WO2010143680A1 - 炭素繊維用アクリロニトリル膨潤糸、前駆体繊維束、耐炎化繊維束、炭素繊維束及びそれらの製造方法 - Google Patents

炭素繊維用アクリロニトリル膨潤糸、前駆体繊維束、耐炎化繊維束、炭素繊維束及びそれらの製造方法 Download PDF

Info

Publication number
WO2010143680A1
WO2010143680A1 PCT/JP2010/059827 JP2010059827W WO2010143680A1 WO 2010143680 A1 WO2010143680 A1 WO 2010143680A1 JP 2010059827 W JP2010059827 W JP 2010059827W WO 2010143680 A1 WO2010143680 A1 WO 2010143680A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
fiber bundle
fiber
mass
yarn
Prior art date
Application number
PCT/JP2010/059827
Other languages
English (en)
French (fr)
Inventor
橋本 弘
杉浦 直樹
藤井 泰行
宏子 松村
奥屋 孝浩
勲 大木
昌宏 畑
巧己 若林
小亀 朗由
和宣 角谷
明人 畑山
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201080025636.1A priority Critical patent/CN102459722B/zh
Priority to BRPI1012968A priority patent/BRPI1012968A2/pt
Priority to CA2764661A priority patent/CA2764661C/en
Priority to US13/377,207 priority patent/US20120088104A1/en
Priority to EP10786211.2A priority patent/EP2441865B1/en
Priority to JP2010523226A priority patent/JP4945684B2/ja
Priority to KR1020127000658A priority patent/KR101340140B1/ko
Priority to ES10786211.2T priority patent/ES2534649T3/es
Publication of WO2010143680A1 publication Critical patent/WO2010143680A1/ja
Priority to US16/374,982 priority patent/US20190233975A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2978Surface characteristic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Definitions

  • the present invention has excellent mechanical properties, and in particular, a carbon fiber bundle for obtaining a high-quality and high-performance fiber-reinforced resin such as aircraft use and industrial use, and a swollen yarn and a precursor fiber bundle used for the production thereof And a flame-resistant fiber bundle.
  • Patent Document 1 discloses a method of improving the uniformity of structure and orientation by drawing a coagulated yarn containing a solvent in a solvent-containing drawing bath when a precursor fiber bundle is obtained by a dry-wet spinning method. Proposed. Stretching the solidified yarn in a bath containing a solvent is a method generally known as a solvent stretching technique, and is a technique that enables a stable stretching process by solvent plasticization.
  • the technique for obtaining fibers with high uniformity in structure and orientation is very excellent.
  • the solvent present inside the filament is rapidly squeezed out of the filament as it is stretched, so that the resulting filament can easily form a sparse structure. , It cannot have the intended dense structure. As a result, it was difficult to obtain a carbon fiber bundle having high strength.
  • Patent Document 2 proposes a technique for obtaining a precursor fiber excellent in strength development by paying attention to the pore distribution of the coagulated yarn and drying and densifying the coagulated yarn having a high densified structure.
  • the pore distribution obtained by the mercury intrusion method reflects the bulk properties including the inside from the surface layer of the filament, and is an excellent method for evaluating the denseness of the overall structure of the fiber. It is.
  • High-strength carbon fibers with suppressed defect point formation can be obtained from precursor fiber bundles having an overall denseness level or higher.
  • the rupture state of the carbon fiber is observed, there is a very high proportion of the rupture start point near the surface layer. This means that a defect point exists in the vicinity of the surface layer. That is, this technique is insufficient for producing a precursor fiber bundle having excellent denseness in the vicinity of the surface layer.
  • Patent Document 3 proposes a method for producing an acrylonitrile-based precursor fiber bundle having high denseness as a whole and extremely high density in the surface layer portion.
  • Patent Document 4 proposes a technique for suppressing the penetration of the oil agent by focusing on the micro voids in the surface layer portion because the oil agent enters the fiber surface layer portion and inhibits densification.
  • both the technology for suppressing the intrusion of oil and the technology for suppressing defect point formation are difficult to put into practical use because they require very complicated processes. For this reason, in the technique currently examined, the effect which suppresses the oil agent penetration
  • JP-A-5-5224 JP-A-4-91230 Japanese Patent Publication No. 6-15722 Japanese Patent Laid-Open No. 11-124744
  • An object of the present invention is to provide a carbon fiber bundle for obtaining a fiber reinforced resin having high mechanical properties.
  • the present inventors have clarified the appropriate form and properties of the acrylonitrile swollen yarn for carbon fiber and the precursor fiber bundle, and by optimizing the coagulation and drawing conditions of the spun fiber, A swollen yarn having a dense internal structure and capable of suppressing oil permeation was found in the vicinity of the surface layer.
  • the above-mentioned problems are solved by the following present invention group.
  • the first invention is treated with an oil agent having an opening having a width of 10 nm or more in the circumferential direction of the fiber on the surface of the single fiber in a range of 0.3 / ⁇ m 2 or more and 2 / ⁇ m 2 or less.
  • the second invention is [1] 96.0% by mass or more and 99.7% by mass or less of acrylonitrile and 0.3% by mass or more and 4.0% by mass of unsaturated hydrocarbon having one or more carboxyl groups or ester groups.
  • a step of coagulating in a coagulation bath comprising the following aqueous solution to obtain a coagulated yarn bundle containing the organic solvent; [3] A step of stretching the coagulated yarn bundle in air within a range of 1.0 to 1.25 times, and further stretching in a warm aqueous solution containing an organic solvent, and total stretching by both stretching Stretching at a magnification of 2.6 times to 4.0 times, [4] A method for producing a swollen yarn, further comprising a step of removing the solvent with warm water and further stretching it 0.98 times or more and 2.0 times or less in hot water.
  • the third invention is required to contain 96.0% by mass or more and 99.7% by mass or less of acrylonitrile and 0.3% by mass or more and 4.0% by mass or less of unsaturated hydrocarbons having one or more carboxyl groups or ester groups.
  • a precursor fiber bundle for carbon fibers comprising an acrylonitrile copolymer copolymerized as a component and treated with an oil containing a silicone compound as a main component and having a silicon content of 1700 ppm to 5000 ppm, comprising a Soxhlet extractor This is a precursor fiber bundle for carbon fiber having a silicon content of 50 ppm or more and 300 ppm or less after 8 hours of oil agent washing with methyl ethyl ketone used.
  • an oil agent containing a silicone compound as a main component is attached to the bundle of swollen yarns by adhering 0.8 to 1.6% by mass of the oil agent component to 100% by mass of the swollen yarn.
  • the carbon fiber precursor fiber bundle is then stretched by a heat stretching method or a steam stretching method in a range of 1.8 times to 6.0 times.
  • the precursor fiber bundle is passed through a hot air circulation type flameproof furnace at 220 to 260 ° C. for 30 minutes or more and 100 minutes or less in an oxidizing atmosphere with an elongation rate of 0% or more and 10% or less.
  • This is a method for producing a flame-resistant fiber bundle that satisfies the following four conditions by heat treatment.
  • the resin impregnated strand strength is 6000 MPa or more
  • the strand elastic modulus measured by the ASTM method is 250 to 380 GPa
  • the ratio of the major axis to the minor axis in the cross section perpendicular to the fiber axis direction of the single fiber (major axis / short axis).
  • (Diameter) is 1.00 to 1.01
  • the diameter of the single fiber is 4.0 to 6.0 ⁇ m
  • one or more voids having a diameter of 2 nm or more and 15 nm or less are 100 in the cross section perpendicular to the fiber axis direction of the single fiber. It is a carbon fiber bundle that exists in number or less.
  • the precursor fiber bundle is made into a flame-resistant fiber bundle having a density of 1.335 g / cm 3 or more and 1.355 g / cm 3 or less by heat treatment in an oxidizing atmosphere, and then 300 in an inert atmosphere.
  • heating is performed for not less than 1.0 to not more than 3.0 minutes while adding elongation of not less than 2% to not more than 7%, followed by firing from 1000 ° C in an inert atmosphere
  • a method for producing a carbon fiber bundle wherein heat treatment is performed for 1.0 minute or more and 5.0 minutes or less while adding an elongation of -6.0% or more and 2.0% or less in one or more carbonization furnaces having a temperature gradient up to a temperature. It is.
  • the swollen yarn of the present invention can suppress the penetration of silicone oil, which is the main component of the oil agent, into the surface layer portion of the precursor fiber.
  • the carbon fiber bundle obtained by flameproofing and carbonizing the precursor fiber bundle has excellent mechanical performance, and a fiber reinforced resin having high mechanical properties can be obtained.
  • the coagulated yarn is a process yarn that has been taken out of the coagulating liquid and not subjected to a drawing treatment.
  • the swollen yarn is a process yarn obtained by subjecting the coagulated yarn to a drawing process and a washing process, and is a process yarn before the oil agent adhesion and the drying process.
  • the acrylonitrile swelling yarn for carbon fiber of the present invention (hereinafter referred to as “swelling yarn” as appropriate) has 0.3 apertures having a width of 10 nm or more in the circumferential direction of the fiber in the state before the oil agent treatment. / ⁇ m 2 or more and 2 / ⁇ m 2 or less in the range of the single fiber.
  • the swollen yarn is subjected to a process of attaching, drying and further stretching an oil agent having a silicone compound, and is formed into a precursor fiber bundle.
  • the swollen yarn has such a surface. It becomes possible to greatly suppress penetration into the surface layer.
  • the polymer constituting the swollen yarn is 96.0% by mass or more and 99.7% by mass or less of acrylonitrile units, and 0.3% by mass or more of unsaturated hydrocarbon units having one or more carboxyl groups or ester groups.
  • An acrylonitrile-based copolymer having 0% by mass or less as an essential component is preferable.
  • the unsaturated hydrocarbon component having a carboxyl group or an ester group serves as a starting point for the flameproofing reaction in the flameproofing step, and the content thereof is 0.3% by mass or more and 4.0% by mass.
  • the swollen yarn is obtained by subjecting a predetermined amount of an oil containing a specific silicone compound to adhesion, drying and densifying, and then quantifying the remaining silicone compound after 8 hours of oil extraction and washing with methyl ethyl ketone. It is possible to evaluate whether it has a surface layer part which can suppress permeation of water.
  • the oil agent permeability of the swollen yarn can be evaluated as follows. First, the following (1) amino-modified silicone oil and (2) emulsifier are mixed, and an aqueous dispersion (aqueous fiber oil) is prepared by a phase inversion emulsification method. This aqueous fiber oil is adhered to the swollen yarn.
  • the swelling yarn of the present invention preferably has a silicon content (residual amount) of 50 ppm or more and 300 ppm or less in the oil agent extraction cleaning. This value is more preferably 50 ppm or more and 200 ppm or less.
  • the fact that the silicon content of the fiber bundle after the oil agent extraction washing exceeds 300 ppm means that the denseness of the surface layer part that suppresses the penetration of the oil agent component into the surface layer part is insufficient, and is obtained through the firing step.
  • the carbon fiber to be obtained includes a large number of voids in the surface layer portion. As a result, the intended high-strength carbon fiber cannot be obtained.
  • this value is less than 50 ppm, it means that the amount of the oil agent penetrating into the surface layer portion of the swollen yarn is very small, and the cause is that an extremely dense skin layer is formed on the surface layer portion of the fiber in the coagulation bath. It is thought that it was formed.
  • the degree of swelling measured by the method for measuring the degree of swelling of the swollen yarn] is more preferably 80% by mass or less.
  • the swelling degree exceeding 80% by mass indicates that the denseness of the inner layer structure of the swollen yarn is slightly lowered. In this case, even if defect point formation can be suppressed in the surface layer portion, the possibility of defect point formation in the inner layer portion is increased, and as a result, a carbon fiber having high mechanical performance is obtained. I can't.
  • a more preferable degree of swelling is 75% by mass or less.
  • the denseness of the swollen yarn can be evaluated by measuring the pore distribution inside the fiber.
  • the average pore size of the swollen yarn of the present invention is preferably 55 nm or less, and the total pore volume is preferably 0.55 ml / g or less.
  • the average pore size is more preferably 50 nm or less, and further preferably 45 nm or less.
  • the total pore volume is more preferably 0.50 ml / g or less, and further preferably 0.45 ml / g or less.
  • Such swollen yarn does not have large-sized voids inside the fibers, and the proportion of voids is low and dense.
  • both the surface layer of the swollen yarn is densified as described above to suppress the penetration of the oil agent, and the fiber has a dense structure with few voids inside. It is preferable to do.
  • the pore distribution of the swollen yarn is described in [4. Measurement method of pore distribution of swollen yarn].
  • the swollen yarn of the present invention can be produced by wet spinning or wet and wet spinning of a spinning stock solution comprising an acrylonitrile copolymer and an organic solvent.
  • the acrylonitrile-based copolymer include those obtained by copolymerizing acrylonitrile and an unsaturated hydrocarbon having one or more carboxyl groups or ester groups as an essential component.
  • the unsaturated hydrocarbon having one or more carboxyl groups or ester groups include acrylic acid, methacrylic acid, itaconic acid, methyl acrylate, methyl methacrylate, and ethyl acrylate.
  • the unsaturated hydrocarbon component having a carboxyl group or an ester group is known to be the starting point of the flameproofing reaction in the flameproofing process, and if its content is too small, the flameproofing reaction does not occur sufficiently, This will hinder the formation of the structure of the synthetic fiber. On the other hand, if the number is too large, a rapid reaction occurs due to the presence of a large number of reaction starting points, resulting in the formation of a rough structural form, and carbon fibers having high performance cannot be obtained. By making the content 0.3 mass% or more and 4.0 mass% or less, the balance between the flameproofing reaction start point and the reaction rate becomes good, the structure is dense, and it becomes a defect point in the carbonization process.
  • acrylamide derivatives such as acrylamide, methacrylamide, N-methylolacrylamide, N, N-dimethylacrylamide, vinyl acetate, etc. may be used.
  • a suitable method for copolymerizing the monomer mixture may be, for example, redox polymerization in an aqueous solution or suspension polymerization in a heterogeneous system and emulsion polymerization using a dispersing agent, or any other polymerization method.
  • the present invention is not limited by the differences.
  • a spinning stock solution having a temperature of 50 to 70 ° C. in which an acrylonitrile copolymer is dissolved in an organic solvent at a concentration of 20 to 25% by mass is prepared.
  • the solid concentration of the spinning dope is preferably 20% by mass or more, and more preferably 21% by mass or more.
  • the temperature of the spinning dope by setting the temperature of the spinning dope to 50 ° C. or higher, it is possible to achieve an appropriate viscosity of the stock solution without lowering the solid content concentration, and by setting it to 70 ° C. or less, the temperature difference with the coagulating liquid is reduced. can do. That is, when the temperature of the spinning dope is 50 to 70 ° C., a coagulated yarn having a high density and a homogeneous structure can be stably produced.
  • the organic solvent is not particularly limited, but dimethylformamide, dimethylacetamide or dimethyl sulfoxide is more preferably used. More preferably, it is dimethylformamide excellent in the dissolving ability of the acrylonitrile-based copolymer.
  • the spinning method may be either wet spinning or wet and wet spinning. More preferred is dry and wet spinning. This is because it is easy to form a dense solidified yarn, and in particular, the denseness of the surface layer portion can be improved.
  • dry-wet spinning the prepared spinning solution is spun into air from a spinneret with a large number of nozzle holes, and then discharged into a coagulating solution filled with a mixed solution of temperature-controlled organic solvent and water for coagulation. Take the coagulated yarn.
  • the coagulation liquid preferably has a temperature of -5 to 20 ° C. and an organic solvent concentration of 78 to 82% by mass.
  • a more preferable temperature range is ⁇ 5 ° C. to 10 ° C.
  • a more preferable organic solvent concentration range is an aqueous solution having a concentration of 78.5% by mass or more and 81.0% by mass or less.
  • the coagulated yarn is stretched and washed.
  • the order of the stretching and washing treatment is not particularly limited, and the film may be washed after stretching, or the stretching and washing may be performed simultaneously.
  • the cleaning method may be any method as long as the solvent can be removed.
  • a particularly preferred drawing and washing treatment of the coagulated yarn is to draw in a predrawing tank having a lower solvent concentration and higher temperature than the coagulating liquid before washing. Thereby, a uniform fibril structure can be formed in the coagulated yarn.
  • Stretching the coagulated yarn in a bath containing a solvent is a method generally known as a solvent stretching technique, which enables a stable stretching process by solvent plasticization, and as a result, both structure and orientation are uniform. You can get something expensive. However, by stretching the fiber bundle containing the solvent in a swollen state, the orientation of the structure by fibril structure formation and stretching becomes insufficient, and the filament obtained from the oil agent squeezed out from the filament abruptly It was easy to form a sparse structure, and it was impossible to have a desired dense structure.
  • the temperature and concentration of the spinning dope and coagulation solution are set optimally, and then the solvent stretching process is performed with the optimum combination of the conditions of the solvent stretching tank and the stretching ratio, thereby forming a dense fibril structure.
  • the solvent stretching process is performed with the optimum combination of the conditions of the solvent stretching tank and the stretching ratio, thereby forming a dense fibril structure.
  • a coagulated yarn bundle containing an organic solvent is first drawn in air, and subsequently drawn in a drawing tank containing a warm aqueous solution containing an organic solvent.
  • the temperature of the warm aqueous solution is preferably in the range of 40 ° C to 80 ° C.
  • the temperature of the warm aqueous solution is preferably in the range of 40 ° C to 80 ° C.
  • the temperature is set to 40 ° C. or higher, good stretchability can be ensured, and formation of a uniform fibril structure is facilitated.
  • the temperature is set to 80 ° C. or less, an excessive plasticizing action is not caused, the solvent removal on the surface of the yarn proceeds appropriately, and the stretching becomes uniform. It becomes good.
  • a more preferable temperature is 55 ° C. or higher and 75 ° C. or lower.
  • the concentration of the organic solvent in the warm aqueous solution containing the organic solvent is preferably 30% by mass or more and 60% by mass or less. This concentration is within a range where a stable stretching treatment can be provided, and a dense and uniform fibril structure can be formed in the inside and the surface layer. A more preferable concentration is 40% by mass or more and 50% by mass or less.
  • a preferred method of drawing the coagulated yarn is that the drawing in air is 1.0 to 1.25 times, and the total draw ratio in air and warm aqueous solution is 2.6 to 4.0 times. To do.
  • the coagulated yarn has a fibril structure swollen with a large amount of solvent.
  • the total draw ratio in air and warm aqueous solution 2.6 times or more, sufficient drawing can be performed and a fibril structure oriented in a desired fiber axis direction can be formed. . Further, by setting the total draw ratio to 4.0 times or less, it is possible to obtain a precursor fiber bundle having a dense structure form without causing breakage of the fibril structure itself. That is, a dense fibril structure oriented in the axial direction of the fiber can be formed in the range of 2.6 times to 4.0 times. A more preferable total draw ratio is 2.7 times or more and 3.5 times or less.
  • the stretching ratio in the organic solvent warm aqueous solution is 2.5 times or more. This is because the stretching in the organic solvent warm aqueous solution is performed at a relatively high temperature and can be stretched without causing structural destruction. Therefore, it is preferable that the stretching distribution in the air and the organic solvent warm aqueous solution is set so that the stretching distribution in the organic solvent warm aqueous solution is set high. More preferable stretching in air is 1.0 times or more and 1.15 times or less. In this way, a swollen yarn having a dense surface layer portion can be obtained.
  • the fiber bundle is washed with warm water of 50 ° C. or higher and 95 ° C. or lower to remove the organic solvent.
  • it is possible to further enhance the orientation of the fiber by stretching a fiber bundle in a swollen state free from solvent in hot water, and it is possible to take strain in stretching by adding some relaxation.
  • the stretching is performed at 0.98 times or more and 2.0 times or less in hot water at a temperature of 70 to 95 ° C.
  • the draw ratio is 0.98 times or more and less than 1.0 time, the treatment is relaxed.
  • the fiber bundle provided at a high draw ratio is effective for stable drawing in the subsequent drawing step by taking drawing strain.
  • the draw ratio is in the range of 1.0 to 2.0, the degree of orientation of the fibril structure can be improved and the surface layer can be denser. More preferably, stretching is performed at a ratio of 0.99 times to 1.5 times. In this way, a swollen yarn can be obtained by subjecting the coagulated yarn to stretching and washing.
  • Dry densification is not particularly limited as long as it is dried and densified by a known drying method.
  • a method of passing a plurality of heating rolls is preferably used.
  • the fiber bundle after drying and densification is further stretched in a pressurized steam at 130 to 200 ° C., in a dry heat heat medium at 100 to 200 ° C., between heating rolls at 150 to 220 ° C. or on a heating plate, and further After the orientation is improved and densified, it is wound up to obtain a precursor fiber bundle.
  • the precursor fiber bundle for carbon fibers of the present invention (hereinafter appropriately referred to as “precursor fiber bundle”) has 96.0% by mass or more and 99.7% by mass or less of acrylonitrile and one or more carboxyl groups or ester groups. It consists of an acrylonitrile copolymer copolymerized with 0.3% by mass or more and 4.0% by mass or less of an unsaturated hydrocarbon as an essential component, and has a silicon content after being treated with an oil mainly composed of a silicone compound.
  • the silicon content after 8 hours of oil cleaning with methyl ethyl ketone using a Soxhlet extractor is 50 ppm or more and 300 ppm or less.
  • the silicon content is measured with a fluorescent X-ray apparatus. Further, the silicon content after the oil agent washing is a measured value based on the evaluation by the oil agent adhesion to the oil agent washing in [Evaluation of oil agent permeability of swollen yarn].
  • the silicon content of the precursor fiber bundle after being treated with the oil agent is 1700 ppm or less and 5000 ppm or less, fusion between the filaments does not occur in the flameproofing process, while the surface layer has an excessive silicone compound to the inside of the filament. Oxygen diffusion is hindered, and there is no portion where the flameproofing reaction is insufficient, so that the occurrence of yarn breakage in the carbonization step, which is a higher temperature treatment, can be suppressed. As a result, stable process passability can be maintained.
  • the precursor fiber bundle of the present invention has a silicon content of 300 ppm or less after fiber agent extraction cleaning.
  • the fact that the silicon content exceeds 300 ppm indicates that the silicone compound oil penetrates into the surface layer portion and the abundance thereof increases.
  • the flame resistance of the firing process the silicone oil present in the surface layer part remains in the surface carbonization process (800 ° C. or lower) without being scattered, and is scattered in the late carbonization process (above 800 ° C.).
  • a large number of voids are formed in the surface layer portion of a typical carbon fiber. Therefore, the intended high-strength carbon fiber cannot be obtained.
  • the silicon content of the fiber bundle after the oil agent extraction cleaning is 300 ppm or less means that the silicone compound adhering to the precursor fiber penetrates the surface layer portion and exists in the vicinity of the surface layer, but is difficult to be extracted.
  • the ratio of the existing state is small, meaning that it exists in the outermost layer. If it is such a state, a silicone type compound will disperse
  • the silicon content after the more preferable oil agent extraction washing is 200 mass ppm or less.
  • This precursor fiber bundle has a single fiber fineness of 0.5 dtex or more and 1.0 dtex or less, and the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the monofilament is 1.00 or more and 1. 01 or less, there is no surface uneven structure extending in the fiber axis direction of single fibers, the height difference (Rp-v) between the highest and lowest parts is 30 nm to 100 nm, and the center line average roughness (Ra) is 3 nm to 10 nm. Preferably there is.
  • the smoothness of the precursor fiber filament surface is not excessive. This is because the low stretchability in the spinning process derived from the skin layer formed in the solidification process does not cause small breakage of the surface layer fibrils, and the formation of minute defect points can be avoided. Furthermore, due to excessive convergence as a fiber bundle that is an aggregate of filaments, non-uniform flame resistance treatment due to inhibition of oxygen diffusion into the filament in the flame resistance process can be avoided.
  • the denseness of the structure in the vicinity of the surface layer can be made to a sufficient level. That is, when the surface has a (Rp-v) value of 30 nm or more and 100 nm or less and a (Ra) value of 3 nm or more and 10 nm or less, the density of the structure in the vicinity of the surface layer is at a sufficient level, and sufficient stretching is achieved. It is possible to reduce the chance of forming defect points in the vicinity of the surface layer in the process from spinning to firing. As a result, a high-strength carbon fiber bundle can be obtained.
  • the surface concavo-convex structure extending in the fiber axis direction means a ridge structure having a length of 0.6 ⁇ m or more that is substantially parallel to the fiber axis direction.
  • the acrylonitrile fiber bundle usually undergoes volume shrinkage due to solidification and subsequent stretching treatment, and a wrinkle structure extending in the fiber axis direction is formed on the surface.
  • a wrinkle structure extending in the fiber axis direction is formed on the surface.
  • the formation of the ridge structure is suppressed.
  • the formation of this wrinkle structure is greatly suppressed by dry and wet spinning. It is preferable that the precursor fiber bundle does not have such a wrinkle structure having a length of 0.6 ⁇ m or more.
  • a fiber having a ratio of major axis to minor axis (major axis / minor axis) of a single fiber cross section of 1.00 to 1.01 is a single fiber having a perfect circle or a cross section close to a perfect circle, and has a structure near the fiber surface. Excellent uniformity.
  • a more preferred ratio of major axis to minor axis (major axis / minor axis) is 1.00 to 1.005. Since the fiber having a single fiber fineness range of 0.5 to 1.0 dtex has a small fiber diameter, it is possible to reduce structural non-uniformity in the cross-sectional direction that occurs in the firing step. A more preferable range is 0.5 to 0.8 dtex.
  • the precursor fiber bundle having the predetermined silicon content is dried by attaching an oil agent mainly composed of a silicone compound to the swollen yarn of the present invention, and then subjected to a stretching process by heat stretching or steam stretching. Can be manufactured by.
  • the silicone compound as the main component of the oil is not particularly limited, but amino-modified polydimethylsiloxane or epoxy-modified polydimethylsiloxane is preferably used from the viewpoint of interaction with the acrylonitrile copolymer.
  • the swollen yarn of the present invention is preferably an amino-modified polydimethylsiloxane from the viewpoint of ease of covering the surface layer and difficulty of detachment from the surface layer because the surface layer portion has high density.
  • skeleton by the phenyl group is excellent from a heat resistant viewpoint.
  • the most preferred amino-modified polydimethylsiloxane has a kinematic viscosity at 25 ° C. of 50 to 5,000 cst and an amino equivalent of 1,700 to 15,000 g / mol.
  • the amino-modified type is not particularly limited, but a primary side chain type, a primary and secondary side chain type, and a both-end modified type are preferable. Moreover, these mixed types or a mixture of a plurality of types can also be used. If the kinematic viscosity at 25 ° C. is 50 cst or more, it has a sufficient molecular weight that does not volatilize, can be prevented from scattering from the fiber throughout the flameproofing process, and exhibits the function as an original process oil, stable. Carbon fiber can be manufactured. Further, by setting the kinematic viscosity at 25 ° C.
  • the kinematic viscosity at 25 ° C. of the oil is in the range of 50 to 5,000 cst and the amino equivalent is in the range of 1,700 to 15,000 g / mol, the trouble of winding of the fiber due to the transfer of the oil to a roll or the like There is no sudden scattering of the oil agent in the flameproofing process, and the process from spinning to flameproofing can be carried out stably for a long time.
  • Examples of the primary side chain type amino-modified polydimethylsiloxane include KF-864, KF-865, KF-868, and KF-8003 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
  • Examples of the primary and secondary side chain types include KF-859, KF-860, KF-869, and KF-8005 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
  • Examples of the both-end modified type include Silaplane FM-3311, FM-3221, FM-3325 (all manufactured by Chisso Corporation) and KF-8012 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the oil agent is composed of a compound such as a surfactant for forming an aqueous emulsion, a softening agent that imparts excellent processability, and a smoothing agent.
  • Nonionic surfactants are mainly used, and pluronic or higher alcohol EO / PO adducts are used.
  • Newpol PE-78, PE-108 and PE-128 (all of which are Sanyo Chemical Industries Co., Ltd.), which are polyoxyethylene / polyoxypropylene block polymers, are suitable.
  • Softeners and smoothing agents use ester compounds and urethane compounds.
  • Content of the silicone compound in an oil agent is 30 mass% to 90 mass%. If it is 30 mass% or more, the fusion suppression in a flame-proofing process is enough. Moreover, if it is 90 mass% or less, stability of an oil agent emulsion can be easily made into sufficient level, and a stable precursor fiber can be manufactured. That is, if the content of the silicone compound in the oil agent is 30% by mass to 90% by mass, even in the precursor fiber having a dense surface as in the present invention, the effect of suppressing the fusion in the flameproofing process is sufficient. This can be achieved, and the stability in the oil agent attaching process, and hence the uniformity of the attached state, can be realized, so that the performance expression of the obtained carbon fiber can be stabilized.
  • the adhesion amount of the oil agent mainly composed of a silicone compound is 0.8% by mass to 1.6% by mass.
  • Dry densification is not particularly limited as long as it is dried and densified by a known drying method. A method of passing a plurality of heating rolls is preferable.
  • the fiber bundle after drying and densification is stretched by 1.8 to 6.0 times in a pressurized steam or dry heat heating medium at 130 to 200 ° C. or between heating rolls or on a heating plate as necessary.
  • the resulting orientation is improved and densified to obtain a precursor fiber bundle.
  • a more preferable draw ratio is 2.4 to 6.0 times, and more preferably 2.6 to 6.0 times.
  • Method for producing flame-resistant fiber bundle By passing the precursor fiber bundle through a hot air circulation type flameproofing furnace at 220 to 260 ° C. for 30 minutes or more and 100 minutes or less and heat-treating in an oxidizing atmosphere with an elongation rate of 0% or more and 10% or less, A flame-resistant fiber bundle having a particle size of 1.335 g / cm 3 or more and 1.360 g / cm 3 or less can be obtained.
  • the flameproofing reaction includes a cyclization reaction by heat and an oxidation reaction by oxygen, and it is important to balance these two reactions. In order to balance these two reactions, the flameproofing treatment time is preferably between 30 minutes and 100 minutes.
  • More preferable flameproofing treatment time is 40 minutes or more and 80 minutes or less.
  • the flame resistant yarn density is less than 1.335 g / cm 3 , the flame resistance becomes insufficient, the decomposition reaction is caused by the subsequent heat treatment at a high temperature, and a high-strength carbon fiber cannot be obtained because defect points are formed.
  • the flameproof yarn density exceeds 1.360 g / cm 3 , the oxygen content of the fiber increases, so that a reaction in which excess oxygen disappears due to the subsequent heat treatment at a high temperature occurs, so that a defect point is formed. A strong carbon fiber cannot be obtained.
  • a more preferable range of the flame resistant yarn density is 1.340 g / cm 3 or more and 1.350 g / cm 3 or less.
  • Appropriate elongation in the flameproofing furnace is necessary to maintain and improve the orientation of the fibril structure forming the fiber. If the elongation is less than 0%, the orientation of the fibril structure cannot be maintained, the orientation at the fiber axis in the formation of the carbon fiber structure is not sufficient, and excellent mechanical performance is not exhibited. On the other hand, if the elongation exceeds 10%, the fibril structure itself breaks, and the subsequent formation of the carbon fiber structure is impaired. Further, the breaking point becomes a defect point, and a high-strength carbon fiber cannot be obtained. A more preferable elongation rate is 3% or more and 8% or less.
  • (100) indicates the crystal orientation.
  • the structure of the precursor fiber is greatly changed, and further, it is a step of forming a graphite crystal group which is the basic structure of the carbon fiber.
  • the degree of orientation is closely related to the crystallinity, and the crystallinity is significantly lowered as the degree of orientation is lowered.
  • high orientation can be maintained, high crystallinity can be obtained accordingly.
  • a flameproof fiber bundle having a crystal structure in which the intensity ratio (B / A) is 1.3 or more, the orientation degree of peak A is 79% or more, and the orientation degree of peak B is 80% or more is preferable. .
  • the flame-resistant fiber bundle as described above can be obtained relatively easily by using the precursor fiber bundle of the present invention. Further, in the step of heat-treating the precursor fiber bundle in an oxidizing atmosphere, the decompression processing conditions and divided into at least three blocks, at a fiber density 1.200 g / cm 3 or more 1.260 g / cm 3 or less of the range, 3. Elongation of 0% or more and 8.0% or less is performed, and further, elongation of 0.0% or more and 3.0% or less is performed in a density range of 1.240 g / cm 3 or more and 1.310 g / cm 3 or less. It is preferable to set the 300 g / cm 3 or more 1.360g / cm 3 oxidization conditions such as to extend -1.0% to 2.0% or less in the range.
  • the flame resistant fiber bundle is added in the first carbonization furnace having a temperature gradient of 300 ° C. or more and 800 ° C. or less in an inert atmosphere such as nitrogen while adding elongation of 2% or more and 7% or less to 1.0 to 3.0 minutes. Heat-treat for minutes.
  • the preferred processing temperature is 300 ° C. to 800 ° C., with a linear temperature gradient.
  • the starting temperature is preferably 300 ° C. or higher. If the maximum temperature exceeds 800 ° C., the fiber becomes very brittle and it is difficult to move to the next step.
  • a more preferred temperature range is 300 to 750 ° C.
  • a more preferable temperature range is 300 to 700 ° C.
  • the temperature gradient is not particularly limited, but it is preferable to set a linear gradient. If the elongation is less than 2%, the orientation of the fibril structure cannot be maintained, the orientation at the fiber axis in the formation of the carbon fiber structure is not sufficient, and excellent mechanical performance cannot be expressed. On the other hand, if the elongation exceeds 7%, the fibril structure itself breaks, and the subsequent formation of the carbon fiber structure is impaired, and the break point becomes a defect point, and a high-strength carbon fiber cannot be obtained. A more preferable elongation rate is 3% or more and 5% or less. The preferred treatment time is 1.0 to 3.0 minutes.
  • heat treatment is performed under tension in a second carbonization furnace capable of setting a temperature gradient in the range of 1000 to 1600 ° C. in an inert atmosphere such as nitrogen to obtain carbon fibers. Further, if necessary, heat treatment is performed under tension in an inert atmosphere in a third carbonization furnace having an additionally desired temperature gradient.
  • the temperature setting depends on the desired elastic modulus of the carbon fiber. In order to obtain carbon fibers with high mechanical performance, the maximum temperature of carbonization treatment should be low, and the elastic modulus can be increased by increasing the treatment time, so that the maximum temperature can be lowered as a result. it can. Furthermore, by increasing the processing time, the temperature gradient can be set gently, which is effective in suppressing defect point formation.
  • the second carbonization furnace may be 1000 ° C. or more although it depends on the temperature setting of the first carbonization furnace. Preferably it is 1050 degreeC or more.
  • the temperature gradient is not particularly limited, but it is preferable to set a linear gradient.
  • the treatment time is preferably from 1.0 minute to 5.0 minutes. More preferably, it is 1.5 minutes to 4.2 minutes. In this heat treatment, since the fiber bundle is accompanied by a large shrinkage, it is important to perform the heat treatment under tension.
  • the elongation is preferably -6.0% to 2.0%. If it is less than -6.0%, the crystal orientation in the fiber axis direction is poor and sufficient performance cannot be obtained. On the other hand, if it exceeds 2.0%, the structure itself that has been formed is destroyed, the formation of defect points becomes remarkable, and the strength is greatly reduced. A more preferred elongation is in the range of -5.0% to 0.5%.
  • the carbon fiber bundle thus obtained is subjected to surface oxidation treatment.
  • the surface treatment method include known methods, that is, oxidation treatment by electrolytic oxidation, chemical oxidation, air oxidation, and the like.
  • the electrolytic oxidation treatment widely practiced industrially is the most suitable method from the viewpoint that stable surface oxidation treatment is possible and that the surface treatment state can be controlled by changing the amount of electricity.
  • the amount of electricity is 10 to 200 coulomb / g with carbon fiber as the anode.
  • the electrolyte it is preferable to use ammonium carbonate, ammonium bicarbonate, calcium hydroxide, sodium hydroxide, potassium hydroxide, or the like.
  • the carbon fiber bundle is subjected to sizing treatment.
  • the sizing agent can be obtained by applying a solution dissolved in an organic solvent or an emulsion liquid dispersed in water with an emulsifier or the like to a carbon fiber bundle by a roller dipping method, a roller contact method, or the like, and drying it. it can.
  • the amount of the sizing agent attached to the surface of the carbon fiber can be adjusted by adjusting the concentration of the sizing agent solution or adjusting the amount of drawing. Drying can be performed using hot air, a hot plate, a heating roller, various infrared heaters, and the like.
  • a sizing agent is attached and dried, and then wound around a bobbin to obtain a carbon fiber bundle.
  • a carbon fiber bundle excellent in mechanical performance can be obtained by applying the above-described firing method using the precursor fiber bundle or the flameproof fiber bundle of the present invention.
  • the carbon fiber bundle of the present invention has a resin-impregnated strand strength of 6000 MPa or more, a strand elastic modulus measured by the ASTM method of 250 to 380 GPa, and a ratio of a major axis to a minor axis of a cross section perpendicular to the fiber axis direction of a single fiber.
  • (Major axis / minor axis) is 1.00 to 1.01
  • the diameter of the single fiber is 4.0 to 6.0 ⁇ m
  • Further preferred carbon fiber bundles are those in which the average diameter of voids in the range of 2 to 15 nm in diameter observed in a cross section perpendicular to the fiber axis direction of single fibers is 6 nm or less.
  • An average diameter of 6 nm or less indicates that the oil agent was uniformly present in the precursor fiber bundle without much local penetration. By securing this 6 nm or less, it is possible to realize stable strength development of carbon fibers.
  • the total area A (nm 2 ) of voids existing in a cross section perpendicular to the fiber axis direction of single fibers is preferably 2,000 nm 2 or less. Moreover, it is preferable that the space
  • the single fiber having such a structure indicates that the oil agent was present only in the extreme surface layer portion in the vicinity of the surface layer in the precursor fiber bundle.
  • the knot strength obtained by dividing the tensile breaking stress of the carbon fiber bundles knotted by the cross-sectional area of the fiber bundle is preferably 900 N / mm 2 or more. More preferably, it is 1000 N / mm 2 or more, and further preferably 1100 N / mm 2 or more.
  • the knot strength can be an index that reflects the mechanical performance of the fiber bundle in a direction other than the fiber axis, and particularly the performance in the direction perpendicular to the fiber axis can be easily seen. In a composite material, a material is often formed by quasi-isotropic lamination, and a complex stress field is formed.
  • the sample after rough dehydration still contains a solvent, the sample is thoroughly washed and then dehydrated.
  • the sample after rough dehydration or washing and dehydration is transferred to a weighing bottle, and dried in a dryer at 105 ° C. for 3 hours with the lid removed.
  • the dried sample is transferred to a desiccator while being placed in a weighing bottle, slowly cooled for 20 to 30 minutes, and then the weight of the weighing bottle is weighed. This mass is defined as dry mass B.
  • the swollen yarn collected from the spinning process is dried by the following method. That is, the swollen yarn is fixed at a constant length so as not to shrink and deform during the drying process, and is sequentially mixed in a mixed solution of water / t-butanol at 80/20, 50/50, 20/80, and 0/100 every 30 minutes. Immerse to replace the solvent contained in the swollen yarn with t-butanol. Next, the swollen yarn sample is placed in a flask, rapidly frozen in liquid nitrogen, and then freeze-dried for 24 to 72 hours under a reduced pressure of 100 Pa or less while maintaining the sample temperature at ⁇ 30 to ⁇ 20 ° C.
  • the freeze-dried swollen yarn bundle sample was cut to a length of about 10 mm with a razor, weighed about 0.15 g, and weighed from mercury to a maximum pressure of 30,000 psia using a mercury porosimeter (Shimadzu Corporation, product name: Autopore IV).
  • the pore distribution is measured under the following conditions.
  • the average pore size (nm) is obtained as a volume average pore size obtained by weighting the pore volume to the pore size.
  • the total pore volume V (ml / g) is the mercury intrusion amount V1 (ml / g) when the pore size is a pressure corresponding to 500 nm and the mercury intrusion when the pore size is a pressure corresponding to 10 nm. It calculates
  • V V2-V1
  • a precursor fiber bundle is uniformly wound around an acrylic resin plate having a length of 20 mm, a width of 40 mm, and a width of 5 mm so as not to leave a gap, and a measurement sample is prepared and set in this apparatus.
  • Both ends of the single fiber of the precursor fiber bundle are fixed with a carbon paste on a metal sample holder plate attached to the scanning probe microscope apparatus, and measured with a scanning probe microscope under the following conditions.
  • the shape image of a single fiber is measured with a scanning probe microscope.
  • 10 cross-sectional profiles in the direction perpendicular to the fiber axis are measured by image analysis to determine the height difference (Rp ⁇ v) and the centerline average roughness Ra between the highest and lowest portions of the contour curve. Measurement is performed on 10 single fibers, and an average value is obtained.
  • the obtained shape image is subjected to [Flat processing], [Median 8 processing] and [Third-order inclination correction] to obtain an image obtained by fitting the curved surface to a plane.
  • [Flat processing] [Median 8 processing]
  • [Third-order inclination correction] to obtain an image obtained by fitting the curved surface to a plane.
  • the cross-sectional profile in the direction perpendicular to the fiber axis is measured, and the height difference (Rp ⁇ v) between the highest and lowest parts of the contour curve and the centerline average roughness Ra are obtained.
  • Inclination correction is to correct the inclination by obtaining and fitting a curved surface by least square approximation from all data of the processing target image.
  • (Primary), (Secondary), and (Cubic) indicate the order of the curved surface to be fitted, and in the cubic, the cubic curved surface is fitted.
  • the cubic inclination correction process the curvature of the fiber of the data is eliminated and a flat image is obtained.
  • the flame-resistant fiber bundle is cut into a fiber length of 5 cm at an arbitrary location, and 12 mg is precisely weighed and aligned so that the sample fiber axes are exactly parallel.
  • a fiber bundle having a width in the direction perpendicular to the longitudinal direction of the fiber of 2 mm and a uniform thickness in a direction perpendicular to both the width direction and the longitudinal direction of the fiber is arranged.
  • a sample fiber bundle to be measured is obtained by impregnating both ends of the fiber bundle with a vinyl acetate / methanol solution and fixing the fiber bundle so as not to lose its shape.
  • the degree of crystal orientation is calculated by the following equation by measuring the diffraction profile in the azimuth direction at the peak position of each reflection to obtain the half width W (unit: °) of the peak.
  • Crystal orientation (%) ⁇ (180 ⁇ W) / 180 ⁇ ⁇ 100
  • the X-ray diffraction measurement uses a CuK ⁇ ray (using Ni filter) X-ray generator (trade name: TTR-III, rotating counter-cathode X-ray generator) manufactured by Rigaku Corporation as an X-ray source, and a diffraction intensity profile. Is detected by a scintillation counter manufactured by Rigaku. The output is 50 kV-300 mA.
  • the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber constituting the fiber bundle is determined as follows. After passing a fiber bundle for measurement through a tube made of vinyl chloride resin having an inner diameter of 1 mm, the sample is prepared by cutting the fiber bundle with a knife. Next, this sample was bonded to the SEM sample stage with the fiber cross section facing upward, and Au was further sputtered to a thickness of about 10 nm, and then an electron microscope (manufactured by Philips, product name: XL20 scanning type) was used. The cross section of the fiber is observed under conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm, and the major axis and the minor axis of the fiber section of the single fiber are measured.
  • a single fiber is extracted from the carbon fiber bundle, and platinum is sputtered to a thickness of 2 to 5 nm by a sputtering apparatus, and then carbon is coated to a thickness of 100 to 150 nm by a carbon coater apparatus. Then, using a focused ion beam processing device (product name: FB-2000A, manufactured by Hitachi High-Technologies Corporation), a tungsten protective film was deposited to a thickness of about 500 nm, and then a focused ion beam with an acceleration voltage of 30 kV was used. By etching, a thin section (thickness 100 to 150 nm) of the cross section of the fiber is obtained.
  • a cross section of the single fiber is observed with a transmission electron microscope (product name: H-7600, manufactured by Hitachi High-Technologies Corporation) at a magnification of 150,000 to 200,000 times under the condition of an acceleration voltage of 100 kV. . Furthermore, using image analysis software (manufactured by Nippon Roper Co., Ltd., product name: Image-Pro PLUS), a void portion that appears bright in a TEM image is extracted, and the number of voids N is counted over the entire cross section. The equivalent area diameter d (nm) is calculated by measuring the area of the voids. Further, the total sum A (nm2) of the void area and the average void diameter D (nm) are obtained.
  • a gripping part having a length of 25 mm is attached to both ends of a carbon fiber bundle having a length of 150 mm and used as a test specimen.
  • the carbon fiber bundle is aligned by applying a load of 0.1 ⁇ 10 ⁇ 3 N / denier.
  • a single knot is formed on the test body at approximately the center, and the crosshead speed during tension is 100 mm / min.
  • the value obtained by dividing the tensile breaking stress by the cross-sectional area of the fiber bundle (the mass and density of the bundle per unit length) is defined as the knot strength.
  • the number of tests is 12, and the minimum and maximum values are removed and the average value of 10 is displayed.
  • This spinning dope was once spun into air from a spinneret having a diameter of 0.13 mm and a discharge hole with 2000 holes, then passed through a space of about 4 mm, and then adjusted to 15 ° C. and 79.5% by mass. It was discharged into a coagulation liquid filled with an aqueous solution containing dimethylformamide and coagulated, and the coagulated yarn was taken up. Next, the film was stretched 1.1 to 1.3 times in air, and then stretched 1.1 to 2.9 times in a stretching tank filled with an aqueous solution containing 30% by mass dimethylformamide adjusted to 60 ° C. After stretching, the fiber bundle containing the solvent was washed with clean water, and then stretched 1.2 to 2.2 times in 95 ° C. hot water.
  • an oil agent containing amino-modified silicone as a main component was applied to the fiber bundle so as to be 1.1% by mass, followed by drying and densification.
  • the fiber bundle after drying and densification is stretched between 2.2 times and 3.0 times between heating rolls at 180 ° C., and after further improving the orientation and densification, it is wound up to obtain a precursor fiber bundle. It was.
  • the fineness of the precursor fiber was 0.77 dtex.
  • the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber was 1.005.
  • the oil agent which has amino-modified silicone as a main component was used for the oil agent which has amino-modified silicone as a main component.
  • Amino-modified silicone KF-865 (manufactured by Shin-Etsu Chemical Co., Ltd., primary side chain type, viscosity 110 cSt (25 ° C.), amino equivalent 5,000 g / mol, 85% by mass, Emulsifier: NIKKOL BL-9EX (manufactured by Nikko Chemicals, POE (9) lauryl ether), 15% by mass.
  • the flame-resistant fiber bundle was passed through nitrogen in a first carbonization furnace having a temperature gradient of 300 to 700 ° C. while adding 4.5% elongation.
  • the temperature gradient was set to be linear.
  • the processing time was 1.9 minutes.
  • heat treatment was performed at a stretch rate of -3.8% using a second carbonization furnace in which a temperature gradient of 1000 to 1250 ° C. was set in a nitrogen atmosphere.
  • a carbon fiber bundle was obtained by performing a heat treatment at an elongation of 0.1% using a third carbonization furnace in which a temperature gradient of 1250 to 1500 ° C. was set in a nitrogen atmosphere.
  • the elongation ratio of the second and third carbonization furnaces was -3.9%, and the treatment time was 3.7 minutes.
  • Carbon fiber surface treatment Subsequently, the carbon fiber bundle was run in an aqueous solution of 10% by weight of ammonium bicarbonate and the carbon fiber bundle was used as an anode, and an electric current treatment was performed between the counter electrode so that the amount of electricity was 40 coulombs per gram of carbon fiber to be treated. After washing with, dried. Next, 0.5% by mass of Hydran N320 (manufactured by DIC Corporation) was adhered and wound around a bobbin to obtain a carbon fiber bundle. In Example 1 and Comparative Examples 1 to 3, the ratio of the major axis to the minor axis (major axis / minor axis) of the carbon fiber single fiber was 1.005, and the diameter was 4.9 ⁇ m.
  • 156 carbon fiber bundles unwound from the bobbin were arranged on a release paper coated with B-staged epoxy resin # 410 (180 ° C. curing type) and impregnated with epoxy resin through a thermocompression roller. .
  • a protective film was laminated thereon to produce a unidirectionally aligned prepreg (hereinafter referred to as “UD prepreg”) having a resin content of about 33% by mass, a carbon fiber density of 125 g / m 2 , and a width of 500 mm.
  • Examples 2 to 16 and Comparative Examples 4 to 9 In the same manner as in Example 1, the spinning process conditions were partially changed to obtain swollen yarns and precursor fiber bundles.
  • the fineness of the precursor fiber was 0.77 dtex, and the ratio (major axis / minor axis) of the major axis to the minor axis of the fiber cross section of the single fiber was 1.005.
  • a carbon fiber bundle was produced under the same firing conditions.
  • the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber of carbon fiber was 1.005, and the diameter was 4.9 ⁇ m.
  • Table 1 shows the conditions of the spinning process
  • Table 2 shows the evaluation results of various fiber bundles.
  • Example 17 to 20 Using the precursor fiber bundle obtained in Example 14, only the heat treatment conditions were changed in the second and third carbonization furnaces, and other conditions were the same as in Example 14 to produce a carbon fiber bundle. . Table 3 shows the heat treatment conditions and the properties of the carbon fiber bundle.
  • Examples 21 to 25 and Reference Examples 1 and 2 Using the precursor fiber bundle obtained by changing only the fineness of single fibers under the same spinning conditions as in Example 14, among the firing conditions of Example 15, only the heat treatment conditions in the second and third carbonization furnaces A carbon fiber bundle was produced under the same firing conditions as in Example 15 except for the change.
  • Table 4 shows the properties of the precursor fiber, the heat treatment conditions, and the carbon fiber bundle.
  • Example 26 to 28 and Reference Examples 3 and 4 A precursor fiber bundle and subsequently a carbon fiber bundle were produced under the same conditions as in Example 14 except that the type of amino-modified silicone as the oil agent was changed.
  • Table 5 shows the properties of the amino-modified silicone species, precursor fibers and carbon fiber bundles used.
  • Example 29 to 31 In the same manner as in Example 1, the spinning process conditions were partially changed to obtain swollen yarns and precursor fiber bundles.
  • the fineness of the precursor fiber was 0.77 dtex, and the ratio (major axis / minor axis) of the major axis to the minor axis of the fiber cross section of the single fiber was 1.005.
  • a carbon fiber bundle was produced under the same firing conditions.
  • the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber of carbon fiber was 1.005, and the diameter was 4.9 ⁇ m.
  • Table 1 shows the spinning process conditions
  • Table 2 shows the evaluation results of various fiber bundles.
  • the carbon fiber bundle of the present invention can be used as a structural material for aircraft, high-speed moving bodies, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

 高い機械的特性を有する繊維強化樹脂を得るための炭素繊維束を提供する。 繊維の円周方向に10nm以上の幅がある開孔部を0.3個/μm以上2個/μm以下の範囲で単繊維の表面に有する、油剤処理されていない炭素繊維用アクリロニトリル膨潤糸。この膨潤糸をシリコーン系油剤で処理して得られる前駆体繊維は、ケイ素含有量が1700ppm以上5000ppm以下であって、ソックスレー抽出器を用いたメチルエチルケトンによる8時間油剤洗浄後のケイ素含有量が50ppm以上300ppm以下である。繊維は、アクリロニトリル96.0質量%以上99.7質量%以下と、一つ以上のカルボキシル基あるいはエステル基を有する不飽和炭化水素0.3質量%以上4.0質量%以下のアクリロニトリル共重合体が好ましい。

Description

炭素繊維用アクリロニトリル膨潤糸、前駆体繊維束、耐炎化繊維束、炭素繊維束及びそれらの製造方法
 本発明は、優れた機械特性を有し、特に航空機用途、産業用途といった高品質、高性能な繊維強化樹脂を得るための炭素繊維束、並びにその製造に使用される膨潤糸、前駆体繊維束及び耐炎化繊維束に関する。
 樹脂系成型品の機械特性を向上させる目的で、繊維を強化材として樹脂と複合化することが一般的に行われている。特に、比強度、比弾性に優れた炭素繊維を高性能樹脂と複合化した成形材料は、非常に優れた機械特性を発現することから、航空機、高速移動体などの構造材料として、使用することが積極的に進められている。さらに、より高強度化、高剛性化の要請、更には比強度、比剛性に優れた材料の要請もあり、炭素繊維の性能もより高強度、高弾性率化の実現が求められている。
 このような高性能炭素繊維を製造するには、強度発現性の優れる炭素繊維用アクリロニトリル前駆体繊維束を得ること、さらに、それら前駆体繊維束を最適条件で焼成を行うことが必要である。特に前駆体繊維束の構造緻密化を行うこと、欠陥点形成起点を徹底的に排除すること、欠陥点形成のしがたい焼成条件とすることなどが検討されている。たとえば、前駆体繊維束を乾湿式紡糸法により得る際、溶剤を含有したままの凝固糸を、溶剤含有延伸浴中で延伸することで構造と配向の均一性を向上させる方法が特許文献1において提案されている。溶剤を含有する浴槽中で凝固糸を延伸させることは溶剤延伸技術として一般に知られた方法であり、溶剤可塑化により、安定な延伸処理を可能とさせる手法である。したがって、構造と配向の均一性の高い繊維を得る手法としては非常に優れたものと考えられる。しかしながら、溶剤を含有して膨潤状態にある繊維束を延伸させることにより、フィラメント内部に存在する溶剤が延伸とともに急激にフィラメント内部から絞り出されることから、得られるフィラメントは疎な構造を形成し易く、目的とする緻密な構造を有するものとすることができない。その結果、高強度を有する炭素繊維束を得ることが難しいものであった。
 さらに、特許文献2には、凝固糸の細孔分布に着目し、高い緻密化構造を有する凝固糸を乾燥緻密化することにより、強度発現性に優れた前駆体繊維を得る技術が提案されている。水銀圧入法により得られる細孔分布は、フィラメントの表層から内部を含むバルクの性状を反映しているものであり、繊維の全体的な構造の緻密性を評価するのには非常に優れた手法である。全体的な緻密性があるレベル以上にある前駆体繊維束からは、欠陥点形成が抑制された高強度の炭素繊維が得られる。しかしながら、炭素繊維の破断状態を観察すると、表層付近を破断開始点とするものが非常に高い割合で存在する。これは、表層近傍に欠陥点が存在することを意味する。即ち、この技術は、表層近傍の緻密性が優れた前駆体繊維束を製造するには不十分である。
 特許文献3には、繊維全体として緻密性が高いとともに表層部の緻密性が極めて高いアクリロニトリル系前駆体繊維束を製造する方法が提案されている。また、特許文献4には、油剤が繊維表層部に浸入して緻密化を阻害することから、表層部のミクロ空隙に注目し、油剤の浸透を抑制する技術が提案されている。しかしながら、油剤浸入を抑制する技術、欠陥点形成を抑制する技術は共に大変複雑な工程が必要であることから実用化が難しい。このために、検討されている技術ではその表層部への油剤浸入を安定に抑制させる効果が不十分であり、炭素繊維の高強度化もまだ十分なレベルとはいえない状況であった。
特開平5-5224号公報 特開平4-91230号公報 特公平6-15722号公報 特開平11-124744号公報
 本発明の目的は、高い機械的特性を有する繊維強化樹脂を得るための炭素繊維束を提供することにある。
 本発明者らは、前記課題を解決すべく炭素繊維用アクリロニトリル膨潤糸および前駆体繊維束の適正な形態、性状を明らかにすると共に、紡糸繊維の凝固条件および延伸条件を適正化することで、緻密な内部構造を有し、さらに表層近傍においては、油剤浸透を抑制可能な膨潤糸を見出した。
 前記課題は以下の本発明群によって解決される。
 第1の発明は、繊維の円周方向に10nm以上の幅がある開孔部を0.3個/μm以上2個/μm以下の範囲で単繊維の表面に有する、油剤処理されていない炭素繊維用アクリロニトリル膨潤糸である。
 第2の発明は、〔1〕アクリロニトリル96.0質量%以上99.7質量%以下と、一つ以上のカルボキシル基もしくはエステル基を有する不飽和炭化水素0.3質量%以上4.0質量%以下を必須成分として共重合させたアクリロニトリル系共重合体を、20質量%以上25質量%以下の濃度範囲で有機溶剤に溶解させて温度50℃以上70℃以下の紡糸原液を調製する工程、
〔2〕この紡糸原液を、乾湿式紡糸法を用いて吐出孔から一旦空気中に吐出させた後、温度-5℃以上20℃以下、有機溶剤濃度78.0質量%以上82.0質量%以下の水溶液からなる凝固浴中で凝固させて前記有機溶剤を含む凝固糸束を得る工程、
〔3〕前記凝固糸束を空気中で1.0倍以上1.25倍以下の範囲で延伸した後、更に有機溶剤を含有する温水溶液中で延伸する工程であって、両延伸による合計延伸倍率を2.6倍以上4.0倍以下として延伸する工程、
〔4〕引き続き、温水にて脱溶剤し、さらに熱水中で0.98倍以上2.0倍以下延伸させる工程を有する膨潤糸の製造方法である。
 第3の発明は、アクリロニトリル96.0質量%以上99.7質量%以下と、一つ以上のカルボキシル基あるいはエステル基を有する不飽和炭化水素0.3質量%以上4.0質量%以下を必須成分として共重合させたアクリロニトリル共重合体からなり、シリコーン化合物を主成分とする油剤で処理されたケイ素含有量が1700ppm以上5000ppm以下である炭素繊維用前駆体繊維束であって、ソックスレー抽出器を用いたメチルエチルケトンによる8時間油剤洗浄後のケイ素含有量が50ppm以上300ppm以下である炭素繊維用前駆体繊維束である。
 第4の発明は、前記膨潤糸の束に、シリコーン化合物を主成分とする油剤を、膨潤糸100質量%に対して油剤成分0.8質量%以上1.6質量%以下を付着させて乾燥させ、次いで熱延伸法もしくはスチーム延伸法によって1.8倍以上6.0倍以下の範囲で延伸を施す炭素繊維用前駆体繊維束の製造方法である。
 第5の発明は、前記前駆体繊維束を220~260℃の熱風循環型の耐炎化炉に30分以上100分以下の間通過せしめて、伸長率0%以上10%以下として酸化雰囲気下で熱処理することによる、以下の4つの条件を満足する耐炎化繊維束の製造方法である。
(1)繊維束広角X線測定による赤道方向のピークA(2θ=25°)とピークB(2θ=17°)の強度比(B/A)1.3以上、(2)ピークBの配向度80%以上、(3)ピークAの配向度79%以上、(4)密度1.335g/cm以上1.360g/cm以下。
 第6の発明は、樹脂含浸ストランド強度が6000MPa以上、ASTM法で測定されるストランド弾性率が250から380GPa、単繊維の繊維軸方向に垂直な断面の長径と短径との比(長径/短径)が1.00~1.01、単繊維の直径が4.0μmから6.0μmであり、単繊維の繊維軸方向に垂直な断面に直径が2nm以上15nm以下の空隙が1個以上100個以下存在する、炭素繊維束である。
 第7の発明は、前記の前駆体繊維束を、酸化雰囲気下での熱処理により密度1.335g/cm以上1.355g/cm以下の耐炎化繊維束にした後、不活性雰囲気中300℃以上700℃以下の温度勾配を有する第一炭素化炉にて2%以上7%以下の伸長を加えながら1.0分以上3.0分以下加熱し、引き続き不活性雰囲気中1000℃から焼成温度までの温度勾配を有するひとつ以上の炭素化炉にて-6.0%以上2.0%以下の伸長を加えながら1.0分以上5.0分以下熱処理を行う炭素繊維束の製造方法である。
 本発明の膨潤糸は、油剤の主成分であるシリコーンオイルが前駆体繊維の表層部に浸透することを抑制することができる。この前駆体繊維束を耐炎化、炭素化処理することによって得られる炭素繊維束は機械的性能が優れており、高い機械的特性を有する繊維強化樹脂を得ることができる。
 本発明において、凝固糸とは、凝固液から取り出され、延伸処理に供されていない工程糸である。膨潤糸とは、凝固糸に延伸処理と洗浄処理を施した工程糸であって、油剤付着と乾燥処理を施す前の工程糸である。
〔膨潤糸〕
 本発明の炭素繊維用アクリロニトリル膨潤糸(以下、適宜「膨潤糸」という)は、油剤処理を施す前の状態で、繊維の円周方向に10nm以上の幅がある開孔部を0.3個/μm以上2個/μm以下の範囲で、単繊維の表面に有するものである。この膨潤糸はシリコーン化合物を有する油剤を付着、乾燥させ、さらに延伸をさせる工程に供され、前駆体繊維束とされるが、膨潤糸がこのような表面を有することにより、油剤成分の膨潤糸表層部への浸透を大幅に抑制することが可能となる。
 膨潤糸を構成する重合体としては、アクリロニトリル単位96.0質量%以上99.7質量%以下と、一つ以上のカルボキシル基もしくはエステル基を有する不飽和炭化水素単位0.3質量%以上4.0質量%以下を必須成分とするアクリロニトリル系共重合体であることが好ましい。アクリロニトリルの含有量を96.0質量%以上99.7質量%以下とすることで、耐炎化反応で形成させるラダーポリマーの構造不整を小さくすることができ、その後の高温度処理時の分解反応を抑制することができ、強度低下の原因となる欠陥点の少ない緻密な炭素繊維とすることができる。また、カルボキシル基あるいはエステル基を有する不飽和炭化水素成分は、耐炎化工程での耐炎化反応の起点となることが知られており、その含有量を0.3質量%以上4.0質量%以下とすることで、構造不整や欠陥の少ないグラフェン積層構造からなる炭素繊維を高収率で得るのに適した耐炎化糸を得ることができる。
 膨潤糸は、特定のシリコーン系化合物を含む油剤が所定量付着処理され、乾燥緻密化を施された後、メチルエチルケトンでの8時間油剤抽出洗浄後の残存シリコーン系化合物を定量することにより、油剤成分の浸透を抑制することができる表層部を有しているかを評価することが可能である。
〔膨潤糸の油剤浸透性の評価〕
 膨潤糸の油剤浸透性は以下のようにして評価できる。
先ず、以下の(1)アミノ変性シリコーンオイルと(2)乳化剤を混合し、転相乳化法により水分散液(水系繊維油剤)を調製する。この水系繊維油剤を膨潤糸に付着させる。
(1)アミノ変性シリコーン;KF-865(信越化学工業(株)製、1級側鎖タイプ、動粘度110cSt(25℃)、アミノ当量5,000g/mol)、85質量%、
(2)乳化剤;NIKKOL BL-9EX(日光ケミカルズ株式会社製、POE(9)ラウリルエーテル)、15質量%。
 次いで、乾燥ロールにて乾燥して完全に水を蒸発させた後、熱ロール間で2倍延伸する。このようにして、蛍光X線装置にて得られるケイ素含有量が1700ppm以上5000ppm以下の繊維束を得る。次いで、ソックスレー抽出器でメチルエチルケトンにて8時間油剤抽出洗浄を施した後の繊維束のケイ素含有量を蛍光X線装置にて測定する。
 本発明の膨潤糸は、油剤抽出洗浄のケイ素含有量(残存量)が50ppm以上300ppm以下であることが好ましい。この値は、より好ましくは50ppm以上200ppm以下である。
 油剤抽出洗浄後の繊維束のケイ素含有量が300ppmを超えるということは、油剤成分の表層部への浸透を抑制する表層部の緻密性が不十分であることを意味し、焼成工程を経て得られる炭素繊維はその表層部に多数の空隙を含むものとなってしまう。その結果、目的とする高強度炭素繊維を得ることができない。一方、この値が50ppmに満たないということは、膨潤糸の表層部への油剤浸透量が非常に少ないことを意味し、その原因は凝固浴中で繊維の表層部に極めて緻密なスキン層が形成されたためと考えられる。
 さらに、本発明の膨潤糸は後述の〔2.膨潤糸の膨潤度測定方法〕によって測定される膨潤度が80質量%以下であることがより好ましい。膨潤度が80質量%を超えるということは、膨潤糸の内層構造の緻密性が若干低下していることを示している。この場合は、たとえ表層部において欠陥点形成を抑制することができていても、内層部分での欠陥点形成が生じる可能性が高くなり、その結果、高い機械的性能を有する炭素繊維を得ることができない。さらに好ましい膨潤度は、75質量%以下である。
 また、膨潤糸の緻密性は、繊維内部の細孔分布測定によっても評価できる。本発明の膨潤糸の平均細孔サイズは55nm以下であり、総細孔体積は0.55ml/g以下であることが好ましい。平均細孔サイズは50nm以下であることがより好ましく45nm以下であることが更に好ましい。また、総細孔体積は0.50ml/g以下であることがより好ましく0.45ml/g以下であることが更に好ましい。このような膨潤糸は繊維内部にサイズの大きい空隙が存在せず、さらに空隙の占める割合が低く緻密である。凝固浴中で繊維表面に緻密なスキン層が形成されると、繊維内部の細孔サイズや細孔体積が大きくなる傾向がある。目的とする高強度炭素繊維を得るには、上述のように膨潤糸の表層部を緻密化して油剤の浸透を抑制することと、繊維内部に空隙の少ない緻密な構造を有することの両方を満足することが好ましい。尚、膨潤糸の細孔分布は後述の〔4.膨潤糸の細孔分布測定方法〕によって測定される。
〔膨潤糸の製造方法〕
 本発明の膨潤糸はアクリロニトリル系共重合体と有機溶剤からなる紡糸原液を湿式紡糸または乾湿紡糸することによって製造することができる。
 アクリロニトリル系共重合体としては、アクリロニトリルと一つ以上のカルボキシル基あるいはエステル基を有する不飽和炭化水素を必須成分として共重合させたものが挙げられる。一つ以上のカルボキシル基あるいはエステル基を有する不飽和炭化水素としては、アクリル酸、メタクリル酸、イタコン酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチルが挙げられる。これらのいずれか、あるいはこれらの中から2種以上を0.3質量%以上4.0質量%以下とアクリロニトリル96.0質量%以上99.7質量%以下とを共重合したアクリルニトリル共重合体が好ましく用いられる。より好ましいアクリロニトリル含有量は、98質量%以上である。
 カルボキシル基あるいはエステル基を有する不飽和炭化水素成分は、耐炎化工程での耐炎化反応の起点となることが知られており、その含有量が少なすぎると耐炎化反応が十分に生じず、耐炎化繊維の構造形成に支障をきたすことになる。一方、多すぎると、反応起点が多数存在することにより急激な反応が生じ、その結果荒れた構造形態を形成してしまうことになり、高い性能を有する炭素繊維を得ることができない。その含有量を0.3質量%以上4.0質量%以下とすることで、耐炎化反応開始点や反応速度のバランスが良好となり、構造が緻密で、炭素化工程で欠陥点となるような構造不整合部の形成を抑制することが可能である。また、適度な反応性を有することから、比較的低い温度領域で耐炎化反応を生じさせることができ、経済的、安全面の両面から耐炎化処理を実施することができる。したがって、構造不整や欠陥の少ないグラフェン積層構造からなる炭素繊維を高収率で得るのに適した耐炎化糸を得ることができる。
 第3成分として、アクリルアミド、メタクリルアミド、N-メチロ-ルアクリルアミド、N、N-ジメチルアクリルアミド等のアクリルアミド誘導体、酢酸ビニルなどを用いてもよい。モノマーの混合物を共重合する適当な方法は、例えば水溶液におけるレドックス重合または不均一系における懸濁重合および分散剤を使用した乳化重合、その他どのような重合方法であってもよく、これら重合方法の相違によって本発明が制約されるものではない。
 紡糸工程においては先ず、アクリロニトリル系共重合体を濃度20~25質量%で有機溶剤に溶解させた温度50~70℃の紡糸原液を調製する。紡糸原液の固形分濃度は、20質量%以上が好ましく、より好ましくは21質量%以上である。固形分濃度を20%以上とすることにより、凝固過程においてフィラメント内部から移動する溶剤量を少なくすことができ、必要な緻密性を有する凝固糸を得ることができる。また、25質量%以下とすることにより、適当な原液粘度とすることができることから、ノズルからの原液吐出が安定となり、製造がし易い。即ち、固形分濃度を20~25質量%とすることにより、緻密性が高くかつ均質な構造を有する凝固糸を安定に製造することができる。
 また紡糸原液の温度を50℃以上とすることにより、固形分濃度を低くすることなく、適当な原液粘度にすることができ、また70℃以下にすることにより、凝固液との温度差を小さくすることができる。即ち、紡糸原液の温度が50~70℃であることにより、緻密性が高くかつ均質な構造を有する凝固糸を安定に製造することができる。
 有機溶剤は特に制限はないが、ジメチルホルムアミドあるいはジメチルアセトアミドあるいはジメチルスルホキシドがより好ましく用いられる。より好ましくは、アクリロニトリル系共重合体の溶解能力に優れたジメチルホルムアミドである。
 紡糸方法は、湿式紡糸、乾湿紡糸いずれでもよい。より好ましくは乾湿式紡糸である。これは、緻密な凝固糸を形成し易いことと、特に表層部の緻密性を高めることができるからである。乾湿式紡糸は、調製した紡糸原液をノズル孔が多数配置された紡糸口金から一旦空気中に紡出した後、調温した有機溶剤と水の混合溶液を満たした凝固液中に吐出し凝固させ、その凝固糸を引取る。ここで凝固液は、温度-5~20℃、有機溶剤濃度を78~82質量%とするのが好ましい。この範囲で緻密な凝固糸を形成し易いことと、特に表層部の緻密性を高めることができるからである。より好ましい温度範囲は-5℃~10℃、より好ましい有機溶剤濃度範囲は78.5質量%以上81.0質量%以下とした水溶液である。凝固液の有機溶剤濃度を81.0質量%以下にすることにより、表層部の緻密性を維持でき、繊維表層部への油剤の浸透を抑えることができる。また、有機溶剤濃度を78.5質量%以上とすることにより、凝固過程での表層の急速な凝固が抑制され、スキン層の形成が抑えられ、さらに、凝固速度が比較的緩やかに生じることから、内部の緻密性が低下しない。即ち、凝固液の有機溶剤濃度を78.5~81.0質量%とすることにより、繊維の表面および内部がともに緻密な凝固糸を得ることができる。
 凝固糸は、延伸と洗浄処理を施される。延伸と洗浄処理の順序は特に制限はなく、延伸後洗浄してもよく、延伸と洗浄を同時に行ってもよい。また洗浄方法は脱溶剤出来ればいかなる方法でもよい。凝固糸の特に好ましい延伸と洗浄処理は、洗浄する前に、凝固液よりも溶剤濃度が低く温度の高い前延伸槽中において延伸することである。これにより、凝固糸に均一なフィブリル構造を形成させることができる。
 従来より溶剤を含有する浴槽中で凝固糸を延伸させることは溶剤延伸技術として一般に知られた方法で、溶剤可塑化により安定な延伸処理を可能とさせ、その結果構造と配向のともに均一性の高いものを得ることができる。しかしながら、溶剤を含有する繊維束を膨潤状態のまま延伸させることにより、フィブリル構造形成と延伸による構造の配向化が十分でなくなり、さらに急激にフィラメント内部から油剤も絞り出されることから得られるフィラメントは疎な構造を形成し易く、目的とする緻密な構造を有するものとすることができないものであった。本発明において、紡糸原液、凝固液の温度と濃度を最適に設定した上で、溶剤延伸槽の条件と延伸倍率の最適な組み合わせで溶剤延伸処理をすることにより、緻密なフィブリル構造を形成させることができたものである。
 有機溶剤を含む凝固糸束を先ず空気中で延伸し、引き続き、有機溶剤を含有する温水溶液を入れた延伸槽中にて延伸処理を行う。温水溶液の温度は40℃以上80℃以下の範囲が好ましい。温度を40℃以上とすることにより、良好な延伸性を確保することができ、均一なフィブリル構造の形成が容易となる。さらに、80℃以下とすることにより、過度な可塑化作用を生じさせることがなく、糸条表面での脱溶剤が適度に進み、延伸が均一なものとなることなどから、膨潤糸として品質が良好となる。より好ましい温度は、55℃以上75℃以下である。
 また、有機溶剤を含有する温水溶液中の有機溶剤濃度は30質量%以上60質量%以下が好ましい。この濃度は、安定な延伸処理を供することができる範囲であり、緻密な均一なフィブリル構造を内部と表層において形成させることができる。より好適な濃度は、40質量%以上50質量%以下である。
 好ましい凝固糸の延伸方法は、空気中での延伸を1.0倍以上1.25倍以下とし、空気中と温水溶液中での合計の延伸倍率を2.6倍以上4.0倍以下とするものである。凝固糸は、溶剤を多量に含み膨潤したフィブリル構造を有している。このような構造よりなる凝固糸を空気中での延伸を1.0倍以上1.25倍以下とすることにより、疎なフィブリル構造形成を避けることができる。さらに、1.0倍以上とすることで、不均一な収縮が抑えられる。
 また、空気中と温水溶液中での合計の延伸倍率を2.6倍以上とすることで、十分な延伸を施すことができ、所望の繊維軸方向に配向したフィブリル構造を形成させることができる。また、合計延伸倍率を4.0倍以下にすることにより、フィブリル構造自体の破断が生じることなく、緻密な構造形態よりなる前駆体繊維束とすることができる。即ち、2.6倍以上4.0倍以下の範囲において、繊維の軸方向に配向した緻密なフィブリル構造を形成させることができる。より好ましい合計延伸倍率は2.7倍以上3.5倍以下である。
 さらに、より好ましい延伸方法として、有機溶剤温水溶液中での延伸倍率を2.5倍以上とするものである。有機溶剤温水溶液中での延伸は、比較的高い温度で行うために構造破壊を生じさせずに延伸ができるからである。したがって、空気中と有機溶剤温水溶液での延伸配分は、有機溶剤温水溶液中での延伸の配分を高く設定するほうが好ましい。より好ましい空気中での延伸は1.0倍以上1.15倍以下である。
 このようにして表層部が緻密な膨潤糸を得ることができるが、より好ましい緻密な膨潤糸を得るには、膨潤度が160質量%以下である有機溶剤を含む凝固糸束を用いて上述した延伸方法により膨潤糸を製造することである。これは、凝固糸の内層構造が緻密であるからである。
 延伸処理後、50℃以上95℃以下の温水にて繊維束を洗浄し有機溶剤を除去する。また、洗浄後、溶剤分の無い膨潤状態にある繊維束を熱水中で延伸することで繊維の配向を更に高めることも可能であり、若干の緩和を入れることで延伸の歪みを取ることも可能である。好ましくは、温度70~95℃の熱水中で、0.98倍以上2.0倍以下の延伸を行う。延伸倍率が0.98倍以上から1.0倍未満においては、緩和させる処理となる。この前の段階で、高い延伸倍率で供された繊維束において、延伸歪みをとることにより、その後の延伸工程での安定な延伸に効果がある。延伸倍率が、1.0倍以上2.0倍以下の範囲においては、フィブリル構造の配向度の向上と表層の緻密性アップが図れる。より好ましくは0.99倍以上1.5倍以下の延伸を行う。
 このようにして凝固糸に延伸処理と洗浄処理を施すことによって膨潤糸が得られる。
 〔乾熱延伸〕
 膨潤糸に所定量の油剤を付着処理し、乾燥緻密化する。乾燥緻密化は公知の乾燥法により乾燥、緻密化させれば良く、特に制限はない。複数の加熱ロールを通過させる方法が好ましく用いられる。乾燥緻密化後の繊維束は、130~200℃の加圧スチーム中、100~200℃の乾熱熱媒中、あるいは150~220℃の加熱ロール間や加熱板上で延伸して、更なる配向の向上と緻密化を行った後に巻き取って前駆体繊維束を得る。
〔前駆体繊維束〕
 本発明の炭素繊維用前駆体繊維束(以下、適宜「前駆体繊維束」という)は、アクリロニトリル96.0質量%以上99.7質量%以下と、一つ以上のカルボキシル基あるいはエステル基を有する不飽和炭化水素0.3質量%以上4.0質量%以下を必須成分として共重合させたアクリロニトリル共重合体からなり、シリコーン系化合物を主成分とする油剤で処理された後のケイ素含有量が1700ppm以上5000ppm以下であって、ソックスレー抽出器を用いたメチルエチルケトンによる8時間油剤洗浄後のケイ素含有量が50ppm以上300ppm以下である。ケイ素含有量は蛍光X線装置にて測定される。また油剤洗浄後のケイ素含有量は前記〔膨潤糸の油剤浸透性の評価〕における油剤付着~油剤洗浄による評価に基づく測定値である。
 油剤で処理された後の前駆体繊維束のケイ素含有量が1700ppm5000ppm以下であれば、耐炎化工程でフィラメント間の融着が生じることはなく、一方、表層の過剰なシリコーン化合物によるフィラメント内部への酸素拡散が阻害され、耐炎化反応が不十分な箇所が発生せず、より高温処理である炭素化工程での糸切れ発生を抑えることができる。その結果安定な工程通過性を維持することができる。
 本発明の前駆体繊維束は、油剤抽出洗浄を施した後の繊維束のケイ素含有量が300ppm以下のものである。ここで、ケイ素含有量が300ppmを超えるということは、シリコーン系化合物オイルが表層部に浸透し、その存在量が多くなっていることを示している。その結果、焼成工程の耐炎化、前期炭素化工程(800℃以下)で表層部に存在するシリコーンオイルが飛散せずに残留し、後期炭素化工程(800℃超)で飛散することで、最終的な炭素繊維の表層部に多数の空隙を形成することとなる。したがって、目的とする高強度炭素繊維を得ることができない。一方、油剤抽出洗浄を施した後の繊維束のケイ素含有量が300ppm以下であることは、前駆体繊維に付着したシリコーン化合物が、表層部に浸透し、表層近傍に存在するものの、抽出され難い存在状態の割合が少なく、最表層部に存在していることを意味している。このような状態であれば、焼成工程の耐炎化工程や炭素化工程中で最表層部から欠陥点を形成することなくシリコーン系化合物が飛散することになる。より好ましい油剤抽出洗浄後のケイ素含有量は、200質量ppm以下である。
 この前駆体繊維束は、単繊維の繊度が、0.5dtex以上1.0dtex以下であり、単繊維の繊維断面の長径と短径との比(長径/短径)が1.00以上1.01以下、単繊維の繊維軸方向に延びる表面凹凸構造が無く、最高部と最低部の高低差(Rp-v)が30nm以上100nm以下、中心線平均粗さ(Ra)が3nm以上10nm以下であることが好ましい。(Rp-v)値が30nm以上、あるいは(Ra)値が3nm以上であれば、前駆体繊維フィラメント表面の平滑性が過剰ではない。このことは凝固工程で形成されたスキン層由来の紡糸工程での低延伸性により、表層フィブリルの小さな破断が生じることがなく、微小な欠陥点の形成を避けることができる。さらにまた、フィラメントの集合体である繊維束としての過剰な収束により、耐炎化工程でのフィラメント内部への酸素拡散の阻害による、不均一な耐炎化処理も避けることができる。一方、(Rp-v)値を100nm以下、あるいは(Ra)値を10nm以下にすることにより、表層近傍の構造の緻密性を十分なレベルとすることができると考えられる。即ち、(Rp-v)値が30nm以上100nm以下、(Ra)値が3nm以上10nm以下であるような表面を有する場合、表層近傍の構造の緻密性が十分なレベルにあり、また十分な延伸性も有した構造とすることができ、紡糸から焼成工程において、表層近傍の欠陥点形成の機会を小さくすることが可能となる。その結果、高強度の炭素繊維束を得ることができる。
 ここで、繊維軸方向に延びる表面凹凸構造とは、繊維軸方向にほぼ平行に存在する長さ0.6μm以上の皺構造を意味する。アクリロニトリル繊維束は、通常、凝固およびその後の延伸処理により、体積収縮が生じ、表面に繊維軸方向に伸びる皺構造が形成される。凝固工程で強固なスキン層の形成を抑え、緩やかな体積収縮を実現することによりこの皺構造の形成が抑制される。また、乾湿式紡糸によりこの皺構造の形成が大きく抑制されることが知られている。前駆体繊維束は、このような長さ0.6μm以上の皺構造を有していないことが好ましい。
 単繊維断面の長径と短径との比(長径/短径)が1.00~1.01である繊維は、真円或いは真円に近い断面を有する単繊維であり、繊維表面近傍の構造均一性が優れている。より好ましい長径と短径との比(長径/短径)は1.00~1.005である。
 単繊維の繊度範囲が0.5~1.0dtexである繊維は、繊維径が小さいので、焼成工程で生じる断面方向の構造不均一性を低減できる。より好ましい範囲は、0.5~0.8dtexである。
〔前駆体繊維束の製造方法〕
 前記所定量のケイ素含有量の前駆体繊維束は、本発明の膨潤糸に、シリコーン化合物を主成分とする油剤を付着させて乾燥させた後、熱延伸もしくはスチーム延伸にて延伸処理を施すことによって製造することができる。
 油剤の主成分であるシリコーン化合物は特に制限がないが、アクリロニトリル系共重合体との相互作用の観点から、アミノ変性ポリジメチルシロキサンまたはエポキシ変性ポリジメチルシロキサンが好ましく用いられる。特に、本発明の膨潤糸は表層部の緻密性が高いことから、表層の被覆のし易さ、さらに表層からの脱離し難さの観点からアミノ変性ポリジメチルシロキサンが好ましい。
 また、ポリジメチルシロキサン骨格のメチル基の一部がフェニル基に置換されているものは、耐熱性の観点から優れている。最も好適なアミノ変性ポリジメチルシロキサンは、25℃における動粘度が50~5,000cst、アミノ当量が1,700~15,000g/molのものである。
 アミノ変性タイプは、特に限定はないが、1級側鎖タイプ、1,2級側鎖タイプ、両末端変性タイプが好適である。また、これらの混合タイプあるいは、複数種混合させて用いることもできる。25℃における動粘度が50cst以上であれば、揮発しない十分な分子量を有するものであり、耐炎化工程全般においてで繊維からの飛散が抑えられ、本来の工程油剤としての機能を発現し、安定な炭素繊維の製造が可能となる。また、25℃における動粘度を5000cst以下とすることにより、耐炎化工程において繊維束からロール等に油剤の一部が転移し、比較的長時間の熱処理を受けることにより粘度が上昇し、粘着性が出て、繊維束の一部がロールに巻きつくトラブルが多発するようになる。また、アミノ当量を1,700g/mol以上とすることにより、シリコーンの熱反応性が抑えられ、繊維束からロール等に油剤の一部が転移し、繊維束の一部がロールに巻きつくトラブルの発生を避けることができる。アミノ当量を15,000g/mol以下とすることにより、前駆体繊維とシリコーンの親和性が十分にあるために、耐炎化工程全般で繊維からの飛散を抑えることができる。即ち、油剤の25℃における動粘度が50~5,000cst、アミノ当量が1,700~15,000g/molの範囲にあれば、ロールなどへの油剤の転移に起因する繊維の巻きつきトラブルや耐炎化工程での急激な油剤の飛散がなく、紡糸から耐炎化処理まで長時間連続して安定に行うことができる。
 1級側鎖タイプのアミノ変性ポリジメチルシロキサンとしては、KF-864、KF-865、KF-868、KF-8003(いずれも信越化学工業社製)などが挙げられる。1、2級側鎖タイプのものとしては、KF-859、KF-860、KF-869、KF-8005(いずれも信越化学工業社製)などが挙げられる。両末端変性タイプのものとしては、サイラプレーンFM-3311、FM-3221、FM-3325(いずれもチッソ株式会社製)やKF-8012(信越化学工業社製)などが挙げられる。
 油剤は、水系エマルジョンにするための界面活性剤や優れた工程通過性を付与する柔軟剤、平滑剤といった化合物で構成されている。界面活性剤はノニオン系が主に用いられ、プルロニック型や高級アルコールのEO/PO付加物が用いられる。特に、ポリオキシエチレン/ポリオキシプロピレンブロックポリマーであるニューポールPE-78、PE-108、PE-128(いずれも三洋化成工業(株)製品)などが好適である。
 柔軟剤、平滑剤は、エステル化合物やウレタン化合物などを用いる。油剤中のシリコーン化合物の含有量は、30質量%から90質量%である。30質量%以上であれば、耐炎化工程での融着抑制が十分である。また、90質量%以下であれば、油剤のエマルジョンの安定性を容易に十分なレベルにすることができ、安定な前駆体繊維の製造ができる。即ち、油剤中のシリコーン系化合物の含有量が30質量%から90質量%であれば、本発明のような表面が緻密な前駆体繊維においても、耐炎化工程での融着抑制作用が十分に発揮することができ、油剤付着工程での安定性ひいては、付着状態の均一性が実現できることから、得られる炭素繊維の性能発現安定化が図れる。
 シリコーン化合物を主成分とする油剤の付着量は、0.8質量%から1.6質量%である。油剤付着処理後、乾燥緻密化に供される。乾燥緻密化は公知の乾燥法により乾燥、緻密化させれば良く、特に制限はない。好ましくは、複数の加熱ロールを通過させる方法である。油剤の付着量を0.8~1.6質量%とすることにより、油剤の被覆不足に起因する繊維同士の融着や、過剰な付着に起因する酸素の拡散不足による耐炎化構造の不整を低減でき、高い強度を有する炭素繊維を製造することができる。
 乾燥緻密化後の繊維束は、必要に応じて130~200℃の加圧スチームや乾熱熱媒中、あるいは加熱ロール間や加熱板上で1.8~6.0倍延伸して、更なる配向の向上と緻密化が行われて前駆体繊維束を得る。より好ましい延伸倍率は、2.4~6.0倍、更に好ましくは2.6~6.0倍である。
〔耐炎化繊維束の製造方法〕
 前駆体繊維束を、220~260℃の熱風循環型の耐炎化炉に30分以上100分以下の間通過せしめて、伸長率0%以上10%以下として酸化雰囲気下で熱処理することによって、密度1.335g/cm以上1.360g/cm以下の耐炎化繊維束を得ることができる。耐炎化反応には、熱による環化反応と酸素による酸化反応があり、この2つの反応をバランスさせることが重要である。この2つの反応をバランスさせるためには、耐炎化処理時間は30分以上100分以下の間が好適である。30分未満の場合、酸化反応が十分に生じていない部分が単繊維の内側に存在し、単繊維の断面方向で大きな構造斑が生じる。その結果、得られる炭素繊維は不均一な構造を有するものとなってしまい、高い機械的性能は発現しない。一方、100分を超える場合は、単繊維の表面に近い部分により多くの酸素が存在するようになり、その後の高温での熱処理により過剰の酸素が消失する反応が生じ、欠陥点を形成するために高強度の炭素繊維が得られない。
 より好ましい耐炎化処理時間は、40分以上80分以下である。耐炎化糸密度が1.335g/cm未満の場合、耐炎化が不十分となり、その後の高温での熱処理により分解反応が生じ、欠陥点を形成するために高強度の炭素繊維が得られない。耐炎化糸密度が1.360g/cmを超える場合、繊維の酸素含有量が増えるために、その後の高温での熱処理により過剰の酸素が消失する反応が生じ、欠陥点を形成するために高強度の炭素繊維が得られない。より好ましい耐炎化糸密度の範囲は、1.340g/cm以上1.350g/cm以下である。
 耐炎化炉での適度の伸長は、繊維を形成しているフィブリル構造の配向を維持、向上させるために必要である。0%未満の伸長では、フィブリル構造の配向が維持できず、炭素繊維の構造形成における繊維軸での配向が十分でなく、優れた機械的性能が発現しない。一方、10%を超える伸長では、フィブリル構造自体の破断が生じ、その後の炭素繊維の構造形成を損ない、また破断点が欠陥点となり、高強度の炭素繊維を得ることができない。より好ましい伸長率は、3%以上8%以下である。
 耐炎化繊維束の好ましい製造方法は、前駆体繊維束を上述した酸化雰囲気下で熱処理することにより、繊維束広角X線測定による赤道方向のピークA(2θ=25°)とピークB(2θ=17°)の強度比(B/A)が1.3以上、ピークAの配向度が79%以上、ピークBの配向度が80%以上、密度が1.335g/cm以上1.360g/cm以下である耐炎化繊維束とすることである。
 ピークB(2θ=17°)のポリアクリロニトリル(100)反射由来の結晶構造は、炭素繊維の構造形成と密接に関連する。そして、この結晶配向度や結晶性を炭素繊維の製造過程で一旦低くしてしまうと、元に戻すことは困難となり、炭素繊維の性能発現性が低下する傾向がある。ここで、前記(100)は結晶方位を示している。特に耐炎化工程において、前駆体繊維の構造が大きく変化する工程であり、さらに炭素繊維の基本構造であるグラファイト結晶の基を形成させる工程でもある。ピークB(2θ=17°)のポリアクリロニトリル(100)反射由来の結晶構造は、特に耐炎化工程による変化が大きく、耐炎化過程の条件設定によりその変化の程度が著しく異なる。高配向の耐炎化繊維を得るためには、適切な処理を施す必要があり、また配向度は結晶性と密接な関係があり、配向度の低下に伴い結晶性は著しく低下する。逆に高配向を維持できれば、それに伴い高結晶性のものが得られる。このような理由により、強度比(B/A)が1.3以上、ピークAの配向度が79%以上、ピークBの配向度が80%以上である結晶構造を有する耐炎化繊維束が好ましい。
 上記のような耐炎化繊維束は、本発明の前駆体繊維束を用いることにより比較的容易に得ることが可能である。さらに、前駆体繊維束を酸化雰囲気下で熱処理する工程において、伸長処理条件を少なくとも3つのブロックに分割し、繊維密度1.200g/cm以上1.260g/cm以下の範囲で、3.0%以上8.0%以下の伸長を行い、さらに密度1.240g/cm以上1.310g/cm以下の範囲で0.0%以上3.0%以下の伸長を行い、さらに1.300g/cm以上1.360g/cm以下の範囲で-1.0%以上2.0%以下伸長させるような耐炎化条件を設定することが好ましい。
〔炭素繊維〕
 次に耐炎化繊維束を窒素などの不活性雰囲気中300℃以上800℃以下の温度勾配を有する第一炭素化炉にて2%以上7%以下の伸長を加えながら1.0分から3.0分間熱処理する。好適な処理温度は300℃から800℃で、直線的な温度勾配で処理する。前工程の耐炎化の温度を考えると開始温度は300℃以上が好ましい。最高温度が800℃を超えると、繊維が非常に脆くなり、次の工程への移行が困難になる。より好適な温度範囲は、300~750℃である。より好ましい温度範囲は、300~700℃である。
 温度勾配については特に制限はないが、直線的な勾配を設定するのが好ましい。2%未満の伸長では、フィブリル構造の配向が維持できず、炭素繊維の構造形成における繊維軸での配向が十分でなく、優れた機械的性能発現ができない。一方、7%を超える伸長では、フィブリル構造自体の破断が生じ、その後の炭素繊維の構造形成を損ない、また破断点が欠陥点となり、高強度の炭素繊維を得ることができない。より好ましい伸長率は3%以上5%以下である。好適な処理時間は1.0分から3.0分である。1.0分未満の処理では、急激な温度上昇に伴う激しい分解反応が生じ、高強度の炭素繊維を得ることができない。3.0分を超えると、工程前期の可塑化の影響が発生し、結晶の配向度が低下する傾向が生じ、その結果得られる炭素繊維の機械的性能が損なわれる。より好適な処理時間は、1.2分から2.5分である。
 次いで、窒素などの不活性雰囲気中1000~1600℃の範囲で温度勾配設定できる第二炭素化炉にて緊張下で熱処理を行って炭素繊維を得る。また、必要ならば、追加で所望する温度勾配を有する第三炭素化炉にて不活性雰囲気中緊張下で熱処理を行う。温度の設定は、炭素繊維の所望弾性率に依存する。高機械性能を有する炭素繊維を得るためには、炭素化処理の最高温度は低いほうがよく、また処理時間を長くすることにより弾性率を高くすることができるため、その結果最高温度を下げることができる。更に、処理時間を長くすることにより、温度勾配を緩やかに設定することが可能となり、欠陥点形成を抑制するのに効果がある。
 第二炭素化炉は、第一炭素化炉の温度設定にもよるが1000℃以上であればよい。好ましくは1050℃以上である。温度勾配については特に制限はないが、直線的な勾配を設定するのが好ましい。処理時間は、1.0分から5.0分が好適である。より好ましくは、1.5分から4.2分である。本熱処理において、繊維束は大きな収縮を伴うために、緊張下で熱処理をすることが重要である。伸長は、-6.0%から2.0%が好適である。-6.0%未満では結晶の繊維軸方向での配向が悪く、十分な性能が得られない。一方、2.0%を超える場合では、これまで形成されてきた構造そのものの破壊が生じ、欠陥点形成が顕著となり、強度の大幅な低下が生じる。より好適な伸長は、-5.0%から0.5%の範囲である。
 このようにして得られた炭素繊維束は、表面酸化処理に供される。表面処理方法としては、公知の方法、即ち、電解酸化、薬剤酸化及び空気酸化などによる酸化処理が挙げられいずれでも良い。工業的に広く実施されている電解酸化処理は、安定な表面酸化処理が可能であること、また、表面処理状態の制御が電気量を変えて行えるという観点から最も好適な方法である。ここで、同一電気量であっても、用いる電解質及びその濃度によって表面状態は大きく異なってくるが、pHが7より大きいアルカリ性水溶液中で炭素繊維を陽極として10~200クーロン/gの電気量を流して酸化処理を行うことが好ましい。電解質としては、炭酸アンモニウム、重炭酸アンモニウム、水酸化カルシウム、水酸化ナトリウム、水酸化カリウムなどを用いるのが好適である。
 次に炭素繊維束はサイジング処理に供される。サイジング剤は、有機溶剤に溶解させたものや、乳化剤などで水に分散させたエマルジョン液を、ローラ浸漬法、ローラ接触法等によって炭素繊維束に付与し、これを乾燥することによって行うことができる。なお、炭素繊維の表面へのサイジング剤の付着量の調節は、サイジング剤液の濃度調整や絞り量調整によって行うことができる。又、乾燥は、熱風、熱板、加熱ローラ、各種赤外線ヒーターなどを利用して行うことができる。引き続いて、サイシング剤を付着させ乾燥させた後ボビンに巻きとり炭素繊維束を得る。
 本発明の前駆体繊維束や耐炎化繊維束を用いて、上述した焼成方法を適用することにより、機械的性能に優れた炭素繊維束を得ることができる。
 本発明の炭素繊維束は、樹脂含浸ストランド強度が6000MPa以上、ASTM法で測定されるストランド弾性率が250から380GPaであり、単繊維の繊維軸方向に垂直な断面の長径と短径との比(長径/短径)が1.00~1.01、単繊維の直径が4.0から6.0μm、単繊維の繊維軸方向に垂直な断面に直径が2nm以上15nm以下の空隙が1個以上100個以下存在するものである。空隙が100個以下と少ないために、非常に高いストランド強度を有するものとすることができる。特に、弾性率の高い炭素繊維束においても、高いストランド強度を発現することができる。より好適なものは、前記空隙が50個以下のものである。
 さらに好適な炭素繊維束は、単繊維の繊維軸方向に垂直な断面に観察される直径2~15nmの範囲にある空隙の平均直径が6nm以下のものである。平均直径が6nm以下であることは、前駆体繊維束において油剤が局所的に多く浸透することなく、均一に存在していたことを示すものである。この6nm以下を確保することにより、安定な炭素繊維の強度発現性を実現できる。
 本発明の炭素繊維束は、単繊維の繊維軸方向に垂直な断面に存在する空隙の面積の総和A(nm)が2,000nm以下であることが好ましい。また、総和A(nm)の95%以上に当たる空隙が、繊維の表面から深さ150nmの位置の間に存在することが好ましい。単繊維がこのような構造を有することは、前駆体繊維束において油剤が表層近傍の極表層部分にのみに存在していたことを示すものである。
 本発明において炭素繊維束を結節したものの引張破断応力を繊維束の断面積(単位長さ当たりの束の質量と密度)で除した結節強さが900N/mm以上であることが好ましい。より好ましくは1000N/mm以上、更に好ましくは1100N/mm以上である。結節強さは、繊維軸以外の方向の繊維束の機械的な性能を反映させる指標となりうるものであり、特に繊維軸に垂直な方向の性能を簡易的に見ることができる。複合材料においては、擬似等方積層により材料を形成することが多く、複雑な応力場を形成する。その際、繊維軸方向の引張、圧縮応力の他に、繊維軸以外の方向の応力も発生している。さらに、衝撃試験のような比較的高速なひずみを付与した場合、材料内部の発生応力状態はかなり複雑であり、繊維軸方向と異なる方向の強度が重要となる。したがって、結節強さが900N/mm未満では、擬似等方材料において十分な機械的性能が発現しない。
 以下、本発明を実施例により具体的に説明する。なお、本実施例における各種繊維の性能の測定、評価は、以下の方法による。
〔1.凝固糸の膨潤度測定〕
 紡糸工程で走行している繊維束を採取し、密閉可能なポリエチレン製袋に入れ、直ちに5℃以下の冷蔵庫内に保管する。保管開始から膨潤度測定完了までの時間は8時間以内とする。
 予め乾燥しておいた秤量瓶を直示天秤で計量した後、前記繊維束から約3gの試料を採取し、秤量瓶に入れ計量する。試料を卓上遠心機の脱水用円筒に入れ、遠心機にセットする。3000回転/分の回転数で10分間遠心処理(粗脱水)を行った後、脱水後の試料を秤量瓶に移し、計量する。この質量を湿質量Aとする。
 粗脱水後の試料が未だ溶剤を含んでいる場合は、十分に水洗を行った後に脱水を行う。粗脱水もしくは洗浄、脱水後の試料を秤量瓶に移し、蓋を外した状態で、105℃の乾燥機内で3時間乾燥を行う。乾燥後の試料を秤量瓶に入れたままデシケーターに移し、20~30分間徐冷したのち、秤量瓶の質量を計量する。この質量を乾質量Bとする。
以下の式より膨潤度を計算する。
膨潤度(%)=(A-B)/B×100%
〔2.膨潤糸の膨潤度測定方法〕
 紡糸工程で採取した膨潤糸を試料として用いる。凝固糸の膨潤度測定と同じ手法にて実施する。
〔3.膨潤糸の表面形態観察〕
 紡糸工程で採取した膨潤糸を試料として用いる。膨潤糸に含まれる溶剤をt-ブタノールに置換して、膨潤糸を液体窒素で急速凍結した後、この繊維試料を、温度-30~-25℃に保持して約3Paの減圧下で24時間凍結乾燥する。乾燥した繊維試料をSEM観察用試料台にカーボンペーストで固定した後、スパッター装置で白金を約3nmの厚さにスパッターし、走査型電子顕微鏡(日本電子(株)、製品名:JSM-7400F)により、加速電圧3kV、観察倍率50,000倍の条件で表面形態を観察する。
 繊維表面に開孔した空隙について円周方向の幅を計測し、幅が10nmを超える空隙の数を計数する。50本以上の膨潤糸について同様の計測を行って、合計の空隙数と観察面積を計測し、単位面積(1μm)あたりの空隙の数の平均値(平均開孔数)を求める。
〔4.膨潤糸の細孔分布測定方法〕
 紡糸工程から採取した膨潤糸を次の方法で乾燥処理する。すなわち、膨潤糸が乾燥過程で収縮変形しないよう定長に固定し、水/t-ブタノールの混合比が80/20、50/50、20/80、0/100の混合液に30分ずつ順次浸漬して、膨潤糸に含まれる溶剤をt-ブタノールに置換する。次いで、この膨潤糸試料をフラスコに入れ、液体窒素中で急速凍結した後、試料温度を-30~-20℃に保ちながら100Pa以下の減圧下で24~72時間凍結乾燥する。
 凍結乾燥した膨潤糸束試料をカミソリで約10mmの長さに切断して約0.15g秤量し、水銀ポロシメーター((株)島津製作所、製品名:オートポアIV)により大気圧~最高圧力30,000psiaの条件で細孔分布を測定する。平均細孔サイズ(nm)は、細孔サイズに細孔体積を重み付けした体積平均細孔サイズとして求める。また、総細孔体積V(ml/g)は、細孔サイズが500nmに対応する圧力のときの水銀圧入量V1(ml/g)と細孔サイズが10nmに対応する圧力のときの水銀圧入量V2(ml/g)とから次式で求める。
V=V2-V1
〔5.前駆体繊維束のケイ素含有量測定〕
〔測定装置〕
蛍光X線分析装置:理学電機工業株式会社製、製品名:ZSX100e、
ターゲット:Rh(エンドウインドウ型)4.0kW、
分光結晶:RX4、
検出器:PC(プロポーショナルカウンター)、
スリット:Std.、
ダイアフラム:10mmφ、
2θ:144.681deg、
測定線:Si-Kα、
励起電圧:50kV、
励起電流:70mA。
〔測定方法〕
 縦20mm、横40mm、幅5mmのアクリル樹脂製板に前駆体繊維束を隙間のない様に均一に巻いて測定サンプル調製し、本装置にセットする。通常の蛍光X線分析方法によりケイ素の蛍光X線強度測定を実施する。得られた前駆体繊維束のケイ素の蛍光X線強度から、検量線を用いて繊維束のケイ素含有量を求める。測定数はn=10とし、それらの平均値を求めて測定値とする。
〔6.前駆体繊維の表面凹凸構造の測定〕
 前駆体繊維束の単繊維の両端を、走査型プローブ顕微鏡装置付属の金属製サンプルホルダー板上にカーボンペーストで固定し、走査型プローブ顕微鏡にて以下の条件で測定する。先ず走査型プローブ顕微鏡により単繊維の形状像を測定する。測定画像について、画像解析により繊維軸に垂直な方向の断面プロファイルを10点計測して輪郭曲線の最高部と最低部の高低差(Rp-v)および中心線平均粗さRaを求める。単繊維10本について測定を行い、平均値を求める。
〔測定条件〕
装置:エスアイアイナノテクノロジーズ社 SPI4000プローブステーション、SPA400(ユニット)、
走査モード:ダイナミックフォースモード(DFM)(形状像測定)、
探針:エスアイアイナノテクノロジーズ社製 SI-DF-20、
Rotation:90°(繊維軸方向に対して垂直方向にスキャン)、
走査速度:1.0Hz、
ピクセル数:512×512、
測定環境:室温、大気中。
 単繊維1本に対して、上記条件にて1画像を得て、前記画像を画像解析ソフト(SPIWin)で以下条件にて画像解析する。
〔画像解析条件〕
 得られた形状像に、〔フラット処理〕、〔メディアン8処理〕、〔三次傾き補正〕を行い、曲面を平面にフィッティング補正した画像を得る。平面補正した画像の表面粗さ解析より、繊維軸に垂直な方向の断面プロファイルを計測し、輪郭曲線の最高部と最低部の高低差(Rp-v)および中心線平均粗さRaを求める。
〔フラット処理〕
 リフト、振動、スキャナのクリープ等によってイメージデータに現れたZ軸方向の歪み、うねりを除去する処理であり、SPM測定上の装置因によるデータのひずみを除去する処理である。
〔メディアン8処理〕
 処理するデータ点Sを中心とする3×3の窓(マトリクス)においてSおよびD1~D8の間で演算を行い、SのZデータを置き換えることで、スムージングやノイズ除去といったフィルタの効果を得るものである。
 メディアン8処理は、SおよびD1~D8の9点のZデータの中央値を求めて、Sを置き換えるものである。
〔三次傾き補正〕
 傾き補正は、処理対象イメージの全データから最小二乗近似によって曲面を求めてフィッティングし、傾きを補正するものである。(1次)(2次)(3次)はフィッティングする曲面の次数を示し、3次では3次曲面をフィッティングする。三次傾き補正処理によって、データの繊維の曲率をなくしフラットな像とする。
〔7.耐炎化繊維束のX線回折強度と結晶配向度の測定〕
 耐炎化繊維束を任意の箇所で繊維長5cmに切断して12mg精秤採取し、試料繊維軸が正確に平行になるようにして引き揃える。繊維の長手方向に対して垂直方向における幅が2mmで、かつ前記幅方向および繊維の長手方向の両方に対して垂直な方向における厚さが均一である繊維束に整える。この繊維束の両端に酢酸ビニル/メタノール溶液を含浸させて形態が崩れないように固定したものを被測定用のサンプル繊維束とする。
 これを広角X線回折試料台に固定し、透過法によって赤道方向の回折強度を測定して回折強度プロファイル(縦軸:回折強度、横軸:2θ(単位:°))を得る。得られたプロファイルからポリアクリロニトリル(100)反射に相当する2θ=17°およびグラファイト(002)反射に相当する2θ=25°近傍の回折強度ピークトップの値を検出し、その値をピーク強度とする。
 また、結晶配向度は、各反射のピーク位置で方位角方向の回折プロファイルを測定してピークの半値幅W(単位:°)を求め、次式により算出する。
結晶配向度(%)={(180-W)/180}×100
 結晶配向度の測定は、測定対象の繊維束の長手方向において3個のサンプル繊維束を採取し、それぞれ結晶配向度を測定して平均値を求める。
 尚、X線回折測定は、X線源としてリガク社製のCuKα線(Niフィルター使用)X線発生装置(商品名:TTR-III、回転対陰極型X線発生装置)を用い、回折強度プロファイルはリガク社製のシンチレーションカウンターにより検出する。出力は50kV-300mAとする。
〔8.前駆体繊維及び炭素繊維の断面形状の評価〕
 繊維束を構成する単繊維の繊維断面の長径と短径との比(長径/短径)は、以下のように決定する。
 内径1mmの塩化ビニル樹脂製のチューブ内に測定用の繊維束を通した後、これをナイフで輪切りにして試料を準備する。ついで、この試料を繊維断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、電子顕微鏡(フィリップス社製、製品名:XL20走査型)により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察し、単繊維の繊維断面の長径及び短径を測定する。
〔9.炭素繊維束のストランド物性評価〕
 樹脂含浸炭素繊維束のストランド試験体の調製および強度の測定は、JIS R7608に準拠して実施する。ただし、弾性率の算出はASTMに準じたひずみ範囲を用いて実施する。
〔10.炭素繊維束横断面での空隙の評価〕
 炭素繊維束から単繊維を抜き取り、スパッター装置により白金を2~5nmの厚さにスパッターしたのち、カーボンコーター装置によりカーボンを100~150nmの厚さにコーティングする。その後、集束イオンビーム加工装置((株)日立ハイテクノロジーズ製、製品名:FB-2000A)を用いて、タングステン保護膜を約500nmの厚さにデポジションしたのち、加速電圧30kVの集束イオンビームでエッチングすることにより、繊維の横断面の薄片(厚さ100~150nm)を得る。
 この薄片を、透過型電子顕微鏡((株)日立ハイテクノロジーズ製、製品名:H-7600)により、加速電圧100kVの条件で15万倍~20万倍の倍率で単繊維の横断面を観察する。
 さらに、画像解析ソフトウェア(日本ローパー(株)製、製品名:Image-Pro PLUS)を用いて、TEM画像で明るくみえる空隙部分を抽出し、横断面の全体にわたって空隙数Nを計数するとともに、個々の空隙の面積を計測して円相当径d(nm)を算出する。また、空隙の面積の総和A(nm2)及び平均空隙直径D(nm)を求める。
 また空隙の深さT(nm)を求める。Tは、繊維表面に近い空隙から順に面積の値を累積した場合に、その累積値が面積Aの95%に達する位置と繊維表面との距離である。即ち、単繊維の横断面に現れた全ての空隙を対象にして、面積0.95Aの空隙がその外周側に存在する円を描く場合の半径をrとし、単繊維の半径をRとした場合、Tは以下の式で求められる。
T=R-r。
上記の測定を5本の繊維について行い、平均値を求める。
〔11.炭素繊維束の結節強さの測定〕
 150mm長の炭素繊維束の両端に長さ25mmの掴み部を取り付け試験体とする。試験体の作製の際、0.1×10-3N/デニールの荷重を掛けて炭素繊維束の引き揃えを行う。この試験体に結び目を1つほぼ中央部に形成し、引張時のクロスヘッド速度は100mm/minで実施する。引張破断応力を繊維束の断面積(単位長さ当たりの束の質量と密度)で除した値を結節強さとする。試験数は12本とし、最小と最大値を取り除き、10本の平均値で表示する。
(実施例1及び比較例1~3)
〔膨潤糸および前駆体繊維の調製〕
 アクリロニトリル、メタクリル酸を水系懸濁重合により重合し、アクリロニトリル単位/メタクリル酸単位=98/2質量%からなるアクリロニトリル系共重合体を得た。得られた重合体をジメチルホルムアミドに溶解して濃度23.5質量%の紡糸原液を調製した。
 この紡糸原液を直径0.13mm、孔数2000の吐出孔を配置した紡糸口金から一旦空気中に紡出した後、約4mmの空間を通過させた後15℃に調温した79.5質量%ジメチルホルムアミドを含有する水溶液を満たした凝固液中に吐出し凝固させ、凝固糸を引取った。次いで空気中で1.1から1.3倍延伸後、60℃に調温した30質量%ジメチルホルムアミドを含有する水溶液を満たした延伸槽にて1.1から2.9倍延伸した。延伸後、溶剤を含有している繊維束を清浄な水で洗浄し、次に、95℃の熱水中で1.2倍から2.2倍の延伸を行った。
 引き続き、繊維束にアミノ変性シリコーンを主成分とする油剤を1.1質量%となるよう付与し乾燥緻密化した。乾燥緻密化後の繊維束を、180℃の加熱ロール間で2.2倍から3.0倍延伸して、更なる配向の向上と緻密化を行った後に巻き取って前駆体繊維束を得た。前駆体繊維の繊度は、0.77dtexであった。また、単繊維の繊維断面の長径と短径との比(長径/短径)は1.005であった。
 ここで、アミノ変性シリコーンを主成分とする油剤は以下のものを用いた。
・アミノ変性シリコーン;KF-865(信越化学工業(株)製、1級側鎖タイプ、粘度110cSt(25℃)、アミノ当量5,000g/mol、85質量%、
・乳化剤;NIKKOL BL-9EX(日光ケミカルズ株式会社製、POE(9)ラウリルエーテル)、15質量%。
〔耐炎化、炭素化〕
 次いで、複数の前駆体繊維束を平行に揃えた状態で耐炎化炉に導入し、220℃~280℃に加熱された空気を前駆体繊維束に吹き付けることによって、前駆体繊維束を耐炎化して密度1.342g/cmの耐炎繊維束を得た。ここで、密度1.200g/cmから1.250g/cmの範囲で、5.0%の伸長を行い、さらに密度1.250g/cmから1.300g/cmの範囲で1.5%の伸長を行い、さらに1.300g/cmから1.340g/cmの範囲で-0.5%伸長させた。合計の伸長率は6%とし、耐炎化処理時間は70分とした。
 次に耐炎化繊維束を窒素中300~700℃の温度勾配を有する第一炭素化炉にて4.5%の伸長を加えながら通過させた。温度勾配は直線的になるように設定した。処理時間は1.9分とした。
 更に窒素雰囲気中で1000~1250℃の温度勾配を設定した第二炭素化炉を用いて伸長率-3.8%で熱処理を行なった。引き続き、窒素雰囲気中1250~1500℃の温度勾配を設定した第三炭素化炉を用いて伸長率-0.1%熱処理を行い、炭素繊維束を得た。第二炭素化炉および第三炭素化炉を合わせた伸長率は、-3.9%、処理時間は3.7分とした。
〔炭素繊維の表面処理〕
 引き続いて、重炭酸アンモニウム10質量%の水溶液中を走行せしめ炭素繊維束を陽極として、被処理炭素繊維1g当り40クーロンの電気量となる様に対極との間で通電処理を行い、温水90℃で洗浄した後乾燥した。次に、ハイドランN320(DIC株式会社製)を0.5質量%付着させ、ボビンに巻きとり、炭素繊維束を得た。実施例1及び比較例1~3における、炭素繊維の単繊維の繊維断面の長径と短径との比(長径/短径)は1.005、直径は4.9μmであった。
〔一方向プリプレグの製作〕
 Bステージ化したエポキシ樹脂#410(180℃硬化タイプ)を塗布した離型紙上にボビンから巻き出した炭素繊維束の156本を引き揃えて配置して、加熱圧着ローラを通して、エポキシ樹脂を含浸した。その上に保護フィルムを積層して、樹脂含有量約33質量%、炭素繊維密度125g/m、幅500mmの一方向引揃えプリプレグ(以下、「UDプリプレグ」という)を作製した。
〔積層板の成型および機械的性能評価〕
 前記UDプリプレグを使用して積層板を成形し、積層板の0°引張強度をASTM D3039に準拠した評価法により測定した。
紡糸工程での延伸条件を表1に示した。
Figure JPOXMLDOC01-appb-T000001
〔繊維の評価〕
 得られた凝固糸と膨潤糸の膨潤度、膨潤糸の表面開孔幅測定、前駆体繊維束の広角X線測定、TMA評価、および耐炎化糸の広角X線測定、炭素繊維のストランド強度、弾性率ならびに断面空隙観察、結節強度測定を実施した。その結果を表2に示した。実施例1は高い機械的性能を有する炭素繊維となっていることが確かめられた。
Figure JPOXMLDOC01-appb-T000002
(実施例2~16及び比較例4~9)
 実施例1と同様にして、紡糸工程の条件を一部変更して、膨潤糸と前駆体繊維束を得た。前駆体繊維の繊度は、0.77dtexとし、また単繊維の繊維断面の長径と短径との比(長径/短径)は1.005であった。引き続き、同じ焼成条件で炭素繊維束を製造した。炭素繊維の単繊維の繊維断面の長径と短径との比(長径/短径)は1.005、直径は4.9μmであった。
 表1に紡糸工程の条件、表2に各種繊維束の評価結果をまとめて示した。
(実施例17~20)
 実施例14で得られた前駆体繊維束を用いて、第2と第3炭素化炉で加熱処理条件のみを変更して、その他の条件は実施例14と同様にして炭素繊維束を作製した。表3にその熱処理条件及び炭素繊維束の性状を示した。
Figure JPOXMLDOC01-appb-T000003
(実施例21~25並びに参考例1及び2)
 実施例14と同じ紡糸条件で単繊維の繊度のみ変更して得られた前駆体繊維束を用いて、実施例15の焼成条件のうち、第2と第3炭素化炉で加熱処理条件のみを変更した以外は実施例15と同じ焼成条件で炭素繊維束を作製した。前駆体繊維、熱処理条件、及び炭素繊維束の性状を表4に示した。
Figure JPOXMLDOC01-appb-T000004
(実施例26~28並びに参考例3及び4)
 油剤のアミノ変性シリコーンの種類を変更した以外は実施例14と同様な条件で、前駆体繊維束、引き続き炭素繊維束を作製した。
用いたアミノ変性シリコーン種、前駆体繊維及び炭素繊維束の性状を表5に示した。
Figure JPOXMLDOC01-appb-T000005
(実施例29~31)
 実施例1と同様にして、紡糸工程の条件を一部変更して、膨潤糸と前駆体繊維束を得た。前駆体繊維の繊度は、0.77dtexとし、また単繊維の繊維断面の長径と短径との比(長径/短径)は1.005であった。引き続き、同じ焼成条件で炭素繊維束を製造した。炭素繊維の単繊維の繊維断面の長径と短径との比(長径/短径)は1.005、直径は4.9μmであった。
 表1に紡糸工程の条件、表2に各種繊維束の評価結果を示した。
 本発明の炭素繊維束は、航空機、高速移動体などの構造材料として使用することができる。

Claims (21)

  1.  繊維の円周方向に10nm以上の幅がある開孔部を0.3個/μm以上2個/μm以下の範囲で単繊維の表面に有する、油剤処理されていない炭素繊維用アクリロニトリル膨潤糸。
  2.  水銀圧入法により測定される細孔分布において、平均細孔サイズが55nm以下であり、総細孔体積が0.55ml/g以下である請求項1に記載の膨潤糸。
  3.  膨潤糸を構成する重合体が、アクリロニトリル単位96.0質量%以上99.7質量%以下と、一つ以上のカルボキシル基もしくはエステル基を有する不飽和炭化水素単位0.3質量%以上4.0質量%以下を必須成分とするアクリロニトリル系共重合体である請求項1または2に記載の膨潤糸。
  4.  〔1〕アクリロニトリル96.0質量%以上99.7質量%以下と、一つ以上のカルボキシル基もしくはエステル基を有する不飽和炭化水素0.3質量%以上4.0質量%以下を必須成分として共重合させたアクリロニトリル系共重合体を、20質量%以上25質量%以下の濃度範囲で有機溶剤に溶解させて温度50℃以上70℃以下の紡糸原液を調製する工程、
    〔2〕この紡糸原液を、乾湿式紡糸法を用いて吐出孔から一旦空気中に吐出させた後、温度-5℃以上20℃以下、有機溶剤濃度78.0質量%以上82.0質量%以下の水溶液からなる凝固浴中で凝固させて前記有機溶剤を含む凝固糸束を得る工程、
    〔3〕前記凝固糸束を空気中で1.0倍以上1.25倍以下の範囲で延伸した後、更に、有機溶剤を含有する温水溶液中で延伸する工程であって、両延伸による合計延伸倍率を2.6倍以上4.0倍以下として延伸する工程、
    〔4〕引き続き、温水にて脱溶剤し、さらに熱水中で0.98倍以上2.0倍以下延伸させる工程を有する膨潤糸の製造方法。
  5.  有機溶剤がジメチルホルムアミドあるいはジメチルアセトアミドのいずれかである請求項4に記載の方法。
  6.  前記温水溶液中での延伸倍率を2.5倍以上4.0倍以下とする請求項4または5に記載の方法。
  7.  アクリロニトリル96.0質量%以上99.7質量%以下と、一つ以上のカルボキシル基あるいはエステル基を有する不飽和炭化水素0.3質量%以上4.0質量%以下を必須成分として共重合させたアクリロニトリル共重合体からなり、シリコーン化合物を主成分とする油剤で処理されたケイ素含有量が1700ppm以上5000ppm以下である炭素繊維用前駆体繊維束であって、ソックスレー抽出器を用いたメチルエチルケトンによる8時間油剤洗浄後のケイ素含有量が50ppm以上300ppm以下である炭素繊維用前駆体繊維束。
  8.  単繊維の繊度が0.5dtex以上1.0dtex以下、単繊維の繊維断面の長径と短径との比(長径/短径)が1.00以上1.01以下、単繊維の繊維軸方向に延びる表面凹凸構造が無く、最高部と最低部の高低差(Rp-v)が30nm以上100nm以下であり、中心線平均粗さ(Ra)が3nm以上10nm以下である請求項7に記載の前駆体繊維束。
  9.  請求項4~6のいずれかの製法で得られた膨潤糸の束に、シリコーン化合物を主成分とする油剤を、膨潤糸100質量%に対して油剤成分0.8質量%以上1.6質量%以下を付着させて乾燥させ、次いで熱延伸法もしくはスチーム延伸法によって1.8倍以上6.0倍以下の範囲で延伸を施す炭素繊維用前駆体繊維束の製造方法。
  10.  シリコーン化合物として、以下の条件(1)及び(2)を満たすアミノ変性シリコーン化合物を用いる請求項9に記載の方法。
    (1)25℃における動粘度50cst以上5000cst以下、
    (2)アミノ当量1,700g/mol以上15,000g/mol以下。
  11.  シリコーン化合物を主成分とする油剤を、請求項1~3のいずれかに記載の膨潤糸の束に付着させる炭素繊維用前駆体繊維束の製造方法。
  12.  請求項11に記載の製法により得られた前駆体繊維束を220~260℃の熱風循環型の耐炎化炉に30分以上100分以下の間通過せしめて、伸長率0%以上10%以下として酸化雰囲気下で熱処理することによる、以下の条件を満足する耐炎化繊維束の製造方法。
    (1)繊維束広角X線測定による赤道方向のピークA(2θ=25°)とピークB(2θ=17°)の強度比(B/A)1.3以上、
    (2)ピークBの配向度80%以上、
    (3)ピークAの配向度79%以上、
    (4)密度1.335g/cm以上1.360g/cm以下。
  13.  請求項7または8に記載の前駆体繊維束を、220~260℃の熱風循環型の耐炎化炉に30分以上100分以下の間通過せしめて、伸長率0%以上10%以下として酸化雰囲気下で熱処理することによる、以下の条件を満足する耐炎化繊維束の製造方法。
    (1)繊維束広角X線測定による赤道方向のピークA(2θ=25°)とピークB(2θ=17°)の強度比(B/A)1.3以上、
    (2)ピークBの配向度80%以上、
    (3)ピークAの配向度79%以上、
    (4)密度1.335g/cm以上1.360g/cm以下。
  14.  請求項12または13に記載の耐炎化繊維束の製造方法において、伸長処理条件を少なくとも3つのブロックに分割し、繊維の密度が1.200g/cm以上1.260g/cm以下の範囲以下で3.0%以上8.0%以下の伸長、繊維の密度が1.240g/cm以上1.310g/cm以下の範囲で0.0%以上3.0%以下の伸長、繊維の密度が1.300g/cm以上1.360g/cm以下の範囲で-1.0%以上2.0%以下の伸長を施す方法。
  15.  樹脂含浸ストランド強度が6000MPa以上、ASTM法で測定されるストランド弾性率が250から380GPa、単繊維の繊維軸方向に垂直な断面の長径と短径との比(長径/短径)が1.00~1.01、単繊維の直径が4.0μmから6.0μmであり、単繊維の繊維軸方向に垂直な断面に直径が2nm以上15nm以下の空隙が1個以上100個以下存在する、炭素繊維束。
  16.  前記空隙の平均直径が、6nm以下である請求項15に記載の炭素繊維束。
  17.  前記空隙の面積の総和A(nm)が2,000nm以下である請求項15または16に記載の炭素繊維束。
  18.  単繊維の繊維軸方向に垂直な断面に存在する空隙の面積の総和A(nm)の95%以上に当たる空隙が、繊維の表面から深さ150nmの位置の間に存在する請求項16または17に記載の炭素繊維束。
  19.  結節強さが900N/mm以上の炭素繊維である請求項15から18のいずれかに記載の炭素繊維束。
  20.  請求項8に記載の前駆体繊維束を、酸化雰囲気下での熱処理により密度1.335g/cm以上1.355g/cm以下の耐炎化繊維束にした後、不活性雰囲気中300℃以上700℃以下の温度勾配を有する第一炭素化炉にて2%以上7%以下の伸長を加えながら1.0分以上3.0分以下加熱し、引き続き不活性雰囲気中1000℃から焼成温度までの温度勾配を有するひとつ以上の炭素化炉にて-6.0%以上2.0%以下の伸長を加えながら1.0分以上5.0分以下熱処理を行う炭素繊維束の製造方法。
  21.  請求項9または10に記載の製造方法により得られた前駆体繊維束を、酸化雰囲気下での熱処理により1.335g/cm以上1.355g/cm以下の耐炎化繊維束にした後、不活性雰囲気中300℃以上700℃以下の温度勾配を有する第一炭素化炉にて2%以上7%以下の伸長を加えながら1.0分以上3.0分以下加熱し、引き続き不活性雰囲気中1000℃から焼成温度までの温度勾配を有するひとつ以上の炭素化炉にて-6.0%以上2.0%以下の伸長を加えながら1.0分以上5.0分以下熱処理を行う炭素繊維束の製造方法。
     
PCT/JP2010/059827 2009-06-10 2010-06-10 炭素繊維用アクリロニトリル膨潤糸、前駆体繊維束、耐炎化繊維束、炭素繊維束及びそれらの製造方法 WO2010143680A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201080025636.1A CN102459722B (zh) 2009-06-10 2010-06-10 碳纤维用丙烯腈溶胀丝、前驱体纤维束、耐火化纤维束、碳纤维束以及它们的制造方法
BRPI1012968A BRPI1012968A2 (pt) 2009-06-10 2010-06-10 fibra intumescida de acrilonitrilo para fibra de carbono, feixe de fibra precursor, feixe estabilizado, feixe de fibra de carbono e métodos de produção dos mesmos
CA2764661A CA2764661C (en) 2009-06-10 2010-06-10 Acrylonitrile swollen fiber for carbon fiber, precursor fiber bundle, stabilized fiber bundle, carbon fiber bundle and production methods thereof
US13/377,207 US20120088104A1 (en) 2009-06-10 2010-06-10 Acrylonitrile swollen fiber for carbon fiber, precursor fiber bundle, stabilized fiber bundle, carbon fiber bundle and production methods thereof
EP10786211.2A EP2441865B1 (en) 2009-06-10 2010-06-10 Acrylonitrile swollen yarn for carbon fiber, precursor fiber bundle, flame-proof fiber bundle, carbon fiber bundle, and production methods thereof
JP2010523226A JP4945684B2 (ja) 2009-06-10 2010-06-10 炭素繊維用アクリロニトリル膨潤糸、前駆体繊維束、耐炎化繊維束、炭素繊維束及びそれらの製造方法
KR1020127000658A KR101340140B1 (ko) 2009-06-10 2010-06-10 탄소 섬유용 아크릴로나이트릴 팽윤사, 전구체 섬유 다발, 내염화 섬유 다발, 탄소 섬유 다발 및 그들의 제조 방법
ES10786211.2T ES2534649T3 (es) 2009-06-10 2010-06-10 Hilo hinchado de acrilonitrilo para fibra de carbono, haz de fibras de precursor, haz de fibras resistente al fuego, haz de fibras de carbono y métodos de producción de los mismos
US16/374,982 US20190233975A1 (en) 2009-06-10 2019-04-04 Acrylonitrile swollen fiber for carbon fiber, precursor fiber bundle, stabilized fiber bundle, carbon fiber bundle and production methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-139337 2009-06-10
JP2009139337 2009-06-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/377,207 A-371-Of-International US20120088104A1 (en) 2009-06-10 2010-06-10 Acrylonitrile swollen fiber for carbon fiber, precursor fiber bundle, stabilized fiber bundle, carbon fiber bundle and production methods thereof
US16/374,982 Division US20190233975A1 (en) 2009-06-10 2019-04-04 Acrylonitrile swollen fiber for carbon fiber, precursor fiber bundle, stabilized fiber bundle, carbon fiber bundle and production methods thereof

Publications (1)

Publication Number Publication Date
WO2010143680A1 true WO2010143680A1 (ja) 2010-12-16

Family

ID=43308935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059827 WO2010143680A1 (ja) 2009-06-10 2010-06-10 炭素繊維用アクリロニトリル膨潤糸、前駆体繊維束、耐炎化繊維束、炭素繊維束及びそれらの製造方法

Country Status (10)

Country Link
US (2) US20120088104A1 (ja)
EP (1) EP2441865B1 (ja)
JP (1) JP4945684B2 (ja)
KR (1) KR101340140B1 (ja)
CN (1) CN102459722B (ja)
BR (1) BRPI1012968A2 (ja)
CA (3) CA2820810C (ja)
ES (1) ES2534649T3 (ja)
TW (1) TWI396785B (ja)
WO (1) WO2010143680A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285710A (ja) * 2009-06-10 2010-12-24 Mitsubishi Rayon Co Ltd 炭素繊維束およびその製造方法
JP2015030942A (ja) * 2013-08-05 2015-02-16 三菱レイヨン株式会社 炭素繊維用アクリロニトリル前駆体繊維束及びその製造方法
JP2015030943A (ja) * 2013-08-05 2015-02-16 三菱レイヨン株式会社 アクリル繊維の製造方法
JP2015161056A (ja) * 2014-02-28 2015-09-07 三菱レイヨン株式会社 炭素繊維用アクリロニトリル前駆体繊維束及びその製造方法
JPWO2013147257A1 (ja) * 2012-03-29 2015-12-14 三菱レイヨン株式会社 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法
WO2016031820A1 (ja) * 2014-08-27 2016-03-03 三菱レイヨン株式会社 光沢抗ピル性アクリル繊維及びその製造方法と前記アクリル繊維を含む紡績糸及び編地
WO2016208570A1 (ja) * 2015-06-26 2016-12-29 株式会社カネカ アクリル系繊維及びその製造方法
KR20170122785A (ko) * 2015-03-12 2017-11-06 사이텍 인더스트리스 인코포레이티드 중간 모듈러스 탄소 섬유의 제조
WO2017204026A1 (ja) * 2016-05-24 2017-11-30 東レ株式会社 炭素繊維束およびその製造方法
WO2018047692A1 (ja) 2016-09-12 2018-03-15 東レ株式会社 凝固糸およびその製造方法、ならびに炭素繊維前駆体繊維、炭素繊維の製造方法
JP2018048437A (ja) * 2017-10-11 2018-03-29 三菱ケミカル株式会社 炭素繊維束
JP2019023378A (ja) * 2018-11-16 2019-02-14 三菱ケミカル株式会社 炭素繊維用アクリロニトリル前駆体繊維束及びその製造方法
WO2019087766A1 (ja) * 2017-10-31 2019-05-09 東レ株式会社 炭素繊維束およびその製造方法
WO2024090196A1 (ja) * 2022-10-24 2024-05-02 東レ株式会社 炭素繊維束、および、それを用いた炭素繊維強化複合材料

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518309B (zh) 2012-04-18 2022-06-14 三菱化学株式会社 碳纤维束以及碳纤维束的制造方法
US20150184941A1 (en) * 2012-07-02 2015-07-02 Mitsubishi Rayon Co., Ltd. Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle
JP6119168B2 (ja) * 2012-10-03 2017-04-26 三菱ケミカル株式会社 耐炎化繊維束の製造方法、及び、炭素繊維束の製造方法
TWI563136B (en) 2012-11-22 2016-12-21 Mitsubishi Rayon Co Fabricating method of carbon fibrous bundle
US10011931B2 (en) 2014-10-06 2018-07-03 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
ES2880376T3 (es) * 2014-12-29 2021-11-24 Cytec Ind Inc Densificación de fibras de poliacrilonitrilo
CN114657730A (zh) 2016-03-25 2022-06-24 天然纤维焊接股份有限公司 用于生产焊接基质的方法、工艺和设备
MX2018013351A (es) 2016-05-03 2019-02-20 Natural Fiber Welding Inc Metodos, procesos y aparatos para producir sustratos teñidos y soldados.
KR102341900B1 (ko) 2017-02-24 2021-12-21 제이에프이 스틸 가부시키가이샤 흑연 함유 내화물 및 흑연 함유 내화물의 제조 방법
JP7074054B2 (ja) * 2017-03-27 2022-05-24 東レ株式会社 繊維の製造方法および炭素繊維の製造方法
CN107503000B (zh) * 2017-09-30 2021-03-19 东华大学 一种利用静电纺丝制备纳米碳纤维丝束的方法
WO2020028624A1 (en) * 2018-08-01 2020-02-06 Cytec Industries, Inc. Method for determining the degree of swelling of a polymer using near-ir
JP7341648B2 (ja) * 2018-10-05 2023-09-11 帝人株式会社 前駆体繊維束の製造方法及び炭素繊維束の製造方法並びに炭素繊維束
KR20210141499A (ko) 2019-03-28 2021-11-23 도레이 카부시키가이샤 탄소 섬유 다발 및 그 제조 방법
TWI792328B (zh) * 2021-05-27 2023-02-11 臺灣塑膠工業股份有限公司 碳纖維及其製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491230A (ja) 1990-08-06 1992-03-24 Mitsubishi Rayon Co Ltd プレカーサーの製造方法
JPH04240220A (ja) * 1991-01-21 1992-08-27 Mitsubishi Rayon Co Ltd 炭素繊維用プレカーサー
JPH055224A (ja) 1991-06-25 1993-01-14 Asahi Chem Ind Co Ltd 均一性に優れた炭素繊維の製造方法
JPH0615722B2 (ja) 1986-07-31 1994-03-02 東レ株式会社 炭素繊維製造用アクリル系繊維の製造方法
JPH11124744A (ja) 1997-10-20 1999-05-11 Toray Ind Inc 炭素繊維前駆体繊維および炭素繊維の製造方法
JP2005133274A (ja) * 2003-10-10 2005-05-26 Mitsubishi Rayon Co Ltd 炭素繊維と同炭素繊維を含む複合材料
JP2009046770A (ja) * 2007-08-16 2009-03-05 Mitsubishi Rayon Co Ltd アクリロニトリル系炭素繊維前駆体繊維

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8727410D0 (en) * 1987-11-23 1987-12-23 Ici Plc Inorganic oxide fibres
US5436275A (en) 1993-11-30 1995-07-25 Japan Exlan Company Limited Porous acrylonitrile polymer fiber
TW459075B (en) * 1996-05-24 2001-10-11 Toray Ind Co Ltd Carbon fiber, acrylic fiber and preparation thereof
HU227049B1 (en) * 1997-08-27 2010-05-28 Mitsubishi Rayon Co Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
KR100371402B1 (ko) * 1999-06-14 2003-02-07 주식회사 엘지화학 기공 특성이 개질된 활성 탄소 섬유 및 그 개질 방법
WO2004013388A1 (ja) * 2002-08-05 2004-02-12 Toray Industries, Inc. 多孔繊維
JP4278970B2 (ja) * 2002-12-16 2009-06-17 三菱レイヨン株式会社 高機械物性と低導電性を発現する繊維強化樹脂用炭素繊維束及びチョップド炭素繊維束並びに炭素繊維強化樹脂組成物
JP2004225178A (ja) * 2003-01-21 2004-08-12 Toray Ind Inc ゴム補強用炭素繊維コード
JPWO2005022026A1 (ja) * 2003-08-28 2006-10-26 三菱レイヨン株式会社 高性能圧力容器および圧力容器用炭素繊維
CN1314848C (zh) * 2004-09-07 2007-05-09 中原工学院 一种由核壳聚合物制备纳米中空碳纤维的方法
CN1328425C (zh) * 2005-10-14 2007-07-25 东华大学 具有中空形态结构的活性炭纤维和制备方法
EP1961847B1 (en) * 2005-12-13 2018-02-07 Toray Industries, Inc. Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
CN100387762C (zh) * 2006-07-10 2008-05-14 浙江大学 一种聚丙烯腈基介孔-大孔超细碳纤维及其制备方法
JP5103068B2 (ja) * 2007-01-18 2012-12-19 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維束およびその製造方法
CN101250770B (zh) * 2008-03-11 2010-07-21 东华大学 一种碳纳米管增强的聚丙烯腈基碳纤维的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615722B2 (ja) 1986-07-31 1994-03-02 東レ株式会社 炭素繊維製造用アクリル系繊維の製造方法
JPH0491230A (ja) 1990-08-06 1992-03-24 Mitsubishi Rayon Co Ltd プレカーサーの製造方法
JPH04240220A (ja) * 1991-01-21 1992-08-27 Mitsubishi Rayon Co Ltd 炭素繊維用プレカーサー
JPH055224A (ja) 1991-06-25 1993-01-14 Asahi Chem Ind Co Ltd 均一性に優れた炭素繊維の製造方法
JPH11124744A (ja) 1997-10-20 1999-05-11 Toray Ind Inc 炭素繊維前駆体繊維および炭素繊維の製造方法
JP2005133274A (ja) * 2003-10-10 2005-05-26 Mitsubishi Rayon Co Ltd 炭素繊維と同炭素繊維を含む複合材料
JP2009046770A (ja) * 2007-08-16 2009-03-05 Mitsubishi Rayon Co Ltd アクリロニトリル系炭素繊維前駆体繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2441865A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285710A (ja) * 2009-06-10 2010-12-24 Mitsubishi Rayon Co Ltd 炭素繊維束およびその製造方法
JPWO2013147257A1 (ja) * 2012-03-29 2015-12-14 三菱レイヨン株式会社 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法
US10370507B2 (en) 2012-03-29 2019-08-06 Mistubishi Chemical Corporation Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method
US10370506B2 (en) * 2012-03-29 2019-08-06 Mitsubishi Chemical Corporation Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method
JP2015030942A (ja) * 2013-08-05 2015-02-16 三菱レイヨン株式会社 炭素繊維用アクリロニトリル前駆体繊維束及びその製造方法
JP2015030943A (ja) * 2013-08-05 2015-02-16 三菱レイヨン株式会社 アクリル繊維の製造方法
JP2015161056A (ja) * 2014-02-28 2015-09-07 三菱レイヨン株式会社 炭素繊維用アクリロニトリル前駆体繊維束及びその製造方法
TWI612188B (zh) * 2014-08-27 2018-01-21 Mitsubishi Chem Corp 光澤抗起毬性丙烯酸纖維及其製造方法、紡紗及編織物
WO2016031820A1 (ja) * 2014-08-27 2016-03-03 三菱レイヨン株式会社 光沢抗ピル性アクリル繊維及びその製造方法と前記アクリル繊維を含む紡績糸及び編地
JPWO2016031820A1 (ja) * 2014-08-27 2017-04-27 三菱レイヨン株式会社 光沢抗ピル性アクリル繊維及びその製造方法と前記アクリル繊維を含む紡績糸及び編地
JP2018508667A (ja) * 2015-03-12 2018-03-29 サイテック インダストリーズ インコーポレイテッド 中間弾性率炭素繊維の製造
KR20170122785A (ko) * 2015-03-12 2017-11-06 사이텍 인더스트리스 인코포레이티드 중간 모듈러스 탄소 섬유의 제조
KR102528151B1 (ko) 2015-03-12 2023-05-03 사이텍 인더스트리스 인코포레이티드 중간 모듈러스 탄소 섬유의 제조
JP7225173B2 (ja) 2015-03-12 2023-02-20 サイテック インダストリーズ インコーポレイテッド 中間弾性率炭素繊維の製造
US11479881B2 (en) 2015-03-12 2022-10-25 Cytec Industries Inc. Manufacture of intermediate modulus carbon fiber
JP2021004437A (ja) * 2015-03-12 2021-01-14 サイテック インダストリーズ インコーポレイテッド 中間弾性率炭素繊維の製造
WO2016208570A1 (ja) * 2015-06-26 2016-12-29 株式会社カネカ アクリル系繊維及びその製造方法
JPWO2017204026A1 (ja) * 2016-05-24 2019-03-22 東レ株式会社 炭素繊維束およびその製造方法
US11313054B2 (en) 2016-05-24 2022-04-26 Toray Industries, Inc. Carbon fiber bundle
WO2017204026A1 (ja) * 2016-05-24 2017-11-30 東レ株式会社 炭素繊維束およびその製造方法
KR20190044588A (ko) 2016-09-12 2019-04-30 도레이 카부시키가이샤 응고사 및 그 제조 방법, 및 탄소섬유 전구체 섬유, 탄소섬유의 제조 방법
WO2018047692A1 (ja) 2016-09-12 2018-03-15 東レ株式会社 凝固糸およびその製造方法、ならびに炭素繊維前駆体繊維、炭素繊維の製造方法
JP2018048437A (ja) * 2017-10-11 2018-03-29 三菱ケミカル株式会社 炭素繊維束
WO2019087766A1 (ja) * 2017-10-31 2019-05-09 東レ株式会社 炭素繊維束およびその製造方法
JP6575696B1 (ja) * 2017-10-31 2019-09-18 東レ株式会社 炭素繊維束およびその製造方法
JP2019023378A (ja) * 2018-11-16 2019-02-14 三菱ケミカル株式会社 炭素繊維用アクリロニトリル前駆体繊維束及びその製造方法
WO2024090196A1 (ja) * 2022-10-24 2024-05-02 東レ株式会社 炭素繊維束、および、それを用いた炭素繊維強化複合材料

Also Published As

Publication number Publication date
BRPI1012968A2 (pt) 2018-01-16
JP4945684B2 (ja) 2012-06-06
CN102459722A (zh) 2012-05-16
TW201114960A (en) 2011-05-01
CA2764661C (en) 2013-10-01
CA2764661A1 (en) 2010-12-16
TWI396785B (zh) 2013-05-21
ES2534649T3 (es) 2015-04-27
CA2820976A1 (en) 2010-12-16
CA2820976C (en) 2014-02-25
EP2441865A4 (en) 2013-05-22
EP2441865B1 (en) 2015-02-18
CA2820810A1 (en) 2010-12-16
KR101340140B1 (ko) 2013-12-10
US20190233975A1 (en) 2019-08-01
KR20120023181A (ko) 2012-03-12
US20120088104A1 (en) 2012-04-12
CA2820810C (en) 2014-01-28
EP2441865A1 (en) 2012-04-18
JPWO2010143680A1 (ja) 2012-11-29
CN102459722B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP4945684B2 (ja) 炭素繊維用アクリロニトリル膨潤糸、前駆体繊維束、耐炎化繊維束、炭素繊維束及びそれらの製造方法
JPH11241230A (ja) 炭素繊維、炭素繊維用前駆体繊維、複合材料および炭素繊 維の製造方法
JP2010285710A (ja) 炭素繊維束およびその製造方法
JP5963063B2 (ja) 炭素繊維束
JP6819701B2 (ja) 炭素繊維前駆体アクリル繊維、炭素繊維およびそれらの製造方法
EP3763856A1 (en) Carbon fiber and method for manufacturing same
JP2009046770A (ja) アクリロニトリル系炭素繊維前駆体繊維
CN113597484B (zh) 碳纤维束及其制造方法
JP5313797B2 (ja) 炭素繊維用アクリロニトリル系前駆体繊維束およびその製造方法、ならびに炭素繊維束
JP2004232155A (ja) 軽量化ポリアクリロニトリル系炭素繊維及びその製造方法
JP6729665B2 (ja) 炭素繊維用アクリロニトリル前駆体繊維束及びその製造方法
JPH054463B2 (ja)
JP7155577B2 (ja) 炭素繊維前駆体アクリル繊維炭素繊維
JP7494889B2 (ja) 炭素繊維前駆体アクリル繊維、炭素繊維およびそれらの製造方法
KR102197333B1 (ko) 폴리아크릴로니트릴계 내염화 섬유, 탄소섬유 및 그의 제조방법
JP2015161056A (ja) 炭素繊維用アクリロニトリル前駆体繊維束及びその製造方法
WO2023085284A1 (ja) 炭素繊維、炭素繊維束および炭素繊維束の製造方法
JP2018159139A (ja) アクリル繊維束、および、アクリル繊維束を用いた炭素繊維の製造方法
JPH049227B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025636.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010523226

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2764661

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13377207

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010786211

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127000658

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1012968

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1012968

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111208