WO2011024818A1 - 白色半導体発光装置 - Google Patents

白色半導体発光装置 Download PDF

Info

Publication number
WO2011024818A1
WO2011024818A1 PCT/JP2010/064306 JP2010064306W WO2011024818A1 WO 2011024818 A1 WO2011024818 A1 WO 2011024818A1 JP 2010064306 W JP2010064306 W JP 2010064306W WO 2011024818 A1 WO2011024818 A1 WO 2011024818A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
white
wavelength
spectrum
Prior art date
Application number
PCT/JP2010/064306
Other languages
English (en)
French (fr)
Inventor
寛明 作田
和彦 香川
佐藤 義人
岡川 広明
晋 平岡
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN201080015640XA priority Critical patent/CN102405538A/zh
Priority to EP10811868.8A priority patent/EP2432037B1/en
Publication of WO2011024818A1 publication Critical patent/WO2011024818A1/ja
Priority to US13/292,507 priority patent/US8581488B2/en
Priority to US14/041,171 priority patent/US8829778B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77742Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7716Chalcogenides
    • C09K11/7718Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a white light emitting device that outputs white light suitable for illumination, and more particularly to a white semiconductor light emitting device that includes a phosphor as a light emitting element and a semiconductor light emitting element as an excitation source of the phosphor.
  • duv 1000 duv
  • JIS Z25 8725 1999 “Light Source Distribution Temperature and Color Temperature / Correlated Color Temperature Measurement Method”.
  • a white LED which is a type of white semiconductor light-emitting device configured to output white light by combining a gallium nitride-based light emitting diode (LED) element and a phosphor, has recently begun to be used in lighting applications. .
  • Patent Document 1 In illumination applications, there is a demand for white LEDs having a color temperature of 3500K or less (Patent Document 1).
  • the background of the manufacture of such a low-color-temperature white LED and a high-brightness LED that can be used for illumination is the successful development of a high-brightness red phosphor.
  • Specific examples of the high-intensity red phosphor include CaAlSiN 3 : Eu disclosed in Patent Document 2, (Sr, Ca) AlSiN 3 : Eu disclosed in Patent Document 3, and Ca 1 disclosed in Patent Document 4.
  • Japanese Unexamined Patent Publication No. 2004-103443 Japanese Unexamined Patent Publication No. 2006-8721 Japanese Unexamined Patent Publication No. 2008-7751 Japanese Unexamined Patent Publication No. 2007-231245 Japanese Unexamined Patent Publication No. 2008-50379
  • the main object of the present invention is to provide a white semiconductor light emitting device with improved reproducibility for bright red.
  • the gist of the present invention is as follows. ⁇ 6. Exist. 1.
  • the output light includes a blue light component, a green light component, and a red light component, the blue light component includes light having any wavelength in the range of 440 to 480 nm, and the green light component is in the range of 515 to 560 nm.
  • a light emitting device including a light having any wavelength within the range, and the red light component includes light having any wavelength within a range of 615 to 645 nm.
  • the semiconductor light-emitting element or the first phosphor that absorbs light emitted from the semiconductor light-emitting element and emits light containing the blue light component by wavelength conversion is included.
  • a second phosphor that absorbs light emitted from the element and emits light containing the green light component by wavelength conversion; a source of the red light component absorbs light emitted from the semiconductor light emitting element and converts the wavelength by wavelength conversion;
  • the red light component The output light spectrum has a maximum wavelength in the range of 615 to 645 nm, and the intensity of the spectrum of the output light normalized by the light beam at a wavelength of 580 nm is A white semiconductor light emitting device characterized in that it is 80 to 100% of the intensity at a wavelength of 580 nm of a spectrum of standardized color rendering evaluation reference light.
  • the first phosphor preferably includes a blue phosphor
  • the second phosphor preferably includes a green phosphor
  • the third phosphor preferably includes a red phosphor.
  • either or both of the second phosphor and the third phosphor may include a yellow phosphor.
  • the white semiconductor light emitting device wherein the spectrum of the output light has a maximum wavelength in a range of 615 nm or more and less than 630 nm, and the intensity at a wavelength of 580 nm of the spectrum of the output light normalized by the light flux is standardized by the light flux.
  • a white semiconductor light-emitting device characterized in that it is 85 to 100%, preferably 85 to 95%, of the intensity at a wavelength of 580 nm of the converted color rendering property reference light spectrum.
  • the white semiconductor light emitting device wherein the spectrum of the output light has a maximum wavelength in the range of 630 to 645 nm, and the intensity at the wavelength of 580 nm of the spectrum of the output light normalized by the light beam is normalized by the light beam.
  • a white semiconductor light emitting device characterized in that it is 90 to 100% of the intensity at a wavelength of 580 nm of the spectrum of the reference light for evaluating color rendering properties.
  • the white semiconductor light-emitting device includes a first red phosphor and a second red phosphor, and the second red phosphor has an emission spectrum.
  • a white semiconductor light emitting device wherein the relative intensity at a wavelength of 580 nm when the intensity at the peak wavelength is 1 is lower than that of the first red phosphor.
  • the relative intensity at a wavelength of 580 nm when the intensity at the peak wavelength of the emission spectrum of the first red phosphor is 1, and the peak wavelength of the emission spectrum of the second red phosphor.
  • the difference from the relative intensity at a wavelength of 580 nm when the intensity at is 1 is preferably 0.2 or more, more preferably 0.3 or more.
  • the first red phosphor is Sr x Ca 1-x AlSiN 3 : Eu (0 ⁇ x ⁇ 1), Ca 1-x Al 1-x Si 1 + x N
  • the second red phosphor has a relative intensity at a wavelength of 580 nm with an intensity of 1 at the peak wavelength of the emission spectrum being 0.05 or less.
  • the second red phosphor preferably contains CaAlSiN 3 : Eu.
  • Another gist of the present invention is as follows. ⁇ 13. Exist. 7).
  • White light including a blue light component, a green light component, and a red light component is emitted, the blue light component includes light having any wavelength within the range of 440 to 480 nm, and the green light component is 515 to 560 nm.
  • a second phosphor that emits light, and a third phosphor that absorbs light emitted from the semiconductor light emitting element and emits light including the red light component by wavelength conversion, and the spectrum of the white light is 615.
  • the intensity at a wavelength of 580 nm of the spectrum of the white light having a large wavelength and normalized with the light beam is 80 to 100% of the intensity at the wavelength of 580 nm of the spectrum of the reference light for color rendering properties normalized with the light beam.
  • Characteristic white light emitting unit the first phosphor preferably includes a blue phosphor, the second phosphor preferably includes a green phosphor, and the third phosphor preferably includes a red phosphor. Further, either or both of the second phosphor and the third phosphor may include a yellow phosphor.
  • White light including a blue light component, a green light component, and a red light component is emitted, the blue light component includes light having any wavelength within the range of 440 to 480 nm, and the green light component is 515 to 560 nm.
  • a semiconductor light emitting device that emits light
  • a second phosphor that absorbs light emitted by the semiconductor light emitting device and emits light containing the green light component by wavelength conversion, and absorbs light emitted by the semiconductor light emitting device
  • a white phosphor having a maximum wavelength in a range of 615 to 645 nm and normalized with a light beam
  • the third phosphor emitting light containing the red light component by wavelength conversion
  • Wavelength 580n Intensity characterized in that 80 to 100% of the intensity at the wavelength 580nm in the spectrum of the normalized color rendering index reference light by the light beam, a white light emitting unit.
  • the second phosphor preferably includes a green phosphor
  • the third phosphor preferably includes a red phosphor.
  • either or both of the second phosphor and the third phosphor may include a yellow phosphor.
  • the white light spectrum has a maximum wavelength in the range of 615 nm to less than 630 nm, and the intensity at a wavelength of 580 nm of the spectrum of the white light normalized by the light beam is normalized by the light beam.
  • a white light-emitting unit characterized in that it has 85 to 100%, preferably 85 to 95%, of the intensity at a wavelength of 580 nm of the spectrum of the reference light for evaluating color rendering properties.
  • the white light spectrum has a maximum wavelength in the range of 630 to 645 nm, and the intensity at a wavelength of 580 nm of the spectrum of the white light normalized by the light beam is normalized by the light beam.
  • a white light emitting unit characterized in that it is 90 to 100% of the intensity at a wavelength of 580 nm of the spectrum of reference light for evaluating color rendering properties.
  • the third phosphor includes a first red phosphor and a second red phosphor
  • the second red phosphor has an emission spectrum
  • a white light-emitting unit wherein a relative intensity at a wavelength of 580 nm when an intensity at a peak wavelength is 1 is lower than that of the first red phosphor.
  • the relative intensity at a wavelength of 580 nm when the intensity at the peak wavelength of the emission spectrum of the first red phosphor is 1, and the intensity at the peak wavelength of the emission spectrum of the second red phosphor.
  • the difference from the relative intensity at a wavelength of 580 nm where is 1 is preferably 0.2 or more, and more preferably 0.3 or more.
  • a white light-emitting unit according to, the first red phosphor Sr x Ca 1-x AlSiN 3 : Eu (0 ⁇ x ⁇ 1), Ca 1-x Al 1-x Si 1 + x N 3
  • the second red phosphor preferably has a relative intensity at a wavelength of 580 nm of 0.05 or less when the intensity at the peak wavelength of the emission spectrum is 1.
  • the second red phosphor preferably contains CaAlSiN 3 : Eu.
  • Still another subject matter of the present invention is the following 14. ⁇ 16. Exist. 14 Each has first to N-th (N is an integer of 2 or more) white light-emitting units each including a semiconductor light-emitting element and a wavelength converter, and is emitted from each of the first to N-th white light-emitting units.
  • the first to Nth white light emitting units include a white light emitting unit that emits first primary white light and a first light emitting unit that emits the first primary white light.
  • At least a white light emitting unit that emits primary white light, and the intensity at a wavelength of 580 nm of the spectrum of the first primary white light normalized by the luminous flux is the spectrum of the reference light for color rendering evaluation normalized by the luminous flux.
  • the intensity at a wavelength of 580 nm of the spectrum of the second primary white light normalized by the luminous flux is higher than the intensity at the wavelength of 580 nm of the spectrum of the reference light for color rendering evaluation normalized by the luminous flux.
  • the intensity at a wavelength of 580 nm of the spectrum of the output light which is lower than the intensity at a length of 580 nm, has a maximum wavelength in the range of 615 to 645 nm, and is normalized by the light flux, is specified by the light flux.
  • a white semiconductor light emitting device characterized in that it is 80 to 100% of the intensity at a wavelength of 580 nm of the standardized color rendering property evaluation reference light.
  • the white light emitting unit that emits the first primary white light includes a wavelength conversion unit that includes a first red phosphor, and emits the second primary white light. Includes a wavelength conversion unit including a second red phosphor, and the second red phosphor has a relative intensity at a wavelength of 580 nm when the intensity at the peak wavelength of the emission spectrum is 1, the first red phosphor A white semiconductor light-emitting device characterized by being lower than a phosphor.
  • a reciprocal correlated color temperature difference between the first primary white light and the second primary white light is 50 MK ⁇ 1 or less, preferably 25 MK ⁇ 1 or less.
  • a white semiconductor light-emitting device with improved reproducibility regarding bright red is provided.
  • the emission spectrum of white LED is shown.
  • the emission spectrum of white LED and the spectrum of reference light for evaluating color rendering properties are shown.
  • the emission spectrum of white LED and the spectrum of reference light for evaluating color rendering properties are shown.
  • the emission spectrum of white LED is shown.
  • the synthetic spectrum and the spectrum of reference light for evaluating color rendering are shown.
  • the emission spectrum of white LED and the spectrum of reference light for evaluating color rendering properties are shown.
  • the emission spectrum of white LED and the spectrum of reference light for evaluating color rendering properties are shown.
  • the emission spectrum of white LED and the spectrum of reference light for evaluating color rendering properties are shown.
  • the emission spectrum of white LED is shown.
  • the emission spectrum of white LED is shown.
  • the emission spectrum of white LED is shown.
  • the emission spectrum of white LED is shown.
  • the emission spectrum of white LED is shown.
  • the relationship between 580 nm intensity ratio and R9 is shown.
  • the relationship between 580 nm intensity ratio and R9 is shown.
  • the relationship between 580 nm intensity ratio and R9 is shown.
  • the emission spectrum of white LED is shown.
  • the emission spectrum of white LED is shown.
  • a chromaticity diagram (CIE 1931) is shown.
  • the white semiconductor light emitting device of the present invention preferably includes at least one white light emitting unit.
  • the white light emitting unit includes a semiconductor light emitting element and a phosphor that converts the wavelength of light emitted from the semiconductor light emitting element, and emits white light.
  • a semiconductor light emitting element that emits light having a wavelength of 360 to 490 nm can be preferably used.
  • semiconductor light emitting element that emits light having a wavelength of 360 to 490 nm.
  • a preferred semiconductor light emitting device is a light emitting diode device having a pn junction type light emitting portion formed of a gallium nitride based, zinc oxide based or silicon carbide based semiconductor.
  • the form of the phosphor used in the white light emitting unit is not particularly limited, and may be a powder or a luminescent ceramic containing a phosphor phase in a ceramic structure.
  • the powdery phosphor is used after being fixed by an appropriate method.
  • the immobilization method it is preferable that the phosphor particles are dispersed in a transparent solid matrix made of a polymer material or glass, or the phosphor is deposited on the surface of an appropriate member by other methods. Deposit particles in layers.
  • a preferred white light emitting unit includes a blue light emitting diode element, a green phosphor, and a red phosphor, a part of blue light emitted from the blue light emitting diode element, and another part of the blue light is a green phosphor.
  • the emission peak wavelength of the blue light emitting diode element is usually 440 to 470 nm.
  • the white light emitting unit may further include a phosphor that absorbs a part of blue light emitted from the blue light emitting diode element and emits yellow light.
  • Another preferred white light emitting unit comprises an ultraviolet light emitting diode element or a purple light emitting diode element, a blue phosphor, a green phosphor, and a red phosphor, and a part of the ultraviolet light or purple light emitted from the light emitting diode element.
  • blue light generated by wavelength conversion by a blue phosphor green light generated by wavelength conversion of the other part of the ultraviolet light or purple light by a green phosphor, and yet another one of the ultraviolet light or purple light.
  • White light containing as a component red light generated by converting the portion with a red phosphor is emitted.
  • a violet light emitting diode element part of the violet light emitted from the element may be included in the white light component. For the reason that the Stokes shift loss is reduced, it is more preferable to use a violet light emitting diode element for this white light emitting unit rather than an ultraviolet light emitting diode element.
  • the most efficient purple light-emitting diode element currently available is an InGaN-based purple light-emitting diode element.
  • the InGaN-based light-emitting diode element is a pn-junction light-emitting diode element having a double hetero structure in which an MQW active layer including an InGaN well layer is sandwiched between p-type and n-type GaN-based cladding layers, and has an emission peak wavelength of 410 to 430 nm. It is known that the luminous efficiency is maximized when it is in the range (G. Chen, et al., Phys. Stat. Sol. (A) 205, No.5, 1086-1092 (2008)).
  • the excitation efficiency of a high-efficiency blue phosphor is generally high in the ultraviolet to near-ultraviolet region, and rapidly decreases as the wavelength increases on the longer wavelength side than the wavelength of 405 nm.
  • the violet light emitting diode element most suitable for the white light emitting unit has an emission peak wavelength in the range of 400 to 420 nm, particularly in the range of 405 to 415 nm. You can say that.
  • the white light emitting unit has a structure in which one or a plurality of light emitting diode elements are mounted on a package such as a shell-type package or an SMD type package and sealed with a light-transmitting sealing material to which a phosphor is added. be able to.
  • a light emitting diode element is directly mounted on a circuit board without using a package.
  • This white light emitting unit includes a so-called chip-on-board type unit.
  • the phosphor is disposed by an appropriate method at a position where light emitted from the light emitting diode element is irradiated.
  • a translucent silicone resin composition containing dispersed phosphor powder is applied to the surface of the light emitting diode element.
  • the phosphor powder is deposited on the surface of the light emitting diode element by a method such as electrodeposition.
  • seat containing the fluorescent substance prepared by the separate process is installed in the upper part of a light emitting diode element.
  • This sheet may be a sheet made of a luminescent ceramic containing a phosphor phase, or may be a film made of a translucent resin composition in which phosphor powder is dispersed. This film may be laminated on the surface of a transparent plate made of resin, glass or the like.
  • the white semiconductor light-emitting device of the present invention may include a plurality of white light-emitting units, and output light may be synthesized light obtained by mixing primary white light emitted from each white light-emitting unit.
  • the plurality of white light emitting units may include two white light emitting units having different emission spectra.
  • the white semiconductor light emitting device of the present invention does not necessarily include a white light emitting unit.
  • a blue light emitting unit, a green light emitting unit, and a red light emitting unit are provided, the blue light emitted by the blue light emitting unit, the green light emitted by the green light emitting unit, and the red light emitted by the red light emitting unit. It may output white light having light as a component.
  • the blue light emitting unit includes an ultraviolet light emitting diode element or a purple light emitting diode element and a blue phosphor, and a blue light generated by wavelength conversion of ultraviolet light or purple light emitted from the light emitting diode element by the blue phosphor.
  • a light emitting unit configured to emit light.
  • the green light emitting unit includes an ultraviolet light emitting diode element or a violet light emitting diode element and a green phosphor, and green light generated by wavelength conversion of ultraviolet light or violet light emitted from the light emitting diode element by the green phosphor.
  • a light emitting unit configured to emit light.
  • the red light emitting unit includes an ultraviolet light emitting diode element or a purple light emitting diode element and a red phosphor, and a red light generated by converting the wavelength of ultraviolet light or purple light emitted from the light emitting diode element by the red phosphor.
  • a light emitting unit configured to emit light.
  • the white semiconductor light emitting device of the present invention includes various light emitting units such as the blue light emitting unit, the green light emitting unit, and the red light emitting unit in addition to the white light emitting unit, and the light emitted from each light emitting unit is mixed.
  • the synthesized light may be output light.
  • the white semiconductor light emitting device of the present invention includes a blue light component, a green light component, and a red light component in its output light regardless of whether or not it includes a white light emitting unit.
  • the blue light component includes at least light having any wavelength within the range of 440 to 480 nm
  • the green light component includes at least light having any wavelength within the range of 515 to 560 nm
  • the red light component Includes at least light having any wavelength within the range of 615 to 645 nm.
  • the blue light component generation source includes at least one of a semiconductor light emitting element or a phosphor that absorbs light emitted from the semiconductor light emitting element and emits light containing the blue light component by wavelength conversion.
  • a phosphor that absorbs light emitted from the semiconductor light emitting element and emits light containing the green light component by wavelength conversion is essential. Further, a phosphor that absorbs light emitted from the semiconductor light emitting element and emits light containing the red light component by wavelength conversion is essential as a red light component generation source.
  • the use of a phosphor having a broad emission band as compared with a semiconductor light emitting element as a generation source of a green light component and a red light component is an extremely important factor in obtaining a white light emitting device having good color rendering properties.
  • a suitable semiconductor light-emitting element that can be used as a blue light component generation source is an InGaN-based blue light-emitting diode element.
  • a first light emitting diode element having an emission peak wavelength in the range of 440 to 470 nm and a second light emitting diode element having an emission peak wavelength in the range of 470 to 500 nm are provided. May be.
  • the emission peak wavelength of the first light-emitting diode element is separated from the emission peak wavelength of the second light-emitting diode element by 10 nm or more, preferably 20 nm or more.
  • an InGaN-based light-emitting diode element having an emission peak wavelength in the range of 470 to 500 nm a device manufactured by epitaxially growing a GaN-based semiconductor including an InGaN light-emitting layer on a nonpolar or semipolar GaN substrate is preferably used. Can do.
  • a blue phosphor that can be excited by ultraviolet to violet light can be preferably used as a blue light component generation source by wavelength conversion.
  • the blue phosphor is a phosphor whose emission color is classified into “PURPULISH BLUE”, “BLUE”, or “GREENISH BLUE” in the xy chromaticity diagram (CIE 1931) shown in FIG.
  • the type of the blue phosphor is not particularly limited, but preferred examples include a blue phosphor having Eu 2+ as an activator and a crystal composed of an alkaline earth aluminate or alkaline earth halophosphate as a base.
  • Examples thereof include (Ba, Sr, Ca) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu, and the like.
  • As Particularly preferable, high luminous efficiency and has a broad emission band BaMgAl 10 O 17: Eu and Sr 5-y Ba y (PO 4) 3 Cl: Eu (0 ⁇ y ⁇ 5) and the like .
  • a green phosphor can be preferably used as a green light component generation source.
  • the green phosphor is a phosphor whose emission color is classified into “GREEN” or “YELLOWISH GREEN” in the xy chromaticity diagram (CIE 1931) shown in FIG.
  • the type of the green phosphor is not particularly limited.
  • a known green phosphor containing Eu 2+ , Ce 3+ or the like as an activator can be preferably used.
  • a suitable green phosphor using Eu 2+ as an activator is a green phosphor based on a crystal composed of alkaline earth silicate, alkaline earth silicate nitride or sialon.
  • This type of green phosphor can usually be excited using ultraviolet to blue semiconductor light emitting devices.
  • an alkaline earth silicate crystal as a base include (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu etc.
  • Specific examples of an alkaline earth silicate nitride crystal as a base include (Ba, Ca, Sr) 3 Si 6 O 12 N 2 : Eu, (Ba, Ca, Sr) 3 Si 6 O 9 N 4 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu and the like.
  • sialon crystal as a base examples include ⁇ sialon: Eu, Sr 3 Si 13 Al 3 O 2 N 21 : Eu, Sr 5 Al 5 Si 21 O 2 N 35 : Eu.
  • Sr 3 Si 13 Al 3 O 2 N 21 : Eu is in the pamphlet of International Publication No. 2007-105631
  • Sr 5 Al 5 Si 21 O 2 N 35 : Eu is in the pamphlet of International Publication No. 2009-072043, respectively. It is disclosed.
  • Suitable green phosphors using Ce 3+ as an activator include green phosphors based on garnet-type oxide crystals, such as Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce and alkaline earths There are green phosphors based on metal scandate crystals, such as CaSc 2 O 4 : Ce. This type of green phosphor is suitable when a blue semiconductor light emitting element is used as an excitation source.
  • the green phosphor shown as a preferred example above has better durability than sulfide-based green phosphors such as ZnS: Cu, Al.
  • the base crystal is an alkaline earth silicate nitride or sialon, since it contains nitrogen, the covalent bond of the interatomic bond in the base crystal is high, and therefore extremely excellent durability and heat resistance are exhibited.
  • the use of phosphors based on crystals of sulfur-containing compounds is not recommended. This is because a slight amount of sulfur liberated from the base crystal may react with the metal contained in the semiconductor light emitting element, package, sealing material, etc. to generate a black substance.
  • a red phosphor particularly a red phosphor having a full width at half maximum of the emission band of 80 nm or more can be preferably used as a red light component generation source.
  • All kinds of red phosphors having such light emission characteristics can be used.
  • Preferred examples include Eu 2+ as an activator, alkaline earth siliconitride, alkaline earth siliconitride, Examples thereof include red phosphors based on crystals made of ⁇ -sialon or alkaline earth silicate. This type of red phosphor can usually be excited using ultraviolet to blue semiconductor light emitting devices.
  • an alkaline earth silicon nitride crystal as a base examples include (Ca, Sr, Ba) AlSiN 3 : Eu, (Ca, Sr, Ba) 2 Si 5 N 8 : Eu, SrAlSi 4 N 7 : Eu and so on.
  • SrAlSi 4 N 7 : Eu is a red phosphor disclosed in Japanese Unexamined Patent Publication No. 2008-150549.
  • Specific examples of an alkaline earth silicate nitride crystal as a base include (CaAlSiN 3 ) 1-x (Si (3n + 2) / 4 N n O) x : Eu.
  • an alkaline earth silicate crystal as a base examples include (Sr, Ba) 3 SiO 5 : Eu.
  • the matrix crystal containing nitrogen has extremely excellent durability and heat resistance.
  • (Ca, Sr, Ba) AlSiN 3 : Eu and (CaAlSiN 3 ) 1-x (Si (3n + 2) / 4 N n O) x : Eu are particularly preferably used because of their high luminous efficiency. Can do.
  • the red phosphor according to the present invention is a phosphor whose emission color is classified into “RED”, “REDDISH ORANGE” or “ORANGE” in the xy chromaticity diagram (CIE 1931) shown in FIG.
  • Such phosphors usually have an emission peak wavelength in the range of 590 to 700 nm.
  • a yellow phosphor can be used as a part of the generation source of the green light component or the red light component.
  • the yellow phosphor is a phosphor whose emission color is classified into “YELLOW GREEN”, “GREENISH YELLOW”, “YELLOW” or “YELLOWISH ORANGE” in the xy chromaticity diagram (CIE 1931) shown in FIG. .
  • a phosphor having Ce 3+ as an activator and a garnet-type oxide crystal as a base for example, (Y, Gd) 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce and the like.
  • yellow phosphors include phosphors based on Ce 3+ as an activator and based on lanthanum silicon nitride crystals, such as La 3 Si 6 N 11 : Ce, Ca 1.5x La 3-x Si. 6 N 11 : Ce and the like. This type of yellow phosphor is suitable when a blue semiconductor light emitting element is used as an excitation source, but can be excited even using light emitted from the blue phosphor.
  • the light suitable for white illumination that is, the deviation Duv from the black body radiation locus of the light color is in the range of ⁇ 20 to +20, preferably in the range of ⁇ 6.0 to +6.0.
  • the purpose is to generate incoming light.
  • the color of the output light can be set by adjusting the intensity balance between the component lights constituting the output light.
  • the white light emitted from the white light emitting unit is appropriately used by using a technique adopted in a known white light emitting device (for example, white LED) formed by combining the semiconductor light emitting element and the phosphor.
  • the correlated color temperature of light can be set.
  • a white semiconductor light-emitting device with a good vivid red reproducibility can be obtained when the following two conditions are satisfied.
  • the first condition is that the spectrum of the output light of the light emitting device has a maximum wavelength in the range of 615 to 645 nm.
  • the second condition is that the intensity at a wavelength of 580 nm of the spectrum of the output light of the light emitting device normalized by the light beam is 80 to 100% of the intensity at a wavelength of 580 nm of the spectrum of the reference light for color rendering properties normalized by the light beam. It is to be.
  • the special color rendering index of the white semiconductor light emitting device R9 is a significant improvement. This fact indicates that the Stokes shift loss of the light emitting device can be reduced without sacrificing the vivid red reproducibility.
  • the special color rendering index R9 of the white semiconductor light emitting device that does not satisfy the second condition may be extremely low.
  • the present inventors have confirmed this through trial manufacture of a white LED using a red phosphor CaAlSiN 3 : Eu having an emission peak wavelength of about 660 nm. This fact seems to be a new finding that has not been known so far among those skilled in the art.
  • the intensity (I1) at the wavelength 580 nm of the spectrum of the output light of the light emitting device normalized with the light flux and the intensity (I2) at the wavelength 580 nm of the spectrum of the reference light for color rendering evaluation normalized with the light flux may be referred to as “580 nm intensity ratio”.
  • the preferable 580 nm intensity ratio in the second condition varies depending on the wavelength region where the maximum wavelength according to the first condition exists.
  • the intensity ratio of 580 nm is preferably 85 to 100%, and more preferably 85 to 95%.
  • the intensity ratio of 580 nm is preferably 90 to 100%.
  • the reference light for color rendering property evaluation referred to in the second condition is the reference light defined in Japanese Industrial Standard JIS Z8726: 1990 that defines the color rendering property evaluation method of the light source, and the correlated color of the white semiconductor light emitting device as the sample light source
  • JIS Z8726 1990 that defines the color rendering property evaluation method of the light source
  • CIE daylight When the temperature is less than 5000K, the light of a complete radiator, and when the correlated color temperature is 5000K or more, it is CIE daylight.
  • complete radiator and CIE daylight conforms to JIS Z8720: 2000 (corresponding international standard ISO / CIE 10526: 1991).
  • the light spectrum normalized by the light beam referred to in the second condition is a spectrum normalized so that the light beam ⁇ determined by the following equation (1) becomes 1 (unity) (the following equation (1) ) Spectral radiant flux ⁇ e ).
  • a red phosphor having a full width at half maximum of an emission band of 80 nm or more and an emission peak wavelength of 625 nm or more may be used as a red light component generation source.
  • a red phosphor having an emission peak wavelength in the range of 625 to 655 nm it is preferable to use one having an emission peak wavelength in the range of 625 to 655 nm.
  • at least one is selected from red phosphors whose emission peak wavelengths are in the range of less than ⁇ 1 , and at least one of the red phosphors whose emission peak wavelengths are in the range of ⁇ 1 or more. It can be selected from phosphors.
  • ⁇ 1 is an arbitrary wavelength within the range of 625 to 655 nm.
  • the plurality of red phosphors can all be selected from red phosphors having an emission peak wavelength in the range of 625 to 655 nm. In one example, all of the plurality of red phosphors may be selected from those having an emission peak wavelength of 630 nm or more.
  • the relative intensity at a wavelength of 580 nm of the emission spectrum (the wavelength when the intensity at the peak wavelength of the emission spectrum of each phosphor is 1) is used for both.
  • Relative intensity at 580 nm (hereinafter abbreviated as “580 nm relative intensity”)
  • the 580 nm intensity ratio of the light emitting device may be less than 80%. High nature.
  • the green phosphor and the red phosphor having a relative intensity of 580 nm larger than 0.5 there is a high possibility that the 580 nm intensity ratio of the light emitting device exceeds 100%.
  • the second condition can be satisfied by using a combination of a plurality of red phosphors having different relative intensities of 580 nm.
  • a certain red phosphor red phosphor-1
  • the obtained white semiconductor light emitting device has a good color rendering index Ra (for example, 85), but has a low special color rendering index R9. (For example, less than 60).
  • the white light emitting device was examined for an intensity ratio of 580 nm, and if it was greater than 100%, in addition to the red phosphor-1, another red phosphor (red phosphor—having a relative intensity of 580 nm lower than that of the red phosphor-1).
  • the relative intensity of 580 nm can be made 100% or less.
  • the intensity ratio of the white semiconductor light-emitting device obtained by using the red phosphor-1 alone is less than 80%, the relative intensity of 580 nm is higher than that of the red phosphor-1 in addition to the red phosphor-1.
  • another red phosphor red phosphor-3 may be additionally used.
  • the red phosphor-2 when the red phosphor-2 is additionally used, it is preferable that the red phosphor-2 has an emission peak wavelength on the longer wavelength side than the red phosphor-1.
  • Such additional use of the red phosphor-2 reduces the 580 nm intensity ratio of the white light emitting device and lengthens the maximum wavelength that the output light spectrum of the light emitting device has in the red spectral region (590 to 780 nm). .
  • a combination of a plurality of red phosphors having different relative intensities of 580 nm instead of using a combination of a plurality of red phosphors having different relative intensities of 580 nm, a combination of a plurality of green phosphors having different relative intensities of 580 nm may be used, or It is also possible to use a combination of different yellow phosphors.
  • a white semiconductor light emitting device includes first to Nth (where N is an integer of 2 or more) white light emitting units each including a semiconductor light emitting element and a wavelength conversion unit, It may be a light-emitting device that uses, as output light, synthesized light obtained by mixing primary white light emitted from the first to Nth white light-emitting units.
  • the light-emitting device includes a white light-emitting unit that emits first primary white light (white light-emitting unit-1) and a white light-emitting unit that emits second primary white light (white light-emitting unit-2).
  • the intensity of the normalized spectrum of the first primary white light at a wavelength of 580 nm is higher than the intensity of the spectrum of the color rendering property reference light normalized at the wavelength of 580 nm, and the second normalized at the wavelength of the light.
  • the intensity at a wavelength of 580 nm of the spectrum of primary white light may be lower than the intensity at a wavelength of 580 nm of the spectrum of the reference light for color rendering properties normalized by the luminous flux.
  • the ratio of the first primary white light to the output light of the light emitting device and the second primary white light are controlled by controlling the input power to the white light emitting unit-1 and the input power to the white light emitting unit-2. By adjusting the ratio, it is possible to achieve a state where the light emitting device satisfies the second condition.
  • the red phosphor used in the white light emitting unit-1 and the white light emitting unit-2 are The relative intensity of 580 nm of the red phosphor used can be made different.
  • the reciprocal correlated color temperature difference between the first primary white light and the second primary white light is reduced, the emission intensity ratio between the white light emitting unit-1 and the white light emitting unit-2 is changed.
  • the color change of the output light of the white semiconductor light emitting device can be suppressed.
  • the reciprocal correlated color temperature difference between the first primary white light and the second primary white light is preferably set to 50 mK -1 or less, and more preferably to 25MK -1 or less.
  • the simulated white light emitting device S-1 shown in Table 6 below can be regarded as a simulation example of the white semiconductor light emitting device according to this embodiment.
  • white LED samples V-2 and V-7 correspond to the white light emitting unit-1 and the white light emitting unit-2.
  • the intensity ratio between the primary white light emitted by V-2 and the primary white light emitted by V-7 changes from 10: 0 to 0:10
  • the color rendering properties of the simulated white light emitting device S-1 change greatly.
  • the chromaticity difference between the two primary white lights is extremely small, the chromaticity change of the output light of the simulated white light emitting device S-1 hardly occurs.
  • output light filtering may be mentioned. This method can be adopted when it is necessary to reduce the intensity ratio of the output light at 580 nm in order to satisfy the second condition.
  • Light in a wavelength band including 580 nm is filtered by filtering using a filter means. It is a partial removal from the output light of the semiconductor light emitting device.
  • the filter means is not limited by a specific configuration, and has an ability to partially remove light in a wavelength band including 580 nm from transmitted light or reflected light based on an optical principle or absorption by a light absorbing material. It may be a light transmitting member or a light reflecting member.
  • a filter means which is a light transmitting member a minus filter (optical filter) disclosed in Japanese Patent Application Laid-Open No. 2010-39206, a cyanine compound disclosed in Japanese Patent Application Laid-Open No. 2009-251511, and a squarylium type Preferred examples include an absorption filter containing a wavelength selective absorption dye composed of a compound, a tetraazaporphyrin-based compound, or the like as a light absorbing substance.
  • the installation position of the filter means is not limited.
  • the filter means is installed in the white light emitting unit, and light in a wavelength band including 580 nm is preliminarily applied by the filter means. Partially removed white light can be configured to be emitted from the unit.
  • the filter means (light transmitting member or light reflecting member) is installed on a path through which light in the wavelength band including 580 nm generated in the white light emitting unit passes before being emitted from the unit to the outside. do it.
  • the above-mentioned wavelength selective absorption dye can be added to a transparent solid matrix (wavelength conversion unit) provided with a phosphor particle dispersed in a white light emitting unit. That is, the filter means is integrated with the wavelength conversion unit.
  • a part of the optical system for removing a part of light in a wavelength band including 580 nm from the white light can be included.
  • the filter means may be incorporated in the optical system in a detachable or replaceable form so that the amount of light to be filtered out can be adjusted.
  • the filter means functions according to the spectrum of the white light emitted from the white light emitting unit, thereby optimizing the 580 nm intensity ratio of the light emitting device, that is, maximizing the special color rendering index R9. It becomes possible to do.
  • a white semiconductor light emitting device that includes a plurality of light emitting units, and outputs a combined light that is a mixture of light emitted from the plurality of light emitting units, the light emitted from at least one light emitting unit.
  • the intensity ratio of 580 nm can be lowered.
  • a white semiconductor light emitting device including a blue light emitting unit, a green light emitting unit, and a red light emitting unit
  • a wavelength component on the long wavelength side including a wavelength of 580 nm from light emitted from the green light emitting unit using a short pass filter a wavelength component on the long wavelength side including a wavelength of 580 nm from light emitted from the green light emitting unit using a short pass filter.
  • the intensity ratio can be reduced by removing the wavelength component on the short wavelength side including the wavelength of 580 nm from the light emitted from the red light emitting unit using a long pass filter.
  • the white semiconductor light-emitting device of the present invention is not limited to a light-emitting device that can output only white light, and may have a function of generating light other than white light.
  • the white semiconductor light-emitting device of the present invention may be a white light-emitting device having a variable color temperature, that is, a white light-emitting device capable of outputting white light having various color temperatures.
  • the white semiconductor light emitting device of the present invention may be one that can change or adjust the color rendering by switching the lighting mode.
  • Table 1 shows the name used in this specification, the type based on the emission color, the general formula, and the characteristics of the emission spectrum for each phosphor.
  • the peak wavelength (emission peak wavelength) and full width at half maximum of the main emission band, and “relative intensity @ 580 nm” are shown. These are all values when excited at the wavelength indicated in parentheses in the column of emission peak wavelength.
  • “Relative intensity @ 580 nm” is synonymous with the above-mentioned 580 nm relative intensity, and is a value relatively representing the intensity of the emission spectrum at a wavelength of 580 nm, where the intensity of the emission spectrum at the emission peak wavelength (emission peak intensity) is 1. is there.
  • the measurement of the emission spectrum of the phosphor was performed according to a conventional method in this field.
  • the emission spectrum characteristic of the SBS at an excitation wavelength of 402 nm is an exception, and is based on the emission spectrum measurement result of the red light emitting unit.
  • This red light emitting unit was fabricated by mounting one InGaN light emitting diode chip having an emission peak wavelength of 402 nm in a 3528 SMD type PPA resin package and sealing with a silicone resin composition to which powdery SBS was added.
  • the size of the light-emitting diode chip is 350 ⁇ m square, and the current applied to the red light-emitting unit during emission spectrum measurement is 20 mA.
  • Both CASON-1 and CASON-2 are red phosphors represented by the general formula Ca 1 ⁇ x Al 1 ⁇ x Si 1 + x N 3 ⁇ x O x : Eu.
  • the light emission characteristics differ depending on the cause.
  • Ca 1 ⁇ x Al 1 ⁇ x Si 1 + x N 3 ⁇ x O x The base material of Eu is a solid solution of CaAlSiN 3 and Si 2 N 2 O, and (CaAlSiN 3 ) 1 ⁇ x (Si 2 N 2 O ) Sometimes expressed as x .
  • the general formula of this phosphor is sometimes expressed as CaAlSi (N, O) 3 : Eu.
  • CASN-1 and CASN-2 are both red phosphors represented by the general formula CaAlSiN 3 : Eu, but have different emission characteristics.
  • Phosphors represented by the same general formula exhibit different emission characteristics depending on the cause of the activator concentration, impurity concentration, deviation from the general formula of the base composition, etc. In fact, it is well known in the art that phosphors having various emission characteristics according to market demands are produced using this fact.
  • Tables 2 and 3 show a list of white LED samples prepared using the phosphors listed in Table 1. Eleven types of samples from V-1 to V-11 shown in Table 2 use a violet light-emitting diode element having an emission peak wavelength of about 405 nm as a phosphor excitation source. On the other hand, 10 types of samples from B-1 to B-10 shown in Table 3 use blue light emitting diode elements having an emission peak wavelength of about 450 nm as blue light generation sources and phosphor excitation sources. .
  • each of the white LED samples V-1 to V-11 and B-1 to B-10 one 350 ⁇ m square InGaN-based light emitting diode element (chip) is mounted on a 3528 SMD type PPA resin package, and powder-like fluorescence is obtained. It produced by sealing with the silicone resin composition which added the body.
  • Tables 2 and 3 show the names of the phosphors used in each sample and the blending ratio (concentration) of each phosphor in the silicone resin composition that seals the light-emitting diode element.
  • sample V-1 is made of a silicone resin composition containing blue phosphor BAM, green phosphor BSS, and red phosphor CASON-1 at concentrations of 9.0 wt%, 1.2 wt%, and 4.3 wt%, respectively.
  • the purple light emitting diode element is sealed.
  • Tables 4 and 5 show the emission characteristics of the white LED samples V-1 to V-11 and B-1 to B-10, respectively.
  • the correlated color temperature, Duv, Ra, R9, the maximum wavelength in the red spectral region, and the intensity ratio of 580 nm are all in the emission spectrum when a current of 20 mA is applied to one white LED sample to emit light. Is based.
  • the color rendering index Ra is 97, The latter is 96, both extremely high. Also, regarding the special color rendering index R9, V-1 is 88 and V-2 is 76, both of which are good values. However, unlike Ra, the difference between V-1 and V-2 is relatively large for R9.
  • FIG. 1 shows the emission spectra of white LED samples V-1 and V-2 with spectral intensities (red) at the maximum wavelength (V-1 is 631 nm, V-2 is 624 nm) in the red spectral region (wavelength 590 to 780 nm). It is normalized by the peak intensity in the spectral region) and superimposed. From FIG. 1, it can be seen that the spectral intensity of V-2 exceeds the spectral intensity of V-1 within a wavelength range with a width of about 100 nm centered at 580 nm. *
  • FIG. 2 shows the emission spectrum of the white LED sample V-1 and the spectrum of the color rendering property reference light (light of a perfect radiator having the same correlated color temperature as V-1) superimposed. is there.
  • the intensities of the two spectra are standardized so that the luminous fluxes determined by the above formula (1) are the same.
  • FIG. 3 shows the emission spectrum of the white LED sample V-2 and the spectrum of the color rendering property reference light (light of a perfect radiator having the same correlated color temperature as V-2) superimposed. is there.
  • the intensities of the two spectra are standardized so that the luminous fluxes determined by the above equation (1) are equal.
  • Table 6 shows the result of simulating the emission characteristics of an ideal white light emitting device obtained by combining the white LED samples V-2 and V-7.
  • the emission characteristic of the simulated white light emitting device S-1 is that the combined spectrum of the emission spectra of V-2 and V-7 is the output light spectrum.
  • V-7 is a white LED sample using CASN-1 as a red light component generation source, which has the longest emission peak wavelength among the red phosphors used this time.
  • FIG. 4 shows the emission spectrum of V-7.
  • a simulated white light-emitting device in which a combined spectrum obtained by adding a V-2 emission spectrum normalized by a luminous flux and a V-7 emission spectrum normalized by a luminous flux at a ratio of 4: 6 is used as an output light spectrum.
  • the light emission characteristics of S-1 are shown.
  • FIG. 5 shows this composite spectrum together with the spectrum of the color rendering property reference light. In FIG. 5, the intensities of the two spectra are normalized so that the luminous fluxes determined by the above equation (1) are equal.
  • emission spectra of V-3 and V-4 which are white LED samples actually produced using CASON-2 and CASN-1 as red phosphors, are shown in FIGS. 6 and 7, respectively.
  • the spectrum of the color rendering property evaluation reference light is also displayed.
  • the intensity of the emission spectrum of the white LED sample and the spectrum of the reference light are normalized so that the luminous fluxes determined by the above equation (1) are equal.
  • the intensity ratio of V-3 at 580 nm is 95%.
  • the intensity ratio of V-4 at 580 nm is 92%.
  • Tables 7 to 11 show the results of simulating the emission characteristics of an ideal white light emitting device obtained by combining two types of white LED samples. In other words, it is a result of calculating the light emission characteristics of the simulated white light emitting device in which the combined spectrum obtained by adding the emission spectra of the two types of white LED samples is the spectrum of the output light.
  • the emission spectra of the two types of white LED samples each normalized by the luminous flux are combined at various ratios to create a combined spectrum, and the chromaticity is based on the combined spectrum. Coordinate values, correlated color temperatures, Duv, Ra, R9 and 580 nm intensity ratios were calculated.
  • Table 7 shows the emission characteristics of the simulated white light emitting device S-2 in which the combined spectrum obtained by adding the emission spectra of the white LED samples V-6 and V-7 is the output light spectrum.
  • FIG. 8 shows the emission spectrum of V-6.
  • Table 8 shows the emission characteristics of the simulated white light emitting device S-3, in which the combined spectrum of the emission spectra of the white LED samples V-5 and V-7 is the output light spectrum.
  • FIG. 9 shows the emission spectrum of V-5.
  • Table 9 shows the emission characteristics of the simulated white light emitting device S-4, in which the combined spectrum of the white LED samples V-6 and V-1 is used as the output light spectrum.
  • V-6 and V-1 has a relatively high color rendering property, but as this table shows, when the total ratio of these emission spectra is in the range of 9: 1 to 1: 9, simulated white There was no significant change in the color rendering properties of the light emitting device S-4.
  • One reason is that the difference in relative intensity between the red phosphor SCASN used for the white LED sample V-6 and the red phosphor CASON-1 used for the white LED sample V-1 is small. Can be considered.
  • the emission peak wavelength of CASON-1 is longer than that of SCASN, whereas the relative intensity of 580 nm is higher in CASON-1 than in SCASN. In the case of such a combination of red phosphors, outstanding color rendering properties are obtained. There is a possibility that the improvement effect does not occur.
  • Table 10 shows the emission characteristics of the simulated white light emitting device S-5 in which the combined spectrum of the white LED samples V-5 and V-1 combined is the output light spectrum.
  • the 580 nm intensity ratio of the output light exceeds 100% when the total ratio of the emission spectrum of V-5 and the emission spectrum of V-1 is in the range of 9: 1 to 1: 9.
  • the color rendering index Ra reached 90, but the special color rendering index R9 did not reach 70.
  • Table 11 shows the emission characteristics of the simulated white light-emitting device S-6, in which the combined spectrum of the white LED samples B-5 and B-6 is the output spectrum.
  • FIG. 10 shows the emission spectrum of the white LED sample B-5
  • FIG. 11 shows the emission spectrum of the white LED sample B-6.
  • B-5 is a combination of a blue light emitting diode element and a yellow phosphor YAG and a red phosphor CASN-2, and does not include a green phosphor.
  • the white LED samples produced using the blue light emitting diode element, the green phosphor CSMS, the yellow phosphor YAG and the red phosphor CASN-2 are B-7 and B-8.
  • FIG. 12 shows the emission spectrum of B-8.
  • FIG. 13 plots all of the 580 nm intensity ratio and R9 of the simulated white light emitting devices S-1 to S-6 obtained from the six types of simulations shown in Tables 6 to 11 in one graph.
  • the horizontal axis of the graph is 580 nm intensity ratio
  • the vertical axis is R9.
  • the result of the plot indicates that there is a specific tendency that does not depend on the type of component light generation source (light emitting diode element or phosphor) included in the light emitting device. That is, there is a R9 peak where the 580 nm intensity ratio is about 90%, and even if the 580 nm intensity ratio is lower or higher, R9 tends to decrease. Therefore, in order to improve R9 of the semiconductor white light emitting device, it can be said that the intensity ratio of 580 nm should be in the range of 80 to 100%.
  • FIG. 14 shows the results of plotting the same plot as FIG. 13 for the case where the maximum wavelength of the output light spectrum of the simulated white light emitting device in the red spectral region is 630 nm or less. From this figure, it can be said that R9 is highest when the intensity ratio of 580 nm is 90 to 100%.
  • FIG. 15 is a result of plotting the same plot as FIG. 13 for the case where the maximum wavelength of the spectrum of the output light of the simulated white light emitting device in the red spectral region is 630 nm or more. From this figure, it can be said that R9 is highest when the intensity ratio of 580 nm is 85 to 100%, particularly when it is 85 to 95%.
  • Tables 12 to 14 show the results of simulating the light emission characteristics of an ideal white light emitting device obtained by combining two types of white LED samples having greatly different color temperatures. In other words, it is the result of calculating the light emission characteristics of the simulated white light emitting device in which the combined spectrum obtained by adding the respective light emission spectra of two types of white LED samples having greatly different color temperatures is used as the spectrum of the output light.
  • Tables 12-14 a combined spectrum is created by adding the emission spectra of the two types of white LED samples normalized by the luminous flux at various ratios, and chromaticity coordinate values and correlations are created based on the combined spectrum. Color temperature, Duv, Ra, R9 and 580 nm intensity ratios were calculated.
  • Table 12 shows a simulated white light emitting device S-, in which the combined spectrum of the emission spectra of the white LED samples B-9 (correlated color temperature of about 6500 K) and B-2 (correlated color temperature of about 3000 K) is the output light spectrum. 7 is a result of calculating the light emission characteristics of 7.
  • FIG. 16 shows the emission spectrum of the white LED sample B-9
  • FIG. 17 shows the emission spectrum of the white LED sample B-2.
  • the correlated color temperature of the simulated white light emitting device S-7 depends on the ratio of the emission spectra of B-9 and B-2 included in the combined spectrum, and the correlated color temperature of B-9 and the correlated color temperature of B-2. Has changed between.
  • the simulated white light emitting device S-7 has a 580 nm intensity ratio of 92 to 94% over the entire correlated color temperature range of 3000 to 6500 K, and the special color rendering index R9 is as high as 89 to 98.
  • Table 13 shows simulated white light emission in which the combined spectrum of the emission spectra of white LED sample B-10 (correlated color temperature of about 6400K) and white LED sample B-2 (correlated color temperature of about 3000K) is the output light spectrum. It is the result of having calculated the light emission characteristic of apparatus S-8.
  • FIG. 18 shows an emission spectrum of the white LED sample B-10.
  • the color rendering index Ra of the simulated white light emitting device S-8 is 90 or more even when the spectrum of the output light is a combined spectrum obtained by adding the B-10 emission spectrum and the B-2 emission spectrum in any ratio. It became a high value.
  • R9 tended to increase as the ratio of the emission spectrum of B-2 to the synthetic spectrum increased. There was a negative correlation between the 580 nm intensity ratio and R9, and when the 580 nm intensity ratio was less than 100%, R9 was a high value of 86 to 91.
  • Table 14 shows simulated white light emission in which the combined spectrum of the emission spectra of the white LED sample B-9 (correlated color temperature of about 6500K) and the white LED sample B-4 (correlated color temperature of about 2900K) is the output light spectrum.
  • the color rendering index Ra of the simulated white light emitting device S-9 is 90 or more even when the output light spectrum is a combined spectrum obtained by adding the B-9 emission spectrum and the B-4 emission spectrum in any ratio. It became a high value.
  • R9 tended to increase as the ratio of the emission spectrum of B-9 to the synthetic spectrum increased. There was a negative correlation between the 580 nm intensity ratio and R9, and when the 580 nm intensity ratio was less than 100%, R9 was as high as 89 to 97.
  • V-8, V-9, V-10, and V-11 using a violet light-emitting diode element as a phosphor excitation source are all the above-mentioned first conditions and The second condition is satisfied, and the reproducibility for vivid red is good.
  • These four white LED samples are all different from the white LED samples used by the blue phosphor for the simulation. Further, the blue phosphor used for V-8 and V-9 is different from the blue phosphor used for V-10 and V-11. Furthermore, V-10 and V-11 are also different from the white LED sample in which the green phosphor is also used in the simulation.
  • Embodiments of the present invention include the following white semiconductor light-emitting devices and lighting devices.
  • the output light includes a blue light component, a green light component, and a red light component, the blue light component includes light having any wavelength within the range of 440 to 480 nm, and the green light component includes 515 to A white semiconductor light emitting device comprising light having any wavelength within the range of 560 nm, wherein the red light component comprises light having any wavelength within the range of 615 to 645 nm
  • the generation source includes either or both of a semiconductor light emitting element or a first phosphor that absorbs light emitted from the semiconductor light emitting element and emits light including the blue light component by wavelength conversion, and generates the green light component Includes a second phosphor that absorbs light emitted from the semiconductor light emitting element and emits light containing the green light component by wavelength conversion, and a source of the red light component absorbs light emitted from the semiconductor light emitting element.
  • the red light by wavelength conversion Including a third phosphor that emits light containing a component, wherein the spectrum of the output light has a maximum wavelength in the range of 615 to 645 nm, and the intensity at a wavelength of 580 nm of the spectrum of the output light normalized by the luminous flux is A white semiconductor light-emitting device, which is 80 to 100% of the intensity at a wavelength of 580 nm of a spectrum of reference light for color rendering evaluation normalized by a light beam.
  • the blue light component generation source includes a blue semiconductor light emitting element.
  • the white semiconductor light-emitting device (2), wherein the blue semiconductor light-emitting element includes a blue light-emitting diode element having an emission peak wavelength in the range of 440 to 470 nm.
  • the output light further includes light emitted by a light emitting diode element having an emission peak wavelength in the range of 470 to 500 nm.
  • the light emitting diode element having the emission peak wavelength in the range of 470 to 500 nm includes a nonpolar or semipolar GaN substrate and a plurality of GaN-based semiconductor layers epitaxially grown on the substrate, and the plurality of GaN
  • the blue light component generation source includes the first phosphor, and the first phosphor includes a blue phosphor.
  • the white semiconductor light-emitting device wherein the excitation source of the blue phosphor includes an InGaN-based light-emitting diode element having an emission peak wavelength in the range of 400 to 420 nm.
  • the blue phosphor includes a phosphor having Eu 2+ as an activator and a crystal composed of an alkaline earth aluminate or alkaline earth halophosphate as a base.
  • the blue phosphor is (Ba, Sr, Ca) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu, BaMgAl 10 O 17 : Eu and Sr 5-y Ba y (PO 4) 3 Cl : Eu (0 ⁇ y ⁇ 5) comprises one or more phosphors selected from, white semiconductor light-emitting device according to (8).
  • the green phosphor includes a phosphor based on Eu 2+ as an activator and based on a crystal composed of alkaline earth silicate, alkaline earth silicate nitride or sialon.
  • White semiconductor light emitting device wherein the green phosphor includes a phosphor based on Eu 2+ as an activator and based on a crystal composed of alkaline earth silicate, alkaline earth silicate nitride or sialon.
  • the green phosphor is (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu, (Ba, Ca, Sr) ) 3 Si 6 O 12 N 2 : Eu, (Ba, Ca, Sr) 3 Si 6 O 9 N 4 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, ⁇ sialon: Eu, Sr
  • the green phosphor includes a phosphor having Ce 3+ as an activator and a crystal composed of a garnet type oxide or an alkaline earth metal scandate as a base material.
  • the second phosphor includes a first green phosphor and a second green phosphor, and the second green phosphor has an emission spectrum intensity of 1 at a peak wavelength.
  • the third phosphor includes a red phosphor.
  • the third phosphor includes a red phosphor having a full width at half maximum of 80 nm or more.
  • Fluorescence whose red phosphor uses Eu 2+ as an activator and is based on a crystal composed of alkaline earth silicate, alkaline earth silicate, ⁇ sialon, or alkaline earth silicate.
  • the white semiconductor light-emitting device including a body.
  • the red phosphor is (Ca, Sr, Ba) AlSiN 3 : Eu, (Ca, Sr, Ba) 2 Si 5 N 8 : Eu, SrAlSi 4 N 7 : Eu, (CaAlSiN 3 ) 1-x (Si (3n + 2) / 4 n n O) x: Eu, Ca 1-x Al 1-x Si 1 + x n 3-x O x: Eu and (Sr, Ba) 3 SiO 5 : selected from Eu (18)
  • the white semiconductor light-emitting device according to the above (18), comprising one or more phosphors.
  • the white semiconductor light emitting device wherein the third phosphor includes a red phosphor having a full width at half maximum of an emission band of 80 nm or more and an emission peak wavelength of 625 nm or more.
  • the third phosphor includes a red phosphor having an emission peak wavelength in a range of less than ⁇ 1 and a red phosphor having an emission peak wavelength in a range of ⁇ 1 or more.
  • ⁇ 1 is an arbitrary wavelength within the range of 625 to 655 nm.
  • the third phosphor includes a first red phosphor and a second red phosphor, and the second red phosphor has an emission spectrum with an intensity at a peak wavelength of 1.
  • the white semiconductor light-emitting device according to any one of (22) to (25), wherein the first red phosphor and the second red phosphor have an emission peak wavelength in the range of 630 to 655 nm. .
  • the first red phosphor is Sr x Ca 1-x AlSiN 3 : Eu (0 ⁇ x ⁇ 1), Ca 1 ⁇ x Al 1 ⁇ x Si 1 + x N 3 ⁇ x O x : Eu or The white semiconductor light-emitting device according to (22), containing SrAlSi 4 N 7 : Eu.
  • the white semiconductor light-emitting device wherein the yellow phosphor includes a phosphor having Ce 3+ as an activator and having a crystal composed of a garnet-type oxide or lanthanum silicon nitride as a base material.
  • the yellow phosphor is (Y, Gd) 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, La 3 Si 6 N 11 : Ce and Ca 1.5 ⁇ La 3 ⁇ x Si 6 N 11 :
  • the white semiconductor light-emitting device 31), which includes one or more phosphors selected from Ce.
  • the source of any of the blue light component, the green light component and the green light component does not contain a phosphor based on a crystal of a compound containing sulfur.
  • Any white semiconductor light emitting device (4) The white semiconductor light-emitting device according to any one of (1) to (33), wherein the deviation Duv of the output light from the blackbody radiation locus is in the range of ⁇ 6.0 to +6.0. (35) The white semiconductor light-emitting device according to any one of (1) to (34), wherein the correlated color temperature of the output light is 2000K to 6500K. (36) The white semiconductor light-emitting device of (35), wherein the correlated color temperature of the output light is 2000K to 4000K.
  • the reference light for color rendering evaluation in which the spectrum of the output light has a maximum wavelength in the range of 615 nm or more and less than 630 nm, and the intensity of the spectrum of the output light normalized by the light beam is normalized by the light beam.
  • the white semiconductor light-emitting device according to any one of (1) to (36), wherein the intensity is 85 to 100% of the intensity of the spectrum at 580 nm.
  • the spectrum of the output light has a maximum wavelength in the range of 630 to 645 nm, and the intensity at the wavelength of 580 nm of the spectrum of the output light normalized by the luminous flux is the reference light for color rendering evaluation standardized by the luminous flux.
  • the white semiconductor light-emitting device according to any one of (1) to (36), wherein the intensity is 90 to 100% of the intensity at a wavelength of 580 nm in the spectrum. (39)
  • An illumination device including the white semiconductor light-emitting device according to any one of (1) to (38).
  • Embodiments of the present invention include a white light emitting unit and an illumination device described below.
  • white light including a blue light component, a green light component, and a red light component is emitted, the blue light component includes light having any wavelength within a range of 440 to 480 nm, and the green light component is A white light emitting unit comprising light having any wavelength in the range of 515 to 560 nm, wherein the red light component comprises light having any wavelength in the range of 615 to 645 nm, the blue light component
  • a semiconductor light emitting device that emits light containing light, a second phosphor that absorbs light emitted by the semiconductor light emitting device and emits light containing the green light component by wavelength conversion, and light emitted by the semiconductor light emitting device
  • a third phosphor that absorbs and emits light containing the red light component by wavelength conversion, and the white light spectrum has a maximum wavelength in the range of 615 to 645 nm and is normalized by the luminous flux.
  • Wavelength of light spectrum Strength at 80nm is, white light-emitting unit 80 to 100% of the intensity at the wavelength 580nm in the spectrum of the normalized color rendering index reference light by the light beam.
  • the semiconductor light emitting element includes a blue semiconductor light emitting element.
  • the blue semiconductor light emitting element includes a blue light emitting diode element having an emission peak wavelength in the range of 440 to 470 nm.
  • a light emitting diode element having a peak emission wavelength in a range of 470 to 500 nm includes a nonpolar or semipolar GaN substrate and a plurality of GaN-based semiconductor layers epitaxially grown on the substrate, wherein the plurality of GaN
  • Spectrum 615-645nm The intensity at a wavelength of 580 nm of the spectrum of the white light having a maximum wavelength in the range and normalized by the light beam is 80 to 100% of the intensity at a wavelength of 580 nm of the spectrum of the reference light for color rendering evaluation normalized by the light beam.
  • the blue phosphor comprises a phosphor having Eu 2+ as an activator and based on a crystal comprising an alkaline earth aluminate or alkaline earth halophosphate.
  • the blue phosphor is (Ba, Sr, Ca) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu, BaMgAl 10 O 17 : Eu and Sr 5-y Ba y (PO 4) 3 Cl : Eu (0 ⁇ y ⁇ 5) comprises one or more phosphors selected from, white light-emitting unit of the (48).
  • the white light emitting unit according to any one of (40) to (49), wherein the second phosphor includes a green phosphor.
  • the green phosphor includes a phosphor having Eu 2+ as an activator and based on a crystal composed of alkaline earth silicate, alkaline earth silicate nitride or sialon.
  • White light emitting unit
  • the green phosphor is (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu, (Ba, Ca, Sr) ) 3 Si 6 O 12 N 2 : Eu, (Ba, Ca, Sr) 3 Si 6 O 9 N 4 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, ⁇ sialon: Eu, Sr 3 Si 13 Al 3 O 2 N 21: Eu and Sr 5 Al 5 Si 21 O 2 N 35: comprises one or more phosphors selected from Eu, a white light-emitting unit of the (51).
  • the green phosphor comprises a phosphor having Ce 3+ as an activator and having a crystal composed of a garnet-type oxide or an alkaline earth metal scandate as a base material. Any white light emitting unit.
  • the second phosphor includes a first green phosphor and a second green phosphor, and the second green phosphor has an emission spectrum intensity of 1 at a peak wavelength.
  • the red phosphor is (Ca, Sr, Ba) AlSiN 3 : Eu, (Ca, Sr, Ba) 2 Si 5 N 8 : Eu, SrAlSi 4 N 7 : Eu, (CaAlSiN 3 ) 1-x (Si (3n + 2) / 4 n n O) x: Eu, Ca 1-x Al 1-x Si 1 + x n 3-x O x: Eu and (Sr, Ba) 3 SiO 5 : selected from Eu
  • ⁇ 1 is an arbitrary wavelength within the range of 625 to 655 nm.
  • the third phosphor includes a first red phosphor and a second red phosphor, and the second red phosphor has an emission spectrum intensity of 1 at a peak wavelength.
  • the white light emitting unit according to (62), wherein the difference from the relative intensity at a wavelength of 580 nm is 0.2 or more.
  • the first red phosphor is Sr x Ca 1-x AlSiN 3 : Eu (0 ⁇ x ⁇ 1), Ca 1 ⁇ x Al 1 ⁇ x Si 1 + x N 3 ⁇ x O x : Eu or The white light emitting unit according to (62), comprising SrAlSi 4 N 7 : Eu.
  • the white light emitting unit according to (67), wherein the second red phosphor has a relative intensity at a wavelength of 580 nm of 0.05 or less when the intensity at the peak wavelength of the emission spectrum is 1.
  • the yellow phosphor includes a phosphor having Ce 3+ as an activator and having a crystal composed of a garnet-type oxide or lanthanum silicon nitride as a base.
  • the yellow phosphor is (Y, Gd) 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, La 3 Si 6 N 11 : Ce and Ca 1.5 ⁇ La 3 ⁇ x Si 6 N 11 :
  • the white light emitting unit according to (71) which contains one or more phosphors selected from Ce.
  • the white light emitting unit according to (75), wherein the correlated color temperature of the white light is 2000K to 4000K.
  • the white light spectrum having a maximum wavelength in the range of 615 nm or more and less than 630 nm, and the intensity of the white light spectrum normalized by the light beam at a wavelength of 580 nm is normalized by the light beam.
  • the white light emitting unit according to any one of the above (40) to (76), which is 85 to 100% of the intensity of the spectrum at a wavelength of 580 nm.
  • the white light spectrum has a maximum wavelength in the range of 630 to 645 nm, and the intensity of the white light spectrum normalized by the luminous flux at a wavelength of 580 nm is the reference light for color rendering evaluation standardized by the luminous flux.
  • Embodiments of the present invention include the following white semiconductor light-emitting devices and lighting devices.
  • a white semiconductor light emitting device that outputs combined light obtained by mixing primary white light emitted from each other, wherein the first to Nth white light emitting units emit white primary light that emits first primary white light.
  • the intensity at a wavelength of 580 nm of the spectrum of the first primary white light normalized by the luminous flux includes at least a unit and a white light emitting unit that emits the second primary white light, and the standard for evaluating the color rendering properties normalized by the luminous flux
  • the intensity at a wavelength of 580 nm of the spectrum of the second primary white light which is higher than the intensity at a wavelength of 580 nm of the light spectrum and normalized by the light beam, is a spectrum of the reference light for color rendering evaluation normalized by the light beam.
  • the output light spectrum has a maximum wavelength in the range of 615 to 645 nm, and the intensity of the spectrum of the output light normalized by the light beam is 580 nm.
  • a white semiconductor light emitting device which is 80 to 100% of the intensity at a wavelength of 580 nm of the spectrum of the reference light for color rendering evaluation standardized in (1).
  • the white light emitting unit that emits the first primary white light includes a wavelength conversion unit including a first red phosphor, and the white light emitting unit that emits the second primary white light has the second red fluorescence.
  • the second red phosphor has a relative intensity at a wavelength of 580 nm when the intensity at the peak wavelength of the emission spectrum is 1, which is lower than that of the first red phosphor.
  • the white semiconductor light emitting device is 80 to 100% of the intensity at a wavelength of 580 nm of the spectrum of the reference light for color rendering evaluation standardized in (1).
  • the white semiconductor light emitting device according to (81), wherein a reciprocal correlated color temperature difference between the first primary white light and the second primary white light is 50 MK ⁇ 1 or less.
  • the white semiconductor light emitting device according to (82), wherein a reciprocal correlated color temperature difference between the first primary white light and the second primary white light is 25 MK ⁇ 1 or less.
  • the input power to the white light emitting unit that emits the first primary white light and the input power to the white light emitting unit that emits the second primary white light are controlled to occupy the output light.

Abstract

 本発明は鮮やかな赤色に関する再現性が改善された白色半導体発光装置を提供することを目的とする。本発明は、出力光が青色光成分と緑色光成分と赤色光成分とを含み、該青色光成分の発生源は半導体発光素子および/または半導体発光素子が発する光を吸収して波長変換により該青色光成分を含む光を放出する第1の蛍光体であり、該緑色光成分の発生源は半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体であり、該赤色光成分の発生源は半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体である。該出力光のスペクトルは615~645nmの範囲に極大波長を有し、光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%である、白色半導体発光装置に関する。

Description

白色半導体発光装置
 本発明は、照明に適した白色光を出力する白色発光装置に関し、とりわけ、発光要素として蛍光体を備えるとともに、その蛍光体の励起源として半導体発光素子を備える、白色半導体発光装置に関する。
 本発明および本明細書においては、光色の黒体輻射軌跡からの偏差Duvが-20~+20の範囲に含まれる光を、白色光と呼ぶものとする。Duv(=1000duv)の定義はJIS Z 8725:1999「光源の分布温度及び色温度・相関色温度測定方法」による。
 窒化ガリウム系の発光ダイオード(LED)素子と蛍光体とを組み合わせて白色光を出力するように構成された、白色半導体発光装置の一種である白色LEDが、最近では照明用途においても使用され始めている。
 照明用途において、色温度が3500K以下の白色LEDに対する需要が存在する(特許文献1)。このような低色温度の白色LED、しかも、照明に使用できる高輝度のものが製造可能となった背景には、高輝度赤色蛍光体の開発成功がある。高輝度赤色蛍光体の具体例を挙げれば、特許文献2に開示されたCaAlSiN:Eu、特許文献3に開示された(Sr,Ca)AlSiN:Eu、特許文献4に開示されたCa1-xAl1-xSi1+x3-xx:Eu、特許文献5に開示された(Sr,Ba)SiO:Euなどといった、Eu2+を付活剤とし、アルカリ土類ケイ窒化物、アルカリ土類ケイ酸窒化物またはアルカリ土類ケイ酸塩からなる結晶を母体とする赤色蛍光体である。これらの赤色蛍光体は、半値全幅が80nmを超えるブロードな発光バンドを有するため、それを用いた白色LEDは通常、演色評価数(CRI)の高いものとなる。
日本国特開2004-103443号公報 日本国特開2006-8721号公報 日本国特開2008-7751号公報 日本国特開2007-231245号公報 日本国特開2008-50379号公報
 しかし、白色半導体発光装置は、特殊演色評価数(special color rendering index)のひとつであるR9を指標とする、鮮やかな赤色に関する再現性が低くなる傾向があり、特に、温白色LED(warm white LED)と呼ばれる色温度2000~4000Kの白色光を放出するLEDランプのような、低色温度の白色半導体発光装置において、この傾向は顕著となる。
 そこで、本発明は、鮮やかな赤色に関する再現性が改善された白色半導体発光装置を提供することを、主たる目的とする。
 本発明の要旨は、下記1.~6.に存する。
1.出力光が青色光成分と緑色光成分と赤色光成分とを含み、該青色光成分は440~480nmの範囲内のいずれかの波長を有する光を含み、該緑色光成分は515~560nmの範囲内のいずれかの波長を有する光を含み、該赤色光成分は615~645nmの範囲内のいずれかの波長を有する光を含む、白色半導体発光装置であって、該青色光成分の発生源は半導体発光素子または半導体発光素子が発する光を吸収して波長変換により該青色光成分を含む光を放出する第1の蛍光体のいずれかまたは両方を含み、該緑色光成分の発生源は半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体を含み、該赤色光成分の発生源は半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体を含み、該出力光のスペクトルが615~645nmの範囲に極大波長を有し、光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%であることを特徴とする、白色半導体発光装置。この白色半導体発光装置において、該第1の蛍光体は好ましくは青色蛍光体を含み、該第2の蛍光体は好ましくは緑色蛍光体を含み、該第3の蛍光体は好ましくは赤色蛍光体を含む。更に、該第2の蛍光体および該第3の蛍光体のいずれかまたは両方が、黄色蛍光体を含んでいてもよい。
2.前記1.に記載の白色半導体発光装置であって、該出力光のスペクトルが615nm以上630nm未満の範囲に極大波長を有し、光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の85~100%、好ましくは85~95%であることを特徴とする、白色半導体発光装置。
3.前記1.に記載の白色半導体発光装置であって、該出力光のスペクトルが630~645nmの範囲に極大波長を有し、光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の90~100%であることを特徴とする、白色半導体発光装置。
4.前記1.~3.のいずれかに記載の白色半導体発光装置であって、前記第3の蛍光体が、第1の赤色蛍光体と第2の赤色蛍光体とを含み、該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、該第1の赤色蛍光体よりも低いことを特徴とする、白色半導体発光装置。この白色半導体発光装置において、該第1の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度と、該第2の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度との差は、好ましくは0.2以上、より好ましくは0.3以上である。
5.前記4.に記載の白色半導体発光装置であって、該第2の赤色蛍光体が、該第1の赤色蛍光体よりも発光スペクトルのピーク波長を長波長側に有することを特徴とする、白色半導体発光装置。
6.前記4.または5.に記載の白色半導体発光装置であって、該第1の赤色蛍光体がSrCa1-xAlSiN:Eu(0<x<1)、Ca1-xAl1-xSi1+x3-xx:EuまたはSrAlSi47:Euを含むことを特徴とする白色半導体発光装置。この白色半導体発光装置において、該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が0.05以下であることが好ましい。また、この白色半導体発光装置において、該第2の赤色蛍光体は好ましくはCaAlSiN3:Euを含む。
 本発明の他の要旨は、下記7.~13.に存する。
7.青色光成分と緑色光成分と赤色光成分とを含む白色光を放出し、該青色光成分は440~480nmの範囲内のいずれかの波長を有する光を含み、該緑色光成分は515~560nmの範囲内のいずれかの波長を有する光を含み、該赤色光成分は615~645nmの範囲内のいずれかの波長を有する光を含む、白色発光ユニットであって、半導体発光素子と、該半導体発光素子が発する光を吸収して波長変換により該青色光成分を含む光を放出する第1の蛍光体と、該半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体と、該半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体とを備え、該白色光のスペクトルが615~645nmの範囲に極大波長を有し、光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%であることを特徴とする、白色発光ユニット。この白色発光ユニットにおいて、第1の蛍光体は好ましくは青色蛍光体を含み、第2の蛍光体は好ましくは緑色蛍光体を含み、第3の蛍光体は好ましくは赤色蛍光体を含む。更に、第2の蛍光体および第3の蛍光体のいずれかまたは両方が、黄色蛍光体を含んでもよい。
8.青色光成分と緑色光成分と赤色光成分とを含む白色光を放出し、該青色光成分は440~480nmの範囲内のいずれかの波長を有する光を含み、該緑色光成分は515~560nmの範囲内のいずれかの波長を有する光を含み、該赤色光成分は615~645nmの範囲内のいずれかの波長を有する光を含む、白色発光ユニットであって、該青色光成分を含む光を放出する半導体発光素子と、該半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体と、該半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体とを備え、該白色光のスペクトルが615~645nmの範囲に極大波長を有し、光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%であることを特徴とする、白色発光ユニット。この白色発光ユニットにおいて、第2の蛍光体は好ましくは緑色蛍光体を含み、第3の蛍光体は好ましくは赤色蛍光体を含む。更に、第2の蛍光体および第3の蛍光体のいずれかまたは両方が、黄色蛍光体を含んでもよい。
9.前記7.または8.に記載の白色発光ユニットであって、該白色光のスペクトルが615nm以上630nm未満の範囲に極大波長を有し、光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の85~100%、好ましくは85~95%であることを特徴とする、白色発光ユニット。
10.前記7.または8.に記載の白色発光ユニットであって、該白色光のスペクトルが630~645nmの範囲に極大波長を有し、光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の90~100%であることを特徴とする、白色発光ユニット。
11.前記7.~10.のいずれかに記載の白色発光ユニットであって、該第3の蛍光体が第1の赤色蛍光体と第2の赤色蛍光体とを含み、該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、該第1の赤色蛍光体よりも低いことを特徴とする、白色発光ユニット。この白色発光ユニットにおいて、該第1の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度と、第2の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度との差は、好ましくは0.2以上、より好ましくは0.3以上である。
12.前記11.に記載の白色発光ユニットであって、該第2の赤色蛍光体が、該第1の赤色蛍光体よりも発光スペクトルのピーク波長を長波長側に有することを特徴とする、白色発光ユニット。
13.前記11.または12.に記載の白色発光ユニットであって、該第1の赤色蛍光体がSrCa1-xAlSiN:Eu(0<x<1)、Ca1-xAl1-xSi1+x3-xx:EuまたはSrAlSi47:Euを含むことを特徴とする、白色発光ユニット。この白色発光ユニットにおいて、該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が0.05以下であることが好ましい。また、この白色発光ユニットにおいて、該第2の赤色蛍光体は好ましくはCaAlSiN3:Euを含む。
 本発明の更に他の要旨は、下記14.~16.に存する。
14.それぞれが半導体発光素子と波長変換部とを備える第1~第N(ここで、Nは2以上の整数)の白色発光ユニットを有し、該第1~第Nの白色発光ユニットからそれぞれ放出される一次白色光が混合されてなる合成光を出力光とする白色半導体発光装置であって、該第1~第Nの白色発光ユニットは、第1の一次白色光を放出する白色発光ユニットと第2の一次白色光を放出する白色発光ユニットとを少なくとも含み、光束で規格化した該第1の一次白色光のスペクトルの波長580nmにおける強度は、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度よりも高く、光束で規格化した該第2の一次白色光のスペクトルの波長580nmにおける強度は、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度よりも低く、更に、前記出力光のスペクトルが615~645nmの範囲に極大波長を有し、かつ、光束で規格化した前記出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%である、ことを特徴とする白色半導体発光装置。
15.前記14.に記載の白色半導体発光装置において、前記第1の一次白色光を放出する白色発光ユニットが第1の赤色蛍光体を含む波長変換部を備え、前記第2の一次白色光を放出する白色発光ユニットが第2の赤色蛍光体を含む波長変換部を備え、該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、該第1の赤色蛍光体よりも低いことを特徴とする、白色半導体発光装置。
16.前記14.または15.に記載の白色半導体発光装置において、前記第1の一次白色光と前記第2の一次白色光との逆数相関色温度差が50MK-1以下、好ましくは25MK-1以下であることを特徴とする、白色半導体発光装置。
 本発明によれば、鮮やかな赤色に関する再現性が改善された白色半導体発光装置が提供される。
白色LEDの発光スペクトルを示す。 白色LEDの発光スペクトルおよび演色性評価用基準光のスペクトルを示す。 白色LEDの発光スペクトルおよび演色性評価用基準光のスペクトルを示す。 白色LEDの発光スペクトルを示す。 合成スペクトルおよび演色性評価用基準光のスペクトルを示す。 白色LEDの発光スペクトルおよび演色性評価用基準光のスペクトルを示す。 白色LEDの発光スペクトルおよび演色性評価用基準光のスペクトルを示す。 白色LEDの発光スペクトルを示す。 白色LEDの発光スペクトルを示す。 白色LEDの発光スペクトルを示す。 白色LEDの発光スペクトルを示す。 白色LEDの発光スペクトルを示す。 580nm強度比とR9の関係を示す。 580nm強度比とR9の関係を示す。 580nm強度比とR9の関係を示す。 白色LEDの発光スペクトルを示す。 白色LEDの発光スペクトルを示す。 白色LEDの発光スペクトルを示す。 色度図(CIE 1931)を示す。
 本発明の白色半導体発光装置は、好ましくは、少なくともひとつの白色発光ユニットを含む。白色発光ユニットは、半導体発光素子と、該半導体発光素子が発する光の波長を変換する蛍光体を含み、白色光を放出する。白色発光ユニットにおける半導体発光素子と蛍光体との光学的な結合の形態に限定はなく、両者の間は単に透明な媒体(空気を含む)で充たされているだけであってもよいし、あるいは、レンズ、光ファイバ、導光板、反射鏡などの光学素子が両者の間に介在していてもよい。
 白色発光ユニットには、波長360~490nmの光を放出する半導体発光素子を好ましく用いることができる。半導体発光素子の発光部を構成する半導体の種類および該発光部の構造に特に限定はない。好ましい半導体発光素子は、窒化ガリウム系、酸化亜鉛系または炭化ケイ素系の半導体で形成された、pn接合型の発光部を有する発光ダイオード素子である。
 白色発光ユニットに用いる蛍光体の形態に特に限定はなく、パウダー状であってもよいし、セラミック組織中に蛍光体相を含有する発光セラミックであってもよい。パウダー状の蛍光体は適宜な方法により固定化して使用する。固定化の方法に限定はないが、好ましくは、高分子材料またはガラスからなる透明な固体マトリックス中に蛍光体粒子を分散させるか、あるいは、適宜な部材の表面に電着その他の方法で蛍光体粒子を層状に堆積させる。
 好ましい白色発光ユニットは、青色発光ダイオード素子と、緑色蛍光体と、赤色蛍光体とを備え、青色発光ダイオード素子が放出する青色光の一部と、該青色光の他の一部が緑色蛍光体により波長変換されて生じる緑色光と、該青色光の更に他の一部が赤色蛍光体により波長変換されて生じる赤色光と、を成分として含む白色光を放出する。青色発光ダイオード素子の発光ピーク波長は、通常、440~470nmである。この白色発光ユニットは、更に、青色発光ダイオード素子が放出する青色光の一部を吸収して黄色発光する蛍光体を備えていてもよい。
 別の好ましい白色発光ユニットは、紫外発光ダイオード素子または紫色発光ダイオード素子と、青色蛍光体と、緑色蛍光体と、赤色蛍光体とを備え、発光ダイオード素子が放出する紫外光または紫色光の一部が青色蛍光体により波長変換されて生じる青色光と、該紫外光または紫色光の他の一部が緑色蛍光体で波長変換されて生じる緑色光と、該紫外光または紫色光の更に他の一部が赤色蛍光体で変換されて生じる赤色光と、を成分として含む白色光を放出する。紫色発光ダイオード素子を用いる場合には、該素子が放出する紫色光の一部が白色光の成分に含まれてもよい。ストークスシフト損失が小さくなるという理由から、この白色発光ユニットには、紫外発光ダイオード素子よりも紫色発光ダイオード素子を使用することがより好ましい。
 現在入手できる最も効率の高い紫色発光ダイオード素子は、InGaN系の紫色発光ダイオード素子である。InGaN系発光ダイオード素子は、InGaN井戸層を含むMQW活性層をp型およびn型のGaN系クラッド層で挟んだダブルヘテロ構造を備えるpn接合型発光ダイオード素子であり、発光ピーク波長を410~430nmの範囲としたときに発光効率が最大となることが知られている(G. Chen, et al., phys. stat. sol. (a) 205, No.5, 1086-1092(2008))。一方で、高効率の青色蛍光体の励起効率は一般に紫外~近紫外領域において高く、波長405nmよりも長波長側では波長の増加とともに急激に低下する。このような青色蛍光体の励起特性も考慮すると、白色発光ユニットに最も適した紫色発光ダイオード素子は、発光ピーク波長を400~420nmの範囲、特に405~415nmの範囲に有する、InGaN系発光ダイオード素子であるといえる。
 白色発光ユニットの構成に特段の限定はなく、半導体発光素子と蛍光体とを組合せてなる公知の白色発光装置の構成を任意に参照することができる。好適例は、汎用の白色LEDの構造を包含する。すなわち、白色発光ユニットは、1個または複数個の発光ダイオード素子を、砲弾型パッケージ、SMD型パッケージなどのパッケージにマウントし、蛍光体を添加した透光性封止材で封止した構造とすることができる。
 別の好適例に係る白色発光ユニットでは、パッケージを用いないで、回路基板上に発光ダイオード素子が直接マウントされる。この白色発光ユニットは、いわゆるチップ・オン・ボード型ユニットを包含する。蛍光体は、発光ダイオード素子が発する光が照射される位置に、適宜な方法で配置される。例えば、分散された蛍光体パウダーを含む透光性のシリコーン樹脂組成物が、発光ダイオード素子の表面に塗布される。あるいは、蛍光体パウダーが、電着などの方法によって、発光ダイオード素子の表面に堆積される。あるいは、別途工程で準備された、蛍光体を含有する透光性のシートが、発光ダイオード素子の上部に設置される。このシートは、蛍光体相を含む発光セラミックからなるシートであってもよいし、蛍光体パウダーを分散させた透光性の樹脂組成物からなるフィルムであってもよい。このフィルムは、樹脂、ガラス等からなる透明板の表面に積層されたものであってもよい。
 本発明の白色半導体発光装置は、複数の白色発光ユニットを備え、各白色発光ユニットから放出される一次白色光が混合されてなる合成光を出力光とするものであってもよい。かかる実施形態において、該複数の白色発光ユニットは、互いに異なる発光スペクトルを有する2個の白色発光ユニットを含むことができる。
 本発明の白色半導体発光装置は、白色発光ユニットを備えることを必須としない。一例では、青色発光ユニットと、緑色発光ユニットと、赤色発光ユニットとを備え、該青色発光ユニットが放出する青色光と、該緑色発光ユニットが放出する緑色光と、該赤色発光ユニットが放出する赤色光と、を成分とする白色光を出力するものであってもよい。ここで、青色発光ユニットは、紫外発光ダイオード素子または紫色発光ダイオード素子と、青色蛍光体とを備え、該発光ダイオード素子が放出する紫外光または紫色光が該青色蛍光体により波長変換されて生じる青色光を放出するように構成された発光ユニットである。また、緑色発光ユニットは、紫外発光ダイオード素子または紫色発光ダイオード素子と、緑色蛍光体とを備え、該発光ダイオード素子が放出する紫外光または紫色光が該緑色蛍光体により波長変換されて生じる緑色光を放出するように構成された発光ユニットである。また、赤色発光ユニットとは、紫外発光ダイオード素子または紫色発光ダイオード素子と、赤色蛍光体とを備え、該発光ダイオード素子が放出する紫外光または紫色光が該赤色蛍光体により波長変換されて生じる赤色光を放出するように構成された発光ユニットである。
 本発明の白色半導体発光装置は、白色発光ユニットに加えて、上記の青色発光ユニット、緑色発光ユニット、赤色発光ユニットなどの各種発光ユニットを備え、各発光ユニットから放出される光が混合されてなる合成光を出力光とするものであってもよい。
 本発明の白色半導体発光装置は、白色発光ユニットを備えるか否かにかかわらず、その出力光に青色光成分と緑色光成分と赤色光成分とを含む。ここで、青色光成分は440~480nmの範囲内のいずれかの波長を有する光を少なくとも含み、緑色光成分は515~560nmの範囲内のいずれかの波長を有する光を少なくとも含み、赤色光成分は615~645nmの範囲内のいずれかの波長を有する光を少なくとも含む。青色光成分の発生源は、半導体発光素子または、半導体発光素子が発する光を吸収し、波長変換により該青色光成分を含む光を放出する蛍光体の、少なくともいずれかを含む。一方、緑色光成分の発生源としては、半導体発光素子が発する光を吸収し、波長変換により該緑色光成分を含む光を放出する蛍光体が必須である。また、赤色光成分の発生源として、半導体発光素子が発する光を吸収し、波長変換により該赤色光成分を含む光を放出する蛍光体が必須である。半導体発光素子と比べてブロードな発光バンドを有する蛍光体を緑色光成分および赤色光成分の発生源に用いることは、演色性の良好な白色発光装置を得るうえでの極めて重要な要素である。
 本発明の白色半導体発光装置において、青色光成分の発生源に用いることのできる好適な半導体発光素子は、InGaN系の青色発光ダイオード素子である。好適例では、演色性を高めるために、発光ピーク波長を440~470nmの範囲に有する第1の発光ダイオード素子と、発光ピーク波長を470~500nmの範囲に有する第2の発光ダイオード素子を備えていてもよい。ここで、第1の発光ダイオード素子の発光ピーク波長と、第2の発光ダイオード素子の発光ピーク波長は、10nm以上離すものとし、好ましくは20nm以上離す。発光ピーク波長を470~500nmの範囲に有するInGaN系発光ダイオード素子として、非極性または半極性のGaN基板上に、InGaN発光層を含むGaN系半導体をエピタキシャル成長させることにより製造されるものを好ましく用いることができる。
 本発明の白色半導体発光装置において、波長変換による青色光成分の生成源には、紫外~紫色光により励起可能な青色蛍光体を好ましく用いることができる。青色蛍光体とは、その発光色が、図19に示すxy色度図(CIE 1931)における「PURPULISH BLUE」、「BLUE」または「GREENISH BLUE」に区分される蛍光体である。かかる青色蛍光体の種類に特に限定はないが、好適例としては、Eu2+を付活剤とし、アルカリ土類アルミン酸塩またはアルカリ土類ハロリン酸塩からなる結晶を母体とする青色蛍光体、例えば、(Ba,Sr,Ca)MgAl1017:Eu、(Ca,Sr,Ba)(POCl:Euなどが挙げられる。中でも好ましいものとして、発光効率が高く、かつ、ブロードな発光バンドを有する、BaMgAl1017:EuおよびSr5-yBay(POCl:Eu(0<y<5)が挙げられる。白色半導体発光装置の演色性を高めるためには、ブロードな発光バンドを有する青色蛍光体を用いることが有効である。
 本発明の白色半導体発光装置において、緑色光成分の生成源には、緑色蛍光体を好ましく用いることができる。緑色蛍光体とは、その発光色が、図19に示すxy色度図(CIE 1931)における「GREEN」または「YELLOWISH GREEN」に区分される蛍光体である。かかる緑色蛍光体の種類に特に限定はなく、例えば、Eu2+、Ce3+などを付活剤として含む公知の緑色蛍光体を好ましく用いることができる。Eu2+を付活剤とする好適な緑色蛍光体は、アルカリ土類ケイ酸塩、アルカリ土類ケイ酸窒化物またはサイアロンからなる結晶を母体とする緑色蛍光体である。この種の緑色蛍光体は、通常、紫外~青色半導体発光素子を用いて励起可能である。アルカリ土類ケイ酸塩結晶を母体とするものの具体例には、(Ba,Ca,Sr,Mg)SiO:Eu、(Ba,Sr,Ca)(Mg,Zn)Si:Euなどがある。アルカリ土類ケイ酸窒化物結晶を母体とするものの具体例には、(Ba,Ca,Sr)Si12:Eu、(Ba,Ca,Sr)Si:Eu、(Ca,Sr,Ba)Si:Euなどがある。サイアロン結晶を母体とするものの具体例には、βサイアロン:Eu、SrSi13Al21:Eu、SrAlSi2135:Euなどがある。ここで、SrSi13Al21:Euは国際公開2007-105631号パンフレットに、また、SrAlSi2135:Euは国際公開2009-072043号パンフレットに、それぞれ開示されている。Ce3+を付活剤とする好適な緑色蛍光体としては、ガーネット型酸化物結晶を母体とする緑色蛍光体、例えばCa(Sc,Mg)Si12:Ceや、アルカリ土類金属スカンジウム酸塩結晶を母体とする緑色蛍光体、例えばCaSc:Ceがある。この種の緑色蛍光体は、青色半導体発光素子を励起源として用いる場合に適している。
 上記に好適例として示した緑色蛍光体は、ZnS:Cu,Alなどの硫化物系緑色蛍光体と比べ、耐久性が良好である。特に、母体結晶がアルカリ土類ケイ酸窒化物またはサイアロンであるものは、窒素を含むために母体結晶中における原子間結合の共有結合性が高く、それゆえに極めて優れた耐久性および耐熱性を示す。一方、緑色蛍光体に限ったことではないが、硫黄を含む化合物の結晶を母体とする蛍光体の使用は推奨されない。なぜなら、母体結晶から遊離する僅かな硫黄が、半導体発光素子、パッケージ、封止材料などに含まれている金属と反応して黒色物質を発生させる場合があるからである。
 本発明の半導体発光装置において、赤色光成分の生成源には赤色蛍光体、特に、発光バンドの半値全幅が80nm以上である赤色蛍光体を好ましく用いることができる。このような発光特性を有するあらゆる種類の赤色蛍光体を使用することができるが、好適例としては、Eu2+を付活剤とし、アルカリ土類ケイ窒化物、アルカリ土類ケイ酸窒化物、αサイアロンまたはアルカリ土類ケイ酸塩からなる結晶を母体とする赤色蛍光体が挙げられる。この種の赤色蛍光体は、通常、紫外~青色半導体発光素子を用いて励起可能である。アルカリ土類ケイ窒化物結晶を母体とするものの具体例には、(Ca,Sr,Ba)AlSiN:Eu、(Ca,Sr,Ba)Si:Eu、SrAlSi:Euなどがある。SrAlSi:Euは、日本国特開2008-150549号公報などに開示された赤色蛍光体である。アルカリ土類ケイ酸窒化物結晶を母体とするものの具体例には、(CaAlSiN1-x(Si(3n+2)/4nO)x:Euなどがある。アルカリ土類ケイ酸塩結晶を母体とするものの具体例には、(Sr,Ba)SiO:Euなどがある。赤色蛍光体の場合も、緑色蛍光体の場合と同様に、母体結晶が窒素を含むものは極めて優れた耐久性および耐熱性を有する。その中でも、(Ca,Sr,Ba)AlSiN:Euおよび(CaAlSiN1-x(Si(3n+2)/4nO)x:Euは発光効率が高いことから、特に好ましく用いることができる。
 なお、本発明にいう赤色蛍光体は、その発光色が、図19に示すxy色度図(CIE 1931)における「RED」、「REDDISH ORANGE」または「ORANGE」に区分される蛍光体である。このような蛍光体は、大抵、発光ピーク波長を590~700nmの範囲に有する。
 本発明の白色半導体発光装置には、緑色光成分または赤色光成分の発生源の一部として、黄色蛍光体を用いることができる。黄色蛍光体とは、その発光色が、図19に示すxy色度図(CIE 1931)における「YELLOW GREEN」、「GREENISH YELLOW」、「YELLOW」または「YELLOWISH ORANGE」に区分される蛍光体である。好ましい黄色蛍光体としては、Ce3+を付活剤とし、ガーネット型酸化物結晶を母体とする蛍光体、例えば、(Y,Gd)Al12:Ce、TbAl12:Ceなどがある。他の好ましい黄色蛍光体には、Ce3+を付活剤とし、ランタンケイ素窒化物結晶を母体とする蛍光体、例えば、LaSi11:Ce、Ca1.5xLa3-xSi11:Ceなどがある。この種の黄色蛍光体は、青色半導体発光素子を励起源として用いる場合に適しているが、青色蛍光体が発する光を用いても励起可能である。
 本発明の白色半導体発光装置は、白色照明に適した光、すなわち、光色の黒体輻射軌跡からの偏差Duvが-20~+20の範囲、好ましくは-6.0~+6.0の範囲に入る光を発生させることを目的としている。いうまでもないことだが、出力光の色は、出力光を構成する成分光間の強度バランスを調整することにより、設定することができる。白色発光ユニットを備える実施形態においては、半導体発光素子と蛍光体とを組合せてなる公知の白色発光装置(例えば、白色LED)で採用されている手法を適宜用いて、白色発光ユニットが放出する白色光の相関色温度を設定することができる。
 本発明者等が見出したところによれば、鮮やかな赤色の再現性が良好な白色半導体発光装置は、次の2つの条件が充たされる場合に得られる。第1の条件は、当該発光装置の出力光のスペクトルが、極大波長を615~645nmの範囲内に有していることである。第2の条件は、光束で規格化した当該発光装置の出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の、80~100%であることである。
 驚くべきは、出力光のスペクトルが、赤色スペクトル領域(590~780nm)に有する極大波長が630nm未満の場合ですら、この第2の条件を充足させることによって、白色半導体発光装置の特殊演色評価数R9はかなりの程度改善されることである。この事実は、鮮やかな赤色の再現性を犠牲にすることなく、発光装置のストークスシフト損失を低減させることが可能であることを示している。
 その一方で、出力光のスペクトルが深い赤色成分を豊富に含んでいても、第2の条件を充たさない白色半導体発光装置の特殊演色評価数R9は極めて低い値となる場合がある。本発明者等はこのことを、発光ピーク波長を約660nmに有する赤色蛍光体CaAlSiN:Euを用いた白色LEDの試作を通して確認している。この事実は、当業者間においても従来知られていなかった新知見であると思われる。
 以下の説明では、光束で規格化した発光装置の出力光のスペクトルの波長580nmにおける強度(I1)と、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度(I2)との比率(I1/I2)を、「580nm強度比」と呼ぶ場合がある。
 上記第2の条件における好ましい580nm強度比は、上記第1の条件に係る極大波長が存する波長域によって異なる。出力光のスペクトルが極大波長を615nm以上630nm未満の範囲内に有するときには、580nm強度比は85~100%であることが好ましく、85~95%であることがより好ましい。一方、出力光のスペクトルが極大波長を630~645nmの範囲内に有するときには、580nm強度比は90~100%であることが好ましい。
 上記第2の条件にいう演色性評価用基準光とは、光源の演色性評価方法を定める日本工業規格JIS Z8726:1990に規定される基準光であり、試料光源たる白色半導体発光装置の相関色温度が5000K未満のときは完全放射体の光、また、該相関色温度が5000K以上のときはCIE昼光である。完全放射体およびCIE昼光の定義はJIS Z8720:2000(対応国際規格 ISO/CIE 10526:1991)に従う。
 また、上記第2の条件にいう、光束で規格化した光のスペクトルとは、下記数式(1)により決定される光束Φが1(unity)となるように規格化したスペクトル(下記数式(1)中の分光放射束Φe)をいう。
Figure JPOXMLDOC01-appb-M000001
 (1)
 ここで、
  Φ:光束[lm]
  K:最大視感度[lm/W]
  Vλ:明所視標準比視感度
  Φe:分光放射束[W/nm]
  λ:波長[nm]、である。
 上記第1の条件を充たす白色半導体発光装置を得るには、赤色光成分の生成源に、発光バンドの半値全幅が80nm以上、かつ、発光ピーク波長が625nm以上である赤色蛍光体を用いればよい。使用する赤色蛍光体がひとつだけの場合には、発光ピーク波長を625~655nmの範囲に有するものを用いることが好ましい。複数の赤色蛍光体を使用する場合には、少なくともひとつを発光ピーク波長がλ未満の範囲に存する赤色蛍光体から選択し、他の少なくともひとつを発光ピーク波長がλ以上の範囲に存する赤色蛍光体から選択することができる。ここで、λは625~655nmの範囲内の任意の波長である。該複数の赤色蛍光体は、その全てを発光ピーク波長が625~655nmの範囲に存する赤色蛍光体から選択することができる。一例では、複数の赤色蛍光体の全てを、発光ピーク波長を630nm以上に有するものから選択してもよい。
 上記第2の条件を充たすために、緑色光成分の生成源に用いる蛍光体と、赤色光成分の生成源に用いる蛍光体の、適切な選択が望まれる。例えば、前者として緑色蛍光体を、後者として赤色蛍光体を用いる場合、その両方に、発光スペクトルの波長580nmにおける相対強度(各蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度。以下では、これを略して、「580nm相対強度」ともいう。)が0.3未満であるもののみを用いた場合には、発光装置の580nm強度比が80%を下回る可能性が高い。逆に、緑色蛍光体と赤色蛍光体の両方に、580nm相対強度が0.5より大きいもののみを用いた場合には、発光装置の580nm強度比が100%を超える可能性が高い。
 好適かつ簡便な方法として、580nm相対強度が異なる複数の赤色蛍光体を組合せて用いることにより、上記第2の条件を充足させることができる。例えば、ある赤色蛍光体(赤色蛍光体-1)を単独で用いたところ、得られた白色半導体発光装置の演色評価数Raは良好(例えば85)であるが、特殊演色評価数R9が低かった(例えば、60未満)とする。この白色発光装置について580nm強度比を調べ、それが100%より大きければ、赤色蛍光体-1に加え、580nm相対強度が赤色蛍光体-1よりも低い、他の赤色蛍光体(赤色蛍光体-2)を用いることにより、580nm相対強度を100%以下とすることができる。反対に、赤色蛍光体-1を単独で用いて得られた白色半導体発光装置の580nm強度比が80%より小さければ、赤色蛍光体-1に加えて、580nm相対強度が赤色蛍光体-1よりも高い、他の赤色蛍光体(赤色蛍光体-3)を追加的に用いればよい。赤色蛍光体-2および赤色蛍光体-3は、赤色蛍光体-1との間の580nm相対強度の差が大きい程、少量の追加使用で白色発光装置の580nm強度比に大きな変化をもたらす。従って、この580nm相対強度の差は好ましくは0.2以上、より好ましくは0.3以上である。
 上記の例において、赤色蛍光体-2を追加使用する場合には、その赤色蛍光体-2が赤色蛍光体-1よりも発光ピーク波長を長波長側に有していることが好ましい。そのような赤色蛍光体-2の追加的使用は、白色発光装置の580nm強度比を低下させるとともに、発光装置の出力光スペクトルが赤色スペクトル領域(590~780nm)に有する極大波長を長波長化させる。この極大波長が長い程、R9が最大となる580nm強度比は大きくなる傾向があるので、この赤色蛍光体-2は少量の追加で大きなR9改善効果を与えることになる。つまり、赤色蛍光体-2の追加に起因して生じる様々な影響を最小限に抑えながら、鮮やかな赤色に関する再現性を改善することができる。
 赤色蛍光体の中でもSrCa1-xAlSiN:Eu(0<x<1)およびCa1-xAl1-xSi1+x3-xx:Euは、単独で使用した場合でも演色評価数Raおよび特殊演色評価数R9の良好な白色半導体発光装置を与えるが、それに加えて、発光ピーク波長をより長波長側に有し、かつより低い580nm相対強度を有する赤色蛍光体(例えば、CaAlSiN:Eu)を併用することにより、更に特殊演色評価数R9が改善された白色発光装置を得ることができる。Ca1-xAl1-xSi1+x3-xx:Euと類似した発光スペクトルを有する赤色蛍光体SrAlSi:Euについても、同様の効果が期待できる。
 上記第2の条件を充たすために、580nm相対強度が異なる複数の赤色蛍光体を組合せて用いる代わりに、580nm相対強度が異なる複数の緑色蛍光体を組み合せて用いることや、あるいは、580nm相対強度が異なる複数の黄色蛍光体を組み合せて用いることも、また可能である。
 本発明の実施形態に係る白色半導体発光装置は、それぞれが半導体発光素子と波長変換部とを備える第1~第N(ここで、Nは2以上の整数)の白色発光ユニットを有し、該第1~第Nの白色発光ユニットからそれぞれ放出される一次白色光が混合されてなる合成光を出力光とする発光装置であってもよい。かかる発光装置は、第1の一次白色光を放出する白色発光ユニット(白色発光ユニット-1)と第2の一次白色光を放出する白色発光ユニット(白色発光ユニット-2)とを含み、光束で規格化した該第1の一次白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度よりも高く、光束で規格化した該第2の一次白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度よりも低いものであってもよい。この場合、白色発光ユニット-1への投入電力と白色発光ユニット-2への投入電力とを制御して、発光装置の出力光に占める第1の一次白色光の比率と第2の一次白色光の比率を調整することによって、発光装置が前記第2の条件を充足する状態を達成することができる。
 このような、2種類の白色発光ユニットへの投入電力の比率制御による白色発光装置のR9制御を可能とするために、上記の白色発光ユニット-1に用いる赤色蛍光体と白色発光ユニット-2に用いる赤色蛍光体の580nm相対強度を相異ならしめることができる。この実施形態において、第1の一次白色光と第2の一次白色光の逆数相関色温度差を小さくすれば、白色発光ユニット-1と白色発光ユニット-2との発光強度比を変化させたときの、白色半導体発光装置の出力光の色変化を抑制できる。この目的のためには、第1の一次白色光と第2の一次白色光の逆数相関色温度差は50MK-1以下とすることが好ましく、25MK-1以下とすることがより好ましい。
 後記表6に示す模擬白色発光装置S-1は、かかる実施形態に係る白色半導体発光装置のシミュレーション例と見なすことができる。模擬白色発光装置S-1において、上記白色発光ユニット-1および白色発光ユニット-2に相当するのは白色LEDサンプルV-2およびV-7である。V-2が放出する一次白色光とV-7が放出する一次白色光の強度比が10:0~0:10まで変化したとき、該模擬白色発光装置S-1の演色性は大きく変化するにもかかわらず、該2つの一次白色光の色度差が極めて小さいので、模擬白色発光装置S-1の出力光の色度変化は殆ど生じていない。
 上記第2の条件を充たすための別の方法として、出力光のフィルタリングが挙げられる。この方法は、該第2の条件を充たすうえで出力光の580nm強度比を低下させる必要がある場合に採用し得るものであり、580nmを含む波長帯の光をフィルタ手段を用いたフィルタリングによって白色半導体発光装置の出力光から部分的に除去するというものである。フィルタ手段は具体的構成により限定されるものではなく、光学的原理または光吸収物質による吸収に基づいて透過光または反射光から580nmを含む波長帯の光を部分的に除去する機能を有する、任意の光透過部材または光反射部材であり得る。光透過部材であるフィルタ手段として、日本国特開2010-39206号公報に開示されたマイナスフィルタ(光学フィルタ)や、日本国特開2009-251511号公報に開示された、シアニン系化合物、スクワリリウム系化合物、テトラアザポルフィリン系化合物などからなる波長選択吸収色素を光吸収物質として含有する吸収フィルタなどが好ましく例示される。また、光反射部材であるフィルタ手段の一例として、このような波長選択吸収色素が反射面に固定化された光反射器、あるいは、このような波長選択吸収色素を添加した樹脂で形成した反射面を有する光反射器が挙げられる。
 上記フィルタ手段の設置位置は限定されず、例えば白色発光ユニットを含む白色半導体発光装置の場合には、白色発光ユニット内にフィルタ手段を設置し、予め580nmを含む波長帯の光が該フィルタ手段によって部分的に除去された白色光が、該ユニットから放出されるよう構成することができる。そのためには、白色発光ユニット内で生じる580nmを含む波長帯の光が、該ユニット内から外部に放出されるまでに通過する経路上に、上記フィルタ手段(光透過部材または光反射部材)を設置すればよい。一実施形態では、白色発光ユニット内に設けられた、蛍光体粒子が分散された透明な固体マトリックス(波長変換部)に対して、上記の波長選択吸収色素を添加することができる。すなわち、波長変換部にフィルタ手段が一体化された構成である。
 白色発光ユニットが放出する白色光を外部に導く光学系を備える白色半導体発光装置においては、該光学系の一部に、580nmを含む波長帯の光の一部を該白色光から除去するための上記フィルタ手段を含めることができる。この場合には、フィルタリング除去する光の量が調整可能となるよう、フィルタ手段を着脱可能あるいは交換可能な形式で光学系に組み込んでもよい。かかる構成によれば、白色発光ユニットから放出される白色光のスペクトルに応じてフィルタ手段を機能させることにより、発光装置の580nm強度比を最適化すること、すなわち、特殊演色評価数R9を最大化することが、可能となる。
 複数の発光ユニットを備え、該複数の発光ユニットからそれぞれ放出される光が混合されてなる合成光を出力光とする白色半導体発光装置の場合には、少なくともひとつの発光ユニットが放出する光から、一般的なショートパスフィルタまたはロングパスフィルタを用いて580nmを含む波長帯を除去することにより、580nm強度比を下げることが可能である。例を用いて説明すると、青色発光ユニット、緑色発光ユニットおよび赤色発光ユニットを備える白色半導体発光装置では、ショートパスフィルタを用いて緑色発光ユニットが放出する光から波長580nmを含む長波長側の波長成分を除去する、あるいは、ロングパスフィルタを用いて赤色発光ユニットが放出する光から波長580nmを含む短波長側の波長成分を除去することによって、580nm強度比を低下させることができる。
 本発明の白色半導体発光装置は、白色光のみを出力可能な発光装置に限定されるものではなく、白色光以外の光を発生させる機能を兼ね備えていてもよい。また、本発明の白色半導体発光装置は、色温度可変の白色発光装置、すなわち、種々の色温度を有する白色光を出力可能な白色発光装置であってもよい。また、本発明の白色半導体発光装置は、点灯モードの切替により演色性を変更ないし調節できるものであってもよい。
<実験結果>
 以下には、本発明者等が行った、実験(シミュレーションを含む)の結果を記載する。前述の第1の条件および第2の条件が充足されるとき白色半導体発光装置の鮮やかな赤色に関する再現性が改善される、との知見は、この実験を通して得られたものである。表1は、実験に用いた蛍光体のリストである。
Figure JPOXMLDOC01-appb-T000002
 表1には、各蛍光体について、本明細書で用いる名称、発光色に基づく種別、一般式、発光スペクトルの特性を示している。発光スペクトルの特性としては、主発光バンドのピーク波長(発光ピーク波長)および半値全幅と、「相対強度@580nm」を示している。これらはいずれも、発光ピーク波長の欄に括弧書きで記された波長で励起したときの値である。「相対強度@580nm」とは前述の580nm相対強度と同義であり、発光ピーク波長における発光スペククトルの強度(発光ピーク強度)を1として、波長580nmにおける発光スペクトルの強度を相対的に表した値である。
 蛍光体の発光スペクトルの測定は、当該分野における常法に従って行った。ただし、SBSの励起波長402nmにおける発光スペクトル特性は例外で、赤色発光ユニットの発光スペクトル測定結果に基づいている。この赤色発光ユニットは、発光ピーク波長402nmのInGaN系発光ダイオードチップ1個を3528SMD型PPA樹脂パッケージに実装し、パウダー状のSBSを添加したシリコーン樹脂組成物で封止することにより作製した。発光ダイオードチップのサイズは350μm角、発光スペクトル測定時の該赤色発光ユニットへの印加電流は20mAである。
 CASON-1およびCASON-2は、いずれも一般式Ca1-xAl1-xSi1+x3-xx:Euで表される赤色蛍光体であるが、恐らくはx値の違い等の原因により、発光特性が異なっている。Ca1-xAl1-xSi1+x3-xx:Euの母体はCaAlSiNとSiOとの固溶体であり、(CaAlSiN1-x(SiO)xと表されることもある。この蛍光体の一般式は、ときどき、CaAlSi(N,O):Euと表記される場合がある。
 CASN-1およびCASN-2は、いずれも一般式CaAlSiN:Euで表される赤色蛍光体であるが、異なる発光特性を有している。同一の一般式で表される蛍光体(母体が同一の基本構造を有する蛍光体)が、付活剤濃度、不純物濃度、母体組成の一般式からのズレなどの原因によって異なる発光特性を示すという事実、また、この事実を利用して、市場の要求に応じた種々の発光特性を有する蛍光体が生産されていることは、当該技術分野ではよく知られている。
 表1に掲げた蛍光体を用いて作製した白色LEDサンプルのリストを、表2および表3に示す。表2に示すV-1からV-11までの11種類のサンプルは、発光ピーク波長を約405nmに有する紫色発光ダイオード素子を蛍光体の励起源に用いている。一方、表3に示すB-1からB-10までの10種類のサンプルは、発光ピーク波長を約450nmに有する青色発光ダイオード素子を、青色光の発生源および蛍光体の励起源に用いている。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 白色LEDサンプルV-1~V-11、B-1~B-10は、いずれも、350μm角のInGaN系発光ダイオード素子(チップ)1個を3528SMD型PPA樹脂パッケージに実装し、パウダー状の蛍光体を添加したシリコーン樹脂組成物で封止することにより作製した。表2および表3には、各サンプルに用いた蛍光体の名称と、発光ダイオード素子を封止するシリコーン樹脂組成物における各蛍光体の配合比(濃度)を示している。例えば、サンプルV-1は、青色蛍光体BAM、緑色蛍光体BSSおよび赤色蛍光体CASON-1を、それぞれ9.0wt%、1.2wt%および4.3wt%の濃度で含むシリコーン樹脂組成物により、紫色発光ダイオード素子が封止された構造を有している。
 表4および表5に、白色LEDサンプルV-1~V-11、B-1~B-10のそれぞれの発光特性を示す。相関色温度、Duv、Ra、R9、赤色スペクトル領域における極大波長、および580nm強度比の各値は、いずれも、1個の白色LEDサンプルに電流20mAを印加して発光させたときの発光スペクトルに基づいている。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 赤色蛍光体としてCASON-1を用いた白色LEDサンプルV-1と、CASON-2を用いた白色LEDサンプルV-2に着目すると、表4に示すように、演色評価数Raが前者では97、後者では96と、いずれも極めて高い。また、特殊演色評価数R9についても、V-1が88、V-2が76と、いずれも良好な値である。しかし、Raとは異なり、R9に関してはV-1とV-2の差が比較的大きい。
 図1は、白色LEDサンプルV-1とV-2の発光スペクトルを、赤色スペクトル領域(波長590~780nm)に存する極大波長(V-1は631nm、V-2は624nm)におけるスペクトル強度(赤色スペクトル領域におけるピーク強度)で規格化し、重ねて示したものである。図1からは、580nmを中心とする幅約100nmの波長範囲内で、V-1のスペクトル強度をV-2のスペクトル強度が上回っていることがわかる。   
 図2は、白色LEDサンプルV-1の発光スペクトルと、演色性評価用基準光(V-1と同一の相関色温度を有する完全放射体の光)のスペクトルとを、重ねて示したものである。2つのスペクトルの強度は、上記数式(1)により決定される光束が同一となるように規格化されている。
 図3は、白色LEDサンプルV-2の発光スペクトルと、演色性評価用基準光(V-2と同一の相関色温度を有する完全放射体の光)のスペクトルとを、重ねて示したものである。2つのスペクトルの強度は、上記数式(1)により決定される光束が等しくなるように規格化されている。
 図2と図3を比較すると、一見したところでは、白色LEDサンプルの発光スペクトルの演色性評価用基準光のスペクトルからの乖離の程度に関して、V-1とV-2との間に大きな違いはないように見える。しかし、波長580nmにおけるスペクトル強度に着目すると、V-1の発光スペクトル強度は基準光のスペクトル強度を下回っているのに対し(580nm強度比97%)、V-2の発光スペクトル強度は演色性評価用基準光のスペクトル強度を僅かであるが上回っている(580nm強度比101%)。
 表6に示すのは、白色LEDサンプルV-2とV-7とを組み合わせることにより得られる理想的な白色発光装置の発光特性をシミュレートした結果である。換言すれば、V-2とV-7のそれぞれの発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置S-1の発光特性である。ここで、V-7は、今回使用した赤色蛍光体の中では発光ピーク波長が最も長波長である、CASN-1を赤色光成分の発生源とする白色LEDサンプルである。図4に、V-7の発光スペクトルを示す。
 表6のシミュレーションでは、それぞれ光束で規格化した白色LEDサンプルV-2およびV-7の発光スペクトルを種々の比率で合算して合成スペクトルを作成し、その合成スペクトルに基づいて色度座標値、相関色温度、Duv、Ra、R9および580nm強度比を算出した。表6において、例えば、「合成スペクトル中の白色LED(a)の発光スペクトルの比率」が0.4、「合成スペクトル中の白色LED(b)の発光スペクトルの比率」が0.6である列には、光束で規格化したV-2の発光スペクトルと光束で規格化したV-7の発光スペクトルとを4:6の比率で合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置S-1の発光特性が示されている。
Figure JPOXMLDOC01-appb-T000007
 表6に示すように、模擬白色発光装置S-1のRaおよびR9が最大となるのは、出力光のスペクトルが、V-2の発光スペクトルとV-7の発光スペクトルを8:2の比率で合算した合成スペクトルのときである(Ra=98、R9=95)。このときの580nm強度比は96%である。図5に、この合成スペクトルを、演色性評価用基準光のスペクトルとともに示す。図5において、2つのスペクトルの強度は、上記数式(1)により決定される光束が等しくなるように規格化されている。
 一方、実際にCASON-2およびCASN-1を赤色蛍光体に用いて作製した白色LEDサンプルであるV-3およびV-4の発光スペクトルを、図6および図7にそれぞれ示す。いずれの図にも、演色性評価用基準光のスペクトルを併せて表示している。それぞれの図において、白色LEDサンプルの発光スペクトルと基準光のスペクトルの強度は、上記数式(1)により決定される光束が等しくなるように規格化されている。
 図6に発光スペクトルを示す白色LEDサンプルV-3は、極めて優れた演色性を有している(Ra=97、R9=98)。このV-3の580nm強度比は95%である。また、図7に発光スペクトルを示す白色LEDサンプルV-4も、高い演色性を備えている(Ra=96、R9=93)。V-4の580nm強度比は92%である。
 表7~11に示すのは、それぞれ、2種の白色LEDサンプルを組み合わせることにより得られる理想的な白色発光装置の発光特性をシミュレートした結果である。換言すれば、2種の白色LEDサンプルのそれぞれの発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置の発光特性を計算した結果である。各シミュレーションにおいて、表6のシミュレーションと同様に、それぞれ光束で規格化した2種の白色LEDサンプルの発光スペクトルを、種々の比率で合算して合成スペクトルを作成し、その合成スペクトルに基づいて色度座標値、相関色温度、Duv、Ra、R9および580nm強度比を算出した。
 表7には、白色LEDサンプルV-6およびV-7の発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置S-2の発光特性を示す。図8にはV-6の発光スペクトルを示す。
 表7のシミュレーションによれば、V-6の発光スペクトルとV-7の発光スペクトルを8:2の比率で合算した合成スペクトル(580nm強度比89%)を出力光のスペクトルとする模擬白色発光装置は、出力光のスペクトルが赤色スペクトル領域に有する極大波長が627nmと比較的短い波長であるにもかかわらず、鮮やかな赤色に関する再現性が極めて高いもの(R9=96)となる。
Figure JPOXMLDOC01-appb-T000008
 表8には、白色LEDサンプルV-5およびV-7の発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置S-3の発光特性を示す。図9にはV-5の発光スペクトルを示す。
 白色LEDサンプルV-5はそれ自体の演色性が必ずしも良好ではない(Ra=65、R9=-60)。白色LEDサンプルV-7も同様である(Ra=69、R9=-21)。しかし、表8のシミュレーションによれば、V-5の発光スペクトルとV-7の発光スペクトルを3:7の比率で合算した合成スペクトル(580nm強度比102%)を出力光のスペクトルとする模擬白色発光装置は、良好な演色性を備えるものとなる(Ra=96、R9=87)。このシミュレーション結果は、本発明者等がこれまで確認した中で唯一、580nm強度比が100%を超える場合においてR9が80を超えた例であり、出力光のスペクトルが赤色スペクトル領域に有する極大波長が長くなると、R9が最大となる580nm強度比が大きくなる傾向の存在を示すものと考えている。
Figure JPOXMLDOC01-appb-T000009
 表9には、白色LEDサンプルV-6およびV-1の発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置S-4の発光特性を示す。V-6とV-1はそれぞれが比較的高い演色性を有しているが、この表が示すように、これらの発光スペクトルの合算比率が9:1~1:9の範囲において、模擬白色発光装置S-4の演色性にはさほど大きな変化が見られなかった。その理由のひとつには、白色LEDサンプルV-6に用いられている赤色蛍光体SCASNと、白色LEDサンプルV-1に用いられている赤色蛍光体CASON-1の580nm相対強度の差が小さいことが考えられる。また、SCASNよりCASON-1の発光ピーク波長が長波長であるのに対し、580nm相対強度はSCASNよりCASON-1の方が大きく、このような赤色蛍光体の組み合わせの場合には際立った演色性向上効果が生じない可能性が考えられる。
Figure JPOXMLDOC01-appb-T000010
 表10には、白色LEDサンプルV-5およびV-1の発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置S-5の発光特性を示す。模擬白色発光装置S-5では、V-5の発光スペクトルとV-1の発光スペクトルの合算比率が9:1~1:9の範囲で出力光の580nm強度比が100%を超えており、該合算比率が2:8および1:9のとき演色評価数Raは90に達したが、特殊演色評価数R9は70に達しなかった。
Figure JPOXMLDOC01-appb-T000011
 表11には、白色LEDサンプルB-5およびB-6の発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置S-6の発光特性を示す。また、図10に白色LEDサンプルB-5の発光スペクトルを、図11に白色LEDサンプルB-6の発光スペクトルを、それぞれ示す。B-5は、青色発光ダイオード素子に、黄色蛍光体YAGと、赤色蛍光体CASN-2とを組み合わせたものであり、緑色蛍光体を備えていない。B-5は良好な演色評価数を有するが(Ra=83)、鮮やかな赤色に関する再現性には劣っている(R9=40)。一方、青色発光ダイオード素子に緑色蛍光体CSMSと赤色蛍光体CASN-2を組み合わせたB-6は高い演色評価数を有し(Ra=95)、鮮やかな赤色に関する再現性にも優れている(R9=93)。
 意外なことに、模擬白色発光装置S-6のRaおよびR9が最大となったのは、出力光のスペクトルが、B-5の発光スペクトルとB-6の発光スペクトルを1:9の比率で合算した合成スペクトルのときだということである(Ra=98、R9=98)。このときの580nm強度比は94%である。また、これらのスペクトルの合算比率が2:8(580nm強度比96%)のときも、模擬白色発光装置S-6のRaおよびR9は十分に良好な値であった(Ra=98、R9=90)。これらの結果を意外とする理由は、黄色蛍光体を用いた白色半導体発光装置は、一般に、これを用いないものよりも演色性に劣ると考えられているためである。
Figure JPOXMLDOC01-appb-T000012
 実際に、青色発光ダイオード素子と、緑色蛍光体CSMS、黄色蛍光体YAGおよび赤色蛍光体CASN-2を用いて作製した白色LEDサンプルは、B-7およびB-8である。このうち、580nm強度比が93%であるB-8は、極めて優れた演色性を有していた(Ra=98、R9=97)。一方、580nm強度比が101%であるB-7は、高い演色評価数を有するが(Ra=91)、鮮やかな赤色に関する再現性は良好ではなかった(R9=67)。図12にB-8の発光スペクトルを示す。
 図13は、表6~表11に示す6種類のシミュレーションから得られた模擬白色発光装置S-1~S-6の580nm強度比とR9の全てを、ひとつのグラフにプロットしたものである。グラフの横軸が580nm強度比、縦軸がR9である。プロットの結果は、発光装置が備える成分光の発生源(発光ダイオード素子、蛍光体)の種類によらない、ある特定の傾向が存在することを示している。すなわち、580nm強度比が約90%のところにR9のピークが存在し、580nm強度比がこれより低くなっても、また、高くなっても、R9は低下するという傾向である。したがって、半導体白色発光装置のR9を改善するには、その580nm強度比が80~100%の範囲内となるようにすればよいといえる。
 図14は、図13と同様のプロットを、模擬白色発光装置の出力光のスペクトルが赤色スペクトル領域に有する極大波長が630nm以下である場合について行った結果である。この図から、R9が最も高くなるのは、580nm強度比が90~100%のときであるといえる。
 図15は、図13と同様のプロットを、模擬白色発光装置の出力光のスペクトルが赤色スペクトル領域に有する極大波長が630nm以上である場合について行った結果である。この図から、R9が最も高くなるのは、580nm強度比が85~100%のときであり、特に、85~95%のときであるといえる。
 表6~表11に示す6種類のシミュレーションは、白色発光装置の発光スペクトルが赤色スペクトル領域に有する極大波長が615~645nmの範囲内に存すれば、前述の条件2を充足させることにより、鮮やかな赤色に関する演色性の改善が可能であることを示している。
 表12~14に示すのは、色温度が大きく異なる2種の白色LEDサンプルを組み合わせることにより得られる理想的な白色発光装置の発光特性をシミュレートした結果である。換言すれば、色温度が大きく異なる2種の白色LEDサンプルのそれぞれの発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置の発光特性を計算した結果である。表12~14の各シミュレーションでは、それぞれ光束で規格化した2種の白色LEDサンプルの発光スペクトルを種々の比率で合算して合成スペクトルを作成し、その合成スペクトルに基づいて色度座標値、相関色温度、Duv、Ra、R9および580nm強度比を算出した。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表12は、白色LEDサンプルB-9(相関色温度約6500K)およびB-2(相関色温度約3000K)の発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置S-7の発光特性を計算した結果である。図16には白色LEDサンプルB-9の発光スペクトルを、また、図17には白色LEDサンプルB-2の発光スペクトルを、それぞれ示す。模擬白色発光装置S-7の相関色温度は、合成スペクトルに含まれるB-9およびB-2の発光スペクトルの比率に応じて、B-9の相関色温度とB-2の相関色温度との間で変化している。相関色温度3000~6500Kの全範囲で模擬白色発光装置S-7の580nm強度比は92~94%となり、特殊演色評価数R9は89~98という高い値となった。
 表13は、白色LEDサンプルB-10(相関色温度約6400K)および白色LEDサンプルB-2(相関色温度約3000K)の発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置S-8の発光特性を計算した結果である。図18には白色LEDサンプルB-10の発光スペクトルを示す。B-10は、演色評価数は高いが、鮮やかな赤色に関する再現性には劣っている(Ra=90、R9=45)。一方、B-2は、演色評価数が高く、かつ、鮮やかな赤色に関する再現性にも優れている(Ra=96、R9=90)。模擬白色発光装置S-8の演色評価数Raは、出力光のスペクトルが、B-10の発光スペクトルとB-2の発光スペクトルとをいずれの比率で合算した合成スペクトルである場合も、90以上という高い値となった。一方、R9は、B-2の発光スペクトルが合成スペクトルに占める比率が高くなるにつれて上昇する傾向を示した。580nm強度比とR9との間には負の相関があり、580nm強度比が100%を下回るときに、R9は86~91という高い値となった。
 表14は、白色LEDサンプルB-9(相関色温度約6500K)および白色LEDサンプルB-4(相関色温度約2900K)の発光スペクトルを合算した合成スペクトルを出力光のスペクトルとする、模擬白色発光装置S-9の発光特性である。B-9は、演色評価数が高く、かつ、鮮やかな赤色に関する再現性にも優れている(Ra=95、R9=94)。一方、B-4は演色評価数は高いが、鮮やかな赤色に関する再現性には劣っている(Ra=88、R9=37)。模擬白色発光装置S-9の演色評価数Raは、出力光のスペクトルが、B-9の発光スペクトルとB-4の発光スペクトルとをいずれの比率で合算した合成スペクトルである場合も、90以上という高い値となった。一方、R9は、B-9の発光スペクトルが合成スペクトルに占める比率が高くなるにつれて上昇する傾向を示した。580nm強度比とR9との間には負の相関があり、580nm強度比が100%を下回るとき、R9は89~97という高い値となった。
 シミュレーションに用いていない白色LEDサンプルについて述べると、紫色発光ダイオード素子を蛍光体の励起源に用いたV-8、V-9、V-10およびV-11は、いずれも上記第1の条件および第2の条件を充足しており、かつ、鮮やかな赤色に関する再現性が良好である。この4つの白色LEDサンプルは、いずれも青色蛍光体がシミュレーションに用いた白色LEDサンプルと異なっている。また、V-8およびV-9に用いられている青色蛍光体と、V-10およびV-11に用いられている青色蛍光体とは異なっている。さらに、V-10およびV-11は、それぞれ、緑色蛍光体もシミュレーションに用いた白色LEDサンプルとは異なっている。
 青色発光ダイオード素子を青色光の発生源および蛍光体の励起源に用いたB-1およびB-3は、いずれも上記第1の条件を充足している。更に、前者は上記第2の条件も充足している。一方、後者は該第2の条件を充足していない。白色LEDサンプルB1の演色評価数Raと特殊演色評価数R9はいずれも極めて高い(Ra=97、R9=96)。それに対し、白色LEDサンプルB-3の演色評価数Raは良好であるが、特殊演色評価数R9は低い(Ra=89、R9=43)。
 本発明の実施形態には以下に記す白色半導体発光装置および照明装置が包含される。
(1)出力光が青色光成分と緑色光成分と赤色光成分とを含み、該青色光成分は440~480nmの範囲内のいずれかの波長を有する光を含み、該緑色光成分は515~560nmの範囲内のいずれかの波長を有する光を含み、該赤色光成分は615~645nmの範囲内のいずれかの波長を有する光を含む、白色半導体発光装置であって、該青色光成分の発生源は半導体発光素子または半導体発光素子が発する光を吸収して波長変換により該青色光成分を含む光を放出する第1の蛍光体のいずれかまたは両方を含み、該緑色光成分の発生源は半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体を含み、該赤色光成分の発生源は半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体を含み、該出力光のスペクトルが615~645nmの範囲に極大波長を有し、光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%である、白色半導体発光装置。
(2)該青色光成分の発生源が青色半導体発光素子を含む、上記(1)の白色半導体発光装置。
(3)該青色半導体発光素子が発光ピーク波長を440~470nmの範囲に有する青色発光ダイオード素子を含む、上記(2)の白色半導体発光装置。
(4)該出力光が、更に、発光ピーク波長を470~500nmの範囲に有する発光ダイオード素子が放出する光を含む、上記(3)の白色半導体発光装置。
(5)上記発光ピーク波長を470~500nmの範囲に有する発光ダイオード素子が、非極性または半極性のGaN基板と、該基板上にエピタキシャル成長した複数のGaN系半導体層とを含み、該複数のGaN系半導体層は発光デバイス構造を構成する層としてInGaN発光層と該InGaN発光層を挟むp型クラッド層およびn型クラッド層とを含む、上記(4)の白色半導体発光装置。
(6)該青色光成分の発生源が該第1の蛍光体を含み、該第1の蛍光体が青色蛍光体を含む、上記(1)の白色半導体発光装置。
(7)該青色蛍光体の励起源が、発光ピーク波長を400~420nmの範囲に有するInGaN系発光ダイオード素子を含む、上記(6)の白色半導体発光装置。
(8)該青色蛍光体が、Eu2+を付活剤とし、アルカリ土類アルミン酸塩またはアルカリ土類ハロリン酸塩からなる結晶を母体とする蛍光体を含む、上記(6)または(7)の白色半導体発光装置。
(9)該青色蛍光体が(Ba,Sr,Ca)MgAl1017:Eu、(Ca,Sr,Ba)(POCl:Eu、BaMgAl1017:EuおよびSr5-yBay(POCl:Eu(0<y<5)から選ばれる1種以上の蛍光体を含む、上記(8)の白色半導体発光装置。
(10)該第2の蛍光体が緑色蛍光体を含む、上記(1)~(9)のいずれかの白色半導体発光装置。
(11)該緑色蛍光体が、Eu2+を付活剤とし、アルカリ土類ケイ酸塩、アルカリ土類ケイ酸窒化物またはサイアロンからなる結晶を母体とする蛍光体を含む、上記(10)の白色半導体発光装置。
(12)該緑色蛍光体が、(Ba,Ca,Sr,Mg)SiO:Eu、(Ba,Sr,Ca)(Mg,Zn)Si:Eu、(Ba,Ca,Sr)Si12:Eu、(Ba,Ca,Sr)Si:Eu、(Ca,Sr,Ba)Si:Eu、βサイアロン:Eu、SrSi13Al21:EuおよびSrAlSi2135:Euから選ばれる1種以上の蛍光体を含む、上記(11)の白色半導体発光装置。
(13)該緑色蛍光体が、Ce3+を付活剤とし、ガーネット型酸化物またはアルカリ土類金属スカンジウム酸塩からなる結晶を母体とする蛍光体を含む、上記(10)~(12)のいずれかの白色半導体発光装置。
(14)該緑色蛍光体が、Ca(Sc,Mg)Si12:CeおよびCaSc:Ceから選ばれる1種以上の蛍光体を含む、上記(13)の白色半導体発光装置。
(15)該第2の蛍光体が、第1の緑色蛍光体と第2の緑色蛍光体とを含み、該第2の緑色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、該第1の緑色蛍光体よりも低い、上記(10)の白色半導体発光装置。
(16)該第3の蛍光体が赤色蛍光体を含む、上記(1)~(15)のいずれかの白色半導体発光装置。
(17)該第3の蛍光体が、発光バンドの半値全幅80nm以上の赤色蛍光体を含む、上記(16)の白色半導体発光装置。
(18)該赤色蛍光体が、Eu2+を付活剤とし、アルカリ土類ケイ窒化物、アルカリ土類ケイ酸窒化物、αサイアロンまたはアルカリ土類ケイ酸塩からなる結晶を母体とする蛍光体を含む、上記(17)の白色半導体発光装置。
(19)該赤色蛍光体が、(Ca,Sr,Ba)AlSiN:Eu、(Ca,Sr,Ba)Si:Eu、SrAlSi:Eu、(CaAlSiN1-x(Si(3n+2)/4nO)x:Eu、Ca1-xAl1-xSi1+x3-xx:Euおよび(Sr,Ba)SiO:Euから選ばれる1種以上の蛍光体を含む、上記(18)の白色半導体発光装置。
(20)該第3の蛍光体が、発光バンドの半値全幅が80nm以上かつ発光ピーク波長が625nm以上である赤色蛍光体を含む、上記(16)の白色半導体発光装置。
(21)該第3の蛍光体が、発光ピーク波長をλ未満の範囲に有する赤色蛍光体と発光ピーク波長をλ以上の範囲に有する赤色蛍光体とを含む、上記(16)または(20)の白色半導体発光装置。ここで、λは625~655nmの範囲内の任意の波長である。
(22)該第3の蛍光体が、第1の赤色蛍光体と第2の赤色蛍光体とを含み、該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、該第1の赤色蛍光体よりも低い、上記(16)の白色半導体発光装置。
(23)該第1の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度と、該第2の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度との差が、0.2以上である上記(22)の白色半導体発光装置。
(24)該第1の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度と、該第2の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度との差が、0.3以上である上記(23)の白色半導体発光装置。
(25)該第2の赤色蛍光体が該第1の赤色蛍光体よりも発光ピーク波長を長波長側に有している、上記(22)~(24)のいずれかの白色半導体発光装置。
(26)該第1の赤色蛍光体および該第2の赤色蛍光体は発光ピーク波長を630~655nmの範囲に有している、上記(22)~(25)のいずれかの白色半導体発光装置。
(27)該第1の赤色蛍光体がSrCa1-xAlSiN:Eu(0<x<1)、Ca1-xAl1-xSi1+x3-xx:EuまたはSrAlSi:Euを含む、上記(22)の白色半導体発光装置。
(28)該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が0.05以下である、上記(27)の白色半導体発光装置。
(29)該第2の赤色蛍光体がCaAlSiN:Euを含む、上記(27)または(28)の白色半導体発光装置。
(30)該第2の蛍光体または該第3の蛍光体のいずれかまたは両方が黄色蛍光体を含む、上記(1)~(29)のいずれかの白色半導体発光装置。
(31)該黄色蛍光体が、Ce3+を付活剤とし、ガーネット型酸化物またはランタンケイ素窒化物からなる結晶を母体とする蛍光体を含む、上記(30)の白色半導体発光装置。
(32)該黄色蛍光体が、(Y,Gd)Al12:Ce、TbAl12:Ce、LaSi11:CeおよびCa1.5xLa3-xSi11:Ceから選ばれる1種以上の蛍光体を含む、上記(31)の白色半導体発光装置。
(33)該青色光成分、該緑色光成分および該緑色光成分のいずれの発生源にも、硫黄を含む化合物の結晶を母体とする蛍光体を含まない、上記(1)~(32)のいずれかの白色半導体発光装置。
(34)該出力光の黒体輻射軌跡からの偏差Duvが-6.0~+6.0の範囲内である、上記(1)~(33)のいずれかの白色半導体発光装置。
(35)該出力光の相関色温度が2000K~6500Kである、上記(1)~(34)のいずれかの白色半導体発光装置。
(36)該出力光の相関色温度が2000K~4000Kである、上記(35)の白色半導体発光装置。
(37)該出力光のスペクトルが615nm以上630nm未満の範囲に極大波長を有し、光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の85~100%である、上記(1)~(36)のいずれかの白色半導体発光装置。
(38)該出力光のスペクトルが630~645nmの範囲に極大波長を有し、光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の90~100%である、上記(1)~(36)のいずれかの白色半導体発光装置。
(39)上記(1)~(38)のいずれかの白色半導体発光装置を含む照明装置。
 本発明の実施形態には以下に記す白色発光ユニットおよび照明装置が包含される。
(40)青色光成分と緑色光成分と赤色光成分とを含む白色光を放出し、該青色光成分は440~480nmの範囲内のいずれかの波長を有する光を含み、該緑色光成分は515~560nmの範囲内のいずれかの波長を有する光を含み、該赤色光成分は615~645nmの範囲内のいずれかの波長を有する光を含む、白色発光ユニットであって、該青色光成分を含む光を放出する半導体発光素子と、該半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体と、該半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体とを備え、該白色光のスペクトルが615~645nmの範囲に極大波長を有し、光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%である白色発光ユニット。
(41)該半導体発光素子が青色半導体発光素子を含む、上記(40)の白色発光ユニット。
(42)該青色半導体発光素子が発光ピーク波長を440~470nmの範囲に有する青色発光ダイオード素子を含む、上記(41)の白色発光ユニット。
(43)該青色光成分および/または該緑色光成分の発生源として、更に、発光ピーク波長を470~500nmの範囲に有する発光ダイオード素子を備える、上記(42)の白色発光ユニット。
(44)上記発光ピーク波長を470~500nmの範囲に有する発光ダイオード素子が、非極性または半極性のGaN基板と、該基板上にエピタキシャル成長した複数のGaN系半導体層とを含み、該複数のGaN系半導体層は発光デバイス構造を構成する層としてInGaN発光層と該InGaN発光層を挟むp型クラッド層およびn型クラッド層とを含む、上記(43)の白色発光ユニット。
(45)青色光成分と緑色光成分と赤色光成分とを含む白色光を放出し、該青色光成分は440~480nmの範囲内のいずれかの波長を有する光を含み、該緑色光成分は515~560nmの範囲内のいずれかの波長を有する光を含み、該赤色光成分は615~645nmの範囲内のいずれかの波長を有する光を含む、白色発光ユニットであって、半導体発光素子と、該半導体発光素子が発する光を吸収して波長変換により該青色光成分を含む光を放出する第1の蛍光体と、該半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体と、該半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体とを備え、該白色光のスペクトルが615~645nmの範囲に極大波長を有し、光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%である白色発光ユニット。
(46)該第1の蛍光体が青色蛍光体を含む、上記(45)の白色発光ユニット。
(47)該半導体発光素子が、発光ピーク波長を400~420nmの範囲に有するInGaN系紫色発光ダイオード素子を含む、上記(46)の白色発光ユニット。
(48)該青色蛍光体が、Eu2+を付活剤とし、アルカリ土類アルミン酸塩またはアルカリ土類ハロリン酸塩からなる結晶を母体とする蛍光体を含む、上記(46)または(47)の白色発光ユニット。
(49)該青色蛍光体が(Ba,Sr,Ca)MgAl1017:Eu、(Ca,Sr,Ba)(POCl:Eu、BaMgAl1017:EuおよびSr5-yBay(POCl:Eu(0<y<5)から選ばれる1種以上の蛍光体を含む、上記(48)の白色発光ユニット。
(50)該第2の蛍光体が緑色蛍光体を含む、上記(40)~(49)のいずれかの白色発光ユニット。
(51)該緑色蛍光体が、Eu2+を付活剤とし、アルカリ土類ケイ酸塩、アルカリ土類ケイ酸窒化物またはサイアロンからなる結晶を母体とする蛍光体を含む、上記(50)の白色発光ユニット。
(52)該緑色蛍光体が、(Ba,Ca,Sr,Mg)SiO:Eu、(Ba,Sr,Ca)(Mg,Zn)Si:Eu、(Ba,Ca,Sr)Si12:Eu、(Ba,Ca,Sr)Si:Eu、(Ca,Sr,Ba)Si:Eu、βサイアロン:Eu、SrSi13Al21:EuおよびSrAlSi2135:Euから選ばれる1種以上の蛍光体を含む、上記(51)の白色発光ユニット。
(53)該緑色蛍光体が、Ce3+を付活剤とし、ガーネット型酸化物またはアルカリ土類金属スカンジウム酸塩からなる結晶を母体とする蛍光体を含む、上記(50)~(52)のいずれかの白色発光ユニット。
(54)該緑色蛍光体が、Ca(Sc,Mg)Si12:CeおよびCaSc:Ceから選ばれる1種以上の蛍光体を含む、上記(53)の白色発光ユニット。
(55)該第2の蛍光体が、第1の緑色蛍光体と第2の緑色蛍光体とを含み、該第2の緑色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、該第1の緑色蛍光体よりも低い、上記(50)の白色発光ユニット。
(56)該第3の蛍光体が赤色蛍光体を含む、上記(40)~(55)のいずれかの白色発光ユニット。
(57)該第3の蛍光体が、発光バンドの半値全幅80nm以上の赤色蛍光体を含む、上記(56)の白色発光ユニット。
(58)該赤色蛍光体が、Eu2+を付活剤とし、アルカリ土類ケイ窒化物、アルカリ土類ケイ酸窒化物、αサイアロンまたはアルカリ土類ケイ酸塩からなる結晶を母体とする蛍光体を含む、上記(57)の白色発光ユニット。
(59)該赤色蛍光体が、(Ca,Sr,Ba)AlSiN:Eu、(Ca,Sr,Ba)Si:Eu、SrAlSi:Eu、(CaAlSiN1-x(Si(3n+2)/4nO)x:Eu、Ca1-xAl1-xSi1+x3-xx:Euおよび(Sr,Ba)SiO:Euから選ばれる1種以上の蛍光体を含む、上記(58)の白色発光ユニット。
(60)該第3の蛍光体が、発光バンドの半値全幅が80nm以上かつ発光ピーク波長が625nm以上である赤色蛍光体を含む、上記(56)の白色発光ユニット。
(61)該第3の蛍光体が、発光ピーク波長をλ未満の範囲に有する赤色蛍光体と発光ピーク波長をλ以上の範囲に有する赤色蛍光体とを含む、上記(56)または(60)の白色発光ユニット。ここで、λは625~655nmの範囲内の任意の波長である。
(62)該第3の蛍光体が、第1の赤色蛍光体と第2の赤色蛍光体とを含み、該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、該第1の赤色蛍光体よりも低い、上記(56)の白色発光ユニット。
(63)該第1の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度と、該第2の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度との差が、0.2以上である上記(62)の白色発光ユニット。
(64)該第1の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度と、該第2の赤色蛍光体の発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度との差が、0.3以上である上記(63)の白色発光ユニット。
(65)該第2の赤色蛍光体が該第1の赤色蛍光体よりも発光ピーク波長を長波長側に有している、上記(62)~(64)のいずれかの白色発光ユニット。
(66)該第1の赤色蛍光体および該第2の赤色蛍光体は発光ピーク波長を630~655nmの範囲に有している、上記(62)~(65)のいずれかの白色発光ユニット。
(67)該第1の赤色蛍光体がSrCa1-xAlSiN:Eu(0<x<1)、Ca1-xAl1-xSi1+x3-xx:EuまたはSrAlSi:Euを含む、上記(62)の白色発光ユニット。
(68)該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が0.05以下である、上記(67)の白色発光ユニット。
(69)該第2の赤色蛍光体がCaAlSiN:Euを含む、上記(67)または(68)の白色発光ユニット。
(70)該第2の蛍光体または該第3の蛍光体のいずれかまたは両方が黄色蛍光体を含む、上記(40)~(69)のいずれかの白色発光ユニット。
(71)該黄色蛍光体が、Ce3+を付活剤とし、ガーネット型酸化物またはランタンケイ素窒化物からなる結晶を母体とする蛍光体を含む、上記(70)の白色発光ユニット。
(72)該黄色蛍光体が、(Y,Gd)Al12:Ce、TbAl12:Ce、LaSi11:CeおよびCa1.5xLa3-xSi11:Ceから選ばれる1種以上の蛍光体を含む、上記(71)の白色発光ユニット。
(73)硫黄を含む化合物の結晶を母体とする蛍光体を含まない、上記(40)~(72)のいずれかの白色発光ユニット。
(74)該白色光の黒体輻射軌跡からの偏差Duvが-6.0~+6.0の範囲内である、上記(40)~(73)のいずれかの白色発光ユニット。
(75)該白色光の相関色温度が2000K~6500Kである、上記(40)~(74)のいずれかの白色発光ユニット。
(76)該白色光の相関色温度が2000K~4000Kである、上記(75)の白色発光ユニット。
(77)該白色光のスペクトルが615nm以上630nm未満の範囲に極大波長を有し、光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の85~100%である、上記(40)~(76)のいずれかの白色発光ユニット。
(78)該白色光のスペクトルが630~645nmの範囲に極大波長を有し、光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の90~100%である、上記(40)~(76)のいずれかの白色発光ユニット。
(79)上記(40)~(78)のいずれかの白色発光ユニットを含む照明装置。
 本発明の実施形態には以下に記す白色半導体発光装置および照明装置が包含される。
(80)それぞれが半導体発光素子と波長変換部とを備える第1~第N(ここで、Nは2以上の整数)の白色発光ユニットを有し、該第1~第Nの白色発光ユニットからそれぞれ放出される一次白色光が混合されてなる合成光を出力光とする白色半導体発光装置であって、該第1~第Nの白色発光ユニットは、第1の一次白色光を放出する白色発光ユニットと第2の一次白色光を放出する白色発光ユニットとを少なくとも含み、光束で規格化した該第1の一次白色光のスペクトルの波長580nmにおける強度は、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度よりも高く、光束で規格化した該第2の一次白色光のスペクトルの波長580nmにおける強度は、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度よりも低く、更に、前記出力光のスペクトルが615~645nmの範囲に極大波長を有し、かつ、光束で規格化した前記出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%である白色半導体発光装置。
(81)該第1の一次白色光を放出する白色発光ユニットが第1の赤色蛍光体を含む波長変換部を備え、該第2の一次白色光を放出する白色発光ユニットが第2の赤色蛍光体を含む波長変換部を備え、該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、該第1の赤色蛍光体よりも低い、上記(80)の白色半導体発光装置。
(82)該第1の一次白色光と該第2の一次白色光との逆数相関色温度差が50MK-1以下である、上記(81)の白色半導体発光装置。
(83)該第1の一次白色光と第2の一次白色光との逆数相関色温度差が25MK-1以下である、上記(82)の白色半導体発光装置。
(84)該第1の一次白色光を放出する白色発光ユニットへの投入電力と該第2の一次白色光を放出する白色発光ユニットへの投入電力とを制御して、該出力光に占める該第1の一次白色光の比率と該第2の一次白色光の比率を調整するための制御回路を備える、上記(80)~(83)のいずれかの白色半導体発光装置。
(85)上記(80)~(84)のいずれかの白色半導体発光装置を含む照明装置。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2009年8月26日出願の日本特許出願(特願2009-195765)、2010年2月1日出願の日本特許出願(特願2010-20482)、2010年3月3日出願の日本特許出願(特願2010-47173)、2010年6月25日出願の日本特許出願(特願2010-145095)、2010年8月9日出願の日本特許出願(特願2010-179063)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (23)

  1.  出力光が青色光成分と緑色光成分と赤色光成分とを含み、
     該青色光成分は440~480nmの範囲内のいずれかの波長を有する光を含み、
     該緑色光成分は515~560nmの範囲内のいずれかの波長を有する光を含み、
     該赤色光成分は615~645nmの範囲内のいずれかの波長を有する光を含む、
     白色半導体発光装置であって、
     該青色光成分の発生源は半導体発光素子または半導体発光素子が発する光を吸収して波長変換により該青色光成分を含む光を放出する第1の蛍光体のいずれかまたは両方を含み、
     該緑色光成分の発生源は半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体を含み、
     該赤色光成分の発生源は半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体を含み、
     該出力光のスペクトルが615~645nmの範囲に極大波長を有し、
     光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%である、白色半導体発光装置。
  2.  前記青色光成分の発生源が青色半導体発光素子を含むかまたは前記第1の蛍光体として青色蛍光体を含み、前記第2の蛍光体が緑色蛍光体を含み、前記第3の蛍光体が赤色蛍光体を含む、請求項1に記載の白色半導体発光装置。
  3.  前記第3の蛍光体が、第1の赤色蛍光体と第2の赤色蛍光体とを含み、前記第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、前記第1の赤色蛍光体よりも低い、請求項1または2に記載の白色半導体発光装置。
  4.  前記青色光成分の発生源が、前記青色半導体発光素子として、発光ピーク波長を440~470nmの範囲に有する青色発光ダイオード素子を含む、請求項3に記載の白色半導体発光装置。
  5.  前記青色光成分の発生源が、前記第1の蛍光体として青色蛍光体を含み、該青色蛍光体の励起源が、発光ピーク波長を400~420nmの範囲に有するInGaN系発光ダイオード素子を含む、請求項3に記載の白色半導体発光装置。
  6.  前記第2の蛍光体が、Eu2+を付活剤とし、アルカリ土類ケイ酸塩、アルカリ土類ケイ酸窒化物もしくはサイアロンからなる結晶を母体とする緑色蛍光体、及び、Ce3+を付活剤とし、ガーネット型酸化物もしくはアルカリ土類金属スカンジウム酸塩からなる結晶を母体とする緑色蛍光体、から選ばれる1種以上の蛍光体を含む、請求項3~5のいずれか1項に記載の白色半導体発光装置。
  7.  前記第2の蛍光体は緑色蛍光体および黄色蛍光体を含む、請求項1~6のいずれか1項に記載の白色半導体発光装置。
  8.  前記出力光のスペクトルが615nm以上630nm未満の範囲に極大波長を有し、光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の85~100%である、請求項1~7のいずれか1項に記載の白色半導体発光装置。
  9.  前記出力光のスペクトルが630~645nmの範囲に極大波長を有し、光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の90~100%である、請求項1~7のいずれか1項に記載の白色半導体発光装置。
  10.  青色光成分と緑色光成分と赤色光成分とを含む白色光を放出し、
     該青色光成分は440~480nmの範囲内のいずれかの波長を有する光を含み、
     該緑色光成分は515~560nmの範囲内のいずれかの波長を有する光を含み、
     該赤色光成分は615~645nmの範囲内のいずれかの波長を有する光を含む、
     白色発光ユニットであって、
     半導体発光素子と、
     該半導体発光素子が発する光を吸収して波長変換により該青色光成分を含む光を放出する第1の蛍光体と、
     該半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体と、
     該半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体とを備え、
     該白色光のスペクトルが615~645nmの範囲に極大波長を有し、
     光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%である、白色発光ユニット。
  11.  前記第1の蛍光体が青色蛍光体を含み、前記第2の蛍光体が緑色蛍光体を含み、前記第3の蛍光体が赤色蛍光体を含む、請求項10に記載の白色発光ユニット。
  12.  前記半導体発光素子が発光ピーク波長を400~420nmの範囲に有するInGaN系発光ダイオード素子を含む、請求項11に記載の白色発光ユニット。
  13.  青色光成分と緑色光成分と赤色光成分とを含む白色光を放出し、
     該青色光成分は440~480nmの範囲内のいずれかの波長を有する光を含み、
     該緑色光成分は515~560nmの範囲内のいずれかの波長を有する光を含み、
     該赤色光成分は615~645nmの範囲内のいずれかの波長を有する光を含む、
     白色発光ユニットであって、
     該青色光成分を含む光を放出する半導体発光素子と、
     該半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体と、
     該半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体とを備え、
     該白色光のスペクトルが615~645nmの範囲に極大波長を有し、
     光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%である、白色発光ユニット。
  14.  前記半導体発光素子が青色半導体発光素子を含み、前記第2の蛍光体が緑色蛍光体を含み、前記第3の蛍光体が赤色蛍光体を含む、請求項13に記載の白色発光ユニット。
  15.  前記第2の蛍光体が、Eu2+を付活剤とし、アルカリ土類ケイ酸塩、アルカリ土類ケイ酸窒化物もしくはサイアロンからなる結晶を母体とする緑色蛍光体、及び、Ce3+を付活剤とし、ガーネット型酸化物もしくはアルカリ土類金属スカンジウム酸塩からなる結晶を母体とする緑色蛍光体、から選ばれる1種以上の蛍光体を含む、請求項10~14のいずれか1項に記載の白色発光ユニット。
  16.  前記第2の蛍光体が緑色蛍光体および黄色蛍光体を含む、請求項10~15のいずれか1項に記載の白色発光ユニット。
  17.  前記白色光のスペクトルが615nm以上630nm未満の範囲に極大波長を有し、光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の85~100%である、請求項10~16のいずれか1項に記載の白色発光ユニット。
  18.  前記白色光のスペクトルが630~645nmの範囲に極大波長を有し、光束で規格化した該白色光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の90~100%である、請求項10~16のいずれか1項に記載の白色発光ユニット。
  19.  前記第3の蛍光体が第1の赤色蛍光体と第2の赤色蛍光体とを含み、該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、該第1の赤色蛍光体よりも低い、請求項10~18のいずれか1項に記載の白色発光ユニット。
  20.  それぞれが半導体発光素子と波長変換部とを備える第1~第N(ここで、Nは2以上の整数)の白色発光ユニットを有し、該第1~第Nの白色発光ユニットからそれぞれ放出される一次白色光が混合されてなる合成光を出力光とする白色半導体発光装置であって、
     該第1~第Nの白色発光ユニットは、第1の一次白色光を放出する白色発光ユニットと第2の一次白色光を放出する白色発光ユニットとを少なくとも含み、
     光束で規格化した該第1の一次白色光のスペクトルの波長580nmにおける強度は、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度よりも高く、
     光束で規格化した該第2の一次白色光のスペクトルの波長580nmにおける強度は、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度よりも低く、
     更に、前記出力光のスペクトルが615~645nmの範囲に極大波長を有し、かつ、光束で規格化した前記出力光のスペクトルの波長580nmにおける強度は、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80~100%である、
     白色半導体発光装置。
  21.  前記第1の一次白色光を放出する白色発光ユニットが第1の赤色蛍光体を含む波長変換部を備え、前記第2の一次白色光を放出する白色発光ユニットが第2の赤色蛍光体を含む波長変換部を備え、該第2の赤色蛍光体は、発光スペクトルの、ピーク波長における強度を1としたときの波長580nmにおける相対強度が、該第1の赤色蛍光体よりも低い、請求項20に記載の白色半導体発光装置。
  22.  前記第1の一次白色光と前記第2の一次白色光との逆数相関色温度差が50MK-1以下である、請求項20または21に記載の白色半導体発光装置。
  23.  請求項1~9および請求項20~22のいずれか1項に記載の白色半導体発光装置を含む、または請求項10~19のいずれか1項に記載の白色発光ユニットを含む、照明装置。
PCT/JP2010/064306 2009-08-26 2010-08-24 白色半導体発光装置 WO2011024818A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080015640XA CN102405538A (zh) 2009-08-26 2010-08-24 白色半导体发光装置
EP10811868.8A EP2432037B1 (en) 2009-08-26 2010-08-24 Semiconductor white light-emitting device
US13/292,507 US8581488B2 (en) 2009-08-26 2011-11-09 White light-emitting semiconductor devices
US14/041,171 US8829778B2 (en) 2009-08-26 2013-09-30 White light-emitting semiconductor devices

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009195765 2009-08-26
JP2009-195765 2009-08-26
JP2010-020482 2010-02-01
JP2010020482 2010-02-01
JP2010-047173 2010-03-03
JP2010047173 2010-03-03
JP2010-145095 2010-06-25
JP2010145095 2010-06-25
JP2010-179063 2010-08-09
JP2010179063 2010-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/292,507 Continuation US8581488B2 (en) 2009-08-26 2011-11-09 White light-emitting semiconductor devices

Publications (1)

Publication Number Publication Date
WO2011024818A1 true WO2011024818A1 (ja) 2011-03-03

Family

ID=43627919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064306 WO2011024818A1 (ja) 2009-08-26 2010-08-24 白色半導体発光装置

Country Status (5)

Country Link
US (2) US8581488B2 (ja)
EP (1) EP2432037B1 (ja)
JP (2) JP2012056970A (ja)
CN (1) CN102405538A (ja)
WO (1) WO2011024818A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352970A (zh) * 2011-08-09 2012-02-15 中山大学 一种新型led光源及其照明装置
EP2497814A1 (en) * 2011-03-09 2012-09-12 Kabushiki Kaisha Toshiba Fluorescent substance and light-emitting device employing the same
CN102796522A (zh) * 2011-05-27 2012-11-28 亿广科技(上海)有限公司 荧光粉组合物及使用该荧光粉组合物的白色发光装置
WO2012165032A1 (ja) * 2011-05-31 2012-12-06 シャープ株式会社 発光装置
WO2012165524A1 (ja) * 2011-06-03 2012-12-06 三菱化学株式会社 半導体発光装置、展示物照射用照明装置、肉照射用照明装置、野菜照射用照明装置、鮮魚照射用照明装置、一般用照明装置、および半導体発光システム
WO2012165022A1 (ja) 2011-06-02 2012-12-06 三菱化学株式会社 半導体発光装置、半導体発光システムおよび照明器具
WO2013031942A1 (ja) 2011-09-02 2013-03-07 三菱化学株式会社 照明方法及び発光装置
WO2013061942A1 (ja) * 2011-10-24 2013-05-02 株式会社東芝 白色光源およびそれを用いた白色光源システム
WO2013061943A1 (ja) * 2011-10-24 2013-05-02 株式会社東芝 白色光源およびそれを用いた白色光源システム
WO2014034228A1 (ja) 2012-08-31 2014-03-06 三菱化学株式会社 照明方法及び発光装置
WO2014136748A1 (ja) 2013-03-04 2014-09-12 三菱化学株式会社 発光装置、発光装置の設計方法、発光装置の駆動方法、照明方法、および発光装置の製造方法
KR101455595B1 (ko) * 2011-08-02 2014-10-28 에버라이트 일렉트로닉스 컴패니 리미티드 형광 조성물 및 이를 이용한 백색광 발광 장치
WO2015099115A1 (ja) 2013-12-27 2015-07-02 三菱化学株式会社 発光装置及び発光装置の設計方法
EP2813559A4 (en) * 2012-02-09 2015-11-11 Denki Kagaku Kogyo Kk FLUOROPHORIC AND LIGHT-EMITTING DEVICE
JP2016004981A (ja) * 2014-06-19 2016-01-12 三菱化学株式会社 発光装置
US9373757B2 (en) 2011-09-02 2016-06-21 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
CN109845248A (zh) * 2016-10-17 2019-06-04 西铁城电子株式会社 移动设备
US11450789B2 (en) 2013-12-27 2022-09-20 Citizen Electronics Co., Ltd. Illumination method using a light-emitting device

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405538A (zh) * 2009-08-26 2012-04-04 三菱化学株式会社 白色半导体发光装置
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8104908B2 (en) * 2010-03-04 2012-01-31 Xicato, Inc. Efficient LED-based illumination module with high color rendering index
JP2012060097A (ja) 2010-06-25 2012-03-22 Mitsubishi Chemicals Corp 白色半導体発光装置
CN102986044B (zh) * 2010-10-15 2015-05-06 三菱化学株式会社 白色发光装置及照明器具
CN102956802B (zh) * 2011-08-18 2015-06-17 松下电器产业株式会社 照明装置
US9488324B2 (en) 2011-09-02 2016-11-08 Soraa, Inc. Accessories for LED lamp systems
JP2013211340A (ja) * 2012-03-30 2013-10-10 Sharp Corp 発光装置及び照明装置
DE202013012940U1 (de) * 2012-05-04 2023-01-19 Soraa, Inc. LED-Lampen mit verbesserter Lichtqualität
EP2698576B1 (en) * 2012-08-13 2017-09-20 Panasonic Intellectual Property Management Co., Ltd. Lighting device
WO2014068440A1 (en) 2012-11-01 2014-05-08 Koninklijke Philips Electronics N.V. Led-based device with wide color gamut
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
JP6853614B2 (ja) * 2013-03-29 2021-03-31 株式会社朝日ラバー Led照明装置、その製造方法及びled照明方法
CN105324859B (zh) * 2013-06-18 2019-06-04 夏普株式会社 光源装置以及发光装置
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
US10074781B2 (en) * 2013-08-29 2018-09-11 Cree, Inc. Semiconductor light emitting devices including multiple red phosphors that exhibit good color rendering properties with increased brightness
JP2015082596A (ja) 2013-10-23 2015-04-27 株式会社東芝 発光装置
DE102013113382A1 (de) * 2013-12-03 2015-06-03 Osram Gmbh Leuchtstoffmischung, Licht emittierendes Halbleiterbauelement mit einer Leuchtstoffmischung und Straßenlaterne mit einer Leuchtstoffmischung
JP6287268B2 (ja) * 2014-01-29 2018-03-07 日亜化学工業株式会社 発光装置
JP6275829B2 (ja) * 2014-04-30 2018-02-07 シャープ株式会社 発光装置
JP6323177B2 (ja) * 2014-05-30 2018-05-16 日亜化学工業株式会社 半導体発光装置
JP6084183B2 (ja) 2014-07-16 2017-02-22 アルモテクノス株式会社 照明装置及びこれを備えた照明システム
JP6455817B2 (ja) 2014-09-12 2019-01-23 パナソニックIpマネジメント株式会社 照明装置
US10811572B2 (en) 2014-10-08 2020-10-20 Seoul Semiconductor Co., Ltd. Light emitting device
CN105609494B (zh) * 2014-10-27 2019-03-01 光宝光电(常州)有限公司 白光发光装置
US9150784B1 (en) * 2014-10-30 2015-10-06 Osram Opto Semiconductors Gmbh Lighting modules, lighting apparatus and electronic devices
US10424562B2 (en) * 2014-12-16 2019-09-24 Citizen Electronics Co., Ltd. Light emitting device with phosphors
JP6640852B2 (ja) * 2015-06-24 2020-02-05 株式会社東芝 白色光源システム
US10529899B2 (en) 2015-07-10 2020-01-07 Dexerials Corporation Phosphor sheet, white light source device including the phosphor sheet, and display device including the white light source device
FR3046215B1 (fr) * 2015-12-24 2019-06-14 Wattlux Configuration de l'intensite des sources de lumiere composant un systeme d'eclairage
WO2017133459A1 (zh) * 2016-02-03 2017-08-10 欧普照明股份有限公司 光源模组和照明装置
JP6678331B2 (ja) * 2016-02-05 2020-04-08 パナソニックIpマネジメント株式会社 波長制御光学部材、発光装置及び照明器具
JP2017186488A (ja) * 2016-04-08 2017-10-12 山陽色素株式会社 蛍光顔料分散体および白色積層体
WO2017200097A1 (ja) * 2016-05-20 2017-11-23 株式会社 東芝 白色光源
JP6669147B2 (ja) * 2016-10-31 2020-03-18 日亜化学工業株式会社 発光装置
US10978619B2 (en) 2016-12-02 2021-04-13 Toyoda Gosei Co., Ltd. Light emitting device
JP6848637B2 (ja) * 2016-12-02 2021-03-24 豊田合成株式会社 発光装置
KR101855391B1 (ko) 2016-12-26 2018-05-09 지엘비텍 주식회사 고연색성 백색 발광 소자
US10595375B2 (en) * 2017-01-26 2020-03-17 Signify Holding B.V. Rich black lighting device for differentiating shades of black
JP2018125438A (ja) * 2017-02-01 2018-08-09 豊田合成株式会社 発光装置
US10723945B2 (en) * 2017-03-15 2020-07-28 Nichia Corporation Method of producing aluminate fluorescent material, aluminate fluorescent material, and light emitting device
CN106870976A (zh) * 2017-04-07 2017-06-20 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置
WO2018184576A1 (zh) * 2017-04-07 2018-10-11 苏州欧普照明有限公司 一种光源模组及包括该光源模组的照明装置
EP3575670B1 (en) * 2017-04-07 2022-08-10 Suzhou Opple Lighting Co., Ltd. Light source module, and illumination device comprising light source module
KR102373817B1 (ko) * 2017-05-02 2022-03-14 삼성전자주식회사 백색 발광장치 및 조명 장치
EP3619750B1 (en) 2017-05-02 2020-08-19 Signify Holding B.V. Warm white led spectrum especially for retail applications
WO2019031102A1 (ja) * 2017-08-07 2019-02-14 パナソニックIpマネジメント株式会社 波長変換部材、発光装置及び照明装置
JP6912728B2 (ja) * 2018-03-06 2021-08-04 日亜化学工業株式会社 発光装置及び光源装置
KR101990475B1 (ko) 2018-03-21 2019-06-19 (주)올릭스 발광 스펙트럼을 제어한 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치
EP3576168B1 (en) 2018-05-31 2023-05-31 Nichia Corporation Light emitting device
US11129429B2 (en) * 2018-08-21 2021-09-28 Lumia Group, LLC Textile materials with spontaneous emission and methods of UV protection, shading, warming, and other applications using same
CN110970542A (zh) * 2018-09-28 2020-04-07 日亚化学工业株式会社 发光装置和具备其的灯具
TWI722402B (zh) * 2018-11-21 2021-03-21 台達電子工業股份有限公司 螢光劑裝置
KR102193591B1 (ko) * 2019-05-15 2020-12-21 주식회사 올릭스 광대역 발광 장치
CN114484381A (zh) * 2022-01-21 2022-05-13 漳州立达信光电子科技有限公司 一种面向人因照明的发光单元及其组成的灯具

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103443A (ja) 2002-09-11 2004-04-02 Toshiba Lighting & Technology Corp Led照明装置
JP2006008721A (ja) 2003-11-26 2006-01-12 National Institute For Materials Science 蛍光体と蛍光体を用いた発光器具
JP2006049799A (ja) * 2004-04-27 2006-02-16 Matsushita Electric Ind Co Ltd 発光装置
JP2006063233A (ja) * 2004-08-27 2006-03-09 Dowa Mining Co Ltd 蛍光体混合物および発光装置
JP2007231245A (ja) 2005-05-24 2007-09-13 National Institute For Materials Science 蛍光体及びその利用
WO2007105631A1 (ja) 2006-03-10 2007-09-20 Kabushiki Kaisha Toshiba 蛍光体および発光装置
JP2008034188A (ja) * 2006-07-27 2008-02-14 Asahi Rubber:Kk 照明装置
JP2008050379A (ja) 2005-08-10 2008-03-06 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置
JP2008077511A (ja) 2006-09-22 2008-04-03 Canon Software Inc サーバおよびサーバ連携システムおよびサーバ連携方法およびプログラムおよび記録媒体および情報処理装置
JP2008150549A (ja) 2006-12-20 2008-07-03 Nec Lighting Ltd 赤色発光窒化物蛍光体およびそれを用いた白色発光素子
JP2009016127A (ja) * 2007-07-03 2009-01-22 Sharp Corp Led光源体、光源ユニットおよび液晶表示装置
WO2009072043A1 (en) 2007-12-03 2009-06-11 Philips Intellectual Property & Standards Gmbh Light emitting device comprising a green emitting sialon-based material
JP2009251511A (ja) 2008-04-10 2009-10-29 Fujimori Kogyo Co Ltd 色補正フィルター
JP2010039206A (ja) 2008-08-05 2010-02-18 Hamamatsu Photonics Kk 光学フィルター

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176299A (en) 1975-10-03 1979-11-27 Westinghouse Electric Corp. Method for efficiently generating white light with good color rendition of illuminated objects
US6686691B1 (en) * 1999-09-27 2004-02-03 Lumileds Lighting, U.S., Llc Tri-color, white light LED lamps
US6717353B1 (en) 2002-10-14 2004-04-06 Lumileds Lighting U.S., Llc Phosphor converted light emitting device
CN100352069C (zh) 2002-11-25 2007-11-28 松下电器产业株式会社 Led照明光源
JP4542329B2 (ja) 2002-11-25 2010-09-15 パナソニック株式会社 Led照明光源
JP4165412B2 (ja) 2004-02-13 2008-10-15 昭栄化学工業株式会社 窒化物蛍光体、窒化物蛍光体の製造方法、白色発光素子及び顔料
EP1571715A1 (en) 2004-03-04 2005-09-07 Nan Ya Plastics Corporation Method for producing white light emission by means of secondary light exitation and its product
KR101041311B1 (ko) * 2004-04-27 2011-06-14 파나소닉 주식회사 형광체 조성물과 그 제조 방법, 및 그 형광체 조성물을 이용한 발광장치
US7453195B2 (en) * 2004-08-02 2008-11-18 Lumination Llc White lamps with enhanced color contrast
JP4613546B2 (ja) 2004-08-04 2011-01-19 日亜化学工業株式会社 発光装置
JP2006126567A (ja) 2004-10-29 2006-05-18 Fuji Xerox Co Ltd 光スイッチ並びにそれを用いた光分配装置及び光多重化装置
KR101324004B1 (ko) 2005-05-24 2013-10-31 독립행정법인 물질·재료연구기구 형광체 및 그 이용
TWI403570B (zh) 2005-08-10 2013-08-01 Mitsubishi Chem Corp 螢光體與其製造方法,含螢光體組成物,發光裝置及其用途
US20070052342A1 (en) * 2005-09-01 2007-03-08 Sharp Kabushiki Kaisha Light-emitting device
JP4890152B2 (ja) 2005-11-08 2012-03-07 シャープ株式会社 発光装置
JP2007109837A (ja) 2005-10-13 2007-04-26 Hitachi Ltd 照明装置
US20090033201A1 (en) * 2006-02-02 2009-02-05 Mitsubishi Chemical Corporation Complex oxynitride phosphor, light-emitting device using same, image display, illuminating device, phosphor-containing composition and complex oxynitride
TWI422667B (zh) 2006-05-19 2014-01-11 Mitsubishi Chem Corp 含有氮之合金及使用其之螢光體之製造方法
JP5292723B2 (ja) 2006-06-01 2013-09-18 三菱化学株式会社 蛍光体の製造方法
TWI364853B (en) 2006-08-14 2012-05-21 Fujikura Ltd Emitting device and illuminating device
KR100946015B1 (ko) 2007-01-02 2010-03-09 삼성전기주식회사 백색 발광장치 및 이를 이용한 lcd 백라이트용 광원모듈
JP2008244469A (ja) 2007-02-28 2008-10-09 Toshiba Lighting & Technology Corp 発光装置
JP2008270781A (ja) 2007-03-23 2008-11-06 Toshiba Lighting & Technology Corp 発光装置
JP2008304678A (ja) * 2007-06-07 2008-12-18 Nitto Denko Corp 色補正フィルター、画像表示装置および液晶表示装置
CN101855492B (zh) 2007-11-12 2014-07-02 三菱化学株式会社 照明装置
US8567973B2 (en) 2008-03-07 2013-10-29 Intematix Corporation Multiple-chip excitation systems for white light emitting diodes (LEDs)
JP2009231525A (ja) 2008-03-24 2009-10-08 Mitsubishi Chemicals Corp 発光モジュール、および照明装置
KR100924912B1 (ko) 2008-07-29 2009-11-03 서울반도체 주식회사 웜화이트 발광장치 및 그것을 포함하는 백라이트 모듈
JP2010267571A (ja) 2009-05-18 2010-11-25 Toshiba Lighting & Technology Corp 照明装置
CN102405538A (zh) * 2009-08-26 2012-04-04 三菱化学株式会社 白色半导体发光装置
WO2011105571A1 (ja) * 2010-02-26 2011-09-01 三菱化学株式会社 ハロリン酸塩蛍光体、及び白色発光装置
US20120267999A1 (en) 2010-02-26 2012-10-25 Mitsubishi Chemical Corporation Halophosphate phosphor and white light-emitting device
JP2012060097A (ja) * 2010-06-25 2012-03-22 Mitsubishi Chemicals Corp 白色半導体発光装置
CN102986044B (zh) 2010-10-15 2015-05-06 三菱化学株式会社 白色发光装置及照明器具
JP5105132B1 (ja) 2011-06-02 2012-12-19 三菱化学株式会社 半導体発光装置、半導体発光システムおよび照明器具
EP2717337B1 (en) 2011-06-03 2018-02-21 Citizen Electronics Co., Ltd. Semiconductor light-emitting device, exhibit irradiation illumination device, meat irradiation illumination device, vegetable irradiation illumination device, fresh fish irradiation illumination device, general-use illumination device, and semiconductor light-emitting system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103443A (ja) 2002-09-11 2004-04-02 Toshiba Lighting & Technology Corp Led照明装置
JP2006008721A (ja) 2003-11-26 2006-01-12 National Institute For Materials Science 蛍光体と蛍光体を用いた発光器具
JP2006049799A (ja) * 2004-04-27 2006-02-16 Matsushita Electric Ind Co Ltd 発光装置
JP2006063233A (ja) * 2004-08-27 2006-03-09 Dowa Mining Co Ltd 蛍光体混合物および発光装置
JP2007231245A (ja) 2005-05-24 2007-09-13 National Institute For Materials Science 蛍光体及びその利用
JP2008050379A (ja) 2005-08-10 2008-03-06 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置
WO2007105631A1 (ja) 2006-03-10 2007-09-20 Kabushiki Kaisha Toshiba 蛍光体および発光装置
JP2008034188A (ja) * 2006-07-27 2008-02-14 Asahi Rubber:Kk 照明装置
JP2008077511A (ja) 2006-09-22 2008-04-03 Canon Software Inc サーバおよびサーバ連携システムおよびサーバ連携方法およびプログラムおよび記録媒体および情報処理装置
JP2008150549A (ja) 2006-12-20 2008-07-03 Nec Lighting Ltd 赤色発光窒化物蛍光体およびそれを用いた白色発光素子
JP2009016127A (ja) * 2007-07-03 2009-01-22 Sharp Corp Led光源体、光源ユニットおよび液晶表示装置
WO2009072043A1 (en) 2007-12-03 2009-06-11 Philips Intellectual Property & Standards Gmbh Light emitting device comprising a green emitting sialon-based material
JP2009251511A (ja) 2008-04-10 2009-10-29 Fujimori Kogyo Co Ltd 色補正フィルター
JP2010039206A (ja) 2008-08-05 2010-02-18 Hamamatsu Photonics Kk 光学フィルター

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. CHEN ET AL., PHYS. STAT. SOL. (A, vol. 205, no. 5, 2008, pages 1086 - 1092
See also references of EP2432037A4

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2497814A1 (en) * 2011-03-09 2012-09-12 Kabushiki Kaisha Toshiba Fluorescent substance and light-emitting device employing the same
CN102676169A (zh) * 2011-03-09 2012-09-19 株式会社东芝 荧光物质和使用其的光发射器件
CN103937501A (zh) * 2011-03-09 2014-07-23 株式会社东芝 荧光物质和使用其的光发射器件
CN102796522A (zh) * 2011-05-27 2012-11-28 亿广科技(上海)有限公司 荧光粉组合物及使用该荧光粉组合物的白色发光装置
WO2012165032A1 (ja) * 2011-05-31 2012-12-06 シャープ株式会社 発光装置
US9322529B2 (en) 2011-05-31 2016-04-26 Sharp Kabushiki Kaisha Light emitting device
US8779455B2 (en) 2011-06-02 2014-07-15 Mitsubishi Chemical Corporation Semiconductor light-emitting device, semiconductor light-emitting system and illumination fixture
WO2012165022A1 (ja) 2011-06-02 2012-12-06 三菱化学株式会社 半導体発光装置、半導体発光システムおよび照明器具
JP2013012711A (ja) * 2011-06-02 2013-01-17 Mitsubishi Chemicals Corp 半導体発光装置、半導体発光システムおよび照明器具
JP2018056581A (ja) * 2011-06-03 2018-04-05 シチズン電子株式会社 展示物を展示するための装置
EP2717337A4 (en) * 2011-06-03 2014-11-12 Mitsubishi Chem Corp SEMICONDUCTOR LIGHT EMITTING DEVICE, EXPOSED OBJECT IRRADIATION LIGHTING DEVICE, MEAT IRRADIATION LIGHTING DEVICE, VEGETABLE IRRADIATION LIGHTING DEVICE, FRESH FISH IRRADIATION LIGHTING DEVICE, DIGITAL LIGHTING ILLUMINATION DEVICE GENERAL USE AND SEMICONDUCTOR LIGHT EMITTING SYSTEM
JP2013229539A (ja) * 2011-06-03 2013-11-07 Mitsubishi Chemicals Corp 半導体発光装置、展示物照射用照明装置、肉照射用照明装置、野菜照射用照明装置、鮮魚照射用照明装置、一般用照明装置、および半導体発光システム
CN103608938A (zh) * 2011-06-03 2014-02-26 三菱化学株式会社 半导体发光装置、展示物照射用照明装置、肉照射用照明装置、蔬菜照射用照明装置、鲜鱼照射用照明装置、一般用照明装置和半导体发光系统
CN107068838A (zh) * 2011-06-03 2017-08-18 西铁城电子株式会社 用于展示展示物的装置和用于展示展示物的系统
EP2717337A1 (en) * 2011-06-03 2014-04-09 Mitsubishi Chemical Corporation Semiconductor light-emitting device, exhibit irradiation illumination device, meat irradiation illumination device, vegetable irradiation illumination device, fresh fish irradiation illumination device, general-use illumination device, and semiconductor light-emitting system
JP2014090171A (ja) * 2011-06-03 2014-05-15 Mitsubishi Chemicals Corp 展示物を展示するための装置
EP3346512A1 (en) 2011-06-03 2018-07-11 Citizen Electronics Co., Ltd Semiconductor light-emitting device, exhibit-irradiating illumination device, meat-irradiating illumination device, vegetable-irradiating illumination device, fresh fish-irradiating illumination device, general-purpose illumination device, and semiconductor light-emitting system
CN107068838B (zh) * 2011-06-03 2021-11-30 西铁城电子株式会社 用于展示展示物的装置和用于展示展示物的系统
JP2017038080A (ja) * 2011-06-03 2017-02-16 シチズン電子株式会社 展示物を展示するための装置
WO2012165524A1 (ja) * 2011-06-03 2012-12-06 三菱化学株式会社 半導体発光装置、展示物照射用照明装置、肉照射用照明装置、野菜照射用照明装置、鮮魚照射用照明装置、一般用照明装置、および半導体発光システム
US9070843B2 (en) 2011-06-03 2015-06-30 Mitsubishi Chemical Corporation Semiconductor light-emitting device, exhibit-irradiating illumination device, meat-irradiating illumination device, vegetable-irradiating illumination device, fresh fish-irradiating illumination device, general-purpose illumination device, and semiconductor light-emitting system
US9279081B2 (en) 2011-08-02 2016-03-08 Everlight Electronics Co., Ltd. Phosphor composition and white light emitting device using the same
KR101455595B1 (ko) * 2011-08-02 2014-10-28 에버라이트 일렉트로닉스 컴패니 리미티드 형광 조성물 및 이를 이용한 백색광 발광 장치
CN102352970A (zh) * 2011-08-09 2012-02-15 中山大学 一种新型led光源及其照明装置
US9305970B2 (en) 2011-09-02 2016-04-05 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
JP2018101802A (ja) * 2011-09-02 2018-06-28 シチズン電子株式会社 照明方法及び発光装置
EP3565383A1 (en) 2011-09-02 2019-11-06 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US10355177B2 (en) 2011-09-02 2019-07-16 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US10236424B2 (en) 2011-09-02 2019-03-19 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
JP2018186091A (ja) * 2011-09-02 2018-11-22 シチズン電子株式会社 照明方法及び発光装置
US20180198036A1 (en) 2011-09-02 2018-07-12 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
WO2013031942A1 (ja) 2011-09-02 2013-03-07 三菱化学株式会社 照明方法及び発光装置
US9818914B2 (en) 2011-09-02 2017-11-14 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
EP3567989A1 (en) 2011-09-02 2019-11-13 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9373757B2 (en) 2011-09-02 2016-06-21 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9478714B2 (en) 2011-09-02 2016-10-25 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
JP2016186946A (ja) * 2011-09-02 2016-10-27 シチズン電子株式会社 照明方法及び発光装置
US9490399B2 (en) 2011-09-02 2016-11-08 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9997677B2 (en) 2011-09-02 2018-06-12 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9954149B2 (en) 2011-09-02 2018-04-24 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
JP2018014331A (ja) * 2011-09-02 2018-01-25 シチズン電子株式会社 照明方法及び発光装置
US9722150B2 (en) 2011-09-02 2017-08-01 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
WO2013061942A1 (ja) * 2011-10-24 2013-05-02 株式会社東芝 白色光源およびそれを用いた白色光源システム
US9082939B2 (en) 2011-10-24 2015-07-14 Kabushiki Kaisha Toshiba White light source and white light source system including the same
JPWO2013061943A1 (ja) * 2011-10-24 2015-04-02 株式会社東芝 白色光源およびそれを用いた白色光源システム
EP2772953A4 (en) * 2011-10-24 2015-07-08 Toshiba Kk WHITE LIGHT SOURCE AND WHITE LIGHT SOURCE SYSTEM USING A WHITE LIGHT SOURCE
CN104025322A (zh) * 2011-10-24 2014-09-03 株式会社东芝 白光源和包括所述白光源的白光源系统
WO2013061943A1 (ja) * 2011-10-24 2013-05-02 株式会社東芝 白色光源およびそれを用いた白色光源システム
US9551467B2 (en) 2011-10-24 2017-01-24 Kabushiki Kaisha Toshiba White light source and white light source system including the same
EP2772952A4 (en) * 2011-10-24 2015-10-28 Toshiba Inc Kk WHITE LIGHT SOURCE AND WHITE LIGHT SOURCE SYSTEM THEREWITH
JPWO2013061942A1 (ja) * 2011-10-24 2015-04-02 株式会社東芝 白色光源およびそれを用いた白色光源システム
EP2813559A4 (en) * 2012-02-09 2015-11-11 Denki Kagaku Kogyo Kk FLUOROPHORIC AND LIGHT-EMITTING DEVICE
JP2018198206A (ja) * 2012-08-31 2018-12-13 シチズン電子株式会社 照明方法及び発光装置
WO2014034228A1 (ja) 2012-08-31 2014-03-06 三菱化学株式会社 照明方法及び発光装置
JP2017138617A (ja) * 2012-08-31 2017-08-10 シチズン電子株式会社 照明方法及び発光装置
WO2014136748A1 (ja) 2013-03-04 2014-09-12 三菱化学株式会社 発光装置、発光装置の設計方法、発光装置の駆動方法、照明方法、および発光装置の製造方法
US9530821B2 (en) 2013-03-04 2016-12-27 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US9755118B2 (en) 2013-03-04 2017-09-05 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US9997678B2 (en) 2013-03-04 2018-06-12 Citizen Electronics Co. Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US10930823B2 (en) 2013-03-04 2021-02-23 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
WO2015099115A1 (ja) 2013-12-27 2015-07-02 三菱化学株式会社 発光装置及び発光装置の設計方法
US11450789B2 (en) 2013-12-27 2022-09-20 Citizen Electronics Co., Ltd. Illumination method using a light-emitting device
JP2016004981A (ja) * 2014-06-19 2016-01-12 三菱化学株式会社 発光装置
CN109845248A (zh) * 2016-10-17 2019-06-04 西铁城电子株式会社 移动设备

Also Published As

Publication number Publication date
US8581488B2 (en) 2013-11-12
CN102405538A (zh) 2012-04-04
EP2432037A4 (en) 2014-04-09
JP2012056970A (ja) 2012-03-22
JP2015173275A (ja) 2015-10-01
EP2432037A1 (en) 2012-03-21
US20140042896A1 (en) 2014-02-13
EP2432037B1 (en) 2019-05-22
US8829778B2 (en) 2014-09-09
JP5907299B2 (ja) 2016-04-26
US20120112626A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5907299B2 (ja) 白色半導体発光装置
KR101641377B1 (ko) 백색광 방출 다이오드들(leds)을 위한 멀티플-칩 여기 시스템들
WO2011162389A1 (ja) 白色半導体発光装置
TWI533480B (zh) 高顏色再現性之轉換發光二極體
US7753553B2 (en) Illumination system comprising color deficiency compensating luminescent material
CN108305929B (zh) 具有高显色性的白光发光装置
US7859182B2 (en) Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
TWI355097B (en) Wavelength converting system
JP2021536118A (ja) フルスペクトル白色発光デバイス
WO2007120582A1 (en) WHITE LEDs WITH TAILORABLE COLOR TEMPERATURE
WO2008150628A1 (en) White light apparatus with enhanced color contrast
KR20070041737A (ko) 백색 광 방출 다이오드(led)를 위한 새로운 형광체시스템
JP5370047B2 (ja) 白色発光装置のための演色性改善方法および白色発光装置
JP2006310817A (ja) 白色発光装置及び照明装置
JP2013187358A (ja) 白色発光装置
KR102530385B1 (ko) 청색 색소를 갖는 청색 방출 인광체 변환 led
US20090079327A1 (en) Green light emitting phosphor and light emitting device using the same
KR20180021748A (ko) 고연색성 백색 발광 소자
KR101855391B1 (ko) 고연색성 백색 발광 소자
JP2012111928A (ja) 蛍光材料および白色光発光素子
JP2014216445A (ja) 発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015640.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010811868

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE