium can be blended to stabilize the monomer mixture in an emulsion state in the aqueous medium.
  • a dispersion stabilizer generally used for suspension polymerization of monomers can be used.
  • water-soluble polymers such as methyl cellulose, hydroxyethyl cellulose, and polyvinyl alcohol
  • poorly water-soluble inorganic salts such as tricalcium phosphate, magnesium hydroxide, magnesium pyrophosphate, barium sulfate, calcium carbonate, and silica can be used.
  • the dispersion stabilizers it can be easily removed from the single hollow particles, and the solubility in water at room temperature is high in that the single hollow particles can be polymerized with a narrow particle size distribution as compared with the case of using other dispersion stabilizers.
  • a poorly water-soluble inorganic salt of about 3 mg or less is preferred.
  • tricalcium phosphate having a solubility of 2.5 mg is suitable.
  • the dispersion stabilizer can be usually blended in the aqueous medium at a ratio of 0.1 to 20 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • the aqueous medium surfactant an aqueous medium surfactant generally used for suspension polymerization of monomers can be used.
  • Anionic surfactants are preferred in that single hollow particles can be polymerized with a narrow particle size distribution compared to other surfactants.
  • anionic surfactant examples include sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, sodium polyoxyethylene lauryl ether sulfate, sodium diethyl sulfosuccinate and the like.
  • the surfactant for an aqueous medium is usually blended in the aqueous medium so as to have a concentration of 0.005 to 0.3% by weight.
  • Single hollow particles are obtained by subjecting the monomer mixture to suspension polymerization in an aqueous medium in the presence of a surfactant composed of the above comb polymer.
  • the monomer mixture constitutes an oil phase and a surfactant composed of comb polymers, and is polymerized in an aqueous medium.
  • an oil phase and an aqueous medium are prepared in a predetermined composition in separate containers.
  • the oil phase is composed of a monomer mixture containing a hydrophilic (meth) acrylic monomer and a crosslinkable styrene monomer, optionally an aromatic monofunctional vinyl monomer and a polymerization initiator, and a comb polymer.
  • the mixing and stirring means used at this time is preferably a mixing and stirring means that is uniform as a whole, and examples thereof include a general mixer and a homogenizer.
  • a dispersion stabilizer and a surfactant for an aqueous medium are optionally added to the aqueous medium at a predetermined ratio and mixed and stirred.
  • the mixing and stirring means used at this time is preferably a mixing and stirring means that is uniform as a whole, and examples thereof include a general mixer and a homogenizer.
  • the oil phase is added to the aqueous medium, mixed and stirred to obtain a suspension (water phase / oil phase / water phase emulsion).
  • the oil phase constitutes oil droplets, and the water phase emulsion exists in the oil droplets.
  • the stirring conditions such as the stirring time and the number of revolutions can be changed, and the oil droplet size and other stirring means can be easily prepared.
  • the ability to adjust the oil droplet size means that the size of single hollow particles obtained from the oil droplets can be adjusted.
  • the suspension may be heated with a heating device such as an autoclave.
  • the obtained single hollow particles may be filtered if necessary, and the filtrated product may be taken out of the aqueous medium by washing with water and drying. Further, if necessary, the dispersion stabilizer may be removed before washing with water.
  • the porosity (hollow ratio) of the single hollow particles is 30% or more.
  • the upper limit of the porosity is about 50%.
  • the porosity is preferably 35% or more.
  • Single hollow particles have an average particle size of 3 to 100 ⁇ m. Within this range, sufficient light diffusibility can be ensured without using a large amount of single hollow particles.
  • a more preferable average particle size is 4 to 50 ⁇ m, and a further preferable average particle size is 5 to 30 ⁇ m.
  • the outer shape of the single hollow particle is spherical.
  • the spherical shape does not mean a strictly spherical shape (true spherical shape), but is a term having an extent acceptable in the field.
  • An inner shape also referred to as a hollow outer shape
  • the center of the hollow is at the same position as the center of the single hollow particle, but both centers may be positioned somewhat vertically and horizontally.
  • the single hollow particles of the present invention can be used as raw materials for molding materials and paints, for example.
  • the molding material include molding materials such as a TV screen, a lighting cover, and a light diffusion plate or a light guide plate of a backlight type liquid crystal display panel.
  • Such a molding material can be obtained, for example, by containing single hollow particles in a transparent base resin in a room temperature solid state.
  • the transparent base resin polymethyl methacrylate, polystyrene, methyl methacrylate-styrene copolymer, polycarbonate, polyvinyl chloride, norbornene polymer, vinyl alicyclic hydrocarbon polymer and the like are suitable.
  • the single hollow particles are obtained using a surfactant made of a comb polymer, bleeding of the surfactant or the like can be suppressed.
  • Bleeding substances usually have a low molecular weight and are easily degraded by heat and light. Therefore, for example, in a molded product obtained by dispersing single hollow particles in a thermoplastic resin and then heat-molding, the bleed material may be yellowed due to deterioration due to heat during molding. .
  • the single hollow particles of the present invention are excellent in that yellowing that occurs in the molded body can be suppressed.
  • a molding material may contain various compounding agents in the range which does not impair the effect (light diffusibility by a single hollow particle) of this invention.
  • a colorant such as a pigment may be added to the base resin.
  • the molding material preferably contains 0.1 to 10% by weight of single hollow particles. Within this range, both excellent light diffusion performance and prevention of discoloration such as yellowing can be achieved. Further, when forming a light diffusing plate using the molding material, the content of single hollow particles in the molding material is 0.5 to 7% by weight from the relationship between the light diffusion performance and the light transmission performance. It is preferable. When the content of the single hollow particles is less than 0.5% by weight, sufficient light diffusion performance may not be obtained. Even if the content exceeds 7% by weight, it is not only difficult to improve the light diffusion performance but also the light transmission performance may be lowered.
  • the content of single hollow particles in the molding material is preferably 0.05 to 0.5% by weight from the relationship between the light diffusion performance and the light transmission performance. .
  • the content of the single hollow particles is less than 0.05% by weight, the light transmittance may be too high and the light diffusion performance required for the light guide plate may not be provided. If the content exceeds 0.5% by weight, the light diffusion performance may become too high and the light guide distance may be shortened.
  • a base resin and single hollow particles are kneaded using a general resin kneading means such as a uniaxial extruder, a biaxial extruder, etc. Examples thereof include a method of forming into a plate shape via a roll unit, and a method of forming the kneaded product using an injection molding machine, a press molding machine or the like.
  • the paint containing the single hollow particles of the present invention can be suitably used for a light diffusing paint, a matte paint, and the like.
  • a mixture of single hollow particles having a particle diameter of 3 to 50 ⁇ m and a binder can be used for the light diffusing paint or matte paint.
  • This mixture may contain a solvent.
  • the binder resin may be transparent or colored.
  • the content of the single hollow particles in the solid component (binder + single hollow particles) in the paint is preferably 5 to 70% by weight for the light diffusing paint and 10 to 30% by weight for the matte paint. Is preferred.
  • a coating material having a viscosity of 5 to 300 mPa ⁇ s is preferable in that the workability of coating can be improved.
  • the viscosity can be measured using a B-type viscometer. For example, a paint kept at 25 ⁇ 2 ° C. It can be determined by measuring at 100 rpm using 4 rotors.
  • the binder preferably includes, for example, a base resin having adhesiveness, adhesiveness, binding property, and the like that can prevent single hollow particles from falling off the coating film when the coating film is formed.
  • the binder may contain a dispersant that improves the dispersibility of the single hollow particles, a curing agent for the binder resin, a dye, a pigment, and the like.
  • thermosetting resins such as phenol resin, resorcin resin, furan resin, melamine resin, polyester resin, polyurethane resin, epoxy resin, silicone resin, polyvinyl acetate, polyvinyl alcohol, polyvinyl chloride,
  • thermoplastic resins such as polyvinyl butyral, polyacrylic acid ester and nitrocellulose, and elastomers such as butadiene acrylonitrile rubber and chloroprene rubber.
  • the average particle diameter of a single hollow particle, the porosity, and the weight average molecular weight of a comb-type polymer are measured with the following method. (Measurement method of average particle size)
  • the electrolyte solution is filled into pores having a pore diameter of 50 to 280 ⁇ m, and the volume is obtained from the change in conductivity of the electrolyte solution when the particles pass through the electrolyte solution, and the average particle diameter is calculated.
  • the measured average particle diameter is a volume average particle diameter measured by a Coulter Multisizer II manufactured by Beckman Coulter. In the measurement, calibration is performed using an aperture suitable for the particle diameter of the particle to be measured according to REFERENCE MANUAL FOR THE COULTER MULTISIZER (1987) issued by Coulter Electronics Limited.
  • test tubes 0.1 g of particles and 10 ml of 0.1% nonionic surfactant solution are put into a commercially available glass test tube, and mixed for 2 seconds with a touch mixer TOUCHMIXER MT-31 manufactured by Yamato Kagaku. Thereafter, the test tubes are predispersed for 10 seconds using a commercially available ultrasonic cleaner, ULTRASONIC CLEANER VS-150, manufactured by Vervocrea.
  • ULTRASONIC CLEANER VS-150 manufactured by Vervocrea.
  • ISOTON2 manufactured by Beckman Coulter, Inc .: measurement electrolyte
  • the aperture size, Current, Gain, and Polarity are input to the Multisizer II main body according to REFERENCE MANUAL FOR THE COULTER MULTISIZER (1987) issued by CoulterElectronics Limited, and measured manually. During the measurement, the beaker is stirred gently to the extent that bubbles do not enter, and the measurement is terminated when 100,000 particles are measured.
  • the porosity (%) of the single hollow particles is measured as follows. First, a cross section of a single hollow particle is photographed with a 1000 ⁇ electron microscope. From the obtained photograph, 10 single hollow particles cut near the center are arbitrarily selected. The outer diameter r1 and inner diameter r2 of each selected single hollow particle are calculated as follows. Specifically, the major axis L1 of the single hollow particles is measured on the electron micrograph as shown in FIG. Next, a straight line along the major axis is drawn. A perpendicular is drawn from the midpoint A of this straight line, and the length L2 between two intersections where the perpendicular intersects the outer shell of the single hollow particle is measured.
  • the outer diameter r1 of each single hollow particle is an average value of L1 and L2.
  • the weight average molecular weight (Mw) is measured using GPC (gel permeation chromatography). The measuring method is as follows.
  • a weight average molecular weight (Mw) means a polystyrene (PS) conversion weight average molecular weight.
  • a 50 mg sample is dissolved in 10 ml of tetrahydrofuran (THF), filtered through a non-aqueous 0.45 ⁇ m chromatographic disk, and measured using a chromatograph.
  • THF tetrahydrofuran
  • the chromatographic conditions are as follows.
  • Liquid chromatograph Tosoh Corporation, trade name “Gel Permeation Chromatograph HLC-8020” Column: manufactured by Tosoh Corporation, trade name “TSKgel GMH-XL-L” ⁇ 7.8 mm ⁇ 30 cm ⁇ 3 series connection Column temperature: 40 ° C.
  • Carrier gas Tetrahydrofuran (THF)
  • Carrier gas flow rate 0.8ml / min
  • Injection / pump temperature 35 °C
  • Detection RI
  • Injection amount 100 microliters Standard polystyrene for calibration curve: manufactured by Showa Denko KK, trade name “shodex” weight average molecular weight: 1030000 and manufactured by Tosoh Corporation, weight average molecular weight: 5480000, 3840000, 355000, 102000, 37900, 9100, 2630, 870
  • Example 1 60 parts by weight of styrene as an aromatic monofunctional vinyl monomer, 30 parts by weight of divinylbenzene as a crosslinkable styrene monomer, 10 parts by weight of methyl acrylate as a hydrophilic (meth) acrylic monomer, polymerization A monomer mixture was obtained by mixing 0.4 parts by weight of azobisvaleronitrile as an initiator. By adding 1 part by weight of a surfactant made of comb polymer (Solsperse 26000, weight average molecular weight 26000, acid value 50 ⁇ 4, basicity 1500 ⁇ 150, manufactured by Lubrizol) to this monomer mixture, Obtained.
  • a surfactant made of comb polymer Solsperse 26000, weight average molecular weight 26000, acid value 50 ⁇ 4, basicity 1500 ⁇ 150, manufactured by Lubrizol
  • An aqueous phase was obtained by adding 10 parts by weight of tricalcium phosphate as a dispersion stabilizer and 0.02 part by weight of sodium dodecylbenzenesulfonate as a surfactant to 150 parts by weight of ion-exchanged water.
  • the mixture obtained by adding the oil phase to the aqueous phase was stirred with a homogenizer at 4000 rpm for 10 minutes. Thereafter, the monomer was polymerized at 60 ° C. for 12 hours to obtain single hollow particles.
  • FIG. 2 shows an electron micrograph of a cross section of a single hollow particle.
  • Luminance was measured by replacing the illumination cover of a commercially available fluorescent lamp type LED illumination (CREE, 40W equivalent type) with the illumination cover produced above.
  • the luminance was measured using a luminance meter (CA-1000, manufactured by Konica Minolta) installed 50 cm away from the lighting cover.
  • the measured luminance was 10600 cd / cm 2 .
  • the LED light source during LED illumination could not be confirmed through the illumination cover, and the illumination cover was able to sufficiently diffuse the light from the LED light source.
  • Example 2 Single hollow particles were obtained in the same manner as in Example 1 except that 35 parts by weight of styrene and 35 parts by weight of methyl acrylate were used.
  • FIG. 3 shows an electron micrograph of a cross section of a single hollow particle. The luminance was measured in the same manner as in Example 1 except that the obtained single hollow particles were used. The luminance was 11000 cd / cm 2 . Moreover, the LED light source during LED illumination could not be confirmed through the illumination cover, and the illumination cover was able to sufficiently diffuse the light from the LED light source.
  • Example 3 Example 10 except that 10 parts by weight of methyl acrylate and 60 parts by weight of styrene are 35 parts by weight of (meth) acrylic acid ester (Blenmer 50PEP300 manufactured by NOF Corporation) and 35 parts by weight of styrene having an alkylene oxide group.
  • Single hollow particles were obtained by this method.
  • the luminance was measured in the same manner as in Example 1 except that the obtained single hollow particles were used.
  • the luminance was 11900 cd / cm 2 .
  • the LED light source during LED illumination could not be confirmed through the illumination cover, and the illumination cover was able to sufficiently diffuse the light from the LED light source.
  • Example 4 Single hollow particles were obtained in the same manner as in Example 1 except that 90 parts by weight of divinylbenzene and 10 parts by weight of methyl acrylate were added and styrene was not added. The luminance was measured in the same manner as in Example 1 except that the obtained single hollow particles were used. The luminance was 12200 cd / cm 2 . Moreover, the LED light source during LED illumination could not be confirmed through the illumination cover, and the illumination cover was able to sufficiently diffuse the light from the LED light source.
  • Comparative Example 1 Particles were obtained in the same manner as in Example 1 except that 70 parts by weight of styrene and 30 parts by weight of divinylbenzene were added, and methyl acrylate was not added.
  • FIG. 4 shows an electron micrograph of the cross section of the particle.
  • Comparative Example 2 Particles were produced in the same manner as in Example 1 except that 65 parts by weight of styrene, 5 parts by weight of (meth) acrylic acid ester having an alkylene oxide group (Blenmer 50PEP300 manufactured by NOF Corporation) and 30 parts by weight of divinylbenzene were used.
  • FIG. 5 shows an electron micrograph of the cross section of the particle.
  • Comparative Example 3 Particles were obtained in the same manner as in Example 1 except that 85 parts by weight of styrene, 10 parts by weight of methyl acrylate, and 5 parts by weight of divinylbenzene were used. Table 1 shows the amount of the surfactant (numerical values are parts by weight), the shape, the porosity, and the average particle size used in the above Examples and Comparative Examples.
  • Table 1 shows the following. From the examples and comparative examples, it is understood that single hollow particles having a porosity of 30% can be obtained by adjusting the monomer amount. Single hollow particles are superior in light diffusibility compared to solid particles having no hollow or multi-hollow particles. From Examples 1 to 3 and Example 4, it can be seen that single hollow particles with higher porosity can be obtained by containing an aromatic monofunctional vinyl monomer.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 親水性(メタ)アクリル系単量体40~10重量%と、架橋性スチレン系単量体を少なくとも含む芳香族単量体60~90重量%とを含み、かつ前記架橋性スチレン系単量体を10重量%以上含む単量体混合物に由来し、30%以上の空隙率と、3~100μmの平均粒子径を有する光拡散用単中空粒子。

Description

光拡散用単中空粒子
 本発明は、光拡散用単中空粒子に関する。更に詳しくは、本発明は、優れた光拡散性を有する光拡散用単中空粒子に関する。本発明の光拡散用単中空粒子は、原料として、TV用スクリーン、照明カバー、液晶バックライト等に使用される光拡散板もしくは導光板、又は塗料に好適である。また、本発明は、光拡散用単中空粒子が透明樹脂中に配合されてなる照明カバーに関する。本発明の照明カバーは、光拡散性優れるため、蛍光灯、LED等の各種光源を用いた照明用のカバーとして好適に使用できる。
 従来、懸濁重合により製造される重合体粒子は、塗料、化粧料等の光反射材や液晶バックライト用光拡散板等の光拡散剤として用いられている。すなわち、塗料、化粧料等において、光拡散剤は、光を屈折、反射させて白色性を付与している。光拡散板において、光拡散剤は、光拡散板の側面から冷陰極管等により入射された光を光拡散板の面内から均一な明るさで発し得るように入射された光を散乱させている。このような、重合体粒子としては、例えば、アクリル系重合体粒子やスチレン系重合体粒子が用いられている。ここで、アクリル系重合体粒子は、耐候性に優れるものの屈折率がやや低いことが知られている。一方、スチレン系重合体粒子は、屈折率が高いものの耐候性が劣るということが知られている。そのため、両者の特性を備えたアクリル-スチレン系重合体粒子も用いられている。更に、内部に空孔を有することで光を反射させたり、散乱させたりする効果を高めた重合体粒子も知られている。
 内部に空孔を有する重合体粒子の製造方法としては、特開昭59-193901号公報(特許文献1)、特許第4217515号公報(特許文献2)及び特開2006-117920号公報(特許文献3)に記載の方法が知られている。
 特開昭59-193901号公報では、水性媒体中で、疎水性単量体を重合させるに際して、水性媒体にイオン性界面活性剤を添加し、疎水性単量体に非イオン性界面活性剤を添加することで、中空の重合体粒子が得られるとされている。
 特許第4217515号公報では、疎水性単量体と、(メタ)アクリル系の親水性単量体とを、水性媒体中で、重合させることで、中空の重合体粒子が得られるとされている。
 特開2006-117920号公報では、特定の構造の界面活性剤を含む水性媒体中で、(メタ)アクリル酸エステル系単量体を重合させることで、複数の空孔を有する重合体粒子が得られるとされている
特開昭59-193901号公報 特許第4217515号公報 特開2006-117920号公報
 しかし、特開昭59-193901号公報及び特許第4217515号公報では、架橋性ビニル系単量体にアクリル系単量体を使用した場合、単中空粒子が得られるという実施例があるが、芳香族系の架橋性ビニル系単量体を使用した場合に、単中空粒子を得る技術は報告されていなかった。本発明の発明者は、芳香族系の架橋性ビニル単量体を使用した場合、単中空粒子を得ることが困難であることを確認している。
 また、特開2006-117920号公報では、複数の中空を有する粒子は記載されているが、芳香族系の架橋性ビニル系単量体を使用した場合に、単中空粒子を得る技術は報告されていなかった。
 かくして本発明によれば、親水性(メタ)アクリル系単量体40~10重量%と、架橋性スチレン系単量体を少なくとも含む芳香族単量体60~90重量%とを含み、かつ前記架橋性スチレン系単量体を10重量%以上含む単量体混合物に由来し、30%以上の空隙率と、3~100μmの平均粒子径を有する光拡散用単中空粒子が提供される。
 本発明によれば、芳香族系の架橋性ビニル単量体を使用した場合であっても、光拡散性に優れた単中空粒子を提供できる。加えて、本発明の単中空粒子は、親水性(メタ)アクリル系単量体と芳香族単量体に由来するため、(メタ)アクリル系単量体に由来する優れた耐候性と、芳香族ビニル単量体に由来する高い屈折率を有すると共に、単中空であることに由来する高い光拡散性を有する。この光拡散用単中空粒子は、原料として、TV用スクリーン、照明カバー、バックライト式液晶ディスプレイパネルの光拡散板や導光板、塗料に好適に使用できる。
 また、親水性(メタ)アクリル系単量体が、アクリル酸メチル及び下記式1
Figure JPOXMLDOC01-appb-C000002
(式中、R1はH又はCH3であり、R2及びR3は異なってC24、C36、C48及びC510から選択される炭素数2~5のアルキレン基であり、mは0~50、nは0~50(但しmとnは同時に0にならない)であり、R4はH又はCH3である。)
で表されるアルキレンオキサイド基を有する(メタ)アクリル酸エステルから選択される場合、より優れた光拡散性を有する光拡散用単中空粒子を提供できる。
 更に、架橋性スチレン系単量体が、ジビニルベンゼン又はジビニルナフタレンである場合、より優れた光拡散性を有する光拡散用単中空粒子を提供できる。
 また、芳香族単量体が、スチレン、α-メチルスチレン、ビニルトルエン及びクロロスチレンから選択される芳香族単官能ビニル単量体を含む場合、より優れた光拡散性を有する光拡散用単中空粒子を提供できる。
空隙率の測定法の概略説明図である。 実施例1の単中空粒子の断面の電子顕微鏡写真である。 実施例2の単中空粒子の断面の電子顕微鏡写真である。 比較例1の粒子の断面の電子顕微鏡写真である。 比較例2の粒子の断面の電子顕微鏡写真である。
[規則91に基づく訂正 11.01.2011] 
 本発明における「光拡散用単中空粒子」(以下、単中空粒子とも言う)とは、略球状の粒子であって、内部に一つの空孔を有する粒子のことを示す。また、本発明の単中空粒子は、図1に示すように、空孔b及び重合体層aを備えている。図1中、参照番号1は、単中空粒子を意味する。
 上記単中空粒子は、親水性(メタ)アクリル系単量体40~10重量%と、芳香族単量体60~90重量%とを含む単量体混合物に由来する。ここで、芳香族単量体は、少なくとも架橋性スチレン系単量体を含む。更に、架橋性スチレン系単量体は、単量体混合物に対して、10重量%以上含まれている。この単中空粒子は、例えば、水性媒体中、上記単量体混合物を、分子内に親水部と疎水部とを有する櫛形高分子からなる界面活性剤の存在下で、懸濁重合させることで得ることができる。ここで、(メタ)アクリルとは、アクリル又はメタクリルを意味する。
 (単量体混合物)
 (1)親水性(メタ)アクリル系単量体
 単量体混合物に含まれる親水性(メタ)アクリル系単量体としては、アクリル酸アルキルや、カルボキシル基や水酸基等の親水性の置換基を有する(メタ)アクリル系単量体が挙げられる。例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n-オクチル、アクリル酸ドデシル、アクリル酸2-エチルヘキシル、アクリル酸ステアリル、アクリル酸2-クロルエチル、アクリル酸フェニル、α-クロルアクリル酸メチル、アクリル酸ジエチルアミノエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル等の(メタ)アクリル酸誘導体や、アクリル酸、アルキレンオキサイド基を有する(メタ)アクリル酸エステル等が挙げられる。この内、特にアクリル酸アルキル及び/又はアルキレンオキサイド基を有する(メタ)アクリル酸エステルがよい。これら単量体は、単独で使用してもよく、2種以上組み合わせて使用してもよい。
 アクリル酸アルキルは、メタクリル酸アルキルに比べて、親水性が比較的高く、単中空粒子が得やすいという利点がある。アクリル酸アルキルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル等が好ましい。
 アルキレンオキサイド基を有する(メタ)アクリル酸エステルとしては、例えば、下記式1の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式中、R1はH又はCH3であり、R2及びR3は異なってC24、C36、C48及びC510から選択される炭素数2~5のアルキレン基であり、mは0~50、nは0~50(但しmとnは同時に0にならない)であり、R4はH又はCH3である。
 なお、式1の単量体において、mが50より大きい場合及びnが50より大きい場合、重合安定性が低下し合着粒子が発生することがある。好ましいm及びnの範囲は0~30であり、より好ましいm及びnの範囲は0~15ある。
 アルキレンオキサイド基を有する(メタ)アクリル酸エステルとしては、市販品を利用できる。市販品として例えば、日油社製のブレンマーシリーズが挙げられる。更にブレンマーシリーズの中で、ブレンマー50PEP-300(R1はCH3であり、R2はC24、R3はC36、m及びnは平均してm=3.5及びn=2.5の混合物、R4はHである)、ブレンマー70PEP-350(R1はCH3であり、R2はC24、R3はC36、m及びnは平均してm=3.5及びn=2.5の混合物、R4はHである)、ブレンマーPP-1000(R1はCH3であり、R3はC36、mは0、nは平均して4~6の混合物、R4はHである)、ブレンマーPME-400(R1はCH3であり、R2はC24、mは平均して9の混合物、nは0、R4はCH3である)等が好適である。
 親水性(メタ)アクリル系単量体は、親水性(メタ)アクリル系単量体と芳香族単量体の合計に対して、40~10重量%含まれている。含有量が40重量%より多い場合、得られた粒子の屈折率が低くなる傾向がある。また、単中空粒子の耐候性が低くなる傾向がある。10重量%未満の場合、単中空に成り難く、中実粒子になる傾向がある。より好ましい親水性(メタ)アクリル系単量体の含有量は、10~35重量%である。
 (2)芳香族単量体
 芳香族単量体は、単量体混合物中、60~90重量%含まれていることが好ましい。60重量%未満の場合、得られた単中空粒子の屈折率が低くなる傾向がある。90重量%より多い場合、単中空に成り難く、得られた粒子の耐候性が不十分となる傾向がある。芳香族単量体は、少なくとも架橋性スチレン系単量体を含んでいる。
 架橋性スチレン系単量体は、単量体混合物に対して、10重量%以上含まれている。含有量が10重量%未満の場合、単中空の空隙率が低くなり、多中空粒子が混在する傾向がある。架橋性スチレン系単量体の含有量の上限は、芳香族単量体の含有量の上限である90重量%である。
 架橋性スチレン系単量体としては、重合性の二重結合を2個以上有するものを使用することができる。例えば、ジビニルベンゼン、ジビニルナフタレン及びそれらの誘導体が挙げられる。これら単量体は、単独で使用してもよく、2種以上組み合わせて使用してもよい。
 芳香族単量体は、更に芳香族単官能ビニル単量体を含んでいることが好ましい。芳香族単官能ビニル単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン等が挙げられる。
 芳香族単官能ビニル単量体は、単量体混合物に対して、30~60重量%含まれていることが好ましい。この範囲で芳香族単官能ビニル単量体が含まれることで、空隙率の高い単中空粒子が得られる傾向がある。
 (3)他の単量体
 更に、トリアクリル酸トリメチロールプロパン、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸デカエチレングリコール、ジメタクリル酸ペンタデカエチレングリコール、ジメタクリル酸ペンタコンタヘクタエチレングリコール、ジメタクリル酸1,3-ブチレン、メタクリル酸アリル、トリメタクリル酸トリメチロールプロパン、テトラメタクリル酸ペンタエリスリトール、ジメタクリル酸フタル酸ジエチレングリコール、トリアクリル酸トリエチレングリコール、N,N-ジビニルアニリン、ジビニルエーテル、ジビニルスルファイト等のジビニル化合物及びトリビニル化合物が含まれていてもよい。
 (4)他の添加物
 単量体混合物には、含まれる単量体の重合を促進させる重合開始剤が含まれていることが好ましい。重合開始剤としては、一般に懸濁重合に用いられる重合開始剤を用いることができる。例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等の過酸化物系重合開始剤、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2’-アゾビス(2-イソプロピルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)、ジメチル-2,2’-アゾビスイソブチレート等を単独又は複数を混合して用いることができる。なお、過酸化ベンゾイル、過酸化ラウロイル、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)は、単量体に溶解しやすく取り扱いが容易である点において好適である。また、前記重合開始剤の配合量は、使用する単量体の種類にもよるが、通常、単量体混合物100重量部に対して、0.01~1重量部である。
 (界面活性剤)
 界面活性剤は、分子内に親水部と疎水部とを有する櫛形高分子である。ここで、櫛型高分子とは、線状主鎖に線状側鎖が結合した三叉分岐点を数多く有する高分子を意味する。例えば、親水部からなる主鎖上に、2以上の疎水部が櫛状に結合した形状、又はその逆の疎水部からなる主鎖上に、2以上の親水部が櫛状に結合した形状を有する高分子が使用できる。この内、前者の形状を有する高分子は、単量体混合物中に分散させた単中空を形成するための水性媒体を粒状に安定して保持させやすい点から好ましい。主鎖と側鎖との結合形式は、特に限定されないが、通常グラフトによる結合形式である。
 具体的な櫛型高分子としては、
側鎖が、3~80個のアルキレンオキシ基を含む2個以上のカルボニル-C3~C6アルキレンオキシ鎖であり、かつアミド又は塩架橋基によって主鎖と結合し、
主鎖が、ポリ(低級アルキレンイミン)と遊離カルボン酸基を有するポリエステルとの反応物に由来する鎖である
高分子が挙げられる。低級アルキレンとは、エチレン、トリエチレン、テトラエチレン等が挙げられる。
 このような櫛型高分子としては、例えば、英国ルーブリゾール(Lubrizol)社から「ソルスパース(Solsperse)」シリーズとして市販の櫛型高分子が挙げられる。具体的には、製品番号11200、13240、13650、13940、24000SC、24000GR、26000、28000、32000、32500、32550、32600、33000、34750、35100、35200、36000、36600、37500等が挙げられる。
 櫛型高分子は、2000~100000の重量平均分子量の物を使用できる。より好ましい重量平均分子量は20000~30000である。重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定された値である。
 更に、櫛型高分子は、酸基からなる官能基及び/又は塩基からなる官能基を備えていてもよい。酸基及び/又は塩基は、複数存在してもよい。具体的には、酸基は20~80の酸価を与えうるように存在してもよい。一方、塩基は1000~2000の塩基度を与えうるように存在してもよい。
 ここで、酸価が20未満の場合、単中空に成り難く、多中空粒子になる傾向がある。80を越える場合、重合が不安定になり、粒状の重合体が得られないことがある。なお、酸価はJIS K 0070に基づき、櫛型高分子1gに含まれる遊離カルボン酸を中和するのに要するKOHのmg数として測定できる。
 一方、塩基価が1000未満の場合、中空形成が困難となることがある。2000を越える場合、中空形成が困難となることがある。なお、塩基価は、櫛型高分子1gに含まれる塩基性成分を中和するのに要する塩酸と当量の水酸化カリウムのmg数として測定できる。
 櫛型高分子材料の配合量は、単量体混合物100重量部に対して、0.01~4重量部である。配合量が0.01重量部未満の場合、内部に単一の空孔を有する重合体粒子とならない傾向がある。4重量部を越えて配合しても配合量に見合う空孔形成効果(空孔の形成させ易さ)が得られないばかりか、重合体粒子中に占める単量体混合物由来の重合体の純度が低下することで、重合体粒子の特性が損なわれることがある。好ましい配合量は0.01~3重量部である。
 (水性媒体)
 水性媒体としては、特に限定されず、水、水と水溶性有機溶媒(例えば、メタノール、エタノール等の低級アルコール)の混合物が挙げられる。
 水性媒体は、通常、単量体混合物100重量部に対して、150~1000重量部使用される。
 水性媒体には、単量体混合物を水性媒体中でエマルジョン状態として安定させるべく分散安定剤や水性媒体用の界面活性剤を配合できる。
 分散安定剤としては、一般に単量体の懸濁重合に用いられる分散安定剤を使用できる。例えば、メチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール等の水溶性高分子、第三リン酸カルシウム、水酸化マグネシウム、ピロリン酸マグネシウム、硫酸バリウム、炭酸カルシウム、シリカ等の難水溶性無機塩を使用できる。
 上記分散安定剤の内、単中空粒子から容易に除去でき、しかも、他の分散安定剤を用いた場合に比べて単中空粒子を狭い粒度分布で重合させ得る点において、常温の水に対する溶解度が3mg以下程度の難水溶性無機塩が好適である。特に、溶解度2.5mgの第三リン酸カルシウムが好適である。
 分散安定剤は、通常、単量体混合物100重量部に対し、0.1~20重量部の割合で水性媒体に配合できる。
 水性媒体用界面活性剤としては、一般に単量体の懸濁重合に用いられる水性媒体用界面活性剤を用いることができる。アニオン系界面活性剤は、他の界面活性剤に比べて、単中空粒子を狭い粒度分布で重合させ得る点において好適である。
 アニオン系界面活性剤としては、例えば、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ジエチルスルホコハク酸ナトリウム等が挙げられる。
 水性媒体用界面活性剤は、通常、水性媒体に、0.005~0.3重量%の濃度になるように配合される。
 (懸濁重合)
 単量体混合物を、水性媒体中、上記櫛型高分子からなる界面活性剤の存在下で懸濁重合させることにより単中空粒子が得られる。単量体混合物は、櫛型高分子からなる界面活性剤と油相を構成し、水性媒体中で重合する。
 懸濁重合では、まず、油相と水性媒体とをそれぞれ別容器にて所定配合に調製する。
 油相は、親水性(メタ)アクリル系単量体と架橋性スチレン系単量体、任意に芳香族単官能ビニル単量体及び重合開始剤とを含む単量体混合物と、櫛型高分子からなる界面活性剤とを所定の割合で混合攪拌することにより得られる。このとき用いる混合攪拌手段としては、全体的に均一となるような混合攪拌手段が好ましく、例えば、一般的なミキサー、ホモジナイザーが挙げられる。
 水性媒体には、任意に分散安定剤及び水系媒体用界面活性剤を所定の割合で加え混合攪拌する。このとき用いる混合攪拌手段としては、全体的に均一となるような混合攪拌手段が好ましく、例えば、一般的なミキサー、ホモジナイザーが挙げられる。
 油相と水性媒体の調製後、水性媒体に、油相を添加し、混合攪拌し懸濁液(水相/油相/水相エマルジョン)を得る。なお、油相は油滴を構成し、水相エマルジョンは油滴中に存在する。このとき、攪拌手段としてホモジナイザーを用いることで攪拌時間、回転数等の攪拌条件を変化させて油滴サイズ、他の攪拌手段を用いた場合に比べて容易に調製できる。油滴サイズを調整できることは、油滴から得られる単中空粒子のサイズを調製できることを意味する。
 次に、懸濁液を攪拌しつつ、加温して油相の重合を行うことで単中空粒子が得られる。懸濁液の加温は、オートクレーブのような加温装置で行ってもよい。得られた単中空粒子は、必要に応じて、ろ過し、ろ過物を水洗後、乾燥することで、水性媒体から取り出してもよい。また、要すれば、水洗前に分散安定剤を除去してもよい。
 (単中空粒子の形状)
 単中空粒子の空隙率(中空の割合)は、30%以上である。空隙率の上限は、50%程度である。空隙率は35%以上であることが好ましい。
 単中空粒子は、3~100μmの平均粒子径を有する。この範囲であれば、単中空粒子を多量に使用しなくても十分な光拡散性を確保できる。より好ましい平均粒子径は4~50μmであり、更に好ましい平均粒子径は5~30μmである。
 単中空粒子の外形は、球状である。ここで、球状は、厳密な意味の球状(真球状)を意味するものではなく、当該分野で許容される程度の広がりをもつ用語である。単中空粒子がその内部に位置する中空と接する内形(中空の外形とも言う)は、単中空粒子の外形に沿った形状を有している。中空の中心は、単中空粒子の中心と同一位置にあるが、多少上下左右に両中心が位置していてもよい。
 (単中空粒子の用途)
 本発明の単中空粒子は、例えば、成形用材料や塗料等の原料として使用できる。
 (1)成形用材料
 成形用材料としては、TV用スクリーン、照明カバー、バックライト式液晶ディスプレイパネルの光拡散板又は導光板等の成形用材料が挙げられる。このような成形用材料は、例えば、常温固体状態の透明な基材樹脂に単中空粒子を含有させることにより得られる。透明な基材樹脂としては、ポリメチルメタクリレート、ポリスチレン、メチルメタクリレート-スチレン共重合体、ポリカーボネート、ポリ塩化ビニル、ノルボルネン系重合体、ビニル脂環式炭化水素重合体等が好適である。
 ここで、単中空粒子が、櫛型高分子からなる界面活性剤を使用して得られた場合、界面活性剤等のブリードを抑制できる。ブリードする物質は、通常、低分子量で、熱や光により劣化しやすい。そのため、例えば、単中空粒子を熱可塑性樹脂に分散させた後、加熱成型させて得られた成形品には、ブリードした物質が成形時の熱による劣化に由来する黄変が発生することがある。これに対して、本発明の単中空粒子は、成形体に生じる黄変を抑制できる点で優れている。
 なお、本発明の効果(単中空粒子による光拡散性)を損ねない範囲において、成形用材料に各種配合剤を含有させてもよい。例えば、光の透過性や拡散性等が強く求められない用途の場合には、基材樹脂に更に顔料等の着色剤を加えてもよい。
 成形用材料には単中空粒子が0.1~10重量%含まれることが好ましい。この範囲であれば、優れた光拡散性能と、黄変等の変色の発生の防止を両立できる。
 また、上記成形用材料を用いて光拡散板を形成する場合、光拡散性能と光透過性能との関係から、成形用材料に対する単中空粒子の含有量を、0.5~7重量%とすることが好ましい。単中空粒子の含有量が0.5重量%未満の場合には、十分な光拡散性能が得られないことがある。7重量%を超えて含有しても、光拡散性能をそれ以上向上させることが困難であるばかりでなく、光透過性能を低下させることがある。
 また、導光板を形成する場合には、光拡散性能と光の透過性能との関係から、成形用材料に対する単中空粒子の含有量を、0.05~0.5重量%とすることが好ましい。単中空粒子の含有量が0.05重量%未満の場合には、光透過性が高くなりすぎて、導光板に求められる光拡散性能を備えたものとならないことがある。0.5重量%を超えて含有した場合には、光拡散性能が高くなりすぎて導光距離が短くなることがある。
 成形用材料から成形体を得る方法としては、基材樹脂と単中空粒子とを、一軸押し出し機、二軸押し出し機等の一般的な樹脂混練手段を用いて混練し、混練物をTダイやロールユニットを介して板状に成形する方法、混練物を射出成形機やプレス成形機等を用いて成形する方法が挙げられる。
 (2)塗料
 本発明の単中空粒子を含む塗料は、光拡散性塗料やつや消し塗料等に好適に使用できる。この光拡散性塗料やつや消し塗料には、例えば、粒径3~50μmの単中空粒子とバインダーとの混合物を用いることができる。この混合物には、溶剤が含まれていてもよい。なお、光拡散性塗料においては、バインダーは透明なものを用いることが好ましく、つや消し塗料においては、バインダー樹脂は透明であっても有色のものであってもよい。塗料中の固形成分(バインダー+単中空粒子)に占める単中空粒子の含有量は、光拡散性塗料においては、5~70重量%が好ましく、つや消し塗料においては、10~30重量%であることが好ましい。
 塗料は、塗工の作業性を良好なるものとし得る点において、5~300mPa・sの粘度のものが好適である。なお、粘度は、B型粘度計を用いて測定することができ、例えば、25±2℃に保った塗料を、B型粘度計のNo.4ローターを用いて100rpmの回転数で測定して求めることができる。
 バインダーは、例えば、塗膜形成時に単中空粒子が塗膜から脱落することを防止し得る粘着性、接着性、結合性等を備えた基材樹脂が含まれていることが好ましい。また、バインダーには、基材樹脂以外に、単中空粒子の分散性を向上させる分散剤、バインダー樹脂の硬化剤、染料、顔料等を含有していてもよい。
 基材樹脂としては、例えば、フェノール樹脂、レゾルシン樹脂、フラン樹脂、メラミン樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂等の熱硬化性樹脂や、ポリ酢酸ビニル、ポリビニルアルコール、ポリ塩化ビニル、ポリビニルブチラール、ポリアクリル酸エステル、ニトロセルロース等の熱可塑性樹脂、ブタジエンアクリロニトリルゴム、クロロプレンゴム等のエラストマー等が挙げられる。
 以下、実施例によって本発明を詳細に説明するが、本発明はこれら実施例によって制限されるものではない。なお、単中空粒子の平均粒子径、空隙率、櫛型高分子の重量平均分子量は以下の方法によって測定する。
 (平均粒子径の測定方法)
 孔径50~280μmの細孔に電解質溶液を満たし、電解質溶液を粒子が通過する際の電界質溶液の導電率変化から体積を求め、平均粒子径を計算する。具体的には、測定した平均粒子径は、ベックマンコールター社製のコールターマルチサイザーIIによって測定した体積平均粒子径である。なお、測定に際してはCoulter Electronics Limited発行のREFERENCE MANUAL FOR THE COULTER MULTISIZER(1987)に従って、測定する粒子の粒子径に適合したアパチャーを用いてキャリブレーションを行い測定する。
 具体的には、市販のガラス製の試験管に粒子0.1gと0.1%ノニオン系界面活性剤溶液10mlを投入し、ヤマト科学社製タッチミキサー TOUCHMIXER MT-31で2秒間混合する。この後試験管を市販の超音洗浄機であるヴェルヴォクリーア社製ULTRASONIC CLEANER VS-150を用いて10秒間予備分散させる。分散液を本体備え付けの、ISOTON2(ベックマンコールター社製:測定用電解液)を満たしたビーカー中に、緩く攪拌しながらスポイドで滴下して、本体画面の濃度計の示度を10%前後に合わせる。次にマルチサイザーII本体にアパチャーサイズ、Current,Gain,PolarityをCoulterElectronics Limited発行のREFERENCE MANUAL FOR THE COULTER MULTISIZER(1987)に従って入力し、manualで測定する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、粒子を10万個測定した点で測定を終了する。
 (空隙率の測定方法)
 単中空粒子の空隙率(%)は、次のように測定する。まず、単中空粒子の断面を1000倍の電子顕微鏡で撮影する。得られた写真から中央付近で切断されている単中空粒子を任意に、10個選択する。選択した個々の単中空粒子の外径r1と内径r2を以下のように算出する。
 具体的には、電子顕微鏡写真上で、図1に示すように、単中空粒子の長径L1を測定する。次いで、長径に沿う直線を引く。この直線の中点Aより垂線を引き、垂線が単中空粒子の外殻と交差する2つの交点間の長さL2を測定する。個々の単中空粒子の外径r1はL1とL2の平均値である。また、個々の単中空粒子の内径r2についても、単中空粒子の長径を空孔の長径とし、単中空粒子の外殻を空孔の内郭とすること以外は、r1と同様にして測定する。
 得られたr1とr2とから、次式により個々の単中空粒子の空隙率を算出する。なお、空隙率は、10個の個々の空隙率の平均値である。
 空隙率(%)=(r2/r1)2×100
 (櫛型高分子の重量平均分子量)
 GPC(ゲルパーミエーションクロマトグラフィー)を用いて、重量平均分子量(Mw)を測定する。その測定方法は次の通りである。なお、重量平均分子量(Mw)はポリスチレン(PS)換算重量平均分子量を意味する。
 試料50mgをテトラヒドロフラン(THF)10ミリリットルに溶解させ、非水系0.45μmのクロマトディスクで濾過した上でクロマトグラフを用いて測定する。クロマトグラフの条件は下記の通りとする。
 液体クロマトグラフ:東ソー社製、商品名「ゲルパーミエーションクロマトグラフ HLC-8020」
 カラム:東ソー社製、商品名「TSKgel GMH-XL-L」φ7.8mm×30cm×3本の直列接続
 カラム温度:40℃
 キャリアーガス:テトラヒドロフラン(THF)
 キャリアーガス流量:0.8ミリリットル/分
 注入・ポンプ温度:35℃
 検出:RI
 注入量:100マイクロリットル
 検量線用標準ポリスチレン:昭和電工社製、商品名「shodex」重量平均分子量:1030000と東ソー社製、重量平均分子量:5480000、3840000、355000、102000、37900、9100、2630、870
 実施例1
 芳香族単官能ビニル単量体としてのスチレン60重量部と架橋性スチレン系単量体としてのジビニルベンゼン30重量部、親水性(メタ)アクリル系単量体としてのアクリル酸メチル10重量部、重合開始剤としてのアゾビスバレロニトリル0.4重量部とを混合して単量体混合物を得た。この単量体混合物に櫛形高分子からなる界面活性剤(ルーブリゾール社製ソルスパース26000、重量平均分子量26000、酸価50±4、塩基度1500±150)を1重量部添加することで油相を得た。
 イオン交換水150重量部に分散安定剤としての第3リン酸カルシウム10重量部と界面活性剤としてのドデシルベンゼンスルホン酸ナトリウム0.02重量部とを添加することで水相を得た。
 水相に油相を入れて得られた混合物をホモジナイザーにて4000rpmで10分間攪拌した。その後、60℃で12時間単量体を重合させることで単中空粒子を得た。図2に単中空粒子の断面の電子顕微鏡写真を示す。
 得られた単中空粒子5gとポリメチルメタクリレート樹脂(住友化学社製スミペックスMG-5、屈折率1.490)95gとを混合した。得られた混合物を射出成形機により240℃で成形することで、厚みが1mmの半筒状(φ25mm×高さ520mmの筒を縦に半分に割った形)の成形品(照明カバー)を作製した。
 市販の蛍光灯型LED照明(CREE社製、40W相当タイプ)の照明カバーを、上記で作製した照明カバーに付け替えて輝度を測定した。輝度は、照明カバーより50cm離れたところに設置した輝度計(CA-1000、コニカミノルタ社製)を用いた測定した。測定された輝度は、10600cd/cm2であった。また、LED照明中のLED光源を照明カバー越しに確認できず、照明カバーはLED光源からの光を十分に拡散できていた。
 実施例2
 スチレンを35重量部、アクリル酸メチルを35重量部とすること以外は実施例1と同様の方法で単中空粒子を得た。図3に単中空粒子の断面の電子顕微鏡写真を示す。
 得られた単中空粒子を使用すること以外は、実施例1と同様にして輝度を測定した。輝度は、11000cd/cm2であった。また、LED照明中のLED光源を照明カバー越しに確認できず、照明カバーはLED光源からの光を十分に拡散できていた。
 実施例3
 アクリル酸メチル10重量部及びスチレン60重量部をアルキレンオキサイド基を有する(メタ)アクリル酸エステル(日油社製ブレンマー50PEP300)35重量部及びスチレン35重量部とすること以外は実施例1と同様の方法で単中空粒子を得た。
 得られた単中空粒子を使用すること以外は、実施例1と同様にして輝度を測定した。輝度は、11900cd/cm2であった。また、LED照明中のLED光源を照明カバー越しに確認できず、照明カバーはLED光源からの光を十分に拡散できていた。
 実施例4
 ジビニルベンゼンを90重量部、アクリル酸メチルを10重量部とし、スチレンを添加しないこと以外は実施例1と同様の方法で単中空粒子を得た。
 得られた単中空粒子を使用すること以外は、実施例1と同様にして輝度を測定した。輝度は、12200cd/cm2であった。また、LED照明中のLED光源を照明カバー越しに確認できず、照明カバーはLED光源からの光を十分に拡散できていた。
 比較例1
 スチレンを70重量部、ジビニルベンゼン30重量部とし、アクリル酸メチルを添加しないこと以外は実施例1と同様の方法で粒子を得た。図4に粒子の断面の電子顕微鏡写真を示す。
 比較例2
 スチレンを65重量部、アルキレンオキサイド基を有する(メタ)アクリル酸エステル(日油社製ブレンマー50PEP300)を5重量部、ジビニルベンゼンを30重量部とすること以外は実施例1と同様の方法で粒子を得た。図5に粒子の断面の電子顕微鏡写真を示す。
 比較例3
 スチレンを85重量部、アクリル酸メチルを10重量部、ジビニルベンゼンを5重量部とすること以外は実施例1と同様の方法で粒子を得た。
 上記実施例及び比較例で使用した単量体及び櫛形高分子からなる界面活性剤の使用量(数値は重量部)、形状、空隙率及び平均粒子径を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1から以下のことがわかる。
 実施例と比較例とから、単量体量を調製することで、空隙率30%の単中空粒子が得られることがわかる。単中空粒子は、中空のない中実粒子や多中空粒子に比べて、光拡散性が優れている。
 実施例1~3と実施例4とから、芳香族単官能ビニル単量体を含むことで、より空隙率の高い単中空粒子が得られることがわかる。
a 空孔
b 重合体層
1 単中空粒子
A 中点
L1 長径
L2 交点間の長さ

Claims (6)

  1.  親水性(メタ)アクリル系単量体40~10重量%と、架橋性スチレン系単量体を少なくとも含む芳香族単量体60~90重量%とを含み、かつ前記架橋性スチレン系単量体を10重量%以上含む単量体混合物に由来し、30%以上の空隙率と、3~100μmの平均粒子径を有する光拡散用単中空粒子。
  2.  前記親水性(メタ)アクリル系単量体が、アクリル酸メチル及び下記式1
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1はH又はCH3であり、R2及びR3は異なってC24、C36,C48及びC510から選択される炭素数2~5のアルキレン基であり、mは0~50、nは0~50(但しmとnは同時に0にならない)であり、R4はH又はCH3である。)
    で表されるアルキレンオキサイド基を有する(メタ)アクリル酸エステルから選択される請求項1に記載の光拡散用単中空粒子。
  3.  前記架橋性スチレン系単量体が、ジビニルベンゼン又はジビニルナフタレンである請求項1に記載の光拡散用単中空粒子。
  4.  前記芳香族単量体が、スチレン、α-メチルスチレン、ビニルトルエン及びクロロスチレンから選択される芳香族単官能ビニル単量体を含む請求項1に記載の光拡散用単中空粒子。
  5.  前記光拡散用単中空粒子が、原料として、照明カバー、バックライト式液晶ディスプレイパネルの光拡散板もしくは導光板、又は塗料に使用される請求項1に記載の光拡散用単中空粒子。
  6.  透明樹脂中に請求項1に記載の光拡散用単中空粒子が配合されてなる照明カバー。
PCT/JP2010/066725 2009-09-29 2010-09-27 光拡散用単中空粒子 WO2011040376A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011534235A JP5401553B2 (ja) 2009-09-29 2010-09-27 光拡散用単中空粒子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-224976 2009-09-29
JP2009224976 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011040376A1 true WO2011040376A1 (ja) 2011-04-07

Family

ID=43826191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066725 WO2011040376A1 (ja) 2009-09-29 2010-09-27 光拡散用単中空粒子

Country Status (2)

Country Link
JP (1) JP5401553B2 (ja)
WO (1) WO2011040376A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184840A (ja) * 2018-04-11 2019-10-24 三菱ケミカル株式会社 光拡散板、画像表示装置及び面光源装置
WO2021085189A1 (ja) * 2019-10-29 2021-05-06 積水化成品工業株式会社 中空樹脂粒子およびその製造方法
WO2022130938A1 (ja) * 2020-12-17 2022-06-23 積水化成品工業株式会社 半導体部材用樹脂組成物に用いる中空樹脂粒子
WO2022130939A1 (ja) * 2020-12-17 2022-06-23 積水化成品工業株式会社 半導体部材用樹脂組成物に用いる中空樹脂粒子
CN116194495A (zh) * 2020-09-30 2023-05-30 日本瑞翁株式会社 中空颗粒

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022096300A (ja) * 2020-12-17 2022-06-29 積水化成品工業株式会社 半導体部材用樹脂組成物に用いる中空樹脂粒子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292596A (ja) * 2003-03-26 2004-10-21 Sekisui Plastics Co Ltd 中空樹脂粒子、その製造方法及び多孔質セラミック用造孔剤
JP2005054084A (ja) * 2003-08-05 2005-03-03 Sekisui Chem Co Ltd 中空樹脂微粒子の製造方法及び中空樹脂微粒子
JP2006117920A (ja) * 2004-09-27 2006-05-11 Sekisui Plastics Co Ltd 内部に複数の空孔を有するポリマー粒子ならびにその製造方法と前記ポリマー粒子が含有されてなる樹脂組成物
JP2007238792A (ja) * 2006-03-09 2007-09-20 Sekisui Plastics Co Ltd 内部に空孔を有するポリマー粒子の製造方法ならびに内部に空孔を有するポリマー粒子
JP2009067946A (ja) * 2007-09-14 2009-04-02 Sekisui Plastics Co Ltd 単中空粒子、その製造方法、樹脂組成物及び光拡散板
JP2009079086A (ja) * 2007-09-25 2009-04-16 Sekisui Plastics Co Ltd 単中空粒子、その製造方法、樹脂組成物及び光拡散板
JP2009120806A (ja) * 2007-10-22 2009-06-04 Sekisui Chem Co Ltd 多孔質中空ポリマー粒子、多孔質中空ポリマー粒子の製造方法、香料担持ポリマー粒子、及び、香料担持ポリマー粒子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292596A (ja) * 2003-03-26 2004-10-21 Sekisui Plastics Co Ltd 中空樹脂粒子、その製造方法及び多孔質セラミック用造孔剤
JP2005054084A (ja) * 2003-08-05 2005-03-03 Sekisui Chem Co Ltd 中空樹脂微粒子の製造方法及び中空樹脂微粒子
JP2006117920A (ja) * 2004-09-27 2006-05-11 Sekisui Plastics Co Ltd 内部に複数の空孔を有するポリマー粒子ならびにその製造方法と前記ポリマー粒子が含有されてなる樹脂組成物
JP2007238792A (ja) * 2006-03-09 2007-09-20 Sekisui Plastics Co Ltd 内部に空孔を有するポリマー粒子の製造方法ならびに内部に空孔を有するポリマー粒子
JP2009067946A (ja) * 2007-09-14 2009-04-02 Sekisui Plastics Co Ltd 単中空粒子、その製造方法、樹脂組成物及び光拡散板
JP2009079086A (ja) * 2007-09-25 2009-04-16 Sekisui Plastics Co Ltd 単中空粒子、その製造方法、樹脂組成物及び光拡散板
JP2009120806A (ja) * 2007-10-22 2009-06-04 Sekisui Chem Co Ltd 多孔質中空ポリマー粒子、多孔質中空ポリマー粒子の製造方法、香料担持ポリマー粒子、及び、香料担持ポリマー粒子の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184840A (ja) * 2018-04-11 2019-10-24 三菱ケミカル株式会社 光拡散板、画像表示装置及び面光源装置
WO2021085189A1 (ja) * 2019-10-29 2021-05-06 積水化成品工業株式会社 中空樹脂粒子およびその製造方法
JPWO2021085189A1 (ja) * 2019-10-29 2021-05-06
TWI750860B (zh) * 2019-10-29 2021-12-21 日商積水化成品工業股份有限公司 中空樹脂粒子及其製造方法
CN114630847A (zh) * 2019-10-29 2022-06-14 积水化成品工业株式会社 中空树脂颗粒及其制造方法
JP7413396B2 (ja) 2019-10-29 2024-01-15 積水化成品工業株式会社 中空樹脂粒子およびその製造方法
CN114630847B (zh) * 2019-10-29 2024-02-06 积水化成品工业株式会社 中空树脂颗粒及其制造方法
CN116194495A (zh) * 2020-09-30 2023-05-30 日本瑞翁株式会社 中空颗粒
WO2022130938A1 (ja) * 2020-12-17 2022-06-23 積水化成品工業株式会社 半導体部材用樹脂組成物に用いる中空樹脂粒子
WO2022130939A1 (ja) * 2020-12-17 2022-06-23 積水化成品工業株式会社 半導体部材用樹脂組成物に用いる中空樹脂粒子

Also Published As

Publication number Publication date
JPWO2011040376A1 (ja) 2013-02-28
JP5401553B2 (ja) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5401553B2 (ja) 光拡散用単中空粒子
TW200946583A (en) Light-scattering compositions
JP5069908B2 (ja) 多層シート及び光拡散シート
WO2007086483A1 (ja) 異形粒子、異形粒子組成物及びその製造方法、並びに光拡散成形品
JP2009067946A (ja) 単中空粒子、その製造方法、樹脂組成物及び光拡散板
JP5401891B2 (ja) 光拡散粒子、その製造方法、光拡散粒子組成物、及び光拡散フィルム
JP5287081B2 (ja) Led光源用光拡散板
JP4566870B2 (ja) 内部に複数の空孔を有するポリマー粒子ならびにその製造方法と前記ポリマー粒子が含有されてなる樹脂組成物
JP5576752B2 (ja) 単中空粒子及びその製造方法
US20130225753A1 (en) Polymer composition and a molded article thereof
JP5473204B2 (ja) 単中空粒子の製造方法
JPWO2009051256A1 (ja) 光拡散剤
JP2003335956A (ja) 光拡散性樹脂組成物
TW201410765A (zh) 光擴散性樹脂組成物及其成形品
JP2006169542A (ja) 光拡散用成形品
JP5308779B2 (ja) 重合体粒子集合体、その製造方法、光拡散剤及び光拡散性樹脂組成物
JP2004143261A (ja) 光拡散性樹脂組成物
JP2004226604A (ja) 合成樹脂粒子、光拡散板、液晶表示装置用バックライトユニット及び液晶表示装置
JP2011094119A (ja) 光拡散性複合樹脂粒子、その製造方法、光拡散性樹脂組成物および照明カバー
JP2007204535A (ja) 光拡散性スチレン系樹脂組成物及び成形体
JPH05179054A (ja) 光拡散剤及び光拡散剤を含有する樹脂組成物
WO2007132815A1 (ja) 光拡散性スチレン系樹脂積層板
TWI476233B (zh) 球形聚合物珠粒及其製備方法
JPWO2008010553A1 (ja) スチレン系樹脂組成物および成形体
JPWO2006062171A1 (ja) スチレン系樹脂組成物およびそのシート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534235

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820491

Country of ref document: EP

Kind code of ref document: A1