WO2010150871A1 - ガス拡散電極およびその製造方法、ならびに膜電極接合体およびその製造方法 - Google Patents

ガス拡散電極およびその製造方法、ならびに膜電極接合体およびその製造方法 Download PDF

Info

Publication number
WO2010150871A1
WO2010150871A1 PCT/JP2010/060826 JP2010060826W WO2010150871A1 WO 2010150871 A1 WO2010150871 A1 WO 2010150871A1 JP 2010060826 W JP2010060826 W JP 2010060826W WO 2010150871 A1 WO2010150871 A1 WO 2010150871A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive material
gas diffusion
hydrophilic porous
porous layer
Prior art date
Application number
PCT/JP2010/060826
Other languages
English (en)
French (fr)
Inventor
佐藤 和之
大間 敦史
義隆 小野
大 井殿
佳 酒井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP10792189.2A priority Critical patent/EP2448048A4/en
Priority to US13/379,204 priority patent/US9029045B2/en
Priority to CN201080028633.3A priority patent/CN102460790B/zh
Priority to CA2766022A priority patent/CA2766022C/en
Publication of WO2010150871A1 publication Critical patent/WO2010150871A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a gas diffusion electrode and a manufacturing method thereof, and a membrane electrode assembly and a manufacturing method thereof.
  • Fuel cells have been attracting attention as power sources for electric vehicles and stationary power sources in response to social demands and trends against the background of energy and environmental problems.
  • Fuel cells are classified into various types depending on the type of electrolyte, the type of electrode, and the like, and representative types include alkaline type, phosphoric acid type, molten carbonate type, solid electrolyte type, and solid polymer type.
  • alkaline type phosphoric acid type
  • molten carbonate type molten carbonate type
  • solid electrolyte type solid polymer type.
  • solid polymer type solid polymer type.
  • a polymer electrolyte fuel cell that can operate at a low temperature (usually 100 ° C. or less) has attracted attention, and in recent years, development and practical application as a low-pollution power source for automobiles is progressing.
  • the structure of a polymer electrolyte fuel cell generally has a structure in which an electrolyte membrane-electrode assembly (MEA) is sandwiched between separators.
  • MEA electrolyte membrane-electrode assembly
  • an electrolyte membrane is sandwiched between a pair of electrodes, that is, an anode and a cathode.
  • the electrode contains an electrode catalyst and an electrolyte typified by a solid polymer electrolyte, and has a porous structure for diffusing a reaction gas supplied from the outside.
  • the electrons generated in the anode-side electrode catalyst layer include a conductive carrier constituting the anode-side electrode catalyst layer, and a gas diffusion layer in contact with a different side of the anode-side electrode catalyst layer from the solid polymer electrolyte membrane
  • the cathode side electrode catalyst layer is reached through the separator and the external circuit.
  • the protons and electrons that have reached the cathode electrode catalyst layer react with oxygen contained in the oxidant gas supplied to the cathode side to generate water as shown in the following chemical formula (2).
  • the amount of product water increases.
  • the generated water stays in the cathode-side electrode catalyst layer, and causes a flooding phenomenon that closes the pores that have become the reaction gas supply path.
  • the diffusion of the reaction gas is inhibited, the electrochemical reaction is hindered, and as a result, the battery performance is lowered.
  • Patent Document 1 a water retention layer made of a water retention material, an electron conductive material, and crystalline carbon fibers is provided between a catalyst layer and a gas diffusion layer coated with a water repellent layer.
  • crystalline carbon fiber it is possible to obtain a solid polymer fuel cell that ensures stable drainage of the water retention layer and has stable power generation performance that is less susceptible to humidity fluctuations even if the relative humidity in the gas varies.
  • Patent Document 1 it is difficult to obtain a fuel cell that realizes a high current density operation because the added crystalline carbon fiber hinders the movement of the proton electron conducting material.
  • the present invention has been made paying attention to the above-described problem, and an object thereof is to provide a gas diffusion electrode that realizes a high current density operation of a fuel cell.
  • a gas diffusion electrode comprising a hydrophilic porous layer and a catalyst layer adjacent to the hydrophilic porous layer, wherein the water transport resistance of the hydrophilic porous layer is smaller than the water transport resistance of the catalyst layer
  • the drainage of generated water generated during power generation can be improved. Therefore, the fuel cell including the gas diffusion electrode can be operated at a high current density.
  • 1 is a schematic cross-sectional view showing one embodiment of an MEA including a gas diffusion electrode of the present invention (first embodiment).
  • 1 is a schematic cross-sectional view showing a single cell of PEFC in which an MEA including a gas diffusion electrode of the present invention (first embodiment) is sandwiched between a pair of separators. It is the schematic which shows the structure of a general MEA.
  • (A) is a cross-sectional schematic diagram which shows the gas diffusion layer by one Embodiment of this invention (2nd embodiment)
  • (b) is a cross-sectional schematic diagram of the gas diffusion layer which shows the modification of the said embodiment. It is. It is a schematic diagram which shows the manufacturing method of a gas diffusion layer.
  • FIG. A is a table showing the relationship between relative humidity and electric double layer capacity when various conductive materials are used, and a table showing S BET , ⁇ ion and S ion of each conductive material.
  • B is a figure which shows the water transport resistance of each electroconductive material.
  • A is a schematic cross-sectional view showing the hydrophilic porous layer of the first embodiment of the third embodiment.
  • B is a schematic cross-sectional view of a hydrophilic porous layer, showing a modification of the first embodiment. It is a cross-sectional schematic diagram which shows the hydrophilic porous layer of 2nd Embodiment of a 3rd embodiment. It is a figure which shows the difference of the pore size distribution of the hydrophilic porous layer by the solvent seed
  • AD are schematic cross-sectional views showing other embodiments of MEA including a hydrophilic porous layer. It is a cross-sectional schematic diagram which shows other embodiment of MEA containing a hydrophilic porous layer. It is a cross-sectional schematic diagram which shows other embodiment of MEA containing a hydrophilic porous layer.
  • a and B are schematic views showing a specific embodiment of a process of integrating a catalyst layer and a hydrophilic porous layer.
  • PEFC containing MEA of this invention 3rd embodiment. It is a figure which shows the result of a normal temperature power generation test. It is a figure which shows the result (A) which observed the gas diffusion layer of Example 3 using SEM (scanning electron microscope), and the result (B) analyzed using EPMA (electron beam microanalyzer).
  • a gas diffusion electrode of a first embodiment includes a hydrophilic porous layer having a conductive material and an ion conductive material, and a catalyst layer adjacent to the hydrophilic porous layer, and the hydrophilic porous layer The water transport resistance of the catalyst layer is smaller than the water transport resistance of the catalyst layer.
  • the present inventors have maintained the gas diffusivity by making the water transport resistance of the hydrophilic porous layer smaller than the water transport resistance of the catalyst layer.
  • the present inventors have found that the water transportability of the hydrophilic porous layer is increased.
  • a hydrophilic porous layer is used as a gas diffusion electrode of a fuel cell adjacent to the catalyst layer, the discharge of produced water is enhanced while maintaining the gas diffusibility. Therefore, the fuel cell including the gas diffusion electrode can be operated at a high current density.
  • the water transport resistance is an index representing the ease of movement of liquid water in a certain layer. That is, if the value of water transport resistance is large, it represents that liquid water is hard to move, and if the value of water transport resistance is large, it represents that liquid water is easy to move.
  • the water transport resistance at 80 ° C. of the actual hydrophilic porous layer and catalyst layer can be measured by the measurement method shown in Table 1 below.
  • the porosity of the hydrophilic porous layer is preferably higher than the porosity of the catalyst layer. If it is such a relationship, the gas transport resistance of the said hydrophilic porous layer will be reduced, and gas diffusibility can be ensured with drainage property.
  • the porosity of the hydrophilic porous layer is not particularly limited, but specifically, it is preferably 30 to 80%. More preferably, it is ⁇ 70%. Further, the porosity of the catalyst layer is preferably 30 to 80%, more preferably 40 to 70%.
  • the porosity can be obtained as a ratio to the volume of the layer by measuring the volume of pores (micropores) existing inside the layer by measuring the pore distribution by the mercury intrusion method or the like. The porosity is determined by intentionally changing the mixing mass ratio (I / C ratio) of the ion conductive material (I) and the conductive material (C) in the hydrophilic porous layer. The porosity of the porous layer can be controlled. Table 2 below shows the relationship between the I / C ratio and the porosity in the hydrophilic porous layer.
  • the covering area of the ion conductive material with respect to the conductive material contained in the hydrophilic porous layer is preferably less than 200 m 2 / g.
  • the conductive material has an area covered with the ion conductive material in the above range, the degree of bending of the liquid water transport path in the hydrophilic porous layer is reduced, and the water transport resistance of the hydrophilic porous layer is reduced.
  • the water transportability can be further improved.
  • the lower limit is not particularly limited, but is preferably 50 m 2 / g or more because there is a possibility that the ion conductive material is not communicated and the water transportability in the ion conductive material is lowered when the covering area is small.
  • the area covered with the ion conductive material is a value that can be controlled by the shape of the conductive material. Furthermore, the covering area of the ion conductive material with respect to the conductive material can also be controlled by changing the content ratio of the conductive material and the ion conductive material in the hydrophilic porous layer.
  • the reason for taking the ratio of 30% relative humidity and 100% relative humidity is as follows. Under a highly humidified condition, the electric double layer formed at the interface between the conductive material and water adsorbed on the surface of the conductive material or at the interface between the conductive material and the ion conductive material is measured. On the other hand, under a low humidification condition, the electric double layer formed at the interface between the conductive material and the ion conductive material is mainly measured.
  • the electric double layer capacity is substantially constant at a relative humidity of about 30% or less. Therefore, in the present invention, the relative humidity of 30% and the relative humidity of 100% are determined as representative points of the low humidification condition and the high humidification condition, respectively, and the ratio of the electric double layer capacity of both is taken, whereby the conductive material is ion-conductive. It was used as an index of how much the material was covered.
  • the electric double layer capacity is a value measured by the following method.
  • a membrane electrode assembly in which a hydrophilic porous layer not containing a catalyst component and a catalyst layer are arranged on different surfaces of the electrolyte membrane, respectively, is prepared, and a gas diffusion layer, a carbon separator, and a gold-plated current collector on both sides
  • a cell similar to a normal fuel cell was obtained by sandwiching with a plate.
  • the catalyst layer is used as a reference electrode and a counter electrode with hydrogen gas conditioned in the catalyst layer and nitrogen gas conditioned in the hydrophilic porous layer, and the potential of the hydrophilic porous layer is set to the reference electrode. Scanning was performed 5 to 10 times in the range of 0.2 to 0.6V. The scanning speed was 50 mV / s.
  • the relationship between the obtained current and potential showed a waveform close to a rectangle. This indicates that the oxidation and reduction reaction on the electrode has not occurred, and that charging and discharging of the electric double layer is the main factor of the current.
  • the electric double layer capacity was calculated by dividing the average value of the absolute values of the oxidation current and the reduction current at a certain potential, for example, 0.3 V, by the scanning speed. This measurement was performed under various humidification conditions, and the relationship between electric double layer capacity and relative humidity was obtained.
  • the value measured by the following method shall be adopted as the BET nitrogen specific surface area of the conductive material.
  • the BET nitrogen specific surface area of the conductive material contained in the hydrophilic porous layer is a composite (hereinafter also simply referred to as “electrode catalyst”) in which the catalyst component is supported on the conductive carrier contained in the adjacent catalyst layer.
  • the BET nitrogen specific surface area is preferably smaller.
  • the BET nitrogen specific surface area of the conductive material contained in the hydrophilic porous layer is not particularly limited, but is 10 to 800 m 2 / g. It is preferably 20 to 600 m 2 / g.
  • the conductive carrier used in the catalyst layer preferably has a BET nitrogen specific surface area of 10 to 1200 m 2 / g, more preferably 20 to 800 m 2 / g.
  • the thickness of the hydrophilic porous layer is preferably thinner than the thickness of the adjacent catalyst layer. If it is such a relationship, it becomes possible to reduce the water transport resistance of a hydrophilic porous layer, and water transport property can further improve.
  • the thickness of the hydrophilic porous layer is not particularly limited, but is preferably 40 ⁇ m or less.
  • the thickness of the catalyst layer is preferably 15 ⁇ m or less.
  • the hydrophilic porous layer includes a conductive material and an ion conductive material.
  • the conductive material may carry a catalyst.
  • the hydrophilic porous layer may contain other materials in addition to the conductive material and the binder.
  • the content of the conductive material and the ion conductive material is preferably 80% by mass or more, and more preferably 90% by mass or more. More preferably, the hydrophilic porous layer is composed of a conductive material and an ion conductive material.
  • the gas diffusion electrode of the present invention including the hydrophilic porous layer and the catalyst layer is applied to a membrane electrode assembly (MEA) of a fuel cell, it enables high current density operation of the fuel cell.
  • MEA membrane electrode assembly
  • the content ratio of the conductive material and the ion conductive material in the hydrophilic porous layer is not particularly limited, and is appropriately set depending on a desired purpose.
  • conductive material: ionic conductive material 1: 0.6 to 1.5 (mass ratio) is preferable, and 1: 0.7 to 1.3 (mass ratio) is more preferable. preferable. If it is this range, gas diffusibility can be ensured and the function of an ion conductive material can be exhibited.
  • the mass ratio of the conductive material to the ion conductive material is determined by measuring the ion conductive material and the conductive material mixed in advance when preparing the hydrophilic porous layer ink (slurry). Furthermore, it can be calculated and controlled by adjusting the mixing ratio. Moreover, the hydrophilic porous layer is analyzed, the conductive material and the ion conductive material are quantified, and the mass ratio of the conductive material and the ion conductive material can be calculated.
  • the conductive material contained in the hydrophilic porous layer is not particularly limited. Specific examples thereof include metal oxides such as heat-treated ketjen black, acetylene black, tin oxide, and titanium oxide. Such as things.
  • the ketjen black obtained by heat-treating the ketjen black preferably at 2000 to 3000 ° C., preferably for 2 to 120 minutes.
  • the coverage area of the conductive material with the ion conductive material is preferably less than 200 m 2 / g.
  • the lower limit is not particularly limited, but is preferably 50 m 2 / g or more because there is a possibility that the ion conductive material is not communicated and the water transportability in the ion conductive material is lowered when the covering area is small.
  • the BET nitrogen specific surface area of the conductive material is that of the composite (hereinafter also simply referred to as “electrode catalyst”) in which the catalyst component is supported on the conductive support contained in the adjacent catalyst layer. It is preferably smaller than the BET nitrogen specific surface area.
  • the conductive material may be used alone or in combination of two or more.
  • the average particle size is preferably 5 to 100 nm, more preferably 10 to 60 nm. Thereby, the gas diffusibility of a hydrophilic porous layer is securable.
  • particle diameter means the maximum distance L among the distances between any two points on the contour line of the active material particles.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the ion conductive material is not particularly limited as long as the material is ion conductive and can bind the conductive material. Specific examples include polymers such as polyacrylamide, aqueous urethane resin, and silicone resin; polymer electrolytes, and the like. A polymer electrolyte is preferred. By using a polymer electrolyte as an ion conductive material, when a hydrophilic porous layer is disposed adjacent to a MEA component (electrolyte membrane or catalyst layer) containing the same ion conductive material, the polymer electrolyte is stably disposed. It is possible to reduce the water transport resistance between the catalyst layer or membrane and the conductive material.
  • MEA component electrolyte membrane or catalyst layer
  • the water transport property between the electrolyte membrane or the catalyst layer and the conductive material is improved, and the equilibrium can be reached in an earlier time.
  • the electrolyte may be the same as or different from the polymer electrolyte used in the catalyst layer or the electrolyte membrane.
  • the material can be shared, and labor saving can be achieved at the time of manufacturing.
  • the ion conductive material used is not particularly limited. Specifically, the ion conductive material is roughly classified into a fluorine-based electrolyte containing fluorine atoms in the whole or part of the polymer skeleton and a hydrocarbon electrolyte not containing fluorine atoms in the polymer skeleton.
  • fluorine-based electrolytes include perfluorocarbon sulfonates such as Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), etc.
  • Polymer polytrifluorostyrene sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene
  • a preferred example is a fluoride-perfluorocarbon sulfonic acid-based polymer.
  • the fluorine-based electrolyte is excellent in durability and mechanical strength.
  • hydrocarbon electrolyte examples include polysulfone sulfonic acid, polyaryl ether ketone sulfonic acid, polybenzimidazole alkyl sulfonic acid, polybenzimidazole alkyl phosphonic acid, polystyrene sulfonic acid, polyether ether ketone sulfonic acid, polyphenyl.
  • a suitable example is sulfonic acid.
  • the above ion conductive materials may be used alone or in combination of two or more.
  • the EW of the ion conductive material is preferably low.
  • the EW is 1200 g / eq. Or less, more preferably 1000 g / eq. Hereinafter, more preferably 700 g / eq. It is as follows. Within such a range, it is possible to provide a hydrophilic porous layer that promotes the diffusion of liquid water and achieves both a zero starting property and a high current density operation at room temperature.
  • the lower limit of EW is not particularly limited, but is usually 500 g / eq. The above is preferable.
  • EW Equivalent Weight
  • the thickness of the hydrophilic porous layer is preferably thinner than the thickness of the adjacent catalyst layer.
  • the catalyst layer is a layer where the reaction actually proceeds. Specifically, a hydrogen oxidation reaction proceeds in the anode side catalyst layer, and an oxygen reduction reaction proceeds in the cathode side catalyst layer.
  • the catalyst layer includes a catalyst component, a conductive carrier that supports the catalyst component, and a proton-conductive polymer electrolyte.
  • the catalyst component used in the anode side catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
  • the catalyst component used in the cathode side catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner. Specifically, it is selected from platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, etc., and alloys thereof. Is done.
  • the composition of the alloy depends on the type of metal to be alloyed, but is preferably 30 to 90 atomic% for platinum and 10 to 70 atomic% for the metal to be alloyed.
  • the composition of the alloy when the alloy is used as the cathode-side catalyst varies depending on the type of metal to be alloyed, and can be appropriately selected by those skilled in the art. Platinum is 30 to 90 atomic%, and other metals to be alloyed are 10 to 10%. It is preferable to set it as 70 atomic%.
  • an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be used in the present application.
  • the catalyst component used for the anode catalyst layer and the catalyst component used for the cathode catalyst layer can be appropriately selected from the above.
  • catalyst components for the anode catalyst layer and the cathode catalyst layer have the same definition for both, and are collectively referred to as “catalyst components”.
  • the catalyst components of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and are appropriately selected so as to exhibit the desired action as described above.
  • the shape and size of the catalyst component are not particularly limited, and the same shape and size as known catalyst components can be used, but the catalyst component is preferably granular.
  • the average particle diameter of the catalyst particles is preferably 1 to 30 nm, more preferably 1.5 to 20 nm, still more preferably 2 to 10 nm, and particularly preferably 2 to 5 nm.
  • the average particle diameter of the catalyst particles is within such a range, the balance between the catalyst utilization rate related to the effective electrode area where the electrochemical reaction proceeds and the ease of loading can be appropriately controlled.
  • the “average particle diameter of catalyst particles” in the present invention is the average of the crystallite diameter determined from the half-value width of the diffraction peak of the catalyst component in X-ray diffraction or the average particle diameter of the catalyst component determined from a transmission electron microscope image. It can be measured as a value.
  • the conductive carrier functions as a carrier for supporting the above-described catalyst component and an electron conduction path involved in the exchange of electrons with the catalyst component.
  • the conductive carrier may be any carbon-based material having a specific surface area for supporting the catalyst component in a desired dispersed state and sufficient electron conductivity.
  • the main component is carbon. Preferably there is. Specific examples include carbon particles composed of carbon black, graphitized carbon black, activated carbon, coke, natural graphite, artificial graphite, carbon nanotube, carbon nanohorn, carbon fibril structure, and the like. “The main component is carbon” means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. In some cases, elements other than carbon atoms may be included in order to improve the characteristics of the fuel cell. Incidentally, “substantially consisting of carbon atoms” means that contamination of about 2 to 3% by mass or less of impurities can be allowed.
  • a graphitized conductive material such as carbon black graphitized on the catalyst layer, particularly the anode-side catalyst layer, more preferably a graphitized carbon material as a conductive carrier, improves the corrosion resistance of the conductive material. Is preferable.
  • the graphitized conductive material has a small covering area of the ion conductive material and a small evaporation area of liquid water, there is a concern about freezing below zero or flooding at room temperature.
  • a hydrophilic porous layer adjacent to the catalyst layer using a graphitized conductive material drainage can be improved, and both sub-zero startability and high current density operation at room temperature can be achieved.
  • a membrane electrode assembly to be described later to which corrosion resistance of the conductive material is further provided.
  • the graphitized carbon black is preferably spherical, the [002] plane average lattice spacing d 002 calculated from X-ray diffraction is 0.343 to 0.358 nm, and the BET specific surface area is 100 to It is preferably 300 m 2 / g.
  • the BET nitrogen specific surface area of the conductive support may be a specific surface area sufficient to carry the catalyst component in a highly dispersed state, but is preferably 20 to 1600 m 2 / g, more preferably 80 to 1200 m 2 / g.
  • the specific surface area of the conductive support is in such a range, the balance between the dispersibility of the catalyst component on the conductive support and the effective utilization rate of the catalyst component can be appropriately controlled.
  • the size of the conductive carrier is not particularly limited, but from the viewpoint of easy loading, catalyst utilization, and control of the electrode catalyst layer thickness within an appropriate range, the average particle size is 5 to 200 nm, preferably 10 It is preferable to set it to about 100 nm.
  • the supported amount of the catalyst component is preferably 10 to 80% by mass, more preferably 30 to 70% by mass, based on the total amount of the electrode catalyst.
  • the supported amount of the catalyst component can be measured by inductively coupled plasma emission spectroscopy (ICP).
  • the catalyst component can be supported on the carrier by a known method.
  • known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
  • a commercially available electrode catalyst may be used.
  • Examples of such commercially available products include electrode catalysts such as those manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., N.E. Chemcat Co., Ltd., E-TEK Co., and Johnson Matthey. These electrode catalysts are obtained by supporting platinum or a platinum alloy on a carbon carrier (supporting concentration of catalyst species, 20 to 70% by mass).
  • a carbon carrier supporting concentration of catalyst species, 20 to 70% by mass.
  • the carbon carrier ketjen black, vulcan, acetylene black, black pearl, graphitized carbon carrier (for example, graphitized ketjen black) previously heat treated at high temperature, carbon nanotube, carbon nanohorn, carbon fiber, There is mesoporous carbon.
  • the BET nitrogen specific surface area of the electrode catalyst is preferably larger than the BET specific surface area of the conductive material contained in the hydrophilic porous layer. Further, as described above, the thickness of the catalyst layer is preferably thicker than the thickness of the adjacent hydrophilic porous layer.
  • the catalyst layer contains an ion conductive polymer electrolyte in addition to the electrode catalyst.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be referred to as appropriate.
  • the above-described ion exchange resin constituting the polymer electrolyte membrane can be added to the catalyst layer as the polymer electrolyte.
  • the catalyst layer is a hydrophilic porous layer, the above polymer electrolyte is used as the ion conductive material.
  • the method for producing the gas diffusion electrode of the present invention is not particularly limited.
  • a hydrophilic porous material obtained by mixing a conductive material, an ion conductive material, and a solvent.
  • a layer ink is prepared, applied to a substrate, and then dried to form a hydrophilic porous layer;
  • an ink containing a catalyst component is applied and dried on the formed hydrophilic porous layer;
  • known methods such as impregnation method, liquid phase reduction carrying method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method), etc. By using this method, it is preferable to previously support the catalyst component on the conductive material.
  • the solvent used in the ink for the hydrophilic porous layer is not particularly limited, but water; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 2-pentanol And alcohols such as 3-pentanol; polyhydric alcohols such as ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and glycerin. These may be used alone or in combination of two or more.
  • the hydrophilic porous layer is obtained by intentionally changing the mixing mass ratio (I / C ratio) between the ion conductive material (I) and the conductive material (C) during ink adjustment.
  • the porosity can be controlled. Therefore, when it is necessary to control the porosity, the porosity can be easily controlled by appropriately setting the I / C ratio.
  • the solvent and the solvent in the present specification include all of the dispersion medium in which solid components such as a binder and a conductive material are dispersed, that is, liquid components other than the solid components. Therefore, for example, when producing an ink for a hydrophilic porous layer by mixing an ion conductive material dispersed in water and an organic solvent, the solvent in this specification refers to both water and the organic solvent. .
  • the solid content ratio of the ink for the hydrophilic porous layer (ratio of the mass of the solid content to the total mass of the ink for the hydrophilic porous layer) is not particularly limited, but the formation efficiency of the porous layer and the stability of the ink From the viewpoint of properties, it is usually about 5 to 20% by mass.
  • the method for preparing the ink for the hydrophilic porous layer is not particularly limited. Further, the order of mixing the ion conductive material, the conductive material, and the solvent is not particularly limited, and specific examples thereof include the following (i-1) to (i-3).
  • the methods (i-1) and (i-2) are preferable, and the method (i-1) is more preferable. Thereby, water and an organic solvent are mixed uniformly and a solvent compound is easy to form.
  • the ion conductive material in the solution containing the ion conductive material, is dispersed in the solvent.
  • the content of the ion conductive material in the solution containing the ion conductive material at this time is not particularly limited, but the solid content is preferably 1 to 40% by mass, more preferably 5 to 20% by mass. With such a content, the polymer electrolyte can be appropriately dispersed in the solvent.
  • the solution containing the ion conductive material may be adjusted by itself or a commercially available product may be used.
  • the dispersion solvent of the ion conductive material in the solution containing the ion conductive material is not particularly limited, and examples thereof include water, methanol, ethanol, 1-propanol, and 2-propanol. In consideration of dispersibility, water, ethanol and 1-propanol are preferable. These dispersion solvents may be used alone or in combination of two or more.
  • a separate mixing step may be provided in order to mix well.
  • the catalyst ink is well dispersed with an ultrasonic homogenizer, or the mixed slurry is well pulverized with an apparatus such as a sand grinder, a circulating ball mill, or a circulating bead mill, and then a vacuum defoaming operation is performed.
  • an apparatus such as a sand grinder, a circulating ball mill, or a circulating bead mill, and then a vacuum defoaming operation is performed.
  • the addition etc. are mentioned preferably.
  • the substrate coated with the ink for hydrophilic porous layer is dried.
  • the method for applying the hydrophilic porous layer ink to the substrate surface is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, a doctor blade method, or a transfer method. Moreover, the apparatus used for application
  • coating apparatuses such as a screen printer, a spray device, a bar coater, a die coater, a reverse coater, a comma coater, a gravure coater, a spray coater, and a doctor knife can be used.
  • the application process may be performed once or repeated a plurality of times.
  • the substrate coated with the hydrophilic porous layer ink is dried to remove the solvent.
  • the drying time when drying the substrate coated with the hydrophilic porous layer ink is not particularly limited, but is preferably 1 to 40 minutes.
  • the drying temperature is preferably 20 to 170 ° C.
  • the atmosphere during drying is not particularly limited, but it is preferable to perform drying in an air atmosphere or an inert gas atmosphere.
  • the substrate on which the ink for the hydrophilic porous layer is applied may be appropriately selected depending on the form of the finally obtained hydrophilic porous layer, and a polymer sheet such as a polytetrafluoroethylene sheet (PTFE) is used. Can do.
  • PTFE polytetrafluoroethylene sheet
  • a catalyst ink is applied onto the dried hydrophilic porous layer and dried to form a catalyst layer, thereby completing a gas diffusion electrode.
  • a catalyst ink comprising the above electrode catalyst, polymer electrolyte and solvent is applied to the solid polymer electrolyte membrane using a conventionally known method such as a spray method, a transfer method, a doctor blade method, or a die coater method. It can be formed by coating.
  • the coating amount of the catalyst ink is not particularly limited as long as the electrode catalyst can sufficiently exert the action of catalyzing the electrochemical reaction, but the mass of the catalyst component per unit area is 0.05 to 1 mg / cm 2. It is preferable to apply to.
  • the coating amount and thickness of the catalyst ink do not need to be the same on the anode side and the cathode side, and can be adjusted as appropriate.
  • the gas diffusion electrode of the present invention has excellent drainage performance. Therefore, when applied to MEA, high current density operation can be realized.
  • preferred embodiments of the MEA including the gas diffusion electrode hydrophilicity of the above embodiment will be described.
  • Each drawing is exaggerated for convenience of explanation, and the dimensional ratio of each component in each drawing may be different from the actual one.
  • symbol is attached
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an MEA as a gas diffusion electrode of the present invention (first embodiment).
  • an anode side electrode catalyst layer 13 and a cathode side electrode catalyst layer 15 are arranged on both sides of a solid polymer electrolyte membrane 12 so as to face each other, and these are arranged as an anode side gas diffusion layer 14 and a cathode side gas diffusion layer.
  • a hydrophilic porous layer 17 is disposed between the anode side electrode catalyst layer 13 and the anode side gas diffusion layer 14.
  • a hydrophilic porous layer 17 is disposed between the anode-side electrode catalyst layer 13 and the anode-side gas diffusion layer 14.
  • the present invention is not limited to the above arrangement form, and may be arranged on the cathode electrode or on both the cathode electrode and the anode electrode. Moreover, you may arrange
  • a hydrophilic porous layer is provided at least on the anode side. It is important that the direction of water movement when absorbing the produced water is the anode side electrode catalyst layer from the cathode side electrode catalyst layer through the electrolyte membrane. By disposing the hydrophilic porous layer on the anode side, more water produced on the cathode side is transported to the anode catalyst layer side, so that the effects of the present invention can be obtained more easily.
  • a hydrophilic porous layer adjacent to the catalyst layer, particularly the anode catalyst layer, preferably between the catalyst layer and the gas diffusion layer.
  • At least the electrolyte membrane and the catalyst layer have a water retention function inside the MEA. Since the anode catalyst layer and the cathode catalyst layer are disposed so as to sandwich the membrane, liquid water existing inside the MEA (membrane, catalyst layer) is provided by providing a hydrophilic porous layer adjacent to the catalyst layer. Can be smoothly moved and held in the hydrophilic porous layer. Moreover, the effect of this invention can be acquired by not making it contact
  • the gas diffusion layer may or may not have a microporous layer (MPL) described later. Since MPL has large water transport resistance, it is preferable that the gas diffusion layer (without MPL) is composed of a gas diffusion layer base material from the viewpoint of water transport. This is because MPL has high water transport resistance, while the gas diffusion layer base material is formed from macropores and thus has low transport resistance.
  • MPL microporous layer
  • the MEA of the present invention is characterized by the gas diffusion electrode. Therefore, as for other members constituting the MEA, a conventionally known configuration in the field of the fuel cell can be employed as it is or after being appropriately improved.
  • a conventionally known configuration in the field of the fuel cell can be employed as it is or after being appropriately improved.
  • typical forms of members other than the hydrophilic porous layer will be described for reference, but the technical scope of the present invention is not limited to the following forms.
  • the polymer electrolyte membrane is made of an ion exchange resin and has a function of selectively permeating protons generated in the anode side catalyst layer during PEFC operation to the cathode side catalyst layer along the film thickness direction.
  • the polymer electrolyte membrane also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the specific configuration of the polymer electrolyte membrane is not particularly limited, and conventionally known polymer electrolyte membranes can be appropriately employed in the field of fuel cells.
  • Polymer electrolyte membranes are roughly classified into fluorine-based polymer electrolyte membranes and hydrocarbon-based polymer electrolyte membranes depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte membrane include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride- Examples include perfluorocarbon sulfonic acid polymers. From the viewpoint of power generation performance such as heat resistance and chemical stability, these fluorine-based polymer electrolyte membranes are preferably used, and particularly preferably fluorine-based polymer electrolyte membranes composed of perfluorocarbon sulfonic acid polymers are used. It is done.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, and sulfonated.
  • S-PES polyetheretherketone
  • S-PPP polyphenylene
  • These hydrocarbon polymer electrolyte membranes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the material selectivity is high.
  • the ion exchange resin mentioned above only 1 type may be used independently and 2 or more types may be used together. Moreover, it is needless to say that other materials may be used without being limited to the above-described materials.
  • the thickness of the polymer electrolyte membrane may be appropriately determined in consideration of the properties of the obtained MEA and PEFC, and is not particularly limited. However, the thickness of the polymer electrolyte membrane is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and still more preferably 15 to 150 ⁇ m. When the thickness is within such a range, the balance between strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the gas diffusion layer has a function of promoting the diffusion of the gas (fuel gas or oxidant gas) supplied through the separator channel to the catalyst layer and a function as an electron conduction path.
  • the material constituting the base material of the gas diffusion layer is not particularly limited, and conventionally known knowledge can be appropriately referred to. Examples thereof include sheet-like materials having conductivity and porosity, such as carbon fabrics, paper-like paper bodies, felts, non-woven fabrics, metal meshes, and metal porous bodies.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
  • the gas diffusion layer has a carbon particle layer (microporous layer: MPL) made of an aggregate of carbon particles containing a water repellent on the catalyst layer side of the substrate. May be.
  • MPL carbon particle layer
  • the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • the average particle diameter of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
  • Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
  • fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
  • the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) in terms of mass ratio in consideration of the balance between water repellency and electron conductivity. It is good.
  • the effective diffusion coefficient of the gas diffusion layer is 3.39 ⁇ 10 ⁇ 5 ⁇ ⁇ ⁇ m 2 / s (where ⁇ is the porosity of the gas diffusion layer and ⁇ is the degree of bending of the gas diffusion layer). Is preferred. If it is such a range, the fall of the gas transportability of an adjacent hydrophilic porous layer can be suppressed.
  • the effective diffusion coefficient of the gas diffusion layer When the effective diffusion coefficient of the gas diffusion layer is equal to or higher than the above value, it is molecular diffusion in which collision between gas molecules becomes rate-limiting, but when it is below this value, it becomes Knudsen diffusion in which collision with the pore wall becomes rate-limiting, Diffusivity may drop rapidly.
  • the porosity ⁇ of the gas diffusion layer can be calculated from the amount and volume of the pores obtained by the mercury intrusion method.
  • the manufacturing method of MEA of the said embodiment is not specifically limited, It can manufacture with a conventionally well-known manufacturing method.
  • the method includes a step of previously integrating the catalyst layer and the hydrophilic porous layer.
  • the hydrophilic porous layer ink is applied on the gas diffusion layer and dried, the contact resistance may increase. Therefore, the above-mentioned concern is solved by performing a process of previously integrating the catalyst layer and the hydrophilic porous layer. And by employ
  • FIG. 2 is a schematic cross-sectional view showing a single cell of PEFC in which an MEA including a gas diffusion electrode of the present invention (first embodiment) is sandwiched between a pair of separators.
  • the PEFC 100 shown in FIG. 2 is configured by sandwiching the MEA 10a between the anode-side separator 102 and the cathode-side separator 101. Further, the fuel gas and the oxidant gas supplied to the MEA are supplied to the anode side separator 102 and the cathode side separator 101 through gas supply grooves 104 and 103 provided at a plurality of locations, respectively. Further, in the PEFC of FIG. 2, the gasket 105 is disposed so as to surround the outer periphery of the electrode located on the surface of the MEA 10. The gasket is a sealing member, and may have a configuration that is fixed to the outer surface of the solid polymer electrolyte membrane 12 of the MEA 10 via an adhesive layer (not shown).
  • the gasket has a function of ensuring the sealing property between the separator and the MEA.
  • the adhesive layer used as necessary preferably corresponds to the shape of the gasket and is arranged in a frame shape on the entire peripheral edge of the electrolyte membrane in consideration of securing adhesiveness.
  • the gasket is disposed so as to surround the catalyst layer or the gas diffusion layer (that is, the gas diffusion electrode), and has a function of preventing leakage of supplied gas (fuel gas or oxidant gas) from the gas diffusion electrode.
  • the material constituting the gasket is not particularly limited as long as it is impermeable to gases, particularly oxygen and hydrogen.
  • the material constituting the gasket include rubber materials such as fluorine rubber, silicon rubber, ethylene propylene rubber (EPDM), and polyisobutylene rubber, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE).
  • polymer materials such as polyvinylidene fluoride (PVdF).
  • PVdF polyvinylidene fluoride
  • the gasket size is not particularly limited, and may be appropriately determined in consideration of the desired gas sealability and the relationship with the size of other members.
  • the MEA is sandwiched between separators to form a single PEFC cell.
  • the PEFC generally has a stack structure in which a plurality of single cells are connected in series.
  • the separator in addition to the function of electrically connecting each MEA in series, the separator includes a flow path and a manifold through which different fluids such as a fuel gas, an oxidant gas, and a refrigerant flow, and further maintains the mechanical strength of the stack. It also has the function.
  • the material constituting the separator is not particularly limited, and conventionally known knowledge can be referred to as appropriate, and examples thereof include carbon materials such as dense carbon graphite and carbon plate, and metal materials such as stainless steel.
  • the size of the separator, the shape of the flow path, and the like are not particularly limited, and may be appropriately determined in consideration of the output characteristics of PEFC.
  • the manufacturing method of PEFC is not particularly limited, and can be manufactured by appropriately referring to conventionally known knowledge in the field of fuel cells.
  • the solid polymer electrolyte fuel cell has been described above as an example, but other fuel cells include alkaline fuel cells, direct methanol fuel cells, micro fuel cells, and the like. You may apply. Among them, a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
  • PEFC polymer electrolyte fuel cell
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • a vehicle in which system start / stop and output fluctuation frequently occur more preferably It can be particularly suitably used in automobile applications.
  • the temperature of the fuel cell is significantly lower than the proper operating temperature when stopped.
  • the temperature of the fuel cell is significantly lower than the proper operating temperature when stopped.
  • the present invention (second embodiment) is made by paying attention to the above-described problem, and provides a gas diffusion layer for a fuel cell that improves the start-up performance below zero by preventing water retention. With the goal.
  • the gas diffusion layer of the present invention (second embodiment) includes an ion conductive material, a hydrophilic porous layer containing a conductive material coated with the ion conductive material, a porous gas diffusion layer base material, ,including. And at least one part of a hydrophilic porous layer is installed in a gas diffusion layer base material, and also at least one part of a gas diffusion layer base material is a hydrophilic treatment part by which the hydrophilic treatment was carried out.
  • the gas diffusion layer of the present invention since the evaporation area of water in the gas diffusion layer is ensured, the drainage of generated water generated during power generation is ensured even at low temperatures.
  • the hydrophilic porous layer improves the evaporability of liquid water and improves the water vapor transportability in the gas diffusive substrate, so that the retention of generated water in the MEA can be further prevented. Startability can be ensured.
  • the present invention (second embodiment) includes a gas including an ion conductive material, a hydrophilic porous layer including a conductive material coated with the ion conductive material, and a porous gas diffusion layer base material.
  • a diffusion layer wherein at least a part of the hydrophilic porous layer is disposed on the gas diffusion layer base material, and at least a part of the gas diffusion layer base material is a hydrophilic treatment part subjected to a hydrophilic treatment, It is a gas diffusion layer.
  • FIG. 3 shows a general MEA configuration.
  • an anode-side electrode catalyst layer 213a and a cathode-side electrode catalyst layer 213c are arranged opposite to each other on both surfaces of a polymer solid electrolyte membrane 212, and these are arranged as an anode-side gas diffusion layer 214a and a cathode-side gas diffusion layer 214c. It has the structure clamped by.
  • the electrode catalyst layers (213a, 213c) and the gas diffusion layers (214a, 214c) constitute gas diffusion electrodes (215a, 215c).
  • water is mainly generated in the cathode side electrode catalyst layer 213c.
  • the generated water is transported to the cathode side gas diffusion layer 214c and discharged to the outside of the cathode side gas diffusion layer 214c, or the polymer solid electrolyte membrane 212, the anode side electrode catalyst layer 213a, and the anode side gas diffusion layer. It is sequentially transported to 214a and discharged to the outside of the anode side gas diffusion layer 214a.
  • the electrode catalyst layers 213a and 213c generally include an ion conductive polymer electrolyte (ion conductive material) in addition to the electrode catalyst. Therefore, the forms of water transport inside the electrode catalyst layers 213a and 213c mainly include transport of water vapor in the pores between the electrode catalysts, transport of liquid water in the ion conductive polymer electrolyte, and ion conduction. Transport of water vapor by evaporation of liquid water from the surface of the conductive polymer electrolyte.
  • the evaporation rate of liquid water from the surface of the ion-conductive polymer electrolyte in the electrode catalyst layer can be lower than that at room temperature under low temperature conditions, particularly when starting below zero. Therefore, the water transportability from the catalyst layer to the gas diffusion layer is reduced.
  • a gas diffusion layer generally formed using a porous material liquid water is transported in the pores of the porous material and water vapor is transported by diffusing the Knudsen in the pores. Can progress.
  • the speed of water vapor Knudsen diffusion decreases at low temperatures, water transportability may decrease. Therefore, under low temperature conditions, the water transportability in the gas diffusion layer is lowered as compared with the case of normal temperature.
  • a hydrophilic porous layer containing an ion conductive material and a conductive material coated with the ion conductive material, and a porous gas diffusion A gas diffusion layer in which a layer base material is laminated is used.
  • the surface area of the gas-liquid interface where liquid water can evaporate can be secured, thereby ensuring the water transportability at low temperatures.
  • at least a part of the hydrophilic porous layer is buried and installed in the surface of the gas diffusion layer base material, and at least a part of the surface of the gas diffusion layer base material Is a hydrophilic treatment part subjected to hydrophilic treatment.
  • the surface area of the gas-liquid interface which can evaporate liquid water can further be increased, and the discharge speed of water can be improved more. Therefore, the generated water during sub-zero power generation is less likely to be accumulated in the pores, a decrease in diffusibility of the reaction gas is suppressed, and sub-zero power generation performance can be improved.
  • the hydrophilic treatment part preferably includes one or more selected from the group consisting of an ion conductive material, a metal oxide, and a hydrophilic polymer.
  • an ion conductive material include perfluorosulfonic acid, sulfonated polyether ether ketone, and the like.
  • the metal oxide include titanium oxide and zirconium oxide.
  • the hydrophilic polymer include polyacrylic acid and polyacrylamide.
  • FIG. 4A is a schematic view showing an embodiment of the gas diffusion layer of the present invention (second embodiment).
  • a gas diffusion layer 220 shown in FIG. 4A is formed of a porous gas diffusion layer base material 216 and a hydrophilic porous layer 217.
  • the hydrophilic porous layer 217 includes an ion conductive material 218 and a particulate conductive material 219, and the conductive material 219 is covered with the ion conductive material 218.
  • the gas diffusion layer 220 can preferably be incorporated into the MEA with the gas diffusion layer substrate 216 facing outward.
  • the water generated in the cathode catalyst layer can be transported from the electrode catalyst layer (not shown) through the hydrophilic porous layer 217 toward the gas diffusion layer base material 216. Therefore, at least a part of the hydrophilic porous layer 217 is buried in the gas diffusion layer base material 216, and the hydrophilic treatment portion 21 is provided on at least a part of the gas diffusion layer base material 216.
  • a continuous hydrophilic network can be constructed over the gas diffusion layer substrate 216. Furthermore, by constructing such a hydrophilic network, the surface area of the ion conductive material 218 exposed to the pores in the region from the hydrophilic porous layer 217 to the gas diffusion layer base material 216 can be increased. Therefore, the evaporation of the liquid water that has been transported through the ion conductive material 218 can proceed efficiently, thereby increasing the drainage rate.
  • the hydrophilic treatment portion 221 which has been subjected to a hydrophilic treatment in advance, is at least one of the regions 222 in which the hydrophilic porous layer 217 is embedded in the gas diffusion layer base material 216. It is necessary to exist in the department.
  • the entire region 222 in which the hydrophilic porous layer 217 is embedded is the hydrophilic treatment portion 221.
  • 10% to 100% of the thickness of the gas diffusion layer base material 216 in the thickness direction from the surface of the gas diffusion layer base material 216 on the side on which the hydrophilic porous layer is formed is hydrophilically treated.
  • a processing unit 221 is formed.
  • a continuous hydrophilic network can be constructed from the hydrophilic porous layer 17 to the gas diffusion layer substrate 216.
  • the upper limit of the ratio of forming the hydrophilic treatment portion 221 in the gas diffusion layer base material 216 is not particularly limited, and the entire gas diffusion layer base material 216 (100% with respect to the thickness of the gas diffusion layer base material 216) is subjected to hydrophilic treatment. It may be.
  • the hydrophilic porous layer 17 may be at least partially embedded in the gas diffusion layer base material 216. Preferably, a portion of 10 to 100% with respect to the thickness of the hydrophilic porous layer 217, It is formed by being buried in the gas diffusion layer base material 216. When a portion of 10% or more with respect to the thickness of the hydrophilic porous layer 217 is buried, a continuous hydrophilic network can be formed from the hydrophilic porous layer 217 to the gas diffusion layer substrate 216. Furthermore, since the water transport distance can be shortened, the water discharge rate can be improved. In particular, as shown in FIG.
  • the entire hydrophilic porous layer 217 is buried in the gas diffusion layer base material 216, that is, the hydrophilic porous layer 217 is formed inside the gas diffusion layer base material 216. It is preferred that This corresponds to a form in which 100% of the thickness of the hydrophilic porous layer 217 is buried in the gas diffusion layer base material 216. If it is such a form, the above-mentioned effect can be acquired especially notably.
  • the effective diffusion coefficient D (m 2 / s) of water vapor in the gas diffusion layer substrate including the hydrophilic treatment portion is 1 atm and ⁇ 20 ° C.
  • the porosity ⁇ of the gas diffusion layer substrate, the gas Using the bending degree ⁇ of the diffusion layer substrate the following relationship is satisfied.
  • the pore size of the pores existing in the gas diffusion layer base material is equal to or less than the mean free path of water vapor (average distance traveled from one collision to the next collision of molecules).
  • the diffusion of water vapor in the material is dominated by the Knudsen diffusion.
  • the diffusion coefficient is significantly reduced with respect to diffusion due to molecular diffusion. Therefore, in order for the water vapor generated in the gas diffusion layer to be quickly diffused in the gas diffusion layer base material and discharged outside the gas diffusion layer base material, the water vapor diffusion in the gas diffusion layer base material is caused by molecular diffusion. It is preferable that the condition of diffusion is satisfied.
  • the diffusion coefficient D b, wA (m 2 / s) of water vapor by molecular diffusion is, for example, a binary system of water vapor w and gas type A, and can be calculated by the following Chapman-Enskog equation.
  • T is the absolute temperature (K) and p is the pressure (atm).
  • M w and M A are the molecular weight (g / mol) of water vapor and gas species A, respectively.
  • ⁇ w and ⁇ A are the collision diameter ( ⁇ ) of water vapor and gas species A, k is the Boltzmann constant, and
  • ⁇ w and ⁇ A are the Lenard-Jones parameters of water vapor and gas species A.
  • the values of ⁇ w , ⁇ N2 , ⁇ w / k, ⁇ N2 / k are 2.641, 3.798 (nitrogen), 809.1, 71.4 (respectively).
  • nitrogen the diffusion coefficient of water vapor in the nitrogen gas due to molecular diffusion is derived to be about 2,0 ⁇ 10 ⁇ 5 m 2 / s.
  • the mutual diffusion coefficient with, for example, hydrogen and oxygen is calculated for the gas supplied to the fuel cell by the same calculation, the diffusion coefficient is the lowest in the case of nitrogen.
  • the effective diffusion coefficient D of water vapor in the gas diffusion layer is obtained by using the porosity ⁇ of the gas diffusion layer base material and the bending degree ⁇ of the gas diffusion layer base material.
  • the effective diffusion coefficient D of the water vapor in the gas diffusion layer base material (m 2 / s) is 1 atm, at -20 ° C., if 2.0 ⁇ 10 -5 ⁇ ⁇ ⁇ a dominant diffusion of water vapor Therefore, the water vapor can be transported promptly. Therefore, the water discharge speed can be improved.
  • the porosity ⁇ of the gas diffusion layer base material is obtained as a ratio to the volume of the layer by measuring the volume of pores (micropores) existing inside the layer by measuring the pore distribution by the mercury intrusion method or the like. be able to.
  • the bending rate ⁇ of the gas diffusion layer base material can be calculated from the measurement result of the effective diffusion coefficient by the gas permeation test and the measurement result of the porosity by the analysis such as the mercury intrusion method.
  • the minimum value (minimum hole diameter) of the holes of the gas diffusion layer base material is 1 ⁇ m or more. If the minimum pore diameter is 1 ⁇ m or more, the diffusion of water vapor by Knudsen diffusion can be almost ignored, and the water vapor diffusion by molecular diffusion becomes dominant, so that the water vapor transport rate can be further improved. Therefore, the water discharge speed can be improved.
  • the minimum pore diameter of the gas diffusion layer base material can be obtained by, for example, pore distribution measurement by a mercury intrusion method.
  • the upper limit value of the minimum pore diameter is not particularly limited, but is substantially about 10 ⁇ m.
  • the gas diffusion electrode of the present embodiment may be an anode side gas diffusion layer or a cathode side diffusion layer, but is preferably applied to at least the anode side gas diffusion electrode.
  • oxygen transport is hindered by freezing of water generated by power generation, which is one cause of a decrease in startability.
  • the generated water can be generated mainly in the cathode side catalyst layer, it is important to enhance the transportability of water to the anode side in order to promote the discharge of the generated water.
  • By disposing the gas diffusion layer of the present embodiment on the anode side more generated water can be transported, so that the startability below freezing point can be increased.
  • the hydrophilic porous layer includes an ion conductive material and a conductive material coated on the ion conductive material.
  • the coating area S ion of the conductive material coated with the ion conductive material is 200 m 2. / G carbon or more.
  • S BET is the BET nitrogen specific surface area of the conductive material
  • ⁇ ion is the ion conductive material coverage.
  • the inventors of the present application have studied to improve the drainage of produced water, and as a result, the area covered with the ion conductive material of the conductive material contained in the hydrophilic porous layer plays a very important role in drainage. As a result of finding out and fulfilling further studies, the following findings were obtained.
  • the conductive material having an ion conductive material covering area of 200 m 2 / g carbon or more has a large evaporation area of liquid water, and can reduce phase change resistance from the liquid phase to the gas phase.
  • the reason for taking the ratio of 30% relative humidity and 100% relative humidity is as follows. Under a highly humidified condition, the electric double layer formed at the interface between the conductive material and water adsorbed on the surface of the conductive material or at the interface between the conductive material and the ion conductive material is measured. On the other hand, under a low humidification condition, the electric double layer formed at the interface between the conductive material and the ion conductive material is mainly measured.
  • the electric double layer capacity is substantially constant at a relative humidity of about 30% or less. Therefore, in the present invention, the relative humidity of 30% and the relative humidity of 100% are determined as representative points of the low humidification condition and the high humidification condition, respectively, and the ratio of the electric double layer capacity of both is taken, whereby the conductive material is ion-conductive. It was used as an index of how much the material was covered.
  • a membrane electrode assembly in which a hydrophilic porous layer not containing a catalyst component and a catalyst layer are arranged on different surfaces of the electrolyte membrane, respectively, is prepared, and a gas diffusion layer, a carbon separator, and a gold-plated current collector on both sides
  • a cell similar to a normal fuel cell was obtained by sandwiching with a plate.
  • the catalyst layer is used as a reference electrode and a counter electrode with hydrogen gas conditioned in the catalyst layer and nitrogen gas conditioned in the hydrophilic porous layer, and the potential of the hydrophilic porous layer is set to the reference electrode. Scanning was performed 5 to 10 times in the range of 0.2 to 0.6V. The scanning speed was 50 mV / s.
  • the relationship between the obtained current and potential showed a waveform close to a rectangle. This indicates that the oxidation and reduction reaction on the electrode has not occurred, and that charging and discharging of the electric double layer is the main factor of the current.
  • the electric double layer capacity was calculated by dividing the average value of the absolute values of the oxidation current and the reduction current at a certain potential, for example, 0.3 V, by the scanning speed. This measurement was performed under various humidification conditions, and the relationship between electric double layer capacity and relative humidity was obtained.
  • the value measured by the following method shall be adopted as the BET nitrogen specific surface area of the conductive material.
  • the transport resistance R water of the liquid water in the ion conductive material under the condition of ⁇ 20 ° C. or less is The water vapor transport resistance (diffusion resistance) is less than R vapor . It is desirable that the water transport path through the hydrophilic material is sufficiently communicated. That is, under low temperature conditions, liquid water is less likely to evaporate in the gas diffusion layer than when starting at room temperature. Therefore, in order to increase the water transport rate under low temperature conditions, it is important to improve the transport rate of liquid water in the ion conductive material. Water transport rates can be obtained.
  • the transport of water in the hydrophilic porous layer is considered to proceed mainly by the transport of water vapor in the pores in the hydrophilic porous layer and the transport of liquid water through the ion conductive material.
  • the transport resistance R vapor (cm 2 ⁇ s / mol) of water vapor in the hydrophilic porous layer can be obtained by the following equation.
  • P sat is the saturated water vapor pressure of water
  • T is the absolute temperature
  • D MPL vapor is the effective diffusion coefficient in the gas phase of water vapor in the hydrophilic porous layer.
  • the effective diffusion coefficient D MPL, vapor of water vapor in the hydrophilic porous layer can be calculated as follows.
  • the diffusion coefficient Dt (r) in the hole having the radius r is expressed by the following equation in an environment where molecular diffusion and Knudsen diffusion are mixed.
  • D m is a diffusion coefficient due to molecular diffusion
  • D k is a diffusion coefficient due to Knudsen diffusion
  • K n is Knudsen number and is given by (Mean mean free path) / (Hole diameter).
  • the overall diffusion coefficient D A is determined by a diffusion coefficient Dt (r) (r: r 1 to r n ) and a diffusion distance Z (r) (r: r in a hole having a radius r (r: r 1 to r n )). 1 to r n ), the following formula is used.
  • the pore size distribution can be determined by mercury porosimetry, the radius r: diffusion distance in the pores of (r r 1 ⁇ r n) Z (r) (r: r 1 ⁇ r n) , the radius It can be calculated from the amount of mercury intruded into the vacancies of r (r: r 1 to r n ).
  • the transport resistance R water (s / m) of liquid water in the ion conductive material drives the gradient of water activity when a polymer electrolyte material such as Nafion is used as the ion conductive material. From the condition of being transported as force, it is expressed as the following formula.
  • is the dry density of the ion conductive material
  • M m is the weight of the ion conductive material per unit water-containing group (for example, sulfonic acid group).
  • is the water content per unit water-containing group (for example, sulfonic acid group)
  • a is the water activity (water vapor partial pressure / saturated vapor pressure)
  • D water is the effective diffusion of liquid water in the ion conductive material. It is a coefficient.
  • is generally determined as an a- ⁇ characteristic by experimental measurement of a water vapor adsorption isotherm. Therefore, d ⁇ / da is calculated by differentiating the characteristic.
  • the effective diffusion coefficient D water of the liquid water in the ion conductive material in the hydrophilic porous layer is the diffusion coefficient D w of the water in the bulk ion conductive material, the volume fraction ⁇ d of the ion conductive material, and the hydrophilic Using the bending degree ⁇ d of the ion conductive material in the porous porous layer, it is expressed by the following formula.
  • the diffusion coefficient D w of water the bulk of the ion conductive material for example, S. It can be determined by the method described in Motually et al JES, 147 (9) 3171 (2000).
  • the transport path of the liquid water is sufficiently communicated. That is, an ion transporting material capable of transporting liquid water continuously covers a plurality of conductive materials by close contact or integration, and a continuous water (liquid water) transport path is formed. preferable.
  • the continuity of the water transport path can be confirmed, for example, by measuring a change in electric double layer capacity (C dl ) with respect to relative humidity. As described above, under a highly humidified condition, the electric double layer formed at the interface between the conductive material and water adsorbed on the surface of the conductive material or at the interface between the conductive material and the ion conductive material is measured.
  • the electric double layer formed at the interface between the conductive material and the ion conductive material is mainly measured.
  • the electric double layer capacity at a relative humidity of 40% and the electric double layer capacity at a relative humidity of 30% are compared, and when the variation is within 10%, the liquid water transport route is sufficiently communicated. It is assumed that The method for measuring the electric double layer capacity is as described above.
  • the thickness of the hydrophilic porous layer is not particularly limited, but is preferably 2 to 40 ⁇ m, more preferably 2 to 25 ⁇ m. If the thickness of the hydrophilic porous layer is within the above range, it is preferable because it is possible to ensure both drainage and gas diffusibility.
  • the total porosity of the hydrophilic porous layer is not particularly limited, but is preferably 30 to 80%, and more preferably 40 to 70%. If the porosity is within the above range, drainage and gas diffusibility can be secured, which is preferable.
  • the porosity can be obtained as a ratio to the volume of the layer by measuring the volume of pores (micropores) existing inside the layer by measuring the pore distribution by mercury porosimetry.
  • the hydrophilic porous layer includes a conductive material and an ion conductive material.
  • the conductive material may carry a catalyst.
  • the hydrophilic porous layer may contain other materials in addition to the conductive material and the ion conductive material.
  • the content of the conductive material and the ion conductive material is preferably 80% by mass or more, and more preferably 90% by mass or more. More preferably, the hydrophilic porous layer is composed of a conductive material and an ion conductive material.
  • conductive materials include carbon materials such as natural graphite, artificial graphite, activated carbon, and carbon black (oil furnace black, channel black, lamp black, thermal black, acetylene black, etc.); metal oxides such as tin oxide and titanium oxide Is mentioned.
  • carbon material such as natural graphite, artificial graphite, activated carbon, and carbon black (oil furnace black, channel black, lamp black, thermal black, acetylene black, etc.); metal oxides such as tin oxide and titanium oxide Is mentioned.
  • it is a carbon material.
  • the conductive material may be used alone or in combination of two or more. More preferably, carbon black, acetylene black having a nitrogen BET specific surface area of 200 to 1600 m 2 / g, ketjen black, black pearls, Vulcan manufactured by Cabot, activated carbon, and the like can be used.
  • the conductive material is preferably in the form of particles.
  • the average particle diameter of the particulate conductive material is preferably 5 to 100 nm, and more preferably 10 to 60 nm. Thereby, the gas diffusibility of a hydrophilic porous layer is securable.
  • particle diameter means the maximum distance L among the distances between any two points on the contour line of the active material particles.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the ion conductive material is not particularly limited as long as the material is ion conductive and can bind the conductive material. Examples thereof include polymers such as polyacrylamide, aqueous urethane resin, and silicon resin; polymer electrolytes and the like. A polymer electrolyte is preferred. By using a polymer electrolyte as an ion conductive material, a hydrophilic porous layer can be stably disposed adjacent to a MEA component (electrolyte membrane or catalyst layer) containing the same ion conductive material. It is possible to reduce the water transport resistance between the catalyst layer or membrane and the conductive material.
  • MEA component electrolyte membrane or catalyst layer
  • the water transport property between the electrolyte membrane or the catalyst layer and the conductive material is improved, and the equilibrium can be reached in an earlier time.
  • the electrolyte may be the same as or different from the polymer electrolyte used in the catalyst layer or the electrolyte membrane.
  • the material can be shared, and labor saving can be achieved at the time of manufacturing.
  • the ion conductive material used is not particularly limited. Specifically, the ion conductive material is roughly classified into a fluorine-based electrolyte containing fluorine atoms in the whole or part of the polymer skeleton and a hydrocarbon electrolyte not containing fluorine atoms in the polymer skeleton.
  • fluorine-based electrolytes include perfluorocarbon sulfonates such as Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), etc.
  • Polymer polytrifluorostyrene sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene
  • a preferred example is a fluoride-perfluorocarbon sulfonic acid-based polymer.
  • the fluorine-based electrolyte is excellent in durability and mechanical strength.
  • hydrocarbon electrolyte examples include polysulfone sulfonic acid, polyaryl ether ketone sulfonic acid, polybenzimidazole alkyl sulfonic acid, polybenzimidazole alkyl phosphonic acid, polystyrene sulfonic acid, polyether ether ketone sulfonic acid, polyphenyl.
  • a suitable example is sulfonic acid.
  • the above ion conductive materials may be used alone or in combination of two or more. These ion conductive materials may be used in the form of a solution or a dispersion.
  • the EW of the ion conductive material is preferably low.
  • the EW is 1200 g / eq. Or less, more preferably 1000 g / eq.
  • the lower limit of EW is not particularly limited, but is usually 500 g / eq. The above is preferable.
  • EW (Equivalent Weight) represents an ion exchange group equivalent weight.
  • the gas diffusion layer base material supports the hydrophilic porous layer in addition to the function of promoting the diffusion of the gas (fuel gas or oxidant gas) supplied through the separator flow path and the function as an electron conduction path. It has a function.
  • the material constituting the gas diffusion layer base material is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used. More specifically, carbon paper, carbon cloth, carbon nonwoven fabric and the like are preferable.
  • Commercially available products can be used as the gas diffusion substrate, and examples thereof include carbon paper TGP series manufactured by Toray Industries, Inc., carbon cloth manufactured by E-TEK, and the like.
  • the thickness of the gas diffusion layer base material may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer base material used for the gas diffusion layer of the present invention has a hydrophilic treatment part at least partially subjected to a hydrophilic treatment.
  • any conventionally used method can be used without particular limitation.
  • gas phase method using oxygen gas, water vapor, etc . plasma irradiation; pyrogenic method using hydrogen vapor generated by reaction of hydrogen and oxygen (hydrogen combustion); potassium permanganate, nitric acid, chlorate, persulfate
  • the gas diffusion layer base material is desired by using a liquid phase method using a strong oxidizing aqueous solution containing hydrogen, perborate, percarbonate, hydrogen peroxide, etc .; a gas phase method using ozone, nitrogen oxide, air, etc.
  • part which the gas diffusion layer base material desires is used.
  • the hydrophilic agent is not particularly limited as long as it is a conventional one, and metal oxides such as metal oxides such as titania, silica, alumina, magnesium oxide, calcium oxide, tin oxide, Nafion (DuPont) Preferred examples include hydrophilic polymers containing a hydrophilic group, such as perfluorocarbon sulfonic acid polymers represented by Flemion (registered trademark manufactured by Asahi Kasei Co., Ltd.). Alternatively, the above-described ion conductive material may be used as a hydrophilic agent. By using these hydrophilic agents, a liquid water transport route can be effectively secured by an inexpensive method.
  • the hydrophilic agent may be used alone or in combination of two or more.
  • the method for performing the hydrophilic treatment using the hydrophilic agent is not particularly limited.
  • the gas diffusion layer may be applied to a solution containing the hydrophilic agent or a metal alkoxide solution containing a metal element constituting a metal oxide used as the hydrophilic agent.
  • a method of drying, baking, or the like as necessary after dipping or impregnating a desired portion of the substrate is preferably used.
  • the solvent used in the solution is not particularly limited, but water; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 2-pentanol, 3-pentanol Alcohols such as ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, or polyhydric alcohols such as glycerin. These may be used alone or in combination of two or more.
  • the production method of the gas diffusion layer in which the hydrophilic porous layer is buried in the gas diffusion layer base material subjected to the hydrophilic treatment is not particularly limited.
  • the hydrophilic material prepared by mixing a conductive material, an ion conductive material, and a solvent before the solution is dried.
  • a method of further applying an ink for the porous layer and drying it is not particularly limited.
  • the solvent used in the ink for the hydrophilic porous layer is not particularly limited, but water; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 2-pentanol And alcohols such as 3-pentanol; polyhydric alcohols such as ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and glycerin. These may be used alone or in combination of two or more.
  • the selection of the organic solvent is important for controlling the porosity of the hydrophilic porous layer.
  • a solvent in which a high-boiling organic solvent having a boiling point exceeding 150 ° C. is mixed with ink it is preferable to use a solvent in which a high-boiling organic solvent having a boiling point exceeding 150 ° C. is mixed with ink.
  • a high boiling point organic solvent having a boiling point exceeding 150 ° C. is mixed with the ink, the average pore diameter can be increased and the porosity can be increased.
  • the solvent in the hydrophilic porous layer ink may be composed only of a high-boiling organic solvent.
  • high-boiling organic solvents and other solvents for example, water, organic solvents having a boiling point of less than 150 ° C.
  • the ratio of the high-boiling organic solvent in the solvent is preferably 10% by mass or more, From the viewpoint of water retention, the higher the ratio of the high-boiling organic solvent, the more preferable, so the upper limit of the ratio of the high-boiling organic solvent in the solvent is not particularly limited.
  • the electrolyte In view of the dispersibility of the electrolyte, it is preferably 70% by mass or less, and when a mixture of a high-boiling organic solvent and another solvent is used, the average pore diameter and porosity are increased. Kudekiru it is known.
  • the porosity can be controlled by intentionally changing the mixing ratio (I / C) of the ion conductive material (I) and the conductive material (C) during ink adjustment.
  • the solvent and the solvent in the present specification include all of the dispersion medium in which solid components such as a binder and a conductive material are dispersed, that is, liquid components other than the solid components. Therefore, for example, when producing an ink for a hydrophilic porous layer by mixing an ion conductive material dispersed in water and an organic solvent, the solvent in this specification refers to both water and the organic solvent. .
  • the solid content ratio of the ink for the hydrophilic porous layer is not particularly limited, but is usually about 5 to 20% by mass. By setting it as such a range, it is excellent in the formation efficiency and stability of a porous layer.
  • the method for preparing the ink for the hydrophilic porous layer is not particularly limited. Further, the order of mixing the ion conductive material, the conductive material, and the solvent is not particularly limited, and specific examples thereof include the following (i-1) to (i-3).
  • the methods (i-1) and (i-2) are preferable, and the method (i-1) is more preferable. Thereby, water and an organic solvent are mixed uniformly and a solvent compound is easy to form.
  • the ion conductive material in the solution containing the ion conductive material, is dispersed in the solvent.
  • the content of the ion conductive material in the solution containing the ion conductive material at this time is not particularly limited, but the solid content is preferably 1 to 40% by mass, more preferably 5 to 20% by mass. With such a content, the polymer electrolyte can be appropriately dispersed in the solvent.
  • the solution containing the ion conductive material may be adjusted by itself or a commercially available product may be used.
  • the dispersion solvent of the ion conductive material in the solution containing the ion conductive material is not particularly limited, and examples thereof include water, methanol, ethanol, 1-propanol, and 2-propanol. In consideration of dispersibility, water, ethanol and 1-propanol are preferable. These dispersion solvents may be used alone or in combination of two or more.
  • a separate mixing step may be provided in order to mix well.
  • the catalyst ink is well dispersed with an ultrasonic homogenizer, or the mixed slurry is well pulverized with an apparatus such as a sand grinder, a circulating ball mill, or a circulating bead mill, and then a vacuum defoaming operation is performed.
  • an apparatus such as a sand grinder, a circulating ball mill, or a circulating bead mill, and then a vacuum defoaming operation is performed.
  • the addition etc. are mentioned preferably.
  • a solution containing a hydrophilic agent for forming a hydrophilic treatment portion on the gas diffusion layer substrate is prepared.
  • the solvent used in the hydrophilic agent and the solution containing the hydrophilic agent is as described above.
  • the solution containing the hydrophilic agent and the ink for the hydrophilic porous layer are sequentially applied to the surface of the gas diffusion layer base material.
  • the method for applying the solution containing the hydrophilic agent and the ink for the hydrophilic porous layer to the surface of the gas diffusion layer substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, a doctor blade method, or a transfer method. Moreover, the apparatus used for application
  • coating apparatuses such as a screen printer, a spray device, a bar coater, a die coater, a reverse coater, a comma coater, a gravure coater, a spray coater, and a doctor knife can be used.
  • the application process may be performed once or repeatedly a plurality of times.
  • the hydrophilic porous layer ink after the solution containing the hydrophilic agent is applied and before the solution is dried.
  • the porous layer ink is applied within 60 minutes after applying the solution containing the hydrophilic agent. If it is said form, since a continuous hydrophilic part can be formed from a hydrophilic porous layer to a gas diffusion layer base material, water transportability may improve.
  • heat treatment is performed after the application of the hydrophilic porous layer ink, adhesion at the interface can be improved and water transport resistance can be reduced.
  • the conditions for the heat treatment are not particularly limited, but it is preferable to perform the heat treatment at 20 to 170 ° C. for about 1 to 40 minutes.
  • the heat treatment process may be performed at any stage of the MEA production process, and is not limited to a form in which heat treatment is performed immediately after the ink for the hydrophilic porous layer is applied on the substrate.
  • the substrate coated with the solution containing the hydrophilic agent and the hydrophilic porous layer ink is dried to remove the solvent.
  • the drying time is not particularly limited, but is preferably 5 to 30 minutes.
  • the atmosphere during drying is not particularly limited, but it is preferable to perform drying in an air atmosphere or an inert gas atmosphere.
  • the step of drying the solution containing the hydrophilic agent and the ink for the hydrophilic porous layer may be performed at any stage of the MEA production process as long as it is after the application of the ink for the hydrophilic porous layer. It is not restricted to the form which dries immediately after apply
  • the gas diffusion layer of the second embodiment has excellent drainage performance even when starting below zero. Accordingly, when applied to a gas diffusion electrode, the sub-zero startability can be improved.
  • a preferred embodiment of a gas diffusion electrode including the gas diffusion layer of the above embodiment will be described.
  • Each drawing is exaggerated for convenience of explanation, and the dimensional ratio of each component in each drawing may be different from the actual one.
  • symbol is attached
  • FIG. 6 is a schematic view showing an embodiment of a suitable gas diffusion electrode 230 including the gas diffusion layer of the above embodiment.
  • the gas diffusion electrode of FIG. 6 has a configuration in which a hydrophilic porous layer 217 is sandwiched between an electrode catalyst layer 223 and a gas diffusion layer base material 216. And in the electrode catalyst layer 223, the transport path of liquid water is communicating. That is, it is preferable that the ion conductive materials included in the electrode catalyst layer 223 form a transport path (a transport path for communicating liquid water) that is a continuous path of liquid water by close contact and integration. If it is the above forms, the transportation route of the liquid water from a catalyst layer to a hydrophilic porous layer and a gas diffusion layer base material will be ensured.
  • the transport path of the liquid water can be formed by coating the electrode catalyst 232 with the ion conductive material 218 ′.
  • the continuity of the transport path of liquid water is measured, for example, by measuring the change in electric double layer capacity (C dl ) with respect to relative humidity. The greater the electric double layer capacity and the less change with relative humidity, the more liquid water It can be confirmed that the continuity of the transportation route is secured.
  • the gas diffusion electrode may be an anode side gas diffusion electrode or a cathode side diffusion electrode. Both the anode side and the cathode side may be the gas diffusion electrode of this embodiment. Preferably, it is applied to at least the anode side gas diffusion electrode.
  • the electrode catalyst layer is a layer where the reaction actually proceeds. Specifically, the oxidation reaction of hydrogen proceeds in the anode side electrode catalyst layer, and the reduction reaction of oxygen proceeds in the cathode side electrode catalyst layer.
  • the electrode catalyst layer includes a catalyst component, a conductive carrier that supports the catalyst component, and an ion conductive material that is a proton conductive polymer electrolyte.
  • the catalyst component used for the anode-side electrode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
  • the catalyst component used in the cathode side electrode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner. Specifically, it is selected from platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, etc., and alloys thereof. Is done.
  • the composition of the alloy depends on the type of metal to be alloyed, but is preferably 30 to 90 atomic% for platinum and 10 to 70 atomic% for the metal to be alloyed.
  • the composition of the alloy when the alloy is used as the cathode-side catalyst varies depending on the type of metal to be alloyed, and can be appropriately selected by those skilled in the art. Platinum is 30 to 90 atomic%, and other metals to be alloyed are 10 to 10%. It is preferable to set it as 70 atomic%.
  • an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be used in the present application.
  • the catalyst component used for the anode-side electrode catalyst layer and the catalyst component used for the cathode-side electrode catalyst layer can be appropriately selected from the above.
  • the descriptions of the catalyst components for the anode-side electrode catalyst layer and the cathode-side electrode catalyst layer have the same definition for both, and are collectively referred to as “catalyst components”.
  • the catalyst components of the anode-side electrode catalyst layer and the cathode-side electrode catalyst layer do not need to be the same, and are appropriately selected so as to exhibit the desired action as described above.
  • the shape and size of the catalyst component are not particularly limited, and the same shape and size as known catalyst components can be used, but the catalyst component is preferably granular.
  • the average particle diameter of the catalyst particles is preferably 1 to 30 nm, more preferably 1.5 to 20 nm, still more preferably 2 to 10 nm, and particularly preferably 2 to 5 nm.
  • the average particle diameter of the catalyst particles is within such a range, the balance between the catalyst utilization rate related to the effective electrode area where the electrochemical reaction proceeds and the ease of loading can be appropriately controlled.
  • the “average particle diameter of catalyst particles” in the present invention is the average of the crystallite diameter determined from the half-value width of the diffraction peak of the catalyst component in X-ray diffraction or the average particle diameter of the catalyst component determined from a transmission electron microscope image. It can be measured as a value.
  • the conductive carrier functions as a carrier for supporting the above-described catalyst component and an electron conduction path involved in the exchange of electrons with the catalyst component.
  • the conductive carrier may be any carbon-based material having a specific surface area for supporting the catalyst component in a desired dispersed state and sufficient electron conductivity.
  • the main component is carbon. Preferably there is. Specific examples include carbon particles composed of carbon black, graphitized carbon black, activated carbon, coke, natural graphite, artificial graphite, carbon nanotube, carbon nanohorn, carbon fibril structure, and the like. “The main component is carbon” means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. In some cases, elements other than carbon atoms may be included in order to improve the characteristics of the fuel cell. Incidentally, “substantially consisting of carbon atoms” means that contamination of about 2 to 3% by mass or less of impurities can be allowed.
  • a graphitized carbon material such as carbon black graphitized on the electrode catalyst layer, particularly the anode side electrode catalyst layer, as the conductive support can improve the corrosion resistance of the conductive material. Furthermore, the transport resistance of liquid water can be reduced by coating the graphitized carbon material with an ion conductive material. By placing a hydrophilic porous adjacent to the electrode catalyst layer using a graphitized conductive material, drainage can be improved, starting at subzero, and further corrosion of the conductive material.
  • a membrane electrode assembly for a fuel cell imparted with resistance is provided.
  • the graphitized carbon black is preferably spherical, and has an average lattice spacing d 002 of [002] plane calculated from X-ray diffraction of 0.343 to 0.358 nm and a BET specific surface area of 100 to 300 m 2 / g is desirable.
  • the BET specific surface area of the conductive carrier may be a specific surface area sufficient to carry the catalyst component in a highly dispersed state, but is preferably 20 to 1600 m 2 / g, more preferably 80 to 1200 m 2 / g.
  • the specific surface area of the conductive support is in such a range, the balance between the dispersibility of the catalyst component on the conductive support and the effective utilization rate of the catalyst component can be appropriately controlled.
  • the size of the conductive carrier is not particularly limited, but from the viewpoint of easy loading, catalyst utilization, and control of the electrode catalyst layer thickness within an appropriate range, the average particle size is 5 to 200 nm, preferably 10 It is preferable to set it to about 100 nm.
  • the supported amount of the catalyst component is preferably 10 to 80% by mass, more preferably based on the total amount of the electrode catalyst. Is 30 to 70% by mass.
  • the supported amount of the catalyst component can be measured by inductively coupled plasma emission spectroscopy (ICP).
  • the catalyst component can be supported on the carrier by a known method.
  • known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
  • a commercially available electrode catalyst may be used.
  • electrode catalysts such as those manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., N.E. Chemcat, E-TEK, and Johnson Matthey can be used. These electrode catalysts are obtained by supporting platinum or a platinum alloy on a carbon carrier (supporting concentration of catalyst species, 20 to 70% by mass).
  • a carbon carrier supporting concentration of catalyst species, 20 to 70% by mass.
  • the carbon carrier ketjen black, vulcan, acetylene black, black pearl, graphitized carbon carrier (for example, graphitized ketjen black) previously heat treated at high temperature, carbon nanotube, carbon nanohorn, carbon fiber, There is mesoporous carbon.
  • the electrode catalyst layer includes an ion conductive material that is an ion conductive polymer electrolyte in addition to the electrode catalyst.
  • an ion conductive material that is an ion conductive polymer electrolyte in addition to the electrode catalyst.
  • a transport path of liquid water can be secured in the catalyst layer.
  • the transport path of the liquid water from a catalyst layer to a hydrophilic porous layer is securable by making the ion conductive material in a catalyst layer contact a hydrophilic porous layer.
  • the said ion conductive material is not specifically limited, A conventionally well-known knowledge can be referred suitably,
  • the ion conductive material which comprises the porous layer mentioned above can be used.
  • the ion conductive material is preferably added in an amount of 50 to 150% by mass with respect to the electrode catalyst.
  • the EW is 1200 g / eq. Or less, more preferably 1000 g / eq.
  • the lower limit of EW is not particularly limited, but is usually 500 g / eq. The above is preferable.
  • EW Equivalent Weight
  • the electrode catalyst layer is coated with a catalyst ink composed of an electrode catalyst, an ion conductive material, a solvent, and the like using a conventionally known method such as a spray method, a transfer method, a doctor blade method, or a die coater method on a solid polymer electrolyte membrane.
  • a conventionally known method such as a spray method, a transfer method, a doctor blade method, or a die coater method on a solid polymer electrolyte membrane.
  • the solvent is not particularly limited, and a solvent similar to the solvent used for the hydrophilic porous layer ink can be used.
  • the coating amount of the solid polymer electrolyte membrane and the catalyst ink is not particularly limited as long as the electrode catalyst can sufficiently exert the action of catalyzing the electrochemical reaction, but the mass of the catalyst component per unit area is 0.05 to 1 mg. It is preferable to apply so as to be / cm 2 .
  • the thickness of the catalyst ink to be applied is preferably 5 to 30 ⁇ m after drying. The application amount and thickness of the catalyst ink need not be the same on the anode side and the cathode side, and can be adjusted as appropriate.
  • the gas diffusion layer and gas diffusion electrode of the second embodiment have excellent drainage performance even when starting below zero. Therefore, when applied to the MEA, it is possible to improve the below zero startability.
  • preferred embodiments of the MEA including the gas diffusion layer or the gas diffusion electrode of the second embodiment will be described.
  • FIG. 7 is a schematic cross-sectional view showing an embodiment of a suitable MEA including the gas diffusion layer or gas diffusion electrode of the second embodiment.
  • an anode side electrode catalyst layer 223a and a cathode side electrode catalyst layer 223b are arranged opposite to each other on both sides of the solid polymer electrolyte membrane 212.
  • the anode side gas diffusion layer base material 216a and the cathode side gas It has a configuration sandwiched between diffusion layer base materials 216c.
  • a hydrophilic porous layer 217 is disposed between the anode side electrode catalyst layer 223a and the anode side gas diffusion layer base material 216a and between the cathode side electrode catalyst layer 223c and the cathode side gas diffusion layer base material 216c.
  • the gas diffusion layer 220 having the gas diffusion layer base materials 216a and 216c and the hydrophilic porous layers 217a and 217c, or the gas diffusion electrode further having the electrode catalyst layers 223a and 223c is used as the gas diffusion layer or the book of the present invention.
  • the gas diffusion layer or the gas diffusion electrode may be disposed on either the cathode side or the cathode side.
  • the gas diffusion layer or gas diffusion electrode is preferably provided on at least the anode side. It is a form to provide. As described above, when the fuel cell is started below the freezing point, it is considered that the transport of oxygen is inhibited due to freezing of water generated by power generation, which is one cause of the decrease in startability. Accordingly, it is important that the direction of water movement when absorbing the produced water is the anode side electrode catalyst layer from the cathode side electrode catalyst layer through the electrolyte membrane.
  • the gas diffusion layer or gas diffusion electrode By disposing the gas diffusion layer or gas diffusion electrode on the anode side, more generated water returns to the anode catalyst layer side, so that the startability below freezing point can be increased. Also, in the operation of the fuel cell, the ratio of the reaction gas is high and the diffusion coefficient of water vapor is high, so that the ratio of the generated water transported to the hydrogen electrode is improved and the generated water is transported to the electrolyte membrane. be able to.
  • the gas diffusion layer base material generally has a pore diameter of about 20 to 60 ⁇ m, it is considered that water vapor transport by molecular diffusion is mainly performed.
  • the atmospheric gas is hydrogen (anode) or air (cathode)
  • the diffusion coefficient of water vapor is about 3 to 4 times higher in the hydrogen atmosphere. That is, water vapor is easily transported. Therefore, by using the gas diffusion layer in the present invention for the anode, the hydrophilic porous layer improves the evaporability of liquid water, and the water vapor transport property in the gas diffusible substrate is improved. It is possible to enhance the discharge effect to the flow path.
  • the polymer electrolyte membrane is made of an ion exchange resin and has a function of selectively permeating protons generated in the anode side catalyst layer during PEFC operation to the cathode side catalyst layer along the film thickness direction.
  • the polymer electrolyte membrane also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the specific configuration of the polymer electrolyte membrane is not particularly limited, and conventionally known polymer electrolyte membranes can be appropriately employed in the field of fuel cells.
  • Polymer electrolyte membranes are roughly classified into fluorine-based polymer electrolyte membranes and hydrocarbon-based polymer electrolyte membranes depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte membrane include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride- Examples include perfluorocarbon sulfonic acid polymers. From the viewpoint of power generation performance such as heat resistance and chemical stability, these fluorine-based polymer electrolyte membranes are preferably used, and particularly preferably fluorine-based polymer electrolyte membranes composed of perfluorocarbon sulfonic acid polymers are used. It is done.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, and sulfonated.
  • S-PES polyetheretherketone
  • S-PPP polyphenylene
  • These hydrocarbon polymer electrolyte membranes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the material selectivity is high.
  • the ion exchange resin mentioned above only 1 type may be used independently and 2 or more types may be used together. Moreover, it is needless to say that other materials may be used without being limited to the above-described materials.
  • the thickness of the polymer electrolyte membrane may be appropriately determined in consideration of the properties of the obtained MEA and PEFC, and is not particularly limited. However, the thickness of the polymer electrolyte membrane is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and still more preferably 15 to 150 ⁇ m. When the thickness is within such a range, the balance between strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the method for producing the MEA of the second embodiment is not particularly limited, and can be produced by a conventionally known production method.
  • performing each step continuously means that the respective steps are sequentially performed before the solution containing the catalyst ink, the hydrophilic porous slurry, and the hydrophilic agent is dried.
  • the next step may be performed within 60 seconds, more preferably within 30 seconds.
  • FIG. 8 shows a specific embodiment.
  • first (for example, the anode side) gas diffusion electrode is formed on the electrolyte membrane. That is, an electrolyte membrane is prepared, and a catalyst ink containing an electrode catalyst, an ion conductive material and a solvent is applied to one surface thereof. At this time, it is preferable not to perform drying. Thereafter, a hydrophilic porous layer slurry containing a conductive material, an ion conductive material, and a solvent is further applied on the application surface. At this time, it is preferable not to perform drying.
  • the ion conductive material and the solvent used for the catalyst ink may be the same as or different from those used for the hydrophilic porous layer ink.
  • a gas diffusion layer base material is separately prepared and subjected to a hydrophilic treatment. Specifically, a solution containing a hydrophilic agent is applied to the surface of the gas diffusion layer substrate. Here, it is preferable not to perform drying or heat treatment. Since the form of the hydrophilic treatment is as described above, the detailed description is omitted.
  • the surface of the gas base material treated with the hydrophilic agent is superposed on the surface coated with the above-described hydrophilic porous layer ink and hot-pressed.
  • the hot press conditions are not particularly limited, but can be, for example, 0.5 to 1.5 MPa and 90 to 170 ° C.
  • hydrophilic porous layer slurry and catalyst ink are sequentially applied onto a gas diffusion layer substrate or a substrate such as a PTFE sheet, for example. Porous layer-catalyst layer is formed. This is transferred to the other surface of the electrolyte membrane.
  • a PTFE sheet is used as the substrate, the PTFE sheet is peeled off after transfer, and the gas diffusion layer substrate is laminated.
  • FIG. 9 is a schematic cross-sectional view showing a single cell of PEFC in which the fuel cell MEA of the second embodiment is sandwiched between a pair of separators.
  • the PEFC 300 shown in FIG. 9 is configured by sandwiching the MEA 340 between the anode side separator 302 and the cathode side separator 301. Further, the fuel gas and the oxidant gas supplied to the MEA are supplied to the anode side separator 302 and the cathode side separator 301 through gas supply grooves 304 and 303 provided at a plurality of locations, respectively. Further, in the PEFC of FIG. 9, the gasket 305 is arranged so as to surround the outer periphery of the electrode located on the surface of the MEA 340.
  • the gasket is a sealing member, and may have a configuration that is fixed to the outer surface of the solid polymer electrolyte membrane 312 of the MEA 340 via an adhesive layer (not shown).
  • the gasket has a function of ensuring the sealing property between the separator and the MEA.
  • the adhesive layer used as necessary preferably corresponds to the shape of the gasket and is arranged in a frame shape on the entire peripheral edge of the electrolyte membrane in consideration of securing adhesiveness.
  • the gasket is disposed so as to surround the catalyst layer or the gas diffusion layer (that is, the gas diffusion electrode), and has a function of preventing leakage of supplied gas (fuel gas or oxidant gas) from the gas diffusion electrode.
  • the material constituting the gasket is not particularly limited as long as it is impermeable to gases, particularly oxygen and hydrogen.
  • the material constituting the gasket include rubber materials such as fluorine rubber, silicon rubber, ethylene propylene rubber (EPDM), and polyisobutylene rubber, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE).
  • polymer materials such as polyvinylidene fluoride (PVdF).
  • PVdF polyvinylidene fluoride
  • the gasket size is not particularly limited, and may be appropriately determined in consideration of the desired gas sealability and the relationship with the size of other members.
  • the MEA is sandwiched between separators to form a single PEFC cell.
  • the PEFC generally has a stack structure in which a plurality of single cells are connected in series.
  • the separator in addition to the function of electrically connecting each MEA in series, the separator includes a flow path and a manifold through which different fluids such as a fuel gas, an oxidant gas, and a refrigerant flow, and further maintains the mechanical strength of the stack. It also has the function.
  • the material constituting the separator is not particularly limited, and conventionally known knowledge can be referred to as appropriate, and examples thereof include carbon materials such as dense carbon graphite and carbon plate, and metal materials such as stainless steel.
  • the size of the separator, the shape of the flow path, and the like are not particularly limited, and may be appropriately determined in consideration of the output characteristics of PEFC.
  • the manufacturing method of PEFC is not particularly limited, and can be manufactured by appropriately referring to conventionally known knowledge in the field of fuel cells.
  • the polymer electrolyte fuel cell has been described as an example, but other fuel cells include alkaline fuel cells, direct methanol fuel cells, micro fuel cells, etc. May be. Among them, a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
  • PEFC polymer electrolyte fuel cell
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • a vehicle in which system start / stop and output fluctuation frequently occur more preferably It can be particularly suitably used in automobile applications.
  • the temperature of the fuel cell is significantly lower than the proper operating temperature when stopped.
  • the temperature of the fuel cell is significantly lower than the proper operating temperature when stopped.
  • the conventional technology although it is possible to individually cope with the sub-zero startability and the high current density operation at room temperature, it is difficult to obtain a fuel cell in which both are compatible.
  • the present invention (third embodiment) is made by paying attention to the above-described problem, and realizes high current density operation at room temperature and improves the below-zero startability, and is hydrophilic for fuel cells.
  • An object is to provide a porous layer.
  • the hydrophilic porous layer of the present invention (third embodiment) can improve the drainage of generated water generated during power generation both at room temperature and below zero. Therefore, a high current density operation at room temperature is realized, and the subzero startability is improved.
  • the inventors of the present application have studied to improve the drainage of produced water, and as a result, the area covered with the ion conductive material of the conductive material contained in the hydrophilic porous layer plays a very important role in drainage. As a result of finding out and fulfilling further studies, the following findings were obtained.
  • liquid water transport may be more advantageous than gas-phase transport due to temperature drop. Accordingly, at the time of starting below zero, in particular, by enhancing the water transportability of the gas phase, the transport of water (liquid water + water vapor) can be enhanced as a whole, and freezing of the produced water can be suppressed.
  • a material capable of reducing the phase change resistance from the liquid phase to the gas phase is required.
  • a conductive material (liquid water evaporation promoting material) having a large covering area of the ion conductive material has a large evaporation area of liquid water, and can reduce phase change resistance from the liquid phase to the gas phase.
  • the conductive material (liquid water transport promoting material) having a small covering area of the ion conductive material has low transport resistance of liquid water, the transport of liquid water can be promoted.
  • the inventors of the present application use a conductive material having a large covering area of the ion conductive material and a conductive material having a small covering area of the ion conductive material in combination, so The present invention has been completed by finding that a high current density operation can be realized.
  • the liquid water evaporation promoting material refers to a conductive material having an ion conductive material covering area of 200 m 2 / g or more per conductive material.
  • the liquid water transport promoting material refers to a conductive material having an ion conductive material covering area of less than 200 m 2 / g per conductive material.
  • the covering area of the ion conductive material is a value that can be calculated by measuring the BET nitrogen specific surface area and the ion conductive material coverage of the conductive material. . It can also be said that the area covered with the ion conductive material can be controlled by the shape of the conductive material.
  • the reason for taking the ratio of 30% relative humidity and 100% relative humidity is as follows. Under a highly humidified condition, the electric double layer formed at the interface between the conductive material and water adsorbed on the surface of the conductive material or at the interface between the conductive material and the ion conductive material is measured. On the other hand, under a low humidification condition, the electric double layer formed at the interface between the conductive material and the ion conductive material is mainly measured.
  • the electric double layer capacity is substantially constant at a relative humidity of about 30% or less. Therefore, in the present invention, the relative humidity of 30% and the relative humidity of 100% are determined as representative points of the low humidification condition and the high humidification condition, respectively, and the ratio of the electric double layer capacity of both is taken, whereby the conductive material is ion-conductive. It was used as an index of how much the material was covered.
  • a membrane electrode assembly in which a hydrophilic porous layer not containing a catalyst component and a catalyst layer are arranged on different surfaces of the electrolyte membrane, respectively, is prepared, and a gas diffusion layer, a carbon separator, and a gold-plated current collector on both sides
  • a cell similar to a normal fuel cell was obtained by sandwiching with a plate.
  • the catalyst layer is used as a reference electrode and a counter electrode with hydrogen gas conditioned in the catalyst layer and nitrogen gas conditioned in the hydrophilic porous layer, and the potential of the hydrophilic porous layer is set to the reference electrode. Scanning was performed 5 to 10 times in the range of 0.2 to 0.6V. The scanning speed was 50 mV / s.
  • the relationship between the obtained current and potential showed a waveform close to a rectangle. This indicates that the oxidation and reduction reaction on the electrode has not occurred, and that charging and discharging of the electric double layer is the main factor of the current.
  • the electric double layer capacity was calculated by dividing the average value of the absolute values of the oxidation current and the reduction current at a certain potential, for example, 0.3 V, by the scanning speed. This measurement was performed under various humidification conditions, and the relationship between electric double layer capacity and relative humidity was obtained.
  • the value measured by the following method shall be adopted as the BET nitrogen specific surface area of the conductive material.
  • FIG. 11A is a diagram showing a relationship between relative humidity and electric double layer capacity when various conductive materials are used, and a table showing S BET , ⁇ ion and S ion of each conductive material. is there.
  • the carbon material A is Ketjen Black EC (manufactured by Ketjen Black International Co., Ltd.)
  • the carbon material B is Ketjen Black EC in an inert atmosphere at 2000 to 3000 ° C.
  • the carbon material C is acetylene black (SAB, manufactured by Denki Kagaku Kogyo)
  • the carbon material D is acetylene black (OSAB, manufactured by Denki Kagaku Kogyo).
  • B of FIG. 11 is a figure which shows the water transport resistance of the carbon material A and the carbon material B at 80 degreeC.
  • the carbon material B having a low S BET and S ion has a low transport resistance of liquid water, and can therefore promote drainage during high current density operation at room temperature.
  • the carbon material A having a high S BET and S ion has a high transport resistance of liquid water and can secure a wide evaporation area of the liquid water. Can be improved.
  • W (evaporation amount) v (evaporation rate) * S (surface area).
  • FIG. 22 is a diagram showing the results of a power generation test at room temperature.
  • a power generation test at room temperature (sample 1) (result of power generation in a normal catalyst layer structure not containing a hydrophilic porous layer) and sample 2 (when a hydrophilic porous layer containing a liquid water transport accelerator is arranged on the anode) were performed. As is apparent from the figure, sample 2 can maintain a higher voltage than sample 1 even at a high current density.
  • the presence of the liquid water transport promoting material in the hydrophilic porous layer realizes a high current density, and the presence of the liquid water evaporation promoting material improves the sub-zero startability. Therefore, by combining the liquid water transport promoting material and the liquid water evaporation promoting material, a high current density operation is realized, and the sub-zero startability is also improved.
  • the thickness of the hydrophilic porous layer is not particularly limited, but is preferably 40 ⁇ m or less, more preferably 2 to 25 ⁇ m. If the thickness of the hydrophilic porous layer is within the above range, it is preferable because it is possible to ensure both drainage and gas diffusibility.
  • the total porosity of the hydrophilic porous layer is not particularly limited, but is preferably 30 to 80%, and more preferably 40 to 70%. If the porosity is within the above range, drainage and gas diffusibility can be secured, which is preferable.
  • the porosity can be obtained as a ratio to the volume of the layer by measuring the volume of pores (micropores) existing inside the layer by measuring the pore distribution by mercury porosimetry.
  • the hydrophilic porous layer includes a conductive material and an ion conductive material.
  • the conductive material may carry a catalyst.
  • the hydrophilic porous layer may contain other materials in addition to the conductive material and the binder.
  • the content of the conductive material and the ion conductive material is preferably 80% by mass or more, and more preferably 90% by mass or more. More preferably, the hydrophilic porous layer is composed of a conductive material and an ion conductive material.
  • the drainage of the generated water can be improved by combining conductive materials having different areas covered by the ion conductive material. Therefore, when the hydrophilic porous layer is applied to a membrane electrode assembly (MEA), it is possible to achieve both startability at zero and high current density operation at room temperature. Specifically, at the time of starting below zero, freezing can be prevented by improving drainage, and a voltage drop due to fuel cell breakage or gas diffusibility due to freezing can be suppressed. In addition, during high current density operation at room temperature, it is possible to suppress a voltage drop due to a decrease in gas diffusivity due to liquid water retention.
  • MEA membrane electrode assembly
  • FIG. 12A is a schematic cross-sectional view of the hydrophilic porous layer of the present embodiment.
  • the liquid water evaporation promoting material layer 404 composed of the liquid water evaporation promoting material 402 and the ion conductive material 401
  • the liquid water transport promoting material layer 5 composed of the liquid water transport promoting material 403 and the ion conductive material 401.
  • the stacking direction is the stacking direction (thickness direction) of the membrane electrode assembly.
  • the member (preferably the gas diffusion layer or the catalyst layer) adjacent to the liquid water evaporation promoting material layer and the liquid water evaporation promoting material layer may be any member.
  • the liquid water evaporation promoting material layer is on the catalyst layer side and the liquid water transport promoting material layer is on the gas diffusion layer side; the liquid water evaporation promoting material layer is on the gas diffusion layer side and the liquid water transport promoting material layer is on the catalyst layer side
  • the existence state of the ion conductive material is schematically shown in the drawing and may be different from the actual existence state. The same applies to the following drawings.
  • the layer containing the liquid water evaporation promoting material (liquid water evaporation promoting material layer) and the layer containing the liquid water transport promoting material (liquid water transport promoting material layer) have a layered structure, and an integrated structure
  • a hydrophilic porous layer for a fuel cell that simultaneously expresses functions having different characteristics is provided. That is, the liquid water evaporation promoting material and the liquid water transportation promoting material can simultaneously function as the liquid water evaporation property and the transport property, respectively.
  • the liquid water evaporation promoting material layer includes at least a liquid water evaporation promoting material and an ion conductive material, and is preferably composed of a liquid water evaporation promoting material and an ion conductive material.
  • the liquid water transport promoting material layer includes at least a liquid water transport promoting material and an ion conductive material, and is preferably composed of a liquid water transport promoting material and an ion conductive material.
  • FIG. 12B is a schematic cross-sectional view of a hydrophilic porous layer, showing a modification of the first embodiment.
  • a liquid water evaporation promoting material layer 404 composed of the liquid water evaporation promoting material 402 and the ion conductive material 401
  • a liquid water transport promoting material layer 405 composed of the liquid water transport promoting material 3 and the ion conductive material 401
  • the stacking direction is the stacking direction (thickness direction) of the membrane electrode assembly.
  • the layered structure takes an alternate structure one by one, but the lamination form of the liquid water evaporation promoting material layer and the liquid water transport promoting material layer is not particularly limited.
  • the liquid water evaporation promoting material layer and the liquid water transport promoting material layer are alternately laminated in order to improve drainage at normal temperature during freezing.
  • the member preferably, the gas diffusion layer or the catalyst layer
  • the member with which the outermost layer is adjacent may be any member.
  • the outermost liquid water evaporation promoting material layer is on the catalyst layer side and the outermost liquid water transport promoting material layer is on the gas diffusion layer side; the outermost liquid water evaporation promoting material layer is on the gas diffusion layer side.
  • Examples include a form in which the liquid water transport promoting material layer of the outer layer is on the catalyst layer side.
  • each liquid water evaporation promoting material layer or liquid water transport promoting material layer is not particularly limited, but is preferably 40 ⁇ m or less, more preferably 2 to 25 ⁇ m. It is good to do. From the viewpoint of work efficiency, the number of laminated layers is preferably 6 or less.
  • FIG. 13 is a schematic cross-sectional view of the hydrophilic porous layer of the present embodiment.
  • the hydrophilic porous layer in FIG. 13 includes a liquid water evaporation promoting material 402, a liquid water transport promoting material 403, and an ion conductive material 401.
  • the liquid water evaporation promoting material 402 and the liquid water transport promoting material 403 are random. Arranged in a state.
  • the arrangement of the liquid water evaporation promoting material and the liquid water transport promoting material constituting the hydrophilic porous layer is made into a random structure, so that the functions having different characteristics can be expressed at the same time.
  • Providing a porous layer As a result, when applied to a fuel cell, it is possible to achieve both startability at zero and high current density operation at room temperature.
  • the liquid water evaporation function and the liquid water transport function can be easily controlled by the blending ratio.
  • the content mass ratio of the conductive material (the total of the liquid water evaporation promoting material and the liquid water transport promoting material) and the ion conductive material is not particularly limited, and is desired. Is set as appropriate.
  • conductive material: ionic conductive material 1: 0.6 to 1.5, and more preferably 1: 0.7 to 1.3. If it is this range, gas diffusibility can be ensured and the function of an ion conductive material can be exhibited.
  • the mass ratio of the conductive material to the ion conductive material is determined by measuring the ion conductive material and the conductive material mixed in advance when preparing the hydrophilic porous layer ink (slurry).
  • the hydrophilic porous layer is analyzed, the conductive material and the ion conductive material are quantified, and the mass ratio of the conductive material and the ion conductive material can be calculated.
  • the hydrophilic porous layer is a layer containing a conductive material and an ion conductive material, and the conductive material is in any form as long as the conductive material is a liquid water evaporation promoting material and a liquid water transport promoting material.
  • the conductive material is a liquid water evaporation promoting material and a liquid water transport promoting material.
  • the hydrophilic porous layer referred to in the present invention.
  • the catalyst layer can be used for MEA as a hydrophilic porous layer.
  • a liquid water evaporation promoting material and a liquid water transport promoting material are used in combination.
  • Examples of conductive materials include carbon materials such as natural graphite, artificial graphite, activated carbon, and carbon black (oil furnace black, channel black, lamp black, thermal black, acetylene black, etc.); metal (Sn, Ti, etc.) oxide, etc. Can be mentioned. These conductive materials are classified as liquid water evaporation promoting materials or liquid water transport promoting materials, depending on the covering area of the ion conductive material.
  • the conductive material is preferably a carbon material or a metal (Sn, Ti, etc.) oxide, and more preferably a carbon material.
  • the liquid water evaporation promoting material is preferably a conductive material having a covering area of the ion conductive material per unit conductive material of 200 m 2 / g or more. More preferably, the conductive material has an ion conductive material covering area of 200 to 1600 m 2 / g.
  • the conductive material has a covering area in the above range, the phase change resistance from the liquid phase to the gas phase of the generated water generated on the cathode side can be reduced. In other words, the transportation of liquid water is accelerated, the transportation with water vapor is promoted, and the retention and freezing of the produced water are suppressed.
  • the liquid water evaporation promoting material is not particularly limited, but carbon black, acetylene black having a BET nitrogen specific surface area of 20 to 400 m 2 / g, ketjen black, black pearls, Cabot's Vulcan, activated carbon, etc. Can be mentioned.
  • the BET nitrogen specific surface area of the liquid water evaporation promoting material is preferably 20 to 1600 m 2 / g, and more preferably 80 to 1200 m 2 / g.
  • liquid water evaporation promoting material may be used alone, or two or more types may be used in combination.
  • the liquid water transport promoting material is a conductive material having an ion conductive material covering area per unit conductive material of less than 200 m 2 / g. More preferably, the conductive material has an ion conductive material covering area of 10 to 199 m 2 / g.
  • the phase change resistance from the liquid phase to the gas phase of the generated water generated on the cathode side can be reduced.
  • the liquid water transport promoting material is not particularly limited, ketjen black BET nitrogen specific surface area was heat treated for 20 ⁇ 199m 2 / g, BET nitrogen specific surface area of 500 ⁇ 1600m 2 / g, acetylene black, Examples thereof include metal (Sn, Ti, etc.) oxides.
  • Ketjen black having a BET nitrogen specific surface area of 20 to 199 m 2 / g can be obtained by heat-treating Ketjen black. What is necessary is just to set heat processing conditions suitably so that it may be contained in the said BET nitrogen specific surface area.
  • the ketjen black is obtained by heat treatment at a temperature of 2000 to 3000 ° C. for a time of 2 to 120 minutes.
  • the BET nitrogen specific surface area of the liquid water transport promoting material is preferably 20 to 1600 m 2 / g, more preferably 80 to 1200 m 2 / g.
  • Liquid water transport promoting materials may be used alone or in combination of two or more.
  • the average particle diameter of the conductive material is preferably 5 to 200 nm, more preferably 10 to 100 nm. Thereby, the gas diffusibility of a hydrophilic porous layer is securable.
  • particle diameter means the maximum distance L among the distances between any two points on the contour line of the active material particles.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the ion conductive material is not particularly limited as long as the material is ion conductive and can bind the conductive material. Examples thereof include polymers such as polyacrylamide, aqueous urethane resin, and silicon resin; polymer electrolytes and the like. A polymer electrolyte is preferred. By using a polymer electrolyte as an ion conductive material, a hydrophilic porous layer can be stably disposed adjacent to a MEA component (electrolyte membrane or catalyst layer) containing the same ion conductive material. It is possible to reduce the water transport resistance between the catalyst layer or membrane and the conductive material.
  • MEA component electrolyte membrane or catalyst layer
  • the water transport property between the electrolyte membrane or the catalyst layer and the conductive material is improved, and the equilibrium can be reached in an earlier time.
  • the electrolyte may be the same as or different from the polymer electrolyte used in the catalyst layer or the electrolyte membrane.
  • the material can be shared, and labor saving can be achieved at the time of manufacturing.
  • the ion conductive material used is not particularly limited. Specifically, the ion conductive material is roughly classified into a fluorine-based electrolyte containing fluorine atoms in the whole or part of the polymer skeleton and a hydrocarbon electrolyte not containing fluorine atoms in the polymer skeleton.
  • fluorine-based electrolytes include perfluorocarbon sulfonates such as Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), etc.
  • Polymer polytrifluorostyrene sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene
  • a preferred example is a fluoride-perfluorocarbon sulfonic acid-based polymer.
  • the fluorine-based electrolyte is excellent in durability and mechanical strength.
  • hydrocarbon electrolyte examples include polysulfone sulfonic acid, polyaryl ether ketone sulfonic acid, polybenzimidazole alkyl sulfonic acid, polybenzimidazole alkyl phosphonic acid, polystyrene sulfonic acid, polyether ether ketone sulfonic acid, polyphenyl.
  • a suitable example is sulfonic acid.
  • the above ion conductive materials may be used alone or in combination of two or more.
  • the EW of the ion conductive material is preferably low.
  • the EW of the polymer electrolyte is 1200 g / eq. Or less, more preferably 1000 g / eq. Hereinafter, more preferably, 700 g / eq. It is as follows. Within such a range, it is possible to provide a hydrophilic porous layer that promotes the diffusion of liquid water and achieves both a zero starting property and a high current density operation at room temperature.
  • the lower limit of EW is not particularly limited, but is usually 500 g / eq. The above is preferable.
  • EW (Equivalent Weight) represents an ion exchange group equivalent weight.
  • the method for producing the hydrophilic porous layer is not particularly limited.
  • an ink for a hydrophilic porous layer is prepared by mixing a conductive material, an ion conductive material, and a solvent. The method of drying after apply
  • a conductive material carrying a catalyst component known methods such as impregnation method, liquid phase reduction carrying method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method), etc. By using this method, it is preferable to previously support the catalyst component on the conductive material.
  • the ink containing the liquid water evaporation promoting material and the ink containing the liquid water transportation promoting material are manufactured separately. This is because inks containing different conductive materials are individually formed so as to have a layered structure.
  • an ink containing a liquid water evaporation promoting material and a liquid water transport promoting material is manufactured.
  • a mixture ink of two kinds of conductive materials, liquid water evaporation promoting material and liquid water transport promoting material it is possible to improve the adhesion between different conductive materials and reduce the water transport resistance at the interface. it can.
  • a continuous water (liquid water) transportation route it is possible to achieve both zero-startability and high current density operation.
  • the solvent used in the ink for the hydrophilic porous layer is not particularly limited, but water; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 2-pentanol Alcohols such as 3-pentanol; polyhydric alcohols such as ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, or glycerin; or a boiling point of 150 ° C.
  • An organic solvent exceeding These may be used alone or in combination of two or more.
  • the selection of the organic solvent is important for controlling the porosity of the hydrophilic porous layer.
  • FIG. 14 shows the difference in the pore size distribution of the hydrophilic porous layer depending on the solvent species in the ink.
  • Pore Size Diameter indicates the pore diameter
  • Cumulative Intrusion mL / g
  • Log Differential Intrusion indicates the differential pore volume.
  • Examples of the organic solvent having a boiling point exceeding 150 ° C. include ethylene glycol (boiling point: 197.6 ° C.), propylene glycol (boiling point: 188.2 ° C.), 1,2-butanediol (boiling point: 190.5 ° C.), 1, 3-butanediol (boiling point: 207.5 ° C), 1,4-butanediol (boiling point: 229.2 ° C), glycerin (boiling point 290 ° C), NMP (N-methylpyrrolidone) (boiling point: 202 ° C), DMSO ( and dimethylsulfoxide (boiling point: 189 ° C.). These may be used alone or in combination of two or more.
  • the high boiling point organic solvent is preferably mixed uniformly with water.
  • the solvent in the hydrophilic porous layer ink may be composed only of a high-boiling organic solvent.
  • high-boiling organic solvents and other solvents for example, water, organic solvents having a boiling point of less than 150 ° C.
  • the ratio of the high-boiling organic solvent in the solvent is preferably 10% by mass or more, From the viewpoint of water retention, the higher the ratio of the high-boiling organic solvent, the more preferable, so the upper limit of the ratio of the high-boiling organic solvent in the solvent is not particularly limited.
  • the electrolyte In consideration of the dispersibility of the electrolyte, it is preferably 70% by mass or less, and when a mixture of a high-boiling organic solvent and another solvent is used, the average pore diameter and porosity are also large. It is considered to be able Kusuru.
  • the porosity can be controlled by intentionally changing the mixing ratio (I / C) of the ion conductive material (I) and the conductive material (C) during ink preparation.
  • Table 6 shows changes in porosity when the I / C ratio is changed. It can be seen that the porosity decreases as the I / C ratio is increased.
  • the porosity can be easily controlled by appropriately setting the I / C.
  • the solvent in the ink in this specification includes all of the liquid medium other than the dispersion medium in which the solid components such as the binder and the conductive material are dispersed, that is, the solid components. Therefore, for example, when producing an ink for a hydrophilic porous layer by mixing an ion conductive material dispersed in water and an organic solvent, the solvent in this specification refers to both water and the organic solvent. .
  • the solid content ratio of the ink for the hydrophilic porous layer is not particularly limited, but is usually about 5 to 20% by mass. By setting it as such a range, it is excellent in the formation efficiency of a porous layer, and the stability of an ink.
  • the method for preparing the ink for the hydrophilic porous layer is not particularly limited. Further, the order of mixing the ion conductive material, the conductive material, and the solvent is not particularly limited, and specific examples thereof include the following (i-1) to (i-3).
  • the methods (i-1) and (i-2) are preferable, and the method (i-1) is more preferable. Thereby, water and an organic solvent are mixed uniformly and a solvent compound is easy to form.
  • the ion conductive material in the solution containing the ion conductive material, is dispersed in the solvent.
  • the content of the ion conductive material in the solution containing the ion conductive material at this time is not particularly limited, but the solid content is preferably 1 to 40% by mass, more preferably 5 to 20% by mass. With such a content, the polymer electrolyte can be appropriately dispersed in the solvent.
  • the solution containing the ion conductive material may be prepared by itself or a commercially available product may be used.
  • the dispersion solvent of the ion conductive material in the solution containing the ion conductive material is not particularly limited, and examples thereof include water, methanol, ethanol, 1-propanol, and 2-propanol. In consideration of dispersibility, water, ethanol and 1-propanol are preferable. These dispersion solvents may be used alone or in combination of two or more.
  • a separate mixing step may be provided in order to mix well.
  • the catalyst ink is well dispersed with an ultrasonic homogenizer, or the mixed slurry is well pulverized with an apparatus such as a sand grinder, a circulating ball mill, or a circulating bead mill, and then a vacuum defoaming operation is performed.
  • an apparatus such as a sand grinder, a circulating ball mill, or a circulating bead mill, and then a vacuum defoaming operation is performed.
  • the addition etc. are mentioned preferably.
  • the substrate coated with the ink for hydrophilic porous layer is dried.
  • the method for applying the hydrophilic porous layer ink to the substrate surface is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, a doctor blade method, or a transfer method. Moreover, the apparatus used for application
  • coating apparatuses such as a screen printer, a spray device, a bar coater, a die coater, a reverse coater, a comma coater, a gravure coater, a spray coater, and a doctor knife can be used.
  • the application process may be performed once or repeated a plurality of times.
  • the ink containing the liquid water evaporation promoting material and the ink containing the liquid water transport promoting material may be applied sequentially. At this time, if heat treatment is performed, adhesion at the interface can be improved and water transport resistance can be reduced. As a result, by ensuring a continuous water (liquid water) transportation route, it is possible to achieve both zero-startability and high current density operation.
  • the conditions for the heat treatment are not particularly limited, but it is preferable to perform the heat treatment at 20 to 170 ° C. for about 1 to 40 minutes.
  • the heat treatment step may be performed at any stage of the MEA production process. After the hydrophilic porous layer ink is applied on the substrate, the hydrophilic porous layer ink is immediately heat treated. Not limited.
  • the substrate coated with the hydrophilic porous layer ink is dried to remove the solvent.
  • the drying time when drying the substrate coated with the hydrophilic porous layer ink is not particularly limited, but is preferably 5 to 30 minutes.
  • the atmosphere during drying is not particularly limited, but it is preferable to perform drying in an air atmosphere or an inert gas atmosphere.
  • the step of drying the ink for the hydrophilic porous layer may be carried out at any stage of the MEA preparation process. Immediately after the ink for the hydrophilic porous layer is applied on the substrate, the hydrophilic porous layer is dried. It is not limited to the form of drying the ink for the quality layer.
  • the substrate on which the ink for the hydrophilic porous layer is applied may be appropriately selected depending on the form of the finally obtained hydrophilic porous layer.
  • the electrode catalyst layer, the gas diffusion layer, or the polytetrafluoroethylene sheet (PTFE) A polymer sheet such as can be used.
  • the hydrophilic porous layer of the present invention has an excellent drainage performance both at start-up below zero and at normal temperature operation. Therefore, when applied to the MEA, it is possible to realize a sub-zero startability and a high current density operation at room temperature.
  • preferred embodiments of the MEA including the hydrophilic porous layer of the present invention will be described.
  • Each drawing is exaggerated for convenience of explanation, and the dimensional ratio of each component in each drawing may be different from the actual one.
  • symbol is attached
  • FIG. 15 is a schematic cross-sectional view showing a preferred MEA embodiment (third embodiment) including the hydrophilic porous layer of the above embodiment.
  • the anode side electrode catalyst layer 413 and the cathode side electrode catalyst layer 415 are arranged opposite to each other on both sides of the solid polymer electrolyte membrane 412, and these are arranged as an anode side gas diffusion layer 414 and a cathode side gas diffusion layer. It has the structure clamped by 416.
  • a hydrophilic porous layer 417 is disposed between the anode side electrode catalyst layer 413 and the anode side gas diffusion layer 414 and between the cathode side electrode catalyst layer 415 and the cathode side gas diffusion layer 416.
  • MEA which has the hydrophilic porous layer 417, it is related with the drainage property from a catalyst layer, and can accelerate
  • the hydrophilic porous layer 417 is disposed between the anode side electrode catalyst layer 413 and the anode side gas diffusion layer 414 and between the cathode side electrode catalyst layer 415 and the cathode side gas diffusion layer 416. It is a form. However, the present invention is not limited to the above arrangement form, and the hydrophilic porous layer 417 may be arranged only on either the cathode side or the anode side. Moreover, you may arrange
  • the direction of water movement when absorbing the produced water is the anode side electrode catalyst layer from the cathode side electrode catalyst layer through the electrolyte membrane.
  • a hydrophilic porous layer adjacent to the catalyst layer, particularly the anode catalyst layer, preferably between the catalyst layer and the gas diffusion layer.
  • At least the membrane and the catalyst layer have a water retention function inside the MEA. Since the catalyst layer (anode / cathode) is placed so as to sandwich the membrane, a hydrophilic porous layer is provided adjacent to the catalyst layer, so that liquid water existing inside the MEA (membrane, catalyst layer) can be removed. It is possible to smoothly move and hold in the hydrophilic porous layer.
  • the structure can be easily maintained by providing it adjacent to the gas diffusion layer.
  • the gas diffusion layer may or may not have a micropore layer (MPL) described later. Since MPL has high water transport resistance, it is preferable that the gas diffusion layer is composed of a gas diffusion layer base material (without MPL) from the viewpoint of water transport. This is because MPL has high water transport resistance, while the gas diffusion layer base material is formed from macropores and thus has low transport resistance.
  • MPL micropore layer
  • FIG. 16 is a schematic cross-sectional view showing another embodiment (fourth embodiment) of a suitable MEA including the hydrophilic porous layer of the present invention (third embodiment).
  • the anode-side electrode catalyst layer 413 and the cathode-side electrode catalyst layer 415 are disposed on both sides of the solid polymer electrolyte membrane 412 so as to face each other, and the anode-side gas diffusion layer 414 and the cathode-side gas diffusion are arranged.
  • the structure is sandwiched between the layers 416.
  • a hydrophilic porous layer 417 is disposed between the anode side electrode catalyst layer 413 and the anode side gas diffusion layer 414.
  • the hydrophilic porous layer 417 By providing the hydrophilic porous layer 417 only at the anode electrode, the function of transporting the generated water of the cathode to the anode side through the membrane is promoted, and freezing of the liquid water inside the gas diffusion layer on the cathode side is promoted. In addition, inhibition of oxygen transport due to flooding or the like is also suppressed. Therefore, when the MEA according to the present embodiment is applied to a fuel cell, it is possible to achieve both a zero startability and a high current density operation at room temperature.
  • the portion of the hydrophilic porous layer facing the cathode gas outlet (hereinafter also referred to as the downstream portion) has a sparser structure than the portion of the hydrophilic porous layer facing the cathode gas inlet (hereinafter also referred to as the upstream portion).
  • MEA is also a preferred embodiment (fifth embodiment).
  • the hydrophilic porous layer portion other than the upstream portion or the downstream portion is hereinafter also referred to as a midstream portion.
  • FIG. 17 is a schematic cross-sectional view of the fifth embodiment. In FIG. 17, the gas diffusion layer is not shown for simplification. 17A shows a case where the hydrophilic porous layer is installed on the anode electrode, and FIG.
  • the hydrophilic porous layer is installed on the cathode electrode.
  • “sparse structure” means that the porosity of the downstream portion is higher than the porosity of the upstream portion. Specifically, assuming that the porosity of the upstream portion is 1, the porosity of the downstream portion is preferably 0.37 to 0.9, and more preferably 0.57 to 0.9.
  • the hydrophilic porous layer having a sparse structure in the downstream portion as in this embodiment can be easily obtained by applying a mixture of ink having a high boiling point organic solvent having a boiling point exceeding 150 ° C. as described above. Can be manufactured. It can also be manufactured by controlling the I / C.
  • the portion of the hydrophilic porous layer that faces the cathode gas outlet is at least 0 to 1/5 L when the end in the cathode gas outlet direction is 0 with respect to the total length L of the hydrophilic porous layer in the gas flow direction. Part, preferably 0 to 1 / 3L.
  • the portion of the hydrophilic porous layer facing the cathode gas inlet is 0 to 1/5 L, where 0 is the end in the cathode gas inlet direction with respect to the total length L of the hydrophilic porous layer in the gas flow direction. Refers to the part.
  • the hydrophilic porous in the vicinity of the central portion other than the upstream portion and the downstream portion is defined as a midstream portion.
  • the configuration of the midstream portion is not particularly limited, but is the same configuration as the upstream portion (A and B in FIG. 17); the structure is sparser than the upstream portion and denser than the downstream portion (D in FIG. 17). Is preferred.
  • FIG. 17D by arranging a dense hydrophilic porous layer at the cathode gas inlet, liquid water transport from the cathode to the anode is promoted, and the membrane electrode assembly as a whole has a water transport resistance. Can be reduced. Therefore, when the MEA according to the present embodiment is applied to a fuel cell, it is possible to achieve both a zero startability and a high current density operation at room temperature. Further, since the water transport resistance to the portion that tends to be in a dry state at the anode electrode is reduced, it is possible to provide a fuel cell membrane electrode assembly imparted with dryout resistance.
  • the downstream portion exists in a state where the liquid water evaporation promoting material and the liquid water transportation promoting material are mixed.
  • the liquid water evaporation promoting material is present.
  • a layer containing a liquid water transport promoting material may be laminated (C in FIG. 17).
  • the hydrophilic porous layer of the present invention (third embodiment) can be variously modified to achieve desired performance.
  • the part of the MEA in which the portion facing the cathode gas outlet of the hydrophilic porous layer contains more liquid water evaporation promoting material than liquid water transport promoting material.
  • a form (6th Embodiment) is suitable.
  • FIG. 18 is a schematic diagram for explaining the mode (1).
  • the gas diffusion layer is not shown.
  • the hydrophilic porous layer is disposed only on the anode electrode, but may be disposed only on the cathode electrode or on both the anode electrode and the cathode electrode.
  • the contents of the liquid water evaporation promoting material and the liquid water transport promoting material in the upper middle stream portion are almost the same, but the present invention is not limited to such a form, and the liquid water in the upper middle stream portion What is necessary is just to design suitably the composition ratio of an evaporation promotion material and a liquid water transport promotion material.
  • a hydrophilic porous layer containing a large amount of a conductive material having a large coating surface area of the conductive material is adjacent to at least one of the anode catalyst layer and the cathode catalyst layer facing the cathode gas outlet (constitutes a counter flow).
  • the liquid water evaporation function can be further promoted.
  • the water transport property from the cathode electrode to the anode electrode is improved, and the water transport resistance in the entire MEA can be reduced. Therefore, when the MEA of the present embodiment is applied to a fuel cell, it is possible to achieve both sub-zero startability and high current density operation at room temperature, which is particularly excellent in sub-zero startability.
  • the liquid water evaporation promoting material in the portion facing the cathode gas outlet, is preferably 1.1 to 10 when the content mass of the liquid water transport promoting material is 1, and preferably 5 to 10 is preferable. If it is such a range, subzero starting property can be improved effectively.
  • a portion facing the cathode gas outlet of the hydrophilic porous layer is the liquid water transport promoting material.
  • the MEA form (seventh embodiment) containing more than this is suitable.
  • FIG. 19 is a schematic diagram for explaining the mode (2).
  • the gas diffusion layer is not shown.
  • the hydrophilic porous layer is disposed only on the anode electrode, but may be disposed only on the cathode electrode or on both the anode electrode and the cathode electrode.
  • the contents of the liquid water evaporation promoting material and the liquid water transport promoting material in the upper middle stream portion are almost the same, but the present invention is not limited to such a form, and the liquid water in the upper middle stream portion What is necessary is just to design suitably the composition ratio of an evaporation promotion material and a liquid water transport promotion material.
  • a hydrophilic porous layer containing a large amount of a conductive material having a small covering area of the ion conductive material is adjacent to at least one of the anode catalyst layer and the cathode catalyst layer facing the cathode gas outlet (a counter flow configuration is adopted).
  • the liquid water transport function can be further promoted. As a result, the water transport property from the cathode electrode to the anode electrode is improved, and the water transport resistance in the entire MEA can be reduced. Therefore, when the MEA of the present embodiment is applied to a fuel cell, it is possible to achieve both zero startability and high current density operation at normal temperature, and high current density operation is particularly easily achieved.
  • the liquid water transport promoting material in the portion facing the cathode gas outlet, is preferably 1.1 to 10 when the content mass of the liquid water evaporation promoting material is 1, and preferably 5 to 10 is preferable. In such a range, operation at a higher current density is possible at room temperature.
  • the MEA of the present invention (third embodiment) is characterized by a hydrophilic porous layer. Therefore, as for other members constituting the MEA, a conventionally known configuration in the field of the fuel cell can be employed as it is or after being appropriately improved.
  • a conventionally known configuration in the field of the fuel cell can be employed as it is or after being appropriately improved.
  • typical forms of members other than the hydrophilic porous layer will be described for reference, but the technical scope of the present invention is not limited to the following forms.
  • the polymer electrolyte membrane is made of an ion exchange resin and has a function of selectively permeating protons generated in the anode side catalyst layer during the PEFC operation to the cathode side catalyst layer along the film thickness direction.
  • the polymer electrolyte membrane also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the specific configuration of the polymer electrolyte membrane is not particularly limited, and conventionally known polymer electrolyte membranes can be appropriately employed in the field of fuel cells.
  • Polymer electrolyte membranes are roughly classified into fluorine-based polymer electrolyte membranes and hydrocarbon-based polymer electrolyte membranes depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte membrane include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride- Examples include perfluorocarbon sulfonic acid polymers. From the viewpoint of power generation performance such as heat resistance and chemical stability, these fluorine-based polymer electrolyte membranes are preferably used, and particularly preferably fluorine-based polymer electrolyte membranes composed of perfluorocarbon sulfonic acid polymers are used. It is done.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, and sulfonated.
  • S-PES polyetheretherketone
  • S-PPP polyphenylene
  • These hydrocarbon polymer electrolyte membranes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the material selectivity is high.
  • the ion exchange resin mentioned above only 1 type may be used independently and 2 or more types may be used together. Moreover, it is needless to say that other materials may be used without being limited to the above-described materials.
  • the thickness of the polymer electrolyte membrane may be appropriately determined in consideration of the properties of the obtained MEA and PEFC, and is not particularly limited. However, the thickness of the polymer electrolyte membrane is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and still more preferably 15 to 150 ⁇ m. When the thickness is within such a range, the balance between strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the catalyst layer is a layer where the reaction actually proceeds. Specifically, a hydrogen oxidation reaction proceeds in the anode side catalyst layer, and an oxygen reduction reaction proceeds in the cathode side catalyst layer.
  • the catalyst layer includes a catalyst component, a conductive carrier that supports the catalyst component, and a proton-conductive polymer electrolyte.
  • the catalyst component used in the anode side catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
  • the catalyst component used in the cathode side catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner. Specifically, it is selected from platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, etc., and alloys thereof. Is done.
  • the composition of the alloy depends on the type of metal to be alloyed, but is preferably 30 to 90 atomic% for platinum and 10 to 70 atomic% for the metal to be alloyed.
  • the composition of the alloy when the alloy is used as the cathode-side catalyst varies depending on the type of metal to be alloyed, and can be appropriately selected by those skilled in the art. Platinum is 30 to 90 atomic%, and other metals to be alloyed are 10 to 10%. It is preferable to set it as 70 atomic%.
  • an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be used in the present application.
  • the catalyst component used for the anode catalyst layer and the catalyst component used for the cathode catalyst layer can be appropriately selected from the above.
  • the descriptions of the catalyst components for the anode catalyst layer and the cathode catalyst layer have the same definition for both, and are collectively referred to as “catalyst components”.
  • the catalyst components of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and are appropriately selected so as to exhibit the desired action as described above.
  • the shape and size of the catalyst component are not particularly limited, and the same shape and size as known catalyst components can be used, but the catalyst component is preferably granular.
  • the average particle diameter of the catalyst particles is preferably 1 to 30 nm, more preferably 1.5 to 20 nm, still more preferably 2 to 10 nm, and particularly preferably 2 to 5 nm.
  • the average particle diameter of the catalyst particles is within such a range, the balance between the catalyst utilization rate related to the effective electrode area where the electrochemical reaction proceeds and the ease of loading can be appropriately controlled.
  • the “average particle diameter of catalyst particles” in the present invention is the average of the crystallite diameter determined from the half-value width of the diffraction peak of the catalyst component in X-ray diffraction or the average particle diameter of the catalyst component determined from a transmission electron microscope image. It can be measured as a value.
  • the conductive carrier functions as a carrier for supporting the above-described catalyst component and an electron conduction path involved in the exchange of electrons with the catalyst component.
  • the conductive carrier may be any carbon-based material having a specific surface area for supporting the catalyst component in a desired dispersed state and sufficient electron conductivity.
  • the main component is carbon. Preferably there is. Specific examples include carbon particles composed of carbon black, graphitized carbon black, activated carbon, coke, natural graphite, artificial graphite, carbon nanotube, carbon nanohorn, carbon fibril structure, and the like. “The main component is carbon” means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. In some cases, elements other than carbon atoms may be included in order to improve the characteristics of the fuel cell. Incidentally, “substantially consisting of carbon atoms” means that contamination of about 2 to 3% by mass or less of impurities can be allowed.
  • a graphitized conductive material such as carbon black graphitized on the catalyst layer, particularly the anode-side catalyst layer, more preferably a graphitized carbon material as a conductive carrier, improves the corrosion resistance of the conductive material. Is preferable.
  • the graphitized conductive material has a small covering area of the ion conductive material and a small evaporation area of liquid water, there is a concern about freezing below zero or flooding at room temperature.
  • a hydrophilic porous layer adjacent to the catalyst layer using a graphitized conductive material drainage can be improved, and both zero-startability and high current density operation at room temperature can be achieved.
  • the present invention also provides a membrane electrode assembly for a fuel cell to which corrosion resistance of a conductive material is further provided.
  • the graphitized carbon black is preferably spherical, and has an average lattice spacing d 002 of [002] plane calculated from X-ray diffraction of 0.343 to 0.358 nm and a BET specific surface area of 100 to 300 m 2 / g is desirable.
  • the BET specific surface area of the conductive carrier may be a specific surface area sufficient to carry the catalyst component in a highly dispersed state, but is preferably 20 to 1600 m 2 / g, more preferably 80 to 1200 m 2 / g.
  • the specific surface area of the conductive support is in such a range, the balance between the dispersibility of the catalyst component on the conductive support and the effective utilization rate of the catalyst component can be appropriately controlled.
  • the size of the conductive carrier is not particularly limited, but from the viewpoint of easy loading, catalyst utilization, and control of the electrode catalyst layer thickness within an appropriate range, the average particle size is 5 to 200 nm, preferably 10 It is preferable to set it to about 100 nm.
  • the supported amount of the catalyst component is preferably 10 to 80% by mass, more preferably based on the total amount of the electrode catalyst. Is 30 to 70% by mass.
  • the supported amount of the catalyst component can be measured by inductively coupled plasma emission spectroscopy (ICP).
  • the catalyst component can be supported on the carrier by a known method.
  • known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
  • a commercially available electrode catalyst may be used.
  • electrode catalysts such as those manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., N.E. Chemcat, E-TEK, and Johnson Matthey can be used. These electrode catalysts are obtained by supporting platinum or a platinum alloy on a carbon carrier (supporting concentration of catalyst species, 20 to 70% by mass).
  • a carbon carrier supporting concentration of catalyst species, 20 to 70% by mass.
  • the carbon carrier ketjen black, vulcan, acetylene black, black pearl, graphitized carbon carrier (for example, graphitized ketjen black) previously heat treated at high temperature, carbon nanotube, carbon nanohorn, carbon fiber, There is mesoporous carbon.
  • the catalyst layer contains an ion conductive polymer electrolyte in addition to the electrode catalyst.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be referred to as appropriate.
  • the above-described ion exchange resin constituting the polymer electrolyte membrane can be added to the catalyst layer as the polymer electrolyte.
  • the catalyst layer is a hydrophilic porous layer, the above polymer electrolyte is used as the ion conductive material.
  • the gas diffusion layer has a function of promoting the diffusion of the gas (fuel gas or oxidant gas) supplied through the separator channel to the catalyst layer and a function as an electron conduction path.
  • the material constituting the base material of the gas diffusion layer is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
  • the gas diffusion layer has a carbon particle layer (microporous layer: MPL) made of an aggregate of carbon particles containing a water repellent on the catalyst layer side of the substrate. May be.
  • MPL carbon particle layer
  • the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • the average particle diameter of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
  • Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
  • fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
  • the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) in terms of mass ratio in consideration of the balance between water repellency and electron conductivity. It is good.
  • the manufacturing method of MEA of the said embodiment is not specifically limited, It can manufacture with a conventionally well-known manufacturing method.
  • step 1 the step of integrating the catalyst layer and the hydrophilic porous layer
  • step 2 the step of integrating the gas diffusion layer on the side opposite to the catalyst layer of the hydrophilic porous layer
  • step 1 the step of integrating the gas diffusion layer on the side opposite to the catalyst layer of the hydrophilic porous layer
  • step 2 the step of integrating the gas diffusion layer on the side opposite to the catalyst layer of the hydrophilic porous layer
  • Step 1 A specific embodiment of Step 1 is shown in FIG. In the embodiment of FIG. 20A, an electrode catalyst layer is formed on the electrolyte membrane before step 1. And the ink for hydrophilic porous layers is apply
  • step 1 is shown in FIG.
  • the hydrophilic porous layer slurry is applied on a substrate such as a PTFE sheet.
  • a catalyst layer is formed on the hydrophilic porous layer slurry.
  • the hydrophilic porous layer-catalyst layer thus obtained is formed on the electrolyte membrane by transfer or the like.
  • a PTFE sheet is used as the substrate, after hot pressing, only the PTFE sheet is peeled off, and then a gas diffusion layer is laminated.
  • the step of drying the hydrophilic porous layer ink described in the method for producing the hydrophilic porous layer may be performed at any stage of the MEA production process. It is not restricted to the form which dries the ink for hydrophilic porous layers immediately after apply
  • a hydrophilic porous layer ink having an appropriate composition is produced.
  • the MEA can be manufactured by applying to a desired place.
  • FIG. 21 is a schematic cross-sectional view showing a single cell of PEFC in which a fuel cell MEA is sandwiched between a pair of separators.
  • the PEFC 500 shown in FIG. 21 is configured by sandwiching the MEA 510 ′ between the anode side separator 502 and the cathode side separator 501. Further, the fuel gas and the oxidant gas supplied to the MEA are supplied to the anode side separator 502 and the cathode side separator 501 through gas supply grooves 504 and 503 provided at a plurality of locations, respectively. Further, in the PEFC of FIG. 21, a gasket 505 is arranged so as to surround the outer periphery of the electrode located on the surface of the MEA 510 '.
  • the gasket is a sealing member and may be configured to be fixed to the outer surface of the solid polymer electrolyte membrane 512 of the MEA 510 ′ via an adhesive layer (not shown).
  • the gasket has a function of ensuring the sealing property between the separator and the MEA.
  • the adhesive layer used as necessary preferably corresponds to the shape of the gasket and is arranged in a frame shape on the entire peripheral edge of the electrolyte membrane in consideration of securing adhesiveness.
  • the gasket is disposed so as to surround the catalyst layer or the gas diffusion layer (that is, the gas diffusion electrode), and has a function of preventing leakage of supplied gas (fuel gas or oxidant gas) from the gas diffusion electrode.
  • the material constituting the gasket is not particularly limited as long as it is impermeable to gases, particularly oxygen and hydrogen.
  • the material constituting the gasket include rubber materials such as fluorine rubber, silicon rubber, ethylene propylene rubber (EPDM), and polyisobutylene rubber, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE).
  • polymer materials such as polyvinylidene fluoride (PVdF).
  • PVdF polyvinylidene fluoride
  • the gasket size is not particularly limited, and may be appropriately determined in consideration of the desired gas sealability and the relationship with the size of other members.
  • the MEA is sandwiched between separators to form a single PEFC cell.
  • the PEFC generally has a stack structure in which a plurality of single cells are connected in series.
  • the separator in addition to the function of electrically connecting each MEA in series, the separator includes a flow path and a manifold through which different fluids such as a fuel gas, an oxidant gas, and a refrigerant flow, and further maintains the mechanical strength of the stack. It also has the function.
  • the material constituting the separator is not particularly limited, and conventionally known knowledge can be appropriately referred to, and examples thereof include carbon materials such as dense carbon graphite and a carbon plate, and metal materials such as stainless steel.
  • the size of the separator, the shape of the flow path, and the like are not particularly limited, and may be appropriately determined in consideration of the output characteristics of the PEFC.
  • the manufacturing method of PEFC is not particularly limited, and can be manufactured by appropriately referring to conventionally known knowledge in the field of fuel cells.
  • the polymer electrolyte fuel cell has been described as an example, but other fuel cells include alkaline fuel cells, direct methanol fuel cells, micro fuel cells, etc. May be. Among them, a polymer electrolyte fuel cell (PEFC) is preferable because it is small in size and can achieve high density and high output.
  • PEFC polymer electrolyte fuel cell
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • a vehicle in which system start / stop and output fluctuation frequently occur more preferably It can be particularly suitably used in automobile applications.
  • Example 1 As the conductive material, Ketjen Black EC (manufactured by Ketjen Black International Co., Ltd.) subjected to heat treatment was used. The heat treatment was performed at 3000 ° C. for 2 hours. The ketjen black EC subjected to heat treatment had S BET of 151 m 2 / g, ⁇ ion of 1.00, and S ion of 151 m 2 / g.
  • This conductive material and an ion conductive material dispersion have a mass ratio (I / C ratio) of 0.9 to 0.9 between the conductive material and the ion conductive material.
  • an ink was prepared by adding an aqueous propylene glycol solution (50% by volume) so that the solid content ratio of the ink (mass ratio of the solid content with respect to the total mass of the ink) was 12% by mass.
  • the catalyst ink comprises an electrode catalyst powder (TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and an ion conductive material dispersion (Nafion (registered trademark) D2020, manufactured by DuPont), and a mass ratio of the carbon support and the ion conductive material.
  • TEC10E50E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.
  • ion conductive material dispersion Nafion (registered trademark) D2020, manufactured by DuPont
  • a mass ratio of the carbon support and the ion conductive material was mixed to a value of 0.9.
  • an aqueous propylene glycol solution (50% by volume) was prepared by adding so that the solid content of the ink was 19% by mass.
  • the electrode catalyst powder had a BET nitrogen specific surface area of 561 m 2 / g.
  • the hydrophilic porous layer was applied on a polytetrafluoroethylene (PTFE) substrate by screen printing so that the amount of carbon supported was approximately 0.3 mg / cm 2 . Thereafter, heat treatment was performed at 130 ° C. for 30 minutes in order to remove organic substances. On top of this, the catalyst layer was applied by screen printing so that the amount of Pt supported was about 0.05 mg / cm 2 . Thereafter, heat treatment was again performed at 130 ° C. for 30 minutes.
  • the hydrophilic porous layer had a porosity of 45% and a thickness of 8 ⁇ m.
  • the catalyst layer had a porosity of 40% and a thickness of 3 ⁇ m.
  • the laminate of the hydrophilic porous layer and the catalyst layer produced as described above was transferred to an electrolyte membrane (Nafion (registered trademark) NR211, manufactured by DuPont) to obtain an anode side gas diffusion electrode.
  • the transfer was performed under conditions of 150 ° C., 10 minutes, and 0.8 Mpa. Only the catalyst ink was applied to the opposite surface (cathode side) of the electrolyte membrane.
  • stacked in this order was obtained.
  • the membrane / electrode assembly was completed by sandwiching the obtained laminate with a gas diffusion layer (TGP-H060, manufactured by Toray Industries, Inc.).
  • Ketjen Black EC manufactured by Ketjen Black International Co., Ltd. not subjected to heat treatment was used.
  • Ketjen black EC not subjected to heat treatment had S BET of 718 m 2 / g, ⁇ ion of 0.34, and S ion of 244 m 2 / g.
  • a membrane / electrode assembly was completed in the same manner as in Example except that ketjen black EC not subjected to the heat treatment was used and the thickness of the hydrophilic porous layer was set to 60 ⁇ m.
  • the water transport resistance at 80 ° C. of the catalyst layer formed in common with the examples and comparative examples was measured and found to be 25 ⁇ 10 4 s ⁇ cm 2 ⁇ ⁇ a ⁇ g ⁇ 1 .
  • Example 2 A carbon powder (Ketjen Black EC, manufactured by Ketjen Black International Co., Ltd.), which is a conductive material, and an ion conductive material dispersion (Nafion (registered trademark) D2020, manufactured by DuPont) are used. Mix so that the weight ratio with the material becomes 0.7, and further add an aqueous propylene glycol solution (50% by volume) so that the solid content ratio of the ink (weight ratio of the solid content to the total weight of the ink) is 12% by mass. This was added to prepare a hydrophilic porous layer ink.
  • aqueous propylene glycol solution 50% by volume
  • an electrode catalyst powder (TEC10E50E, TKK) and an ion conductive material dispersion (Nafion (registered trademark) D2020, manufactured by DuPont) are used, and the weight ratio of the conductive carrier to the ion conductive material is 0.9. Further, an aqueous propylene glycol solution (50% by volume) was further added so that the solid content of the ink was 19% by mass.
  • the hydrophilic porous layer was applied on a polytetrafluoroethylene (PTFE) substrate by a screen printing method so that the amount of supported carbon was about 0.3 mg ⁇ cm ⁇ 2 . Thereafter, heat treatment was performed at 130 ° C. for 30 minutes in order to remove organic substances. On top of this, the catalyst layer was applied so that the amount of Pt supported was about 0.05 mg ⁇ cm ⁇ 2 . Thereafter, heat treatment was again performed at 130 ° C. for 30 minutes.
  • PTFE polytetrafluoroethylene
  • the catalyst layer produced as described above was transferred to an electrolyte membrane (Nafion (registered trademark) NR211 manufactured by DuPont). The transfer was performed under conditions of 150 ° C., 10 minutes, and 0.8 Mpa.
  • a gas diffusion layer base material having a thickness of about 120 ⁇ m (TGP-H-030 manufactured by Toray Industries, Inc.) was placed, and a graphite separator and gold-plated copper current collector plate were used at 25 ° C.
  • the surface pressure of 1 MPa was applied so that the fibers of the gas diffusion layer base material bite into the hydrophilic porous layer so that the effects of the present invention were obtained.
  • the time from the start of power generation until the cell voltage becomes 0.2 V is 490 seconds for the battery of Comparative Example 2 using SDL Carbon GDL24BC as the gas diffusion layer for both electrodes.
  • the battery of Example 2 was 543 seconds. That is, in the battery of Example 2, the power generation possible time was extended by 50 seconds or more as compared with the battery of Comparative Example 2. Therefore, according to the present invention, the generated water can be effectively discharged out of the membrane electrode assembly at the time of starting below zero, so that the voltage drop of the battery can be suppressed for a longer time.
  • Ketjen Black EC (Ketjen Black International Co., Ltd.) and heat-treated (3000 ° C.) Ketjen Black EC were prepared as conductive materials.
  • Ketjen Black EC was found to have S BET : 718 m 2 / g, ⁇ ion : 0.34, and ion conductive coating area S ion : 247 m 2 / g.
  • the ketjen black EC that had been heat-treated (3000 ° C.) had S BET : 151 m 2 / g, ⁇ ion : 1.0, and ion conductive coating area S ion : 151 m 2 / g.
  • Ketjen Black EC was used as a liquid water evaporation promoting material, and Ketjen Black EC after heat treatment (3000 ° C.) was used as a liquid water transport promoting material.
  • a hydrophilic porous layer ink was prepared by adding an aqueous glycol solution (50% by volume) such that the solid content ratio of the ink (mass ratio of the solid content to the total mass of the ink) was 12 mass%.
  • an electrode catalyst powder (TEC10E50E, manufactured by Tanaka Metal Industry Co., Ltd.) and an ion conductive material dispersion (Nafion (registered trademark) D2020, manufactured by DuPont) are used. Then, a propylene glycol solution (50% by volume) was further added so that the solid content of the ink was 19% by mass.
  • the hydrophilic porous layer was applied on a polytetrafluoroethylene (PTFE) substrate by a screen printing method so that the amount of supported carbon was about 0.3 mg ⁇ cm ⁇ 2 . Thereafter, heat treatment was performed at 130 ° C. for 30 minutes in order to remove organic substances. On top of this, the catalyst layer was applied so that the amount of Pt supported was about 0.05 mg ⁇ cm ⁇ 2 . Thereafter, heat treatment was again performed at 130 ° C. for 30 minutes.
  • PTFE polytetrafluoroethylene
  • the catalyst layer produced as described above was transferred to an electrolyte membrane (Nafion (registered trademark) NR211 manufactured by DuPont). The transfer was performed under conditions of 150 ° C., 10 minutes, and 0.8 Mpa. The same operation was performed on the other electrolyte membrane.
  • an electrolyte membrane Nafion (registered trademark) NR211 manufactured by DuPont. The transfer was performed under conditions of 150 ° C., 10 minutes, and 0.8 Mpa. The same operation was performed on the other electrolyte membrane.
  • the resulting joined body was made into MEA with a gas diffusion layer (Toray TGP-H060) sandwiched between them, sandwiched with a graphite separator, and then sandwiched with a gold-plated stainless steel current collector plate to form a single cell.
  • a gas diffusion layer Toray TGP-H060
  • Sub-zero power generation test Membrane electrode bonding using a gas diffusion layer with a hydrophilic treatment part on H-060 made by Toray as a gas diffusion layer base material for the anode (fuel electrode) and GDL24BC made by SGL carbon for the cathode (air electrode)
  • the body power generation area 10 cm 2
  • nitrogen gas having a relative humidity of 60% was supplied to both electrodes at 50 ° C. for 3 hours for conditioning.
  • the time from the start of power generation until the cell voltage becomes 0.2 V is 175 seconds for the battery using the gas diffusion layer that does not perform the hydrophilic treatment of the present invention on the anode, whereas
  • the battery of Example 3 was 253 seconds. That is, in the battery of Example 3, the power generation possible time was extended by 70 seconds or more compared to the battery that was not implemented. Therefore, according to the present invention, the generated water can be effectively discharged out of the membrane electrode assembly at the time of starting below zero, so that the voltage drop of the battery can be suppressed for a longer time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

燃料電池の高電流密度運転を可能にする、ガス拡散電極を提供する。 導電性材料とイオン伝導性材料とを有する親水性多孔質層と、前記親水性多孔質層に隣接する触媒層と、を備え、前記親水性多孔質層の水輸送抵抗が前記触媒層の水輸送抵抗よりも小さい、ガス拡散電極である。

Description

ガス拡散電極およびその製造方法、ならびに膜電極接合体およびその製造方法
 本発明は、ガス拡散電極およびその製造方法、ならびに膜電極接合体およびその製造方法に関する。
 近年、エネルギー・環境問題を背景とした社会的要求や動向と呼応して、燃料電池が電気自動車用電源、定置型電源として注目されている。燃料電池は、電解質の種類や電極の種類等により種々のタイプに分類され、代表的なものとしてはアルカリ形、リン酸形、溶融炭酸塩形、固体電解質形、固体高分子形がある。この中でも低温(通常100℃以下)で作動可能な固体高分子形燃料電池が注目を集め、近年自動車用低公害動力源としての開発・実用化が進んでいる。
 固体高分子形燃料電池(PEFC)の構成は、一般的には、電解質膜-電極接合体(MEA)をセパレータで挟持した構造となっている。MEAは、電解質膜が一対の電極、すなわちアノードおよびカソードにより挟持されてなるものである。電極は、電極触媒および固体高分子電解質に代表される電解質を含み、外部から供給される反応ガスを拡散させるために多孔質構造を有する。
 固体高分子形燃料電池では、次のような電気化学的反応などを通して、電気を外部に取り出すことが可能となる。まず、アノード(燃料極)側に供給された燃料ガスに含まれる水素が、下記化学式(1)に示すように触媒粒子により酸化され、プロトンおよび電子となる。次に、生成したプロトンは、アノード側電極触媒層に含まれる固体高分子電解質、さらにアノード側電極触媒層と接触している固体高分子電解質膜を通り、カソード(酸素極)側電極触媒層に達する。また、アノード側電極触媒層で生成した電子は、アノード側電極触媒層を構成している導電性担体、さらにアノード側電極触媒層の固体高分子電解質膜と異なる側に接触しているガス拡散層、セパレータおよび外部回路を通してカソード側電極触媒層に達する。そして、カソード側電極触媒層に達したプロトンおよび電子はカソード側に供給されている酸化剤ガスに含まれる酸素と下記化学式(2)に示すように反応し水を生成する。
Figure JPOXMLDOC01-appb-C000002
 低加湿、高電流密度などの運転条件下では、アノードからカソードに向けて固体高分子電解質膜を移動するプロトンに伴って移動する水の量、およびカソード側電極触媒層内に生成して凝集する生成水の量が増加する。この時、これらの生成水は、特にカソード側電極触媒層内に滞留し、反応ガス供給路となっていた細孔を閉塞するフラッディング現象を招く。これにより、反応ガスの拡散などが阻害され、電気化学的反応が妨げられ、結果として電池性能の低下を招く。
 そこで、従来、ガス拡散層の排水性を向上させることにより、フラッディング現象を防止する種々の試みがなされている。例えば、特許文献1では、触媒層と、撥水層が塗布されたガス拡散層との間に、保水性物質と電子伝導物質および結晶性炭素繊維からなる保水層を設けている。結晶性炭素繊維の存在により、保水層の排水性を確保するとともにガス中の相対湿度が変動しても湿度変動の影響を受けにくい安定した発電性能を有する固体高分子形燃料電池が得られるとしている。
特許第3778506号公報
 しかしながら、特許文献1に記載の技術では、添加した結晶性炭素繊維がプロトンの電子伝導物質の移動を妨げてしまい、高電流密度運転を実現させる燃料電池を得ることは困難であった。
 したがって、本発明は、上記課題に着目してなされたものであって、燃料電池の高電流密度運転を実現させる、ガス拡散電極を提供することを目的とする。
 本発明者らは、上記課題に鑑み鋭意検討した。その結果、親水性多孔質層と、前記親水性多孔質層に隣接する触媒層と、を備え、前記親水性多孔質層の水輸送抵抗が前記触媒層の水輸送抵抗よりも小さいガス拡散電極によって上記課題が解決されることを見出し、本発明を完成させた。
 本発明のガス拡散電極によれば、発電時に生成する生成水の排水性を向上させることができる。したがって、該ガス拡散電極を備えた燃料電池は、高電流密度運転が可能となる。
本発明(第1実施態様)のガス拡散電極を含むMEAの一実施形態を示す断面概略図である。 本発明(第1実施態様)のガス拡散電極を含むMEAが一対のセパレータにより挟持されてなるPEFCの単セルを示す断面概略図である。 一般的なMEAの構成を示す概略図である。 (a)は、本発明(第2実施態様)の一実施形態によるガス拡散層を示す断面模式図であり、(b)は、上記実施形態の変形例を示す、ガス拡散層の断面模式図である。 ガス拡散層の製造方法を示す模式図である。 本発明(第2実施態様)の一実施形態によるガス拡散電極を示す断面模式図である。 MEAの一実施形態を示す断面模式図である。 ガス拡散層の製造方法を示す模式図である。 本発明(第2実施態様)のMEAを含むPEFCの模式断面図を示す。 実施例2および比較例2で作製した電池の零下発電性能を比較したグラフである。 Aは、種々の導電性材料を用いた場合の、相対湿度と電気二重層容量との関係を示した図および各導電性材料のSBET、θionおよびSionを示した表である。Bは、各導電性材料の水輸送抵抗を示す図である。 Aは、第3実施態様の第1実施形態の親水性多孔質層を示す断面模式図である。Bは、第1実施形態の変形例を示す、親水性多孔質層の断面模式図である。 第3実施態様の第2実施形態の親水性多孔質層を示す断面模式図である。 インク中の溶媒種による親水性多孔質層の空孔径の分布の差を示す図である。 親水性多孔質層を含むMEAの一実施形態を示す断面模式図である。 親水性多孔質層を含むMEAの他の実施形態を示す断面模式図である。 A~Dは親水性多孔質層を含むMEAの他の実施形態を示す断面模式図である。 親水性多孔質層を含むMEAの他の実施形態を示す断面模式図である。 親水性多孔質層を含むMEAの他の実施形態を示す断面模式図である。 AおよびBは、触媒層と親水性多孔質層とを一体化する工程の具体的な一実施形態を示す模式図である。 本発明(第3実施態様)のMEAを含むPEFCの断面模式図である。 常温発電試験の結果を示す図である。 実施例3のガス拡散層を、SEM(走査型電子顕微鏡)を用いて観察した結果(A)と、EPMA(電子線マイクロアナライザ)を用いて解析した結果(B)とを示す図である。
 <第1実施態様>
 先ず、本発明の第1実施態様について説明する。
 第1実施態様のガス拡散電極は、導電性材料とイオン伝導性材料とを有する親水性多孔質層と、前記親水性多孔質層に隣接する触媒層と、を備え、前記親水性多孔質層の水輸送抵抗が前記触媒層の水輸送抵抗よりも小さい。
 燃料電池では、カソード側で水が生成する。常温時には、フラッディング現象によりガス拡散が阻害される。したがって、燃料電池においては、カソード側で生成した水を、いかに速やかに輸送するかが重要となる。また、生成水が多い場合には、カソード側で生成した水がアノード側に移行するため、特にアノード側での排水が重要となる。
 本発明者らは、生成水の排水性を向上させるために検討した結果、親水性多孔質層の水輸送抵抗を触媒層の水輸送抵抗よりも小さくすることにより、ガス拡散性を維持したまま、親水性多孔質層の水輸送性が高くなることを見出した。かような親水性多孔質層を、触媒層と隣接させて燃料電池のガス拡散電極とした場合、ガス拡散性を維持したまま、生成水の排出性が高まる。したがって、該ガス拡散電極を備えた燃料電池は、高電流密度運転が可能となる。
 ここで、水輸送抵抗とは、ある層における液水の移動のしやすさを表す指標である。すなわち、水輸送抵抗の値が大きければ液水が移動しにくいことを表し、水輸送抵抗の値が大きければ液水が移動しやすいことを表す。
 実際の親水性多孔質層および触媒層の80℃における水輸送抵抗は、下記表1の測定方法により測定することができる。
Figure JPOXMLDOC01-appb-T000003
 前記親水性多孔質層の空孔率は、前記触媒層の空孔率よりも高いことが好ましい。かような関係であれば、前記親水性多孔質層のガス輸送抵抗が低減され、排水性とともにガス拡散性が確保できる。
 上述のような空孔率の関係が成り立てば、前記親水性多孔質層の空孔率は、特に制限されるものではないが、具体的には、30~80%であることが好ましく、40~70%であることがより好ましい。また、前記触媒層の空孔率は、30~80%であることが好ましく、40~70%であることがより好ましい。なお、空孔率は、水銀圧入法による細孔分布測定などにより層の内部に存在する空孔(微細孔)の体積を測定し、層の体積に対する割合として求めることができる。また、空孔率は、親水性多孔質層中のイオン伝導性材料(I)と導電性材料(C)との混合質量比(I/C比)を意図的に変化させることで、親水性多孔質層の空孔率を制御することができる。下記表2は、親水性多孔質層におけるI/C比と空孔率との関係を示す。
Figure JPOXMLDOC01-appb-T000004
 前記親水性多孔質層に含まれる導電性材料に対する前記イオン伝導性材料の被覆面積は、200m2/g未満であることが好ましい。導電性材料が、上記のような範囲のイオン伝導性材料による被覆面積を有することで、親水性多孔質層中の液水輸送経路の屈曲度が小さくなり、親水性多孔質層の水輸送抵抗を低減させることが可能となり、水輸送性がさらに向上しうる。下限値は特に制限されないが、被覆面積が小さくなるとイオン伝導性材料が連通しなくなり、イオン伝導性材料中の水輸送性が低下する虞があるため、50m2/g以上が好ましい。
 ここで、導電性材料に対するイオン伝導性材料の被覆面積は、Sion=SBET×θion(Sion:イオン伝導性材料の被覆面積(m2/g)、SBET:導電性材料のBET窒素比表面積(m2/g)、θion:イオン伝導性材料の被覆率)で算出される。したがって、イオン伝導性材料の被覆面積は、用いられる導電性材料が決定すれば、導電性材料のBET窒素比表面積およびイオン伝導性材料被覆率を測定することによって、算出することができる値である。また、イオン伝導性材料の被覆面積は、導電性材料の形状によって制御できる値であるとも言える。さらに、親水性多孔質層における導電性材料とイオン伝導性材料との含有量比を変化させることによっても、導電性材料に対するイオン伝導性材料の被覆面積を制御することができる。
 本明細書において、イオン伝導性材料の被覆率θionは、相対湿度30%および相対湿度100%における電気二重層容量(Cdl)の比(θion=相対湿度30%のCdl/相対湿度100%のCdlで決定される)で表される。ここで、相対湿度30%と相対湿度100%との比を採る理由は以下の通りである。高加湿条件下では、導電性材料と導電性材料表面に吸着した水との、または導電性材料とイオン伝導性材料との界面に形成された電気二重層が計測される。一方で、低加湿条件下では、導電性材料とイオン伝導性材料との界面に形成された電気二重層が主として計測される。ここで、相対湿度30%程度以下で、電気二重層容量はほぼ一定となる。したがって、本発明では、相対湿度30%および相対湿度100%をそれぞれ低加湿条件および高加湿条件の代表地点と定め、両者の電気二重層容量の比を採ることにより、導電性材料がイオン伝導性材料によりどの程度被覆されているかの指標とした。
 なお、本明細書において、電気二重層容量は、以下の方法によって測定される値を採用するものとする。
 まず、触媒成分を含まない親水性多孔質層と触媒層を電解質膜の異なる面にそれぞれ配した膜電極接合体を作製し、その両面をガス拡散層、さらにカーボンセパレーター、さらには金メッキした集電板で挟持し、通常の燃料電池と同様のセルを得た。触媒層に調湿した水素ガスを、親水性多孔質層に調湿した窒素ガスを供給した状態で、触媒層を参照極および対極として用い、親水性多孔質層の電位を参照極に対して0.2~0.6Vの範囲で5~10回走査した。走査速度は50mV/sで行った。得られた電流と電位の関係は長方形に近い波形を示した。これは、電極上での酸化および還元反応が生じておらず、電気二重層の充電および放電が電流の主要因であることを示している。この波形において、ある電位、例えば、0.3Vにおける酸化電流と還元電流の絶対値の平均の値を走査速度で除することで電気二重層容量を算出した。この測定を種々の加湿条件下で行い、電気二重層容量と相対湿度との関係を得た。
 また、導電性材料のBET窒素比表面積は、以下の方法によって測定される値を採用するものとする。
 (BET窒素比表面積の測定方法)
 1.サンプリング、秤量・予備乾燥
 粉末は、約0.04~0.07gを精秤し、試料管に封入した。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定に供した。秤量には、島津製作所株式会社製電子天秤(AW220)を用いた。なお、塗布シートについては、これの全質量から、同面積のテフロン(登録商標)(基材)の質量を差し引いた塗布層の正味の質量約0.03~0.04gを試料質量として用いた。
 2.測定条件(下記表3参照)
Figure JPOXMLDOC01-appb-T000005
 3.測定方法
 吸着・脱着等温線の吸着側において、相対圧(P/P0)約0.00~0.45の範囲から、BETプロットを作成することで、その傾きと切片からBET窒素比表面積を算出する。
 親水性多孔質層に含まれる導電性材料のBET窒素比表面積は、隣接する触媒層に含まれる、導電性担体に触媒成分が担持されてなる複合体(以下、単に「電極触媒」とも称する)のBET窒素比表面積よりも小さいことが好ましい。かような関係であれば、親水性多孔質層中の液水輸送経路の屈曲度が小さくなり、親水性多孔質層の水輸送抵抗を低減させることが可能となり、水輸送性がさらに向上しうる。
 上述のようなBET窒素比表面積の関係が成り立てば、前記親水性多孔質層に含まれる導電性材料のBET窒素比表面積は、特に制限されるものではないが、10~800m2/gであることが好ましく、20~600m2/gであることがより好ましい。また、前記触媒層に使用される導電性担体として、BET窒素比表面積が、10~1200m2/gであることが好ましく、20~800m2/gであることがより好ましい。
 前記親水性多孔質層の厚さは、隣接する触媒層の厚さよりも薄いことが好ましい。かような関係であれば、親水性多孔質層の水輸送抵抗を低減させることが可能となり、水輸送性がさらに向上しうる。
 上述のような厚さの関係が成り立てば、前記親水性多孔質層の厚さは、特に制限されるものではないが、40μm以下であることが好ましい。また、前記触媒層の厚さは、15μm以下であることが好ましい。
 親水性多孔質層には、導電性材料と、イオン伝導性材料とが含まれる。場合によって、導電性材料は触媒を担持していてもよい。親水性多孔質層は、導電性材料およびバインダー以外に、他の材料を含有していてもよい。親水性多孔質層中、導電性材料とイオン伝導性材料との含有量は80質量%以上であることが好ましく、90質量%以上であることがより好ましい。さらに好ましくは、親水性多孔質層は、導電性材料およびイオン伝導性材料から構成される。
 以上のように、親水性多孔質層の水輸送抵抗を、触媒層の水輸送抵抗よりも小さくすることで、生成水の排水性を向上させることができる。したがって、該親水性多孔質層および該触媒層を含む本発明のガス拡散電極を燃料電池の膜電極接合体(MEA)に適用した場合、燃料電池の高電流密度運転を可能にする。
 親水性多孔質層中の導電性材料とイオン伝導性材料との含有量比は、特に限定されるものではなく、所望の目的により適宜設定される。好適には、導電性材料:イオン伝導性材料=1:0.6~1.5(質量比)であることが好ましく、1:0.7~1.3(質量比)であることがより好ましい。この範囲であれば、ガス拡散性を確保でき、また、イオン伝導性材料の機能を発揮することができる。なお、上記導電性材料と、イオン伝導性材料との含有質量比は、親水性多孔質層用インク(スラリー)を作製する際に予め混合するイオン伝導性材料と導電性材料とを測定しておき、これらの混合比を調整することにより、算出され、また、制御できる。また、親水性多孔質層を分析して、前記導電性材料と、イオン伝導性材料とを定量して、導電性材料とイオン伝導性材料との含有質量比を算出することもできる。
 以下、本発明のガス拡散電極を構成する各成分について説明する。
 [親水性多孔質層]
 (導電性材料)
 親水性多孔質層に含まれる導電性材料は、特に限定されるものではないが、その具体的な例としては、例えば、熱処理したケッチェンブラック、アセチレンブラック、酸化スズ、酸化チタンなどの金属酸化物などが挙げられる。
 より好ましくは、ケッチェンブラックを、好ましくは2000~3000℃で、好ましくは2~120分間、熱処理することによって得られるケッチェンブラックである。
 上述したように、導電性材料のイオン伝導性材料による被覆面積は、200m2/g未満であることが好ましい。下限値は特に制限されないが、被覆面積が小さくなるとイオン伝導性材料が連通しなくなり、イオン伝導性材料中の水輸送性が低下する虞があるため、50m2/g以上が好ましい。
 また、上述したように、導電性材料のBET窒素比表面積は、隣接する触媒層に含まれる、導電性担体に触媒成分が担持されてなる複合体(以下、単に「電極触媒」とも称する)のBET窒素比表面積よりも小さいことが好ましい。
 該導電性材料は1種単独で用いてもよいし、2種以上併用して用いてもよい。
 導電性材料が粉末状である場合、その平均粒子径は、5~100nmであることが好ましく、10~60nmであることがより好ましい。これにより、親水性多孔質層のガス拡散性を確保することができる。なお、本明細書中において、「粒子径」とは、活物質粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
 (イオン伝導性材料)
 イオン伝導性材料としては、イオン伝導性であり、導電性材料を結着できる材料であれば、特に限定されない。具体的な例としては、例えば、ポリアクリルアミド、水性ウレタン樹脂、シリコン樹脂等の高分子;高分子電解質等が挙げられる。好適には高分子電解質である。高分子電解質をイオン伝導性材料とすることで、同じイオン伝導性材料を含むMEAの構成要素(電解質膜や触媒層)と隣接して親水性多孔質層を配置する場合に安定して配置させることができ、触媒層や膜と、導電性材料との間の水輸送抵抗を低減することができる。この結果、電解質膜または触媒層と、導電性材料との間の水輸送性が向上し、より早い時間で平衡に達することができる。イオン伝導性材料が高分子電解質である場合は、当該電解質は、触媒層や電解質膜中に使用される高分子電解質と同じであってもよいし、異なってもよい。さらに、親水性多孔質層を含むMEAを作製する場合、材料を共通化することもでき、作製時の省力化が図れる。
 用いられるイオン伝導性材料は特に限定されるものではない。具体的には、イオン伝導性材料は、ポリマー骨格の全部又は一部にフッ素原子を含むフッ素系電解質と、ポリマー骨格にフッ素原子を含まない炭化水素系電解質とに大別される。
 フッ素系電解質としては、具体的には、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、ポリトリフルオロスチレンスルフォン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが好適な一例として挙げられる。フッ素系電解質は、耐久性、機械強度に優れる。
 前記炭化水素系電解質として、具体的には、ポリスルホンスルホン酸、ポリアリールエーテルケトンスルホン酸、ポリベンズイミダゾールアルキルスルホン酸、ポリベンズイミダゾールアルキルホスホン酸、ポリスチレンスルホン酸、ポリエーテルエーテルケトンスルホン酸、ポリフェニルスルホン酸などが好適な一例として挙げられる。
 上記イオン伝導性材料は、単独で用いてもよいし、2種以上併用してもよい。
 親水性多孔質層においては、水の移動速度が重要であるため、イオン伝導性材料のEWは低いほうが好ましい。好ましくは、EWが1200g/eq.以下、より好ましくは1000g/eq.以下、さらに好ましくは700g/eq.以下である。かような範囲であれば、液水の拡散を促進し、零下起動性と常温での高電流密度運転を両立した親水性多孔質層を提供できる。EWの下限は特に限定されるものではないが、通常500g/eq.以上であることが好ましい。なお、EW(Equivalent Weight)は、イオン交換基当量質量を表す。
 上述したように、親水性多孔質層の厚さは、隣接する触媒層の厚さよりも薄いことが好ましい。
 [触媒層]
 触媒層は、実際に反応が進行する層である。具体的には、アノード側触媒層では水素の酸化反応が進行し、カソード側触媒層では酸素の還元反応が進行する。触媒層は、触媒成分、触媒成分を担持する導電性担体、およびプロトン伝導性の高分子電解質を含む。
 アノード側触媒層に用いられる触媒成分は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード側触媒層に用いられる触媒成分もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、およびそれらの合金等などから選択される。ただし、その他の材料が用いられてもよいことは勿論である。これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。前記合金の組成は、合金化する金属の種類にもよるが、白金が30~90原子%、合金化する金属が10~70原子%とするのがよい。カソード側触媒として合金を使用する場合の合金の組成は、合金化する金属の種類などによって異なり、当業者が適宜選択できるが、白金が30~90原子%、合金化する他の金属が10~70原子%とすることが好ましい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード触媒層に用いられる触媒成分およびカソード触媒層に用いられる触媒成分は、上記の中から適宜選択できる。本明細書の説明では、特記しない限り、アノード触媒層およびカソード触媒層用の触媒成分についての説明は、両者について同様の定義であり、一括して、「触媒成分」と称する。しかしながら、アノード触媒層およびカソード触媒層の触媒成分は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択される。
 触媒成分の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが使用できるが、触媒成分は、粒状であることが好ましい。この際、触媒粒子の平均粒子径は、好ましくは1~30nm、より好ましくは1.5~20nm、さらに好ましくは2~10nm、特に好ましくは2~5nmである。触媒粒子の平均粒子径がかような範囲内の値であると、電気化学反応が進行する有効電極面積に関連する触媒利用率と担持の簡便さとのバランスが適切に制御されうる。なお、本発明における「触媒粒子の平均粒子径」は、X線回折における触媒成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡像より調べられる触媒成分の粒子径の平均値として測定されうる。
 導電性担体は、上述した触媒成分を担持するための担体、および触媒成分との電子の授受に関与する電子伝導パスとして機能する。
 導電性担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであればよく、主成分がカーボンである炭素系材料であることが好ましい。具体的には、カーボンブラック、黒鉛化処理したカーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛、カーボンナノチューブ、カーボンナノホーンおよびカーボンフィブリル構造体などからなるカーボン粒子が挙げられる。なお、「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念である。場合によっては、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよい。なお、「実質的に炭素原子からなる」とは、2~3質量%程度以下の不純物の混入が許容されうることを意味する。
 触媒層、特にアノード側触媒層に黒鉛化処理したカーボンブラックなどの黒鉛化した導電性材料、より好ましくは黒鉛化した炭素材料を導電性担体として用いると、導電性材料の腐食耐性を向上することができるため、好ましい。しかしながら、黒鉛化した導電性材料は、イオン伝導性材料の被覆面積が小さく、液水の蒸発面積が小さい為、零下での凍結または常温でのフラッディングが懸念される。黒鉛化させた導電性材料を用いた触媒層に親水性多孔質層を隣接するように設置する事で、排水性を向上することができ、零下起動性と常温での高電流密度運転を両立し、さらに導電性材料の腐食耐性を付与した後述の膜電極接合体を提供する。黒鉛化処理したカーボンブラックは球状であることが好ましく、X線回折から算出される[002]面の平均格子面間隔d002が0.343~0.358nmであり、かつBET比表面積が100~300m2/gであることが好ましい。
 導電性担体のBET窒素比表面積は、触媒成分を高分散担持させるのに充分な比表面積であればよいが、好ましくは20~1600m2/g、より好ましくは80~1200m2/gである。導電性担体の比表面積がかような範囲内の値であると、導電性担体上での触媒成分の分散性と触媒成分の有効利用率とのバランスが適切に制御されうる。
 導電性担体のサイズについても特に限定されないが、担持の簡便さ、触媒利用率、電極触媒層の厚みを適切な範囲で制御するなどの観点からは、平均粒子径を5~200nm、好ましくは10~100nm程度とするとよい。
 電極触媒において、触媒成分の担持量は、電極触媒の全量に対して、好ましくは10~80質量%、より好ましくは30~70質量%である。触媒成分の担持量がかような範囲内の値であると、導電性担体上での触媒成分の分散度と触媒性能とのバランスが適切に制御されうる。なお、触媒成分の担持量は、誘導結合プラズマ発光分光法(ICP)によって測定されうる。
 また、担体への触媒成分の担持は公知の方法で行うことができる。例えば、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。
 本発明において、電極触媒は市販品を使用してもよい。このような市販品としては、例えば、田中貴金属工業株式会社製、エヌ・イー・ケムキャット株式会社製、E-TEK社製、ジョンソンマッセイ社製などの電極触媒が使用できる。これらの電極触媒は、カーボン担体に、白金や白金合金を担持(触媒種の担持濃度、20~70質量%)したものである。上記において、カーボン担体としては、ケッチェンブラック、バルカン、アセチレンブラック、ブラックパール、予め高温で熱処理した黒鉛化処理カーボン担体(例えば、黒鉛化処理ケッチェンブラック)、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、メソポーラスカーボンなどがある。
 上述したように、電極触媒のBET窒素比表面積は、親水性多孔質層に含まれる導電性材料のBET比表面積よりも大きいことが好ましい。また、上述したように、触媒層の厚さは、隣接する親水性多孔質層の厚さよりも厚いことが好ましい。
 触媒層には、電極触媒に加えて、イオン伝導性の高分子電解質が含まれる。当該高分子電解質は特に限定されず従来公知の知見が適宜参照されうるが、例えば、上述した高分子電解質膜を構成するイオン交換樹脂が前記高分子電解質として触媒層に添加されうる。触媒層が親水性多孔質層である場合には、イオン伝導性材料として、上記高分子電解質が用いられる。
 [ガス拡散電極の製造方法]
 本発明(第1実施態様)のガス拡散電極の製造方法は、特に限定されるものではないが、例えば、(1)導電性材料、イオン伝導性材料、および溶媒を混合して親水性多孔質層用インクを調製し、これを基材に塗布した後、乾燥させ、親水性多孔質層を形成する;(2)形成した親水性多孔質層上に、触媒成分を含むインクを塗布し乾燥する方法、などが用いられる。また、触媒成分が担持された導電性材料を用いる場合には、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法を用いて、予め導電性材料に触媒成分を担持させておくのがよい。
 親水性多孔質層用インクに用いられる溶媒としては、特に限定されるものではないが、水;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール等のアルコール;エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、またはグリセリンなどの多価アルコールなどが挙げられる。これらは1種単独で用いてもよいし、2種以上併用して用いてもよい。
 上述のように、インク調整の際に、イオン伝導性材料(I)と導電性材料(C)との混合質量比(I/C比)を意図的に変化させることで、親水性多孔質層の空孔率を制御することができる。したがって、空孔率を制御する必要がある場合には、I/C比を適宜設定することにより、容易に空孔率を制御することができる。
 なお、本明細書における溶媒および溶剤とは、バインダーおよび導電性材料等の固形成分が分散される分散媒、すなわち固形成分以外の液体成分を全て含む。したがって、例えば、水に分散されたイオン伝導性材料と、有機溶媒とを混合して親水性多孔質層用インクを製造する場合、本明細書でいう溶媒は、水および有機溶媒の双方を指す。
 親水性多孔質層用インクの固形分率(親水性多孔質層用インク全質量に対する固形分の質量の割合)は、特に限定されるものではないが、多孔質層の形成効率とインクの安定性の観点から、通常5~20質量%程度である。
 親水性多孔質層用インクの調製方法は、特に制限されない。また、イオン伝導性材料、導電性材料、および溶媒の混合順序は、特に制限されないが、具体的には、下記(i-1)~(i-3)が挙げられる。
 (i-1)イオン伝導性材料を含有した溶液を調製し、前記溶液を、導電性材料と混合する。その後、溶媒をさらに添加して、親水性多孔質層用インクを調製する;
 (i-2)イオン伝導性材料を含有した溶液を調製し、溶媒を添加する。その後、導電性材料をさらに混合(添加)して、親水性多孔質層用インクを調製する;および
 (i-3)導電性材料と溶媒とを混合する。次に、別途イオン伝導性材料を含有した溶液を、さらに添加して、親水性多孔質層用インクを調製する。
 上記方法のうち、(i-1)および(i-2)の方法が好ましく、(i-1)の方法がより好ましい。これにより、水と有機溶媒が均一に混合され、溶媒化合物が形成しやすい。
 上記方法(i-1)~(i-3)において、イオン伝導性材料を含有した溶液において、イオン伝導性材料は、溶媒中に分散している。この際のイオン伝導性材料を含有した溶液中でのイオン伝導性材料含有率は、特に制限されないが、固形分量が好ましくは1~40質量%、より好ましくは5~20質量%である。このような含有率であれば、高分子電解質が適切に溶媒中に分散しうる。
 イオン伝導性材料を含有した溶液は、自ら調整してもよいし、市販品を用いてもよい。上記イオン伝導性材料を含有した溶液中におけるイオン伝導性材料の分散溶媒は、特に限定されるものではないが、水、メタノール、エタノール、1-プロパノール、2-プロパノール等が挙げられる。分散性を考慮すると、好ましくは、水、エタノール、1-プロパノールである。これらの分散溶媒は、単独で用いてもよいし、2種以上併用してもよい。
 また、親水性多孔質層用インクの製造工程において、イオン伝導性材料と、導電性材料と、溶媒とを混合した後は、良好に混合するために、別途混合工程を設けてもよい。このような混合工程としては、触媒インクを超音波ホモジナイザーでよく分散する、あるいは、この混合スラリーをサンドグラインダー、循環式ボールミル、循環式ビーズミルなどの装置でよく粉砕させた後、減圧脱泡操作を加えることなどが好ましく挙げられる。
 次に、得られた親水性多孔質層用インクを基材上に塗布した後、親水性多孔質層用インクが塗布された基材を乾燥する。
 親水性多孔質層用インクの基材表面への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法、転写法など、公知の方法を用いて行うことができる。また、触媒インクの基材表面への塗布に使用される装置もまた、特に制限されず、公知の装置が使用できる。具体的には、スクリーンプリンター、スプレー装置、バーコーター、ダイコーター、リバースコーター、コンマコーター、グラビアコーター、スプレーコーター、ドクターナイフなどの塗布装置を用いることができる。なお、塗布工程は、1回行ってもあるいは複数回繰り返し行ってもよい。
 親水性多孔質層用インクが塗布された基材を乾燥して、溶媒を除去する。親水性多孔質層用インクが塗布された基材を乾燥する際の乾燥時間は特に限定されるものではないが、1~40分であることが好ましい。また、乾燥温度は20~170℃であることが好ましい。加えて、乾燥時の雰囲気は特に限定されるものではないが、空気雰囲気下または不活性ガス雰囲気下で乾燥を行うことが好ましい。
 親水性多孔質層用インクを塗布する基材は、最終的に得られる親水性多孔質層の形態により適宜選択すればよく、ポリテトラフルオロエチレンシート(PTFE)等の高分子シート等を用いることができる。
 次に、乾燥された親水性多孔質層上に触媒インクを塗布し、乾燥させ、触媒層を形成し、ガス拡散電極を完成させる。触媒層は、上記のような電極触媒、高分子電解質および溶媒などからなる触媒インクを、固体高分子電解質膜にスプレー法、転写法、ドクターブレード法、ダイコーター法などの従来公知の方法を用いて塗布することにより形成できる。
 触媒インクの塗布量は、電極触媒が電気化学反応を触媒する作用を十分発揮できる量であれば特に制限されないが、単位面積あたりの触媒成分の質量が0.05~1mg/cm2となるように塗布することが好ましい。上記の触媒インクの塗布量および厚さは、アノード側およびカソード側で同じである必要はなく、適宜調整することができる。
 [膜電極接合体]
 本発明のガス拡散電極は、優れた排水性能を有する。したがって、MEAに適用した場合に、高電流密度運転を実現させることができる。以下、上記実施形態のガス拡散電極親水性を含むMEAの好適な実施形態について説明する。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、各図において、同一の部材には同一の符号を付し、説明を省略する場合がある。
 図1は、本発明(第1実施態様)のガス拡散電極をMEAの一実施形態を示す断面概略図である。図1のMEA10は、固体高分子電解質膜12の両面に、アノード側電極触媒層13およびカソード側電極触媒層15が対向して配置され、これをアノード側ガス拡散層14およびカソード側ガス拡散層16で挟持した構成を有している。さらに、アノード側電極触媒層13とアノード側ガス拡散層14との間には親水性多孔質層17が配置される。親水性多孔質層17を有するMEAとすることで、触媒層からの排水性に関連し、液水の輸送機能をともに促進できる。したがって、本実施形態のMEAを燃料電池に適用した場合、高電流密度運転が可能となる。
 本実施形態は、アノード側電極触媒層13とアノード側ガス拡散層14との間に親水性多孔質層17が配置される形態である。しかしながら、上記配置形態に限定されるものではなく、カソード極に配置されてもよいし、カソード極およびアノード極の双方に配置されていてもよい。また、高分子電解質膜と電極触媒層との間に配置されてもよい。好適には、少なくともアノード側に親水性多孔質層を設ける形態である。生成水を吸収する際の水の移動方向は、カソード側電極触媒層から電解質膜を介してアノード側電極触媒層であることが重要である。アノード側に親水性多孔質層が配置されることによって、カソード側で生成したより多くの水がアノード触媒層側に輸送されるため、本発明の効果がより得られやすくなる。
 また、触媒層、特にアノード触媒層に隣接して、好ましくは触媒層とガス拡散層との間に、親水性多孔質層を配置することが好適である。MEA内部の保水機能は、少なくとも電解質膜および触媒層が有する。アノード触媒層およびカソード触媒層は、膜を挟持するように設置されるため、触媒層と隣接して親水性多孔質層が設けられることで、MEA内部(膜、触媒層)に存在する液水が円滑に親水性多孔質層に移動・保持することが可能となる。また、電解質膜に接しないようにすることで、プロトン伝導を阻害することなく、本発明の効果が得られうる。さらに、親水性多孔質層は薄膜状で形態を保持することは難しいが、ガス拡散層と隣接して設けることで、構造を維持しやすくなる。なお、ガス拡散層は、後述するマイクロポーラス層(MPL)を有していても、有していなくともよい。MPLは水輸送抵抗が大きいので、水輸送の観点からは(MPLのない)ガス拡散層がガス拡散層基材から構成されるほうが好ましい。MPLは水輸送抵抗が大きく、一方、ガス拡散層基材は、マクロポアから形成されるために輸送抵抗が小さいためである。
 上述したように本発明のMEAは、ガス拡散電極に特徴を有するものである。したがって、MEAを構成するその他の部材については、燃料電池の分野において従来公知の構成がそのまま、または適宜改良されて採用されうる。以下、参考までに親水性多孔質層以外の部材の典型的な形態について説明するが、本発明の技術的範囲が下記の形態のみに限定されることはない。
 [高分子電解質膜]
 高分子電解質膜は、イオン交換樹脂から構成され、PEFCの運転時にアノード側触媒層で生成したプロトンを膜厚方向に沿ってカソード側触媒層へと選択的に透過させる機能を有する。また、高分子電解質膜は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
 高分子電解質膜の具体的な構成は特に制限されず、燃料電池の分野において従来公知の高分子電解質膜が適宜採用されうる。高分子電解質膜は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質膜と炭化水素系高分子電解質膜とに大別される。フッ素系高分子電解質膜を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性などの発電性能上の観点からはこれらのフッ素系高分子電解質膜が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質膜が用いられる。
 前記炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質膜が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよいことは勿論である。
 高分子電解質膜の厚さは、得られるMEAやPEFCの特性を考慮して適宜決定すればよく、特に制限されない。ただし、高分子電解質膜の厚さは、好ましくは5~300μmであり、より好ましくは10~200μmであり、さらに好ましくは15~150μmである。厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性、および使用時の出力特性のバランスが適切に制御されうる。
 [ガス拡散層]
 ガス拡散層は、セパレータ流路を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層への拡散を促進する機能、および電子伝導パスとしての機能を有する。
 ガス拡散層の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布、金属メッシュ、金属多孔体といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
 ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
 また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層:MPL)を基材の触媒層側に有するものであってもよい。
 カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、黒鉛、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒子径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
 カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
 カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、質量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
 該ガス拡散層の有効拡散係数は、3.39×10-5×εγ m2/s(ただし、ε:ガス拡散層の空孔率、γ:ガス拡散層の屈曲度)以上であることが好ましい。かような範囲であれば、隣接する親水性多孔質層のガス輸送性の低下を抑制することができる。
 ガス拡散層の有効拡散係数が上記の値以上の場合は、気体分子同士の衝突が律速となる分子拡散であるが、この値以下になると細孔壁との衝突が律速となるクヌーセン拡散となり、拡散性が急激に低下する場合がある。発電中において、生成水の付着などによる空孔率の低下に対する拡散性の低下代が大きくなる場合がある。なお、前記ガス拡散層の空孔率εは、水銀圧入法で得られた空孔量と体積から算出できる。
 (膜電極接合体の製造方法)
 上記実施形態のMEAの製造方法は特に限定されるものではなく、従来公知の製造方法により製造することができる。
 好適には、触媒層と親水性多孔質層とを予め一体化する工程を含む。ガス拡散層上に親水性多孔質層インクを塗布し、乾燥すると、接触抵抗が上がる場合がある。したがって、触媒層と親水性多孔質層とを予め一体化する工程を行うことによって、上記懸念が解消される。そして、かような工程を採用することにより、触媒層と親水性多孔質層との界面における電子や水の輸送性が損なわれずに、膜電極接合体を製造することができる。
 (燃料電池)
 次に、図面を参照しながら本発明のMEAを用いる好適な実施形態であるPEFCについて説明する。
 図2は、本発明(第1実施態様)のガス拡散電極を含むMEAが一対のセパレータにより挟持されてなるPEFCの単セルを示す断面概略図である。
 図2に示すPEFC100は、MEA10aをアノード側セパレータ102およびカソード側セパレータ101で挟持することで構成されている。また、MEAに供給される燃料ガスおよび酸化剤ガスは、アノード側セパレータ102およびカソード側セパレータ101に、それぞれ複数箇所設けられたガス供給溝104、103などを介して供給される。また、図2のPEFCにおいては、ガスケット105が、MEA10の表面に位置する電極の外周を、取り囲むように配置されている。ガスケットはシール部材であり、接着層(図示せず)を介して、MEA10の固体高分子電解質膜12の外面に固定される構成を有していてもよい。ガスケットは、セパレータとMEAとのシール性を確保する機能を有している。なお、必要に応じて用いられる接着層は、接着性を確保することを考慮すると、ガスケットの形状に対応し、電解質膜の全周縁部に、額縁状に配置されることが好ましい。
 以下、MEA以外のPEFCの各構成要素について、順に詳細に説明する。
 [ガスケット]
 ガスケットは、触媒層またはガス拡散層(すなわち、ガス拡散電極)を包囲するように配置され、供給されたガス(燃料ガスまたは酸化剤ガス)のガス拡散電極からの漏出を防止する機能を有する。
 ガスケットを構成する材料は、ガス、特に酸素や水素に対して不透過性であればよく、特に制限されることはない。ガスケットの構成材料としては、例えば、フッ素ゴム、シリコンゴム、エチレンプロピレンゴム(EPDM)、ポリイソブチレンゴムなどのゴム材料、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)などの高分子材料が挙げられる。ただし、その他の材料が用いられてもよいことは勿論である。
 ガスケットのサイズについても特に制限はなく、所望のガスシール性や他の部材のサイズとの関係などを考慮して適宜決定すればよい。
 [セパレータ]
 MEAは、セパレータで挟持されてPEFCの単セルを構成する。PEFCは、単セルが複数個直列に接続されてなるスタック構造を有するのが一般的である。この際、セパレータは、各MEAを直列に電気的に接続する機能に加えて、燃料ガスおよび酸化剤ガス並びに冷媒といった異なる流体を流す流路やマニホールドを備え、さらにはスタックの機械的強度を保つといった機能をも有する。
 セパレータを構成する材料は特に制限されず、従来公知の知見が適宜参照されうるが、例えば、緻密カーボングラファイト、炭素板等のカーボン材料や、ステンレス等の金属材料などが挙げられる。セパレータのサイズや流路の形状などは特に限定されず、PEFCの出力特性などを考慮して適宜決定すればよい。
 PEFCの製造方法は特に制限されず、燃料電池の分野において従来公知の知見を適宜参照することにより製造可能である。
 以上、固体高分子電解質型燃料電池を例に挙げて説明したが、燃料電池としてはこの他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられ、いずれの電池に適用してもよい。なかでも小型かつ高密度・高出力化が可能であるから、固体高分子形燃料電池(PEFC)が好ましく挙げられる。
 前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用であるが、特にシステムの起動/停止や出力変動が頻繁に発生する車両、より好ましくは自動車用途で特に好適に使用できる。
 <第2実施態様>
 次いで、本発明の第2実施態様について説明する。
 冬季等の低気温時において、燃料電池の温度は停止時に、適正運転温度より甚だしく低下する。特に、氷点下時等の燃料電池では、電極触媒層で生成した水が反応ガス輸送経路内のいたるところで滞留して凍結する恐れがあり、零下起動時の排水性も重要な要素である。しかしながら、従来の技術では、零下起動性の高い燃料電池を得ることは困難であった。
 したがって、本発明(第2実施態様)は、上記課題に着目して成されたものであって、水の滞留を防ぐことにより零下起動性を向上させる、燃料電池用ガス拡散層を提供することを目的とする。
 本発明(第2実施態様)のガス拡散層は、イオン伝導性材料および前記イオン伝導性材料に被覆される導電性材料を含む親水性多孔質層と、多孔質性のガス拡散層基材と、を含む。そして、親水性多孔質層の少なくとも一部が、ガス拡散層基材に設置され、さらにガス拡散層基材の少なくとも一部が、親水処理された親水処理部である。
 本発明(第2実施態様)のガス拡散層によれば、ガス拡散層における水の蒸発面積が確保されるため、低温下であっても発電時に生成する生成水の排水性が確保される。さらに、親水性多孔質層により液水の蒸発性が向上し、かつガス拡散性基材中の水蒸気輸送性が向上するため、MEA内での生成水の滞留をより防ぐことができ、電池の起動性が確保されうる。
 本発明(第2実施態様)は、イオン伝導性材料および前記イオン伝導性材料に被覆された導電性材料を含む親水性多孔質層と、多孔質性のガス拡散層基材と、を含むガス拡散層であって、前記親水性多孔質層の少なくとも一部が、前記ガス拡散層基材に設置され、前記ガス拡散層基材の少なくとも一部が、親水処理された親水処理部である、ガス拡散層である。
 図3に、一般的なMEAの構成を示す。一般に、MEA210は、高分子固体電解質膜212の両面に、アノード側電極触媒層213aおよびカソード側電極触媒層213cが対向して配置され、これをアノード側ガス拡散層214aおよびカソード側ガス拡散層214cで挟持した構成を有している。電極触媒層(213a、213c)とガス拡散層(214a、214c)は、ガス拡散電極(215a、215c)を構成する。
 上述したように、燃料電池においては、水はおもにカソード側電極触媒層213cにおいて生成する。生成した水は、カソード側ガス拡散層214cに輸送されて、カソード側ガス拡散層214cの外側に排出されるか、高分子固体電解質膜212、アノード側電極触媒層213a、およびアノード側ガス拡散層214aに順次輸送され、アノード側ガス拡散層214aの外側に排出される。
 ここで、電極触媒層213a、213cには、一般に、電極触媒に加えて、イオン伝導性の高分子電解質(イオン伝導性材料)が含まれる。そのため、電極触媒層213a、213cの内部の水の輸送の形態としては、主に、電極触媒間の空孔の水蒸気の輸送、イオン伝導性の高分子電解質中の液水の輸送、およびイオン伝導性の高分子電解質の表面からの液水の蒸発による水蒸気の輸送、が挙げられる。
 ところが、低温条件下、特に零下起動時においては、電極触媒層におけるイオン伝導性の高分子電解質の表面からの液水の蒸発速度が、常温の場合に比べて低下しうる。そのため、触媒層からガス拡散層への水の輸送性が低下してしまう。また、一般的に多孔質性材料を用いて形成されるガス拡散層においては、多孔質材料の空孔内で液水の輸送が行われるほか、水蒸気が空孔内をクヌーセン拡散することによって輸送が進行しうる。しかしながら、低温下では水蒸気のクヌーセン拡散の速度が低下するため、水の輸送性が低下しうる。したがって、低温条件下では、常温の場合に比べて、ガス拡散層における水の輸送性が低下してしまう。
 そこで、本発明(第2実施態様)においては、ガス拡散層として、イオン伝導性材料および前記イオン伝導性材料に被覆される導電性材料を含む親水性多孔質層と、多孔質性のガス拡散層基材とが積層されたガス拡散層を用いる。上記の親水性多孔質層を用いることで液水が蒸発しうる気液界面の表面積を確保し、これによって低温下での水の輸送性を確保することができる。さらに、本発明のガス拡散層においては、前記親水性多孔質層の少なくとも一部が、前記ガス拡散層基材の表面に埋没されて設置され、前記ガス拡散層基材の表面の少なくとも一部が、親水処理された親水処理部である。このような形態とすることによって、液水が蒸発しうる気液界面の表面積をさらに増大させることができ、水の排出速度をより向上させることができる。そのため、零下発電時の生成水が空孔内に蓄積されにくくなり、反応ガスの拡散性の低下が抑制され、零下発電性能が向上しうる。
 前記親水処理部は、イオン伝導性材料、金属酸化物、および親水性ポリマーからなる群より選択される1以上を含むことが好ましい。さらに具体的な例として、イオン伝導性材料としては、例えば、パーフルオロスルホン酸、スルホン化ポリエーテルエーテルケトンなどが挙げられる。金属酸化物としては、例えば、酸化チタン、酸化ジルコニウムなどが挙げられる。親水性ポリマーとしては、例えば、ポリアクリル酸、ポリアクリルアミドなどが挙げられる。
 図4の(a)は、本発明(第2実施態様)のガス拡散層の一実施形態を示す概略図である。図4の(a)に示すガス拡散層220は、多孔質性のガス拡散層基材216と、親水性多孔質層217とから形成される。そして、親水性多孔質層217は、イオン伝導性材料218と粒子状の導電性材料219を含み、導電性材料219は、イオン伝導性材料218によって被覆される。後述するように、ガス拡散層220は、好ましくは、ガス拡散層基材216が外側になるようにしてMEAに組み込まれうる。したがってカソード側触媒層で生成した水は、電極触媒層(図示せず)から、親水性多孔質層217を介して、ガス拡散層基材216の方向に輸送されうる。そこで、親水性多孔質層217の少なくとも一部をガス拡散層基材216に埋没させ、ガス拡散層基材216の少なくとも一部に親水処理部21を設けることで、親水性多孔質層217からガス拡散層基材216にかけて連続的な親水ネットワークを構築することができる。さらに、このような親水ネットワークを構築することによって、親水性多孔質層217からガス拡散層基材216にかけての領域において、空孔にさらされるイオン伝導性材料218の表面積が増大しうる。したがって、イオン伝導性材料218を介して輸送されてきた液水の蒸発が効率的に進行し、これによって排水速度が増大しうる。
 ここで、ガス拡散層基材216において、あらかじめ親水処理された部分である親水処理部221は、ガス拡散層基材216のうち、親水性多孔質層217が埋没されている領域222の少なくとも一部に存在することが必要である。好ましくは、ガス拡散層基材216のうち、親水性多孔質層217が埋没されている領域222の全体が親水処理部221である。例えば、ガス拡散層基材216の、親水性多孔質層が形成される側の表面から厚み方向に、ガス拡散層基材216の厚みに対して10~100%の部分を親水処理して親水処理部221を形成する。ガス拡散層基材216の厚みに対して10%以上の部分が親水処理部であれば、親水性多孔質層17からガス拡散層基材216にかけて連続的な親水ネットワークを構築することができる。ガス拡散層基材216において親水処理部221を形成する割合の上限は特に限定されず、ガス拡散層基材216の全体(ガス拡散層基材216の厚みに対して100%)が親水処理されていてもよい。
 親水性多孔質層17は、少なくともその一部がガス拡散層基材216に埋没されていればよいが、好ましくは、親水性多孔質層217の厚みに対して10~100%の部分が、ガス拡散層基材216の内部に埋没して形成される。親水性多孔質層217の厚みに対して10%以上の部分が埋没している場合、親水性多孔質層217からガス拡散層基材216にかけて連続的な親水ネットワークが形成できる。さらに水の輸送距離を短縮できるため、水の排出速度を向上させることができる。特に、図4の(b)のように、親水性多孔質層217の全体がガス拡散層基材216に埋没される、すなわち親水性多孔質層217がガス拡散層基材216の内部に形成されることが好ましい。これは、親水性多孔質層217の厚みの100%がガス拡散層基材216に埋没される形態に相当する。このような形態であれば、上述の効果が特に顕著に得られうる。
 好ましくは、親水処理部を含むガス拡散層基材における水蒸気の有効拡散係数D(m2/s)は、1気圧、-20℃で、前記ガス拡散層基材の空孔率ε、前記ガス拡散層基材の屈曲度γを用いて、下記式の関係を満足する。
Figure JPOXMLDOC01-appb-M000006
 ガス拡散層基材内に存在する空孔の空孔径が、水蒸気の平均自由工程(分子が一度衝突してから次に衝突するまでに進む平均距離)と同等以下である場合、ガス拡散層基材内における水蒸気の拡散は、クヌーセン拡散による拡散が支配的になる。しかし、この場合、分子拡散による拡散に対して拡散係数が著しく低下する。そのため、ガス拡散層において生じた水蒸気が、ガス拡散層基材内で速やかに拡散され、ガス拡散層外に排出されるためには、ガス拡散層基材内における水蒸気の拡散が、分子拡散による拡散である条件を満足していることが好ましい。
 分子拡散による水蒸気の拡散係数Db,w-A(m2/s)は、例えば、水蒸気wとガス種Aとの二成分系で、下記のChapman-Enskog式によって算出することができる。
Figure JPOXMLDOC01-appb-M000007
 式中、Tは絶対温度(K)であり、pは圧力(atm)である。MwおよびMAは、それぞれ水蒸気およびガス種Aの分子量(g/mol)である。σwおよびσAは、水蒸気およびガス種Aの衝突直径(Å)であり、kはボルツマン定数であり、εwおよびεAは、水蒸気およびガス種AのLenard-Jonesパラメータである。
 ここで、1気圧、20℃の条件で、σw、σN2、εw/k、εN2/kの値としてそれぞれ2.641、3.798(窒素)、809.1、71.4(窒素)を用いて計算すると、分子拡散による、対窒素ガスにおける水蒸気の拡散係数は、約2,0×10-52/sであることが導かれる。同様の計算により、燃料電池に供給されるガスについて、例えば水素、酸素との相互拡散係数を算出すると、対窒素の場合が最も拡散係数が低くなる。
 ガス拡散層内の水蒸気の有効拡散係数Dは、ガス拡散層基材の空孔率ε、およびガス拡散層基材の屈曲度γを用いて、
Figure JPOXMLDOC01-appb-M000008
で表される。
 したがって、ガス拡散層基材における水蒸気の有効拡散係数D(m2/s)が、1気圧、-20℃で、2.0×10-5×εγ以上であれば、水蒸気の拡散が主に分子拡散によって進行していると判断され、したがって水蒸気の輸送が速やかに行われうる。そのため、水の排出速度が向上しうる。ここで、ガス拡散層基材の空孔率εは、水銀圧入法による細孔分布測定などにより層の内部に存在する空孔(微細孔)の体積を測定し、層の体積に対する割合として求めることができる。ガス拡散層基材の屈曲率γは、ガス透過試験による有効拡散係数測定結果、及び水銀圧入法などの分析による空孔率測定結果から算出することができる。
 好ましくは、前記ガス拡散層基材の空孔の空孔径は、最小値(最小空孔径)が1μm以上であることが好ましい。最小空孔径が1μm以上であれば、クヌーセン拡散による水蒸気の拡散はほぼ無視することができ、分子拡散による水蒸気の拡散が支配的となるため、水蒸気の輸送速度をより向上させることができる。そのため、水の排出速度が向上しうる。ここで、ガス拡散層基材の最小空孔径は、水銀圧入法による細孔分布測定などにより求めることができる。最小空孔径の上限値は特に制限されないが、実質的に、10μm程度である。
 なお、本実施形態のガス拡散電極は、アノード側ガス拡散層であってもよく、カソード側拡散層であってもよいが、好適には、少なくともアノード側ガス拡散電極に適用される。氷点下において燃料電池を起動させる際、発電による生成水が凍ることにより、酸素の輸送が阻害されることが起動性低下の一因である。生成水はおもにカソード側触媒層で発生しうるため、アノード側への水の輸送性を高めることが生成水の排出を促進する上で重要である。アノード側に本実施形態のガス拡散層が配置されることによって、より多くの生成水が輸送されうるため、氷点下起動性を増すことができる。
 以下、第2実施態様のガス拡散層を構成する部材について説明する。
 (親水性多孔質層)
 上述のように、親水性多孔質層は、イオン伝導性材料と、前記イオン伝導性材料に被覆される導電性材料を含む。
 本発明のガス拡散層に用いられる親水性多孔質層において、好ましくはSion=SBET×θionで与えられる、イオン伝導性材料に被覆される導電性材料の被覆面積Sionは、200m2/g carbon以上である。ここで、SBETは、導電性材料のBET窒素比表面積であり、θionは、イオン伝導性材料被覆率である。
 本願発明者らは、生成水の排水性を向上させるために検討した結果、親水性多孔質層に含まれる導電性材料の、イオン伝導性材料による被覆面積が排水性に非常に重要な役割を果たすことを見出し、さらに検討した結果、以下の知見を得た。
 零下時には、液水から気相への移動が起きにくいため、液相から気相へいかに移動させるかが重要である。そして、液相から気相への水輸送性向上には、導電性材料が重要な役割を果たすことがわかった。イオン伝導性材料の被覆面積が200m2/g carbon以上である導電性材料は、液水の蒸発面積が大きく、液相から気相への相変化抵抗を低減することができる。
 ここで、被覆面積は、Sion=SBET×θion(Sion:イオン伝導性材料の被覆面積(m2/g)、SBET:導電性材料のBET窒素比表面積(m2/g)、θion:イオン伝導性材料被覆率)で与えられる。したがって、イオン伝導性材料の被覆面積は、用いられる導電性材料が決定すれば、導電性材料のBET窒素比表面積およびイオン伝導性材料被覆率を測定することによって、算出することができる値である。また、イオン伝導性材料の被覆面積は、導電性材料の形状によって制御できる値とも言える。
 本明細書において、イオン伝導性材料被覆率θionは、相対湿度30%および相対湿度100%における電気二重層容量(Cdl)の比(θion=相対湿度30%のCdl/相対湿度100%のCdlで決定される)で表される。ここで、相対湿度30%と相対湿度100%との比を採る理由は以下の通りである。高加湿条件下では、導電性材料と導電性材料表面に吸着した水との、または導電性材料とイオン伝導性材料との界面に形成された電気二重層が計測される。一方で、低加湿条件下では、導電性材料とイオン伝導性材料との界面に形成された電気二重層が主として計測される。ここで、相対湿度30%程度以下で、電気二重層容量はほぼ一定となる。したがって、本発明では、相対湿度30%および相対湿度100%をそれぞれ低加湿条件および高加湿条件の代表地点と定め、両者の電気二重層容量の比を採ることにより、導電性材料がイオン伝導性材料によりどの程度被覆されているかの指標とした。
 電気二重層容量は、以下の方法によって測定される値を採用するものとする。
 まず、触媒成分を含まない親水性多孔質層と触媒層を電解質膜の異なる面にそれぞれ配した膜電極接合体を作製し、その両面をガス拡散層、さらにカーボンセパレーター、さらには金メッキした集電板で挟持し、通常の燃料電池と同様のセルを得た。触媒層に調湿した水素ガスを、親水性多孔質層に調湿した窒素ガスを供給した状態で、触媒層を参照極および対極として用い、親水性多孔質層の電位を参照極に対して0.2~0.6Vの範囲で5~10回走査した。走査速度は50mV/sで行った。得られた電流と電位の関係は長方形に近い波形を示した。これは、電極上での酸化および還元反応が生じておらず、電気二重層の充電および放電が電流の主要因であることを示している。この波形において、ある電位、例えば、0.3Vにおける酸化電流と還元電流の絶対値の平均の値を走査速度で除することで電気二重層容量を算出した。この測定を種々の加湿条件下で行い、電気二重層容量と相対湿度との関係を得た。
 また、導電性材料のBET窒素比表面積は、以下の方法によって測定される値を採用するものとする。
 (BET窒素比表面積の測定方法)
 1.サンプリング、秤量・予備乾燥
 粉末は、約0.04~0.07gを精秤し、試料管に封入した。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定に供した。秤量には、島津製作所株式会社製電子天秤(AW220)を用いた。なお、塗布シートについては、これの全質量から、同面積のテフロン(登録商標)(基材)の質量を差し引いた塗布層の正味の質量約0.03~0.04gを試料質量として用いた。
 2.測定条件(下記表4参照)
Figure JPOXMLDOC01-appb-T000009
 3.測定方法
 吸着・脱着等温線の吸着側において、相対圧(P/P0)約0.00~0.45の範囲から、BETプロットを作成することで、その傾きと切片からBET窒素比表面積を算出する。
 また、本発明(第2実施態様)のガス拡散層に用いられる親水性多孔質層においては、-20℃以下の条件でイオン導電性材料中の液水の輸送抵抗Rwaterは、空孔中における水蒸気の輸送抵抗(拡散抵抗)Rvaporよりも小さい。そして、親水性材料を介した水の輸送経路が十分連通していることが望ましい。すなわち、低温条件下では、常温で起動する場合に比べて、ガス拡散層における液水の蒸発が起こりにくい。そのため、低温条件下で水の輸送速度を高めるためには、イオン伝導性材料中の液水の輸送速度を向上させることが重要であり、上記の条件であれば、親水性多孔質において十分な水の輸送速度が得られうる。
 親水性多孔質層中の水の輸送は、主に、親水性多孔質層中の空孔中の水蒸気の輸送と、イオン伝導性材料を介した液水の輸送とによって進行すると考えられる。親水性多孔質層中における水の輸送抵抗Rは、親水性多孔質層の空孔中の水蒸気の輸送抵抗Rvapor、イオン伝導性材料を介した液水の輸送抵抗Rwater、および親水性多孔質層の厚さZを用いて、下記式のように表すことができる。
Figure JPOXMLDOC01-appb-M000010
 ここで、親水性多孔質層における水蒸気の輸送抵抗Rvapor(cm2・s/mol)は、下記式によって求めることができる。
Figure JPOXMLDOC01-appb-M000011
 式中、Psatは水の飽和水蒸気圧であり、Tは絶対温度であり、DMPL,vaporは親水性多孔質層中の水蒸気の気相における有効拡散係数である。
 親水性多孔質層における水蒸気の有効拡散係数DMPL,vaporは、以下のように算出することができる。
 すなわち、半径rの空孔中における拡散係数Dt(r)は、分子拡散とクヌーセン拡散とが混在する環境下では、下記式のように表される。
Figure JPOXMLDOC01-appb-M000012
 式中、Dmは分子拡散による拡散係数であり、Dkはクヌーセン拡散による拡散係数である。Knはクヌーセン数であり、(分子の平均自由工程)/(空孔直径)で与えられる。
 ここで、親水性多孔質層内においては、種々の半径r1、r2、…rnの空孔が連通していることを考慮する。総括拡散係数DAは、拡散係数Dt(r)(r:r1~rn)と、半径r(r:r1~rn)の空孔中の拡散距離Z(r)(r:r1~rn)を用いて、下記式のように表される。
Figure JPOXMLDOC01-appb-M000013
 ここで、空孔径分布は水銀圧入法によって求めることができ、半径r(r:r1~rn)の空孔中の拡散距離Z(r)(r:r1~rn)は、半径r(r:r1~rn)の空孔への水銀圧入量から算出することができる。
 このように求めたDAに、親水性多孔質層の空孔率εMPLを乗じて、有効拡散係数DMPL,vaporを得る。
 一方、イオン伝導性材料中の液水の輸送抵抗Rwater(s/m)は、例えば、ナフィオンのような高分子電解質材料をイオン伝導性材料として用いた場合、水の活量の勾配を駆動力として輸送される条件から、下記式のように表される。
Figure JPOXMLDOC01-appb-M000014
 式中、ρはイオン伝導性材料の乾燥密度であり、Mmは単位含水基(例えばスルホン酸基)あたりのイオン伝導性材料重量である。λは単位含水基(例えばスルホン酸基)あたりの含水量であり、aは水の活量(水蒸気分圧/飽和蒸気圧)であり、Dwaterはイオン伝導性材料中の液水の有効拡散係数である。λは、水蒸気吸着等温線の実験的な測定等により、a-λ特性として一般的に求められている。よってdλ/daはその特性を微分することにより算出される。親水性多孔質層におけるイオン伝導性材料中の液水の有効拡散係数Dwaterは、バルクのイオン伝導性材料中の水の拡散係数Dw、イオン伝導性材料の体積分率εd、および親水性多孔質層内のイオン伝導性材料の屈曲度γdを用いて、下記式のように表される。
Figure JPOXMLDOC01-appb-M000015
 ここで、バルクのイオン伝導性材料中の水の拡散係数Dwは、例えば、S.Motupally et al JES,147(9)3171(2000)に記載の方法で求めることができる。
 さらに、本発明に用いられる親水性多孔質層においては、液水の輸送経路が十分に連通していることが好ましい。すなわち、液水を輸送しうるイオン輸送性材料が、密着や一体化などにより連続的に複数の導電性材料を被覆し、連続的な水(液水)の輸送経路が形成されていることが好ましい。水の輸送経路の連続性は、例えば、相対湿度に対する電気二重層容量(Cdl)の変化を測定することで確認することができる。上述のように、高加湿条件下では、導電性材料と導電性材料表面に吸着した水との、または導電性材料とイオン伝導性材料との界面に形成された電気二重層が計測される。一方で、低加湿条件下では、吸着水の寄与が小さくなり、導電性材料とイオン伝導性材料との界面に形成された電気二重層が主として計測される。ここで、イオン伝導性材料による液水の輸送経路が連通していない場合、相対湿度の低下に伴って電気二重層が形成されなくなり、電気二重層容量が低下する。そこで、ここでは、相対湿度40%における電気二重層容量と相対湿度30%における電気二重層容量とを比較して、その変化代が10%以内であるとき、液水の輸送経路が十分に連通しているとみなす。電気二重層容量の測定方法は上述の通りである。
 親水性多孔質層の厚さは、特に制限されるものではないが、好ましくは2~40μm、より好ましくは2~25μmとするのがよい。親水性多孔質層の厚さが上記範囲内であれば、排水性とガス拡散性との両立を確保することができるため好ましい。
 親水性多孔質層の全体の空孔率は、特に制限されるものではないが、30~80%であることが好ましく、40~70%であることがより好ましい。空孔率が上記範囲内であれば、排水性およびガス拡散性が確保できるため好ましい。空孔率は、水銀圧入法による細孔分布測定などにより層の内部に存在する空孔(微細孔)の体積を測定し、層の体積に対する割合として求めることができる。
 親水性多孔質層には、導電性材料と、イオン伝導性材料とが含まれる。場合によって、導電性材料は触媒を担持していてもよい。親水性多孔質層は、導電性材料およびイオン伝導性材料以外に、他の材料を含有していてもよい。親水性多孔質層中、導電性材料とイオン伝導性材料との含有量は80質量%以上であることが好ましく、90質量%以上であることがより好ましい。さらに好ましくは、親水性多孔質層は、導電性材料およびイオン伝導性材料から構成される。
 以下、第2実施態様の親水性多孔質層を構成する各成分について説明する。
 (導電性材料)
 導電性材料としては、天然黒鉛、人造黒鉛、活性炭、カーボンブラック(オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなど)などの炭素材料;酸化スズ、酸化チタンなどの金属酸化物などが挙げられる。好ましくは、炭素材料である。前記導電性材料は、1種単独で用いてもよいし、2種以上併用して用いてもよい。より好ましくは、カーボンブラック、窒素BET比表面積が200~1600m2/gのアセチレンブラック、ケッチェンブラック、ブラックパールズ、キャボット社製バルカン、活性炭などが用いられうる。
 前記導電性材料は、好ましくは、粒子状である。粒子状の導電性材料の平均粒子径は、5~100nmであることが好ましく、10~60nmであることがより好ましい。これにより、親水性多孔質層のガス拡散性を確保することができる。なお、本明細書中において、「粒子径」とは、活物質粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
 (イオン伝導性材料)
 イオン伝導性材料としては、イオン伝導性であり、導電性材料を結着できる材料であれば、特に限定されない。例えば、ポリアクリルアミド、水性ウレタン樹脂、シリコン樹脂等の高分子;高分子電解質等が挙げられる。好適には高分子電解質である。高分子電解質をイオン伝導性材料とすることで、同じイオン伝導性材料を含むMEAの構成要素(電解質膜や触媒層)と隣接して親水性多孔質層を配置する場合に安定して配置させることができ、触媒層や膜と、導電性材料との間の水輸送抵抗を低減することができる。この結果、電解質膜または触媒層と、導電性材料との間の水輸送性が向上し、より早い時間で平衡に達することができる。イオン伝導性材料が高分子電解質である場合は、当該電解質は、触媒層や電解質膜中に使用される高分子電解質と同じであってもよいし、異なってもよい。さらに、親水性多孔質層を含むMEAを作製する場合、材料を共通化することもでき、作製時の省力化が図れる。
 用いられるイオン伝導性材料は特に限定されるものではない。具体的には、イオン伝導性材料は、ポリマー骨格の全部又は一部にフッ素原子を含むフッ素系電解質と、ポリマー骨格にフッ素原子を含まない炭化水素系電解質とに大別される。
 フッ素系電解質としては、具体的には、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、ポリトリフルオロスチレンスルフォン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが好適な一例として挙げられる。フッ素系電解質は、耐久性、機械強度に優れる。
 前記炭化水素系電解質として、具体的には、ポリスルホンスルホン酸、ポリアリールエーテルケトンスルホン酸、ポリベンズイミダゾールアルキルスルホン酸、ポリベンズイミダゾールアルキルホスホン酸、ポリスチレンスルホン酸、ポリエーテルエーテルケトンスルホン酸、ポリフェニルスルホン酸などが好適な一例として挙げられる。
 上記イオン伝導性材料は、単独で用いてもよいし、2種以上併用してもよい。また、これらのイオン伝導性材料は、溶液や分散液の形態のものを用いてもよい。
 親水性多孔質層においては、水の移動速度が重要であるため、イオン伝導性材料のEWは低いほうが好ましい。好ましくはEWが1200g/eq.以下、より好ましくは1000g/eq.以下、さらに好ましくは700g/eq.以下である。かような範囲であれば、液水の輸送抵抗が低減され、零下起動性を向上させることができる。EWの下限は特に限定されるものではないが、通常500g/eq.以上であることが好ましい。なお、EW(Equivalent Weight)は、イオン交換基当量重量を表す。
 (ガス拡散層基材)
 ガス拡散層基材は、セパレータ流路を介して供給されたガス(燃料ガスまたは酸化剤ガス)の拡散を促進する機能、および電子伝導パスとしての機能に加え、親水性多孔質層を支持する機能を有する。
 ガス拡散層基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。より具体的には、カーボンペーパ、カーボンクロス、カーボン不織布などが好ましく挙げられる。前記ガス拡散基材は、市販品を用いることもでき、例えば、東レ株式会社製カーボンペーパTGPシリーズ、E-TEK社製カーボンクロスなどが挙げられる。
 ガス拡散層基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
 本発明のガス拡散層に用いられるガス拡散層基材は、少なくとも一部に親水処理された親水処理部を有する。
 ガス拡散層基材を親水処理する方法としては、従来一般的に用いられているものであれば特に制限なく用いることができる。例えば、酸素ガス、水蒸気などによる気相法;プラズマ照射;水素と酸素を反応させて発生した水蒸気を利用するパイロジェニック法(水素燃焼);過マンガン酸カリウム、硝酸、塩素酸塩、過硫酸塩、過硼酸塩、過炭酸塩、過酸化水素などを含む強酸化性水溶液による液相法;オゾン、窒素酸化物、空気などによる気相法;などを用いて、ガス拡散層基材の所望する部位を酸化処理する方法などが挙げられるが、好ましくは、ガス拡散層基材の所望する部位に、親水剤を塗布する方法が用いられる。前記親水剤としては、従来一般的なものであれば特に限定されず、チタニア、シリカ、アルミナ、酸化マグネシウム、酸化カルシウム、酸化スズ、などの金属酸化物などの金属酸化物や、Nafion(DuPont社製 登録商標)、Flemion(旭化成株式会社製 登録商標)に代表されるパーフルオロカーボンスルホン酸系ポリマーなどの、親水性基を含有する親水性高分子などが好ましく挙げられる。または、上述したイオン伝導性材料を親水剤として用いてもよい。これらの親水剤を用いることで、安価な方法で効果的に液水の輸送経路を確保できる。前記親水剤は、1種のみを用いてもよく、2種以上を併用してもよい。
 前記親水剤を用いて親水処理する方法は、特に限定されないが、例えば、前記親水剤を含む溶液や、親水剤として用いられる金属酸化物を構成する金属の元素を含む金属アルコキシド溶液にガス拡散層基材の所望する部位を浸漬または含浸させた後、必要に応じて乾燥、焼成などを行う方法などが好ましく用いられる。前記溶液に用いられる溶媒としては、特に限定されるものではないが、水;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール等のアルコール;エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、またはグリセリンなどの多価アルコールなどが挙げられる。これらは1種単独で用いてもよいし、2種以上併用して用いてもよい。
 (ガス拡散層の製造方法)
 親水処理されたガス拡散層基材に親水性多孔質層が埋没されたガス拡散層の作製方法は特に限定されるものではない。例えば、図5に示すように、ガス拡散層基材に親水剤を含む溶液を塗布した後、前記溶液が乾燥する前に導電性材料、イオン伝導性材料、および溶媒を混合して調製した親水性多孔質層用インクをさらに塗布し、乾燥させる方法などが用いられる。また、触媒成分が担持された導電性材料を用いる場合には、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法を用いて、予め導電性材料に触媒成分を担持させておくのがよい。
 親水性多孔質層用インクに用いられる溶媒としては、特に限定されるものではないが、水;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール等のアルコール;エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、またはグリセリンなどの多価アルコールなどが挙げられる。これらは1種単独で用いてもよいし、2種以上併用して用いてもよい。
 有機溶媒の選択は、親水性多孔質層の空孔率を制御する上で重要である。導電性材料の密度が疎である親水性多孔質層を作製する場合、インクに沸点が150℃を超える高沸点有機溶媒を混合した溶媒を用いることが好ましい。インクに沸点が150℃を超える高沸点有機溶媒を混合した場合、平均空孔径を大きくすることができ、また、空孔率も大きくすることができる。
 親水性多孔質層用インク中の溶媒は、高沸点有機溶媒のみから構成されていてもよい。また、高沸点有機溶媒とその他の溶媒(例えば、水、沸点が150℃未満の有機溶媒(メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール等)との混合物を用いてもよい。高沸点有機溶媒とその他の溶媒との混合物の場合、溶媒中の高沸点有機溶媒の比率は、10質量%以上であることが好ましく、30質量%以上であることがより好ましい。なお、保水性の観点から、高沸点有機溶媒の比率は高いほど好ましいので、溶媒中の高沸点有機溶媒の比率の上限は特に限定されないが、高分子電解質の分散性を考慮すると、70質量%以下であることが好ましい。高沸点有機溶媒とその他の溶媒との混合物を用いる場合には、平均空孔径および空孔率を大きくできることが知られている。
 また、インク調整の際に、イオン伝導性材料(I)と導電性材料(C)の混合比(I/C)を意図的に変化させることで、空孔率を制御することができる。
 なお、本明細書における溶媒および溶剤とは、バインダーおよび導電性材料等の固形成分が分散される分散媒、すなわち固形成分以外の液体成分を全て含む。したがって、例えば、水に分散されたイオン伝導性材料と、有機溶媒とを混合して親水性多孔質層用インクを製造する場合、本明細書でいう溶媒は、水および有機溶媒の双方を指す。
 親水性多孔質層用インクの固形分率(親水性多孔質層用インク全重量に対する固形分の重量割合)は、特に限定されるものではないが、通常5~20質量%程度である。このような範囲とすることで、多孔質層の形成効率と安定性の点で優れる。
 親水性多孔質層用インクの調製方法は、特に制限されない。また、イオン伝導性材料、導電性材料、および溶媒の混合順序は、特に制限されないが、具体的には、下記(i-1)~(i-3)が挙げられる。
 (i-1)イオン伝導性材料を含有した溶液を調製し、前記溶液を、導電性材料と混合する。その後、溶媒をさらに添加して、親水性多孔質層用インクを調製する;
 (i-2)イオン伝導性材料を含有した溶液を調製し、溶媒を添加する。その後、導電性材料をさらに混合(添加)して、親水性多孔質層用インクを調製する;および
 (i-3)導電性材料と溶媒とを混合する。次に、別途イオン伝導性材料を含有した溶液を、さらに添加して、親水性多孔質層用インクを調製する。
 上記方法のうち、(i-1)および(i-2)の方法が好ましく、(i-1)の方法がより好ましい。これにより、水と有機溶媒が均一に混合され、溶媒化合物が形成しやすい。
 上記方法(i-1)~(i-3)において、イオン伝導性材料を含有した溶液において、イオン伝導性材料は、溶媒中に分散している。この際のイオン伝導性材料を含有した溶液中でのイオン伝導性材料含有率は、特に制限されないが、固形分量が好ましくは1~40質量%、より好ましくは5~20質量%である。このような含有率であれば、高分子電解質が適切に溶媒中に分散しうる。
 イオン伝導性材料を含有した溶液は、自ら調整してもよいし、市販品を用いてもよい。上記イオン伝導性材料を含有した溶液中におけるイオン伝導性材料の分散溶媒は、特に限定されるものではないが、水、メタノール、エタノール、1-プロパノール、2-プロパノール等が挙げられる。分散性を考慮すると、好ましくは、水、エタノール、1-プロパノールである。これらの分散溶媒は、単独で用いてもよいし、2種以上併用してもよい。
 また、親水性多孔質層用インクの製造工程において、イオン伝導性材料と、導電性材料と、溶媒とを混合した後は、良好に混合するために、別途混合工程を設けてもよい。このような混合工程としては、触媒インクを超音波ホモジナイザーでよく分散する、あるいは、この混合スラリーをサンドグラインダー、循環式ボールミル、循環式ビーズミルなどの装置でよく粉砕させた後、減圧脱泡操作を加えることなどが好ましく挙げられる。
 併せて、ガス拡散層基材に親水処理部を形成するための親水剤を含む溶液を調製する。親水剤および親水剤を含む溶液に用いられる溶媒については上述した通りである。
 次に、ガス拡散層基材の表面に、上述の親水剤を含む溶液および親水性多孔質層用インクを順次塗布する。
 親水剤を含む溶液および親水性多孔質層用インクのガス拡散層基材の表面への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法、転写法など、公知の方法を用いて行うことができる。また、触媒インクの基材表面への塗布に使用される装置もまた、特に制限されず、公知の装置が使用できる。具体的には、スクリーンプリンター、スプレー装置、バーコーター、ダイコーター、リバースコーター、コンマコーター、グラビアコーター、スプレーコーター、ドクターナイフなどの塗布装置を用いることができる。なお、塗布工程は、それぞれ1回行ってもあるいは複数回繰り返し行ってもよい。
 なお、好適には、親水剤を含む溶液を塗布した後、溶液が乾燥する前に、続けて親水性多孔質層用インクを塗布することが好ましい。好ましくは、親水剤を含む溶液を塗布した後60分以内に多孔質層用インクを塗布する。上記の形態であれば、親水性多孔質層からガス拡散層基材にかけて連続的な親水部を形成することができるため、水輸送性が向上しうる。
 この際、親水性多孔質層用インクの塗布後に、熱処理を行うと、界面での接着性を向上させ、水輸送抵抗を低減することができる。熱処理の条件としては、特に限定されるものではないが、20~170℃で、1~40分間程度、熱処理を行うことが好ましい。なお、熱処理工程は、MEA作製過程のいずれかの段階で行われればよく、親水性多孔質層用インクを基材上に塗布した後すぐに熱処理する形態に限られない。
 最後に、親水剤を含む溶液および親水性多孔質層用インクが塗布された基材を乾燥して、溶媒を除去する。乾燥時間は特に限定されるものではないが、5~30分であることが好ましい。また、乾燥時の雰囲気は特に限定されるものではないが、空気雰囲気または不活性ガス雰囲気下で乾燥を行うことが好ましい。なお、親水剤を含む溶液および親水性多孔質層用インクを乾燥する工程は、親水性多孔質層用インクの塗布後であればMEAの作製過程のいずれの段階で行ってもよく、親水性多孔質層用インクを基材上に塗布した後すぐに乾燥する形態に限られない。
 (ガス拡散電極)
 第2実施態様のガス拡散層は、零下起動時においても、優れた排水性能を有する。したがって、ガス拡散電極に適用した場合に、零下起動性が向上しうる。以下、上記実施形態のガス拡散層を含むガス拡散電極の好適な実施形態について説明する。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、各図において、同一の部材には同一の符号を付し、説明を省略する場合がある。
 図6は、上記実施形態のガス拡散層を含む好適なガス拡散電極230の実施形態を示す概略図である。図6のガス拡散電極は、親水性多孔質層217が電極触媒層223とガス拡散層基材216とで挟持された構成を有している。そして、電極触媒層223において、液水の輸送経路が連通していることを特徴とする。すなわち、電極触媒層223に含まれるイオン伝導性材料同士が、密着や一体化により連続的な液水の通り道である輸送経路(連通した液水の輸送経路)を形成していることが好ましい。上記のような形態であれば、触媒層から親水性多孔質層、およびガス拡散層基材への液水の輸送経路が確保される。したがって、本実施形態のガス拡散電極を燃料電池に適用した場合に、零下起動性が向上しうる。ここで、液水の輸送経路は、電極触媒232をイオン伝導性材料218’で被覆することによって形成されうる。液水の輸送経路の連続性は、例えば、相対湿度に対する電気二重層容量(Cdl)の変化を測定し、電気二重層容量が大きいほど、かつ相対湿度に対する変化が少ないほど、より液水の輸送経路の連続性が確保されたと確認することができる。
 前記ガス拡散電極は、アノード側ガス拡散電極であってもよく、カソード側拡散電極であってもよい。アノード側およびカソード側の両方が本実施形態のガス拡散電極であってもよい。好適には、少なくともアノード側ガス拡散電極に適用される。アノード側に親水性多孔質層からガス拡散層基材にかけて親水ネットワークが形成されたガス拡散層が配置されることによって、より多くの生成水が輸送され、氷点下起動性を増すことができる。
 下記では、第2実施態様のガス拡散電極について、ガス拡散層以外の部材の典型的な形態について説明するが、本発明の技術的範囲が下記の形態のみに限定されることはない。
 [電極触媒層]
 電極触媒層は、実際に反応が進行する層である。具体的には、アノード側電極触媒層では水素の酸化反応が進行し、カソード側電極触媒層では酸素の還元反応が進行する。電極触媒層は、触媒成分、触媒成分を担持する導電性担体、およびプロトン伝導性の高分子電解質であるイオン伝導性材料を含む。
 アノード側電極触媒層に用いられる触媒成分は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード側電極触媒層に用いられる触媒成分もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、およびそれらの合金等などから選択される。ただし、その他の材料が用いられてもよいことは勿論である。これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。前記合金の組成は、合金化する金属の種類にもよるが、白金が30~90原子%、合金化する金属が10~70原子%とするのがよい。カソード側触媒として合金を使用する場合の合金の組成は、合金化する金属の種類などによって異なり、当業者が適宜選択できるが、白金が30~90原子%、合金化する他の金属が10~70原子%とすることが好ましい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード側電極触媒層に用いられる触媒成分およびカソード側電極触媒層に用いられる触媒成分は、上記の中から適宜選択できる。以下の説明では、特記しない限り、アノード側電極触媒層およびカソード側電極触媒層用の触媒成分についての説明は、両者について同様の定義であり、一括して、「触媒成分」と称する。しかしながら、アノード側電極触媒層およびカソード側電極触媒層の触媒成分は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択される。
 触媒成分の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが使用できるが、触媒成分は、粒状であることが好ましい。この際、触媒粒子の平均粒子径は、好ましくは1~30nm、より好ましくは1.5~20nm、さらに好ましくは2~10nm、特に好ましくは2~5nmである。触媒粒子の平均粒子径がかような範囲内の値であると、電気化学反応が進行する有効電極面積に関連する触媒利用率と担持の簡便さとのバランスが適切に制御されうる。なお、本発明における「触媒粒子の平均粒子径」は、X線回折における触媒成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡像より調べられる触媒成分の粒子径の平均値として測定されうる。
 導電性担体は、上述した触媒成分を担持するための担体、および触媒成分との電子の授受に関与する電子伝導パスとして機能する。
 導電性担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであればよく、主成分がカーボンである炭素系材料であることが好ましい。具体的には、カーボンブラック、黒鉛化処理したカーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛、カーボンナノチューブ、カーボンナノホーンおよびカーボンフィブリル構造体などからなるカーボン粒子が挙げられる。なお、「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念である。場合によっては、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよい。なお、「実質的に炭素原子からなる」とは、2~3質量%程度以下の不純物の混入が許容されうることを意味する。
 電極触媒層、特にアノード側電極触媒層に黒鉛化処理したカーボンブラックなど、黒鉛化した炭素材料を導電性担体として用いると、導電性材料の腐食耐性を向上することができるため、好ましい。さらに、黒鉛化した炭素材料にイオン伝導性材料を被覆させることによって液水の輸送抵抗を低減させることができる。黒鉛化させた導電性材料を用いた電極触媒層に親水性多孔質を隣接するように設置することで、排水性を向上することができ、零下起動性を向上させ、さらに導電性材料の腐食耐性を付与した燃料電池用の膜電極接合体を提供する。黒鉛化処理したカーボンブラックは球状であることが好ましく、X線回折から算出される[002]面の平均格子面間隔d002が0.343~0.358nmかつBET比表面積が100~300m2/gであることが望ましい。
 導電性担体のBET比表面積は、触媒成分を高分散担持させるのに充分な比表面積であればよいが、好ましくは20~1600m2/g、より好ましくは80~1200m2/gである。導電性担体の比表面積がかような範囲内の値であると、導電性担体上での触媒成分の分散性と触媒成分の有効利用率とのバランスが適切に制御されうる。
 導電性担体のサイズについても特に限定されないが、担持の簡便さ、触媒利用率、電極触媒層の厚みを適切な範囲で制御するなどの観点からは、平均粒子径を5~200nm、好ましくは10~100nm程度とするとよい。
 導電性担体に触媒成分が担持されてなる複合体(以下、「電極触媒」とも称する)において、触媒成分の担持量は、電極触媒の全量に対して、好ましくは10~80質量%、より好ましくは30~70質量%である。触媒成分の担持量がかような範囲内の値であると、導電性担体上での触媒成分の分散度と触媒性能とのバランスが適切に制御されうる。なお、触媒成分の担持量は、誘導結合プラズマ発光分光法(ICP)によって測定されうる。
 また、担体への触媒成分の担持は公知の方法で行うことができる。例えば、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。
 または、本発明において、電極触媒は市販品を使用してもよい。このような市販品としては、例えば、田中貴金属工業製、エヌ・イー・ケムキャット製、E-TEK製、ジョンソンマッセイ製などの電極触媒が使用できる。これらの電極触媒は、カーボン担体に、白金や白金合金を担持(触媒種の担持濃度、20~70質量%)したものである。上記において、カーボン担体としては、ケッチェンブラック、バルカン、アセチレンブラック、ブラックパール、予め高温で熱処理した黒鉛化処理カーボン担体(例えば、黒鉛化処理ケッチェンブラック)、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、メソポーラスカーボンなどがある。
 電極触媒層には、電極触媒に加えて、イオン伝導性の高分子電解質であるイオン伝導性材料が含まれる。イオン伝導性材料を加えることによって、触媒層内で液水の輸送経路を確保することができる。さらに、触媒層中のイオン伝導性材料を親水性多孔質層に接触させることで、触媒層から親水性多孔質層への液水の輸送経路を確保することができる。当該イオン伝導性材料は特に限定されず従来公知の知見が適宜参照されうるが、例えば、上述した多孔質層を構成するイオン伝導性材料が用いられうる。イオン伝導性材料は、電極触媒に対して、50~150質量%加えることが好ましい。
 イオン伝導性材料のEWは低いほうが好ましい。好ましくはEWが1200g/eq.以下、より好ましくは1000g/eq.以下、さらに好ましくは、700g/eq.以下である。かような範囲であれば、液水の輸送抵抗が低減され、零下起動性を向上させることができる。EWの下限は特に限定されるものではないが、通常500g/eq.以上であることが好ましい。なお、EW(Equivalent Weight)は、イオン交換基当量重量を表す。
 電極触媒層は、電極触媒、イオン伝導性材料および溶媒などからなる触媒インクを、固体高分子電解質膜にスプレー法、転写法、ドクターブレード法、ダイコーター法などの従来公知の方法を用いて塗布することにより製造できる。溶媒としては特に制限されず、上記親水性多孔質層インクに用いられる溶媒と同様の溶媒が用いられうる。
 固体高分子電解質膜および触媒インクの塗布量は、電極触媒が電気化学反応を触媒する作用を十分発揮できる量であれば特に制限されないが、単位面積あたりの触媒成分の質量が0.05~1mg/cm2となるように塗布することが好ましい。また、塗布する触媒インクの厚さは、乾燥後に5~30μmとなるように塗布することが好ましい。なお、上記の触媒インクの塗布量および厚さは、アノード側およびカソード側で同じである必要はなく、適宜調整することができる。
 (膜電極接合体)
 第2実施態様のガス拡散層およびガス拡散電極は、零下起動時においても、優れた排水性能を有する。したがって、MEAに適用した場合に、零下起動性を向上させることができる。以下、第2実施態様のガス拡散層またはガス拡散電極を含むMEAの好適な実施形態について説明する。
 図7は、第2実施態様のガス拡散層またはガス拡散電極を含む好適なMEAの実施形態を示す断面模式図である。図7のMEA240は、固体高分子電解質膜212の両面に、アノード側電極触媒層223aおよびカソード側電極触媒層223bが対向して配置され、これをアノード側ガス拡散層基材216aおよびカソード側ガス拡散層基材216cで挟持した構成を有している。さらに、アノード側電極触媒層223aとアノード側ガス拡散層基材216aとの間、およびカソード側電極触媒層223cとカソード側ガス拡散層基材216cとの間には親水性多孔質層217が配置される。ここで、ガス拡散層基材216a、216cと親水性多孔質層217a、217cを有するガス拡散層220、または、さらに電極触媒層223a、223cを有するガス拡散電極を本発明のガス拡散層または本発明のガス拡散電極とすることで、零下起動時においても水の輸送を促進できる。したがって、本実施形態のMEAを燃料電池に適用した場合に、零下起動性が向上しうる。
 本実施形態は、カソード側またはカソード側のいずれかに上記のガス拡散層またはガス拡散電極が配置されていればよいが、好適には、少なくともアノード側に上記のガス拡散層またはガス拡散電極を設ける形態である。氷点下において燃料電池を起動させる際、発電による生成水が凍ることにより、酸素の輸送が阻害されることが起動性低下の一因であると考えられることは上述した。したがって、生成水を吸収する際の水の移動方向は、カソード側電極触媒層から電解質膜を介してアノード側電極触媒層であることが重要である。アノード側に上記のガス拡散層またはガス拡散電極が配置されることによって、より多くの生成水がアノード触媒層側に戻るため、氷点下起動性を増すことができる。また、燃料電池の運転において反応ガス分圧が高く、水蒸気の拡散係数が高い水素極への生成水の輸送比率を向上させ、生成水が電解質膜に輸送されるため、電解質膜を湿潤に保つことができる。
 アノード触媒層側での作用について、以下詳細に説明する。ガス拡散層基材は一般的に空孔径が20~60μm程度であるため、分子拡散による水蒸気の輸送が主となると考えられる。この場合、雰囲気ガスが水素(アノード)もしくは空気(カソード)である場合、水素雰囲気である方が約3~4倍水蒸気の拡散係数が高くなる。すなわち、水蒸気が輸送されやすい状態となっている。したがって、本発明におけるガス拡散層をアノードに用いることで、親水性多孔質層により液水の蒸発性が向上し、かつガス拡散性基材中の水蒸気輸送性が向上するため、より生成水の流路への排出効果を高めることが可能となる。
 MEAを構成するその他の部材については、燃料電池の分野において従来公知の構成がそのまま、または適宜改良されて採用されうる。以下、参考までにその他の部材の典型的な形態について説明するが、本発明の技術的範囲が下記の形態のみに限定されることはない。
 [高分子電解質膜]
 高分子電解質膜は、イオン交換樹脂から構成され、PEFCの運転時にアノード側触媒層で生成したプロトンを膜厚方向に沿ってカソード側触媒層へと選択的に透過させる機能を有する。また、高分子電解質膜は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
 高分子電解質膜の具体的な構成は特に制限されず、燃料電池の分野において従来公知の高分子電解質膜が適宜採用されうる。高分子電解質膜は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質膜と炭化水素系高分子電解質膜とに大別される。フッ素系高分子電解質膜を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性などの発電性能上の観点からはこれらのフッ素系高分子電解質膜が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質膜が用いられる。
 前記炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質膜が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよいことは勿論である。
 高分子電解質膜の厚さは、得られるMEAやPEFCの特性を考慮して適宜決定すればよく、特に制限されない。ただし、高分子電解質膜の厚さは、好ましくは5~300μmであり、より好ましくは10~200μmであり、さらに好ましくは15~150μmである。厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性、および使用時の出力特性のバランスが適切に制御されうる。
 (膜電極接合体の製造方法)
 第2実施態様のMEAの製造方法は特に限定されるものではなく、従来公知の製造方法により製造することができる。
 好適には、電解質膜上に電極触媒、イオン伝導性材料および溶媒を含む触媒インクを塗布する段階と、導電性材料、イオン伝導性材料、および溶媒を含む親水性多孔質層スラリーをさらに塗布する段階と、前記親水性多孔質層スラリーを塗布した表面に、親水剤を含む溶液を塗布したガス拡散層基材の表面を重ねてホットプレスする段階と、を含み、これらの各段階を連続的に行うことが好ましい。各段階を連続的に行うことによって、イオン伝導性材料および親水剤によって形成される液水の輸送経路の連続性を向上させることが可能となる。ここで、各段階を連続的に行うことは、触媒インク、親水性多孔質スラリー、および親水剤を含む溶液が乾燥する前に各段階を順次実施することを意味する。例えば、一つの段階を実施した後、60秒以内、より好ましくは30秒以内に次の段階を実施するとよい。
 具体的な一実施形態を図8に示す。図8の実施形態では、はじめに、電解質膜上に一方の(例えばアノード側)ガス拡散電極を作製する。すなわち、電解質膜を準備し、その一方の表面に電極触媒、イオン伝導性材料および溶媒を含む触媒インクを塗布する。この際、乾燥を行わないほうが好ましい。その後、塗布面上に導電性材料、イオン伝導性材料、および溶媒を含む親水性多孔質層スラリーをさらに塗布する。この際、乾燥を行わないほうが好ましい。ここで、触媒インクに用いるイオン伝導性材料および溶媒は、親水性多孔質層インクに用いるものと同一であっても異なっていてもよい。
 さらに、別途ガス拡散層基材を準備し、親水処理を行う。具体的には、ガス拡散層基材の表面に親水剤を含む溶液を塗布する。ここで、乾燥や熱処理を行わないことが好ましい。親水処理の形態は上述の通りであるため、詳細な説明は省略する。この親水剤処理したガス基材の表面を、上述の親水性多孔質層インクを塗布した表面に重ねて、ホットプレスする。ホットプレスの条件は特に制限されないが、例えば、0.5~1.5MPaで、90~170℃で行うことができる。
 一方、他方の(例えばカソード側の)ガス拡散電極としては、例えばガス拡散層基材またはPTFE製シートなどの基材の上に、親水性多孔質層スラリー、触媒インクを順次塗布して、親水性多孔質層-触媒層を形成する。これを上記の電解質膜の他方の表面に転写する。基材としてPTFE製シートを用いた場合は、転写後にPTFE製シートを剥がし、ガス拡散層基材を積層させる。
 (燃料電池)
 次に、図面を参照しながら第2実施態様のMEAを用いる好適な実施形態であるPEFCについて説明する。
 図9は、第2実施態様の燃料電池用MEAが一対のセパレータにより挟持されてなるPEFCの単セルを示す模式断面図である。
 図9に示すPEFC300は、MEA340をアノード側セパレータ302およびカソード側セパレータ301で挟持することで構成されている。また、MEAに供給される燃料ガスおよび酸化剤ガスは、アノード側セパレータ302およびカソード側セパレータ301に、それぞれ複数箇所設けられたガス供給溝304、303などを介して供給される。また、図9のPEFCにおいては、ガスケット305が、MEA340の表面に位置する電極の外周を、取り囲むように配置されている。ガスケットはシール部材であり、接着層(図示せず)を介して、MEA340の固体高分子電解質膜312の外面に固定される構成を有していてもよい。ガスケットは、セパレータとMEAとのシール性を確保する機能を有している。なお、必要に応じて用いられる接着層は、接着性を確保することを考慮すると、ガスケットの形状に対応し、電解質膜の全周縁部に、額縁状に配置されることが好ましい。
 以下、MEA以外のPEFCの各構成要素について、順に詳細に説明する。
 [ガスケット]
 ガスケットは、触媒層またはガス拡散層(すなわち、ガス拡散電極)を包囲するように配置され、供給されたガス(燃料ガスまたは酸化剤ガス)のガス拡散電極からの漏出を防止する機能を有する。
 ガスケットを構成する材料は、ガス、特に酸素や水素に対して不透過性であればよく、特に制限されることはない。ガスケットの構成材料としては、例えば、フッ素ゴム、シリコンゴム、エチレンプロピレンゴム(EPDM)、ポリイソブチレンゴムなどのゴム材料、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)などの高分子材料が挙げられる。ただし、その他の材料が用いられてもよいことは勿論である。
 ガスケットのサイズについても特に制限はなく、所望のガスシール性や他の部材のサイズとの関係などを考慮して適宜決定すればよい。
 [セパレータ]
 MEAは、セパレータで挟持されてPEFCの単セルを構成する。PEFCは、単セルが複数個直列に接続されてなるスタック構造を有するのが一般的である。この際、セパレータは、各MEAを直列に電気的に接続する機能に加えて、燃料ガスおよび酸化剤ガス並びに冷媒といった異なる流体を流す流路やマニホールドを備え、さらにはスタックの機械的強度を保つといった機能をも有する。
 セパレータを構成する材料は特に制限されず、従来公知の知見が適宜参照されうるが、例えば、緻密カーボングラファイト、炭素板等のカーボン材料や、ステンレス等の金属材料などが挙げられる。セパレータのサイズや流路の形状などは特に限定されず、PEFCの出力特性などを考慮して適宜決定すればよい。
 PEFCの製造方法は特に制限されず、燃料電池の分野において従来公知の知見を適宜参照することにより製造可能である。
 以上、高分子電解質形燃料電池を例に挙げて説明したが、燃料電池としてはこの他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられ、いずれの電池に適用してもよい。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質形燃料電池(PEFC)が好ましく挙げられる。
 前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用であるが、特にシステムの起動/停止や出力変動が頻繁に発生する車両、より好ましくは自動車用途で特に好適に使用できる。
 <第3実施態様>
 次いで、本発明の第3実施態様について説明する。
 冬季等の低気温時において、燃料電池の温度は停止時に、適正運転温度より甚だしく低下する。特に、氷点下時等の燃料電池では、電極触媒層で生成した水がガス拡散層内のいたるところで滞留して凍結する恐れがあり、零下起動時の排水性も重要な要素である。しかしながら、従来の技術では、零下起動性と常温での高電流密度運転を実現させる、個別の対応は可能であったが、双方が両立した燃料電池を得ることは困難であった。
 したがって、本発明(第3実施態様)は、上記課題に着目して成されたものであって、常温での高電流密度運転を実現させるとともに、零下起動性を向上させる、燃料電池用親水性多孔質層を提供することを目的とする。
 本願発明者らは、上記課題に鑑み鋭意検討した結果、液水の蒸発を促進させる材料と、液水の輸送を促進させる材料とを併用した親水性多孔質層によって上記課題が解決されることを見出し、本発明を完成させた。
 本発明(第3実施態様)の親水性多孔質層により、常温時および零下時の双方において発電時に生成する生成水の排水性を向上させることができる。したがって、常温での高電流密度運転が実現し、零下起動性が向上する。
 本発明(第3実施態様)の親水性多孔質層は、Sion=SBET×θion(Sion:イオン伝導性材料の被覆面積、SBET:導電性材料のBET窒素比表面積、θion:イオン伝導性材料被覆率)で与えられる、イオン伝導性材料に被覆される導電性材料の被覆面積が200m2/g以上の液水蒸発促進材(以下、単に「液水蒸発促進材」とも称する)と200m2/g未満の液水輸送促進材(以下、単に「液水輸送促進材」とも称する)とを含む。
 燃料電池では、カソード側で水が生成する。零下時には、電極触媒層で生成した水がガス拡散層内のいたるところで滞留して凍結する恐れがあり、また凍結した氷や液水によりガス拡散性が低下する。一方、常温時には、フラッディングによりガス拡散が阻害される。したがって、燃料電池においては、カソード側で生成した水を以下に速やかに輸送するかが重要となる。また、生成水が多い場合には、カソード側で生成した水がアソード側に移行するため、特にアソード側での排水が重要となる。
 本願発明者らは、生成水の排水性を向上させるために検討した結果、親水性多孔質層に含まれる導電性材料の、イオン伝導性材料による被覆面積が排水性に非常に重要な役割を果たすことを見出し、さらに検討した結果、以下の知見を得た。
 零下時には、液から気相への移動が起きにくいため、液相から気相へいかに移動させるかが重要である。同時に、温度の低下により、液水輸送のほうが気相輸送よりも有利となる場合がある。したがって、零下起動時においては、特に気相の水輸送性を高めることによって、全体として水(液水+水蒸気)の輸送を高めることができ、生成水の凍結を抑制することができる。一方、常温での運転時においては、気相での輸送が有利であるため、液相から気相への相変化抵抗を低減する事ができる材料が必要となる。同時にカソード側で大量に発生する生成水を排水するためには、液水の輸送を高めなければ排水が追いつかなくなる。したがって、常温での運転時においては、特に液相での水輸送性を高めることによって、フラッディングによるガス拡散性の低下を抑制することができる。すなわち、零下起動性および常温での高電流密度運転の双方を実現するためには、気相および液相双方の水輸送が重要である。そして、気相および液相での水輸送には、導電性材料が重要な役割を果たし、イオン伝導性材料の被覆面積によって、その機能が異なることがわかった。イオン伝導性材料の被覆面積が大きい導電性材料(液水蒸発促進材)は、液水の蒸発面積が大きく、液相から気相への相変化抵抗を低減することができる。一方、イオン伝導性材料の被覆面積が小さい導電性材料(液水輸送促進材)は、液水の輸送抵抗が低いため、液水の輸送を促進することができる。
 上記知見に基づき、本願発明者らは、イオン伝導性材料の被覆面積が大きい導電性材料と、イオン伝導性材料の被覆面積が小さい導電性材料とを併せて用いることにより、零下起動性と常温での高電流密度運転が実現されることを見出し、本願発明を完成させた。
 本発明(第3実施態様)において、液水蒸発促進材とは、イオン伝導性材料の被覆面積が導電性材料あたり200m2/g以上の導電性材料を指す。また、液水輸送促進材とは、イオン伝導性材料の被覆面積が導電性材料あたり200m2/g未満の導電性材料を指す。ここで、被覆面積は、Sion=SBET×θion(Sion:イオン伝導性材料の被覆面積(m2/g)、SBET:導電性材料のBET窒素比表面積(m2/g)、θion:イオン伝導性材料被覆率)で与えられる。したがって、イオン伝導性材料の被覆面積は、用いられる導電性材料が決定すれば、導電性材料のBET窒素比表面積およびイオン伝導性材料被覆率を測定することによって、算出することができる値である。また、イオン伝導性材料の被覆面積は、導電性材料の形状によって制御できる値とも言える。
 本明細書において、イオン伝導性材料被覆率θionは、相対湿度30%および相対湿度100%における電気二重層容量(Cdl)の比(θion=相対湿度30%のCdl/相対湿度100%のCdlで決定される)で表される。ここで、相対湿度30%と相対湿度100%との比を採る理由は以下の通りである。高加湿条件下では、導電性材料と導電性材料表面に吸着した水との、または導電性材料とイオン伝導性材料との界面に形成された電気二重層が計測される。一方で、低加湿条件下では、導電性材料とイオン伝導性材料との界面に形成された電気二重層が主として計測される。ここで、相対湿度30%程度以下で、電気二重層容量はほぼ一定となる。したがって、本発明では、相対湿度30%および相対湿度100%をそれぞれ低加湿条件および高加湿条件の代表地点と定め、両者の電気二重層容量の比を採ることにより、導電性材料がイオン伝導性材料によりどの程度被覆されているかの指標とした。
 電気二重層容量は、以下の方法によって測定される値を採用するものとする。
 まず、触媒成分を含まない親水性多孔質層と触媒層を電解質膜の異なる面にそれぞれ配した膜電極接合体を作製し、その両面をガス拡散層、さらにカーボンセパレーター、さらには金メッキした集電板で挟持し、通常の燃料電池と同様のセルを得た。触媒層に調湿した水素ガスを、親水性多孔質層に調湿した窒素ガスを供給した状態で、触媒層を参照極および対極として用い、親水性多孔質層の電位を参照極に対して0.2~0.6Vの範囲で5~10回走査した。走査速度は50mV/sで行った。得られた電流と電位の関係は長方形に近い波形を示した。これは、電極上での酸化および還元反応が生じておらず、電気二重層の充電および放電が電流の主要因であることを示している。この波形において、ある電位、例えば、0.3Vにおける酸化電流と還元電流の絶対値の平均の値を走査速度で除することで電気二重層容量を算出した。この測定を種々の加湿条件下で行い、電気二重層容量と相対湿度との関係を得た。
 また、導電性材料のBET窒素比表面積は、以下の方法によって測定される値を採用するものとする。
 (BET窒素比表面積の測定方法)
 1.サンプリング、秤量・予備乾燥
 粉末は、約0.04~0.07gを精秤し、試料管に封入した。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定に供した。秤量には、島津製作所株式会社製電子天秤(AW220)を用いた。なお、塗布シートについては、これの全質量から、同面積のテフロン(登録商標)(基材)の質量を差し引いた塗布層の正味の質量約0.03~0.04gを試料質量として用いた。
 2.測定条件(下記表5参照)
Figure JPOXMLDOC01-appb-T000016
 3.測定方法
 吸着・脱着等温線の吸着側において、相対圧(P/P0)約0.00~0.45の範囲から、BETプロットを作成することで、その傾きと切片からBET窒素比表面積を算出する。
 図11のAは、種々の導電性材料を用いた場合の、相対湿度と電気二重層容量との関係を示した図および各導電性材料のSBET、θionおよびSionを示した表である。図11のA中、カーボン材料としては、カーボン材料Aは、ケッチェンブラックEC(ケッチェン・ブラック・インターナショナル株式会社製)、カーボン材料BはケッチェンブラックECに不活性雰囲気中、2000~3000℃、2~120分の熱処理を施したものであり、カーボン材料Cはアセチレンブラック(SAB、電気化学工業製)、カーボン材料Dはアセチレンブラック(OSAB、電気化学工業製)である。
 また、図11のBは、80℃でのカーボン材料Aおよびカーボン材料Bの水輸送抵抗を示す図である。SBETおよびSionが低いカーボン材料Bは、液水の輸送抵抗が低く、このため、常温における高電流密度運転時の排水性を促進することができる。一方、SBETおよびSionが高いカーボン材料Aは、液水の輸送抵抗が高く、液水の蒸発面積を広く確保することができ、このため、液水蒸発を促進することができ、零下起動性を向上させることができる。なお、W(蒸発量)=v(蒸発速度)*S(表面積)で表すことができる。
 図22は、常温での発電試験の結果を示す図である。常温における発電試験sample1(親水性多孔質層を含有しない通常の触媒層構造での発電結果)とsample2(アノードに液水輸送促進材を含む親水性多孔質層を配置した場合)で実施した。図から明らかなように、sample2はsample1と比較して高電流密度でも高い電圧を維持することができている。
 このように、親水性多孔質層内に液水輸送促進材が存在することにより、高電流密度が実現され、液水蒸発促進材が存在することにより、零下起動性が向上することがわかる。したがって、液水輸送促進材および液水蒸発促進材を組み合わせることにより、高電流密度運転が実現され、かつ零下起動性も向上する。
 親水性多孔質層の厚さは、特に制限されるものではないが、好ましくは40μm以下、より好ましくは2~25μmとするのがよい。親水性多孔質層の厚さが上記範囲内であれば、排水性とガス拡散性との両立を確保することができるため好ましい。
 親水性多孔質層の全体の空孔率は、特に制限されるものではないが、30~80%であることが好ましく、40~70%であることがより好ましい。空孔率が上記範囲内であれば、排水性およびガス拡散性が確保できるため好ましい。空孔率は、水銀圧入法による細孔分布測定などにより層の内部に存在する空孔(微細孔)の体積を測定し、層の体積に対する割合として求めることができる。
 親水性多孔質層には、導電性材料と、イオン伝導性材料とが含まれる。場合によって、導電性材料は触媒を担持していてもよい。親水性多孔質層は、導電性材料およびバインダー以外に、他の材料を含有していてもよい。親水性多孔質層中、導電性材料とイオン伝導性材料との含有量は80質量%以上であることが好ましく、90質量%以上であることがより好ましい。さらに好ましくは、親水性多孔質層は、導電性材料およびイオン伝導性材料から構成される。
 以上のように、イオン伝導性材料による被覆面積が異なる導電性材料を組み合わせることにより、生成水の排水性を向上させる事ができる。したがって、該親水性多孔質層を膜電極接合体(MEA)に適用した場合、零下における起動性と常温での高電流密度運転を両立することができる。具体的には、零下起動時において、排水性の向上により凍結を防ぎ、凍結による燃料電池の破損やガス拡散性の低下による電圧低下を抑制することができる。また、常温での高電流密度運転時においては、液水の滞留によるガス拡散性の低下による電圧低下を抑制することができる。
 次に、親水性多孔質層の好ましい実施形態について図を用いて説明する。なお、各図は、各実施形態の理解を容易にするために模式的に記載されたものであり、各材料の大きさ、含有比、層厚さなどは実際と異なる場合がある。また、同一の部材(材料)には同一の符号を付し、説明を省略する場合がある。
 親水性多孔質層の好適な一実施形態(以下、第1実施形態とも称する)は、液水蒸発促進材を含む層と、液水輸送促進材を含む層とが層状構造を形成する。図12のAは、本実施形態の親水性多孔質層の断面模式図である。図12のAでは、液水蒸発促進材402およびイオン伝導性材料401からなる液水蒸発促進材層404と、液水輸送促進材403およびイオン伝導性材料401からなる液水輸送促進材層5とが積層されてなる。積層方向は、膜電極接合体の積層方向(厚み方向)である。なお、膜電極接合体を形成する際に、液水蒸発促進材層および液水蒸発促進材層が隣接する部材(好適には、ガス拡散層または触媒層)はどの部材であってもよい。例えば、液水蒸発促進材層が触媒層側で液水輸送促進材層がガス拡散層側である形態;液水蒸発促進材層がガス拡散層側で液水輸送促進材層が触媒層側である形態等が挙げられる。イオン伝導性材料の存在状態は、図中では模式的に表しているため、実際の存在状態とは異なる場合がある。以下の図においても同様である。
 第1実施形態のように、液水蒸発促進材を含む層(液水蒸発促進材層)と液水輸送促進材を含む層(液水輸送促進材層)とを層状構造とし、一体の構造体とすることで、特徴の異なる機能を同時に発現する燃料電池用親水性多孔質層を提供する。すなわち液水蒸発促進材と液水輸送促進材がそれぞれ液水の蒸発性と輸送性を同時に機能させることができる。その結果、燃料電池に適用した場合には、零下における起動性と常温での高電流密度運転を両立することができる。層状構造とした場合、厚さ方向の液水蒸発機能と液水輸送機能を、容易に制御することができる。液水蒸発促進材層は、少なくとも、液水蒸発促進材およびイオン伝導性材料を含み、好適には液水蒸発促進材およびイオン伝導性材料から構成される。また、液水輸送促進材層は、少なくとも、液水輸送促進材およびイオン伝導性材料を含み、好適には液水輸送促進材およびイオン伝導性材料から構成される。
 図12のBは、第1実施形態の変形例を示す、親水性多孔質層の断面模式図である。本実施形態では、液水蒸発促進材402およびイオン伝導性材料401からなる液水蒸発促進材層404と、液水輸送促進材3およびイオン伝導性材料401からなる液水輸送促進材層405とが交互に積層されてなる。積層方向は、膜電極接合体の積層方向(厚み方向)である。本実施形態では、層状構造が一層ずつ交互の構造を採るが、液水蒸発促進材層と、液水輸送促進材層との積層形態は特に限定されない。好ましくは、凍結時、常温時の排水性を向上させるために、液水蒸発促進材層と液水輸送促進材層とが交互に積層される形態である。また、膜電極接合体を形成する際に、最外層が隣接する部材(好適には、ガス拡散層または触媒層)はどの部材であってもよい。例えば、最外層の液水蒸発促進材層が触媒層側で最外層の液水輸送促進材層がガス拡散層側である形態;最外層の液水蒸発促進材層がガス拡散層側で最外層の液水輸送促進材層が触媒層側である形態等が挙げられる。
 第1実施形態およびその変形例において、各液水蒸発促進材層または液水輸送促進材層の厚さは、特に制限されるものではないが、好ましくは40μm以下、より好ましくは2~25μmとするのがよい。また、作業効率性の点からは、積層は6層以下であることが好ましい。
 親水性多孔質層の好適な他の実施形態(以下、第2実施形態とも称する)は、親水性多孔質層内で液水蒸発促進材と液水輸送促進材とが混合状態で存在する。図13は、本実施形態の親水性多孔質層の断面模式図である。図13の親水性多孔質層は、液水蒸発促進材402、液水輸送促進材403およびイオン伝導性材料401から構成され、液水蒸発促進材402と液水輸送促進材403とはランダムな状態で配置される。
 第2実施形態のように、親水性多孔質層を構成する液水蒸発促進材と液水輸送促進材との配置をランダムな構造とすることで、特徴の異なる機能を同時に発現する燃料電池用多孔質層を提供する。その結果、燃料電池に適用した場合には、零下における起動性と常温での高電流密度運転を両立することができる。ランダムな構造とした場合、液水蒸発機能と液水輸送機能を、その配合比により、容易に制御することができる。
 第1実施形態および第2実施形態において、親水性多孔質層全体の液水蒸発促進材と液水輸送促進材との存在比は特に限定されるものではないが、排水性の観点からは、質量比で、液水蒸発促進材:液水輸送促進材=1:0.1~10であることが好ましく、1:0.5~5であることがより好ましい。親水性多孔質層内全体でかような好適な範囲内となるように、各層の液水蒸発促進材および液水輸送促進材の含有量を適宜決定すればよい。
 また、親水性多孔質層中、導電性材料(液水蒸発促進材および液水輸送促進材の合計)とイオン伝導性材料との含有質量比は、特に限定されるものではなく、所望の目的により適宜設定される。好適には、導電性材料:イオン伝導性材料=1:0.6~1.5であり、1:0.7~1.3であることがより好ましい。この範囲であれば、ガス拡散性を確保でき、また、イオン伝導性材料の機能を発揮することができる。なお、上記導電性材料と、イオン伝導性材料との含有質量比は、親水性多孔質層用インク(スラリー)を作製する際に予め混合するイオン伝導性材料と導電性材料とを測定しておき、これらの混合比を調整することにより、算出され、また、制御できる。また、親水性多孔質層を分析して、前記導電性材料と、イオン伝導性材料とを定量して、導電性材料と、イオン伝導性材料との含有質量比を算出することもできる。
 本発明において、親水性多孔質層は、導電性材料およびイオン伝導性材料を含む層で、導電性材料が、液水蒸発促進材および液水輸送促進材からなる形態であればいずれの形態であってもよい。すなわち、その名称に拘泥されず、燃料電池に用いられる使用目的からみて電極触媒層と称される場合であっても本発明でいう親水性多孔質層に含まれる場合がある。例えば、導電性材料に触媒が担持されている形態であれば、触媒層を親水性多孔質層としてMEAに用いることができる。
 以下、本発明の親水性多孔質層を構成する各成分について説明する。
 (導電性材料)
 導電性材料としては、液水蒸発促進材および液水輸送促進材を組み合わせて用いる。
 導電性材料としては、天然黒鉛、人造黒鉛、活性炭、カーボンブラック(オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなど)などの炭素材料;金属(Sn,Tiなど)酸化物などが挙げられる。これらの導電性材料は、イオン伝導性材料の被覆面積により、液水蒸発促進材または液水輸送促進材に分類される。導電性材料は、好ましくは、炭素材料、金属(Sn,Tiなど)酸化物であり、より好ましくは、炭素材料である。
 液水蒸発促進材は、好ましくは、単位導電性材料あたりのイオン伝導性材料の被覆面積が200m2/g以上の導電性材料である。より好ましくは、イオン伝導性材料の被覆面積が200~1600m2/gの導電性材料である。導電性材料が、上記のような範囲の被覆面積を有することで、カソード側で生成した生成水の液相から気相への相変化抵抗を低減することができる。すなわち、液水の輸送を早め、かつ水蒸気での輸送を促進させ、生成水の滞留・凍結を抑制する。
 液水蒸発促進材としては、特に限定されるものではないが、カーボンブラック、BET窒素比表面積が20~400m2/gのアセチレンブラック、ケッチェンブラック、ブラックパールズ、キャボット社製バルカン、活性炭などを挙げることができる。
 液水蒸発促進材のBET窒素比表面積は、20~1600m2/gであることが好ましく、80~1200m2/gであることがより好ましい。
 液水蒸発促進材は1種単独で用いてもよいし、2種以上併用して用いてもよい。
 液水輸送促進材とは、単位導電性材料あたりのイオン伝導性材料の被覆面積が200m2/g未満の導電性材料である。より好ましくは、イオン伝導性材料の被覆面積が10~199m2/gの導電性材料である。導電性材料が、上記のような範囲の被覆面積を有することで、カソード側で生成した生成水の液相から気相への相変化抵抗を低減することができる。
 液水輸送促進材としては、特に限定されるものではないが、BET窒素比表面積が20~199m2/gの熱処理したケッチェンブラック、BET窒素比表面積が500~1600m2/gのアセチレンブラック、金属(Sn,Tiなど)酸化物などを挙げることができる。
 導電性材料が、上記のような範囲の被覆面積を有することで、液水輸送経路の屈曲度が小さくなり、イオン伝導性材料内に保水した液水の輸送抵抗を低減させる事が可能であり、不凍水のまま輸送が可能となる。BET窒素比表面積が20~199m2/gのケッチェンブラックはケッチェンブラックを熱処理することにより得られる。熱処理条件は、上記BET窒素比表面積内に含まれるように適宜設定すればよい。好ましくは、ケッチェンブラックを、温度2000~3000℃、時間2~120分間、熱処理することによって得られる。
 液水輸送促進材のBET窒素比表面積は、20~1600m2/gであることが好ましく、80~1200m2/gであることが好ましい。
 液水輸送促進材は1種単独で用いてもよいし、2種以上併用して用いてもよい。
 導電性材料の平均粒子径は、5~200nmであることが好ましく、10~100nmであることがより好ましい。これにより、親水性多孔質層のガス拡散性を確保することができる。なお、本明細書中において、「粒子径」とは、活物質粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
 (イオン伝導性材料)
 イオン伝導性材料としては、イオン伝導性であり、導電性材料を結着できる材料であれば、特に限定されない。例えば、ポリアクリルアミド、水性ウレタン樹脂、シリコン樹脂等の高分子;高分子電解質等が挙げられる。好適には高分子電解質である。高分子電解質をイオン伝導性材料とすることで、同じイオン伝導性材料を含むMEAの構成要素(電解質膜や触媒層)と隣接して親水性多孔質層を配置する場合に安定して配置させることができ、触媒層や膜と、導電性材料との間の水輸送抵抗を低減することができる。この結果、電解質膜または触媒層と、導電性材料との間の水輸送性が向上し、より早い時間で平衡に達することができる。イオン伝導性材料が高分子電解質である場合は、当該電解質は、触媒層や電解質膜中に使用される高分子電解質と同じであってもよいし、異なってもよい。さらに、親水性多孔質層を含むMEAを作製する場合、材料を共通化することもでき、作製時の省力化が図れる。
 用いられるイオン伝導性材料は特に限定されるものではない。具体的には、イオン伝導性材料は、ポリマー骨格の全部又は一部にフッ素原子を含むフッ素系電解質と、ポリマー骨格にフッ素原子を含まない炭化水素系電解質とに大別される。
 フッ素系電解質としては、具体的には、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、ポリトリフルオロスチレンスルフォン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが好適な一例として挙げられる。フッ素系電解質は、耐久性、機械強度に優れる。
 前記炭化水素系電解質として、具体的には、ポリスルホンスルホン酸、ポリアリールエーテルケトンスルホン酸、ポリベンズイミダゾールアルキルスルホン酸、ポリベンズイミダゾールアルキルホスホン酸、ポリスチレンスルホン酸、ポリエーテルエーテルケトンスルホン酸、ポリフェニルスルホン酸などが好適な一例として挙げられる。
 上記イオン伝導性材料は、単独で用いてもよいし、2種以上併用してもよい。
 親水性多孔質層においては、水の移動速度が重要であるため、イオン伝導性材料のEWは低いほうが好ましい。好ましくは、高分子電解質のEWが1200g/eq.以下、より好ましくは1000g/eq.以下、さらに好ましくは、700g/eq.以下である。かような範囲であれば、液水の拡散を促進し、零下起動性と常温での高電流密度運転を両立した親水性多孔質層を提供できる。EWの下限は特に限定されるものではないが、通常500g/eq.以上であることが好ましい。なお、EW(Equivalent Weight)は、イオン交換基当量重量を表す。
 (親水性多孔質層の製造方法)
 親水性多孔質層の作製方法としては、特に限定されるものではないが、例えば、導電性材料、イオン伝導性材料、および溶媒を混合して親水性多孔質層用インクを調製し、これを基材に塗布した後、乾燥させる方法などが用いられる。また、触媒成分が担持された導電性材料を用いる場合には、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法を用いて、予め導電性材料に触媒成分を担持させておくのがよい。
 ここで、上記第1実施形態の場合には、好適には、液水蒸発促進材を含むインクおよび液水輸送促進材を含むインクを別々に製造する。異なる導電性材料を含むインクが層状の構造をもつように個別に形成するためである。
 また、上記第2実施形態の場合には、好適には、液水蒸発促進材および液水輸送促進材を含むインクを製造する。液水蒸発促進材と液水輸送促進材の2種類の導電性材料の混合物インクを製造することで、異なる導電性材料間での接着性を向上させ界面での水輸送抵抗を低減することができる。その結果、連続的な水(液水)の輸送経路を確保する事により、零下起動性と高電流密度運転の両立が可能となる。
 親水性多孔質層用インクに用いられる溶媒としては、特に限定されるものではないが、水;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール等のアルコール;エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、またはグリセリンなどの多価アルコール;または下記沸点が150℃を超える有機溶媒などが挙げられる。これらは1種単独で用いてもよいし、2種以上併用して用いてもよい。
 有機溶媒の選択は、親水性多孔質層の空孔率を制御する上で重要である。
 後述するように、導電性材料の密度が疎である親水性多孔質層を作製する場合、インクに沸点が150℃を超える高沸点有機溶媒を混合した溶媒を用いることが好ましい。インクに沸点が150℃を超える高沸点有機溶媒を混合した場合、平均空孔径を大きくすることができ、また、空孔率も大きくすることができる。したがって、そのようなインクを使用することで、高沸点有機溶媒を使用しない場合に比べて、疎な親水性多孔質層を作製することができる。インク中の溶媒種による親水性多孔質層の空孔径の分布の差を図14に示す。図14において、Pore Size Diameterは細孔径を、Cumulative Intrusion(mL/g)は積算容積を、Log Differential Intrusion(mL/g)は微分細孔容積を示す。図4において、溶媒1の組成は、水:NPA(ノルマルプロピルアルコール):プロピレングリコール=4:1:3(質量比)であり、溶媒2の組成は、水:NPA=6:4である。
 沸点が150℃を超える有機溶媒としては、エチレングリコール(沸点:197.6℃)、プロピレングリコール(沸点:188.2℃)、1,2-ブタンジオール(沸点:190.5℃)、1,3-ブタンジオール(沸点:207.5℃)、1,4-ブタンジオール(沸点:229.2℃)、グリセリン(沸点290℃)、NMP(N-methylpyrrolidone)(沸点:202℃)、DMSO(dimethyl sulfoxide)(沸点:189℃)などが挙げられる。これらは1種単独で用いてもよいし、2種以上併用して用いてもよい。なお、高沸点有機溶媒は、水と均一に混合されることが好ましい。
 親水性多孔質層用インク中の溶媒は、高沸点有機溶媒のみから構成されていてもよい。また、高沸点有機溶媒とその他の溶媒(例えば、水、沸点が150℃未満の有機溶媒(メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール等)との混合物を用いてもよい。高沸点有機溶媒とその他の溶媒との混合物の場合、溶媒中の高沸点有機溶媒の比率は、10質量%以上であることが好ましく、30質量%以上であることがより好ましい。なお、保水性の観点から、高沸点有機溶媒の比率は高いほど好ましいので、溶媒中の高沸点有機溶媒の比率の上限は特に限定されないが、高分子電解質の分散性を考慮すると、70質量%以下であることが好ましい。高沸点有機溶媒とその他の溶媒との混合物を用いる場合には、平均空孔径および空孔率も大きくすることができると考えられる。
 また、インク調製の際に、イオン伝導性材料(I)と導電性材料(C)の混合比(I/C)を意図的に変化させることで、空孔率を制御することができる。下記表6に、I/C比を変えた際の空孔率の変化を示す。I/C比を増加させるにつれ、空孔率は小さくなることがわかる。
Figure JPOXMLDOC01-appb-T000017
 したがって、空孔率を制御する必要がある場合には、I/Cを適宜設定することにより、容易に空孔率を制御することができる。
 なお、本明細書におけるインク中の溶媒とは、バインダーおよび導電性材料等の固形成分が分散される分散媒、すなわち固形成分以外の液体成分を全て含む。したがって、例えば、水に分散されたイオン伝導性材料と、有機溶媒とを混合して親水性多孔質層用インクを製造する場合、本明細書でいう溶媒は、水および有機溶媒の双方を指す。
 親水性多孔質層用インクの固形分率(親水性多孔質層用インク全重量に対する固形分の重量割合)は、特に限定されるものではないが、通常5~20質量%程度である。このような範囲とすることで、多孔質層の形成効率とインクの安定性の点で優れる。
 親水性多孔質層用インクの調製方法は、特に制限されない。また、イオン伝導性材料、導電性材料、および溶媒の混合順序は、特に制限されないが、具体的には、下記(i-1)~(i-3)が挙げられる。
 (i-1)イオン伝導性材料を含有した溶液を調製し、前記溶液を、導電性材料と混合する。その後、溶媒をさらに添加して、親水性多孔質層用インクを調製する;
 (i-2)イオン伝導性材料を含有した溶液を調製し、溶媒を添加する。その後、導電性材料をさらに混合(添加)して、親水性多孔質層用インクを調製する;および
 (i-3)導電性材料と溶媒とを混合する。次に、別途イオン伝導性材料を含有した溶液を、さらに添加して、親水性多孔質層用インクを調製する。
 上記方法のうち、(i-1)及び(i-2)の方法が好ましく、(i-1)の方法がより好ましい。これにより、水と有機溶媒が均一に混合され、溶媒化合物が形成しやすい。
 上記方法(i-1)~(i-3)において、イオン伝導性材料を含有した溶液において、イオン伝導性材料は、溶媒中に分散している。この際のイオン伝導性材料を含有した溶液中でのイオン伝導性材料含有率は、特に制限されないが、固形分量が好ましくは1~40質量%、より好ましくは5~20質量%である。このような含有率であれば、高分子電解質が適切に溶媒中に分散しうる。
 イオン伝導性材料を含有した溶液は、自ら調製してもよいし、市販品を用いてもよい。上記イオン伝導性材料を含有した溶液中におけるイオン伝導性材料の分散溶媒は、特に限定されるものではないが、水、メタノール、エタノール、1-プロパノール、2-プロパノール等が挙げられる。分散性を考慮すると、好ましくは、水、エタノール、1-プロパノールである。これらの分散溶媒は、単独で用いてもよいし、2種以上併用してもよい。
 また、親水性多孔質層用インクの製造工程において、イオン伝導性材料と、導電性材料と、溶媒とを混合した後は、良好に混合するために、別途混合工程を設けてもよい。このような混合工程としては、触媒インクを超音波ホモジナイザーでよく分散する、あるいは、この混合スラリーをサンドグラインダー、循環式ボールミル、循環式ビーズミルなどの装置でよく粉砕させた後、減圧脱泡操作を加えることなどが好ましく挙げられる。
 次に、得られた親水性多孔質層用インクを基材上に塗布した後、親水性多孔質層用インクが塗布された基材を乾燥する。
 親水性多孔質層用インクの基材表面への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法、転写法など、公知の方法を用いて行うことができる。また、触媒インクの基材表面への塗布に使用される装置もまた、特に制限されず、公知の装置が使用できる。具体的には、スクリーンプリンター、スプレー装置、バーコーター、ダイコーター、リバースコーター、コンマコーター、グラビアコーター、スプレーコーター、ドクターナイフなどの塗布装置を用いることができる。なお、塗布工程は、1回行ってもあるいは複数回繰り返し行ってもよい。
 なお、上記第1実施形態の場合には、好適には、液水蒸発促進材を含むインクおよび液水輸送促進材を含むインクを順次、塗布すればよい。この際、熱処理を行うと、界面での接着性を向上させ、水輸送抵抗を低減することができる。その結果、連続的な水(液水)の輸送経路を確保する事により、零下起動性と高電流密度運転の両立が可能となる。熱処理の条件としては、特に限定されるものではないが、20~170℃で、1~40分間程度、熱処理を行うことが好ましい。なお、熱処理工程は、MEA作製過程のいずれかの段階で行われればよく、親水性多孔質層用インクを基材上に塗布した後、すぐに親水性多孔質層用インクを熱処理する形態に限られない。
 最後に、親水性多孔質層用インクが塗布された基材を乾燥して、溶媒を除去する。親水性多孔質層用インクが塗布された基材を乾燥する際の乾燥時間は特に限定されるものではないが、5~30分であることが好ましい。また、乾燥時の雰囲気は特に限定されるものではないが、空気雰囲気または不活性ガス雰囲気下で乾燥を行うことが好ましい。なお、親水性多孔質層用インクを乾燥する工程は、MEA作製過程のいずれかの段階で行われればよく、親水性多孔質層用インクを基材上に塗布した後、すぐに親水性多孔質層用インクを乾燥する形態に限られない。
 親水性多孔質層用インクを塗布する基材は、最終的に得られる親水性多孔質層の形態により適宜選択すればよく、電極触媒層、ガス拡散層、またはポリテトラフルオロエチレンシート(PTFE)等の高分子シート等を用いることができる。
 (燃料電池用膜電極接合体)
 本発明の親水性多孔質層は、零下起動時においても、常温運転時においても優れた排水性能を有する。したがって、MEAに適用した場合に、零下起動性と常温での高電流密度運転を実現させることができる。以下、本発明の親水性多孔質層を含むMEAの好適な実施形態について説明する。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、各図において、同一の部材には同一の符号を付し、説明を省略する場合がある。
 図15は、上記実施形態の親水性多孔質層を含む好適なMEAの実施形態(第3実施形態)を示す断面模式図である。図15のMEA410は、固体高分子電解質膜412の両面に、アノード側電極触媒層413およびカソード側電極触媒層415が対向して配置され、これをアノード側ガス拡散層414およびカソード側ガス拡散層416で挟持した構成を有している。さらに、アノード側電極触媒層413とアノード側ガス拡散層414との間、およびカソード側電極触媒層415とカソード側ガス拡散層416との間には親水性多孔質層417が配置される。親水性多孔質層417を有するMEAとすることで、触媒層からの排水性に関連し、液水の蒸発機能と輸送機能をともに促進できる。したがって、本実施形態のMEAを燃料電池に適用した場合に、零下起動性と常温での高電流密度運転を両立できる。
 第3実施形態は、アノード側電極触媒層413とアノード側ガス拡散層414との間、およびカソード側電極触媒層415とカソード側ガス拡散層416との間に親水性多孔質層417が配置される形態である。しかしながら、上記配置形態に限定されるものではなく、カソード側またはアノード側のどちらかのみに親水性多孔質層417が配置されていてもよい。また、高分子電解質膜と電極触媒層との間に配置されてもよい。好適には、少なくともアノード側に親水性多孔質層を設ける形態である。氷点下において燃料電池を起動させる際、発電による生成水が凍ることにより、酸素の輸送が阻害されることが起動性低下の一因であると考えられることは上述した。したがって、生成水を吸収する際の水の移動方向は、カソード側電極触媒層から電解質膜を介してアノード側電極触媒層であることが重要である。アノード側に親水性多孔質層が配置されることによって、より多くの生成水がアノード触媒層側に戻るため、氷点下起動性を増すことができる。
 また、触媒層、特にアノード触媒層に隣接して、好ましくは触媒層とガス拡散層との間に、親水性多孔質層を配置することが好適である。MEA内部の保水機能は、少なくとも膜および触媒層が有する。触媒層(アノード/カソード)は膜を挟持するように設置されるため、触媒層と隣接して親水性多孔質層が設けられることで、MEA内部(膜、触媒層)に存在する液水が円滑に親水性多孔質層に移動・保持することが可能となる。また、親水性多孔質層は薄膜状で形態を保持することは難しいが、ガス拡散層と隣接して設けることで、構造を維持しやすくなる。なお、ガス拡散層は、後述するマイクロポア層(MPL)を有していても、有していなくともよい。MPLは水輸送抵抗が大きいので、水輸送の観点からはガス拡散層が(MPLのない)ガス拡散層基材から構成されるほうが好ましい。MPLは水輸送抵抗が大きく、一方、ガス拡散層基材はマクロポアから形成されるために輸送抵抗が小さいためである。
 図16は、本発明(第3実施態様)の親水性多孔質層を含む好適なMEAの他の実施形態(第4実施形態)を示す断面模式図である。図16のMEA410’は、固体高分子電解質膜412の両面に、アノード側電極触媒層413およびカソード側電極触媒層415が対向して配置され、これをアノード側ガス拡散層414およびカソード側ガス拡散層416で挟持した構成を有している。さらに、アノード側電極触媒層413とアノード側ガス拡散層414との間に親水性多孔質層417が配置される。アノード極にのみ親水性多孔質層417を設ける事で、カソードの生成水が、膜を介してアノード側へ輸送される機能が促進され、カソード側でのガス拡散層内部での液水の凍結またはフラッディングなどによる酸素の輸送阻害も抑制される。したがって、本実施形態のMEAを燃料電池に適用した場合に、零下起動性と常温での高電流密度運転を両立できる。
 親水性多孔質層のカソードガス出口に対向する部分(以下、下流部とも称する)が親水性多孔質層のカソードガス入口に対向する部分(以下、上流部とも称する)よりも疎な構造であるMEAも好適な実施形態(第5実施形態)である。上流部または下流部以外の親水性多孔質層部を中流部とも以下称する。図17に第5実施形態の断面模式図を示す。図17においては簡略化のため、ガス拡散層は記載していない。図17のAは、親水性多孔質層がアノード極に設置されている場合、図17のBは、親水性多孔質層がカソード極に設置されている場合である。ここで、「疎な構造」とは、下流部の空孔率が上流部の空孔率よりも高いことを意味する。具体的には、上流部の空孔率を1とすると、下流部の空孔率が0.37~0.9であることが好ましく、0.57~0.9であることがより好ましい。
 このように、疎な構造の親水性多孔質層を、液水の滞留が生じやすいカソードガス出口に対向するアノード触媒層またはカソード触媒層の少なくとも一方に設置することで、より大きな水蒸気の輸送経路が確保されることとなり、排水性が高まる。したがって、本実施形態のMEAを燃料電池に適用した場合に、零下起動性と常温での高電流密度運転を両立できる。このような面内分布は、特に大きなサイズの燃料電池MEAに有効である。
 本実施形態のように、下流部が疎な構造である親水性多孔質層は、上述したように、インクに沸点が150℃を超える高沸点有機溶媒を混合したものを適用することによって、容易に製造することができる。また、I/Cを制御することによっても、製造することができる。
 親水性多孔質層のカソードガス出口に対向する部分とは、親水性多孔質層のガス流れ方向の全長Lに対してカソードガス出口方向の端部を0とすると、少なくとも0~1/5Lの部分を指し、好ましくは0~1/3Lの部分を指す。また、親水性多孔質層のカソードガス入口に対向する部分とは、親水性多孔質層のガス流れ方向の全長Lに対してカソードガス入口方向の端部を0とすると、0~1/5Lの部分を指す。上記上流部および下流部以外の、中央部付近の親水性多孔質を中流部とする。中流部の構成は特に限定されるものではないが、上流部と同じ構成(図17のAおよびB);上流部よりも疎で下流部よりも密な構造(図17のD)であることが好ましい。図17のDの形態のように、密な親水性多孔質層を、カソードガス入口に配置する事で、カソードからアノードへの液水輸送が促進され、膜電極接合体全体として水輸送抵抗を低減することができる。したがって、本実施形態のMEAを燃料電池に適用した場合に、零下起動性と常温での高電流密度運転を両立できる。また、アノード極で乾燥状態になりやすい部分への水輸送抵抗が低減される事で、ドライアウト耐性を付与した燃料電池用膜電極接合体を提供できる。
 図17のA、BおよびDにおいては、下流部は、液水蒸発促進材および液水輸送促進材が混合された状態で存在するが、上記第1実施形態のように、液水蒸発促進材を含む層と、液水輸送促進材を含む層とが積層された形態であってもよい(図17のC)。
 また、本発明(第3実施形態)の親水性多孔質層は、所望の性能を達成するために、種々の変形を採ることができる。例えば、零下起動性をより高めることを目的とする場合、(1)親水性多孔質層のカソードガス出口に対向する部分が、液水蒸発促進材を液水輸送促進材よりも多く含むMEAの形態(第6実施形態)が好適である。図18は、上記(1)の形態を説明する模式図である。簡略化のため、ガス拡散層は記載していない。また、本実施形態では、親水性多孔質層は、アノード極のみに配置されているが、カソード極のみ、または、アノード極およびカソード極の双方に配置されていてもよい。さらに、本実施形態では、上中流部の液水蒸発促進材および液水輸送促進材の含有量はほぼ同一であるが、かような形態に限定されるものではなく、上中流部の液水蒸発促進材および液水輸送促進材の組成比は適宜設計すればよい。
 導電性材料の被覆表面積が大きい導電性材料が多く配合された親水性多孔質層を、カソードガス出口に対向するアノード触媒層またはカソード触媒層の少なくとも一方に隣接する(対向流の構成する)ことで、より液水蒸発機能を促進することができる。その結果、カソード極からアノード極への水輸送性が向上し、MEA全体における水輸送抵抗を低減することができる。したがって、本実施形態のMEAを燃料電池に適用した場合に、零下起動性と常温での高電流密度運転の両立が可能となり、零下起動性に特に優れる。
 図18の実施形態において、カソードガス出口に対向する部分において、液水蒸発促進材は、液水輸送促進材の含有質量を1とした場合、1.1~10であることが好ましく、5~10であることが好ましい。かような範囲であれば、零下起動性を効果的に向上させることができる。
 また、高温での高電流密度運転を達成することを目的とする場合、(2)前記親水性多孔質層のカソードガス出口に対向する部分が前記液水輸送促進材を前記液水蒸発促進材よりも多く含むMEAの形態(第7実施形態)が好適である。図19は、上記(2)の形態を説明する模式図である。簡略化のため、ガス拡散層は記載していない。また、本実施形態では、親水性多孔質層は、アノード極のみに配置されているが、カソード極のみ、または、アノード極およびカソード極の双方に配置されていてもよい。さらに、本実施形態では、上中流部の液水蒸発促進材および液水輸送促進材の含有量はほぼ同一であるが、かような形態に限定されるものではなく、上中流部の液水蒸発促進材および液水輸送促進材の組成比は適宜設計すればよい。
 イオン伝導性材料の被覆面積が小さい導電性材料が多く配合された親水性多孔質層を、カソードガス出口に対向するアノード触媒層またはカソード触媒層の少なくとも一方に隣接する(対向流の構成とする)ことで、より液水輸送機能を促進することができる。その結果、カソード極からアノード極への水輸送性が向上し、MEA全体における水輸送抵抗を低減することができる。したがって、本実施形態のMEAを燃料電池に適用した場合に、零下起動性と常温での高電流密度運転の両立が可能となり、高電流密度運転が特に達成されやすい。
 図19の実施形態において、カソードガス出口に対向する部分において、液水輸送促進材は、液水蒸発促進材の含有質量を1とした場合、1.1~10であることが好ましく、5~10であることが好ましい。かような範囲であれば、常温時により高電流密度の運転が可能となる。
 上述したように本発明(第3実施態様)のMEAは親水性多孔質層に特徴を有するものである。したがって、MEAを構成するその他の部材については、燃料電池の分野において従来公知の構成がそのまま、または適宜改良されて採用されうる。以下、参考までに親水性多孔質層以外の部材の典型的な形態について説明するが、本発明の技術的範囲が下記の形態のみに限定されることはない。
 [高分子電解質膜]
 高分子電解質膜は、イオン交換樹脂から構成され、PEFCの運転時にアノード側触媒層で生成したプロトンを膜厚方向に沿ってカソード側触媒層へと選択的に透過させる機能を有する。また、高分子電解質膜は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
 高分子電解質膜の具体的な構成は特に制限されず、燃料電池の分野において従来公知の高分子電解質膜が適宜採用されうる。高分子電解質膜は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質膜と炭化水素系高分子電解質膜とに大別される。フッ素系高分子電解質膜を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性などの発電性能上の観点からはこれらのフッ素系高分子電解質膜が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質膜が用いられる。
 前記炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質膜が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよいことは勿論である。
 高分子電解質膜の厚さは、得られるMEAやPEFCの特性を考慮して適宜決定すればよく、特に制限されない。ただし、高分子電解質膜の厚さは、好ましくは5~300μmであり、より好ましくは10~200μmであり、さらに好ましくは15~150μmである。厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性、および使用時の出力特性のバランスが適切に制御されうる。
 [触媒層]
 触媒層は、実際に反応が進行する層である。具体的には、アノード側触媒層では水素の酸化反応が進行し、カソード側触媒層では酸素の還元反応が進行する。触媒層は、触媒成分、触媒成分を担持する導電性担体、およびプロトン伝導性の高分子電解質を含む。
 アノード側触媒層に用いられる触媒成分は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード側触媒層に用いられる触媒成分もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、およびそれらの合金等などから選択される。ただし、その他の材料が用いられてもよいことは勿論である。これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。前記合金の組成は、合金化する金属の種類にもよるが、白金が30~90原子%、合金化する金属が10~70原子%とするのがよい。カソード側触媒として合金を使用する場合の合金の組成は、合金化する金属の種類などによって異なり、当業者が適宜選択できるが、白金が30~90原子%、合金化する他の金属が10~70原子%とすることが好ましい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード触媒層に用いられる触媒成分およびカソード触媒層に用いられる触媒成分は、上記の中から適宜選択できる。以下の説明では、特記しない限り、アノード触媒層およびカソード触媒層用の触媒成分についての説明は、両者について同様の定義であり、一括して、「触媒成分」と称する。しかしながら、アノード触媒層およびカソード触媒層の触媒成分は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択される。
 触媒成分の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが使用できるが、触媒成分は、粒状であることが好ましい。この際、触媒粒子の平均粒子径は、好ましくは1~30nm、より好ましくは1.5~20nm、さらに好ましくは2~10nm、特に好ましくは2~5nmである。触媒粒子の平均粒子径がかような範囲内の値であると、電気化学反応が進行する有効電極面積に関連する触媒利用率と担持の簡便さとのバランスが適切に制御されうる。なお、本発明における「触媒粒子の平均粒子径」は、X線回折における触媒成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡像より調べられる触媒成分の粒子径の平均値として測定されうる。
 導電性担体は、上述した触媒成分を担持するための担体、および触媒成分との電子の授受に関与する電子伝導パスとして機能する。
 導電性担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであればよく、主成分がカーボンである炭素系材料であることが好ましい。具体的には、カーボンブラック、黒鉛化処理したカーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛、カーボンナノチューブ、カーボンナノホーンおよびカーボンフィブリル構造体などからなるカーボン粒子が挙げられる。なお、「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念である。場合によっては、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよい。なお、「実質的に炭素原子からなる」とは、2~3質量%程度以下の不純物の混入が許容されうることを意味する。
 触媒層、特にアノード側触媒層に黒鉛化処理したカーボンブラックなどの黒鉛化した導電性材料、より好ましくは黒鉛化した炭素材料を導電性担体として用いると、導電性材料の腐食耐性を向上することができるため、好ましい。しかしながら、黒鉛化した導電性材料は、イオン伝導性材料の被覆面積が小さく、液水の蒸発面積が小さい為、零下での凍結または常温でのフラッディングが懸念される。黒鉛化させた導電性材料を用いた触媒層に親水性多孔質を隣接するように設置する事で、排水性を向上することができ、零下起動性と常温での高電流密度運転を両立し、さらに導電性材料の腐食耐性を付与した燃料電池用の膜電極接合体を提供する。黒鉛化処理したカーボンブラックは球状であることが好ましく、X線回折から算出される[002]面の平均格子面間隔d002が0.343~0.358nmかつBET比表面積が100~300m2/gであることが望ましい。
 導電性担体のBET比表面積は、触媒成分を高分散担持させるのに充分な比表面積であればよいが、好ましくは20~1600m2/g、より好ましくは80~1200m2/gである。導電性担体の比表面積がかような範囲内の値であると、導電性担体上での触媒成分の分散性と触媒成分の有効利用率とのバランスが適切に制御されうる。
 導電性担体のサイズについても特に限定されないが、担持の簡便さ、触媒利用率、電極触媒層の厚みを適切な範囲で制御するなどの観点からは、平均粒子径を5~200nm、好ましくは10~100nm程度とするとよい。
 導電性担体に触媒成分が担持されてなる複合体(以下、「電極触媒」とも称する)において、触媒成分の担持量は、電極触媒の全量に対して、好ましくは10~80質量%、より好ましくは30~70質量%である。触媒成分の担持量がかような範囲内の値であると、導電性担体上での触媒成分の分散度と触媒性能とのバランスが適切に制御されうる。なお、触媒成分の担持量は、誘導結合プラズマ発光分光法(ICP)によって測定されうる。
 また、担体への触媒成分の担持は公知の方法で行うことができる。例えば、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。
 または、本発明において、電極触媒は市販品を使用してもよい。このような市販品としては、例えば、田中貴金属工業製、エヌ・イー・ケムキャット製、E-TEK製、ジョンソンマッセイ製などの電極触媒が使用できる。これらの電極触媒は、カーボン担体に、白金や白金合金を担持(触媒種の担持濃度、20~70質量%)したものである。上記において、カーボン担体としては、ケッチェンブラック、バルカン、アセチレンブラック、ブラックパール、予め高温で熱処理した黒鉛化処理カーボン担体(例えば、黒鉛化処理ケッチェンブラック)、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、メソポーラスカーボンなどがある。
 触媒層には、電極触媒に加えて、イオン伝導性の高分子電解質が含まれる。当該高分子電解質は特に限定されず従来公知の知見が適宜参照されうるが、例えば、上述した高分子電解質膜を構成するイオン交換樹脂が前記高分子電解質として触媒層に添加されうる。触媒層が親水性多孔質層である場合には、イオン伝導性材料として、上記高分子電解質が用いられる。
 [ガス拡散層]
 ガス拡散層は、セパレータ流路を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層への拡散を促進する機能、および電子伝導パスとしての機能を有する。
 ガス拡散層の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
 ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
 また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層:MPL)を基材の触媒層側に有するものであってもよい。
 カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、黒鉛、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒子径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
 カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
 カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、質量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
 (燃料電池用膜電極接合体の製造方法)
 上記実施形態のMEAの製造方法は特に限定されるものではなく、従来公知の製造方法により製造することができる。
 好適には、触媒層と親水性多孔質層とを一体化する工程(工程1とも称する)と、次いで親水性多孔質層の触媒層と反対側にガス拡散層を一体化する工程(以下、工程2とも称する)と、を含む。ガス拡散層上に親水性多孔質層インクを塗布し、乾燥すると、接触抵抗が上がる場合があり、工程1、工程2をこの順序に行うことによって、上記懸念が解消される。そして、かような工程を採用することにより、水輸送経路の連続性を向上させることが可能となる。
 工程1の具体的な一実施形態を図20のAに示す。図20のAの実施形態では、工程1の前に、電解質膜上に電極触媒層を作製する。そして、形成された電極触媒層の電解質膜と反対側の面に親水性多孔質層用インクを塗布する。この際、液水輸送抵抗が上昇することから乾燥を行わないほうが好ましい。
 工程1の他の実施形態を図20のBに示す。図20のBの実施形態では、PTFE製シートなどの基材上に親水性多孔質層スラリーを塗布する。次いで、親水性多孔質層スラリー上に触媒層を形成する。このようにして得られた、親水性多孔質層-触媒層を、電解質膜上に、転写等によって形成する。基材としてPTFE製シートを用いた場合には、ホットプレスした後に、PTFE製シートのみを剥がし、その後ガス拡散層を積層させればよい。なお、上述の親水性多孔質層の製造方法において説明した親水性多孔質層用インクを乾燥する工程は、MEA作製過程のいずれかの段階で行われればよく、親水性多孔質層用インクを基材上に塗布した後、すぐに親水性多孔質層用インクを乾燥する形態に限られない。
 また、上流部、中流部、および下流部で空孔率や液水輸送促進材および液水蒸発促進材の組成比が異なる場合には、適当な組成の親水性多孔質層インクをそれぞれ製造し、所望の場所に塗布することによってMEAを製造することができる。
 (燃料電池)
 次に、図面を参照しながら第3実施態様のMEAを用いる好適な実施形態であるPEFCについて説明する。
 図21は、燃料電池用MEAが一対のセパレータにより挟持されてなるPEFCの単セルを示す模式断面図である。
 図21に示すPEFC500は、MEA510’をアノード側セパレータ502およびカソード側セパレータ501で挟持することで構成されている。また、MEAに供給される燃料ガスおよび酸化剤ガスは、アノード側セパレータ502およびカソード側セパレータ501に、それぞれ複数箇所設けられたガス供給溝504、503などを介して供給される。また、図21のPEFCにおいては、ガスケット505が、MEA510’の表面に位置する電極の外周を、取り囲むように配置されている。ガスケットはシール部材であり、接着層(図示せず)を介して、MEA510’の固体高分子電解質膜512の外面に固定される構成を有していてもよい。ガスケットは、セパレータとMEAとのシール性を確保する機能を有している。なお、必要に応じて用いられる接着層は、接着性を確保することを考慮すると、ガスケットの形状に対応し、電解質膜の全周縁部に、額縁状に配置されることが好ましい。
 以下、MEA以外のPEFCの各構成要素について、順に詳細に説明する。
 [ガスケット]
 ガスケットは、触媒層またはガス拡散層(すなわち、ガス拡散電極)を包囲するように配置され、供給されたガス(燃料ガスまたは酸化剤ガス)のガス拡散電極からの漏出を防止する機能を有する。
 ガスケットを構成する材料は、ガス、特に酸素や水素に対して不透過性であればよく、特に制限されることはない。ガスケットの構成材料としては、例えば、フッ素ゴム、シリコンゴム、エチレンプロピレンゴム(EPDM)、ポリイソブチレンゴムなどのゴム材料、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)などの高分子材料が挙げられる。ただし、その他の材料が用いられてもよいことは勿論である。
 ガスケットのサイズについても特に制限はなく、所望のガスシール性や他の部材のサイズとの関係などを考慮して適宜決定すればよい。
 [セパレータ]
 MEAは、セパレータで挟持されてPEFCの単セルを構成する。PEFCは、単セルが複数個直列に接続されてなるスタック構造を有するのが一般的である。この際、セパレータは、各MEAを直列に電気的に接続する機能に加えて、燃料ガスおよび酸化剤ガス並びに冷媒といった異なる流体を流す流路やマニホールドを備え、さらにはスタックの機械的強度を保つといった機能をも有する。
 セパレータを構成する材料は特に制限されず、従来公知の知見が適宜参照されうるが、例えば、緻密カーボングラファイト、炭素板等のカーボン材料や、ステンレス等の金属材料などが挙げられる。セパレータのサイズや流路の形状などは特に限定されず、PEFCの出力特性などを考慮して適宜決定すればよい。
 PEFCの製造方法は特に制限されず、燃料電池の分野において従来公知の知見を適宜参照することにより製造可能である。
 以上、高分子電解質形燃料電池を例に挙げて説明したが、燃料電池としてはこの他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられ、いずれの電池に適用してもよい。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質形燃料電池(PEFC)が好ましく挙げられる。
 前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用であるが、特にシステムの起動/停止や出力変動が頻繁に発生する車両、より好ましくは自動車用途で特に好適に使用できる。
 以下、実施例により、本発明をより詳細に説明する。ただし、本発明の技術的範囲が、以下の実施例のみに制限されるわけではない。
 (実施例1)
 導電性材料として、ケッチェンブラックEC(ケッチェン・ブラック・インターナショナル株式会社製)に熱処理を施したものを用いた。熱処理は3000℃で、2時間行った。熱処理を施したケッチェンブラックECのSBETは151m2/g、θionは1.00、Sionは151m2/gであった。
 この導電性材料とイオン伝導性材料分散液(Nafion(登録商標)D2020、デュポン社製)とを、導電性材料とイオン伝導性材料との質量比(I/C比)が0.9となるように混合した。さらに、プロピレングリコール水溶液(50体積%)を、インクの固形分率(インク全質量に対する固形分の質量割合)が12質量%となるよう添加して、インクを調製した。
 触媒インクは、電極触媒粉末(TEC10E50E、田中貴金属工業株式会社製)とイオン伝導性材料分散液(Nafion(登録商標)D2020、デュポン社製)とを、カーボン担体とイオン伝導性材料との質量比が0.9となるように混合した。さらに、プロピレングリコール水溶液(50体積%)を、インクの固形分率が19質量%となるように添加して調製した。なお、電極触媒粉末のBET窒素比表面積は、561m2/gであった。
 親水性多孔質層は、ポリテトラフルオロエチレン(PTFE)基材上に、スクリーン印刷法により、カーボン担持量がおよそ0.3mg/cm2となるよう塗布した。その後、有機物を除去するために、130℃で30分間熱処理を施した。その上に、触媒層をPt担持量がおよそ0.05mg/cm2となるように、スクリーン印刷法により塗布した。その後、再度130℃で30分間熱処理を施した。親水性多孔質層の空孔率は45%、厚さは8μmであった。また、触媒層の空孔率は40%、厚さは3μmであった。
 上記のようにして作製した親水性多孔質層と触媒層との積層体を電解質膜(Nafion(登録商標)NR211、デュポン社製)へ転写し、アノード側ガス拡散電極とした。転写は150℃、10分、0.8Mpaの条件で行った。電解質膜の反対側の面(カソード側)には、上記の触媒インクのみを塗布した。これにより、カソード側触媒層、電解質膜、アノード側触媒層、および親水性多孔質層が、この順に積層された積層体を得た。
 得られた積層体を、ガス拡散層(東レ株式会社製、TGP-H060)で挟持するようにして膜電極接合体を完成させた。
 (比較例1)
 導電性材料として、熱処理を施していないケッチェンブラックEC(ケッチェン・ブラック・インターナショナル株式会社製)を用いた。熱処理を施していないケッチェンブラックECのSBETは718m2/g、θionは0.34、Sionは244m2/gであった。
 この熱処理を施していないケッチェンブラックECを用い、親水性多孔質層の厚さを60μmとしたこと以外は、実施例と同様にして、膜電極接合体を完成させた。
 (評価1:水輸送抵抗の測定)
 実施例の膜電極接合体を用いて、80℃における親水性多孔質層の水輸送抵抗を測定したところ、15×104s・cm2・Δa・g-1であった。また、比較例の膜電極接合体を用いて、80℃における親水性多孔質層の水輸送抵抗を測定したところ、1600×104s・cm2・Δa・g-1であった。
 実施例および比較例に共通して形成されている触媒層の80℃における水輸送抵抗を測定したところ、25×104s・cm2・Δa・g-1であった。
 (評価2:発電試験)
 下記表7に示す2条件で発電試験を行い、電流密度1.2A/cm2でのセル電圧を測定した。
Figure JPOXMLDOC01-appb-T000018
 結果を下記表8に示す。
Figure JPOXMLDOC01-appb-T000019
 この結果から、アノード側の親水性多孔質層の水輸送抵抗を低下させることにより、高電流密度における発電中のセル電圧が向上することがわかった。
 (実施例2)
 導電性材料であるカーボン粉末(ケッチェンブラックEC、ケッチェンブラックインターナショナル株式会社製)と、イオン伝導性材料分散液(Nafion(登録商標)D2020、デュポン社製)とを、カーボン粉末とイオン伝導性材料との重量比が0.7となるよう混合し、さらにプロピレングリコール水溶液(50体積%)を、インクの固形分率(インク全重量に対する固形分の重量割合)が12質量%となるように添加して、親水性多孔質層インクを調製した。
 触媒インクは、電極触媒粉末(TEC10E50E、TKK)とイオン伝導性材料分散液(Nafion(登録商標)D2020、デュポン社製)とを導電性担体とイオン伝導性材料の重量比が0.9となるよう混合し、さらに、プロピレングリコール水溶液(50体積%)を、インクの固形分率が19質量%となるよう添加して、調製した。
 次に、親水性多孔質層をポリテトラフルオロエチレン(PTFE)基材上に、スクリーン印刷法により、カーボン担持量がおよそ0.3mg・cm-2となるよう塗布した。その後、有機物を除去するために、130℃で30分間熱処理を施した。その上に、触媒層をPt担持量がおよそ0.05mg・cm-2となるよう塗布した。その後、再度130℃で30分間熱処理を施した。
 上記のようにして作製した触媒層を電解質膜(Nafion(登録商標)NR211、デュポン社製)へ転写した。転写は150℃、10分、0.8Mpaの条件で行った。
 得られた触媒層及び親水性多孔質層上に、厚さ約120μmのガス拡散層基材(東レ社製TGP-H-030)を乗せ、グラファイト製セパレータ、金メッキした銅製集電板により25℃において1MPaの面圧を印加し、ガス拡散層基材の繊維が親水性多孔質層に食い込むようにし、本願発明の効果が得られるようにした。
 [評価]
 (零下起動性の評価)
 上記で作製したガス拡散層をアノード(燃料極)に使用し、カソード(空気極)にSGLカーボン社製GDL24BCを使用した膜電極接合体(発電面積10cm2)を小型単セルに組み込み、零下発電性能を確認した。具体的には、はじめに、コンディショニングのために50℃において両極に相対湿度60%の窒素ガスを3時間供給した。次に、小型単セルの温度を-20℃まで約1時間で冷却し、十分温度が安定した後、各極にそれぞれ乾燥水素(1.0NL/min)と乾燥空気(1.0NL/min)との供給を開始し、90秒程度経過した後、負荷(電流密度:40mA/cm2)を瞬時に取り出した。零下環境であるため生成水が凍結しセル電圧が低下するが、それまでの時間が長いものほど生成水の気相排出性が高いと考えた。そこで、発電開始からセル電圧が0.2Vとなるまでの時間を測定した。結果を図8に示す。
 図10のように、発電開始からセル電圧が0.2Vとなるまでの時間は、両極共にガス拡散層としてSGLカーボン社製GDL24BCを使用した比較例2の電池が490秒であるのに対して、実施例2の電池は、543秒であった。すなわち、実施例2の電池は、比較例2の電池と比較して、50秒以上発電可能時間が延長された。したがって、本発明によれば、零下起動時に生成水を膜電極接合体外へ効果的に排出できるため、電池の電圧低下をより長時間抑制することが可能になる。
 (実施例3)
 導電性材料として、ケッチェンブラックEC(ケッチェン・ブラック・インターナショナル(株))および熱処理(3000℃)済みケッチェンブラックECを準備した。
 各導電性材料のSBETおよびθionの値を算出したところ、ケッチェンブラックECは、SBET:718m2/g、θion:0.34、イオン伝導性被覆面積Sion:247m2/gであり、熱処理(3000℃)済みケッチェンブラックECは、SBET:151m2/g、θion:1.0、イオン伝導性被覆面積Sion:151m2/gであった。ケッチェンブラックECを液水蒸発促進材として、熱処理(3000℃)済みケッチェンブラックECを液水輸送促進材として用いた。
 導電性材料(液水蒸発促進材:液水輸送促進材=1:1(質量比))およびイオン伝導性材料分散液(Nafion(登録商標)D2020、デュポン社製;Nafion、溶媒が水:NPA(ノルマルプロピルアルコール):プロピレングリコール=4:1:3(質量比))を導電性材料およびイオン伝導性材料の質量比(I/C比)が0.7となるよう混合し、さらに、プロピレングリコール水溶液(50体積%)を、インクの固形分率(インク全質量に対する固形分の質量割合)が12質量%となるよう添加して、親水性多孔質層インクを調製した。
 触媒インクは、電極触媒粉末(TEC10E50E、田中金属工業株式会社製)とイオン伝導性材料分散液(Nafion(登録商標)D2020、デュポン社製)をカーボン担体とイオン伝導性材料の質量比が0.9となるよう混合し、さらに、プロピレングリコール溶液(50体積%)を、インクの固形分率が19質量%となるよう添加して、調製した。
 次に、親水性多孔質層をポリテトラフルオロエチレン(PTFE)基材上に、スクリーン印刷法により、カーボン担持量がおよそ0.3mg・cm-2となるよう塗布した。その後、有機物を除去するために、130℃で30分間熱処理を施した。その上に、触媒層をPt担持量がおよそ0.05mg・cm-2となるよう塗布した。その後、再度130℃で30min熱処理を施した。
 上記のようにして作製した触媒層を電解質膜(Nafion(登録商標)NR211、デュポン社製)へ転写した。転写は150℃、10分、0.8Mpaの条件で行った。同様の操作を電解質膜の他方に対しても行った。
 得られた接合体を、ガス拡散層(東レ製TGP-H060)を挟んでMEAとし、これをグラファイト製セパレータで挟持し、さらに金メッキしたステンレス製集電板で挟持し、単セルとした。
 5.ガス拡散層の観察
 親水性を示す箇所を確認するために、アイオノマーのフッ素原子を確認するために、アイオノマーを一方の面に塗布し親水処理したガス拡散層を、SEM(走査型電子顕微鏡、日本電子社製、JSM-6380LA)を用いて観察し、EPMA(電子線マイクロアナラザ)を用いて解析した。その結果を図23に示す。(A)がSEMの観察結果であり、(B)がEPMAの観察結果である。EPMAにて、写真上部の色が薄くなっている部分が、親水処理部であり、フッ素原子が分散している部分である。
 6.零下発電試験
 ガス拡散層基材として東レ製H-060に親水処理部を設けたガス拡散層をアノード(燃料極)に使用し、カソード(空気極)にSGLカーボン製GDL24BCを使用した膜電極接合体(発電面積10cm2)を小型単セルに組み込み、零下発電性能を確認した。具体的には、はじめに、コンディショニングのために50℃において両極に相対湿度60%の窒素ガスを3時間供給した。次に、小型単セルの温度を-20℃まで約1時間で冷却し、十分温度が安定した後、各極にそれぞれ乾燥水素(1.0NL/min)と乾燥空気(1.0NL/min)の供給を開始し、90秒経過した後、負荷(電流密度:40mA/cm2)を瞬時に取り出した。零下環境であるため生成水が凍結しセル電圧が低下するが、それまでの時間が長いものほど生成水の気相排出性が高いと考えた。そこで、発電開始からセル電圧が0.2Vとなるまでの時間を比較した。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000020
 表9のように、発電開始からセル電圧が0.2Vとなるまでの時間は、アノードに本発明の親水処理を実施しない上記ガス拡散層を用いた電池が175秒であるのに対して、実施例3の電池は、253秒であった。すなわち、実施例3の電池は、未実施の電池と比較して、70秒以上発電可能時間が延長された。したがって、本発明によれば、零下起動時に生成水を膜電極接合体外へ効果的に排出できるため、電池の電圧低下をより長時間抑制することが可能になる。
10、10a、210、240、340、410、410’、510、510’  MEA、
11  アノード、
12、212、312、412、512  固体高分子電解質膜、
13、313、413、513  アノード側電極触媒層、
14、314、414、514  アノード側ガス拡散層、
15、315、415、515  カソード側電極触媒層、
16、316、416、516  カソード側ガス拡散層、
17、217、317、417、517  親水性多孔質層、
100、300、500  固体高分子電解質型燃料電池、
101、301、501  カソード側セパレータ、
102、302、502  アノード側セパレータ、
103、104、303、304、503、504  ガス供給溝、
105、305、505  ガスケット、
213、223、313、323  電極触媒層、
214  ガス拡散層、
215、230  ガス拡散電極、
216  ガス拡散層基材、
218、218’、401  イオン伝導性材料、
219  導電性材料、
219’  導電性担体、
221  親水処理部、
222  親水性多孔質層が埋没されている領域、
232  電極触媒、
402  液水蒸発促進材、
403  液水輸送促進材、
404  液水蒸発促進材層、
405  液水輸送促進材層、
418  水(液相)、
419  水(気相)。

Claims (36)

  1.  導電性材料とイオン伝導性材料とを有する親水性多孔質層と、
     前記親水性多孔質層に隣接する触媒層と、
    を備え、前記親水性多孔質層の水輸送抵抗が前記触媒層の水輸送抵抗よりも小さい、ガス拡散電極。
  2.  前記親水性多孔質層の空孔率が前記触媒層の空孔率よりも高い、請求項1に記載のガス拡散電極。
  3.  前記親水性多孔質層に含まれる前記導電性材料のBET窒素比表面積は、前記触媒層に含まれる電極触媒のBET窒素比表面積よりも小さい、請求項1または2に記載のガス拡散電極。
  4.  前記親水性多孔質層の厚さが前記触媒層よりも薄い、請求項1~3のいずれか1項に記載のガス拡散電極。
  5.  請求項1~4のいずれか1項に記載のガス拡散電極と、前記ガス拡散電極に隣接しているガス拡散層とを含む、膜電極接合体。
  6.  前記親水性多孔質層が前記触媒層と前記ガス拡散層との間に配置される、請求項5に記載の膜電極接合体。
  7.  前記親水性多孔質層が、少なくともアノード極に設置される、請求項5または6に記載の膜電極接合体。
  8.  請求項1~4のいずれか1項に記載のガス拡散電極、または請求項5~7のいずれか1項に記載の膜電極接合体を用いる燃料電池。
  9.  請求項8に記載の燃料電池を搭載した車両。
  10.  触媒層と親水性多孔質層とを予め一体化する工程を含む、請求項5~7のいずれか1項に記載の膜電極接合体の製造方法。
  11.  前記イオン伝導性材料および前記イオン伝導性材料に被覆される導電性材料を含む親水性多孔質層と、多孔質性のガス拡散層基材と、を含むガス拡散層が形成され、
     前記親水性多孔質層の少なくとも一部が、前記ガス拡散層基材に設置され、
     前記ガス拡散層基材の少なくとも一部が、親水処理された親水処理部である、請求項1に記載のガス拡散電極。
  12.  前記親水性多孔質層の少なくとも一部が、前記ガス拡散層の内部に形成される、請求項11に記載のガス拡散電極。
  13.  前記ガス拡散層基材における水蒸気の有効拡散係数D(m2/s)は、1気圧、-20℃で、下記式を満たす、請求項11または12に記載のガス拡散電極:
    Figure JPOXMLDOC01-appb-M000001
     式中、εはガス拡散層基材の空孔率であり、γは、ガス拡散基材層の屈曲度である。
  14.  前記ガス拡散層基材中の空孔の最小空孔径が1μm以上である、請求項11~13のいずれか1項に記載のガス拡散電極。
  15.  前記親水処理部は、イオン伝導性材料、金属酸化物、および親水性ポリマーからなる群より選択される1以上を含む、請求項11~14のいずれか1項に記載のガス拡散電極。
  16.  ガス拡散層と、イオン伝導性材料および触媒成分を担持した導電性担体を含む触媒層とを有し、前記触媒層は、前記イオン伝導性材料相互が密着することにより連続的な液水の輸送経路を形成する構造を有する、請求項11~15のいずれか1項に記載のガス拡散電極。
  17.  前記導電性担体が黒鉛化した炭素材料である、請求項16に記載のガス拡散電極。
  18.  前記イオン伝導性材料のEwが1000g/eq.以下である、請求項16または17に記載のガス拡散電極。
  19.  請求項11~15のいずれか1項に記載のガス拡散層、または請求項16~18のいずれか1項に記載のガス拡散電極を有する、膜電極接合体。
  20.  前記ガス拡散層が、少なくともアノード極に設置される、請求項19に記載の膜電極接合体。
  21.  請求項19または20に記載の膜電極接合体を用いる燃料電池。
  22.  請求項21に記載の燃料電池を搭載した車両。
  23.  ガス拡散層基材の表面に親水剤を含む溶液を塗布する段階と、
     前記溶液が乾燥する前に、導電性材料、イオン伝導性材料、および溶媒を含む親水性多孔質層用インクをさらに塗布し、乾燥させる段階と、
    を含む、ガス拡散電極の製造方法。
  24.  電解質膜上に電極触媒、イオン伝導性材料および溶媒を含む触媒インクを塗布する段階と、
     導電性材料、イオン伝導性材料、および溶媒を含む親水性多孔質層スラリーをさらに塗布する段階と、
     前記親水性多孔質層スラリーを塗布した表面に、親水剤を含む溶液を塗布したガス拡散層基材の表面を重ねてホットプレスする段階と、
    を含み、これらの各段階を連続的に行う、膜電極接合体の製造方法。
  25.  前記親水性多孔質層が燃料電池用であって、イオン伝導性材料と、前記イオン伝導性材料に被覆される導電性材料と、を有し、前記導電性材料は、Sion=SBET×θion(Sion:イオン伝導性材料の被覆面積、SBET:導電性材料のBET窒素比表面積、θion:イオン伝導性材料被覆率)で与えられる、イオン伝導性材料に被覆される導電性材料の被覆面積が200m2/g以上の液水蒸発促進材および200m2/g未満の液水輸送促進材からなる、請求項1に記載のガス拡散電極。
  26.  液水蒸発促進材を含む層と、液水輸送促進材を含む層とが層状構造を形成する、または親水性多孔質層内で液水蒸発促進材と液水輸送促進材とが混合状態で存在する、請求項25に記載のガス拡散電極。
  27.  請求項26または27に記載のガス拡散電極を有する、燃料電池用膜電極接合体。
  28.  前記親水性多孔質層は、電極触媒層とガス拡散層との間に配置される、請求項27に記載の燃料電池用膜電極接合体。
  29.  前記親水性多孔質層が、少なくともアノード極に設置される、請求項27または28に記載の燃料電池用膜電極接合体。
  30.  前記親水性多孔質層のカソードガス出口に対向する部分が前記親水性多孔質層のカソードガス入口に対向する部分よりも疎な構造である、請求項27~29のいずれか1項に記載の燃料電池用膜電極接合体。
  31.  (1)前記親水性多孔質層のカソードガス出口に対向する部分が前記液水蒸発促進材を前記液水輸送促進材よりも多く含む、または、(2)前記親水性多孔質層のカソードガス出口に対向する部分が前記液水輸送促進材を前記液水蒸発促進材よりも多く含む、請求項27~30のいずれか1項に記載の燃料電池用膜電極接合体。
  32.  請求項27~31のいずれか1項に記載の燃料電池用膜電極接合体を用いる燃料電池。
  33.  請求項32に記載の燃料電池を搭載した車両。
  34.  (1)前記液水蒸発促進材を含むインクおよび前記液水輸送促進材を含むインクを使用して層状構造となるように形成する工程と、熱処理する工程とを含む、または(2)前記液水蒸発促進材および前記液水輸送促進材を含むインクを用いて親水性多孔質層を作製する工程を含む、請求項25または26に記載のガス拡散電極の製造方法。
  35.  触媒層と親水性多孔質層を一体化する工程と、
     次いで、前記親水性多孔質層の触媒層と反対側にガス拡散層を一体化する工程と、を含む請求項27~31のいずれか1項に記載の燃料電池用膜電極接合体の製造方法。
  36.  親水性多孔質層中の前記疎な構造を、沸点150℃を超える高沸点有機溶媒を混合した溶媒を含むインクを用いて形成する、請求項30に記載の燃料電池用膜電極接合体の製造方法。
PCT/JP2010/060826 2009-06-26 2010-06-25 ガス拡散電極およびその製造方法、ならびに膜電極接合体およびその製造方法 WO2010150871A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10792189.2A EP2448048A4 (en) 2009-06-26 2010-06-25 Gas diffusion electrode and production method for same; membrane electrode assembly and production method for same
US13/379,204 US9029045B2 (en) 2009-06-26 2010-06-25 Gas diffusion electrode and production method for same; membrane electrode assembly and production method for same
CN201080028633.3A CN102460790B (zh) 2009-06-26 2010-06-25 气体扩散电极及其生产方法、膜电极组件及其生产方法
CA2766022A CA2766022C (en) 2009-06-26 2010-06-25 Gas diffusion electrode and production method for same; membrane electrode assembly and production method for same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-153006 2009-06-26
JP2009153006 2009-06-26
JP2009152442 2009-06-26
JP2009151711 2009-06-26
JP2009-152442 2009-06-26
JP2009-151711 2009-06-26

Publications (1)

Publication Number Publication Date
WO2010150871A1 true WO2010150871A1 (ja) 2010-12-29

Family

ID=43386640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060826 WO2010150871A1 (ja) 2009-06-26 2010-06-25 ガス拡散電極およびその製造方法、ならびに膜電極接合体およびその製造方法

Country Status (6)

Country Link
US (1) US9029045B2 (ja)
EP (1) EP2448048A4 (ja)
JP (1) JP5556434B2 (ja)
CN (1) CN102460790B (ja)
CA (1) CA2766022C (ja)
WO (1) WO2010150871A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130089805A1 (en) * 2011-10-11 2013-04-11 University Of Central Florida Research Foundation, Inc. Electroactive species in layer between electrode and membrane for fuel cells
JP2015079639A (ja) * 2013-10-17 2015-04-23 本田技研工業株式会社 電解質膜・電極構造体
US10923752B2 (en) 2016-12-29 2021-02-16 Kolon Industries, Inc. Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
JP2023521327A (ja) * 2020-04-07 2023-05-24 エナプター エス.アール.エル. イオン交換膜およびイオン交換膜の製造方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648639B (zh) 2011-04-19 2016-10-12 沙特基础工业公司 碳负载的钴和钼催化剂
EP2729247A1 (en) * 2011-07-08 2014-05-14 Saudi Basic Industries Corporation Improved carbon supported cobalt and molybdenum catalyst and use thereof for producing lower alcohols
CN104220630B (zh) 2012-02-23 2017-03-08 特来德斯通技术公司 耐腐蚀且导电的金属表面
JP5928013B2 (ja) * 2012-03-08 2016-06-01 日産自動車株式会社 電解質膜−電極接合体
US9692070B2 (en) * 2012-06-29 2017-06-27 Jntg Co., Ltd. Carbon substrate for gas diffusion layer, gas diffusion layer using the same, and electrode for fuel cell, membrane-electrode assembly and fuel cell comprising the gas diffusion layer
EP3462528A1 (en) * 2012-07-24 2019-04-03 Nuvera Fuel Cells, LLC Arrangement of flow structures for use in high differential pressure electrochemical cells
CN102790222B (zh) * 2012-08-17 2015-01-21 中国东方电气集团有限公司 质子交换膜燃料电池膜电极的制备方法
GB201220825D0 (en) * 2012-11-20 2013-01-02 Univ Leeds Proton exchange membrane fuel cell
JP2014135229A (ja) * 2013-01-11 2014-07-24 Ne Chemcat Corp 燃料電池用触媒インク
US20150171438A1 (en) * 2013-12-12 2015-06-18 GM Global Technology Operations LLC Layer design to mitigate fuel cell electrode corrosion from non-ideal operation
CN105789633B (zh) * 2014-12-16 2019-01-25 中国科学院大连化学物理研究所 一种非贵金属多孔骨架气体扩散电极及其制备和应用
JP6571961B2 (ja) * 2015-03-25 2019-09-04 株式会社東芝 燃料電池用電極、燃料電池用膜電極複合体および燃料電池
US10756354B2 (en) 2015-09-03 2020-08-25 Nissan Motor Co., Ltd. Membrane catalyst layer assembly production method and membrane catalyst layer assembly production device
CN106558704B (zh) * 2015-09-25 2019-11-12 中国科学院大连化学物理研究所 一种液流电池用梯度电极及其应用
JP6962319B2 (ja) * 2016-03-29 2021-11-05 東レ株式会社 ガス拡散電極基材、積層体および燃料電池
JP6536477B2 (ja) 2016-05-13 2019-07-03 トヨタ自動車株式会社 燃料電池
WO2018038986A1 (en) 2016-08-25 2018-03-01 Proton Energy Systems, Inc. Membrane electrode assembly and method of making the same
JP6658633B2 (ja) * 2017-03-16 2020-03-04 トヨタ自動車株式会社 触媒インクの製造方法、及び、触媒複合体
JP6809361B2 (ja) * 2017-04-26 2021-01-06 株式会社デンソー ガスセンサ
KR20190027251A (ko) 2017-09-06 2019-03-14 한국과학기술연구원 양성자 교환막 물 전해 장치용 막 전극 접합체 및 양성자 교환막 물 전해 장치용 막 전극 접합체의 제조 방법
CN111712955A (zh) 2018-02-15 2020-09-25 三菱化学株式会社 亲水性多孔质碳电极及其制造方法
US10964968B2 (en) * 2018-03-20 2021-03-30 Honda Motor Co., Ltd. Fuel cell stack and method of producing dummy cell
JP6624411B2 (ja) * 2018-04-12 2019-12-25 パナソニックIpマネジメント株式会社 パラメータ決定方法および細孔内のガスまたはイオンの輸送性を求めるシミュレーション方法
JP7006497B2 (ja) * 2018-05-11 2022-02-10 トヨタ自動車株式会社 燃料電池用触媒層及びその製造方法
CN111240376B (zh) * 2018-11-29 2021-06-01 中国科学院大连化学物理研究所 一种被动式气压调节装置
US11377738B2 (en) * 2019-05-31 2022-07-05 Robert Bosch Gmbh Method of applying a flow field plate coating
CN114270582B (zh) * 2019-09-05 2024-09-13 株式会社东芝 燃料电池组及燃料电池组的运转方法
CN111029605A (zh) * 2019-11-20 2020-04-17 华东理工大学 一种燃料电池用的气体扩散层及其制备方法和应用
JPWO2021131986A1 (ja) * 2019-12-26 2021-07-01
CN111487304B (zh) * 2020-04-13 2021-12-17 欧阳彬 监测气体浓度的设备和方法及传感器
JP7521516B2 (ja) * 2021-12-13 2024-07-24 株式会社豊田中央研究所 反応触媒及びそれを用いた電気化学リアクタ
WO2024155622A1 (en) * 2023-01-17 2024-07-25 The Johns Hopkins University Controlling water activity to promote selective electrochemical reactions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236976A (ja) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd 燃料電池
JP2002042823A (ja) * 2000-07-25 2002-02-08 Toyota Motor Corp 燃料電池
JP2003092112A (ja) * 2001-09-14 2003-03-28 Toshiba International Fuel Cells Corp 固体高分子形燃料電池
JP2008027810A (ja) * 2006-07-24 2008-02-07 Toyota Motor Corp 燃料電池、燃料電池用膜−電極接合体、および、燃料電池の製造方法
JP2008098066A (ja) * 2006-10-13 2008-04-24 Nissan Motor Co Ltd ガス拡散基材、その製造方法、ガス拡散層及び固体高分子形燃料電池
JP2008110340A (ja) * 2006-10-06 2008-05-15 Kao Corp フィルム状触媒
JP2008204664A (ja) * 2007-02-16 2008-09-04 Nissan Motor Co Ltd 燃料電池用膜電極接合体、およびこれを用いた燃料電池
JP2008276949A (ja) * 2007-04-25 2008-11-13 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093544A (ja) 1999-09-24 2001-04-06 Sanyo Electric Co Ltd 燃料電池用電極、その製造方法並びに燃料電池
JP2001198474A (ja) 2000-01-20 2001-07-24 Natl Inst Of Advanced Industrial Science & Technology Meti 光触媒担持体及びその製造方法
JP2002164056A (ja) * 2000-11-22 2002-06-07 Aisin Seiki Co Ltd 固体高分子電解質型燃料電池及び電極、及びその電極の製造方法
CN1459133A (zh) * 2001-03-08 2003-11-26 松下电器产业株式会社 高分子电解质型燃料电池
JP3778506B2 (ja) 2002-11-08 2006-05-24 本田技研工業株式会社 固体高分子型燃料電池用の電極
US7232627B2 (en) 2002-11-08 2007-06-19 Honda Motor Co., Ltd. Electrode for solid polymer fuel cell
US7306876B2 (en) * 2002-11-29 2007-12-11 Honda Motor Co., Ltd. Method for producing membrane-electrode structure and polymer electrolyte fuel cell
US20050221141A1 (en) * 2004-03-15 2005-10-06 Hampden-Smith Mark J Modified carbon products, their use in proton exchange membranes and similar devices and methods relating to the same
JP4788113B2 (ja) 2004-06-21 2011-10-05 トヨタ自動車株式会社 燃料電池
CN1323455C (zh) 2004-10-10 2007-06-27 上海河森电气有限公司 一种电化学发电装置中导电与气体扩散层材料的制造方法
JP2006286330A (ja) 2005-03-31 2006-10-19 Equos Research Co Ltd 燃料電池用の触媒層及び燃料電池
JP2007128671A (ja) 2005-11-01 2007-05-24 Tomoegawa Paper Co Ltd ガス拡散電極、膜−電極接合体とその製造方法、および固体高分子型燃料電池
EP2072130A4 (en) 2006-10-06 2010-09-29 Kao Corp FILM CATALYST AND METHOD FOR PRODUCING THE SAME
JP2008198474A (ja) 2007-02-13 2008-08-28 Toyota Motor Corp 燃料電池拡散層の製造方法、燃料電池拡散層および燃料電池
JP5069927B2 (ja) * 2007-03-26 2012-11-07 アイシン精機株式会社 燃料電池用膜電極接合体およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236976A (ja) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd 燃料電池
JP2002042823A (ja) * 2000-07-25 2002-02-08 Toyota Motor Corp 燃料電池
JP2003092112A (ja) * 2001-09-14 2003-03-28 Toshiba International Fuel Cells Corp 固体高分子形燃料電池
JP2008027810A (ja) * 2006-07-24 2008-02-07 Toyota Motor Corp 燃料電池、燃料電池用膜−電極接合体、および、燃料電池の製造方法
JP2008110340A (ja) * 2006-10-06 2008-05-15 Kao Corp フィルム状触媒
JP2008098066A (ja) * 2006-10-13 2008-04-24 Nissan Motor Co Ltd ガス拡散基材、その製造方法、ガス拡散層及び固体高分子形燃料電池
JP2008204664A (ja) * 2007-02-16 2008-09-04 Nissan Motor Co Ltd 燃料電池用膜電極接合体、およびこれを用いた燃料電池
JP2008276949A (ja) * 2007-04-25 2008-11-13 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2448048A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130089805A1 (en) * 2011-10-11 2013-04-11 University Of Central Florida Research Foundation, Inc. Electroactive species in layer between electrode and membrane for fuel cells
JP2015079639A (ja) * 2013-10-17 2015-04-23 本田技研工業株式会社 電解質膜・電極構造体
US10923752B2 (en) 2016-12-29 2021-02-16 Kolon Industries, Inc. Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
JP2023521327A (ja) * 2020-04-07 2023-05-24 エナプター エス.アール.エル. イオン交換膜およびイオン交換膜の製造方法

Also Published As

Publication number Publication date
JP2011029171A (ja) 2011-02-10
EP2448048A1 (en) 2012-05-02
CA2766022C (en) 2016-06-21
JP5556434B2 (ja) 2014-07-23
CA2766022A1 (en) 2010-12-29
CN102460790B (zh) 2015-05-13
US9029045B2 (en) 2015-05-12
US20120094215A1 (en) 2012-04-19
CN102460790A (zh) 2012-05-16
EP2448048A4 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5556434B2 (ja) ガス拡散電極およびその製造方法、ならびに膜電極接合体およびその製造方法
JP5488254B2 (ja) 燃料電池用親水性多孔質層、ガス拡散電極およびその製造方法、ならびに膜電極接合体
CN104094460B (zh) 燃料电池用电极催化剂层
CA2910237C (en) Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
EP2990116B1 (en) Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
EP2990105B1 (en) Catalyst, and electrode catalyst layer, film electrode assembly, and fuel cell each including said catalyst
WO2014175106A1 (ja) 電極、並びにこれを含む燃料電池用電極触媒層
CN106922203B (zh) 电极催化剂及其制造方法、电极催化剂层、膜电极接合体及燃料电池
EP2824741B1 (en) Electrolyte membrane electrode assembly
WO2014175107A1 (ja) 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP2008186798A (ja) 電解質膜−電極接合体
WO2016067879A1 (ja) 燃料電池用電極触媒層、ならびに当該触媒層を用いる燃料電池用膜電極接合体および燃料電池
CN107078307B (zh) 燃料电池用电极催化剂、燃料电池用电极催化剂层、其制造方法以及使用该催化剂层的膜电极接合体及燃料电池
WO2017042919A1 (ja) 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
JP2008204664A (ja) 燃料電池用膜電極接合体、およびこれを用いた燃料電池
JP2007165025A (ja) 膜電極接合体
JP2020057516A (ja) 電極層ならびに当該電極層を用いた膜電極接合体および燃料電池
JP2016091605A (ja) 燃料電池用電極触媒層の製造方法
JP2013175368A (ja) アノードガス拡散層
JP5544689B2 (ja) 燃料電池用保水層およびその製造方法並びに電解質膜−電極接合体
JP2007165188A (ja) 高分子型燃料電池の膜−電極接合体
JP2005243295A (ja) ガス拡散層、およびこれを用いた燃料電池用mea
JP5458774B2 (ja) 電解質膜−電極接合体
JP2006344426A (ja) 固体高分子型燃料電池
JP2011070926A (ja) 電解質膜−電極接合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028633.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792189

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13379204

Country of ref document: US

Ref document number: 2766022

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010792189

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010792189

Country of ref document: EP