WO2010109838A1 - 水処理方法及び水処理システム - Google Patents

水処理方法及び水処理システム Download PDF

Info

Publication number
WO2010109838A1
WO2010109838A1 PCT/JP2010/002000 JP2010002000W WO2010109838A1 WO 2010109838 A1 WO2010109838 A1 WO 2010109838A1 JP 2010002000 W JP2010002000 W JP 2010002000W WO 2010109838 A1 WO2010109838 A1 WO 2010109838A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mno
manganese
water treatment
treated
Prior art date
Application number
PCT/JP2010/002000
Other languages
English (en)
French (fr)
Inventor
比留間敏和
木山龍均
Original Assignee
株式会社アサカ理研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アサカ理研 filed Critical 株式会社アサカ理研
Priority to KR1020117023672A priority Critical patent/KR101426925B1/ko
Priority to SG2011066107A priority patent/SG174377A1/en
Priority to JP2011505863A priority patent/JP4786771B2/ja
Priority to CN201080013636XA priority patent/CN102361826B/zh
Publication of WO2010109838A1 publication Critical patent/WO2010109838A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents

Definitions

  • the present invention relates to a water treatment method and a water treatment system, and more particularly to a water treatment method and a water treatment system for removing COD (Chemical Oxygen Demand).
  • COD Chemical Oxygen Demand
  • COD generally used as an indicator of water quality is the amount of oxygen required to oxidize the amount of oxidizable substances in water. COD is also used as a reference value for waste water discharged from, for example, factories. From the viewpoint of environmental protection, total COD regulations are becoming stricter year by year.
  • a flocculant such as aluminum sulfate, PAC, ferric chloride, ferric sulfate, polyferric sulfate or the like is added, and a filtration device or a sedimentation separation device is used.
  • a coagulation separation method to separate.
  • the coagulation separation method has a low COD removal rate, and it is difficult to meet the COD total amount regulations in recent years.
  • activated carbon may be difficult to be adsorbed depending on the type of organic substance (for example, a substance having a strong polarity, a substance having a large molecular structure, etc.), and the removal rate is not sufficient.
  • the conventional method does not have a sufficient COD removal rate, and it is becoming difficult to meet the recent COD emission regulations.
  • an object of the present invention is to solve the conventional problems, to embody a manganese-based filter material that can be put to practical use as a filter material for water treatment, and to provide a water treatment method and water that can remove COD at a high removal rate. To provide a processing system.
  • Another object of the present invention is to convert this specific organic substance even if the treated water contains an organic substance (for example, phenol) that can be changed into an environmental hormone and is hardly degradable. It is another object of the present invention to provide a water treatment method and a water treatment system that can be removed.
  • an organic substance for example, phenol
  • the water treatment method of the present invention removes COD (Chemical Oxygen Demand) by adding a chlorine-based oxidizing agent to water to be treated containing organic matter, passing the water through a manganese-based filter medium, and catalytically oxidizing and decomposing the organic matter.
  • COD Chemical Oxygen Demand
  • a water treatment method the manganese-based filtering material, beta-MnO 2 crystal powder of naturally occurring manganese dioxide (MnO 2) including a heat treatment at a temperature sintering, firing and beta-MnO 2 crystal transition
  • MnO 2 naturally occurring manganese dioxide
  • the filter medium is supported by a binder on the surface of a particulate carrier without being.
  • the treated water to be treated in the present invention may contain a phenol that may be changed into an environmental hormone and is hardly degradable. This is because the above-described manganese-based filter medium can also remove phenol by its catalytic oxidative decomposition.
  • the manganese-based filter medium preferably contains both natural ⁇ -MnO 2 and ⁇ -MnO 2 and more ⁇ -MnO 2 than ⁇ -MnO 2 .
  • the carrier is ceramic particles and the manganese-based filter medium has the following characteristics.
  • the water treatment method may further include a step of passing the water to be treated after the catalytic oxidative decomposition through activated carbon to adsorb and remove organic substances.
  • a step of adding a flocculant to the water to be treated before passing through the manganese-based filter medium and separating and removing suspended components can be further included.
  • the water treatment system of the present invention is a water treatment system for removing COD (Chemical Oxygen Demand), wherein means for adding a chlorine-based oxidant to water to be treated containing an organic substance, and the chlorine-based oxidant include And a filtering device including a manganese-based filter medium that allows the treated water to be added to flow.
  • the manganese-based filter medium baked crystal powder of natural manganese dioxide (MnO 2 ) containing ⁇ -MnO 2.
  • the filter medium is supported by a binder on the surface of a particulate carrier without being subjected to heat treatment at a temperature at which crystallization, sintering and ⁇ -MnO 2 crystallize.
  • the water treatment system may further include an adsorption device including activated carbon that passes the water to be treated after passing through the manganese-based filter material when, for example, the COD regulation value is low (that is, when regulation is severe). .
  • an adsorption device including activated carbon that passes the water to be treated after passing through the manganese-based filter material when, for example, the COD regulation value is low (that is, when regulation is severe).
  • the SS concentration before passing through the manganese-based filter material, means for adding a flocculant to the water to be treated and other filtration for passing the water to be treated to which the flocculant is added And a device.
  • ⁇ -MnO 2 is added in removing COD by adding a chlorine-based oxidizing agent to water to be treated containing organic matter, passing the water through a manganese-based filter medium, and catalytically oxidizing and decomposing the organic matter.
  • Manganese-based filtration in which natural manganese dioxide (MnO 2 ) crystal powder is supported by a binder on the surface of a particulate carrier without sintering, firing, and heat treatment at a temperature at which ⁇ -MnO 2 crystallizes.
  • the filter medium has high durability due to its stable crystal structure, and the manufacturing cost is low because no electrolysis or high-temperature heat treatment is performed. Therefore, it is possible to maintain the COD removal performance for a long time even if the filter device is of a type that can be backwashed.
  • the filter medium has a performance of removing COD and phenol at a high decomposition rate. As a result, it can be put into practical use.
  • FIG. 1 shows an example of a water treatment system 1 according to a preferred embodiment of the present invention.
  • a water treatment system 1 according to the present embodiment includes a raw water tank 2 that stores organic matter-containing water (raw water) that is water to be treated, means 3 for adding a flocculant to the water to be treated, First filtration device 4 for separating suspended substances from treated water, means 5 for supplying a chlorine-based oxidizing agent to treated water, and manganese for catalytic oxidative decomposition of organic substances contained in treated water
  • a second filtering device 6 having a system filter medium and an adsorption device 7 having activated carbon for adsorbing organic substances contained in the water to be treated are provided.
  • Reference numerals 21, 22, and 23 in the figure are pumps for transferring the water to be treated between the apparatuses.
  • the water treatment system 1 includes a tank 8 for storing water to be treated after being treated by the second filtration device 6.
  • a part of the water to be treated stored in the tank 8 is a first liquid that has temporarily stopped water flow as a cleaning liquid for cleaning (so-called backwashing) the filtering material of the first and second filtering devices 4 and 6
  • cleaning supplied to the 2nd filtration apparatuses 4 and 6 is a structure returned to an upstream installation as original raw water.
  • backwashing the cleaning liquid is supplied into the filtration device, the filter medium is separated from impurities such as SS trapped in the filter medium by the shearing action of the water flow, and the separated impurities are discharged together with the cleaning liquid to the outside of the apparatus. Is done by.
  • the return destination of the washing wastewater may be the raw water tank 2.
  • the first filtering device 4 has a main role of filtering and separating suspended substances in the water to be treated to which the flocculant is added by the flocculant adding means 3.
  • the first filtration device 4 has a filtration layer through which water flows in the order of anthracite 41, sand (filter material) 42, and filtration gravel 43.
  • the water flow method may be a gravity method or a pressurization method using a pump or the like.
  • anthracite 41 for example, an effective diameter of 1.2 mm and a uniformity coefficient of 1.4 or less can be used.
  • As the sand (filter material) 42 for example, an effective diameter of 0.6 mm and a uniformity coefficient of 1.4 or less can be used.
  • the filter gravel 43 serves as a support layer for the anthracite 41 and the sand (filter material) 42, and has a role for performing water flow and backwashing equally.
  • the filtration gravel 43 can be replaced by a support member having a plurality of water holes or slits.
  • the second filtering device 6 has a main role of catalytically oxidizing and decomposing organic matter in the water to be treated to which the chlorinated oxidant is added by the oxidant adding means 5.
  • the second filtration device 6 has a filtration layer through which water flows in the order of anthracite 61, manganese-based filter material 62, and filtration gravel 63.
  • the water flow method may be a gravity method or a pressurization method using a pump or the like.
  • anthracite 61 for example, an effective diameter of 0.8 mm and a uniformity coefficient of 1.4 or less can be used.
  • the anthracite 61 is provided to prevent suspended substances that could not be removed by the first filtration device 4 from adhering to the manganese-based filter material 62 and inhibiting the contact oxidation.
  • the filtration gravel 63 has the same role as the filtration gravel 43 described above.
  • the catalytic oxidative decomposition of the organic substance which is the main role of the second filtration device 6, is due to the action of the manganese-based filter material 62.
  • the manganese-based filter material 62 of the present embodiment is obtained by using natural manganese dioxide (MnO 2 ) crystal powder containing ⁇ -MnO 2 as a particle that can be practically used particularly in terms of durability and manufacturing cost.
  • a filter medium supported by a binder on the surface of the carrier is used.
  • the natural manganese dioxide crystal powder is, for example, mined ore containing manganese dioxide, powdered using, for example, a crusher or a grinding machine (for example, an average particle size of 20-40 ⁇ m), and further using a magnetic separator
  • the product is purified to a purity of 90% or more by fractionating impurities. That is, it is distinguished from manganese dioxide artificially produced by an electrolytic method or heating. It should be noted that the mining method and the processing method for converting to powder are not limited to the above-described methods.
  • Natural manganese dioxide ore contains both ⁇ -MnO 2 and ⁇ -MnO 2 , but contains more ⁇ -MnO 2 than ⁇ -MnO 2 . Therefore, the manganese-based filter material 62 of this embodiment also contains more ⁇ -MnO 2 than ⁇ -MnO 2 .
  • FIG. 2 is an example of X-ray diffraction, and it has been confirmed that the manganese-based filter material 62 of this lot contains ⁇ -MnO 2 and ⁇ -MnO 2 in a ratio of 6: 4.
  • particulate ceramics are used as the carrier for supporting the crystal powder. Ceramics are mainly composed of SiO 2 and Al 2 O 3 . When ceramics are used for the carrier, a filter medium having the characteristics shown in the following table is preferable. Among them, SiO 2 is preferably 72.0%, Al 2 O 3 is 16.0%, MnO 2 is 3.0%, K 2 O is 3.0%, Na 2 O is 2.0%, Others (for example, impurities) is 4.0%.
  • Another feature of the manganese-based filter material 62 used in the present embodiment is that natural manganese dioxide crystals are formed on the surface of the support by the binder without sintering, firing, and heat treatment at a temperature at which ⁇ -MnO 2 crystallizes. This is because the powder is supported.
  • the supporting method for example, a method of supporting the crystal powder on the surface of the carrier via the binder by applying a binder to the surface of the carrier, adding the crystal powder and granulating it can be cited as an example.
  • the component of a binder is also not limited, A well-known binder can be used regardless of inorganic and organic.
  • a binder in which an aluminum compound and an alkaline earth metal compound are mixed can be given.
  • the average particle size of the manganese dioxide crystal powder is larger than 40 ⁇ m, it is difficult to uniformly support the entire surface of the carrier. On the other hand, if it is smaller than 20 ⁇ m, the powder is scattered during granulation, and the granulation efficiency is lowered.
  • the adsorption device 7 mainly serves to adsorb organic substances contained in the water to be treated.
  • the adsorption device 7 has an activated carbon layer 71 formed of, for example, particulate activated carbon.
  • activated carbon product: ACW8-32 #
  • Serachem Co., Ltd. can be used.
  • the type and shape of the activated carbon are not limited, and any known activated carbon can be used.
  • the flocculant addition means 3 and the oxidant addition means 5 connect flow paths (for example, pipes) 31 and 51 communicating with respective supply sources (not shown) to the flow path of the water to be treated.
  • a chlorine-based oxidizing agent is configured to be added to the water to be treated.
  • the addition amount can be adjusted by the flow rate adjusting means 32, 52 such as a valve.
  • a stirring device such as a line mixer or a stirring tank may be installed.
  • the supply place shown in FIG. 1 is an example, and is not limited to this position.
  • the flocculant may be added at least before the supply to the first filtration device 4, and the oxidizing agent may be added at least before the supply to the second filtration device 6.
  • the addition position of the flocculant is not limited to one, and in order to effectively remove residual turbidity by the anthracite 61 of the second filtration device 6, the first filtration device 4 and the second filtration device 6 A flocculant addition means for adding a flocculant between the two may be newly added.
  • the flocculant examples include inorganic flocculants such as PAC (chemical name: polyaluminum chloride), polyiron (chemical name: polyferric sulfate), sulfate band (chemical name: aluminum sulfate), and polyacrylamide organic flocculants. Agents can be used. Among them, PAC is preferable.
  • the flocculant is added mainly for the purpose of aggregating suspended substances in the water to be treated. The aggregated suspended solids are filtered and separated to lower the TOC (Total Organic Carbon) of the water to be treated and the suspended solids adhere to the manganese-based filter medium 62 to inhibit contact oxidation. To prevent it.
  • TOC Total Organic Carbon
  • chlorine-based oxidizing agent for example, chlorine dioxide (ClO 2 ), hypochlorite such as sodium hypochlorite (NaClO), or potassium permanganate (KMnO 4 ) can be used.
  • the chlorine-based oxidant is added mainly for the purpose of oxidatively decomposing organic substances using the manganese-based filter material 61 as a catalyst.
  • chlorine dioxide (ClO 2 ) is particularly preferable as an oxidizing agent that performs oxidative decomposition of organic matter using the manganese-based filter material 61.
  • sodium hypochlorite (NaClO) is preferable if importance is given to the decomposition efficiency of phenol.
  • the type and quality of treated water (raw water) treated by this system is not particularly limited, and covers various organic matter-containing waters such as general wastewater, industrial wastewater, sewage, river water, groundwater, and lake water. It can be.
  • the raw water treated in the examples described later had a chromaticity of 14.1, a turbidity of 14.11, and a pH of 7.65.
  • pH adjustment can be performed suitably as a pretreatment.
  • the treated water (raw water) to be treated by this system is temporarily stored in the raw water tank 2 and transferred toward the first filtration device 4 by the pump 21, and the flocculant is added by the flocculant adding means 3. Added.
  • the addition amount of the flocculant is set to 5 to 30 mg / l, for example.
  • the water to be treated to which the flocculant is added is supplied to the first filtration device 4, and the suspended substances are separated and removed when passing through the filter medium.
  • the water to be treated (separated liquid) from which the suspended substances have been separated by the first filtration device 4 is added with a chlorine-based oxidizing agent by the oxidizing agent adding means 5.
  • the addition amount of the oxidizing agent is set to, for example, 1.25 mg / l for chlorine dioxide (ClO 2 ) and 5 mg / l for sodium hypochlorite (NaClO).
  • the water to be treated to which the oxidizing agent is added is supplied to the second filtration device 6, and when passing through the manganese filter medium 62, the organic matter is oxidized and decomposed by chlorine dioxide using the manganese filter medium 62 as a catalyst. .
  • the water to be treated in which the organic matter is oxidized and decomposed by the second filtration device 6, is temporarily stored in the tank 8 and supplied to the adsorption device 7 by the pump 23. And when passing through the activated carbon layer 71 of the adsorption device 7, the organic matter is adsorbed on the activated carbon.
  • the water to be treated from which COD has been removed in this way is sufficient COD to be discharged, as is apparent from the results of Examples described later.
  • a chlorine-based oxidant is added to water to be treated containing organic matter, and this is passed through the manganese-based filter material 62, whereby the organic matter is catalytically oxidized and decomposed to produce COD. Can be removed.
  • the manganese-based filter material 62 of the present embodiment has a structure in which a crystal powder of natural manganese dioxide (MnO 2 ) containing ⁇ -MnO 2 is supported on the surface of a particulate carrier by a binder,
  • the crystal structure is more stable than that manufactured artificially by the method, and the stable crystal structure is obtained by not performing sintering, firing and heat treatment at a temperature at which ⁇ -MnO 2 undergoes a crystal transition. Is maintained. Therefore, the filter medium 62 of this embodiment has high durability due to its stable crystal structure.
  • the manufacturing cost is low because no electrolysis or high-temperature heat treatment is performed.
  • the filter medium not only removes COD but also has the ability to remove hardly decomposable phenols at a high degradation rate. As a result, practical use was realized.
  • Patent Document 2 described above discloses a manganese-based filter material that removes COD.
  • the manganese dioxide of Patent Document 2 is a natural product or an artificial product, it is sintered and molded in the manufacturing process. Therefore, there is a high possibility that the crystal structure of manganese dioxide has changed and is in an unstable state, and in this case, it will be broken during backwashing.
  • Patent Document 5 which is fired at 400 to 1000 ° C.
  • Patent Document 3 discloses a filter medium having a mixed layer of ⁇ -MnO 2 and ⁇ -MnO 2 .
  • ⁇ -MnO 2 is a layer formed on the surface of the support by heat treatment of the manganese salt solution, and is a binder for supporting the particles of ⁇ -MnO 2 on the surface of the support. Rely on ⁇ -MnO 2 . Therefore, as is clear from the compounding ratios disclosed in the examples, the proportion of ⁇ -MnO 2 is overwhelmingly higher than that of ⁇ -MnO 2 .
  • ⁇ -MnO 2 has a brittle crystal structure and often breaks during backwashing. As a result, the decomposition performance decreases with use.
  • Patent Document 4 discloses a filter medium carrying particles of ⁇ -MnO 2 produced by electrolysis or particles obtained by heat-treating ⁇ -MnO 2 and crystallizing it into ⁇ -MnO 2 . Also in this case, the above-described problems are likely to occur.
  • the filter device 6 can be backwashed and can be backwashed periodically. As a result, it is possible to maintain the COD removal performance.
  • conventional manganese-based filter media are artificially manufactured using chemical reactions or contain artificially manufactured materials, high-temperature heat treatment is essential in the manufacturing process. In this case, the proportion of ⁇ -MnO 2 is inevitably increased. Since ⁇ -MnO 2 has a brittle crystal structure and undergoes a crystal transition, the durability is further lowered.
  • the water to be treated through activated carbon after the catalytic oxidative decomposition by passing the water to be treated through activated carbon after the catalytic oxidative decomposition, it is possible to adsorb the organic components subjected to the catalytic oxidative decomposition and reliably remove COD.
  • it may be difficult to adsorb depending on the type of organic substance for example, a substance with a strong polarity, a substance with a large molecular structure, etc.
  • the COD removal rate by the activated carbon can be improved.
  • the suspended solids are removed by the coagulation separation method, thereby preventing the contact oxidizing power of the manganese-based filter media 62 from being reduced.
  • COD can be reliably removed.
  • Example 1 raw water is treated according to the flow shown in FIG.
  • the main test conditions are shown below.
  • the raw water, the first filtration treatment, the catalytic oxidation separation, and the water to be treated after the adsorption treatment with activated carbon were sampled, and the chromaticity, turbidity, and COD were measured.
  • Table 3 shows the measurement results.
  • the sulfuric acid acidic potassium permanganate method was employ
  • Example 2 This example is Example 2 in which hypochlorous acid was added as an oxidizing agent in place of the chlorine dioxide of Example 1. Other conditions are the same as in Example 1 except that the type of the oxidizing agent is changed. Table 4 shows the chromaticity, turbidity, and COD measurement results of each sampling.
  • This comparative example is a comparative example 1 similar to the example 1 except that the catalytic oxidation was not performed. That is, the flow shown in FIG. 1 is a comparative example in which the second filtration device is omitted and the treated water subjected to the first filtration treatment is passed through activated carbon. Table 5 shows the chromaticity, turbidity, and COD measurement results of each sampling.
  • Test Example 1 This test example is a test example in which it was confirmed whether or not the manganese-based filter medium used in the above example had a function of decomposing phenol.
  • the manganese-based filter material of the present invention has a possibility of changing to an environmental hormone and has a phenol removal function that is hardly degradable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

【課題】高い除去率でCODを除去することのできる水処理方法及び水処理システムを提供する 【解決手段】有機物を含有する被処理水に塩素系酸化剤を添加し、マンガン系濾過材に通水して有機物を接触酸化分解することでCOD(Chemical Oxygen Demand)を除去するにあたり、β-MnOを含む天然の二酸化マンガン(MnO)の結晶粉末を、焼結,焼成およびβ-MnOが結晶転移する温度で加熱処理することなく、粒子状の担体の表面にバインダーによって担持させたマンガン系濾過材を用いるようにする。

Description

水処理方法及び水処理システム
 本発明は、水処理方法及び水処理システムに関し、特に、COD(Chemical Oxygen Demand)を除去する水処理方法及び水処理システムに関する。
 水質の指標として一般的に使用されるCODとは、水中の被酸化性物質量を酸化するのに必要な酸素量で示したものである。CODは、例えば工場等から排出される排水の基準値としても使用される。環境保護の観点から、CODの総量規制は年々厳しくなっている。
 CODを除去する従来の典型的な手法としては、例えば硫酸アルミニウム,PAC,塩化第2鉄,硫酸第2鉄,ポリ硫酸第2鉄などの凝集剤を添加し、濾過装置や沈降分離装置などで分離する凝集分離法がある。しかし、凝集分離方法は、CODの除去率が低く、近年におけるCOD総量規制に対応することは難しい。
 CODを除去する他の方法としては、生物反応槽での生物学的除去法がある。しかし、この方法では、特に溶解性の難分解性有機物の除去率が低いという問題がある。
 CODを除去する方法としては、活性炭を用いて吸着除去する方法もある。しかしながら、活性炭は、有機物の種類(例えば極性が強い物質,分子構造が大きいものなど)によっては吸着され難い場合があり、除去率が充分とは言えない。
 従来においては、上記した除去方法に代えて、マンガン系濾過材を用いてCODを除去する方法の検討が行われている(例えば、特許文献2参照)。さらに、有機物を除去するマンガン系濾過材の検討が行われている(例えば、特許文献3-5参照)。しかしながら、従来に検討されたCOD又は有機物を除去するためのマンガン系濾過材は、耐久性や製作コスト等が実用化に到底適しておらず、一時的に検討されたものの、現在まで実用化には及んでいない。そのため現在においても、実際に採用されているCOD除去設備の殆どが、凝集分離方法,生物学的除去,砂ろ過及び活性炭吸着除去のいずれかあるいはこれらの処理を複合させた方法である。
 さらに、近年は環境ホルモン等を問題視する意識が強く、環境ホルモンに変化する可能性ある有機物(例えば、フェノールなど)が除去されているか否かの関心が高い。従って、近年の水処理技術においては、単にCODを除去できるというだけでは不十分となっており、特定の有機物に対する除去性能をも兼ね備えていることを要求されるが、そのような有機物の中には難分解性物質(例えば、フェノールなど)もある。
 以上のように、従来の方法ではCODの除去率が充分でなく、近年におけるCODの排出規制に対応するのが困難な状況になりつつある。
特開2003-053350号公報 特開昭56-84688号公報 特開昭59-173192号公報 特開平1-99689号公報 特開昭49-64248号公報
 すなわち、本発明が解決しようとする課題には、前述したような問題が一例として挙げられる。従って、本発明の目的は、従来の課題を解決し、水処理用の濾過材として実用化可能なマンガン系濾過材を具現化し、高い除去率でCODを除去することのできる水処理方法及び水処理システムを提供することにある。
 さらに本発明の他の目的は、環境ホルモンに変化する可能性があって、且つ、難分解性である有機物(例えば、フェノールなど)が被処理水に含まれていても、この特定の有機物をも除去することのできる水処理方法及び水処理システムを提供することにある。
 本発明の水処理方法は、有機物を含有する被処理水に塩素系酸化剤を添加し、マンガン系濾過材に通水して有機物を接触酸化分解することでCOD(Chemical Oxygen Demand)を除去する水処理方法であって、前記マンガン系濾過材は、β-MnOを含む天然の二酸化マンガン(MnO)の結晶粉末を、焼結,焼成およびβ-MnOが結晶転移する温度で加熱処理することなく、粒子状の担体の表面にバインダーによって担持させた濾過材であることを特徴とする。
 本発明で処理される被処理水は、環境ホルモンに変化する可能性があって、且つ、難分解性であるフェノールを含有していてもよい。前記したマンガン系濾過材は、その接触酸化分解によってフェノールをも除去することが可能だからである。このとき、マンガン系濾過材は、天然のβ-MnOとγ-MnOの両方を含んでおり、且つ、γ-MnOよりもβ-MnOを多く含んでいることが好ましい。
 さらに、前記担体がセラミックスの粒子であり、前記マンガン系濾過材が、下記に示す特性を有するものが好ましい。
Figure JPOXMLDOC01-appb-T000001
 本発明のマンガン系濾過材は耐久性が高いため、前記マンガン系濾過材が充填された濾過装置の逆洗を周期的に行って前記マンガン系濾過材を洗浄しても、長期に渡ってCODの除去性能を維持することができる。前記水処理方法は、例えばCOD規制値が低い場合(すなわち規制が厳しい場合)、前記接触酸化分解後の被処理水を活性炭に通水して有機物を吸着除去する工程をさらに有することができる。また、例えばSS濃度が高い場合、前記マンガン系濾過材に通水する前に被処理水に凝集剤を添加し、懸濁成分を分離除去する工程をさらに有することができる。
 また、本発明の水処理システムは、COD(Chemical Oxygen Demand)を除去する水処理システムであって、有機物を含有する被処理水に塩素系酸化剤を添加する手段と、前記塩素系酸化剤が添加された被処理水を通水するマンガン系濾過材を含む濾過装置と、を備え、前記マンガン系濾過材は、β-MnOを含む天然の二酸化マンガン(MnO)の結晶粉末を、焼結,焼成およびβ-MnOが結晶転移する温度で加熱処理することなく、粒子状の担体の表面にバインダーによって担持させた濾過材であることを特徴とする。
 前記水処理システムは、例えばCOD規制値が低い場合(すなわち規制が厳しい場合)、前記マンガン系濾過材に通水した後の被処理水を通水する活性炭を含む吸着装置をさらに備えることができる。また、例えばSS濃度が高い場合、前記マンガン系濾過材に通水する前に、被処理水に凝集剤を添加する手段と、前記凝集剤が添加された被処理水を通水する他の濾過装置と、をさらに備えることができる。
 本発明によれば、有機物を含有する被処理水に塩素系酸化剤を添加し、マンガン系濾過材に通水して有機物を接触酸化分解することでCODを除去するにあたり、β-MnOを含む天然の二酸化マンガン(MnO)の結晶粉末を、焼結,焼成およびβ-MnOが結晶転移する温度で加熱処理することなく、粒子状の担体の表面にバインダーによって担持させたマンガン系濾過材を用いたことにより、電解法等で人工的に製造されたものに比べて結晶構造が安定しており、さらに焼結,焼成およびβ-MnOが結晶転移する温度で加熱処理を行わないことによって、その安定した結晶構造を維持している。従って、前記濾過材は、結晶構造が安定していることによって耐久性が高く、電解や高温の加熱処理を行わない分において製造コストが安価となる。従って、濾過装置を逆洗可能なタイプにしても長期に渡ってCODの除去性能を維持することが可能となる。加えて、後述する試験データからも明らかなように、前記濾過材は、COD及びフェノールを高い分解率で除去する性能を有している。その結果、実用化することが可能となる。
本発明の好ましい実施形態による水処理システムの主要構成を示す図である。 上記水処理システムに用いられるマンガン系濾過材のX線回折である。
 以下、本発明の好ましい実施形態による水処理方法及び水処理システムについて、添付図面を参照しながら説明する。但し、以下に説明する実施形態によって本発明の技術的範囲は何ら限定解釈されることはない。
 図1は、本発明の好ましい実施形態に従う水処理システム1の一例を示す。図1に示すように、本実施形態に従う水処理システム1は、被処理水である有機物含有水(原水)を貯留する原水タンク2と、被処理水に凝集剤を添加する手段3と、被処理水から懸濁物質を分離するための第1の濾過装置4と、被処理水に塩素系酸化剤を供給する手段5と、被処理水に含有される有機物を接触酸化分解するためのマンガン系濾過材を有する第2の濾過装置6と、被処理水に含有される有機物を吸着するための活性炭を有する吸着装置7を備えている。図中の符号21,22,23は、各装置間で被処理水を移送するためのポンプである。
 さらに、本実施形態に従う水処理システム1は、第2の濾過装置6で処理された後の被処理水を貯留するタンク8を備えている。タンク8に貯留される被処理水の一部は、第1及び第2の濾過装置4,6の濾過材を洗浄(いわゆる、逆洗)するための洗浄液として、通水を一時停止した第1及び第2の濾過装置4,6に供給され、洗浄後の排水は元原水として上流の設備に返送される構成である。逆洗は、洗浄液を濾過装置内に供給し、濾過材を装置内で水流のせん断作用によって濾過材に捕捉されたSS等の不純物を分離し、分離された不純物を洗浄液と共に装置外に排出することによって行われる。洗浄排水の返送先は、原水タンク2であってもよい。
 第1の濾過装置4は、凝集剤添加手段3によって凝集剤が添加された被処理水中の懸濁物質を濾過分離することを主たる役割とする。第1の濾過装置4は、好ましい一例として、アンスラサイト41、砂(濾過材)42、濾過砂利43の順に通水される濾過層を有する。通水方式は、重力式であってもよく、またはポンプ等による加圧式であってもよい。アンスラサイト41は、例えば有効径が1.2mmであって均等係数が1.4以下のものを使用することができる。砂(濾過材)42は、例えば有効径が0.6mmであって均等係数が1.4以下のものを使用することができる。但し、平均粒子径と均等係数が前述のものに限定されることはない。濾過砂利43は、アンスラサイト41及び砂(濾過材)42の支持層となるものであり、また、通水および逆洗を均等に行うための役割を有する。但し、濾過砂利43は、複数の通水孔あるいはスリットを有する支持部材などで代替することも可能である。
 第2の濾過装置6は、酸化剤添加手段5によって塩素系酸化剤が添加された被処理水中の有機物を接触酸化分解することを主たる役割とする。第2の濾過装置6は、好ましい一例として、アンスラサイト61、マンガン系濾過材62、濾過砂利63の順に通水される濾過層を有する。通水方式は、重力式であってもよく、またはポンプ等による加圧式であってもよい。アンスラサイト61は、例えば有効径が0.8mmであって均等係数が1.4以下のものを使用することができる。アンスラサイト61は、第1の濾過装置4で除去しきれなかった懸濁物質がマンガン系濾過材62に付着して接触酸化を阻害するのを防止するために設ける。また、濾過砂利63は、上述の濾過砂利43と同様の役割を有する。
 すなわち、第2の濾過装置6の主たる役割である有機物の接触酸化分解は、マンガン系濾過材62の作用によるものである。但し、本実施形態のマンガン系濾過材62は、特に耐久性及び製造コストに関して実用化可能な濾過材とすべく、β-MnOを含む天然の二酸化マンガン(MnO)の結晶粉末を、粒子状の担体の表面にバインダーによって担持させた濾過材を用いる。天然の二酸化マンガンの結晶粉末は、例えば二酸化マンガンを含む鉱石を採掘し、例えば破砕機や磨砕機を用いて粉末状(例えば、平均粒径が20~40μm)とし、さらに磁選機などを用いて不純物を分別することによって90%以上の純度に精製したものである。すなわち、電解法や加熱によって人工的に製造される二酸化マンガンとは区別される。なお、採掘方法及び粉末状にする加工方法が前述の方法に限定されることはない。
天然の二酸化マンガンの鉱石は、β-MnOとγ-MnOの両方を含んでいるが、γ-MnOよりもβ-MnOの方を多く含んでいる。従って、本実施形態のマンガン系濾過材62も、γ-MnOよりもβ-MnOの方を多く含んでいる。図2は、X線回折の一例であり、このロットのマンガン系濾過材62がβ-MnOとγ-MnOを6:4の割合で含んでいることを確認している。
 結晶粉末を担持させる担体としては、粒子状のセラミックスを用いる。セラミックスは、SiOとAlを主成分とする。担体にセラミックスを用いた場合、下記の表に示す特性を有する濾過材であることが好ましい。その中でも好ましいのは、SiOが72.0%,Alが16.0%,MnOが3.0%,KOが3.0%,NaOが2.0%,その他(例えば不純物等)が4.0%である。
Figure JPOXMLDOC01-appb-T000002
 本実施形態で使用するマンガン系濾過材62のもう一つの特長は、焼結,焼成およびβ-MnOが結晶転移する温度で加熱処理することなく、バインダーによって担体表面に天然の二酸化マンガンの結晶粉末を担持させたことにある。担持方法としては、例えば担体の表面にバインダーを塗布し、結晶粉末を添加して造粒することによって、バインダーを介して担体表面に結晶粉末を担持させる方法が一例として挙げられる。但し、この方法に限定されることはない。さらにバインダーの成分も限定されることはなく、無機及び有機を問わず公知のバインダーを用いることができる。但し、アルミナセメントのように硬化させるために焼結や焼成を必要とするものは用いないようにする。適用可能なバインダーの一例としては、アルミニウム化合物及びアルカリ土類金属化合物を混合したバインダーを挙げることができる。なお、二酸化マンガンの結晶粉末を担体表面に担持させるようにした本実施形態では、二酸化マンガンの結晶粉末の平均粒径が40μmよりも大きいと担体表面の全体に均一に担持させることが難しく、反対に20μmよりも小さいと造粒時に粉末が飛散して造粒効率が低下する。
 吸着装置7は、被処理水に含有される有機物を吸着することを主たる役割とする。吸着装置7は、例えば粒子状の活性炭で形成される活性炭層71を有する。活性炭は、一例としてセラケム株式会社製の活性炭(製品:ACW8-32♯)を使用することができる。但し、活性炭の種類や形状は限定されることはなく、公知の活性炭のいずれをも使用することが可能である。
 凝集剤添加手段3及び酸化剤添加手段5は、それぞれの供給源(不図示)と連通する流路(例えば、配管等)31,51を被処理水の流路に接続して、凝集剤及び塩素系酸化剤を被処理水に添加するように構成されている。添加量の調節は、例えばバルブ等の流量調節手段32,52によって行うことができる。被処理水との混合性を向上させるためにラインミキサーや撹拌槽などの撹拌装置を設置するようにしてもよい。なお、図1に示す供給場所は一例であり、この位置に限定されることはない。凝集剤は、少なくとも第1の濾過装置4に供給前に添加すればよく、酸化剤は、少なくとも第2の濾過装置6に供給前に添加すればよい。さらに凝集剤の添加位置も1箇所に限られず、第2の濾過装置6のアンスラサイト61で効果的に残留濁質を除去するために、第1の濾過装置4と第2の濾過装置6との間で凝集剤を添加する凝集剤添加手段を新たに追加してもよい。
 凝集剤は、例えば、PAC(化学名;ポリ塩化アルミニム)、ポリ鉄(化学名;ポリ硫酸第二鉄)、硫酸バンド(化学名;硫酸アルミニウム)などの無機凝集剤、ポリアクリルアミド系の有機凝集剤を使用することができる。その中でも好ましいのは、PACである。凝集剤は、被処理水中の懸濁物質を凝集させることを主たる目的として添加する。そして、凝集された懸濁物質を濾過分離することによって、被処理水のTOC(Total Organic Carbon:全有機炭素)を下げると共に、懸濁物質がマンガン系濾過材62に付着して接触酸化を阻害するのを防止する。
 塩素系酸化剤は、例えば、二酸化塩素(ClO)、次亜塩素酸ナトリウム(NaClO)などの次亜塩素酸塩、または過マンガン酸カリウム(KMnO)を使用することができる。塩素系酸化剤は、マンガン系濾過材61を触媒として有機物を酸化分解させることを主たる目的として添加する。このようにマンガン系濾過材61を使用して有機物の酸化分解を行う酸化剤として、特に好ましいのは二酸化塩素(ClO)である。また、フェノールの分解効率を重視するのであれば次亜塩素酸ナトリウム(NaClO)が好ましい。
 続いて、図1に示す水処理システム1を用いてCOD除去を行う方法について説明する。本システムで処理される被処理水(原水)の種類及び水質は、特に制限されることはなく、一般排水、産業排水、下水、河川水、地下水、湖沼水など、種々の有機物含有水を対象とすることができる。限定されることはないが、後述する実施例で処理した原水は、色度が14.1、濁度が14.11、pHが7.65であった。なお、原水が酸性又はアルカリ性である場合には、前処理として適宜pH調整を行うことができる。
 本システムで処理される被処理水(原水)は、原水タンク2に一時的に貯留され、ポンプ21で第1の濾過装置4に向けて移送されると共に、凝集剤添加手段3によって凝集剤が添加される。凝集剤の添加量は、例えば5~30mg/lに設定する。凝集剤が添加された被処理水は、第1の濾過装置4に供給され、濾材を通過する際に懸濁物質が分離除去される。
 第1の濾過装置4で懸濁物質が分離された被処理水(分離液)は、酸化剤添加手段5によって塩素系酸化剤が添加される。酸化剤の添加量は、例えば二酸化塩素(ClO)の場合は1.25mg/lに設定し、次亜塩素酸ナトリウム(NaClO)の場合は5mg/lに設定する。酸化剤が添加された被処理水は、第2の濾過装置6に供給され、マンガン系濾過材62を通過する際に、マンガン系濾過材62を触媒にして有機物が二酸化塩素によって酸化分解される。
 第2の濾過装置6で有機物が酸化分解された被処理水は、タンク8に一時的に貯留され、ポンプ23によって吸着装置7に供給される。そして吸着装置7の活性炭層71を通過する際に有機物が活性炭に吸着される。このようにしてCODが除去された被処理水は、後述する実施例の結果から明らかなように放流するのに充分なCODとなっている。
 以上のように、本実施形態によれば、有機物を含有する被処理水に塩素系酸化剤を添加し、これをマンガン系濾過材62に通水することにより、有機物を接触酸化分解してCODを除去することができる。しかも、本実施形態のマンガン系濾過材62は、β-MnOを含む天然の二酸化マンガン(MnO)の結晶粉末を、粒子状の担体の表面にバインダーによって担持させた構成であるため、電解法等で人工的に製造されたものに比べて結晶構造が安定しており、さらに焼結,焼成およびβ-MnOが結晶転移する温度で加熱処理を行わないことによって、その安定した結晶構造を維持している。従って、本実施形態の濾過材62は、その結晶構造が安定していることによって耐久性が高い。さらに、電解や高温の加熱処理を行わない分において、製造コストが安価である。加えて、後述する試験データからも明らかなように、前記濾過材は、単にCODを除去するだけでなく、難分解性のフェノールを高い分解率で除去する性能を有している。その結果、実用化を実現したのである。
 既述した特許文献2は、CODを除去するマンガン系濾過材が開示されている。しかし、特許文献2の二酸化マンガンは、天然物であるか人工物であるかは不明であるが、その製造過程において焼結成形している。そのため、二酸化マンガンの結晶構造が変体して不安定な状態になっている可能性が高く、この場合には逆洗時に砕けてしまう。400~1000℃で焼成する特許文献5も同様である。
 また、特許文献3は、β-MnOとγ-MnOの混合層を有する濾過材が開示されている。しかし、β-MnOは、マンガン塩溶液を加熱処理することによって担体表面に層状に形成させたものであり、γ-MnOの粒子を担体の表面に担持させるバインダーであって、分解性能はγ-MnOに頼っている。そのため、実施例に開示されている配合比をみると明らかなように、β-MnOに比べてγ-MnOの割合を圧倒的に多くしている。γ-MnOは、その結晶構造がもろく、逆洗時に砕けでしまう場合が多い。その結果、使用と共に分解性能が低下してしまう。
 また、特許文献4は、電解によって生成させたβ-MnOの粒子、又はγ-MnOを加熱処理してβ-MnOに結晶転移させた粒子を担持させた濾過材が開示されている。この場合も、前述した不具合が生じ易い。
 さらに本実施形態のマンガン系濾過材62を採用したことにより、濾過装置6を逆洗可能なタイプとし、周期的に逆洗を行うことができる。その結果、CODの除去性能を維持することが可能となる。一方、従来のマンガン系濾過材は、化学反応を利用して人工的に製造されるか、或いは人工的に製造されたものを含んでいるため、その製造過程に高温の熱処理が必須となる。この場合どうしてもγ-MnOの割合が多くなってしまう。γ-MnOは結晶構造がもろく、しかも結晶転移を経ているためより一層耐久性が低くなる。濾過材を逆洗すること自体は公知であるが、二酸化マンガン系濾過材にあっては安易に濾過装置を逆洗可能なタイプにしてしまうと、逆洗時に濾過材が破壊してしまい、長期に渡って濾過性能を発揮することができない(すなわち、濾過材の寿命が短い)。
 さらに、本実施形態によれば、上記接触酸化分解後に被処理水を活性炭に通水することにより、接触酸化分解された有機成分を吸着してCODを確実に除去することが可能となる。既述したように、有機物の種類(例えば極性が強い物質,分子構造が大きいものなど)によっては吸着し難い場合があるが、接触酸化分解することによって有機物を活性炭に吸着されやすい分子にまで分解し、これにより活性炭によるCOD除去率を向上させることができるのである。
 さらに、本実施形態によれば、マンガン系濾過材62に通水する前に、凝集分離法で懸濁物質を除去することにより、マンガン系濾過材62の接触酸化力が低下するのを防止してCODを確実に除去することが可能となる。
 以上、本発明を具体的な実施形態に則して詳細に説明したが、形式や細部についての種々の置換、変形、変更等が、特許請求の範囲の記載により規定されるような本発明の精神及び範囲から逸脱することなく行われることが可能であることは、当該技術分野における通常の知識を有する者には明らかである。従って、本発明の範囲は、前述の実施形態及び添付図面に限定されるものではなく、特許請求の範囲の記載及びこれと均等なものに基づいて定められるべきである。
 以下、本発明の効果を確認するために行った実施例について説明する。但し、以下に説明する実施例によって、本発明の技術的範囲は何ら限定解釈されることはない。
 (実施例1)
 本実施例は、図1に示されるフローに則して原水を処理した実施例1である。主要な試験条件を以下に示す。そして原水、第1の濾過処理後、接触酸化分離後、活性炭による吸着処理後の被処理水をそれぞれサンプリングし、色度,濁度,CODをそれぞれ測定した。測定結果を表3に示す。なお、色度,濁度,CODの測定方法には、硫酸酸性過マンガン酸カリウム法を採用した。
 ・第1の濾過;アンスラサイト(1.2-1.4)300mmH
        砂(0.6-1.4)300mmH
        濾過速度(LV)=10m/hr
 ・凝集剤  ;PACを30mg/l添加
 ・接触酸化 ;アンスラサイト(1.0-1.4)200mmH
        マンガン系濾過材(表3に示すもの)600mmH
        通水速度SV=10/h
        但し、接触酸化する前に凝集剤としてポリ鉄10mg/l
        を添加した。
 ・活性炭  ;活性炭800mmH
        通水速度SV=10/h
Figure JPOXMLDOC01-appb-T000003
 (実施例2)
 本実施例は、実施例1の二酸化塩素に代えて、酸化剤として次亜塩素酸を添加した実施例2である。酸化剤の種類を変えたことを除けば他の条件等は実施例1と同じである。各サンプリングの色度,濁度,CODの測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 (比較例1)
 本比較例は、接触酸化を行わなかったことを除けば実施例1と同様の比較例1である。すなわち、図1に示すフローで言えば、第2の濾過装置を省略して、第1の濾過処理した被処理水を活性炭に通水した比較例である。各サンプリングの色度,濁度,CODの測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表3~表5の結果から明らかなように、塩素系酸化剤を添加した被処理水をマンガン系濾過材に通水させることにより、CODを除去できることが確認された。そしてさらに、接触酸化を行った後の被処理水を活性炭に通水することにより、確実にCODを除去できることが確認された。酸化剤については、色度及び濁度に着目すればNaClOの方が効果的であるが、CODの除去についてはClOの方が効果的であることが確認された。ClOを用いた場合、活性炭通水後のCODが2.4mg/lにまで除去されている。すなわち、ClOの方が、活性炭に吸着され易いように有機物を分解できることが確認された。
(試験例1)
 本試験例は、上記実施例で用いたマンガン系濾過材にフェノールを分解する機能があるか否かを確認した試験例である。試験は、濾過材をサンプリングして、径50mm、高さ1000mmのカラムに600mm充填し、原水に二酸化塩素及び次亜塩素酸ソーダを添加してろ過速度SV=5/hrで通水試験を行った。二酸化塩素と次亜塩素酸ソーダの添加量は、それぞれ実施例1と2と同濃度となるようにした。通水から30分が経過した後、処理水をサンプリングしてフェノールの濃度を測定した。その結果を表6に示す。表6の結果から明らかなように、次亜塩素酸ソーダを添加したものは1.2mg/lまで分解できており、二酸化塩素を添加したものは6.4mg/lまでフェノールを分解できている。かかる試験結果によって、本発明のマンガン系濾過材は、環境ホルモンに変化する可能性があって、且つ、難分解性であるフェノールの除去機能があることを確認できた。
Figure JPOXMLDOC01-appb-T000006
 1  水処理システム
 3  凝集剤添加手段
 4  第1の濾過装置
 5  酸化剤添加手段
 6  第2の濾過装置
 62 マンガン系濾過材
 7  吸着装置
 71 活性炭層

Claims (12)

  1.  有機物を含有する被処理水に塩素系酸化剤を添加し、マンガン系濾過材に通水して有機物を接触酸化分解することでCOD(Chemical Oxygen Demand)を除去する水処理方法であって、
     前記マンガン系濾過材は、β-MnOを含む天然の二酸化マンガン(MnO)の結晶粉末を、焼結,焼成およびβ-MnOが結晶転移する温度で加熱処理することなく、粒子状の担体の表面にバインダーによって担持させた濾過材であることを特徴とする水処理方法。
  2.  前記被処理水がフェノールを含有しており、前記天然の二酸化マンガン(MnO)の結晶粉末を担持したマンガン系濾過材の接触酸化分解によって難分解性物質であるフェノールをも除去することを特徴とする請求項1に記載の水処理方法。
  3.  前記天然の二酸化マンガンの結晶粉末は、天然のβ-MnOとγ-MnOを含んでおり、且つ、γ-MnOよりもβ-MnOを多く含んでいることを特徴とする請求項1又は2に記載の水処理方法。
  4.  前記担体がセラミックスの粒子であり、前記マンガン系濾過材が、下記に示す特性を有していることを特徴とする請求項1~3のいずれか1項に記載の水処理方法。
    Figure JPOXMLDOC01-appb-T000007
  5.  前記マンガン系濾過材が充填された濾過装置の逆洗を周期的に行い、前記マンガン系濾過材を洗浄することを特徴とする請求項1~4のいずれか1項に記載の水処理方法。
  6.  前記接触酸化分解後の被処理水を活性炭に通水して有機物を吸着除去する工程をさらに有することを特徴とする請求項1~5のいずれか1項に記載の水処理方法。
  7.  前記マンガン系濾過材に通水する前に被処理水に凝集剤を添加し、懸濁成分を分離除去する工程をさらに有することを特徴とする請求項1~6のいずれか1項に記載の水処理方法。
  8.  COD(Chemical Oxygen Demand)を除去する水処理システムであって、
     有機物を含有する被処理水に塩素系酸化剤を添加する手段と、
     前記塩素系酸化剤が添加された被処理水を通水するマンガン系濾過材を含む濾過装置と、
     を備え、
     前記マンガン系濾過材は、β-MnOを含む天然の二酸化マンガン(MnO)の結晶粉末を、焼結,焼成およびβ-MnOが結晶転移する温度で加熱処理することなく、粒子状の担体の表面にバインダーによって担持させた濾過材であることを特徴とする水処理システム。
  9.  前記被処理水がフェノールを含有しており、前記天然の二酸化マンガン(MnO)の結晶粉末を担持したマンガン系濾過材が、接触酸化分解によって難分解性物質であるフェノールをも除去することを特徴とする請求項8に記載の水処理システム。
  10.  前記天然の二酸化マンガンの結晶粉末は、天然のβ-MnOとγ-MnOを含んでおり、且つ、γ-MnOよりもβ-MnOを多く含んでいることを特徴とする請求項8又は9に記載の水処理システム。
  11.  前記マンガン系濾過材に通水した後の被処理水を通水する活性炭を含む吸着装置をさらに備えたことを特徴とする請求項8~10のいずれか1項に記載の水処理システム。
  12.  前記マンガン系濾過材に通水する前に、被処理水に凝集剤を添加する手段と、前記凝集剤が添加された被処理水を通水する他の濾過装置と、をさらに備えたことを特徴とする請求項8~11のいずれか1項に記載の水処理システム。
PCT/JP2010/002000 2009-03-24 2010-03-19 水処理方法及び水処理システム WO2010109838A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117023672A KR101426925B1 (ko) 2009-03-24 2010-03-19 수처리 방법 및 수처리 시스템
SG2011066107A SG174377A1 (en) 2009-03-24 2010-03-19 Water treatment method and water treatment system
JP2011505863A JP4786771B2 (ja) 2009-03-24 2010-03-19 水処理方法及び水処理システム
CN201080013636XA CN102361826B (zh) 2009-03-24 2010-03-19 水处理方法以及水处理系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-072124 2009-03-24
JP2009072124 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010109838A1 true WO2010109838A1 (ja) 2010-09-30

Family

ID=42780266

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/005279 WO2010109556A1 (ja) 2009-03-24 2009-10-09 水処理方法及び水処理システム
PCT/JP2010/002000 WO2010109838A1 (ja) 2009-03-24 2010-03-19 水処理方法及び水処理システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005279 WO2010109556A1 (ja) 2009-03-24 2009-10-09 水処理方法及び水処理システム

Country Status (6)

Country Link
JP (1) JP4786771B2 (ja)
KR (1) KR101426925B1 (ja)
CN (1) CN102361826B (ja)
MY (1) MY155401A (ja)
SG (1) SG174377A1 (ja)
WO (2) WO2010109556A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017500A1 (ja) * 2012-07-24 2014-01-30 ダイキン工業株式会社 リン酸イオン含有水溶液の処理方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102512864A (zh) * 2011-11-02 2012-06-27 北京万邦达环保技术股份有限公司 一种过滤器及使用该过滤器的过滤系统
JP5987646B2 (ja) * 2012-11-08 2016-09-07 三菱レイヨン株式会社 有機物含有水の処理方法
CN105217769A (zh) * 2014-06-10 2016-01-06 成都润兴消毒药业有限公司 能杀灭粪大肠菌群、降低cod的污水处理剂及制备方法
JPWO2016092620A1 (ja) * 2014-12-08 2017-08-03 三菱重工業株式会社 水処理装置
CN105984933B (zh) * 2016-06-24 2019-03-26 湖南大学 一种氧化降解水体中抗生素类药物的CMC稳定化纳米MnO2的制备与应用
CN106116020A (zh) * 2016-07-15 2016-11-16 嘉兴通惠环保科技有限公司 一种渗透膜系统进水预处理系统和工艺
KR101723399B1 (ko) 2016-12-06 2017-04-05 (주)유나 폐액 보관함
JP6473484B1 (ja) * 2017-08-18 2019-02-20 株式会社テクノササヤ 水処理装置
CN110368900B (zh) * 2019-08-20 2022-06-07 厦门理工学院 一种竹炭改性材料及其制备方法和用途
CN110590015A (zh) * 2019-09-17 2019-12-20 红河学院 一种利用二氧化锰除亚硝酸盐的方法
US20240067550A1 (en) * 2020-12-10 2024-02-29 Infinite Water Technologies Pty Ltd Process for treating water
CN113230705A (zh) * 2021-05-11 2021-08-10 李晟贤 一种滤料反洗方法
CN113230704A (zh) * 2021-05-11 2021-08-10 李晟贤 一种增强滤料过滤性能的方法
CN115353256B (zh) * 2022-08-22 2024-04-16 山东华城工程技术有限公司 一种微污染地表水源水净水处理工艺

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216866A (en) * 1975-07-31 1977-02-08 Nissan Chem Ind Ltd Method of lowering cod in drainage
JPS5376544A (en) * 1976-12-20 1978-07-07 Shigeru Obiyama Filter
JPS5684688A (en) * 1979-12-12 1981-07-10 Nojimagumi:Kk Terminal treatment of waste water
JPS6084124A (ja) * 1983-10-17 1985-05-13 Mitsui Mining & Smelting Co Ltd 浄水用濾材
JPH0199689A (ja) * 1987-10-09 1989-04-18 Suido Kiko Kk 水中の有機物除去法
JPH08257574A (ja) * 1995-03-27 1996-10-08 Ngk Insulators Ltd 難分解性cod 含有排水の処理方法および処理装置
JPH09935A (ja) * 1995-06-21 1997-01-07 Cataler Kogyo Kk 水処理用触媒
JPH1099696A (ja) * 1996-09-30 1998-04-21 Kobe Steel Ltd 触媒成形体及びその製造方法
JPH11156375A (ja) * 1997-11-28 1999-06-15 Nkk Corp 有機物含有水の処理方法
JP2000271576A (ja) * 1999-03-24 2000-10-03 Ngk Insulators Ltd 接触触媒ろ材及びこれを用いた難分解性cod含有排水の処理方法
JP2001149958A (ja) * 1999-12-01 2001-06-05 Cataler Corp 水処理方法
JP2002035578A (ja) * 2000-07-27 2002-02-05 Nippon Rokasuna Kenkyusho:Kk 色度除去用複合濾材
JP2004130268A (ja) * 2002-10-11 2004-04-30 Fuji Raito Kogyo Kk 除鉄・除マンガン濾材およびその製造方法
JP2004283735A (ja) * 2003-03-24 2004-10-14 Tookemi:Kk 二酸化マンガンを主材とする水処理用ろ材およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964248A (ja) * 1972-10-21 1974-06-21
JPS59173192A (ja) * 1983-03-18 1984-10-01 Matsushita Electric Ind Co Ltd 水処理用濾材およびその製造方法
JPS605215A (ja) * 1983-06-22 1985-01-11 Mitsui Mining & Smelting Co Ltd 浄水用濾材
JPH02233196A (ja) * 1989-03-08 1990-09-14 Tosoh Corp 脱色浄水材及びその製造方法
JPH0651189B2 (ja) * 1990-09-21 1994-07-06 日本碍子株式会社 難分解性cod含有排水の処理方法
JP2740623B2 (ja) * 1993-09-03 1998-04-15 日本碍子株式会社 下水の高度処理方法
EP0686427B1 (en) 1993-12-28 2002-03-13 Nippon Shokubai Co., Ltd. Method of processing waste water using a catalyst
JPH119965A (ja) * 1997-06-20 1999-01-19 Matsushita Electric Ind Co Ltd 中空体と汚染物質の除去装置と除去方法
JP2000153152A (ja) * 1998-11-19 2000-06-06 Cataler Corp 水処理用触媒
JP4407165B2 (ja) * 2003-06-06 2010-02-03 サントリーホールディングス株式会社 被酸化性物質含有水の処理方法
CN1919455A (zh) * 2005-08-25 2007-02-28 中国科学院生态环境研究中心 催化氧化消除挥发性有机污染物的方法
JP5082034B2 (ja) * 2005-10-25 2012-11-28 株式会社エルプラン 複合機能光触媒分散液及び多孔質複合機能光触媒

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216866A (en) * 1975-07-31 1977-02-08 Nissan Chem Ind Ltd Method of lowering cod in drainage
JPS5376544A (en) * 1976-12-20 1978-07-07 Shigeru Obiyama Filter
JPS5684688A (en) * 1979-12-12 1981-07-10 Nojimagumi:Kk Terminal treatment of waste water
JPS6084124A (ja) * 1983-10-17 1985-05-13 Mitsui Mining & Smelting Co Ltd 浄水用濾材
JPH0199689A (ja) * 1987-10-09 1989-04-18 Suido Kiko Kk 水中の有機物除去法
JPH08257574A (ja) * 1995-03-27 1996-10-08 Ngk Insulators Ltd 難分解性cod 含有排水の処理方法および処理装置
JPH09935A (ja) * 1995-06-21 1997-01-07 Cataler Kogyo Kk 水処理用触媒
JPH1099696A (ja) * 1996-09-30 1998-04-21 Kobe Steel Ltd 触媒成形体及びその製造方法
JPH11156375A (ja) * 1997-11-28 1999-06-15 Nkk Corp 有機物含有水の処理方法
JP2000271576A (ja) * 1999-03-24 2000-10-03 Ngk Insulators Ltd 接触触媒ろ材及びこれを用いた難分解性cod含有排水の処理方法
JP2001149958A (ja) * 1999-12-01 2001-06-05 Cataler Corp 水処理方法
JP2002035578A (ja) * 2000-07-27 2002-02-05 Nippon Rokasuna Kenkyusho:Kk 色度除去用複合濾材
JP2004130268A (ja) * 2002-10-11 2004-04-30 Fuji Raito Kogyo Kk 除鉄・除マンガン濾材およびその製造方法
JP2004283735A (ja) * 2003-03-24 2004-10-14 Tookemi:Kk 二酸化マンガンを主材とする水処理用ろ材およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017500A1 (ja) * 2012-07-24 2014-01-30 ダイキン工業株式会社 リン酸イオン含有水溶液の処理方法

Also Published As

Publication number Publication date
WO2010109556A1 (ja) 2010-09-30
CN102361826B (zh) 2013-09-11
MY155401A (en) 2015-10-15
CN102361826A (zh) 2012-02-22
KR101426925B1 (ko) 2014-08-05
SG174377A1 (en) 2011-10-28
KR20120002584A (ko) 2012-01-06
JP4786771B2 (ja) 2011-10-05
JPWO2010109838A1 (ja) 2012-09-27

Similar Documents

Publication Publication Date Title
JP4786771B2 (ja) 水処理方法及び水処理システム
US6093328A (en) Method for removing toxic substances in water
JP4907950B2 (ja) 排水からの金属の除去方法及び除去装置
AU2012243138B2 (en) Rare earth removal of hydrated and hydroxyl species
US6926878B2 (en) Method for removing toxic substances in water
JP2006263640A (ja) セラミック膜浄水製造方法
JP6519934B2 (ja) 金属材料凝集促進層、及びそれを用いた水処理装置
JP6359257B2 (ja) マンガン含有水の処理方法および処理装置
JP6846656B2 (ja) 水処理装置
CA3145046A1 (en) Graphene based filters and systems comprising same
CN101641427A (zh) 从含砷材料除去砷的方法和设备
US5395534A (en) Water filtration medium and method of use
US20070213211A1 (en) Process for producing inorganic particles for selectively removing contaminants from fluids
AU2012306584B2 (en) Method for separating radioactive nuclides by means of ceramic filter membranes
WO1985005099A1 (en) Method of treating fluids
Pan et al. Desorption of micropollutant from superfine and normal powdered activated carbon in submerged-membrane system due to influent concentration change in the presence of natural organic matter: experiments and two-component branched-pore kinetic model
US20020113019A1 (en) Method for removing toxic substances in water
JP3226565B2 (ja) 廃水の処理方法
JPH08267053A (ja) 電解二酸化マンガン吸着剤によるヒ素の除去方法及びヒ素除去用吸着剤
JP3272714B2 (ja) 廃水の処理方法
CN114291922B (zh) 一种去除水中放射性核素的方法和装置
JP2005074368A (ja) 有機物含有水の処理方法
TW412432B (en) Method to treat waste water of sulfur-stripping of waste gas
JP2007152163A (ja) 溶解性マンガン含有水の処理装置及び方法
JP2009214059A (ja) 難分解性物質含有排水の処理方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013636.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755641

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505863

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117023672

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10755641

Country of ref document: EP

Kind code of ref document: A1