WO2022130939A1 - 半導体部材用樹脂組成物に用いる中空樹脂粒子 - Google Patents

半導体部材用樹脂組成物に用いる中空樹脂粒子 Download PDF

Info

Publication number
WO2022130939A1
WO2022130939A1 PCT/JP2021/043436 JP2021043436W WO2022130939A1 WO 2022130939 A1 WO2022130939 A1 WO 2022130939A1 JP 2021043436 W JP2021043436 W JP 2021043436W WO 2022130939 A1 WO2022130939 A1 WO 2022130939A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
hollow resin
hollow
weight
semiconductor member
Prior art date
Application number
PCT/JP2021/043436
Other languages
English (en)
French (fr)
Inventor
春彦 松浦
光一朗 岡本
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to CN202180084126.XA priority Critical patent/CN116615470A/zh
Priority to KR1020237018458A priority patent/KR20230096102A/ko
Publication of WO2022130939A1 publication Critical patent/WO2022130939A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices

Definitions

  • the present invention relates to hollow resin particles used in a resin composition for a semiconductor member.
  • the insulating resin material used for the semiconductor member used in the semiconductor device has a low relative permittivity and dielectric loss tangent of the insulating resin in order to increase the transmission speed of a high frequency signal and reduce the loss during signal transmission. Required.
  • Acrylic hollow resin particles are known as one of the known hollow particles.
  • acrylic hollow resin particles can be obtained by suspend-polymerizing a monomer containing an acrylic polyfunctional monomer such as trimethylolpropane tri (meth) acrylate or dipentaerythritol hexaacrylate as a main component together with a hydrophobic solvent. It has been reported (Patent Document 1). However, the acrylic resin has a high relative permittivity and dielectric loss tangent, and deteriorates the low dielectric property. Therefore, the acrylic hollow resin particles described in Patent Document 1 cannot be applied to semiconductor devices that process high-frequency signals in recent years.
  • a solder reflow process is performed when mounting parts such as electronic parts and wiring parts on the surface of a printed circuit board.
  • the solder reflow process is a process of printing a solder paste on a printed circuit board, placing components on the printed circuit board, and then heating the solder in a solder reflow oven to melt the solder.
  • the melting point of Pb eutectic solder which is a typical conventional solder, is 183 ° C.
  • the melting point of Ag—Sn—Cu-based solder which is a typical lead-free solder in recent years, is about 30 ° C. higher than that of Pb eutectic solder.
  • the maximum temperature of the profile of the solder reflow furnace is as high as 220 ° C to 260 ° C. Therefore, it is required to use a resin having high heat resistance for the resin composition used for semiconductor members such as semiconductor packages and semiconductor modules. In such a resin having high heat resistance, a high thermogravimetric reduction temperature is required. If the thermal weight reduction temperature of the resin contained in the resin composition used for the semiconductor member is low, outgas is likely to be generated, causing problems such as peeling of the resin layer during solder reflow, which impairs the reliability of the semiconductor device. be. Further, when a volatile component is present in the resin contained in the resin composition used for the semiconductor member, outgas derived from the volatile component is likely to be generated.
  • the acrylic hollow resin particles described in Patent Document 1 have the characteristics of high water absorption and low thermogravimetric reduction temperature. Therefore, even if the acrylic hollow resin particles described in Patent Document 1 are applied to a resin composition used for a semiconductor member, defects in the solder reflow process cannot be reduced, and the reliability of the semiconductor device cannot be improved.
  • the styrene-based hollow resin particles are known as hollow resin particles having a lower relative permittivity and dielectric loss tangent than the acrylic hollow resin particles.
  • polyvinylbenzene hollow resin particles can be obtained by suspend-polymerizing divinylbenzene together with saturated hydrocarbons having 8 to 18 carbon atoms (specifically, hexadecane).
  • Patent Document 2 has been reported (Patent Document 2).
  • Patent Document 2 since the polydivinylbenzene hollow resin particles described in Patent Document 2 use polyvinyl alcohol as a dispersant, polyvinyl alcohol tends to remain on the particle surface, and the relative permittivity and the dielectric tangent value of the particles themselves are increased.
  • polyvinyl alcohol tends to remain on the particle surface, the water absorption rate becomes high, and the moisture in the particles is soldered. During reflow, it evaporates and outgas is generated, which impairs the reliability of semiconductor devices. Further, the polydivinylbenzene hollow resin particles tend to remain unreacted due to the decrease in the reactivity of one of the vinyl groups of divinylbenzene, and there is a concern that the heat resistance may decrease starting from the remaining vinyl group. Further, since polyvinyl alcohol contains a residue of alkali hydroxide used in the saponification reaction, there is a problem that it causes deterioration of low dielectric properties.
  • An object of the present invention is to provide styrene-based hollow resin particles used in a resin composition for a semiconductor member, which has excellent heat resistance and low water absorption.
  • the present inventor has studied a technique for improving the low dielectric property of a semiconductor member, assuming a case where styrene-based hollow resin particles are mixed with an insulating resin to form a resin composition for a semiconductor member. As a result, it was found that the obtained styrene-based hollow resin particles have excellent heat resistance and low water absorption rate by leaving a certain amount of ethylenically unsaturated groups in the styrene-based hollow resin particles, and complete the present invention. It came to.
  • the hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention are Hollow resin particles having a shell portion and a hollow portion surrounded by the shell portion.
  • the residual rate of ethylenically unsaturated groups is 1% to 20%.
  • the 1% thermogravimetric reduction temperature when the hollow resin particles are heated at 10 ° C./min under a nitrogen atmosphere is 250 ° C. or higher.
  • the water content of the hollow resin particles after being allowed to stand at 40 ° C. and 95% RH for 96 hours is 0.5% by weight or less.
  • the average particle size of the hollow resin particles is 0.1 ⁇ m to 5.0 ⁇ m.
  • the shell portion is represented by an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer represented by the formula (1) (meth). It contains an aromatic polymer (P1) obtained by polymerizing a monomer composition containing c).
  • R 1 represents H or CH 3
  • R 2 represents H, an alkyl group, or a phenyl group
  • R 3 -O represents an oxyalkylene group having 2 to 18 carbon atoms
  • m represents the oxyalkylene group. It is the average number of added moles and represents a number from 1 to 100.
  • the oxyalkylene group is at least one selected from the group consisting of an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  • the monomer composition comprises 10% by weight to 70% by weight of the aromatic crosslinkable monomer (a), 10% by weight to 70% by weight of the aromatic monofunctional monomer (b), and It contains 0.5% by weight to 30% by weight of the (meth) acrylic acid ester-based monomer (c) represented by the general formula (1).
  • the shell portion is composed of the aromatic polymer (P1), a polyolefin, a styrene polymer, a (meth) acrylic acid polymer, and a styrene- (meth) acrylic acid polymer. It comprises at least one non-crosslinking polymer (P2) selected from the group.
  • the aromatic crosslinkable monomer (a) is divinylbenzene.
  • the aromatic monofunctional monomer (b) is at least one selected from the group consisting of styrene and ethyl vinylbenzene.
  • the semiconductor member according to the embodiment of the present invention includes hollow resin particles used in the resin composition for the semiconductor member according to the embodiment of the present invention.
  • styrene-based hollow resin particles used in a resin composition for a semiconductor member, which has excellent heat resistance and low water absorption.
  • FIG. It is a TEM photograph figure of the hollow resin particle (1) used in the resin composition for a semiconductor member obtained in Example 1.
  • FIG. It is a TEM photograph figure of the hollow resin particle (2) used in the resin composition for a semiconductor member obtained in Example 2.
  • FIG. It is a TEM photograph figure of the hollow resin particle (3) used in the resin composition for a semiconductor member obtained in Example 3.
  • FIG. It is a TEM photograph figure of the hollow resin particle (4) used in the resin composition for a semiconductor member obtained in Example 4.
  • FIG. It is a TEM photograph figure of the hollow resin particle (5) used in the resin composition for a semiconductor member obtained in Example 5.
  • FIG. It is a TEM photograph figure of the hollow resin particle (6) used in the resin composition for a semiconductor member obtained in Example 6.
  • FIG. 7 It is a TEM photograph figure of the hollow resin particle (7) used in the resin composition for a semiconductor member obtained in Example 7.
  • FIG. 8 It is a TEM photograph figure of the hollow resin particle (8) used in the resin composition for a semiconductor member obtained in Example 8.
  • FIG. 10 It is a TEM photograph figure of the hollow resin particle (10) used in the resin composition for a semiconductor member obtained in Example 10.
  • FIG. It is a TEM photograph figure of the hollow resin particle (11) used in the resin composition for a semiconductor member obtained in Example 11.
  • the semiconductor member means a member constituting a semiconductor, and examples thereof include a semiconductor package and a semiconductor module.
  • the resin composition for a semiconductor member means a resin composition used for a semiconductor member. Therefore, the hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention are used in the resin composition for semiconductor members, and are therefore preferably used for semiconductor members such as semiconductor packages and semiconductor modules.
  • Such a semiconductor member is a semiconductor member according to the embodiment of the present invention, and includes hollow resin particles used in the resin composition for the semiconductor member according to the embodiment of the present invention.
  • a semiconductor package is an IC chip as an essential component, and is a mold resin, an underfill material, a mold underfill material, a die bond material, a prepreg for a semiconductor package substrate, a metal-clad laminate for a semiconductor package substrate, and a printed circuit board for a semiconductor package. It is constructed using at least one member selected from the build-up materials of.
  • a semiconductor module is a prepreg for a printed circuit board, a metal-clad laminate for a printed circuit board, a build-up material for a printed circuit board, a solder resist material, a coverlay film, an electromagnetic wave shielding film, and a print, with a semiconductor package as an essential component. It is configured by using at least one member selected from the adhesive sheet for a circuit board.
  • the expression “(meth) acrylic” means “acrylic and / or methacrolein”
  • the expression “(meth) acrylate” means “acrylate and / or methacrylate”.
  • the expression “(meth) allyl” means “allyl and / or methacrolein”
  • “acrolein and / or methacrolein” is used. It means “rain”.
  • the expression “acid (salt)” when used in the present specification, it means “acid and / or a salt thereof”. Examples of the salt include alkali metal salts and alkaline earth metal salts, and specific examples thereof include sodium salts and potassium salts.
  • the resin composition for a semiconductor member is a resin composition used for a semiconductor member.
  • Such resin compositions typically include an insulating resin.
  • an insulating resin any suitable resin can be adopted as long as the effect of the present invention is not impaired.
  • examples of such insulating resins include polyphenylene ether, polyphenylene sulfide, polyimide, polyetherimide, polybismaleimide, polyarylate, epoxy resin, polyester resin, urethane resin, acrylic resin, cyanate resin, phenol resin, and polystyrene resin.
  • fluororesins such as PTFE and cycloolefin resins.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention are hollow resin particles having a shell portion and a hollow portion surrounded by the shell portion.
  • the term "hollow” as used herein means a state in which the inside is filled with a substance other than a resin, for example, a gas or a liquid, and is preferably filled with a gas in that the effects of the present invention can be further exhibited. It means the state of being.
  • the hollow portion may be composed of one hollow region or may be composed of a plurality of hollow regions. From the viewpoint that the amount of the resin component constituting the shell portion is relatively large and the hollow portion of the base material or the like is prevented from infiltrating into the hollow portion, the hollow portion is preferably composed of one hollow region.
  • the average particle size of the hollow resin particles is preferably 0.1 ⁇ m to 5.0 ⁇ m, more preferably 0.15 ⁇ m to 1.0 ⁇ m, still more preferably 0.2 ⁇ m to 0.8 ⁇ m, and particularly preferably 0.2 ⁇ m to 0.8 ⁇ m. It is 0.3 ⁇ m to 0.6 ⁇ m. If the average particle size of the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. When the average particle size of the hollow resin particles is less than 0.1 ⁇ m, the thickness of the shell portion is relatively thin, so that the hollow resin particles may not have sufficient strength.
  • the average particle size of the hollow resin particles is larger than 5.0 ⁇ m, phase separation between the polymer and the solvent generated by the polymerization of the monomer components during suspension polymerization may be difficult to occur, which makes it difficult to form the shell portion. There is a risk of becoming.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention have an ethylenically unsaturated group residual ratio of preferably 1% to 20%, more preferably 2% to 18%, and further. It is preferably 3% to 15%, and particularly preferably 5% to 12%.
  • the residual rate of ethylenically unsaturated groups of the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. If the residual rate of ethylenically unsaturated groups in the hollow resin particles is too large outside the above range, thermal decomposition is likely to occur and the heat resistance may decrease.
  • the residual rate of ethylenically unsaturated groups in the hollow resin particles is out of the above range and is too small, voids are likely to be formed at the interface between the hollow resin particles and the insulating resin, which may reduce the strength of the insulating resin material or the insulating resin material. There is a risk that the low moisture absorption of the material will deteriorate.
  • the ethylenically unsaturated group contained in the hollow resin particles used in the resin composition for a semiconductor member may cause a decrease in heat resistance, but reacts with the insulating resin contained in the semiconductor member.
  • it has the effect of enhancing adhesion, and found that the styrene-based hollow resin particles obtained by leaving a certain amount of ethylenically unsaturated groups in the hollow resin particles have excellent heat resistance and low water absorption. The present invention has been completed.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention have a 1% thermogravimetric reduction temperature when the hollow resin particles are heated at 10 ° C./min under a nitrogen atmosphere, preferably 250 ° C.
  • the above is more preferably 255 ° C. or higher, further preferably 260 ° C. or higher, and particularly preferably 265 ° C. or higher.
  • the higher the 1% thermogravimetric reduction temperature the better, but in reality, it is preferably 300 ° C. or lower. If the 1% thermogravimetric reduction temperature when the hollow resin particles are heated at 10 ° C./min under a nitrogen atmosphere is within the above range, the effect of the present invention can be more exhibited. If the 1% thermogravimetric reduction temperature when the hollow resin particles are heated at 10 ° C./min under a nitrogen atmosphere is too small outside the above range, the hollow resin particles may not exhibit excellent heat resistance.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention preferably have a water content of 0. It is 5% by weight or less, more preferably 0.45% by weight or less, further preferably 0.4% by weight or less, and particularly preferably 0.35% by weight or less.
  • the lower the water content the better, preferably 0% by weight or more. If the water content of the hollow resin particles after being allowed to stand in an atmosphere of 40 ° C. and 95% RH for 96 hours is within the above range, the effect of the present invention can be more exhibited. If the water content of the hollow resin particles is too large outside the above range after being allowed to stand at 40 ° C. and 95% RH for 96 hours, the water absorption rate of the hollow resin particles may increase.
  • the shell portion contains a monomer composition containing an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). It contains an aromatic polymer (P1) obtained by polymerization.
  • the shell portion contains such an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1).
  • the effect of the present invention can be further exhibited.
  • the hollow resin is provided by the polar group provided in the aromatic polymer (P1). The adhesion between the particles and the insulating resin can be improved.
  • R 1 represents H or CH 3
  • R 2 represents H, an alkyl group, or a phenyl group
  • R 3 -O represents an oxyalkylene group having 2 to 18 carbon atoms
  • m represents the oxyalkylene group. It is the average number of added moles and represents a number from 1 to 100.
  • the content ratio of the aromatic polymer (P1) in the shell portion is preferably 60% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, in that the effect of the present invention can be more exhibited. It is more preferably 80% by weight to 100% by weight, and particularly preferably 90% by weight to 100% by weight.
  • the aromatic polymer (P1) is an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). It is obtained by polymerizing the monomer composition containing the mixture. That is, the aromatic polymer (P1) is represented by a structural unit derived from the aromatic crosslinkable monomer (a), a structural unit derived from the aromatic monofunctional monomer (b), and the formula (1) (meth). It has a structural unit derived from the acrylic acid ester-based monomer (c).
  • the monomer composition preferably contains 10% by weight to 70% by weight of the aromatic crosslinkable monomer (a) and 10% by weight of the aromatic monofunctional monomer (b) in that the effects of the present invention can be further exhibited.
  • the aromatic monofunctional monomer (b) is 20% by weight to 65% by weight
  • the (meth) acrylic acid ester-based monomer (c) represented by the formula (1) is 2.
  • the (meth) acrylic acid ester-based monomer (c) represented by the formula (1) was added to the monomer composition.
  • the residual ratio of ethylenically unsaturated groups is appropriately adjusted, and the residual ratio of ethylenically unsaturated groups of the hollow resin particles is preferably 1. Focusing on the fact that it is easy to keep the content within a specific range of% to 20%, the hollow resin particles in which the ethylenically unsaturated group is appropriately left are contained in the semiconductor member while maintaining the heat resistance. It was found that the adhesiveness can be improved by reacting with the insulating resin.
  • the monomer composition contains an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1).
  • the total content of the aromatic crosslinkable monomer (a), the aromatic monofunctional monomer (b), and the (meth) acrylic acid ester-based monomer (c) represented by the formula (1) in the monomer composition Is preferably 80% by weight to 100% by weight, more preferably 85% by weight to 100% by weight, still more preferably 90% by weight to 100% by weight, in that the effect of the present invention can be more exhibited. It is particularly preferably 95% by weight to 100% by weight.
  • the monomer composition is an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester type represented by the formula (1) as long as the effects of the present invention are not impaired. Any suitable other monomer other than the monomer (c) may be contained.
  • the other monomers may be only one kind or two or more kinds.
  • Aromatic crosslinkable monomer (a)) As the aromatic crosslinkable monomer (a), any suitable aromatic crosslinkable monomer can be adopted as long as it is an aromatic monomer having crosslinkability, as long as the effect of the present invention is not impaired.
  • aromatic crosslinkable monomer (a) examples include divinylbenzene, divinylnaphthalene, and diallyl phthalate in that the effects of the present invention can be further exhibited.
  • Divinylbenzene is preferable as the aromatic crosslinkable monomer (a) from the viewpoint of further exhibiting the effects of the present invention and the reactivity.
  • the aromatic crosslinkable monomer (a) may be only one kind or two or more kinds.
  • aromatic monofunctional monomer (b) any suitable aromatic monofunctional monomer can be adopted as long as it is a monofunctional aromatic monomer, as long as the effect of the present invention is not impaired.
  • an aromatic monofunctional monomer (b) for example, styrene, ethylvinylbenzene, ⁇ -methylstyrene, vinyltoluene, o-chlorostyrene, m- Examples thereof include chlorostyrene, p-chlorostyrene, vinylbiphenyl and vinylnaphthalene.
  • the aromatic monofunctional monomer (b) is preferably at least one selected from the group consisting of styrene and ethylvinylbenzene from the viewpoint of further exhibiting the effects of the present invention and the reactivity.
  • the aromatic monofunctional monomer (b) may be only one kind or two or more kinds.
  • the (meth) acrylic acid ester-based monomer (c) is represented by the formula (1).
  • R 1 represents H or CH 3 .
  • R 2 represents H, an alkyl group, or a phenyl group.
  • R3 - O represents an oxyalkylene group having 2 to 18 carbon atoms. That is, in the formula (1), R 3 represents an alkylene group having 2 to 18 carbon atoms.
  • R3 ⁇ O is an oxyalkylene group having 2 to 18 carbon atoms, preferably an oxyalkylene group having 2 to 8 carbon atoms, and more preferably an oxyalkylene group having 2 to 4 carbon atoms. It is an oxyalkylene group.
  • R3 - O is at least two types selected from an oxyethylene group, an oxypropylene group, and an oxybutylene group
  • the addition form of R3 - O may be random addition, block addition, alternate addition, or the like. It may be in any form.
  • the addition form referred to here means the form itself, and does not mean that it must be obtained by an addition reaction.
  • R3 - O is composed of an oxyethylene group, an oxypropylene group, and an oxybutylene group (typically, an oxytetramethylene group) in that the effects of the present invention can be further exhibited. At least one selected from the group.
  • m represents the average number of moles of substance added (sometimes referred to as "chain length") of the oxyalkylene group.
  • m is a number of 1 to 100, preferably a number of 1 to 40, more preferably a number of 2 to 30, still more preferably a number of 3 to 20, and particularly preferably a number of 4 to 18. It is a number, most preferably a number of 5 to 15. When m is within the above range, the effect of the present invention can be more exhibited.
  • (meth) acrylic acid ester-based monomer (c) for example, methoxypolyethylene glycol methacrylate, ethoxypolyethylene glycol methacrylate, propoxypolyethylene glycol methacrylate, butoxypolyethylene glycol methacrylate, hexaoxy, in that the effects of the present invention can be further exhibited.
  • (meth) acrylic acid ester-based monomer (c) a commercially available product can also be adopted.
  • the product name "Blemmer” series manufactured by NOF CORPORATION can be adopted.
  • the (meth) acrylic acid ester-based monomer (c) may be of only one type or of two or more types.
  • the shell portion is at least one selected from the group consisting of an aromatic polymer (P1), a polyolefin, a styrene polymer, a (meth) acrylic acid polymer, and a styrene- (meth) acrylic acid polymer. It may contain a non-crosslinking polymer (P2).
  • the content of the non-crosslinkable polymer (P2) in the shell portion is preferably 0% by weight to 40% by weight, more preferably 0% by weight to 30% by weight, in that the effects of the present invention can be more exhibited. It is more preferably 0% by weight to 20% by weight, and particularly preferably 0% by weight to 10% by weight.
  • polystyrene resin examples include polyethylene, polypropylene, poly ⁇ -olefin and the like. From the viewpoint of solubility in the monomer composition, it is preferable to use a side chain crystalline polyolefin using a long-chain ⁇ -olefin as a raw material, a low molecular weight polyolefin produced by a metallocene catalyst, or an olefin oligomer.
  • styrene polymer examples include polystyrene, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer and the like.
  • Examples of the (meth) acrylic acid-based polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, and polypropyl (meth) acrylate.
  • styrene- (meth) acrylic acid-based polymer examples include a styrene-methyl (meth) acrylate copolymer, a styrene-ethyl (meth) acrylate copolymer, a styrene-butyl (meth) acrylate copolymer, and a styrene-propyl. Examples thereof include (meth) acrylate copolymers.
  • the relative permittivity of the hollow resin particles is preferably 1.0 to 2.5, more preferably 1.0 to 2.4, and even more preferably 1.0 to 2.3. If the relative permittivity of the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. When the relative permittivity of the hollow resin particles exceeds 2.5, the semiconductor member containing the hollow resin particles may not be able to exhibit excellent low dielectric properties.
  • the relative permittivity of the hollow resin particles can be calculated with reference to, for example, "dielectric constant of the mixed system" (Applied Physics, Vol. 27, No. 8 (1958)).
  • the relative permittivity of the mixed system of the dispersion medium and the hollow resin particles is ⁇
  • the relative permittivity of the base material for example, a resin composition such as polyimide or epoxy
  • the relative permittivity of the hollow resin particles is ⁇ 1.
  • ⁇ 2 and the volume ratio of the hollow resin particles in the mixed system is ⁇ , the following equation holds. That is, if ⁇ , ⁇ 1 , and ⁇ are experimentally obtained, the relative permittivity ⁇ 2 of the hollow resin particles can be calculated.
  • the volume fraction ⁇ of the hollow resin particles in the mixed system of the dispersion medium and the hollow resin particles can be obtained as follows.
  • the density of the hollow resin particles can be determined experimentally using a pycnometer (Cortec Co., Ltd., TQC 50 mL specific gravity bottle) and ARUFON UP-1080 (Toa Synthetic Co., Ltd., density 1.05 g / cm 3 ) which is a liquid polymer. .. Specifically, the hollow resin particles and ARUFON UP-1080 are defoamed and stirred using a planetary stirring defoaming machine (MAZELSTAR KK-250, manufactured by KURABO) so that the ratio of the hollow resin particles is 10% by weight. Make an evaluation mixture.
  • a planetary stirring defoaming machine MAZELSTAR KK-250, manufactured by KURABO
  • the evaluation mixture is filled in a pycnometer having a capacity of 50 mL, and the weight of the filled evaluation mixture is calculated by subtracting the weight of the empty pycnometer from the weight of the pycnometer filled with the mixture. From this value, the density of the hollow resin particles can be calculated using the following formula.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention can be produced by any suitable method as long as the effects of the present invention are not impaired.
  • Such a manufacturing method includes, for example, a dispersion step (step 1), a polymerization step (step 2), a cleaning step (step 3), and a drying step (step 4).
  • step 1 the aromatic crosslinkable monomer (a), the aromatic monofunctional monomer (b), and the (meth) acrylic acid ester-based monomer (c) represented by the formula (1) are added to the aqueous solution containing the dispersant. ), A polymerization initiator, and an organic mixed solution containing an organic solvent having a boiling point of less than 100 ° C. are dispersed.
  • any appropriate dispersion method is adopted as long as the organic mixture solution can be present in the form of droplets in the aqueous solution, as long as the effect of the present invention is not impaired.
  • Such a dispersion method is typically a dispersion method using a homogenizer, and examples thereof include an ultrasonic homogenizer and a high-pressure homogenizer.
  • the aqueous solution contains an aqueous medium and a dispersant.
  • aqueous medium examples include water, a mixed medium of water and a lower alcohol (methanol, ethanol, etc.).
  • a mixed medium of water and a lower alcohol methanol, ethanol, etc.
  • the water at least one selected from ion-exchanged water and distilled water is preferable.
  • any appropriate dispersant can be adopted as long as the effect of the present invention is not impaired.
  • a surfactant is preferably used as the dispersant in that the effects of the present invention can be further exhibited.
  • the surfactant include anionic surfactants, cationic surfactants, amphoteric ionic surfactants, nonionic surfactants and the like.
  • anionic surfactant examples include an alkyl sulfate ester fatty acid salt, an alkylbenzene sulfonate, an alkylnaphthalene sulfonate, an alkane sulfonate, an alkyldiphenyl ether sulfonate, a dialkyl sulfosuccinate, a monoalkyl sulfosuccinate, and a poly.
  • Non-reactive anionic surfactants such as oxyethylene alkylphenyl ether phosphate, polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfate ester ammonium salt, polyoxyethylene alkylpropenylphenyl ether sulfate ester ammonium salt, Examples thereof include reactive anionic surfactants such as polyoxyalkylene alkenyl ether ammonium sulfate.
  • cationic surfactant examples include cationicity such as alkyltrimethylammonium salt, alkyltriethylammonium salt, dialkyldimethylammonium salt, dialkyldiethylammonium salt, and N-polyoxyalkylene-N, N, N-trialkylammonium salt.
  • surfactants include surfactants.
  • amphoteric ionic surfactant examples include lauryldimethylamine oxide, phosphoric acid ester salt, and phosphite ester-based surfactant.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, and oxyethylene.
  • examples include oxypropylene block polymer.
  • the amount of the surfactant added is preferably 0.01 part by weight to 1 part by weight with respect to 100 parts by weight of the organic mixture solution.
  • the surfactant may be only one kind or two or more kinds.
  • the aqueous solution may contain any suitable other components as long as the effects of the present invention are not impaired.
  • the organic mixed solution is a monomer composition containing an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). It contains a polymerization initiator and an organic solvent having a boiling point of less than 100 ° C.
  • the explanation in the item of ⁇ hollow resin particles >>>> can be used as it is.
  • any suitable polymerization initiator can be adopted as long as the effect of the present invention is not impaired.
  • the polymerization initiator preferably has a 10-hour half-life temperature of 90 ° C. or lower.
  • the polymerization initiator remaining in the hollow resin particles can be completely decomposed. For example, when a semiconductor member containing the hollow resin particles is heated by solder reflow or the like, the remaining polymerization is carried out. It is possible to suppress oxidative deterioration and gas generation of the resin due to the initiator.
  • the polymerization initiator is preferably polymerized at a combination of a reaction temperature and a reaction time at which the decomposition rate of the polymerization initiator calculated by the following formula is 98% or more. Under such polymerization conditions, the polymerization initiator remaining in the hollow resin particles can be completely decomposed, and for example, the polymerization remaining when the semiconductor member containing the hollow resin particles is heated by solder reflow or the like. It is possible to suppress oxidative deterioration and gas generation of the resin due to the initiator.
  • k d represents the thermal decomposition rate constant
  • t represents the reaction time (hr)
  • A represents the frequency factor (hr -1 )
  • ⁇ E represents the activation energy (J / mol)
  • R represents the gas constant (8.314 J / mol ⁇ K)
  • T represents the reaction temperature (K).
  • polymerization initiator examples include lauroyl peroxide, benzoyl peroxide, benzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, and t-butylperoxy-2-ethylhexano.
  • Organic peroxides such as ate, di-t-butyl peroxide; 2,2'-azobisisobutyronitrile, 1,1'-azobiscyclohexanecarbonitrile, 2,2'-azobis (2,4-azobis) Azo-based compounds such as dimethylvaleronitrile); and the like.
  • the amount of the polymerization initiator added is preferably in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the monomer composition.
  • the polymerization initiator may be only one kind or two or more kinds.
  • Examples of the organic solvent having a boiling point of less than 100 ° C. include heptane, hexane, cyclohexane, methyl acetate, ethyl acetate, methyl ethyl ketone, chloroform, carbon tetrachloride, and the like.
  • the organic solvent having a boiling point of less than 100 ° C. may be a mixed solvent.
  • the amount of the organic solvent added having a boiling point of less than 100 ° C. is preferably 20 parts by weight to 250 parts by weight with respect to 100 parts by weight of the monomer composition.
  • the organic mixed solution may contain any suitable other components as long as the effects of the present invention are not impaired.
  • suitable other components include ⁇ non-crosslinkable polymer (P2)> of ⁇ shell portion >> of ⁇ hollow resin particles >>>>.
  • the amount of the non-crosslinkable polymer (P2) added is preferably 0 to 67 parts by weight with respect to 100 parts by weight of the monomer composition.
  • the non-crosslinkable polymer (P2) may be only one kind or two or more kinds.
  • Step 2 is a step of heating the dispersion obtained in Step 1 for suspension polymerization.
  • any appropriate polymerization temperature can be adopted as long as it is suitable for suspension polymerization, as long as the effect of the present invention is not impaired.
  • the polymerization temperature is preferably 30 ° C to 80 ° C.
  • any appropriate polymerization time can be adopted as long as it is suitable for suspension polymerization, as long as the effect of the present invention is not impaired.
  • the polymerization time is preferably 1 hour to 20 hours.
  • Post-heating which is preferably performed after polymerization, is a suitable treatment for obtaining hollow resin particles having a high degree of perfection.
  • any appropriate temperature can be adopted as long as the effect of the present invention is not impaired.
  • the temperature for such post-heating is preferably 50 ° C to 120 ° C.
  • any appropriate time can be adopted as long as the effect of the present invention is not impaired.
  • the time for such post-heating is preferably 1 hour to 10 hours.
  • Step 3 is a step of cleaning the slurry obtained in step 2.
  • any appropriate cleaning method can be adopted as long as the effect of the present invention is not impaired.
  • a cleaning method for example, (1) after forming hollow resin particles, a very high centrifugal acceleration is applied to settle the hollow resin particles using a high-speed centrifuge or the like to remove the supernatant. , A method of newly adding ion-exchanged water or distilled water, dispersing the settled hollow resin particles in the ion-exchanged water, and removing impurities by repeating this operation several times, (2) Cross flow using a ceramics filter or the like.
  • Examples thereof include a method of separating the hollow resin particles using a filter or the like and cleaning with a cleaning solvent.
  • Step 4 is a step of drying the washed slurry obtained in step 3.
  • any appropriate drying method can be adopted as long as the effect of the present invention is not impaired.
  • Examples of such a drying method include drying by heating.
  • any appropriate temperature can be adopted as long as the effect of the present invention is not impaired.
  • the temperature for such heating is preferably 50 ° C to 120 ° C.
  • any appropriate time can be adopted as long as the effect of the present invention is not impaired.
  • the time for such heating is preferably 1 hour to 10 hours.
  • part means “part by weight”
  • % means “% by weight”.
  • the Z average particle size of the hollow resin particles or particles was measured by using a dynamic light scattering method, and the measured Z average particle size was used as the obtained average particle size of the hollow resin particles or particles. That is, first, the obtained slurry-shaped hollow resin particles or particles are diluted with ion-exchanged water, and the aqueous dispersion adjusted to 0.1% by weight is irradiated with laser light and scattered from the hollow resin particles or particles. The scattered light intensity was measured over time in microseconds. Then, the scattering intensity distribution caused by the detected hollow resin particles or particles was applied to the normal distribution, and the Z average particle size of the hollow resin particles or particles was obtained by a cumulant analysis method for calculating the average particle size.
  • the measurement of the Z average particle size can be easily carried out with a commercially available particle size measuring device.
  • the Z average particle size was measured using a particle size measuring device (Zetasizer Nano ZS manufactured by Malvern).
  • a commercially available particle size measuring device is equipped with data analysis software, and the data analysis software can automatically analyze the measurement data to calculate the Z average particle size.
  • ⁇ TEM measurement Observation of hollow resin particles or hollow particles and their shape> Hollow resin particles or particles as dry powder were surface-treated (10 Pa, 5 mA, 10 seconds) using a "Osmium Coater Neoc-Pro" coating device manufactured by Meiwaforsis. Next, the hollow resin particles or particles were observed with a TEM (transmission electron microscope, H-7600 manufactured by Hitachi High-Technologies) to confirm the presence or absence of hollowness and the shape of the hollow resin particles or particles. At this time, the acceleration voltage was set to 80 kV, and the magnification was set to 5000 times or 10,000 times.
  • the residual ratio of ethylenically unsaturated groups in the particles was measured according to JIS K 0070-1992. To a 200 ml Erlenmeyer flask, add 0.5 part by weight of the particles produced in Examples and Comparative Examples, 10 parts by weight of cyclohexane, and 25 parts by weight of Wyeth's reagent (0.1 mol / L iodine monochloride / acetic acid solution), and shake sufficiently. And mixed. Then, it was left for 45 minutes, and the reaction between the ethylenically unsaturated group contained in the particle and iodine chloride was allowed to proceed.
  • the amount of ethylenically unsaturated groups when all the polymers constituting 0.5 parts by weight of the particles produced in Examples and Comparative Examples are used as monomers is the amount of ethylenically unsaturated groups of the particles (B).
  • the base weight (mol) was used.
  • the heating weight loss was measured using a "TG / DTA6200, AST-2" differential thermogravimetric simultaneous measuring device manufactured by SII Nanotechnology Co., Ltd.
  • the sampling method and temperature conditions were as follows. The bottom of the platinum measuring container was filled with 10.5 mg of a sample so as not to have a gap, and used as a sample for measurement.
  • the heat loss was measured using alumina as a reference material under a nitrogen gas flow rate of 230 mL / min.
  • the TG / DTA curve was obtained by heating the sample from 30 ° C. to 500 ° C. at a heating rate of 10 ° C./min. From this obtained curve, the temperature at the time of 1% weight loss was calculated using the analysis software attached to the apparatus.
  • the particles produced in Examples and Comparative Examples were subjected to moisture absorption treatment under the following conditions.
  • the particles as a sample were placed in a constant temperature and humidity chamber having a temperature of 40 ° C. and a relative humidity of 95%, allowed to stand for 96 hours, then taken out, and cooled in an environment of a temperature of 20 ° C. and a humidity of 65% for 30 minutes. After cooling, the water content was measured.
  • the water content was measured by setting 0.1 g of the sample in a "CA-200" Karl Fischer water measuring device and a "VA-236S" water vaporizer manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • Aquamicron AX and Aquamicron CXU manufactured by Mitsubishi Chemical Corporation were used as the anode solution and the cathode solution at the time of measurement, respectively.
  • the measurement (vaporization) temperature was 250 ° C.
  • N 2 was used as the carrier gas.
  • the flow rate of the carrier gas was 150 mL / min.
  • the number of test of the sample was 3 times.
  • the amount of water in the air at the sampling site was measured twice, and the average value was used as the blank value.
  • the blank value was subtracted from each measurement result and divided by the weight of the sample to obtain the water content (% by weight) of the sample.
  • the water content (% by weight) of the sample was calculated by the following formula.
  • Moisture content (% by weight) [Measured water content ( ⁇ g) -Blank water content ( ⁇ g)] ⁇ 1000000 ⁇ Sample weight (g) ⁇ 100 As a final result, the results of three measurements were averaged and used as the water content (% by weight) of the sample.
  • VB divinyl
  • the obtained slurry was cross-flow washed with 10 times the amount of ion-exchanged water using a ceramic filter having a pore diameter of 50 nm to remove impurities.
  • the obtained washed slurry was heated at 100 ° C. for 24 hours to obtain hollow resin particles (1) as dry powder.
  • the average particle size of the obtained hollow resin particles (1) was 356 nm, and the particle density was 0.65 g / cm 3 .
  • the TEM observation result of the obtained hollow resin particles (1) is shown in FIG. It was confirmed that the hollow resin particles (1) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 2 Hollow by performing the same operation as in Example 1 except that styrene (St) was 0.92 g, divinylbenzene (DVB) 810 was 1.48 g, heptane was 3.0 g, and parloyl L was 0.10 g.
  • Resin particles (2) were obtained.
  • the average particle size of the obtained hollow resin particles (2) was 382 nm, and the particle density was 0.64 g / cm 3 .
  • the TEM observation result of the obtained hollow resin particles (2) is shown in FIG. It was confirmed that the hollow resin particles (2) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 3 Hollow by performing the same operation as in Example 1 except that styrene (St) was 1.49 g, divinylbenzene (DVB) 810 was 2.41 g, heptane was 1.5 g, and parloyl L was 0.126 g.
  • Resin particles (3) were obtained.
  • the average particle size of the obtained hollow resin particles (3) was 329 nm, and the particle density was 0.69 g / cm 3 .
  • the TEM observation result of the obtained hollow resin particles (3) is shown in FIG. It was confirmed that the hollow resin particles (3) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 4 1.19 g of styrene (St), 1.93 g of divinylbenzene (DVB) 810, 0.10 g of parloyl L, and polystyrene instead of 0.3 g of HS Crysta 4100 (side chain crystalline polyolefin, Toyokuni Oil Co., Ltd.)
  • Hollow resin particles (4) were obtained by performing the same operation as in Example 1 except that PS) (non-crosslinked, weight average molecular weight 300,000) was 0.18 g.
  • the average particle size of the obtained hollow resin particles (4) was 390 nm, and the particle density was 0.67 g / cm 3 .
  • the TEM observation result of the obtained hollow resin particles (4) is shown in FIG. It was confirmed that the hollow resin particles (4) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 5 Hollow resin particles (5) were obtained by performing the same operation as in Example 1 except that the Blemmer 50 PEP-300 was set to 0.6 g and the HS Crysta 4100 was not used. The average particle size of the obtained hollow resin particles (5) was 310 nm. Moreover, the TEM observation result of the obtained hollow resin particles (5) is shown in FIG. It was confirmed that the hollow resin particles (5) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Resin particles (6) were obtained.
  • the average particle size of the obtained hollow resin particles (6) was 520 nm.
  • the TEM observation result of the obtained hollow resin particles (6) is shown in FIG. It was confirmed that the hollow resin particles (6) were hollow resin particles having a hollow surrounded by a shell.
  • Table 1 shows the composition and measurement results.
  • Example 7 Hollow resin particles (7) were obtained by performing the same operation as in Example 3 except that 0.3 g of Blemmer PME-100 was used instead of 0.3 g of Blemmer 50 PEP-300.
  • the average particle size of the obtained hollow resin particles (7) was 501 nm, and the particle density was 0.63 g / cm 3 .
  • the TEM observation result of the obtained hollow resin particles (7) is shown in FIG. It was confirmed that the hollow resin particles (7) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 9 Hollow resin particles (9) were operated in the same manner as in Example 3 except that 0.0081 g of Coatamine 86W (surfactant, Kao Corporation) was used instead of 0.017 g of Lapizol A-80. ) was obtained. The average particle size of the obtained hollow resin particles (9) was 539 nm. Moreover, the TEM observation result of the obtained hollow resin particles (9) is shown in FIG. It was confirmed that the hollow resin particles (9) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Coatamine 86W surfactant, Kao Corporation
  • Example 10 Hollow resin particles were operated in the same manner as in Example 3 except that 0.034 g of ADEKAMIN 4MAC-30 (surfactant, ADEKA Corporation) was used instead of 0.017 g of Rapisol A-80. (10) was obtained. The average particle size of the obtained hollow resin particles (10) was 430 nm. Moreover, the TEM observation result of the obtained hollow resin particles (10) is shown in FIG. It was confirmed that the hollow resin particles (10) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • ADEKAMIN 4MAC-30 surfactant, ADEKA Corporation
  • Example 11 Hollow resin particles (11) were obtained by performing the same operation as in Example 3 except that 0.0076 g of Adecamine 4MAC-30 was used instead of 0.017 g of Lapizol A-80. The average particle size of the obtained hollow resin particles (11) was 1270 nm. Moreover, the TEM observation result of the obtained hollow resin particles (11) is shown in FIG. It was confirmed that the hollow resin particles (11) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 12 1.38 g of styrene (St), 2.22 g of divinylbenzene (DVB) 810, 1.5 g of cyclohexane instead of heptane, 0.6 g of HS Crysta 4100, 0.054 g of parloyl L, and Lapizol A-80.
  • Hollow resin particles (12) were obtained by performing the same operation as in Example 3 except that 0.0085 g was used. The average particle size of the obtained hollow resin particles (12) was 416 nm. Moreover, the TEM observation result of the obtained hollow resin particles (12) is shown in FIG. It was confirmed that the hollow resin particles (12) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • MMA Methyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • PS polystyrene
  • the obtained suspension was heated at 70 ° C. for 4 hours to carry out polymerization to obtain a slurry.
  • the obtained slurry was heated at 100 ° C. for 24 hours to obtain particles (C1) as a dry powder.
  • the average particle size of the obtained particles (C1) was 478 nm, and the particle density was 0.614 g / cm 3 .
  • the TEM observation result of the obtained particle (C1) is shown in FIG. It was confirmed that the particles (C1) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention have excellent heat resistance and a low water absorption rate. Therefore, the embodiment of the present invention has been found.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the above can exhibit excellent heat resistance and low water absorption rate, and can provide a highly reliable semiconductor member.
  • the hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention are used in the resin composition for semiconductor members, and therefore can be suitably used for semiconductor members such as semiconductor packages and semiconductor modules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

耐熱性に優れ、吸水率が低い、半導体部材用樹脂組成物に用いるスチレン系中空樹脂粒子を提供する。 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、シェル部と該シェル部により囲われた中空部分を有する中空樹脂粒子であって、エチレン性不飽和基残存率が1%~20%である。

Description

半導体部材用樹脂組成物に用いる中空樹脂粒子
 本発明は、半導体部材用樹脂組成物に用いる中空樹脂粒子に関する。
 近年、各種電子機器の情報処理量と通信速度の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、及び多層化などの実装技術が急速に進展している。半導体デバイスにおいて用いられる半導体部材に用いられる絶縁樹脂材料には、高い周波数の信号の伝送速度を高め、信号伝送時の損失を低減させるために、絶縁樹脂の比誘電率及び誘電正接が低いことが要求される。
 このような要求に対し、シェル部と該シェル部により囲われた中空部分を有する中空粒子を絶縁樹脂に混在させることで、絶縁樹脂内に空域を導入し、低比誘電化、低誘電正接化を図る技術が報告されている。
 公知の中空粒子の一つとしてアクリル系中空樹脂粒子が知られている。例えば、トリメチロールプロパントリ(メタ)アクリレートやジペンタエリスリトールヘキサアクリレートをはじめとするアクリル系多官能モノマーを主成分としたモノマーを疎水性溶剤と共に懸濁重合することでアクリル系中空樹脂粒子が得られることが報告されている(特許文献1)。しかし、アクリル系樹脂は、比誘電率及び誘電正接が高く、低誘電特性を悪化させる。このため、特許文献1に記載のアクリル系中空樹脂粒子は、近年の高周波数の信号を処理する半導体デバイスには適用できない。
 また、半導体装置を製造する場合、プリント回路基板の表面に電子部品、配線部品等の部品を実装する際には、はんだリフロー工程が行われる。はんだリフロー工程は、プリント回路基板上にはんだペーストを印刷して、その上に部品を載せてからはんだリフロー炉で加熱し、はんだを溶かす工程である。従来の代表的なはんだであるPb共晶はんだの融点は183℃である。一方、昨今の鉛フリーはんだの代表的なAg-Sn-Cu系はんだの融点はPb共晶はんだよりも30℃程度高いものとなっている。このため、はんだリフロー炉のプロファイルの最高温度は、220℃~260℃程度へと高くなっている。したがって、半導体パッケージや半導体モジュールなどの半導体部材に用いる樹脂組成物には耐熱性の高い樹脂を用いることが求められる。このような耐熱性の高い樹脂においては、熱重量減少温度が高いことが求められる。半導体部材に用いる樹脂組成物に含まれる樹脂の熱重量減少温度が低いと、アウトガスが発生し易く、はんだリフロー時に樹脂層が剥離する等の不具合を起こし、半導体デバイスの信頼性を損ねてしまう問題ある。また、半導体部材に用いる樹脂組成物に含まれる樹脂中に揮発成分が存在する場合、その揮発成分に由来するアウトガスが発生しやすくなる。
 しかしながら、特許文献1に記載のアクリル系中空樹脂粒子は、吸水率が高く、熱重量減少温度が低い特性を有する。このため、特許文献1に記載のアクリル系中空樹脂粒子を半導体部材に用いる樹脂組成物に適用しても、はんだリフロー工程での不具合を低減できず、半導体デバイスの信頼性を高めることができない。
 アクリル系中空樹脂粒子に比べて比誘電率及び誘電正接が低い中空樹脂粒子として、スチレン系中空樹脂粒子が知られている。このようなスチレン系中空樹脂粒子として、例えば、ジビニルベンゼンを炭素数8~18の飽和炭化水素類(具体的には、ヘキサデカン)と共に懸濁重合することでポリジビニルベンゼン中空樹脂粒子を得られることが報告されている(特許文献2)。しかし、特許文献2に記載のポリジビニルベンゼン中空樹脂粒子は、ポリビニルアルコールを分散剤としているため、粒子表面にポリビニルアルコールが残存しやすく、粒子自体の比誘電率及び誘電正接の数値を高くしてしまい、低誘電特性を悪化させるため、近年の高周波数の信号を処理する半導体デバイスには適用できなかったり、粒子表面にポリビニルアルコールが残存しやすく、吸水率が高くなり、粒子中の水分がはんだリフロー時に蒸発してアウトガスが発生し、半導体デバイスの信頼性を損ねたりする。また、ポリジビニルベンゼン中空樹脂粒子は、ジビニルベンゼンの片方のビニル基の反応性低下により、未反応のまま残存しやすく、残存したビニル基を起点にした耐熱性低下を招く懸念がある。さらに、ポリビニルアルコールには、鹸化反応に用いる水酸化アルカリの残渣が含まれるため、低誘電特性の悪化の原因となるという問題がある。また、特許文献2に記載のポリジビニルベンゼン中空樹脂粒子は、絶縁樹脂に混在させて絶縁樹脂材料とした場合に、粒子表面と絶縁樹脂の間(粒子と絶縁樹脂の界面)に空隙ができやすい。このため、絶縁樹脂材料の強度が低下するという問題や低吸湿性が悪化するという問題がある。
特許第6513273号 特開2002-080503号公報
 本発明の課題は、耐熱性に優れ、吸水率が低い、半導体部材用樹脂組成物に用いるスチレン系中空樹脂粒子を提供することにある。
 本発明者は、スチレン系中空樹脂粒子を絶縁樹脂に混在させて半導体部材用樹脂組成物とする場合を想定し、半導体部材の低誘電特性を向上させるための技術について検討を行った。その結果、スチレン系中空樹脂粒子中に、エチレン性不飽和基を一定量残存させることにより、得られるスチレン系中空樹脂粒子が耐熱性に優れ、吸水率が低いことを見いだし、本発明を完成させるに至った。
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、
 シェル部と該シェル部により囲われた中空部分を有する中空樹脂粒子であって、
 エチレン性不飽和基残存率が1%~20%である。
 一つの実施形態においては、上記中空樹脂粒子を窒素雰囲気下において10℃/分で昇温した際の1%熱重量減少温度が250℃以上である。
 一つの実施形態においては、上記中空樹脂粒子を40℃、95%RHの雰囲気下において96時間静置した後の水分含有率が0.5重量%以下である。
 一つの実施形態においては、上記中空樹脂粒子の平均粒子径が0.1μm~5.0μmである。
 一つの実施形態においては、上記シェル部が、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物を重合して得られる芳香族系ポリマー(P1)を含む。
Figure JPOXMLDOC01-appb-C000002
(RはHまたはCHを表し、RはH、アルキル基、またはフェニル基を表し、R-Oは炭素原子数2~18のオキシアルキレン基を表し、mは該オキシアルキレン基の平均付加モル数であり、1~100の数を表す。)
 一つの実施形態においては、上記オキシアルキレン基が、オキシエチレン基、オキシプロピレン基、及びオキシブチレン基からなる群から選択される少なくとも1種である。
 一つの実施形態においては、上記モノマー組成物が、芳香族系架橋性モノマー(a)を10重量%~70重量%、芳香族系単官能モノマー(b)を10重量%~70重量%、及び一般式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を0.5重量%~30重量%含む。
 一つの実施形態においては、上記シェル部が、上記芳香族系ポリマー(P1)と、さらに、ポリオレフィン、スチレン系ポリマー、(メタ)アクリル酸系ポリマー、及びスチレン-(メタ)アクリル酸系ポリマーからなる群から選択される少なくとも1種である非架橋性ポリマー(P2)を含む。
 一つの実施形態においては、上記芳香族系架橋性モノマー(a)がジビニルベンゼンである。
 一つの実施形態においては、上記芳香族系単官能モノマー(b)がスチレン及びエチルビニルベンゼンからなる群から選択される少なくとも1種である。
 本発明の実施形態による半導体部材は、本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子を含む。
 本発明の実施形態によれば、耐熱性に優れ、吸水率が低い、半導体部材用樹脂組成物に用いるスチレン系中空樹脂粒子を提供することができる。
実施例1で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(1)のTEM写真図である。 実施例2で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(2)のTEM写真図である。 実施例3で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(3)のTEM写真図である。 実施例4で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(4)のTEM写真図である。 実施例5で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(5)のTEM写真図である。 実施例6で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(6)のTEM写真図である。 実施例7で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(7)のTEM写真図である。 実施例8で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(8)のTEM写真図である。 実施例9で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(9)のTEM写真図である。 実施例10で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(10)のTEM写真図である。 実施例11で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(11)のTEM写真図である。 実施例12で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(12)のTEM写真図である。 比較例1で得られた粒子(C1)のTEM写真図である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
 本明細書において、半導体部材とは、半導体を構成する部材を意味し、例えば、半導体パッケージや半導体モジュールが挙げられる。本明細書において、半導体部材用樹脂組成物とは、半導体部材に用いる樹脂組成物を意味する。したがって、本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、半導体部材用樹脂組成物に用いられ、よって、半導体パッケージや半導体モジュールなどの半導体部材に好適に用いられる。このような半導体部材は、本発明の実施形態による半導体部材であり、本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子を含む。
 半導体パッケージとは、ICチップを必須構成部材として、モールド樹脂、アンダーフィル材、モールドアンダーフィル材、ダイボンド材、半導体パッケージ基板用プリプレグ、半導体パッケージ基板用金属張積層板、及び半導体パッケージ用プリント回路基板のビルドアップ材料から選ばれる少なくとも1種の部材を用いて構成されるものである。
 半導体モジュールとは、半導体パッケージを必須構成部材として、プリント回路基板用プリプレグ、プリント回路基板用金属張積層板、プリント回路基板用ビルドアップ材料、ソルダーレジスト材、カバーレイフィルム、電磁波シールドフィルム、及びプリント回路基板用接着シートから選ばれる少なくとも1種の部材を用いて構成されるものである。
 本明細書中で「(メタ)アクリル」との表現がある場合は、「アクリルおよび/またはメタクリル」を意味し、「(メタ)アクリレート」との表現がある場合は、「アクリレートおよび/またはメタクリレート」を意味し、「(メタ)アリル」との表現がある場合は、「アリルおよび/またはメタリル」を意味し、「(メタ)アクロレイン」との表現がある場合は、「アクロレインおよび/またはメタクロレイン」を意味する。また、本明細書中で「酸(塩)」との表現がある場合は、「酸および/またはその塩」を意味する。塩としては、例えば、アルカリ金属塩、アルカリ土類金属塩が挙げられ、具体的には、例えば、ナトリウム塩、カリウム塩などが挙げられる。
≪≪中空樹脂粒子≫≫
 本発明の実施形態による中空樹脂粒子は、半導体部材用樹脂組成物に用いる。半導体部材用樹脂組成物は、前述したように、半導体部材に用いる樹脂組成物である。このような樹脂組成物は、代表的には、絶縁樹脂を含む。このような絶縁樹脂としては、本発明の効果を損なわない範囲で、任意の適切な樹脂を採用し得る。このような絶縁樹脂としては、例えば、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリイミド、ポリエーテルイミド、ポリビスマレイミド、ポリアリレート、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、シアネート樹脂、フェノール樹脂、ポリスチレン樹脂、PTFE等のフッ素樹脂、シクロオレフィン樹脂などが挙げられる。
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、シェル部と該シェル部により囲われた中空部分を有する中空樹脂粒子である。ここでいう中空とは、内部が樹脂以外の物質、例えば、気体や液体等で満たされている状態を意味し、本発明の効果をより発現させ得る点で、好ましくは、気体で満たされている状態を意味する。
 中空部分は、1つの中空領域からなるものであってもよいし、複数の中空領域からなるものであってもよい。シェル部を構成する樹脂成分が相対的に多くなり、基材等の中空部分への浸入を防ぐ観点から、中空部分は1つの中空領域からなることが好ましい。
 中空樹脂粒子の平均粒子径は、好ましくは0.1μm~5.0μmであり、より好ましくは0.15μm~1.0μmであり、さらに好ましくは0.2μm~0.8μmであり、特に好ましくは0.3μm~0.6μmである。中空樹脂粒子の平均粒子径が上記範囲内にあれば、本発明の効果がより発現し得る。中空樹脂粒子の平均粒子径が0.1μm未満の場合、シェル部の厚みが相対的に薄くなるため、十分な強度を有する中空樹脂粒子とならないおそれがある。中空樹脂粒子の平均粒子径が5.0μmより大きい場合、懸濁重合中にモノマー成分が重合して生じるポリマーと溶剤との相分離が生じにくくなるおそれがあり、これによってシェル部の形成が困難となるおそれがある。
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、エチレン性不飽和基残存率が、好ましくは1%~20%であり、より好ましくは2%~18%であり、さらに好ましくは3%~15%であり、特に好ましくは5%~12%である。中空樹脂粒子のエチレン性不飽和基残存率が上記範囲内にあれば、本発明の効果がより発現し得る。中空樹脂粒子のエチレン性不飽和基残存率が上記範囲を外れて大きすぎると、熱分解しやすくなり、耐熱性が低下するおそれがある。中空樹脂粒子のエチレン性不飽和基残存率が上記範囲を外れて小さすぎると、中空樹脂粒子と絶縁樹脂の界面に空隙ができやすくなり、絶縁樹脂材料の強度が低下するおそれや、絶縁樹脂材料の低吸湿性が悪化するおそれがある。
 本発明においては、半導体部材用樹脂組成物に用いる中空樹脂粒子中に含まれるエチレン性不飽和基は、耐熱性の低下を招くおそれがある一方で、半導体部材に含まれる絶縁樹脂と反応して密着性を高める効果があることを見いだし、中空樹脂粒子中にエチレン性不飽和基を一定量残存させることにより、得られるスチレン系中空樹脂粒子が耐熱性に優れ、吸水率が低いことを見いだし、本発明を完成させるに至った。
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、該中空樹脂粒子を窒素雰囲気下において10℃/分で昇温した際の1%熱重量減少温度が、好ましくは250℃以上であり、より好ましくは255℃以上であり、さらに好ましくは260℃以上であり、特に好ましくは265℃以上である。上記1%熱重量減少温度は高ければ高いほどよいが、現実的には、好ましくは300℃以下である。中空樹脂粒子を窒素雰囲気下において10℃/分で昇温した際の1%熱重量減少温度が上記範囲内にあれば、本発明の効果がより発現し得る。中空樹脂粒子を窒素雰囲気下において10℃/分で昇温した際の1%熱重量減少温度が上記範囲を外れて小さすぎると、中空樹脂粒子が優れた耐熱性を発現できないおそれがある。
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、該中空樹脂粒子を40℃、95%RHの雰囲気下において96時間静置した後の水分含有率が、好ましくは0.5重量%以下であり、より好ましくは0.45重量%以下であり、さらに好ましくは0.4重量%以下であり、特に好ましくは0.35重量%以下である。上記水分含有率は低ければ低いほどよく、好ましくは0重量%以上である。中空樹脂粒子を40℃、95%RHの雰囲気下において96時間静置した後の水分含有率が上記範囲内にあれば、本発明の効果がより発現し得る。中空樹脂粒子を40℃、95%RHの雰囲気下において96時間静置した後の水分含有率が上記範囲を外れて大きすぎると、中空樹脂粒子の吸水率が高くなるおそれがある。
≪シェル部≫
 シェル部は、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物を重合して得られる芳香族系ポリマー(P1)を含む。シェル部が、このような、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物を重合して得られる芳香族系ポリマー(P1)を含むことにより、本発明の効果がより発現し得る。特に、芳香族系ポリマー(P1)を構成するモノマーとして、特定構造の(メタ)アクリル酸エステル系モノマー(c)を採用することにより、本発明の効果がより発現し得る。また、芳香族系ポリマー(P1)を構成するモノマーとして、特定構造の(メタ)アクリル酸エステル系モノマー(c)を採用することにより芳香族系ポリマー(P1)に備えられる極性基によって、中空樹脂粒子と絶縁樹脂との密着性が高まり得る。
Figure JPOXMLDOC01-appb-C000003
(RはHまたはCHを表し、RはH、アルキル基、またはフェニル基を表し、R-Oは炭素原子数2~18のオキシアルキレン基を表し、mは該オキシアルキレン基の平均付加モル数であり、1~100の数を表す。)
 シェル部中の芳香族系ポリマー(P1)の含有割合は、本発明の効果をより発現させ得る点で、好ましくは60重量%~100重量%であり、より好ましくは70重量%~100重量%であり、さらに好ましくは80重量%~100重量%であり、特に好ましくは90重量%~100重量%である。
<芳香族系ポリマー(P1)>
 芳香族系ポリマー(P1)は、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物を重合して得られる。すなわち、芳香族系ポリマー(P1)は、芳香族系架橋性モノマー(a)由来の構造単位、芳香族系単官能モノマー(b)由来の構造単位、式(1)により表される(メタ)アクリル酸エステル系モノマー(c)由来の構造単位を有する。
 モノマー組成物は、本発明の効果をより発現させ得る点で、好ましくは、芳香族系架橋性モノマー(a)を10重量%~70重量%、芳香族系単官能モノマー(b)を10重量%~70重量%、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を0.5重量%~30重量%含み、より好ましくは、芳香族系架橋性モノマー(a)を20重量%~65重量%、芳香族系単官能モノマー(b)を20重量%~65重量%、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を2.0重量%~18重量%含み、さらに好ましくは、芳香族系架橋性モノマー(a)を30重量%~60重量%、芳香族系単官能モノマー(b)を30重量%~60重量%、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を4.0重量%~16重量%含み、特に好ましくは、芳香族系架橋性モノマー(a)を40重量%~50重量%、芳香族系単官能モノマー(b)を40重量%~50重量%、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を6.0重量%~14重量%含む。
 本発明においては、様々な試験を行って鋭意検討したところ、上記のように、式(1)により表される(メタ)アクリル酸エステル系モノマー(c)をモノマー組成物に対して0.5重量%~30重量%という特定の量範囲を採用して共重合することで、エチレン性不飽和基の残存率を適切に調整し、中空樹脂粒子のエチレン性不飽和基残存率を好ましくは1%~20%の特定範囲内とすることが容易になることに着目し、これにより、エチレン性不飽和基を適切に残存させた中空樹脂粒子が、耐熱性を維持しつつ、半導体部材に含まれる絶縁樹脂と反応して密着性を高め得ることを見いだした。
 モノマー組成物は、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含む。モノマー組成物中の、芳香族系架橋性モノマー(a)と芳香族系単官能モノマー(b)と式(1)により表される(メタ)アクリル酸エステル系モノマー(c)の合計の含有割合は、本発明の効果をより発現させ得る点で、好ましくは80重量%~100重量%であり、より好ましくは85重量%~100重量%であり、さらに好ましくは90重量%~100重量%であり、特に好ましくは95重量%~100重量%である。
 モノマー組成物は、本発明の効果を損なわない範囲で、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、式(1)により表される(メタ)アクリル酸エステル系モノマー(c)以外の、任意の適切なその他のモノマーを含んでいてもよい。その他のモノマーは、1種のみであってもよいし、2種以上であってもよい。
(芳香族系架橋性モノマー(a))
 芳香族系架橋性モノマー(a)は、架橋性を有する芳香族系モノマーであれば、本発明の効果を損なわない範囲で、任意の適切な芳香族系架橋性モノマーを採用し得る。このような芳香族系架橋性モノマー(a)としては、本発明の効果をより発現させ得る点で、例えば、ジビニルベンゼン、ジビニルナフタレン、ジアリルフタレートなどが挙げられる。本発明の効果をより一層発現させ得る点、および、反応性の点から、芳香族系架橋性モノマー(a)としては、ジビニルベンゼンが好ましい。
 芳香族系架橋性モノマー(a)は、1種のみであってもよいし、2種以上であってもよい。
(芳香族系単官能モノマー(b))
 芳香族系単官能モノマー(b)は、単官能の芳香族系モノマーであれば、本発明の効果を損なわない範囲で、任意の適切な芳香族系単官能モノマーを採用し得る。このような芳香族系単官能モノマー(b)としては、本発明の効果をより発現させ得る点で、例えば、スチレン、エチルビニルベンゼン、α-メチルスチレン、ビニルトルエン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、ビニルビフェニル、ビニルナフタレンなどが挙げられる。本発明の効果をより一層発現させ得る点、および、反応性の点から、芳香族系単官能モノマー(b)としては、スチレン及びエチルビニルベンゼンからなる群から選択される少なくとも1種が好ましい。
 芳香族系単官能モノマー(b)は、1種のみであってもよいし、2種以上であってもよい。
((メタ)アクリル酸エステル系モノマー(c))
 (メタ)アクリル酸エステル系モノマー(c)は、式(1)により表される。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、RはHまたはCHを表す。
 式(1)中、RはH、アルキル基、またはフェニル基を表す。
 式(1)中、R-Oは、炭素原子数2~18のオキシアルキレン基を表す。すなわち、式(1)中、Rは、炭素原子数2~18のアルキレン基を表す。
 式(1)中、R-Oは、炭素原子数2~18のオキシアルキレン基であり、好ましくは炭素原子数2~8のオキシアルキレン基であり、より好ましくは炭素原子数2~4のオキシアルキレン基である。また、R-Oが、オキシエチレン基、オキシプロピレン基、及びオキシブチレン基から選ばれる少なくとも2種類以上の場合は、R-Oの付加形態は、ランダム付加、ブロック付加、交互付加等のいずれの形態であってもよい。なお、ここでいう付加形態は、形態そのものを意味するものであり、付加反応によって得られなければならないことを意味するものではない。
 式(1)中、R-Oとしては、本発明の効果をより発現させ得る点で、オキシエチレン基、オキシプロピレン基、及びオキシブチレン基(代表的には、オキシテトラメチレン基)からなる群から選択される少なくとも1種である。
 式(1)中、mはオキシアルキレン基の平均付加モル数(「鎖長」と称することがある)を表す。mは、1~100の数であり、好ましくは1~40の数であり、より好ましくは2~30の数であり、さらに好ましくは3~20の数であり、特に好ましくは4~18の数であり、最も好ましくは5~15の数である。mが上記範囲内にあることにより、本発明の効果がより発現し得る。
 式(1)中、R-Oが2種以上の場合、例えば、オキシエチレン基(CO)とオキシプロピレン基(CO)からなる場合、mは、それぞれのオキシアルキレン基の平均付加モル数の合計となる。具体的には、例えば、-(R-O)-が、-[(CO)(CO)]-である場合(上述の通り、付加形態は、ランダム付加、ブロック付加、交互付加等のいずれの形態であってもよい)、m=p+qとなる。
 (メタ)アクリル酸エステル系モノマー(c)としては、本発明の効果をより発現させ得る点で、例えば、メトキシポリエチレングリコールメタクリレート、エトキシポリエチレングリコールメタクリレート、プロポキシポリエチレングリコールメタクリレート、ブトキシポリエチレングリコールメタクリレート、ヘキサオキシポリエチレングリコールメタクリレート、オクトキシポリエチレングリコールポリプロピレングリコールメタクリレート、ラウロキシポリエチレングリコールメタクリレート、ステアロキシポリエチレングリコールメタクリレート、フェノキシポリエチレングリコールポリプロピレングリコールメタクリレート、メトキシポリエチレングリコールアクリレート、ポリエチレングリコールモノメタクリレート、ポリプロピレングリコールモノメタクリレート、ポリエチレングリコールプロピレングリコールモノメタクリレート、ポリエチレングリコールテトラメチレングリコールモノメタクリレート、プロピレングリコールポリブチレングリコールモノメタクリレート、モノエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレートなどが挙げられる。
 (メタ)アクリル酸エステル系モノマー(c)としては、市販品も採用でき、例えば、日油株式会社製の商品名「ブレンマー」シリーズが採用できる。
 (メタ)アクリル酸エステル系モノマー(c)は、1種のみであってもよいし、2種以上であってもよい。
<非架橋性ポリマー(P2)>
 シェル部は、芳香族系ポリマー(P1)と、さらに、ポリオレフィン、スチレン系ポリマー、(メタ)アクリル酸系ポリマー、及びスチレン-(メタ)アクリル酸系ポリマーからなる群から選択される少なくとも1種である非架橋性ポリマー(P2)を含んでいてもよい。
 シェル部中の非架橋性ポリマー(P2)の含有割合は、本発明の効果をより発現させ得る点で、好ましくは0重量%~40重量%であり、より好ましくは0重量%~30重量%であり、さらに好ましくは0重量%~20重量%であり、特に好ましくは0重量%~10重量%である。
 ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、ポリα―オレフィンなどが挙げられる。モノマー組成物への溶解性の観点から、原料に長鎖のα-オレフィンを使用した側鎖結晶性ポリオレフィン、メタロセン触媒で製造された低分子量ポリオレフィンやオレフィンオリゴマーの使用が好ましい。
 スチレン系ポリマーとしては、例えば、ポリスチレン、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。
 (メタ)アクリル酸系ポリマーとしては、例えば、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、ポリプロピル(メタ)アクリレートなどが挙げられる。
 スチレン-(メタ)アクリル酸系ポリマーとしては、例えば、スチレン-メチル(メタ)アクリレート共重合体、スチレン-エチル(メタ)アクリレート共重合体、スチレン-ブチル(メタ)アクリレート共重合体、スチレン-プロピル(メタ)アクリレート共重合体などが挙げられる。
≪中空樹脂粒子の比誘電率≫
 中空樹脂粒子の比誘電率は、好ましくは1.0~2.5であり、より好ましくは1.0~2.4であり、さらに好ましくは1.0~2.3である。中空樹脂粒子の比誘電率が上記範囲内にあれば、本発明の効果がより発現し得る。中空樹脂粒子の比誘電率が2.5を上回る場合、該中空樹脂粒子を含む半導体部材が優れた低誘電特性を発現できないおそれがある。
 中空樹脂粒子の比誘電率は、例えば「混合系の誘電率」(応用物理、第27巻、第8号(1958))を参考に算出することができる。分散媒と中空樹脂粒子の混合系の比誘電率をε、分散媒となる基材(例えば、ポリイミドやエポキシ等の樹脂組成物)の比誘電率をε、中空樹脂粒子の比誘電率をε、混合系中の中空樹脂粒子の体積率をφとした場合、下記式が成り立つ。すなわち、ε、ε、φを実験的に求めれば、中空樹脂粒子の比誘電率εを算出することができる。
Figure JPOXMLDOC01-appb-M000005
 なお、分散媒と中空樹脂粒子の混合系中の中空樹脂粒子の体積率φは以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000006
 中空樹脂粒子の密度はピクノメーター(コーテック株式会社、TQC50mL比重瓶)と液状ポリマーであるARUFON UP―1080(東亜合成株式会社、密度1.05g/cm)を用いて実験的に求めることができる。具体的には、中空樹脂粒子の割合が10重量%となるよう、中空樹脂粒子とARUFON UP―1080を遊星攪拌脱泡機(KURABO社製、マゼルスターKK-250)を用いて脱泡攪拌し、評価用混合物を作製する。評価用混合物を容量50mLのピクノメーターに充填し、混合物で満たされたピクノメーターの重量から、空の状態のピクノメーターの重量を差し引くことで充填した評価用混合物の重量を算出する。この値から、以下式を用いて中空樹脂粒子の密度を算出することができる。
Figure JPOXMLDOC01-appb-M000007
≪≪中空樹脂粒子の製造方法≫≫
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、本発明の効果を損なわない範囲で、任意の適切な方法で製造し得る。
 このような製造方法としては、例えば、分散工程(工程1)、重合工程(工程2)、洗浄工程(工程3)、乾燥工程(工程4)を含む。
≪工程1:分散工程≫
 工程1は、分散剤を含む水溶液に、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物と重合開始剤と沸点100℃未満の有機溶媒を含む有機混合溶液を分散させる工程である。
 水溶液中への有機混合溶液の分散は、水溶液中で有機混合溶液を液滴状で存在させることができさえすれば、本発明の効果を損なわない範囲で、任意の適切な分散方法を採用し得る。このような分散方法としては、代表的には、ホモジナイザーを用いた分散方法であり、例えば、超音波ホモジナイザーや高圧ホモジナイザーなどが挙げられる。
 水溶液は、水性媒体と分散剤を含む。
 水性媒体としては、例えば、水、水と低級アルコール(メタノール、エタノール等)との混合媒体などが挙げられる。水としては、イオン交換水及び蒸留水から選ばれる少なくとも1種が好ましい。
 分散剤としては、本発明の効果を損なわない範囲で、任意の適切な分散剤を採用し得る。本発明の効果をより発現させ得る点で、好ましくは、分散剤として界面活性剤を採用する。界面活性剤としては、例えば、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン性界面活性剤、ノニオン性界面活性剤などが挙げられる。
 アニオン性界面活性剤としては、例えば、アルキル硫酸エステル脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、アルキルジフェニルエーテルスルホン酸塩、ジアルキルスルホコハク酸塩、モノアルキルスルホコハク酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩等の非反応性のアニオン性界面活性剤、ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩、ポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステルアンモニウム塩、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム等の反応性のアニオン性界面活性剤などが挙げられる。
 カチオン性界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩、アルキルトリエチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、ジアルキルジエチルアンモニウム塩、N-ポリオキシアルキレン-N,N,N-トリアルキルアンモニウム塩等のカチオン性界面活性剤などが挙げられる。
 両性イオン性界面活性剤としては、例えば、ラウリルジメチルアミンオキサイド、リン酸エステル塩、亜リン酸エステル系界面活性剤などが挙げられる。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロックポリマーなどが挙げられる。
 界面活性剤の添加量は、有機混合溶液100重量部に対して、0.01重量部~1重量部が好ましい。界面活性剤は、1種のみであってもよいし、2種以上であってもよい。
 水溶液には、本発明の効果を損なわない範囲で、任意の適切な他の成分を含んでいてもよい。
 有機混合溶液は、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物と重合開始剤と沸点100℃未満の有機溶媒を含む。
 有機混合溶液に含まれるモノマー組成物としては、≪≪中空樹脂粒子≫≫の項目における説明をそのまま援用し得る。
 重合開始剤としては、本発明の効果を損なわない範囲で、任意の適切な重合開始剤を採用し得る。
 重合開始剤は、10時間半減期温度が90℃以下であることが好ましい。このような重合開始剤を用いれば、中空樹脂粒子内に残存する重合開始剤を完全に分解することができ、例えば、中空樹脂粒子を含む半導体部材をはんだリフロー等で加熱する時に、残存する重合開始剤による樹脂の酸化劣化やガス発生を抑制することができる。
 重合開始剤は、下記式により算出される重合開始剤の分解率が98%以上となる反応温度および反応時間の組み合わせで重合することが好ましい。このような重合条件にすることで、中空樹脂粒子内に残存する重合開始剤を完全に分解することができ、例えば、中空樹脂粒子を含む半導体部材をはんだリフロー等で加熱する時に、残存する重合開始剤による樹脂の酸化劣化やガス発生を抑制することができる。
 分解率(%)=(1-exp(-kt))×100
 kd=Aexp(-ΔE/RT)
 上記式中、kは熱分解速度定数を表し、tは反応時間(hr)を表し、Aは頻度因子(hr-1)を表し、ΔEは活性化エネルギー(J/mol)を表し、Rは気体定数(8.314J/mol・K)を表し、Tは反応温度(K)を表す。
 重合開始剤としては、例えば、過酸化ラウロイル、過酸化ベンゾイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物;などが挙げられる。
 重合開始剤の添加量は、モノマー組成物100重量部に対して、0.1~5重量部の範囲が好ましい。重合開始剤は、1種のみであってもよいし、2種以上であってもよい。
 沸点100℃未満の有機溶媒としては、例えば、ヘプタン、ヘキサン、シクロヘキサン、酢酸メチル、酢酸エチル、メチルエチルケトン、クロロホルム、四塩化炭素、などが挙げられる。
 沸点100℃未満の有機溶媒は、混合溶媒であってもよい。
 有機溶媒として沸点100℃未満の有機溶媒を用いることにより、得られる中空樹脂粒子の中空部分からの溶媒除去が容易になり、製造コストの低減が可能となる。
 沸点100℃未満の有機溶媒の添加量は、モノマー組成物100重量部に対して、20量部~250重量部が好ましい。
 有機混合溶液には、本発明の効果を損なわない範囲で、任意の適切な他の成分を含んでいてもよい。このような他の成分としては、例えば、≪≪中空樹脂粒子≫≫の≪シェル部≫の<非架橋性ポリマー(P2)>が挙げられる。
 非架橋性ポリマー(P2)の添加量は、モノマー組成物100重量部に対して、0重量部~67重量部が好ましい。非架橋性ポリマー(P2)は、1種のみであってもよいし、2種以上であってもよい。
≪工程2:重合工程≫
 工程2は、工程1で得られる分散液を加熱して懸濁重合する工程である。
 重合温度は、懸濁重合に適した温度であれば、本発明の効果を損なわない範囲で、任意の適切な重合温度を採用し得る。このような重合温度としては、好ましくは30℃~80℃である。
 重合時間は、懸濁重合に適した時間であれば、本発明の効果を損なわない範囲で、任意の適切な重合時間を採用し得る。このような重合時間としては、好ましくは1時間~20時間である。
 重合後に好ましく行う後加熱は、完成度の高い中空樹脂粒子を得るために好適な処理である。
 重合後に好ましく行う後加熱の温度は、本発明の効果を損なわない範囲で、任意の適切な温度を採用し得る。このような後加熱の温度としては、好ましくは50℃~120℃である。
 重合後に好ましく行う後加熱の時間は、本発明の効果を損なわない範囲で、任意の適切な時間を採用し得る。このような後加熱の時間としては、好ましくは1時間~10時間である。
≪工程3:洗浄工程≫
 工程3は、工程2で得られたスラリーを洗浄する工程である。
 洗浄方法としては、本発明の効果を損なわない範囲で、任意の適切な洗浄方法を採用し得る。このような洗浄方法としては、例えば、(1)中空樹脂粒子を形成させた後、高速遠心機等を用いて、非常に高い遠心加速度を与えて該中空樹脂粒子を沈降させて上澄みを除去し、新たにイオン交換水または蒸留水を加え、沈降した中空樹脂粒子をイオン交換水に分散させ、この操作を数回繰り返すことにより不純物を除去する方法、(2)セラミックスフィルター等を用いたクロスフロー式のろ過方法により洗浄を行うことで不純物を除去する方法、また、(3)中空樹脂粒子に対して、粒子の凝集剤となる溶媒を添加することにより、溶媒中において粒子を凝集沈降させ、フィルター等を用いて該中空樹脂粒子を分離し、洗浄溶媒により洗浄する方法、などが挙げられる。
 上記(1)の洗浄方法においては、イオン交換水または蒸留水はスラリー重量の5倍以上の量を用いて、洗浄することが好ましい。
 比重が小さい中空樹脂粒子に対しては、(2)のセラミックスフィルター等を用いクロスフロー式のろ過方法により洗浄を行うことが好ましい。
≪工程4:乾燥工程≫
 工程4は、工程3で得られた洗浄後のスラリーを乾燥する工程である。
 乾燥方法としては、本発明の効果を損なわない範囲で、任意の適切な乾燥方法を採用し得る。このような乾燥方法としては、例えば、加熱による乾燥が挙げられる。
 加熱の温度は、本発明の効果を損なわない範囲で、任意の適切な温度を採用し得る。このような加熱の温度としては、好ましくは50℃~120℃である。
 加熱の時間は、本発明の効果を損なわない範囲で、任意の適切な時間を採用し得る。このような加熱の時間としては、好ましくは1時間~10時間である。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「重量%」を意味する。
<平均粒子径>
 動的光散乱法を利用して、中空樹脂粒子または粒子のZ平均粒子径を測定し、測定されたZ平均粒子径を得られた中空樹脂粒子または粒子の平均粒子径とした。
 すなわち、まず、得られたスラリー状の中空樹脂粒子または粒子をイオン交換水で希釈し、0.1重量%に調整した水分散体にレーザー光を照射し、中空樹脂粒子または粒子から散乱される散乱光強度をマイクロ秒単位の時間変化で測定した。そして、検出された中空樹脂粒子または粒子に起因する散乱強度分布を正規分布に当てはめて、平均粒子径を算出するためのキュムラント解析法により中空樹脂粒子または粒子のZ平均粒子径を求めた。
 このZ平均粒子径の測定は、市販の粒子径測定装置で簡便に実施できる。以下の実施例および比較例では、粒子径測定装置(マルバーン社製ゼータサイザーナノZS)を使用してZ平均粒子径を測定した。通常、市販の粒子径測定装置は、データ解析ソフトが搭載されており、データ解析ソフトが測定データを自動的に解析することでZ平均粒子径を算出できるようになっている。
<TEM測定:中空樹脂粒子または粒子の中空の有無と形状の観察>
 乾燥粉体としての中空樹脂粒子または粒子に対し、メイワフォーシス社製「オスミウムコータNeoc-Pro」コーティング装置を用いて表面処理(10Pa、5mA、10秒)を行った。次いで、中空樹脂粒子または粒子をTEM(透過型電子顕微鏡、日立ハイテクノロジーズ社製H-7600)にて観察し、中空の有無および中空樹脂粒子または粒子の形状を確認した。この時、加速電圧は80kVとし、倍率は5000倍または1万倍として撮影した。
<エチレン性不飽和基残存率の測定>
 粒子中のエチレン性不飽和基の残存率を、JIS K 0070-1992に準拠して測定した。
 200mlの三角フラスコに、実施例、比較例で製造した粒子を0.5重量部、シクロヘキサン10重量部、ウィイス試薬(0.1mol/L塩化ヨウ素・酢酸溶液)25重量部を加え、十分に振って混合した。その後、45分間放置し、粒子中に含まれるエチレン性不飽和基と塩化ヨウ素の反応を進行させた。次に、混合液に10重量%ヨウ化カリウム水溶液20重量部、水100重量部、1重量%でんぷん水溶液を0.5重量部加えて十分に振って混合し、青色に着色した混合液を作成した。青色が消えるまで0.1mol/Lチオ硫酸ナトリウム溶液で滴定した。滴定量から、混合液の残存塩化ヨウ素量(mol)を算出した。次に、残存塩化ヨウ素量(mol)から、粒子の(A)残存エチレン性不飽和基量(mol)を算出した。また、実施例、比較例で製造した粒子0.5重量部を構成する重合体を、すべて単量体とした場合のエチレン性不飽和基量を、粒子の(B)理論全エチレン性不飽和基量(mol)とした。
 下記式に基づいてエチレン性不飽和基残存率(%)を算出した。
エチレン性不飽和基残存率(%)
=[(A)残存エチレン性不飽和基量/(B)理論全エチレン性不飽和基量]×100
<1%重量減少温度の測定>
 加熱減量を、エスアイアイ・ナノテクノロジー(株)製「TG/DTA6200、AST-2」示差熱熱重量同時測定装置を用いて測定した。
 サンプリング方法と温度条件に関しては、以下のように行った。
 白金製測定容器の底にすきまのないよう試料を10.5mg充てんして、測定用のサンプルとした。窒素ガス流量230mL/分のもと、アルミナを基準物質として加熱減量を測定した。TG/DTA曲線は、昇温速度10℃/分で30℃から500℃までサンプルを昇温させて得た。この得られた曲線から装置付属の解析ソフトを用いて、1%重量減少時の温度を算出した。
<水分含有率の測定>
 実施例、比較例で製造した粒子に対して、下記条件で吸湿処理を実施した。
 試料としての粒子を、温度40℃,相対湿度95%の恒温恒湿槽の中に入れて、96時間静置した後に取り出し、温度20℃、湿度65%の環境下にて30分冷却した。冷却後、水分含有率を測定した。
 水分含有率は、試料0.1gを(株)三菱化学アナリテック社製「CA-200」カールフィッシャー水分測定装置及び「VA-236S」水分気化装置にセットして測定した。測定時の陽極液、陰極液にはそれぞれ、三菱ケミカル株式会社製アクアミクロンAX、アクアミクロンCXUを使用した。測定(気化)温度は250℃とした。キャリアガスはNを用いた。キャリアガスの流量は150mL/minとした。試料の試験回数は3回とした。試料採取場所の空気のみでの水分量を2回測定し、その平均値をブランク値とした。各測定結果からブランク値を減算し、試料の重量で除して、試料の水分含有率(重量%)を求めた。試料の水分含有率(重量%)を次式で算出した。
水分含有率(重量%)
=[実測水分量(μg)-ブランク水分量(μg)]÷1000000÷試料重量(g)×100
 最終結果として、3回の測定結果を平均し、試料の水分含有率(重量%)とした。
〔実施例1〕
 スチレン(St)1.15g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社、81%含有品、19%はエチルビニルベンゼン(EVB))1.85g、ヘプタン2.4g、HSクリスタ4100(側鎖結晶性ポリオレフィン、豊国製油株式会社)0.3g、ブレンマー50PEP-300(ポリエチレングリコールプロピレングリコールモノメタクリレート(式(1)において、R=CH、R=H、(R-O)=[(CO)3.5(CO)2.5]、ランダム付加形態)、日油株式会社)0.3g、パーロイルL(重合開始剤、日油株式会社)0.099gを混合し、油相を作製した。
 次いで、イオン交換水34gとラピゾールA-80(界面活性剤、日油株式会社)0.017gを混合し、水相を作製した。
 水相に油相を加え、超音波ホモジナイザー(BRANSON社製、SONIFIER450、条件:DutyCycle=50%、OutputControl=5、処理時間3分)を用いて懸濁液を作製した。得られた懸濁液を70℃で4時間加熱することで重合を行い、中空樹脂粒子が分散したスラリーを得た。
 得られたスラリーを50nmの細孔径を有するセラミックフィルターを用いて10倍量のイオン交換水でクロスフロー洗浄し、不純物を除去した。
 得られた洗浄後のスラリーを100℃にて24時間加熱することで、乾燥粉体としての中空樹脂粒子(1)を得た。得られた中空樹脂粒子(1)の平均粒子径は356nmであり、粒子密度は0.65g/cmであった。また、得られた中空樹脂粒子(1)のTEM観察結果を図1に示す。中空樹脂粒子(1)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例2〕
 スチレン(St)を0.92g、ジビニルベンゼン(DVB)810を1.48g、ヘプタンを3.0g、パーロイルLを0.10gとした以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(2)を得た。得られた中空樹脂粒子(2)の平均粒子径は382nmであり、粒子密度は0.64g/cmであった。また、得られた中空樹脂粒子(2)のTEM観察結果を図2に示す。中空樹脂粒子(2)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例3〕
 スチレン(St)を1.49g、ジビニルベンゼン(DVB)810を2.41g、ヘプタンを1.5g、パーロイルLを0.126gとした以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(3)を得た。得られた中空樹脂粒子(3)の平均粒子径は329nmであり、粒子密度は0.69g/cmであった。また、得られた中空樹脂粒子(3)のTEM観察結果を図3に示す。中空樹脂粒子(3)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例4〕
 スチレン(St)を1.19g、ジビニルベンゼン(DVB)810を1.93g、パーロイルLを0.10g、HSクリスタ4100(側鎖結晶性ポリオレフィン、豊国製油株式会社)0.3gの代わりにポリスチレン(PS)(非架橋、重量平均分子量30万)0.18gとした以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(4)を得た。得られた中空樹脂粒子(4)の平均粒子径は390nmであり、粒子密度は0.67g/cmであった。また、得られた中空樹脂粒子(4)のTEM観察結果を図4に示す。中空樹脂粒子(4)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例5〕
 ブレンマー50PEP-300を0.6gとしたことに加え、HSクリスタ4100を使用しなかった以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(5)を得た。得られた中空樹脂粒子(5)の平均粒子径は310nmであった。また、得られた中空樹脂粒子(5)のTEM観察結果を図5に示す。中空樹脂粒子(5)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例6〕
 ブレンマー50PEP-300(ポリエチレングリコールプロピレングリコールモノメタクリレート(式(1)において、R=CH、R=H、(R-O)=[(CO)3.5(CO)2.5]、ランダム付加形態)、日油株式会社)0.3gの代わりに、ブレンマーPME-100(ポリエチレングリコールメタクリレート(式(1)において、R=CH、R=CH、(R-O)=(CO))、日油株式会社)0.3gを使用したこと以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(6)を得た。得られた中空樹脂粒子(6)の平均粒子径は520nmであった。また、得られた中空樹脂粒子(6)のTEM観察結果を図6に示す。中空樹脂粒子(6)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例7〕
 ブレンマー50PEP-300を0.3g用いる代わりに、ブレンマーPME-100を0.3g使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(7)を得た。得られた中空樹脂粒子(7)の平均粒子径は501nmであり、粒子密度は0.63g/cmであった。また、得られた中空樹脂粒子(7)のTEM観察結果を図7に示す。中空樹脂粒子(7)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例8〕
 ブレンマー50PEP-300を0.3g用いる代わりに、ブレンマー55PET-800(ポリエチレングリコールテトラメチレングリコールモノメタクリレート(式(1)においてR=CH、R=H、(R-O)=[(CO)10(CO)]、ランダム付加形態)を0.3g使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(8)を得た。得られた中空樹脂粒子(8)の平均粒子径は325nmであった。また、得られた中空樹脂粒子(8)のTEM観察結果を図8に示す。中空樹脂粒子(8)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例9〕
 ラピゾールA-80を0.017g用いる代わりに、コータミン86W(界面活性剤、花王株式会社)0.0081gを使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(9)を得た。得られた中空樹脂粒子(9)の平均粒子径は539nmであった。また、得られた中空樹脂粒子(9)のTEM観察結果を図9に示す。中空樹脂粒子(9)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例10〕
 ラピゾールA-80を0.017g用いる代わりに、アデカミン4MAC-30(界面活性剤、株式会社ADEKA)0.034gを使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(10)を得た。得られた中空樹脂粒子(10)の平均粒子径は430nmであった。また、得られた中空樹脂粒子(10)のTEM観察結果を図10に示す。中空樹脂粒子(10)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例11〕
 ラピゾールA-80を0.017g用いる代わりに、アデカミン4MAC-30を0.0076g使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(11)を得た。得られた中空樹脂粒子(11)の平均粒子径は1270nmであった。また、得られた中空樹脂粒子(11)のTEM観察結果を図11に示す。中空樹脂粒子(11)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔実施例12〕
 スチレン(St)を1.38g、ジビニルベンゼン(DVB)810を2.22g、ヘプタンの代わりにシクロヘキサンを1.5g、HSクリスタ4100を0.6g、パーロイルLを0.054g、ラピゾールA-80を0.0085g使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(12)を得た。得られた中空樹脂粒子(12)の平均粒子径は416nmであった。また、得られた中空樹脂粒子(12)のTEM観察結果を図12に示す。中空樹脂粒子(12)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
〔比較例1〕
 メタクリル酸メチル(MMA)1.74g、エチレングリコールジメタクリレート(EGDMA)(共栄社化学株式会社)1.74g、トルエン2.4g、ポリスチレン(PS)(非架橋、重量平均分子量30万)0.126g、パーロイルL(重合開始剤、日油株式会社)0.104gを混合し、油相を作製した。次いで、イオン交換水34gとラピゾールA-80(界面活性剤、日油株式会社)0.034gを混合し、水相を作製した。水相に油相を加え、超音波ホモジナイザー(BRANSON社、SONIFIER450、条件:DutyCycle=50%、OutputControl=5、処理時間3分)を用いて懸濁液を作製した。得られた懸濁液を70℃で4時間加熱することで重合を行い、スラリーを得た。得られたスラリーを100℃にて24時間加熱することで、乾燥粉体としての粒子(C1)を得た。得られた粒子(C1)の平均粒子径は478nmであり、粒子密度は0.614g/cmであった。また、得られた粒子(C1)のTEM観察結果を図13に示す。粒子(C1)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例1~12に示すように、本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、耐熱性に優れ、吸水率が低いことが分かった、したがって、本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、優れた耐熱性と低吸水率を発現でき、信頼性の高い半導体部材を提供し得る。
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、半導体部材用樹脂組成物に用いられ、したがって、半導体パッケージや半導体モジュールなどの半導体部材に好適に利用できる。
 

Claims (11)

  1.  シェル部と該シェル部により囲われた中空部分を有する中空樹脂粒子であって、
     エチレン性不飽和基残存率が1%~20%である、
     半導体部材用樹脂組成物に用いる中空樹脂粒子。
  2.  前記中空樹脂粒子を窒素雰囲気下において10℃/分で昇温した際の1%熱重量減少温度が250℃以上である、請求項1に記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。
  3.  前記中空樹脂粒子を40℃、95%RHの雰囲気下において96時間静置した後の水分含有率が0.5重量%以下である、請求項1または2に記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。
  4.  前記中空樹脂粒子の平均粒子径が0.1μm~5.0μmである、請求項1から3までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。
  5.  前記シェル部が、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物を重合して得られる芳香族系ポリマー(P1)を含む、請求項1から4までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。
    Figure JPOXMLDOC01-appb-C000001
    (RはHまたはCHを表し、RはH、アルキル基、またはフェニル基を表し、R-Oは炭素原子数2~18のオキシアルキレン基を表し、mは該オキシアルキレン基の平均付加モル数であり、1~100の数を表す。)
  6.  前記オキシアルキレン基が、オキシエチレン基、オキシプロピレン基、及びオキシブチレン基からなる群から選択される少なくとも1種である、請求項5に記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。
  7.  前記モノマー組成物が、芳香族系架橋性モノマー(a)を10重量%~70重量%、芳香族系単官能モノマー(b)を10重量%~70重量%、及び一般式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を0.5重量%~30重量%含む、請求項5または6に記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。
  8.  前記シェル部が、前記芳香族系ポリマー(P1)と、さらに、ポリオレフィン、スチレン系ポリマー、(メタ)アクリル酸系ポリマー、及びスチレン-(メタ)アクリル酸系ポリマーからなる群から選択される少なくとも1種である非架橋性ポリマー(P2)を含む、請求項5から7までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。
  9.  前記芳香族系架橋性モノマー(a)がジビニルベンゼンである、請求項5から8までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。
  10.  前記芳香族系単官能モノマー(b)がスチレン及びエチルビニルベンゼンからなる群から選択される少なくとも1種である、請求項5から9までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。
  11.  請求項1から10までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子を含む、半導体部材。
     
PCT/JP2021/043436 2020-12-17 2021-11-26 半導体部材用樹脂組成物に用いる中空樹脂粒子 WO2022130939A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180084126.XA CN116615470A (zh) 2020-12-17 2021-11-26 用于半导体构件用树脂组合物的中空树脂颗粒
KR1020237018458A KR20230096102A (ko) 2020-12-17 2021-11-26 반도체 부재용 수지 조성물에 사용되는 중공 수지 입자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209333A JP2022096299A (ja) 2020-12-17 2020-12-17 半導体部材用樹脂組成物に用いる中空樹脂粒子
JP2020-209333 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022130939A1 true WO2022130939A1 (ja) 2022-06-23

Family

ID=82059056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043436 WO2022130939A1 (ja) 2020-12-17 2021-11-26 半導体部材用樹脂組成物に用いる中空樹脂粒子

Country Status (5)

Country Link
JP (1) JP2022096299A (ja)
KR (1) KR20230096102A (ja)
CN (1) CN116615470A (ja)
TW (1) TW202235152A (ja)
WO (1) WO2022130939A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048093A1 (ja) * 2022-08-30 2024-03-07 日本ゼオン株式会社 中空粒子、樹脂組成物、及び成形体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311518A (ja) * 1999-04-28 2000-11-07 Jsr Corp 有機絶縁材用組成物、有機絶縁材、封止材および回路基板
JP2000313818A (ja) * 1999-03-03 2000-11-14 Jsr Corp 架橋樹脂粒子、有機絶縁材用組成物、有機絶縁材、封止材、および回路基板
WO2011040376A1 (ja) * 2009-09-29 2011-04-07 積水化成品工業株式会社 光拡散用単中空粒子
WO2021085189A1 (ja) * 2019-10-29 2021-05-06 積水化成品工業株式会社 中空樹脂粒子およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448930B2 (ja) 2000-09-04 2010-04-14 財団法人新産業創造研究機構 中空高分子微粒子及びその製造法
JP6513273B1 (ja) 2018-08-31 2019-05-15 三井化学株式会社 樹脂粒子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313818A (ja) * 1999-03-03 2000-11-14 Jsr Corp 架橋樹脂粒子、有機絶縁材用組成物、有機絶縁材、封止材、および回路基板
JP2000311518A (ja) * 1999-04-28 2000-11-07 Jsr Corp 有機絶縁材用組成物、有機絶縁材、封止材および回路基板
WO2011040376A1 (ja) * 2009-09-29 2011-04-07 積水化成品工業株式会社 光拡散用単中空粒子
WO2021085189A1 (ja) * 2019-10-29 2021-05-06 積水化成品工業株式会社 中空樹脂粒子およびその製造方法

Also Published As

Publication number Publication date
KR20230096102A (ko) 2023-06-29
CN116615470A (zh) 2023-08-18
TW202235152A (zh) 2022-09-16
JP2022096299A (ja) 2022-06-29

Similar Documents

Publication Publication Date Title
TWI750860B (zh) 中空樹脂粒子及其製造方法
JP6300020B2 (ja) プリント配線板用樹脂組成物、プリント配線板用プリプレグ、積層板、金属張積層板、プリント配線板、及び酸化マグネシウム
JP2005044773A (ja) 被覆導電性粒子、異方性導電材料及び導電接続構造体
WO2022130939A1 (ja) 半導体部材用樹脂組成物に用いる中空樹脂粒子
TW202330666A (zh) 空心粒子、樹脂組成物及樹脂成形體
WO2022130938A1 (ja) 半導体部材用樹脂組成物に用いる中空樹脂粒子
EP4265647A1 (en) Hollow resin particles, method for producing hollow resin particles, and use of hollow resin particles
WO2022131022A1 (ja) 半導体部材用樹脂組成物に用いる中空樹脂粒子
WO2022130574A1 (ja) ソルダーレジスト用樹脂組成物、ソルダーレジスト膜、及び回路基板
WO2022130575A1 (ja) 半導体封止用樹脂組成物、アンダーフィル、モールド樹脂、及び半導体パッケージ
WO2023228964A1 (ja) 中空粒子、樹脂組成物、樹脂成形体、封止用樹脂組成物、硬化物、及び半導体装置
US20230399533A1 (en) Conductive aqueous ink composition for filling in engraved micropattern, conductor-filled micropattern fabricated using same, and conductive device including same
KR20230107331A (ko) 적층판, 빌드업층이 형성된 적층판, 금속박이 형성된 적층판, 및 회로 기판
TW202330665A (zh) 空心粒子、空心粒子的製造方法及樹脂組成物
WO2023218949A1 (ja) シリカ粒子分散液
JP2023164342A (ja) 液状組成物、プリプレグ、樹脂付き金属基材、配線板及びシリカ粒子
TW202406840A (zh) 氧化矽粒子分散液
US20220162434A1 (en) Resin particle and production method therefor, and hydrophilicity imparting agent containing said resin particle
TW202413555A (zh) 分散組成物、氟類樹脂膜、覆金屬層壓板及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237018458

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084126.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906302

Country of ref document: EP

Kind code of ref document: A1