WO2011010516A1 - 回転角検出装置 - Google Patents

回転角検出装置 Download PDF

Info

Publication number
WO2011010516A1
WO2011010516A1 PCT/JP2010/060009 JP2010060009W WO2011010516A1 WO 2011010516 A1 WO2011010516 A1 WO 2011010516A1 JP 2010060009 W JP2010060009 W JP 2010060009W WO 2011010516 A1 WO2011010516 A1 WO 2011010516A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
phase
signal
count value
counter
Prior art date
Application number
PCT/JP2010/060009
Other languages
English (en)
French (fr)
Inventor
鎮男 眞鍋
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP10802137.9A priority Critical patent/EP2458341B1/en
Priority to US13/377,969 priority patent/US8872511B2/en
Priority to CN201080033068.XA priority patent/CN102597709B/zh
Priority to JP2011523589A priority patent/JP5494662B2/ja
Publication of WO2011010516A1 publication Critical patent/WO2011010516A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24419Interpolation not coverd by groups G01D5/24404, G01D5/24409 or G01D5/24414
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • G01D5/24466Comparison of the error value to a threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24495Error correction using previous values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • the present invention relates to a rotation angle detection device, and more particularly to a rotation angle detection device in which an angle corresponding to one cycle of an output signal is set to be smaller than a mechanical angle of 360 °.
  • a motor drive system is mounted on vehicles such as automobiles and hybrid cars equipped with an electric motor, and other electric devices using the motor.
  • a rotation angle detection device that detects the rotation angle of the motor is used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-77481 states that an R / D (resolver / digital) converter that uses a resolver as a rotation detection sensor and converts its output into a digital value increases or decreases the count value. It is disclosed.
  • R / D resolver / digital
  • ⁇ Electric angles that change according to the number of pole pairs are basically used for motor control.
  • the mechanical angle and the electrical angle coincide.
  • the electrical angle repeats the change from 0 ° to 360 ° twice. That is, in a two-pole pair motor, it is not known whether the mechanical angle corresponds to 0 ° to 180 ° or the mechanical angle corresponds to 180 ° to 360 ° only with an output of an electrical angle of 0 ° to 360 °.
  • the rotation angle sensor such as a resolver
  • the shaft angle multiplier is increased
  • the characteristics may vary by the number of shaft angle multipliers even with the same electrical angle due to the problem of machining accuracy.
  • FIG. 13 is a diagram for explaining correction of the characteristics of the resolver having the shaft multiple angle Nx.
  • the horizontal axis represents the mechanical angle of the resolver
  • the vertical axis represents the count value corresponding to the mechanical angle.
  • Such deviation in output value corresponds to a mechanical angle of 0 ° to 360 ° depending on the processing accuracy of the sensor.
  • the electrical angle of 0 ° to 360 ° is 2 ⁇
  • the output value corresponds to a mechanical angle of 0 ° to 180 °, or 180 ° to 360 °. It is necessary to make a correction after recognizing whether it corresponds.
  • the electrical angle indicated by the current output value can correspond to five mechanical angles.
  • a two-phase encoder output is used as an output of the R / D converter that converts the output of the resolver into a digital value.
  • the two-phase encoder output includes an A-phase signal, a B-phase signal, and a Z-phase signal.
  • the A phase signal and the B phase signal are signals including a number of pulses corresponding to the rotation angle. There is a phase difference between the rising and falling edges of the pulse between the A-phase signal and the B-phase signal, and it is possible to know whether the rotation is normal or reverse based on the phase relationship between the A-phase signal and the B-phase signal.
  • the Z-phase signal is a signal output once per electrical angle rotation. Such an interface is widely used in the field of motor control.
  • a general two-phase encoder counter that receives and counts a two-phase encoder output can recognize an electrical angle, but cannot recognize a mechanical angle.
  • An object of the present invention is to provide a rotation angle detection device that can recognize a mechanical angle position while using a two-phase encoder output.
  • the present invention is a rotation angle detection device that corresponds to an angle detection unit in which an angle corresponding to one cycle of an output signal is set to be smaller than a mechanical angle of 360 °, and an output signal of the angle detection unit A counter that outputs a digital value, and a shaft multiple angle detector that detects which position of the mechanical angle the angle indicated by the signal output from the angle detector corresponds to based on a change in the count value of the counter Prepare.
  • the angle detection unit is an electrical angle detection unit that outputs a two-phase encoder signal corresponding to the electrical angle of the rotor, in which the electrical angle of 360 ° is set smaller than the mechanical angle of 360 °, and the counter is This is a two-phase encoder counter that counts two-phase encoder signals and outputs a digital value corresponding to the electrical angle.
  • the shaft multiple angle detector detects the electrical angle detector based on the change in the count value of the two-phase encoder counter. It is detected which position of the electrical angle the electrical angle indicated by the output signal corresponds to.
  • the shaft multiple angle detector generates a count value obtained by further extending the upper bits of the two-phase encoder counter to a value corresponding to a mechanical angle of 360 °, and outputs the extended count value.
  • the electrical angle detection unit includes a resolver in which an electrical angle of 360 ° is set smaller than a mechanical angle of 360 °, and a resolver / digital converter that converts a resolver signal into a digital value.
  • the resolver / digital converter outputs a two-phase encoder signal including an A-phase signal, a B-phase signal, and a Z-phase signal.
  • the two-phase encoder counter counts up or down according to the A phase signal and the B phase signal, and clears the count value when the Z phase signal is input.
  • the shaft multiple angle detector detects that the count value of the two-phase encoder counter immediately before being cleared exceeds the threshold value. If so, the expanded count value is counted up.
  • the electrical angle detection unit further includes a sensor for detecting a reference position of the mechanical angle.
  • the two-phase encoder counter counts up or down according to the A-phase signal and B-phase signal, clears the count value according to the sensor output, and the shaft multiple angle detector expands according to the sensor output Clear the count value.
  • the two-phase encoder counter counts up or down according to the A phase signal and the B phase signal, and clears the count value when the Z phase signal is input.
  • the rotation angle detection device includes a Z-phase abnormality detection unit that determines whether or not the count value of the two-phase encoder counter when a Z-phase signal is input is within a predetermined range corresponding to the abnormality timing, and a Z-phase abnormality detection Counts the number of Z-phase signals input, and detects the shaft angle multiplier when the number of Z-phase signals input exceeds the error count threshold.
  • a Z-phase abnormality determination unit that clears the expanded count value held by the unit.
  • the angle detection unit outputs a signal indicating that one cycle is completed for each predetermined angle as an output signal.
  • the counter includes a rotor position detector that counts up the count value based on the clock signal from when the output signal is input until the next output signal is input.
  • the rotation angle detection device includes a Z-phase abnormality detection unit that determines whether the count value of the counter when the output signal is input is within a predetermined range corresponding to the abnormality timing, and a predetermined range by the Z-phase abnormality detection unit. If the output signal is input, the number of output signals input is counted, and when the number of output signals input exceeds the error count threshold, the shaft multiple angle detector holds the extended And a Z-phase abnormality determination unit that clears the count value.
  • the rotation angle detection device further includes an angle correction unit that performs correction corresponding to the correct position of the mechanical angle on the digital value output by the counter based on the output of the shaft angle multiplier detection unit.
  • the characteristics of the rotation angle sensor can be corrected without greatly changing the conventional control method. .
  • FIG. 1 is a block diagram of a vehicle 1 in which a rotation angle detection device according to a first embodiment is used. It is a figure for demonstrating the axial multiple angle of a resolver. It is a figure for demonstrating the bit expansion of the two-phase encoder counter in this Embodiment.
  • 6 is a flowchart for explaining count control of extension bits of the two-phase encoder counter executed by CPU 40 in the first embodiment. It is a wave form diagram which shows an example of the change of the count value of a counter at the time of using the resolver of 5x of shaft angles. It is a wave form diagram which expands and shows change before and after the north marker of the count value while a counter is increasing.
  • FIG. 10 It is a block diagram of vehicle 1A where the rotation angle detection apparatus of Embodiment 2 is used.
  • 10 is a flowchart for explaining count control of extension bits of a two-phase encoder counter executed by CPU 40A in the second embodiment.
  • 10 is a flowchart for illustrating processing executed in the third embodiment. It is a figure for demonstrating Xmax of FIG. 10, Xmin.
  • FIG. 1 is a block diagram showing a configuration of a vehicle 1 to which a rotation angle detection device of the present invention is applied.
  • vehicle 1 includes an inverter device 2, a motor generator 4, and a resolver 12 connected to the rotor shaft of the motor generator.
  • the motor generator 4 can be used to drive the wheels.
  • the motor generator 4 may be used for other purposes.
  • the resolver 12 has a rotor shaft formed such that the distance from the center of the outer peripheral portion changes periodically, the primary winding 15 provided in the stator, and a stator with a 90 ° phase difference. It includes two secondary windings 16 and 17 arranged.
  • the outer shape of the rotor shaft is such that the gap with the stator changes in a sine wave shape depending on the angle, and the number of sine waves is determined in accordance with the shaft angle multiplier.
  • the inverter device 2 includes a CPU (Central Processing Unit) 40, an IPM (Intelligent Power Module) 7, current sensors 8 and 9, and an R / D (resolver / digital) converter 14.
  • IPM 7 includes a power switching element such as an IGBT for controlling a current flowing in the stator coil of the motor generator.
  • the stator coil of the motor generator includes U-phase, V-phase, and W-phase coils. Since the U-phase, V-phase, and W-phase coils are Y-connected, the U-phase current can be calculated by measuring the V-phase and W-phase currents with the current sensors 8 and 9.
  • the inverter device 2 further includes amplifiers A1 and A2 that amplify the outputs of the current sensors 8 and 9, respectively, and an amplifier A3 that excites the primary winding of the resolver based on the excitation reference signal Ref from the CPU 40.
  • the CPU 40 obtains a count value ⁇ 1 corresponding to the electrical angle ⁇ e by counting this based on the two-phase encoder signal output from the R / D converter 14.
  • the two-phase encoder signal includes an A-phase signal PA, a B-phase signal PB, and a Z-phase signal PZ. Further, the CPU 40 further performs a count corresponding to the shaft double angle to obtain a count value ⁇ 2 corresponding to the mechanical angle ⁇ m.
  • the CPU 40 calculates a value ⁇ 3 obtained by correcting the characteristic variation caused by the processing accuracy of the resolver based on the count value ⁇ 2, and uses this value for motor control.
  • Such an operation of the CPU 40 can be realized by software or hardware.
  • the CPU 40 counts up or down according to the A phase signal PA and the B phase signal PB, and is cleared according to the Z phase signal PZ, and the electrical angle output from the two phase encoder counter 41
  • the shaft angle multiplier detecting unit 42 that outputs the count value ⁇ 2 corresponding to the mechanical angle in consideration of the shaft angle multiplier, and the electrical angle corrected based on the count value ⁇ 2
  • An angle correction unit 43 that outputs a count value ⁇ 3 to be output, and a motor control unit that outputs three-phase PWM signals of U, V, and W phases based on the count value ⁇ 3, the torque command value TR, and the motor current values IV and IW 44.
  • the IGBT in the IPM 7 is on / off controlled, and the motor generator MG is energized.
  • the motor generator MG is mechanically connected to the rotor shaft of the resolver 12.
  • a 10 kHz excitation sine wave signal generated by an excitation signal generator 45 realized by a D / A converter in the CPU 40 is amplified and applied to the resolver primary winding 15 by a current amplification amplifier A3.
  • the resolver 12 is a rotary transformer, and a modulated sine wave of, for example, 10 kHz is induced in the SIN winding 16 and the COS winding 17 on the secondary side as the motor generator MG rotates. Signals applied from the SIN winding 16 and the COS winding 17 to the R / D converter 14 are converted into digital values by the R / D converter 14, and the two-phase encoder output signal PA is corresponding to the change in the digital values. , PB, PZ are output.
  • V-phase and W-phase current values of the IPM 7 are detected by the current sensors 8 and 9 and applied to the A / D conversion input (not shown) of the CPU 40 via the buffer amplifiers A1 and A2, and the corresponding digital values are given to the motor control unit 44. .
  • the motor control unit 44 Based on the torque command TR sent from the host ECU (for example, a hybrid ECU in a hybrid vehicle) by communication, the corrected electrical angle ⁇ 3, and the current values IV and IW, the motor control unit 44 performs dq axis calculation.
  • the duty ratio is determined by comparison with the PWM timer.
  • FIG. 2 is a diagram for explaining the axial multiplication angle of the resolver.
  • a resolver in the case where the shaft angle multiplier is 2X will be described as an example.
  • FIG. 2 shows a state in which a resolver 12 having a shaft angle multiplier of 2 ⁇ is attached to a three-phase two-pole motor generator 4.
  • Motor generator 4 includes two U-phase, V-phase, and W-phase coils, respectively, in the stator, and includes a pair of permanent magnets, N-pole and S-pole, in the rotor.
  • the resolver 12 is selected to have a shaft multiple angle of 2 ⁇ in accordance with the number of poles 2 of the motor generator 4. By making such a selection, only the electrical angle ⁇ e needs to be considered in the motor control, and the control can be simplified.
  • the electrical angle ⁇ e output from the resolver 12 changes from 0 ° to 360 °.
  • the electrical angle ⁇ e output from the resolver 12 further changes from 0 ° to 360 °.
  • the rotor position detection function of the resolver is expanded according to the shaft angle multiplier to obtain the mechanical angle.
  • FIG. 3 is a diagram for explaining the bit expansion of the two-phase encoder counter in the present embodiment.
  • a 10-bit counter is used as a general two-phase encoder counter.
  • the two-phase encoder counter 41 in FIG. 1 is a 10-bit counter.
  • a 10-bit count value indicates an electrical angle range of 0 ° to 360 °.
  • the mechanical angle can be obtained by counting the upper bits of this 10-bit counter by expanding it according to the size of the shaft angle multiplier. For example, if the shaft double angle is 2X, it is sufficient to take two states of 0 and 1, so that the extension bit may be 1 bit. For example, if the shaft double angle is 5X, it is necessary to take 5 states (000, 001, 010, 011, 100) from 0 to 4, so that 3 extension bits are required. Counting corresponding to the expanded bits is performed by the shaft multiple angle detector 42 in FIG.
  • the characteristic deviation of the resolver can be corrected.
  • the correction of the characteristic deviation is performed in the angle correction unit 43 in FIG.
  • correction of characteristic deviation can be performed by learning while rotating the motor generator.
  • correction can be made by extending the method described in Japanese Patent Application Laid-Open No. 2004-242370 in correspondence with the mechanical angle. Specifically, the average increase rate of the count value of the two-phase encoder counter during the specified time is obtained in the first round (0 ° to 360 °) of the mechanical angle. Then, in the second round of mechanical angle (0 ° to 360 °), the predicted value of the two-phase encoder counter is calculated based on the average increase rate obtained. If the predicted value and the actual value (actual value) of the two-phase encoder counter are within a predetermined range, the predicted value is adopted as the corrected value. If the predicted value and the actual value of the two-phase encoder counter are outside the predetermined range, a value that is half the reference value is added to or subtracted from the actual value and used as the corrected value.
  • FIG. 4 is a flowchart for explaining the extension bit count control of the two-phase encoder counter executed by the CPU 40 in the first embodiment. This process corresponds to the process executed in the shaft multiple angle detector 42 of FIG.
  • ⁇ 1 (n) is the count value of the two-phase encoder counter 41 in the nth cycle, and is a value corresponding to the electrical angle at the time corresponding to the nth cycle in which the flowchart of FIG. 4 is executed.
  • ⁇ 1 (n ⁇ 1) is the count value of the two-phase encoder counter 41 in the n ⁇ 1 cycle, and the electrical angle at the time corresponding to the n ⁇ 1 cycle in which the flowchart of FIG. 4 is executed.
  • Is a value corresponding to. X represents a threshold value. This threshold value X will be described later with reference to FIG.
  • step S1 The condition of step S1 is that when the Z-phase signal is input to the two-phase encoder counter 41 and the count value ⁇ 1 (n) is cleared to zero, the count value ⁇ 1 (n ⁇ 1) one cycle before that is the threshold value It is determined whether or not it is larger than X. If this condition is satisfied, the process proceeds from step S1 to step S2. In this case, the two-phase encoder counter 41 is cleared when it is counting up. In such a case, it is necessary to count up the extension bits.
  • step S2 it is determined whether or not the count value COUNT of the extension bit is greater than or equal to the maximum value MAX corresponding to the shaft double angle.
  • the maximum value MAX is, for example, 1 in a 1-bit binary number for a resolver with an axial double angle of 2X, and 100 in a 3-bit binary number for a resolver with an axial double angle of 5X.
  • ⁇ 1 (n) is a count value of the two-phase encoder counter 41 in the nth cycle, and a value corresponding to the electrical angle at the time corresponding to the nth cycle.
  • ⁇ 1 (n ⁇ 1) is the count value of the two-phase encoder counter 41 in the n ⁇ 1 cycle, and is a value corresponding to the electrical angle at the time corresponding to the n ⁇ 1 cycle.
  • ⁇ MAX is a count value of the two-phase encoder counter 41 corresponding to the maximum value of the electrical angle.
  • step S5 The condition of step S5 is that when the Z-phase signal is input to the two-phase encoder counter 41 and the count value ⁇ 1 (n ⁇ 1) is cleared to zero, the count value ⁇ 1 (n) after one cycle is equal to or greater than ⁇ MAX. It is to judge that there is. If this condition is satisfied, the process proceeds from step S5 to step S6. In this case, the countdown is performed after the two-phase encoder counter 41 becomes zero. In such a case, it is necessary to count down the count value COUNT of the extension bits.
  • step S6 it is determined whether or not the extension bit count value COUNT is equal to or less than zero.
  • step S9 the expanded count value ⁇ 2 corresponding to the mechanical angle ⁇ m is synthesized from the output value ⁇ 1 of the two-phase encoder counter 41 and the count value COUNT corresponding to the extended bit as described with reference to FIG.
  • step S9 After the count value ⁇ 2 is obtained in step S9, control is transferred to the main routine in step S10.
  • FIG. 5 is a waveform diagram showing an example of a change in the count value of the counter when a resolver having a shaft angle multiplier of 5X is used.
  • the horizontal axis indicates the mechanical angle (0 ° to 360 °).
  • the count value COUNT is incremented every time the electrical angle changes from 0 ° to 360 °.
  • the count value ⁇ 1 corresponding to the electrical angle changes repeatedly from zero to ⁇ MAX.
  • the Z-phase signal is input, and the count value ⁇ 1 that becomes ⁇ MAX is cleared to zero.
  • 1 is added to the count value COUNT corresponding to the extension bit (step S4 in FIG. 4).
  • FIG. 5 also shows that the count value ⁇ 2 corresponding to the mechanical angle is obtained based on the count value ⁇ 1 and the count value COUNT.
  • FIG. 6 is an enlarged waveform diagram showing a change in the count value before and after the north marker while the counter is increasing.
  • the Z-phase signal output from the two-phase encoder may be called a north marker (NM).
  • NM north marker
  • the COUNT value is added when ⁇ 1 changes to ⁇ MAX and immediately changes to zero. However, since there may be a timing shift in the Z-phase signal, processing is performed so that a slight shift is allowed.
  • step S1 By performing the process of step S1, even when the Z-phase signal is input before the maximum value ⁇ MAX is reached, the count value COUNT can be counted up accordingly. As a result, the count value ⁇ 2 that correctly corresponds to the mechanical angle can be obtained.
  • correction data is created in advance in a factory or the like using a precise measurement device, and the precise measurement device is not included in the shipped product itself.
  • the correction data when the correction data is applied to the shipping product, it is necessary to correctly correspond to the mechanical angle at the time of generating the correction data. That is, it is necessary to match the mechanical angle when the correction data is created and when the correction data is used.
  • FIG. 7 is a block diagram of a vehicle 1A in which the rotation angle detection device of the second embodiment is used.
  • vehicle 1A is different from vehicle 1 in FIG. 1 in that it includes resolver 12A and CPU 40A instead of resolver 12 and CPU 40. Since the configuration of vehicle 1A is the same as that of vehicle 1 already described, the description thereof will not be repeated for the other parts.
  • the resolver 12A includes a sensor 18 for detecting the position of the mechanical angle of the rotor of 0 ° and outputting a clear signal CLR.
  • Primary winding 15 and secondary windings 16 and 17 are the same as in FIG. 1, and description thereof will not be repeated.
  • the CPU 40A is different from the CPU 40 of FIG. 1 in that the CPU 40A includes a two-phase encoder counter 41A and a shaft multiple angle detector 42A instead of the two-phase encoder counter 41 and the shaft multiple angle detector 42. Other parts are similar to those of CPU 40, and description thereof will not be repeated.
  • the two-phase encoder counter 41A counts up or down according to the A phase signal PA and the B phase signal PB, and is cleared to zero based on the clear signal CLR instead of the Z phase signal PZ. It may be configured to be cleared regardless of which of the Z-phase signal PZ and the clear signal CLR is input.
  • the shaft multiple angle detector 42A outputs a count value ⁇ 2 corresponding to the mechanical angle in consideration of the shaft multiple angle according to a change in the count value ⁇ 1 corresponding to the electrical angle output from the two-phase encoder counter 41. Then, when the clear signal CLR is input, the shaft multiple angle detector 42A clears the count value ⁇ 2 to zero.
  • FIG. 8 is a flowchart for explaining extension bit count control of the two-phase encoder counter executed by the CPU 40A in the second embodiment.
  • steps S11 and S12 are added to the flowchart described in FIG.
  • the processing in steps S1 to S8 is the same as that described with reference to FIG. 4, and description thereof will not be repeated.
  • step S11 it is determined whether or not the clear signal CLR given from the sensor 18 is input. If the signal CLR is not input, the count value COUNT is applied as it is to step S9. On the other hand, if the signal CLR is input, the count value COUNT is cleared to zero in step S12, and then the process proceeds to step S9.
  • step S9 the expanded count value ⁇ 2 corresponding to the mechanical angle ⁇ m is synthesized from the output value ⁇ 1 of the two-phase encoder counter 41 and the count value COUNT corresponding to the extended bit as described in FIG.
  • step S9 After the count value ⁇ 2 is obtained in step S9, control is transferred to the main routine in step S10.
  • the absolute position of the mechanical angle can be obtained from the two-phase encoder output from the rotation sensor. Therefore, even when the correction data of the rotation sensor is created at a factory or the like, it can be applied to the correct position, and a rotation sensor with further improved accuracy can be realized.
  • the electrical angle 360 ° is set smaller than the mechanical angle 360 °, and a two-phase encoder signal corresponding to the electrical angle of the rotor is output.
  • Electric angle detector resolveer 12 and R / D converter 14
  • two-phase encoder counter 41 that counts the two-phase encoder signal and outputs a digital value corresponding to the electric angle, and changes in the count value of the two-phase encoder counter
  • a shaft multiple angle detector 42 for detecting which position of the mechanical angle the electrical angle indicated by the signal output from the detector corresponds to.
  • the shaft multiple angle detector 42 generates a count value COUNT that further extends the upper bits of the two-phase encoder counter 41 to a value corresponding to a mechanical angle of 360 °, and expands the count. Outputs the value COUNT.
  • the electrical angle detection unit includes a resolver 12 in which an electrical angle of 360 ° is set to be smaller than a mechanical angle of 360 °, and a resolver / digital converter 14 that converts a resolver signal into a digital value.
  • the resolver / digital converter 14 outputs a two-phase encoder signal including an A-phase signal, a B-phase signal, and a Z-phase signal.
  • the two-phase encoder counter 41 counts up or down according to the A phase signal and the B phase signal, and clears the count value when the Z phase signal is input. As shown in FIG. 4, when the count value ⁇ 1 of the two-phase encoder counter is cleared while the count value ⁇ 1 of the two-phase encoder counter 41 is increasing, the shaft multiple angle detection unit 42 When the count value ⁇ 1 of the phase encoder counter exceeds the threshold value X (YES in step S1), the expanded count value COUNT is counted up. When count value ⁇ 1 exceeds threshold value X and expanded count value COUNT is MAX (YES in step S2), expanded count value COUNT is cleared.
  • the electrical angle detection unit further includes a sensor 18 for detecting a reference position of the mechanical angle.
  • the two-phase encoder counter 41A counts up or down according to the A phase signal and the B phase signal, and clears the count value ⁇ 1 according to the output of the sensor 18.
  • the shaft multiple angle detector 42A clears the count value COUNT expanded according to the output of the sensor 18 (YES in step S11 of FIG. 8).
  • the rotation angle detection device further includes an angle correction unit 43 that performs correction corresponding to the correct position of the mechanical angle on the digital value output from the two-phase encoder counter based on the output of the shaft multiple angle number detection unit. Prepare.
  • the shaft angle multiplier is determined by receiving the Z-phase signal, the A-phase signal, and the B-phase signal output from the position detector (resolver + R / D converter, encoder, etc.).
  • the Z-phase signal is input at an unexpected timing due to some influence, the shaft multiple angle cannot be accurately determined. For example, if a Z-phase signal is input at a timing that is not near the resolver angle of 0 degrees, the two-phase encoder counter may be cleared, and it may be erroneously determined that the next shaft double angle has been reached.
  • FIG. 9 is a block diagram of a vehicle 1B in which the rotation angle detection device of the third embodiment is used.
  • vehicle 1 ⁇ / b> B includes a CPU 40 ⁇ / b> B instead of CPU 40 in inverter device 2 in the configuration of vehicle 1 ⁇ / b> B shown in FIG. 1. Since the configuration of vehicle 1B is the same as that of vehicle 1 already described, the description thereof will not be repeated.
  • the CPU 40B includes a two-phase encoder counter 41B and a shaft multiple angle detector 42B in place of the two-phase encoder counter 41 and the shaft multiple angle detector 42, and further includes a Z-phase abnormality detector 46 and a Z-phase abnormality determiner 47. It is different from the CPU 40 of FIG. Other parts are similar to those of CPU 40, and description thereof will not be repeated.
  • the two-phase encoder counter 41B counts up or counts down according to the A-phase signal PA and the B-phase signal PB, and is cleared according to the Z-phase signal PZ.
  • the shaft multiple angle detector 42B outputs a count value ⁇ 2 corresponding to the mechanical angle in consideration of the shaft multiple angle according to a change in the count value ⁇ 1 corresponding to the electrical angle output from the two-phase encoder counter 41B. Specifically, the shaft multiple angle counter is increased or decreased in accordance with the carry or borrow of the two-phase encoder counter 41B.
  • the Z-phase abnormality detection unit 46 normalizes the Z-phase signal input when the count value ⁇ 1 is within the appropriate range, and abnormalizes the Z-phase signal input when the count value ⁇ 1 is outside the appropriate range. That is, a Z-phase signal at an expected timing and a Z-phase signal at an unexpected timing are discriminated.
  • the Z-phase abnormality determination unit 47 counts the number of Z-phase signals input at an unexpected timing, and determines an abnormal state. Specifically, the Z-phase abnormality determination unit 47 counts the number of Z-phase signals that are abnormal by the Z-phase abnormality detection unit 46, and outputs a clear signal CLR when the count value exceeds the error limit value. To do. The values held by the two-phase encoder counter 41B and the shaft multiple angle detector 42B are cleared to zero by the clear signal CLR.
  • FIG. 10 is a flowchart for explaining processing executed in the third embodiment.
  • the process of this flowchart is a process executed in addition to the process of FIG. 4 described in the first embodiment, and is executed every time the Z-phase signal PZ is input to the Z-phase abnormality detection unit 46.
  • step S21 it is determined whether or not the value of count value ⁇ 1 at the timing when input Z-phase signal PZ is input satisfies the condition of Xmax ⁇ 1 (n) ⁇ Xmin. Is done. It is shown that the process of this flowchart is executed n-th, and the count value when the process of this flowchart is executed next time is ⁇ 1 (n + 1).
  • FIG. 11 is a diagram for explaining Xmax and Xmin in FIG.
  • TA is a period in which the value of count value ⁇ 1 (n) is not less than Xmin and not more than ⁇ max
  • TB is a period in which the value of count value ⁇ 1 (n) is not less than ⁇ min and not more than Xmax.
  • This period is TC.
  • Xmax indicates a Z-phase input normality determination threshold value near +0 degrees
  • Xmin indicates a Z-phase input normality determination threshold value near ⁇ 0 degrees.
  • a deviation occurs between the actual electrical angle and the angle recognized by the angle detector.
  • a Z-phase signal is output.
  • a shift occurs between the actual electrical angle and the angle recognized by the angle detector under the influence of noise, and a Z-phase signal is output. There may be a case where electrical noise is superimposed on the Z-phase signal itself.
  • the Z-phase signal input during the period TA or TB is regarded as normal, and the Z-phase signal input during the other period TC is treated as abnormal.
  • the two-phase encoder counter 41B is cleared by a normal Z-phase signal, but is not cleared by a Z-phase signal treated as abnormal.
  • the count value ⁇ 1 of the two-phase encoder counter 41B cannot be trusted. Therefore, the number of times that an abnormal Z-phase signal is generated is counted. If the number is greater than a predetermined value, the two-phase encoder counter 41B is cleared and the count value COUNT of the extension bit counted by the shaft multiple angle detector 42B is also obtained. Control is performed to clear.
  • step S21 if the condition Xmax ⁇ 1 (n) ⁇ Xmin is not satisfied in step S21 (if the Z-phase signal PZ is input in the period TA or TB in FIG. 11), the process proceeds to step S25. Advances and control is transferred to the main routine.
  • step S21 if the condition Xmax ⁇ 1 (n) ⁇ Xmin is satisfied in step S21 (if the Z-phase signal PZ is input in the period TC in FIG. 11), the process proceeds to step S22.
  • step S22 +1 is added to the count value ERROR_COUNT of the Z-phase abnormality timing input.
  • the count value ERROR_COUNT is a count value for counting the Z-phase signal PZ input during the period TC in FIG.
  • step S23 it is determined whether the count value ERROR_COUNT has exceeded the abnormality determination threshold value ERROR. If ERROR_COUNT> ERROR is satisfied, the process proceeds to step S24. If not satisfied, the process proceeds to step S25, and the control is transferred to the main routine.
  • the abnormality determination threshold ERROR is set to a value of 2 or more, a single Z-phase signal PZ due to noise or the like is ignored, and the Z-phase signal PZ is input a plurality of times during the period TC in FIG. Causes the reset operation to be performed.
  • step S24 the count value COUNT counted by the shaft multiple angle detector 42B is cleared to zero, and at the same time, the count value ERROR_COUNT is also cleared to zero. Thereafter, the process proceeds to step S25, and control is transferred to the main routine.
  • the rotation angle detection device shown in FIG. 9 includes an angle detection unit (12, 14) in which an angle corresponding to one cycle of the output signal is set to be smaller than 360 ° of the mechanical angle;
  • the counter (41B) that outputs a digital value corresponding to the output signal of the angle detection unit, and the position indicated by the signal output from the angle detection unit based on the change in the count value of the counter (41B) is any position of the mechanical angle
  • a shaft angle multiplier detection unit 42B for detecting whether it corresponds to.
  • the angle detection unit is an electrical angle detection unit (12, 14) configured to output a two-phase encoder signal corresponding to the electrical angle of the rotor, in which the electrical angle of 360 ° is set smaller than the mechanical angle of 360 °.
  • the counter is a two-phase encoder counter 41B that counts the two-phase encoder signal and outputs a digital value ⁇ 1 corresponding to the electrical angle.
  • the shaft multiple angle detector 42B changes the count value of the two-phase encoder counter 41B. Based on the above, it is detected which position of the mechanical angle the electrical angle indicated by the signal output from the electrical angle detector corresponds to.
  • the shaft angle multiplier 42B generates a count value ⁇ 2 in which the upper bits of the two-phase encoder counter 41B are further expanded to a value corresponding to a mechanical angle of 360 °, and outputs the expanded count value.
  • the two-phase encoder counter 41B counts up or down according to the A phase signal and the B phase signal, and clears the count value when the Z phase signal is input.
  • the rotation angle detection device determines whether or not the count value of the two-phase encoder counter 41B when the Z-phase signal is input is within a predetermined range (within the period TC in FIG. 11) corresponding to the abnormal timing.
  • the abnormality detection unit 46 and the Z-phase abnormality detection unit 46 determine that the value is within the predetermined range, the number of Z-phase signals input is counted, and the number of Z-phase signal inputs ERROR_COUNT is counted as an error.
  • the threshold value ERROR is exceeded (YES in step S23)
  • the Z-phase abnormality determination unit 47 that clears the expanded count value ⁇ 2 and the extended bit COUNT held by the shaft multiple angle detector 42B is further provided.
  • the case where the Z-phase signal is repeatedly input at an abnormal timing is detected and the counter is cleared, so that there is a high possibility that normal operation is restored even if a malfunction occurs.
  • FIG. 12 is a block diagram of a vehicle 1C in which the rotation angle detection device of the fourth embodiment is used.
  • a signal corresponding to the Z-phase signal is input by the Hall element 18C.
  • vehicle 1C includes an inverter device 2C, a motor generator 4 and a rotor position detector 12C connected to the rotor shaft of the motor generator.
  • the motor generator 4 can be used to drive the wheels.
  • the motor generator 4 may be used for other purposes.
  • the rotor position detector 12 ⁇ / b> C includes a Hall element 18 ⁇ / b> C that detects the position of a magnet embedded in the rotor fixed to the rotation shaft of the motor generator 4.
  • the inverter device 2 ⁇ / b> C includes a CPU 40 ⁇ / b> C, an IPM 7, and current sensors 8 and 9.
  • IPM 7 includes a power switching element such as an IGBT for controlling a current flowing in the stator coil of the motor generator.
  • the stator coil of the motor generator includes U-phase, V-phase, and W-phase coils. Since the U-phase, V-phase, and W-phase coils are Y-connected, the U-phase current can be calculated by measuring the V-phase and W-phase currents with the current sensors 8 and 9.
  • the CPU 40C includes a rotor position detector 41C, a shaft angle multiplier detection unit 42C, an angle correction unit 43, a motor control unit 44, a normal timing determination unit 48C, a Z phase abnormality detection unit 46C, and a Z phase abnormality determination unit 47C. Including. Since angle correction unit 43 and motor control unit 44 perform the same operations as those described in the first embodiment, description thereof will not be repeated.
  • the rotor position detector 41C estimates the angle from the rotational speed obtained from the Z-phase signal input interval and the elapsed time from the final Z-phase input.
  • the rotor position detector 41C includes a timer counter that is counted up by a clock signal of the CPU 40C and cleared according to the Z-phase signal from the Hall element 18C.
  • the value is stored as a value C0 corresponding to 360 °
  • the normal timing determination unit 48C calculates an input period (expected input period) in which the next Z-phase input is expected, and detects a signal indicating whether or not the current time corresponds to the calculated expected input period. To the unit 46C.
  • the expected input period corresponds to the period TA + TB in FIG. 11.
  • the Z-phase abnormality detection unit 46C determines whether the Z-phase signal from the Hall element 18C is input during the expected input period. Detect signal anomalies.
  • the Z-phase signal input during the period TC in FIG. 11 is determined as an abnormal signal and ignored. In this case, an output signal indicating that an abnormal signal has been input is output to the Z-phase abnormality determining unit 47C.
  • the Z-phase abnormality determination unit 47C performs abnormality determination based on the number of detections and the duration from the output result of the Z-phase abnormality detection unit 46C. For example, an abnormality may be determined when the number of abnormal signal detections within a predetermined period exceeds the error threshold ERRORR_COUNT.
  • the Z-phase abnormality determining unit 47C determines that the Z-phase signal is abnormal, the Z-phase abnormality determining unit 47C clears the counter of the shaft multiple angle detector 42C.
  • the rotation angle detection device corresponds to an angle detection unit (18C) in which an angle corresponding to one cycle of an output signal is set to be smaller than a mechanical angle of 360 °, and an output signal of the angle detection unit. Based on the change of the count value ⁇ 1 of the counter (rotor position detector 41C) that outputs the digital value and the counter (rotor position detector 41C), the angle indicated by the signal output from the angle detection unit is any of the mechanical angles. And a shaft multiple angle detector 42C for detecting whether the position corresponds to the position.
  • the angle detector (18C) is a Hall element configured to output a signal indicating that one cycle is completed for each predetermined angle as an output signal.
  • the counter includes a rotor position detector 41C that counts up the count value based on the clock signal after the output signal is input until the next output signal is input.
  • the rotation angle detection device includes a Z-phase abnormality detection unit 46C that determines whether or not the count value of the counter (rotor position detector 41C) when the output signal is input is within a predetermined range corresponding to the abnormality timing. When the Z phase abnormality detection unit 46C determines that the output signal is within the predetermined range, the number of output signals input is counted, and the number of output signals input exceeds the error count threshold. It further includes a Z-phase abnormality determination unit 47C that clears the expanded count value held by the shaft multiple angle detection unit 42C.
  • the fourth embodiment also detects a case where a Z-phase signal is repeatedly input at an abnormal timing and clears the counter, so that normal operation is restored even if a malfunction occurs. The possibility increases.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 回転角検出装置は、電気角の360°が機械角の360°よりも小さく設定され、回転子の電気角に対応する二相エンコーダ信号を出力する電気角検出部(レゾルバ(12)およびR/Dコンバータ(14))と、二相エンコーダ信号をカウントし、電気角に対応するデジタル値を出力する二相エンコーダカウンタ(41)と、二相エンコーダカウンタのカウント値の変化に基づいて、検出器の出力する信号が示す電気角が機械角のいずれの位置に相当するかを検出する軸倍角数検出部(42)とを備える。これにより二相エンコーダ出力を用いつつも、機械角の位置を認識可能とした回転角検出装置を提供することができる。

Description

回転角検出装置
 この発明は、回転角検出装置に関し、特に出力信号の1周期分に相当する角度が機械角の360°よりも小さく設定されている回転角検出装置に関する。
 電気モータを搭載する自動車やハイブリッド自動車などの車両や、モータを使用する他の電気機器には、モータ駆動システムが搭載されている。このようなモータ駆動システムには、モータの回転角を検出する回転角検出装置が使用される。
 例えば、特開2009-77481号公報(特許文献1)には、回転検出センサとしてレゾルバを用い、その出力をデジタル値に変換するR/D(レゾルバ/デジタル)コンバータがカウント値を増減させる旨が開示されている。
特開2009-77481号公報 特開2004-242370号公報 特開2008-259347号公報 特開平11-337371号公報 特開2004-61157号公報 特開2000-314639号公報
 モータの制御は、基本的には極対数に応じて変化する電気角が使用される。たとえば、1極対のモータであれば、機械角と電気角は一致する。しかし、2極対モータの場合は機械角が0°~360°まで変化すると、電気角は0°~360°の変化を2回繰返す。すなわち2極対モータでは、電気角0°~360°の出力だけでは、機械角の0°~180°に対応するのか機械角の180°~360°に対応するのか分からない。
 近年、自動車用などのモータには高トルク化、小型化およびなめらかな制御性などが要求されており、モータの極対数も2極対から4極対、5極対などに増える可能性がある。この場合、レゾルバはそれぞれ2、4、5(2X、4X、5Xとも表示される)の軸倍角のものを使用するのが通常である。ここで軸倍角(multiplication factor of angle)とは、レゾルバの実際の機械角θmに対するレゾルバ出力の一周期分の角度(通常は電気角θe)の比をいう。すなわち、機械角θm=電気角θe/軸倍角N、の関係が成立する。なお、軸倍角は角度ではなく倍数であるので、軸倍角を本明細書では軸倍角数ともいう場合がある。
 しかしながら、レゾルバ等の回転角センサを小型化した場合や、軸倍角を大きくした場合、加工精度の問題から同じ電気角であっても軸倍角の数だけ特性がばらつくことがある。センサがこのような特性のばらつきを有する場合には、理想的な特性となるように出力を補正して使用することが望ましい。
 図13は、軸倍角Nxのレゾルバの特性の補正について説明するための図である。
 図13を参照して、横軸にはレゾルバの機械角を示し、縦軸には、機械角に対応するカウント値が示されている。レゾルバの特性をそのままデジタル値に変換した場合は理想値に対して出力値のずれが生じている。出力値を理想値に一致させる補正を行なうことにより、回転速度などが正確に算出できるようになる。
 このような出力値のずれは、センサの加工精度などにより、機械角の0°~360°の位置に対応したずれとなる。つまり、電気角が同じ値であっても、機械角のどの位置に対応するかによってずれ量が異なるので、補正値も変える必要がある。具体的には、電気角の0°~360°が軸倍角2Xの場合には、出力値(電気角)が機械角0°~180°に対応するものであるのか、180°~360°に対応するものであるのかを認識したうえで補正を行なう必要がある。軸倍角5Xの場合には、現在の出力値が示す電気角が5通りの機械角に対応し得る。
 ところで、レゾルバの出力をデジタル値に変換するR/Dコンバータの出力としては二相エンコーダ出力が用いられている。二相エンコーダ出力は、A相信号、B相信号およびZ相信号を含む。A相信号、B相信号は回転角度に応じた数のパルスを含む信号である。A相信号とB相信号との間にはパルスの立上りおよび立下りエッジに位相差が設けられており、A相信号とB相信号の位相関係によって正転か逆転かを知ることができる。またZ相信号は電気角1回転に1回出力される信号である。モータ制御の分野では、このようなインターフェースが広く用いられている。二相エンコーダ出力を受けて計数する一般的な二相エンコーダカウンタでは電気角は認識できるが、機械角を認識することまではできない。
 この発明の目的は、二相エンコーダ出力を用いつつも、機械角の位置を認識可能とした回転角検出装置を提供することである。
 この発明は、要約すると、回転角検出装置であって、出力信号の1周期分に相当する角度が機械角の360°よりも小さく設定された角度検出部と、角度検出部の出力信号に対応するデジタル値を出力するカウンタと、カウンタのカウント値の変化に基づいて、角度検出部の出力する信号が示す角度が機械角のいずれの位置に相当するかを検出する軸倍角数検出部とを備える。
 好ましくは、角度検出部は、電気角の360°が機械角の360°よりも小さく設定され、回転子の電気角に対応する二相エンコーダ信号を出力する電気角検出部であり、カウンタは、二相エンコーダ信号をカウントし、電気角に対応するデジタル値を出力する二相エンコーダカウンタであり、軸倍角数検出部は、二相エンコーダカウンタのカウント値の変化に基づいて、電気角検出部の出力する信号が示す電気角が機械角のいずれの位置に相当するかを検出する。
 より好ましくは、軸倍角数検出部は、二相エンコーダカウンタの上位ビットを機械角の360°に相当する値までさらに拡張したカウント値を生成し、拡張したカウント値を出力する。
 さらに好ましくは、電気角検出部は、電気角の360°が機械角の360°よりも小さく設定されたレゾルバと、レゾルバの信号をデジタル値に変換するレゾルバ/デジタルコンバータとを含む。レゾルバ/デジタルコンバータは、A相信号、B相信号およびZ相信号を含む二相エンコーダ信号を出力する。
 さらに好ましくは、二相エンコーダカウンタは、A相信号およびB相信号に応じてカウントアップまたはカウントダウンを行ない、Z相信号が入力されるとカウント値をクリアする。軸倍角数検出部は、二相エンコーダカウンタのカウント値が増加中において二相エンコーダカウンタのカウント値がクリアされた場合に、クリアされる直前の二相エンコーダカウンタのカウント値がしきい値を超えていたときには、拡張したカウント値をカウントアップする。
 さらに好ましくは、電気角検出部は、機械角の基準位置を検出するセンサをさらに含む。二相エンコーダカウンタは、A相信号およびB相信号に応じてカウントアップまたはカウントダウンを行ない、センサの出力に応じてカウント値をクリアし、軸倍角数検出部は、センサの出力に応じて拡張したカウント値をクリアする。
 より好ましくは、二相エンコーダカウンタは、A相信号およびB相信号に応じてカウントアップまたはカウントダウンを行ない、Z相信号が入力されるとカウント値をクリアする。回転角検出装置は、Z相信号が入力された時の二相エンコーダカウンタのカウント値が異常タイミングに対応する所定範囲内であるか否かを判断するZ相異常検出部と、Z相異常検出部によって所定範囲内であると判断された場合には、Z相信号が入力された数をカウントし、Z相信号が入力された数がエラーカウントしきい値を超えた場合に軸倍角数検出部が保持する拡張したカウント値をクリアするZ相異常判定部とをさらに備える。
 好ましくは、角度検出部は、出力信号として所定角度ごとに1周期分が完了することを示す信号を出力する。カウンタは、出力信号が入力されてから次回の出力信号が入力されるまでの間カウント値をクロック信号に基づいてカウントアップする回転子位置検出部を含む。回転角検出装置は、出力信号が入力された時のカウンタのカウント値が異常タイミングに対応する所定範囲内であるか否かを判断するZ相異常検出部と、Z相異常検出部によって所定範囲内であると判断された場合には、出力信号が入力された数をカウントし、出力信号が入力された数がエラーカウントしきい値を超えた場合に軸倍角数検出部が保持する拡張したカウント値をクリアするZ相異常判定部とをさらに備える。
 好ましくは、回転角検出装置は、軸倍角数検出部の出力に基づいて、機械角の正しい位置に対応する補正をカウンタが出力するデジタル値に対して行なう角度補正部をさらに備える。
 本発明によれば、二相エンコーダ出力を用いつつも、機械角の位置を認識可能となるため、従来からの制御方式を大幅に変えなくても、回転角センサの特性の補正が可能となる。
実施の形態1の回転角度検出装置が使用される車両1のブロック図である。 レゾルバの軸倍角について説明するための図である。 本実施の形態における二相エンコーダカウンタのビット拡張を説明するための図である。 実施の形態1においてCPU40で実行される二相エンコーダカウンタの拡張ビットのカウント制御を説明するためのフローチャートである。 軸倍角5Xのレゾルバを用いた場合のカウンタのカウント値の変化の一例を示す波形図である。 カウンタ増加中のカウント値のノースマーカー前後の変化を拡大して示す波形図である。 実施の形態2の回転角度検出装置が使用される車両1Aのブロック図である。 実施の形態2においてCPU40Aで実行される二相エンコーダカウンタの拡張ビットのカウント制御を説明するためのフローチャートである。 実施の形態3の回転角度検出装置が使用される車両1Bのブロック図である。 実施の形態3において実行される処理を説明するためのフローチャートである。 図10のXmax,Xminを説明するための図である。 実施の形態4の回転角度検出装置が使用される車両1Cのブロック図である。 レゾルバの特性の補正について説明するための図である。
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 図1は、本発明の回転角度検出装置が適用される車両1の構成を示すブロック図である。
 図1を参照して、車両1は、インバータ装置2と、モータジェネレータ4とモータジェネレータのロータシャフトに接続されたレゾルバ12とを含む。車両1が電気自動車、ハイブリッド自動車、燃料電池自動車の場合は、モータジェネレータ4は車輪を駆動するために使用することができる。なお、他の用途にモータジェネレータ4を使用しても良い。
 レゾルバ12は、外周部の形状が中心との距離が周期的に変化するように形成されたロータシャフトと、ステータに設けられた一次巻線15と、90°の位相差が生じるようにステータに配置された二つの二次巻線16,17とを含む。ロータシャフトの外形は、ステータとのギャップが角度によって正弦波状に変化するような形状であり、軸倍角に対応してその正弦波の数が決められる。レゾルバの一次巻線に正弦波sinωtの信号を入力すると、90°の位相差が生じるように配置された二つの二次巻線には、それぞれモータ回転角θに応じて変調された信号sinωtsinθ,sinωtcosθが得られる。
 インバータ装置2は、CPU(Central Processing Unit)40と、IPM(Intelligent Power Module)7と、電流センサ8,9と、R/D(レゾルバ/デジタル)コンバータ14とを含む。IPM7は、モータジェネレータのステータコイルに流す電流を制御するためのIGBTなどのパワースイッチング素子を含む。モータジェネレータのステータコイルはU相、V相、W相のコイルを含む。U相、V相、W相のコイルはY結線されているので、V相、W相の電流を電流センサ8,9によって測定すればU相の電流は演算で求めることができる。
 インバータ装置2は、さらに、電流センサ8,9の出力をそれぞれ増幅するアンプA1,A2と、CPU40からの励磁用参照信号Refに基づいてレゾルバの一次巻線を励磁するアンプA3とを含む。
 CPU40は、R/Dコンバータ14から出力される二相エンコーダ信号に基づいてこれをカウントすることにより電気角θeに対応するカウント値θ1を得る。二相エンコーダ信号は、A相信号PA、B相信号PB、Z相信号PZを含む。また、CPU40は、軸倍角に対応するカウントをさらに行ない、機械角θmに対応するカウント値θ2を得る。CPU40は、カウント値θ2に基づいてレゾルバの加工精度等に起因する特性バラツキを補正した値θ3を算出しこれをモータ制御に使用する。
 このようなCPU40の動作は、ソフトウエアでもハードウエアでも実現可能である。CPU40は、A相信号PAとB相信号PBとに応じてカウントアップまたはカウントダウンを行ない、Z相信号PZに応じてクリアされる二相エンコーダカウンタ41と、二相エンコーダカウンタ41の出力する電気角に対応するカウント値θ1の変化に応じて、軸倍角を考慮して機械角に対応するカウント値θ2を出力する軸倍角数検出部42と、カウント値θ2に基づいて補正された電気角に対応するカウント値θ3を出力する角度補正部43と、カウント値θ3とトルク指令値TRと、モータ電流値IV,IWとに基づいてU,V,W相の三相PWM信号を出力するモータ制御部44とを含む。U,V,W相の三相PWM信号に基づいて、IPM7内のIGBTがオンオフ制御され、モータジェネレータMGに通電が行なわれる。
 モータジェネレータMGにはレゾルバ12のロータシャフトが機械的に連結される。レゾルバ一次巻線15には、CPU40内のD/Aコンバータ等により実現される励磁信号発生部45により生成された例えば10kHzの励磁正弦波信号が電流増幅アンプA3で増幅され印加される。
 レゾルバ12は、回転トランスであり、二次側のSIN巻線16、COS巻線17にはモータジェネレータMGの回転に伴い、変調されたたとえば10kHzの正弦波が誘導される。SIN巻線16、COS巻線17からR/Dコンバータ14に与えられた信号は、R/Dコンバータ14によってデジタル値に変換され、これのデジタル値の変化に対応して二相エンコーダ出力信号PA,PB,PZが出力される。
 IPM7のV相、W相電流値は電流センサ8,9で検出され、バッファアンプA1,A2を介しCPU40の図示しないA/D変換入力に印加され対応するデジタル値がモータ制御部44に与えられる。
 上位のECU(たとえば、ハイブリッド車両では、ハイブリッドECU)より通信で送られてきたトルク指令TRと、補正後の電気角θ3、電流値IV,IWに基づいて、モータ制御部44はdq軸演算を行ないPWMタイマーとの比較により通電デューティー比を決定する。
 図2は、レゾルバの軸倍角について説明するための図である。
 図2を参照して、軸倍角が2Xの場合のレゾルバについて例示して説明する。図2には、三相2極のモータジェネレータ4に対して、軸倍角が2Xのレゾルバ12が取り付けられた状態が示されている。モータジェネレータ4は、ステータに各々2極のU相、V相、W相コイルを含み、ロータにN極、S極2対の永久磁石を含む。レゾルバ12はモータジェネレータ4の極数2に合わせて、軸倍角が2Xのものが選択されている。このように選択することにより、モータ制御の際に電気角θeのみを考えればよく、制御を簡単にすることができる。
 モータジェネレータ4のロータが機械角θmで0°~180°まで半回転すると、レゾルバ12の出力する電気角θeは0°~360°の変化をする。そして、モータジェネレータ4のロータが機械角θmで180°~360°まで半回転すると、レゾルバ12の出力する電気角θeはさらに、0°~360°の変化をする。
 ここで、レゾルバの軸倍角を大きくした場合には、同じ精度の電気角信号を出力するためには、部品加工の精度を高くしない限りレゾルバの体格を大きくする必要がある。またレゾルバを小型化した場合部品加工の精度が同じであれば、電気角信号の精度が悪くなる。したがって、レゾルバの出力を補正して使用することが考えられる。
 しかし、図2の例では、機械角0°~180°に対応する電気角と機械角180°~360°に対応する電気角では、レゾルバの特性のズレが異なる場合が想定される。これは、特性のズレがレゾルバのロータの偏心、ロータの外周の加工バラツキなどに起因するためである。たとえば、軸倍角が2Xであって、ロータとステータの間のギャップ(距離)が正弦波状に変化するようにロータが加工されているVR(バリアブルリラクタンス)レゾルバでは、機械角0°~180°に対応するロータの加工面と機械角180°~360°に対応する加工面では精度が異なることも考えられる。
 したがって、電気角の補正は機械角に対応させて行なう必要がある。具体的には、例えば同じ電気角10°の出力値を補正する場合でも、機械角で10°であるのか190°であるのかで、補正値を変えてやる必要がある。このため、本実施の形態では、レゾルバの回転子位置検出機能を軸倍角に合わせて拡張して機械角を得る。
 図3は、本実施の形態における二相エンコーダカウンタのビット拡張を説明するための図である。
 図3を参照して、一般的な二相エンコーダカウンタとして10ビットのカウンタを使用しているとする。この場合、図1の二相エンコーダカウンタ41が10ビットのカウンタである。10ビットのカウント値で電気角の0°~360°の範囲が示される。
 この10ビットのカウンタの上位ビットを軸倍角の大きさに合わせて拡張してカウントすることで、機械角を得ることができる。たとえば、軸倍角が2Xであれば、0、1の2状態を取ればよいので拡張ビットは1ビットでよい。たとえば軸倍角が5Xであれば、0~4の5状態(000,001,010,011,100)を取る必要があるので、拡張ビットは3ビット必要になる。拡張したビットに相当するカウントは、図1の軸倍角数検出部42で行なわれる。
 したがって、一般的な二相エンコーダカウンタのカウント値は、電気角θe=0°~360°に対応するカウント値θ1である。拡張したカウンタのカウント値は、機械角θm=0°~360°に対応するカウント値θ2である。
 このように、機械角に対応するカウント値が認識できれば、レゾルバの特性ズレの補正を行なうことができる。特性ズレの補正は、図1の角度補正部43において行なわれる。
 たとえば、特性ズレの補正はモータジェネレータを回転させているときに学習させるようにして行なうことができる。たとえば、特開2004-242370号公報に記載された方法を機械角に対応させて拡張すれば補正ができる。具体的には、規定時間における二相エンコーダカウンタのカウント値の平均増加率を機械角の1周目(0°~360°)に求める。そして、機械角の2周目(0°~360°)において、二相エンコーダカウンタの予測値を求めておいた平均増加率に基づいて算出する。予測値と実際の二相エンコーダカウンタの値(実際値)が所定の範囲内であれば予測値を補正後の値として採用する。予測値と実際の二相エンコーダカウンタの値が所定の範囲外であれば実際値に基準値の2分の1の値を加減算して補正後の値として採用する。
 図4は、実施の形態1においてCPU40で実行される二相エンコーダカウンタの拡張ビットのカウント制御を説明するためのフローチャートである。この処理は、図1の軸倍角数検出部42において実行される処理に対応する。
 図4のフローチャートの処理は、図1の二相エンコーダカウンタのカウント値(拡張前のカウント値)が変化する毎に所定のメインルーチンから呼び出されて実行される。
 まず、ステップS1においてθ1(n-1)>X、かつ、θ1(n)=0が成立するか否かが判断される。ここでθ1(n)は、nサイクル目の二相エンコーダカウンタ41のカウント値であり、図4のフローチャートが実行されるnサイクル目に対応する時刻での電気角に対応する値である。また、ここでθ1(n-1)は、n-1サイクル目の二相エンコーダカウンタ41のカウント値であり、図4のフローチャートが実行されるn-1サイクル目に対応する時刻での電気角に対応する値である。Xはしきい値を示す。このしきい値Xについては、後に図6において説明する。
 ステップS1の条件は、二相エンコーダカウンタ41にZ相信号が入力されてカウント値θ1(n)がゼロにクリアされた場合、その1サイクル前のカウント値θ1(n-1)がしきい値Xよりも大きいか否かを判断するものである。この条件が成立すると、ステップS1からステップS2に処理が進む。この場合は、二相エンコーダカウンタ41がカウントアップしているときにクリアされた場合である。このような場合は拡張ビットをカウントアップする必要がある。
 ステップS2では、拡張ビットのカウント値COUNTが軸倍角に対応する最大値MAX以上であるか否かが判断される。最大値MAXは、たとえば、軸倍角2Xのレゾルバならば1ビットの二進数で1、軸倍角5Xのレゾルバなら3ビットの二進数で100である。
 ステップS2において、カウント値COUNTが最大値MAX以上であれば、ステップS3に処理が進み、カウント値COUNT=0に設定される。一方カウント値COUNTが最大値MAXに到達していなければ、ステップS4に処理が進み、カウント値COUNTに1が加算されて図3の拡張ビット部分のカウントアップが行なわれる。
 ステップS1において条件が成立しなかった場合には、ステップS5に処理が進む。ステップS5ではθ1(n-1)=0、かつ、θ1(n)≧θMAXが成立するか否かが判断される。ここでθ1(n)は、nサイクル目の二相エンコーダカウンタ41のカウント値であり、nサイクル目に対応する時刻での電気角に対応する値である。また、ここでθ1(n-1)は、n-1サイクル目の二相エンコーダカウンタ41のカウント値であり、n-1サイクル目に対応する時刻での電気角に対応する値である。θMAXは、電気角の最大値に対応する二相エンコーダカウンタ41のカウント値である。
 ステップS5の条件は、二相エンコーダカウンタ41にZ相信号が入力されてカウント値θ1(n-1)がゼロにクリアされた場合、その1サイクル後のカウント値θ1(n)がθMAX以上であることを判断するものである。この条件が成立すると、ステップS5からステップS6に処理が進む。この場合は、二相エンコーダカウンタ41がゼロとなった後にカウントダウンされた場合である。このような場合は拡張ビットのカウント値COUNTをカウントダウンする必要がある。
 ステップS6では、拡張ビットのカウント値COUNTがゼロ以下であるか否かが判断される。ステップS6において、カウント値COUNTがゼロ以下であれば、ステップS7に処理が進み、カウント値COUNT=MAXに設定される。一方カウント値COUNTがゼロより大きい場合には、ステップS8に処理が進み、カウント値COUNTから1が減算されて図3の拡張ビット部分のカウントダウンが行なわれる。
 ステップS3,S4,S7,S8のいずれかの処理が実行された後にはステップS9に処理が進む。ステップS9では、二相エンコーダカウンタ41の出力値であるθ1と拡張ビットに相当するカウント値COUNTから、図3で説明したように機械角θmに相当する拡張されたカウント値θ2が合成される。
 ステップS9においてカウント値θ2が得られた後には、ステップS10において制御はメインルーチンに移される。
 図5は、軸倍角5Xのレゾルバを用いた場合のカウンタのカウント値の変化の一例を示す波形図である。
 図5を参照して、横軸には、機械角(0°~360°)が示されている。カウント値COUNTは、電気角が0°~360°変化するごとにカウントアップされている。電気角に対応するカウント値θ1はゼロからθMAXまで繰返し変化する。電気角が360°となる時点でZ相信号が入力され、θMAXとなったカウント値θ1はゼロにクリアされる。このとき、拡張ビットに対応するカウント値COUNTには1が加算される(図4のステップS4)。
 このように、Z相信号が入力されるごとにカウント値θ1はゼロにクリアされ、カウント値COUNTは二進数で000→001→010→011→100とカウントアップされる。そして軸倍角5Xの場合には図4のフローチャートのMAXが100であるため、COUNT=100の次にZ相信号が入力されるとカウント値COUNTは000にクリアされる(ステップS3)。
 また、カウント値θ1およびカウント値COUNTに基づいて機械角に相当するカウント値θ2が得られていることも図5に示されている。
 図6は、カウンタ増加中のカウント値のノースマーカー前後の変化を拡大して示す波形図である。二相エンコーダ出力のZ相信号をノースマーカー(NM)と呼ぶこともある。図5においては、θ1がθMAXまで変化し、その直後にゼロに変化した時にCOUNT値が加算されている。しかし、Z相信号はタイミングのズレが生じる場合があるので、多少のズレが許容されるように処理を行なっている。
 図6には、図4のステップS1のしきい値Xが示されている。ステップS1の条件によって、θ1がしきい値Xを超えていればθMAXまでカウント値がカウントアップされた後でなくてもカウント値COUNTのカウントアップを行なう。すなわち、θ1(n)=ゼロとなるのはZ相信号が図1の二相エンコーダカウンタ41に入力された場合または二相エンコーダカウンタ41が最大値θMAXとなりA相、B相信号の変化に基づいて次の加算が行なわれた場合である。
 ステップS1の処理を行なうことにより、最大値θMAXとなる前にZ相信号が入力されてしまった場合でもそのときに合わせてカウント値COUNTのカウントアップを行なうことができる。これにより、機械角に正しく対応したカウント値θ2を得ることができる。
 したがって、二相エンコーダ出力を用いつつも、機械角の位置を認識可能となるため、従来からの制御方式を大幅に変えなくても、回転角センサの特性の補正が可能となる。
 [実施の形態2]
 たとえば軸倍角2Xのレゾルバの場合は機械角で0°~360°の1回転する間に電気角0°~360°の変化が2度現れる。実施の形態1では、回転中に精度を学習補正していく場合など、1度目の電気角か2度目の電気角かを見分け、各々に対応する補正を行なえばよい場合に用いることができる。したがって、機械角の絶対位置を把握する必要は無かった。
 しかしながら、たとえば、予め工場等において精密な測定機器を使用して補正データを作成し、その精密な測定機器は出荷製品自身には含まれないような場合も想定される。このような場合には補正データを出荷製品に適用する場合に、補正データ作成時の機械角を正しく対応させる必要がある。つまり、補正データ作成時と補正データ使用時とで機械角を合わせておく必要がある。
 図7は、実施の形態2の回転角度検出装置が使用される車両1Aのブロック図である。
 図7を参照して、車両1Aは、レゾルバ12、CPU40に代えてレゾルバ12A、CPU40Aを含む点が、図1の車両1と異なる。他の部分については、車両1Aの構成は既に説明した車両1と同様であるので説明は繰返さない。
 レゾルバ12Aは、ロータの機械角0°の位置を検出しクリア信号CLRを出力するためのセンサ18を含む。一次巻線15、および二次巻線16,17については図1の場合と同様であり説明は繰返さない。
 CPU40Aは、二相エンコーダカウンタ41、軸倍角数検出部42に代えて二相エンコーダカウンタ41A、軸倍角数検出部42Aを含む点が図1のCPU40と異なる。他の部分については、CPU40と同様であり説明は繰返さない。
 二相エンコーダカウンタ41Aは、A相信号PAとB相信号PBとに応じてカウントアップまたはカウントダウンを行ない、Z相信号PZに代えてクリア信号CLRに基づいてゼロにクリアされる。なおZ相信号PZ、クリア信号CLRどちらが入力されてもクリアされるように構成されても良い。
 軸倍角数検出部42Aは、二相エンコーダカウンタ41の出力する電気角に対応するカウント値θ1の変化に応じて、軸倍角を考慮して機械角に対応するカウント値θ2を出力する。そして、軸倍角数検出部42Aは、クリア信号CLRが入力されると、カウント値θ2をゼロにクリアする。
 図8は、実施の形態2においてCPU40Aで実行される二相エンコーダカウンタの拡張ビットのカウント制御を説明するためのフローチャートである。
 図8のフローチャートは、図4で説明したフローチャートにステップS11およびS12の処理が追加されている。ステップS1~S8の処理については、図4で説明した場合と同様であり、説明は繰返さない。
 ステップS3,S4,S7,S8のいずれかの処理が終了し、カウント値COUNTが一旦決定されると、ステップS11に処理が進む。ステップS11では、センサ18から与えられるクリア信号CLRの入力が有るか否かが判断される。信号CLRの入力が無い場合は、カウント値COUNTはそのままステップS9に適用される。一方、信号CLRの入力があった場合は、ステップS12においてカウント値COUNTはゼロにクリアされ、その後ステップS9に処理が進む。
 ステップS9では、二相エンコーダカウンタ41の出力値であるθ1と拡張ビットに相当するカウント値COUNTから、図3で説明したように機械角θmに相当する拡張されたカウント値θ2が合成される。
 ステップS9においてカウント値θ2が得られた後には、ステップS10において制御はメインルーチンに移される。
 実施の形態2に示した回転角検出装置では、回転センサからの二相エンコーダ出力から機械角の絶対位置を得ることができる。したがって、回転センサの補正データを工場等で作成した場合などであっても、これを正しい位置に適用することが可能となり、より一層の精度の向上した回転センサを実現することができる。
 以上の実施の形態1,2について、図1、図7等を再び参照しながら総括する。
 図1を参照して、本実施の形態の回転角検出装置は、電気角の360°が機械角の360°よりも小さく設定され、回転子の電気角に対応する二相エンコーダ信号を出力する電気角検出部(レゾルバ12およびR/Dコンバータ14)と、二相エンコーダ信号をカウントし、電気角に対応するデジタル値を出力する二相エンコーダカウンタ41と、二相エンコーダカウンタのカウント値の変化に基づいて、検出器の出力する信号が示す電気角が機械角のいずれの位置に相当するかを検出する軸倍角数検出部42とを備える。
 好ましくは、図3に示すように、軸倍角数検出部42は、二相エンコーダカウンタ41の上位ビットを機械角の360°に相当する値までさらに拡張したカウント値COUNTを生成し、拡張したカウント値COUNTを出力する。
 より好ましくは、電気角検出部は、電気角の360°が機械角の360°よりも小さく設定されたレゾルバ12と、レゾルバの信号をデジタル値に変換するレゾルバ/デジタルコンバータ14とを含む。レゾルバ/デジタルコンバータ14は、A相信号、B相信号およびZ相信号を含む二相エンコーダ信号を出力する。
 さらに好ましくは、二相エンコーダカウンタ41は、A相信号およびB相信号に応じてカウントアップまたはカウントダウンを行ない、Z相信号が入力されるとカウント値をクリアする。図4に示されるように、軸倍角数検出部42は、二相エンコーダカウンタ41のカウント値θ1が増加中において二相エンコーダカウンタのカウント値θ1がクリアされた場合に、クリアされる直前の二相エンコーダカウンタのカウント値θ1がしきい値Xを超えた場合には(ステップS1においてYES)拡張したカウント値COUNTをカウントアップする。また、カウント値θ1がしきい値Xを超えた場合で、かつ拡張したカウント値COUNTがMAXであったときには(ステップS2においてYES)、拡張したカウント値COUNTをクリアする。
 さらに好ましくは、図7に示すように、電気角検出部は、機械角の基準位置を検出するセンサ18をさらに含む。二相エンコーダカウンタ41Aは、A相信号およびB相信号に応じてカウントアップまたはカウントダウンを行ない、センサ18の出力に応じてカウント値θ1をクリアする。軸倍角数検出部42Aは、センサ18の出力に応じて拡張したカウント値COUNTをクリアする(図8のステップS11においてYES)。
 好ましくは、回転角検出装置は、軸倍角数検出部42の出力に基づいて、機械角の正しい位置に対応する補正を二相エンコーダカウンタが出力するデジタル値に対して行なう角度補正部43をさらに備える。
 [実施の形態3]
 実施の形態1で説明した回転角度検出装置では、位置検出器(レゾルバ+R/Dコンバータやエンコーダなど)が出力するZ相信号、A相信号およびB相信号を受けて軸倍角の判定を行なう。しかし、何らかの影響で期待しないタイミングでZ相信号が入力された場合、軸倍角の判定が正確に行なえない。たとえば、レゾルバ角0度付近でないタイミングにZ相信号が入力されると二相エンコーダカウンタがクリアされ、次の軸倍角になったと誤判定する可能性がある。
 そこで、実施の形態3では、Z相信号、A相信号およびB相信号から求まるレゾルバ角に対して、期待しないタイミングのZ相信号が発生した場合、そのZ相信号の入力を無視する。また、期待しないタイミングのZ相信号が連続して発生した場合、軸倍角の検出をやり直す。
 図9は、実施の形態3の回転角度検出装置が使用される車両1Bのブロック図である。
 図9を参照して、車両1Bは、図1に示した車両1Bの構成においてインバータ装置2は、CPU40に代えてCPU40Bを含む。他の部分については、車両1Bの構成は既に説明した車両1と同様であるので説明は繰返さない。
 CPU40Bは、二相エンコーダカウンタ41、軸倍角数検出部42に代えて二相エンコーダカウンタ41B、軸倍角数検出部42Bを含み、さらにZ相異常検出部46と、Z相異常判定部47とを含む点が図1のCPU40と異なる。他の部分については、CPU40と同様であり説明は繰返さない。
 二相エンコーダカウンタ41Bは、A相信号PAとB相信号PBとに応じてカウント数θ1のカウントアップまたはカウントダウンを行ない、Z相信号PZに応じてクリアされる。軸倍角数検出部42Bは、二相エンコーダカウンタ41Bの出力する電気角に対応するカウント値θ1の変化に応じて、軸倍角を考慮して機械角に対応するカウント値θ2を出力する。具体的には、二相エンコーダカウンタ41Bのキャリーまたはボローに合わせて軸倍角カウンタを増加減する。
 Z相異常検出部46は、カウント値θ1が適切範囲である場合に入力されるZ相信号を正常し、カウント値θ1が適切範囲外である場合に入力されるZ相信号を異常とする。つまり、期待されるタイミングのZ相信号と、期待されないタイミングのZ相信号とを判別する。
 Z相異常判定部47は、期待されないタイミングで入力されたZ相信号の回数をカウントし、異常状態の判定を行なう。具体的には、Z相異常判定部47は、Z相異常検出部46によって異常とされたZ相信号の数をカウントし、カウント値がエラーリミット値を超えた場合に、クリア信号CLRを出力する。クリア信号CLRによって、二相エンコーダカウンタ41Bおよび軸倍角数検出部42Bの保持する値はゼロにクリアされる。
 図10は、実施の形態3において実行される処理を説明するためのフローチャートである。このフローチャートの処理は、実施の形態1で説明した図4の処理に加えて実行される処理であり、Z相信号PZがZ相異常検出部46に入力されるごとに実行される。
 図10を参照して、まず、ステップS21においては、入力されたZ相信号PZが入力されたタイミングにおけるカウント値θ1の値がXmax<θ1(n)<Xminの条件を満たすか否かが判断される。なお、n番目にこのフローチャートの処理が実行された場合であることを示し、次回にこのフローチャートの処理が実行される場合のカウント値はθ1(n+1)である。
 図11は、図10のXmax,Xminを説明するための図である。
 図11を参照して、カウント値θ1(n)の値がXmin以上、θmax以下である期間をTA、カウント値θ1(n)の値がθmin以上、Xmax以下である期間をTBとし、それ以外の期間をTCとする。Xmaxは、+0度付近のZ相入力正常判定しきい値を示し、Xminは、-0度付近のZ相入力正常判定しきい値を示す。
 R/Dコンバータ14からのZ相信号PZは本来ならばθ1(n)=θmaxとなるときに出力されるはずであるが、何らかの理由によりカウント値θ1とZ相信号PZにズレが生じる場合がある。たとえば、角度検出器(エンコーダやレゾルバやR/Dコンバータ)及び、角度検出器の構成部品(ワイヤやコネクタ)の故障が原因で、実際の電気角と角度検出器が認識する角度にズレが生じ、Z相信号が出力される。または、ノイズの影響で実際の電気角と角度検出器が認識する角度にズレが生じ、Z相信号が出力される。Z相信号自身に電気ノイズが重畳する場合も考えられる。
 そこで、期間TAまたはTBに入力されるZ相信号は正常とし、それ以外の期間TCに入力されるZ相信号は異常として扱う。二相エンコーダカウンタ41Bは、正常とされたZ相信号によってクリアされるが、異常として扱われたZ相信号によってはクリアされない。
 しかし、異常である期間TCにおいて何度もZ相信号が入力されると、二相エンコーダカウンタ41Bのカウント値θ1も信用できない。このため、異常なZ相信号が発生する回数をカウントし、回数が所定値よりも多ければ二相エンコーダカウンタ41Bをクリアすると共に、軸倍角数検出部42Bがカウントする拡張ビットのカウント値COUNTもクリアするように制御が行なわれる。
 再び図10を参照して、ステップS21において、条件Xmax<θ1(n)<Xminが成立しなければ(図11の期間TAまたはTBにZ相信号PZの入力があれば)、ステップS25に処理が進み、制御はメインルーチンに移される。
 一方、ステップS21において条件Xmax<θ1(n)<Xminが成立した場合には(図11の期間TCにZ相信号PZの入力があれば)、ステップS22に処理が進む。
 ステップS22では、Z相の異常タイミング入力のカウント値ERROR_COUNTが+1加算される。カウント値ERROR_COUNTは、図11の期間TCに入力されるZ相信号PZをカウントするためのカウント値である。
 そしてステップS23においてカウント値ERROR_COUNTが異常判定しきい値ERRORを超えたか否かが判断される。ERROR_COUNT>ERRORが成立した場合には、ステップS24に処理が進み、一方、成立しなければステップS25に処理が進み、制御はメインルーチンに移される。なお、異常判定しきい値ERRORは1以上であればどのような整数であっても良い。異常判定しきい値ERROR=1に設定した場合には、1度でも図11の期間TCにZ相信号PZの入力があれば、カウント値COUNTのリセット動作が行なわれる。一般には異常判定しきい値ERRORを2以上の値に設定し、ノイズ等による単発のZ相信号PZは無視するようにし、複数回Z相信号PZが図11の期間TCに入力される場合にはリセット動作が行なわれるようにする。
 ステップS24では、軸倍角数検出部42Bのカウントしていたカウント値COUNTがゼロにクリアされ、同時にカウント値ERROR_COUNTもゼロにクリアされる。その後ステップS25に処理が進み、制御はメインルーチンに移される。
 実施の形態3について総括すると、図9に示す回転角検出装置は、出力信号の1周期分に相当する角度が機械角の360°よりも小さく設定された角度検出部(12,14)と、角度検出部の出力信号に対応するデジタル値を出力するカウンタ(41B)と、カウンタ(41B)のカウント値の変化に基づいて、角度検出部の出力する信号が示す角度が機械角のいずれの位置に相当するかを検出する軸倍角数検出部42Bとを備える。
 好ましくは、角度検出部は、電気角の360°が機械角の360°よりも小さく設定され、回転子の電気角に対応する二相エンコーダ信号を出力する電気角検出部(12,14)であり、カウンタは、二相エンコーダ信号をカウントし、電気角に対応するデジタル値θ1を出力する二相エンコーダカウンタ41Bであり、軸倍角数検出部42Bは、二相エンコーダカウンタ41Bのカウント値の変化に基づいて、電気角検出部の出力する信号が示す電気角が機械角のいずれの位置に相当するかを検出する。
 より好ましくは、軸倍角数検出部42Bは、二相エンコーダカウンタ41Bの上位ビットを機械角の360°に相当する値までさらに拡張したカウント値θ2を生成し、拡張したカウント値を出力する。
 より好ましくは、二相エンコーダカウンタ41Bは、A相信号およびB相信号に応じてカウントアップまたはカウントダウンを行ない、Z相信号が入力されるとカウント値をクリアする。回転角検出装置は、Z相信号が入力された時の二相エンコーダカウンタ41Bのカウント値が異常タイミングに対応する所定範囲内(図11の期間TC内)であるか否かを判断するZ相異常検出部46と、Z相異常検出部46によって所定範囲内であると判断された場合には、Z相信号が入力された数をカウントし、Z相信号が入力された数ERROR_COUNTがエラーカウントしきい値ERRORを超えた場合に(ステップS23でYES)軸倍角数検出部42Bが保持する拡張したカウント値θ2および拡張ビットCOUNTをクリアするZ相異常判定部47とをさらに備える。
 実施の形態3では、異常なタイミングでZ相信号が入力されることが繰返されるような場合を検出して、カウンタをクリアするので、誤動作が起こっても正常復帰する可能性が高くなる。
 [実施の形態4]
 実施の形態1~3では、回転子位置検出装置としてレゾルバを用いる例を示した。これに代えて回転子位置検出装置としてホール素子を用いる場合を説明する。
 図12は、実施の形態4の回転角度検出装置が使用される車両1Cのブロック図である。図12では、ホール素子18CによってZ相信号に相当する信号を入力する。
 図12を参照して、車両1Cは、インバータ装置2Cと、モータジェネレータ4とモータジェネレータのロータシャフトに接続された回転子位置検出器12Cとを含む。車両1Cが電気自動車、ハイブリッド自動車、燃料電池自動車の場合は、モータジェネレータ4は車輪を駆動するために使用することができる。なお、他の用途にモータジェネレータ4を使用しても良い。
 回転子位置検出器12Cは、モータジェネレータ4の回転軸に固定された回転子に埋め込まれた磁石の位置を検出するホール素子18Cを含む。
 インバータ装置2Cは、CPU40Cと、IPM7と、電流センサ8,9とを含む。IPM7は、モータジェネレータのステータコイルに流す電流を制御するためのIGBTなどのパワースイッチング素子を含む。モータジェネレータのステータコイルはU相、V相、W相のコイルを含む。U相、V相、W相のコイルはY結線されているので、V相、W相の電流を電流センサ8,9によって測定すればU相の電流は演算で求めることができる。
 CPU40Cは、回転子位置検出器41Cと、軸倍角数検出部42Cと、角度補正部43と、モータ制御部44と、正常タイミング判定部48CとZ相異常検出部46CとZ相異常判定部47Cとを含む。角度補正部43と、モータ制御部44については、実施の形態1で説明した場合と同様な動作を行なうため、説明は繰返さない。
 ホール素子を用いた場合、センサの分解能が低いため、実角度をそのまま検出することはできない。そのため、モータ回転は急変しないと仮定し、回転子位置検出器41Cは、Z相信号の入力間隔から得られる回転速度と最終Z相入力からの経過時間から角度を推定する。
 より具体的には、たとえば、回転子位置検出器41Cは、CPU40Cのクロック信号などでカウントアップされホール素子18CからのZ相信号に応じてクリアされるタイマーカウンタを含み、クリア直前のタイマーカウンタの値を360°に対応する値C0として記憶し、その記憶値C0と現在のカウント値Cとの比を360°に乗じて電気角に対応するカウント値θ1を算出する。つまりθ1=C/C0×360となる。
 正常タイミング判定部48Cは、次回のZ相入力が期待される入力期間(期待入力期間)を算出し、現在の時刻が算出した期待入力期間に該当するか否かを示す信号をZ相異常検出部46Cに出力する。この期待入力期間は、図11の期間TA+TBに相当する
 Z相異常検出部46Cは、ホール素子18CからのZ相信号が期待入力期間中に入力されたものであるか否かに基づいてZ相信号の異常を検出する。図11の期間TCに入力されたZ相信号は、異常信号と判断し無視する。またその場合Z相異常判定部47Cに異常信号の入力があった旨の出力信号を出力する。
 Z相異常判定部47Cは、Z相異常検出部46Cの出力結果から検出回数や継続時間に基づいて異常判定を行なう。たとえば、所定期間内の異常信号の検出回数がエラーしきい値ERORR_COUNTを超えた場合に、異常と判定するのでもよい。
 Z相異常判定部47Cは、Z相信号が異常であると判定した場合には、軸倍角数検出部42Cのカウンタをクリアする。
 実施の形態4の回転角検出装置は、出力信号の1周期分に相当する角度が機械角の360°よりも小さく設定された角度検出部(18C)と、角度検出部の出力信号に対応するデジタル値を出力するカウンタ(回転子位置検出器41C)と、カウンタ(回転子位置検出器41C)のカウント値θ1の変化に基づいて、角度検出部の出力する信号が示す角度が機械角のいずれの位置に相当するかを検出する軸倍角数検出部42Cとを備える。
 好ましくは、角度検出部(18C)は、出力信号として所定角度ごとに1周期分が完了することを示す信号を出力するように構成されたホール素子である。カウンタは、出力信号が入力されてから次回の出力信号が入力されるまでの間カウント値をクロック信号に基づいてカウントアップする回転子位置検出器41Cを含む。回転角検出装置は、出力信号が入力された時のカウンタ(回転子位置検出器41C)のカウント値が異常タイミングに対応する所定範囲内であるか否かを判断するZ相異常検出部46Cと、Z相異常検出部46Cによって所定範囲内であると判断された場合には、出力信号が入力された数をカウントし、出力信号が入力された数がエラーカウントしきい値を超えた場合に軸倍角数検出部42Cが保持する拡張したカウント値をクリアするZ相異常判定部47Cとをさらに備える。
 実施の形態3と同様に実施の形態4でも、異常なタイミングでZ相信号が入力されることが繰返されるような場合を検出して、カウンタをクリアするので、誤動作が起こっても正常復帰する可能性が高くなる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A~1C 車両、2 インバータ装置、4 モータジェネレータ、7 IPM、8 電流センサ、12,12A レゾルバ、14 R/Dコンバータ、15 一次巻線、16,17 二次巻線、18 センサ、40,40A~40C CPU、41,41A,41B 二相エンコーダカウンタ、41C 回転子位置検出器、42,42A~42C 軸倍角数検出部、43 角度補正部、44 モータ制御部、45 励磁信号発生部、180 機械角、A1~A3 アンプ。

Claims (9)

  1.  出力信号の1周期分に相当する角度が機械角の360°よりも小さく設定された角度検出部(12,14,18C)と、
     前記角度検出部の出力信号に対応するデジタル値を出力するカウンタ(41,41C)と、
     前記カウンタ(41,41C)のカウント値の変化に基づいて、前記角度検出部の出力する信号が示す角度が機械角のいずれの位置に相当するかを検出する軸倍角数検出部(42)とを備える、回転角検出装置。
  2.  前記角度検出部は、電気角の360°が機械角の360°よりも小さく設定され、回転子の電気角に対応する二相エンコーダ信号を出力する電気角検出部(12,14)であり、
     前記カウンタは、前記二相エンコーダ信号をカウントし、前記電気角に対応するデジタル値を出力する二相エンコーダカウンタ(41)であり、
     前記軸倍角数検出部(42)は、前記二相エンコーダカウンタ(41)のカウント値の変化に基づいて、前記電気角検出部の出力する信号が示す電気角が機械角のいずれの位置に相当するかを検出する、請求の範囲第1項に記載の回転角検出装置。
  3.  前記軸倍角数検出部(42)は、前記二相エンコーダカウンタ(41)の上位ビットを機械角の360°に相当する値までさらに拡張したカウント値を生成し、前記拡張したカウント値を出力する、請求の範囲第2項に記載の回転角検出装置。
  4.  前記電気角検出部は、
     電気角の360°が機械角の360°よりも小さく設定されたレゾルバ(12)と、
     前記レゾルバの信号をデジタル値に変換するレゾルバ/デジタルコンバータ(14)とを含み、
     前記レゾルバ/デジタルコンバータ(14)は、A相信号、B相信号およびZ相信号を含む前記二相エンコーダ信号を出力する、請求の範囲第3項に記載の回転角検出装置。
  5.  前記二相エンコーダカウンタ(14)は、前記A相信号および前記B相信号に応じてカウントアップまたはカウントダウンを行ない、前記Z相信号が入力されるとカウント値をクリアし、
     前記軸倍角数検出部(42)は、前記二相エンコーダカウンタ(41)のカウント値が増加中において前記二相エンコーダカウンタ(41)のカウント値がクリアされた場合に、クリアされる直前の前記二相エンコーダカウンタ(41)のカウント値がしきい値を超えていたときには、前記拡張したカウント値をカウントアップする、請求の範囲第4項に記載の回転角検出装置。
  6.  前記電気角検出部は、
     機械角の基準位置を検出するセンサ(18)をさらに含み、
     前記二相エンコーダカウンタ(41A)は、前記A相信号および前記B相信号に応じてカウントアップまたはカウントダウンを行ない、前記センサ(18)の出力に応じてカウント値をクリアし、
     前記軸倍角数検出部(42A)は、前記センサ(18)の出力に応じて前記拡張したカウント値をクリアする、請求の範囲第4項に記載の回転角検出装置。
  7.  前記二相エンコーダカウンタ(41B)は、前記A相信号および前記B相信号に応じてカウントアップまたはカウントダウンを行ない、前記Z相信号が入力されるとカウント値をクリアし、
     前記回転角検出装置は、
     前記Z相信号が入力された時の前記二相エンコーダカウンタ(41B)のカウント値が異常タイミングに対応する所定範囲内であるか否かを判断するZ相異常検出部(46)と、
     前記Z相異常検出部(46)によって前記所定範囲内であると判断された場合には、前記Z相信号が入力された数をカウントし、前記Z相信号が入力された数がエラーカウントしきい値を超えた場合に前記軸倍角数検出部(42B)が保持する前記拡張したカウント値をクリアするZ相異常判定部(47)とをさらに備える、請求の範囲第4項に記載の回転角検出装置。
  8.  前記角度検出部(18C)は、前記出力信号として所定角度ごとに前記1周期分が完了することを示す信号を出力し、
     前記カウンタは、前記出力信号が入力されてから次回の出力信号が入力されるまでの間カウント値をクロック信号に基づいてカウントアップする回転子位置検出部(41C)を含み、
     前記回転角検出装置は、
     前記出力信号が入力された時の前記カウンタ(41C)のカウント値が異常タイミングに対応する所定範囲内であるか否かを判断するZ相異常検出部(46C)と、
     前記Z相異常検出部(46C)によって前記所定範囲内であると判断された場合には、前記出力信号が入力された数をカウントし、前記出力信号が入力された数がエラーカウントしきい値を超えた場合に前記軸倍角数検出部(42C)が保持する前記拡張したカウント値をクリアするZ相異常判定部(47C)とをさらに備える、請求の範囲第1項に記載の回転角検出装置。
  9.  前記軸倍角数検出部(42)の出力に基づいて、機械角の正しい位置に対応する補正を前記カウンタが出力するデジタル値に対して行なう角度補正部(43)をさらに備える、請求の範囲第1項に記載の回転角検出装置。
PCT/JP2010/060009 2009-07-24 2010-06-14 回転角検出装置 WO2011010516A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10802137.9A EP2458341B1 (en) 2009-07-24 2010-06-14 Rotation angle detection device
US13/377,969 US8872511B2 (en) 2009-07-24 2010-06-14 Angle of rotation detection device
CN201080033068.XA CN102597709B (zh) 2009-07-24 2010-06-14 旋转角检测装置
JP2011523589A JP5494662B2 (ja) 2009-07-24 2010-06-14 回転角検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-173316 2009-07-24
JP2009173316 2009-07-24

Publications (1)

Publication Number Publication Date
WO2011010516A1 true WO2011010516A1 (ja) 2011-01-27

Family

ID=43498992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060009 WO2011010516A1 (ja) 2009-07-24 2010-06-14 回転角検出装置

Country Status (5)

Country Link
US (1) US8872511B2 (ja)
EP (1) EP2458341B1 (ja)
JP (1) JP5494662B2 (ja)
CN (1) CN102597709B (ja)
WO (1) WO2011010516A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105547335A (zh) * 2016-01-15 2016-05-04 中工科安科技有限公司 一种磁阻式旋转变压器的信号处理系统
CN107709936A (zh) * 2015-06-18 2018-02-16 罗伯特·博世有限公司 用于识别分解器的正弦接收器线圈或余弦接收器线圈的短路的方法和电路
CN113295086A (zh) * 2021-05-07 2021-08-24 恒大新能源汽车投资控股集团有限公司 旋转变压器的精度测试系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021444A1 (de) * 2009-05-15 2010-11-25 Tyco Electronics Belgium Ec Bvba Magnetoelektronischer Winkelsensor, insbesondere Reluktanzresolver
JP2015045529A (ja) * 2013-08-27 2015-03-12 Tdk株式会社 回転磁界センサ
JP6044591B2 (ja) * 2014-05-28 2016-12-14 株式会社デンソー レンジ切換制御装置
US10187067B2 (en) 2014-10-14 2019-01-22 Qatar University Phase-locked loop (PLL)-type resolver/converter method and apparatus
WO2016063324A1 (ja) * 2014-10-20 2016-04-28 三菱電機株式会社 回転角度検出装置、回転電機、及びエレベータ用巻上機
AU2015335646B2 (en) * 2014-10-24 2018-11-08 Moog Inc. Position sensor assembly
CN107407581B (zh) * 2015-03-05 2020-01-31 三菱电机株式会社 磁检测装置
JP6292208B2 (ja) * 2015-11-05 2018-03-14 トヨタ自動車株式会社 ハイブリッド車両
CN105698825B (zh) * 2016-01-15 2017-10-27 中工科安科技有限公司 一种磁阻式旋转变压器的信号处理装置
WO2018179109A1 (ja) * 2017-03-28 2018-10-04 太平洋工業 株式会社 送信機、受信機、及び、送受信システム
DE112017007795T5 (de) * 2017-08-31 2020-06-04 Mitsubishi Electric Corporation Steuervorrichtung und Steuerverfahren für Stellmotor
CN108917653A (zh) * 2018-03-20 2018-11-30 刘红阳 转动角度测量方法及装置
JP7114315B2 (ja) * 2018-04-19 2022-08-08 日本電産サンキョー株式会社 エンコーダ
JP2019207184A (ja) * 2018-05-30 2019-12-05 ルネサスエレクトロニクス株式会社 パルス信号生成器及びそれを備えた角度検出システム
JP7324060B2 (ja) * 2019-06-11 2023-08-09 ファナック株式会社 位置検出装置
CN111750903B (zh) * 2020-07-07 2022-02-01 哈尔滨理工大学 一种绕组集成磁电编码器及其独立标定方法
JP7314426B2 (ja) * 2020-12-11 2023-07-25 マブチモーター株式会社 レゾルバ
CN113220043B (zh) * 2021-05-11 2023-06-23 杭州海康威视数字技术股份有限公司 一种拦挡部件的对齐调整方法、控制器、闸机设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288791A (ja) * 1993-04-05 1994-10-18 Sankyo Seiki Mfg Co Ltd エンコーダ装置
JPH081388B2 (ja) * 1990-05-15 1996-01-10 シーケーディ株式会社 レゾルバにおける補正データ作成方法及び角度検出装置
JPH11101659A (ja) * 1997-09-29 1999-04-13 Mazda Motor Corp 舵角検出装置
JPH11337371A (ja) 1998-05-27 1999-12-10 Toyota Motor Corp 回転機の回転角検出装置
JP2000314639A (ja) 1999-04-28 2000-11-14 Yaskawa Electric Corp Acサーボモータ用エンコーダ
JP2004061157A (ja) 2002-07-25 2004-02-26 Toyota Motor Corp レゾルバの信号処理装置及び信号処理方法
JP2004242370A (ja) 2003-02-03 2004-08-26 Toyota Motor Corp 電動機制御装置および回転位置センサーのセンサー値の補正をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2006288152A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp モータ制御装置及びこの装置を搭載する車両の制御装置
JP2008259347A (ja) 2007-04-06 2008-10-23 Toyota Motor Corp モータ制御装置
JP2009077481A (ja) 2007-09-19 2009-04-09 Toyota Motor Corp モータ制御装置およびそれを搭載する車両

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786771B2 (ja) 1989-04-04 1995-09-20 横河電機株式会社 モータ・ドライブ・システム
US5012169A (en) 1988-07-20 1991-04-30 Yokogawa Electric Corporation Motor drive system
JP2551680B2 (ja) * 1990-05-31 1996-11-06 オークマ株式会社 位置検出装置
US5349294A (en) 1993-05-12 1994-09-20 Picker International Inc. Two and three-dimensionally selective RF pulses for magnetic resonance imaging
JPH081388A (ja) 1994-06-15 1996-01-09 Material Eng Tech Lab Inc 固液分離装置
JP3564582B2 (ja) 1994-12-16 2004-09-15 アイシン精機株式会社 スイッチドレラクタンスモ−タの通電制御装置
JP3009620B2 (ja) * 1996-02-13 2000-02-14 シーケーディ株式会社 多極検出レゾルバにおける原点復帰方法及び多極検出レゾルバの原点復帰装置
JPH11299227A (ja) 1998-04-10 1999-10-29 Sharp Corp チャージポンプ回路
JP4019691B2 (ja) 2001-11-05 2007-12-12 株式会社ジェイテクト 電動パワーステアリング装置
CN101136607A (zh) * 2002-11-28 2008-03-05 日本精工株式会社 电机驱动控制装置及电动动力转向装置
US6906491B2 (en) 2003-06-20 2005-06-14 Rockwell Automation Technologies, Inc. Motor control equipment
JP2005049183A (ja) * 2003-07-28 2005-02-24 Minebea Co Ltd バリアブルリラクタンス型レゾルバ
JP2005287133A (ja) 2004-03-29 2005-10-13 Sanyo Electric Co Ltd アクチュエータ装置、モータユニット及びコントローラユニット
JP4589093B2 (ja) 2004-12-10 2010-12-01 日立オートモティブシステムズ株式会社 同期モータ駆動装置及び方法
JP2006238663A (ja) 2005-02-28 2006-09-07 Toshiba Corp 電動機の制御装置
JP4615333B2 (ja) 2005-03-03 2011-01-19 日立オートモティブシステムズ株式会社 パワーステアリング装置
JP2006262668A (ja) 2005-03-18 2006-09-28 Honda Motor Co Ltd 電動パワーステアリング装置
JP2006335252A (ja) 2005-06-02 2006-12-14 Jtekt Corp 電動パワーステアリング装置
EP1837629A1 (en) * 2006-03-23 2007-09-26 STMicroelectronics S.r.l. Method and device for estimating displacements of the rotor of a motor
CN101207316A (zh) * 2006-12-19 2008-06-25 大银微系统股份有限公司 马达位置传感器
JP5091535B2 (ja) 2007-04-26 2012-12-05 三洋電機株式会社 モータ制御装置
JP5167456B2 (ja) 2008-03-17 2013-03-21 多摩川精機株式会社 アブソリュートセンサの多回転検出方法
JP5131318B2 (ja) * 2009-10-29 2013-01-30 トヨタ自動車株式会社 モータ制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081388B2 (ja) * 1990-05-15 1996-01-10 シーケーディ株式会社 レゾルバにおける補正データ作成方法及び角度検出装置
JPH06288791A (ja) * 1993-04-05 1994-10-18 Sankyo Seiki Mfg Co Ltd エンコーダ装置
JPH11101659A (ja) * 1997-09-29 1999-04-13 Mazda Motor Corp 舵角検出装置
JPH11337371A (ja) 1998-05-27 1999-12-10 Toyota Motor Corp 回転機の回転角検出装置
JP2000314639A (ja) 1999-04-28 2000-11-14 Yaskawa Electric Corp Acサーボモータ用エンコーダ
JP2004061157A (ja) 2002-07-25 2004-02-26 Toyota Motor Corp レゾルバの信号処理装置及び信号処理方法
JP2004242370A (ja) 2003-02-03 2004-08-26 Toyota Motor Corp 電動機制御装置および回転位置センサーのセンサー値の補正をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2006288152A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp モータ制御装置及びこの装置を搭載する車両の制御装置
JP2008259347A (ja) 2007-04-06 2008-10-23 Toyota Motor Corp モータ制御装置
JP2009077481A (ja) 2007-09-19 2009-04-09 Toyota Motor Corp モータ制御装置およびそれを搭載する車両

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709936A (zh) * 2015-06-18 2018-02-16 罗伯特·博世有限公司 用于识别分解器的正弦接收器线圈或余弦接收器线圈的短路的方法和电路
CN105547335A (zh) * 2016-01-15 2016-05-04 中工科安科技有限公司 一种磁阻式旋转变压器的信号处理系统
CN105547335B (zh) * 2016-01-15 2017-10-27 中工科安科技有限公司 一种磁阻式旋转变压器的信号处理系统
CN113295086A (zh) * 2021-05-07 2021-08-24 恒大新能源汽车投资控股集团有限公司 旋转变压器的精度测试系统

Also Published As

Publication number Publication date
US8872511B2 (en) 2014-10-28
EP2458341A4 (en) 2017-10-18
JP5494662B2 (ja) 2014-05-21
EP2458341A1 (en) 2012-05-30
EP2458341B1 (en) 2020-05-06
JPWO2011010516A1 (ja) 2012-12-27
US20120139533A1 (en) 2012-06-07
CN102597709B (zh) 2014-12-24
CN102597709A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5494662B2 (ja) 回転角検出装置
JP5131318B2 (ja) モータ制御装置
JP5824660B2 (ja) 位相ずれ検出装置、モータ駆動装置、およびブラシレスモータ、並びに位相ずれ検出方法
JP4627746B2 (ja) 位相検出回路及びこれを用いたレゾルバ/デジタル変換器並びに制御システム
JP5502605B2 (ja) モータ制御装置
JP4676348B2 (ja) 回転角検出装置とその異常検出装置及び電動パワーステアリング装置
CN110199467B (zh) 一种操作主减速器单元离合器的方法
JP5172833B2 (ja) Acサーボモータの回転位置検出方法および簡易エンコーダ
KR101655297B1 (ko) 리니어 홀 센서 위치보정장치 및 그 위치보정방법
WO2010124590A1 (zh) 电动机
WO2019054475A1 (ja) モータ駆動システムおよびモータの制御方法
JP7291104B2 (ja) 3相ブラシレスモーター及び3相ブラシレスモーターの回転位置検出方法
JP5690700B2 (ja) ブラシレスdcモータの回転子位置検出方法とその装置
JP5396754B2 (ja) 出力推定装置
JP2009069092A (ja) 回転検出装置および回転検出装置付き軸受
JP2010014410A (ja) 回転体の回転位置検出装置
WO2024004474A1 (ja) 角度検出装置および角度検出方法
JP2022002423A (ja) モータ装置
JP2006033928A (ja) ブラシレスモータ
JP2008109811A (ja) 同期電動機の初期位相検出装置
JP2020190499A (ja) エンコーダ装置
JP4793236B2 (ja) 同期電動機の初期位相設定装置
JP4793642B2 (ja) パルス信号変換制御装置及びパルス信号変換制御方法
JP2021025960A (ja) エンコーダ装置
JP2010048774A (ja) 位置センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033068.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802137

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13377969

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011523589

Country of ref document: JP

Ref document number: 2010802137

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE