WO2010095754A1 - 圧縮空気供給システム、車両用圧縮空気供給装置、及び、空気圧縮機の制御方法 - Google Patents

圧縮空気供給システム、車両用圧縮空気供給装置、及び、空気圧縮機の制御方法 Download PDF

Info

Publication number
WO2010095754A1
WO2010095754A1 PCT/JP2010/052795 JP2010052795W WO2010095754A1 WO 2010095754 A1 WO2010095754 A1 WO 2010095754A1 JP 2010052795 W JP2010052795 W JP 2010052795W WO 2010095754 A1 WO2010095754 A1 WO 2010095754A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
air
vehicle
desiccant
air supply
Prior art date
Application number
PCT/JP2010/052795
Other languages
English (en)
French (fr)
Inventor
一郎 湊
裕樹 長谷部
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009039220A external-priority patent/JP5430969B2/ja
Priority claimed from JP2009041671A external-priority patent/JP2010195171A/ja
Priority claimed from JP2009070348A external-priority patent/JP5410798B2/ja
Priority claimed from JP2009073494A external-priority patent/JP5410802B2/ja
Priority claimed from JP2009078518A external-priority patent/JP2010229897A/ja
Priority claimed from JP2009173228A external-priority patent/JP5497357B2/ja
Priority to US13/202,611 priority Critical patent/US9050957B2/en
Priority to CN201080017933.1A priority patent/CN102421647B/zh
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to CN201510717541.0A priority patent/CN105398437B/zh
Priority to EP10743877.2A priority patent/EP2399793B1/en
Publication of WO2010095754A1 publication Critical patent/WO2010095754A1/ja
Priority to US14/686,835 priority patent/US9815446B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/002Air treatment devices
    • B60T17/004Draining and drying devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/683Electrical control in fluid-pressure brake systems by electrically-controlled valves in pneumatic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/02Arrangements of pumps or compressors, or control devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means

Definitions

  • the present invention relates to a compressed air supply system that supplies compressed air by an air compressor mounted on a vehicle, a compressed air supply device for a vehicle, and a control method for the air compressor.
  • Patent Documents 1 to 4 Conventionally, when compressed air discharged from an air compressor for a vehicle is stored in an air tank and supplied to the load of the vehicle, an air compressor is used according to the situation of the vehicle or the route in order to prevent insufficient pressure of the air tank.
  • a device for switching a to a load state see, for example, Patent Documents 1 to 4.
  • the control device of Patent Document 1 detects the pressure of the air tank, and when it is determined that the brake is frequently used based on the change in the pressure, the air compressor is put into a load state.
  • Patent Document 2 An apparatus provided with a dryer having a desiccant
  • the apparatus disclosed in Patent Document 1 regenerates the adsorbent during the unloading of the air compressor, thereby continuously removing moisture from the compressed air.
  • condensed water or the like may accumulate inside the air dryer, and the condensed water may freeze inside the air dryer during the cold season.
  • the apparatus disclosed in Patent Document 4 regenerates the desiccant during unloading of the air compressor, thereby continuously removing moisture from the compressed air.
  • an air-type brake device using compressed air as a working fluid for operating the brake chamber has been adopted.
  • compressed air is supplied to each brake chamber.
  • a vehicle-use compressed air supply device is mounted.
  • This vehicle compressed air supply device includes an air compressor, stores compressed air discharged from the air compressor in an air tank, and supplies the compressed air in the air tank to each brake chamber as necessary.
  • An air dryer having an adsorbent (drying agent) that adsorbs moisture of compressed air is provided between the air compressor and the air tank (see, for example, Patent Document 4).
  • the apparatus disclosed in Patent Document 1 regenerates the adsorbent during the unloading of the air compressor, thereby continuously removing moisture from the compressed air.
  • a first object of the present invention is to improve the performance of a vehicle by controlling the influence of the operation of the air compressor on the engine performance. Furthermore, in the conventional apparatus, if the deterioration of the adsorbent progresses with continued use, the adsorbent becomes difficult to recover even if regeneration is performed as described above. It is common.
  • Adsorbent replacement time has been determined by using a method that uses the distance traveled by the vehicle as a guide or a method that estimates the state of the adsorbent based on the atmospheric pressure and air flow rate in the dryer. Since this is a method for estimating the state, the adsorbent replacement time may be made earlier than necessary. Then, this invention makes it the 2nd objective to enable it to judge correctly the replacement
  • a third object of the present invention is to detect the actual state of the desiccant for removing the moisture of the compressed air discharged from the air compressor, and to properly regenerate the desiccant.
  • a fourth object of the present invention is to prevent freezing of water accumulated in the air dryer and to save compressed air consumption required for discharging the water.
  • the conventional compressed air supply device if the adsorbent deteriorates with continued use, the adsorbent becomes difficult to recover even after regeneration as described above.
  • Adsorbent replacement time has been determined by using a method that uses the distance traveled by the vehicle as a guide or a method that estimates the state of the adsorbent based on the pressure and air flow rate in the air dryer. Since this is a method for estimating the state, the adsorbent replacement time may be made earlier than necessary.
  • a humidity sensor is installed downstream of the desiccant, and the deterioration of the adsorbent is determined by the detection value (humidity value) of the humidity sensor after the desiccant is regenerated. A configuration that accurately determines the time is assumed.
  • a fifth aspect of the present invention is to make it possible to accurately determine the replacement timing of the desiccant for removing the moisture of the compressed air discharged from the air compressor regardless of the mounting position of the humidity detection sensor.
  • the present invention includes an air compressor driven by an engine of a vehicle, a compressed air supply unit that supplies compressed air discharged from the air compressor to a load of the vehicle, A control unit that switches between a load state and an unload state of the air compressor according to the load request, and the control unit relates to the load request when the vehicle requires a braking force.
  • a compressed air supply system characterized in that the air compressor is loaded.
  • the present invention further includes a pressure sensor that detects an air pressure in the compressed air supply unit and outputs the air pressure to the control unit, and the control unit has an air pressure in the compressed air supply unit within a predetermined range.
  • the operation of switching between the load state and the unload state of the air compressor is performed such that the air compressor is in a load state regardless of the air pressure in the compressed air supply unit when the vehicle requires a braking force. It is characterized by.
  • the control unit holds the air compressor in a load state when the vehicle needs a braking force, and exhausts provided in the compressed air supply unit.
  • the air pressure in the compressed air supply unit is maintained within the predetermined range by opening the valve.
  • the control unit determines whether or not the vehicle requires braking force based on an operation instructing an operation of an auxiliary brake device provided in the vehicle. It is characterized by.
  • the present invention is characterized in that, in the compressed air supply system, the control unit puts the air compressor into an unloaded state during at least one of acceleration of the vehicle and high speed traveling.
  • the present invention is a method for controlling an air compressor that is driven by a vehicle engine and supplies compressed air to a load of the vehicle, the load state and unloading of the air compressor according to the demand of the load.
  • a control method for an air compressor is provided, wherein the air compressor is switched to a load state regardless of the load demand when the vehicle requires a braking force. .
  • the present invention includes an air compressor mounted on a vehicle, wherein the compressed air discharged from the air compressor is supplied to a vehicle load.
  • An air dryer that removes foreign substances such as moisture contained in compressed air is provided in the discharge line of the compressor, an oil detection sensor is provided in the air dryer, and an output unit that outputs the detection result of the oil detection sensor is provided.
  • a compressed air supply device for a vehicle is provided.
  • the present invention is characterized in that, in the above-mentioned compressed air supply device for a vehicle, the oil detection sensor is disposed inside a case of the air dryer.
  • the present invention is characterized in that, in the above-mentioned compressed air supply apparatus for a vehicle, the oil detection sensor is installed in the vicinity of an introduction portion that guides compressed air to a desiccant included in the air dryer.
  • the present invention is characterized in that, in the above-mentioned compressed air supply device for a vehicle, the oil detection sensor is constituted by a concentration sensor that detects an oil mist concentration.
  • the present invention is characterized in that, in the above-mentioned compressed air supply device for a vehicle, the oil detection sensor is constituted by an electrode provided in an oil reservoir at a bottom portion of the case in the air dryer.
  • the present invention includes an air compressor mounted on a vehicle, wherein the compressed air supply device for a vehicle supplies compressed air discharged from the air compressor to a load of the vehicle.
  • An air dryer which is provided in a discharge line of the air compressor and removes foreign matters such as moisture contained in the compressed air; a regeneration means for regenerating the desiccant in the air dryer under a predetermined regeneration condition; and a downstream of the desiccant
  • a compressed air supply device for a vehicle wherein the regeneration condition is optimized based on a detection result of the humidity detection sensor.
  • the present invention is characterized in that, in the above-mentioned compressed air supply apparatus for a vehicle, an air tank for storing compressed air supplied to the load is provided, and the humidity sensor is provided in the air tank.
  • the present invention is characterized in that, in the above-described compressed air supply device for a vehicle, the regeneration condition includes a condition relating to a frequency of regenerating the desiccant.
  • the present invention is characterized in that, in the above-mentioned compressed air supply device for a vehicle, the regeneration condition includes a condition relating to a ventilation amount when the desiccant is regenerated.
  • the humidity level after the desiccant is regenerated is equal to or higher than a preset threshold level
  • the humidity level tends to increase.
  • the reproduction condition is optimized, and the reproduction condition is optimized.
  • the present invention provides an air compressor mounted on a vehicle, wherein the compressed air discharged from the air compressor is supplied to a vehicle load.
  • An air dryer provided in a discharge line of the compressor, for removing foreign matters such as moisture contained in the compressed air, and a discharge valve for discharging moisture accumulated in the air dryer together with the compressed air.
  • Compressed air for a vehicle which performs detection and, when the detected temperature meets a preset condition, opens the discharge valve and discharges moisture or the like accumulated in the air dryer to the outside Feeding device.
  • the present invention is characterized in that when the operation of the vehicle is stopped, a discharge valve is opened to discharge moisture or the like accumulated in the air dryer to the outside.
  • the present invention is connected to an outside temperature sensor mounted on the vehicle, and when the outside temperature detected by the outside temperature sensor falls below a preset temperature, the exhaust valve is opened to open the inside of the air dryer. It is characterized by draining the water etc. accumulated in the outside.
  • the present invention also includes a humidity sensor that is provided in a compressed air flow path downstream of the air dryer and detects the humidity of the compressed air, and the temperature of the compressed air detected by the temperature sensor is set to a preset temperature. When the pressure falls below, the discharge valve is opened to discharge moisture or the like accumulated in the air dryer to the outside.
  • the present invention includes an air compressor mounted on a vehicle, wherein the compressed air supply device for a vehicle supplies compressed air discharged from the air compressor to a load of the vehicle.
  • An air dryer that is provided in a discharge line of the air compressor and removes foreign matters such as moisture contained in the compressed air; a regenerating unit that regenerates the desiccant in the air dryer at a predetermined timing; and downstream of the desiccant.
  • a vehicular compressed air supply device comprising: a humidity detection sensor provided; and an output unit that outputs a detection result of the humidity detection sensor after the desiccant has been regenerated by the regeneration unit.
  • the present invention is characterized in that, in the above-described compressed air supply device for a vehicle, an air tank for storing compressed air supplied to the load is provided, and the humidity detection sensor is provided in the air tank.
  • the desiccant is used regardless of the predetermined timing. And a detection result detected by the humidity detection sensor after the reproduction is output from the output unit.
  • the present invention provides the above-described compressed air supply apparatus for a vehicle, wherein the desiccant replacement time is determined by using the detection result and the information on the traveling state of the vehicle and / or the information on the operating state of the air dryer. It is characterized by having the determination means to do.
  • the air compressor driven by the engine of the vehicle is put in a load state to apply a load to the engine, thereby controlling the engine brake as the auxiliary brake device. Power can be increased.
  • the oil content in the air dryer that removes moisture and the like from the compressed air from the air compressor is detected, and the detection result is output, so the adsorption performance of the adsorbent that removes moisture and the like is degraded. It is possible to directly monitor the presence of the oil component to be determined, determine the state of the adsorbent, and replace the adsorbent at an appropriate time.
  • the humidity downstream of the desiccant in the air dryer that removes moisture and the like from the compressed air from the air compressor is detected, and the regeneration condition of the desiccant is determined based on the actual state of the desiccant. Can be optimized.
  • the humidity downstream of the desiccant in the air dryer that removes moisture and the like from the compressed air from the air compressor is detected, and the detection result after the desiccant is regenerated is output. Deterioration of the adsorption performance of the desiccant that removes moisture and the like can be determined, and the desiccant can be replaced at an appropriate time.
  • the present invention provides an air compressor mounted on a vehicle, wherein the compressed air discharged from the air compressor is supplied to a vehicle load.
  • An air dryer provided in a discharge line of the compressor to remove foreign matters such as moisture contained in the compressed air, a humidity detection sensor attached downstream of the desiccant of the air dryer, and a desiccant of the air dryer are predetermined.
  • Regeneration means for regenerating at the timing of the above, and the detection value of the humidity detection sensor after the desiccant is regenerated by the regeneration means are set corresponding to the flow rate of compressed air at the mounting position of the humidity detection sensor.
  • Deterioration determining means for determining deterioration of the desiccant in comparison with the threshold value.
  • the threshold value may be set to be large when the humidity detection sensor is attached to a position where the flow velocity of the compressed air is fast, and small when the humidity detection sensor is attached to a location where the flow velocity of the compressed air is slow.
  • amendment means which correct
  • the correction means may be configured to adjust the correction amount according to the magnitude of the flow rate of the compressed air.
  • FIG. 1 is a diagram showing a configuration of a compressed air supply system 1 according to an embodiment to which the present invention is applied.
  • an engine 303 together with the circuit configuration of the compressed air supply system 1, an engine 303, a vehicle speed detector 21, an auxiliary brake switch 22, and a retarder 23 of a vehicle on which the compressed air supply system 1 is mounted are illustrated.
  • a compressed air supply system 1 shown in FIG. 1 removes moisture from the compressor 4 (air compressor), an ECU 2 (control unit) that controls the compressor 4, and compressed air discharged from the compressor 4. And an air dryer module 10 (compressed air supply unit) for supplying compressed air to the load.
  • the ECU 2 is connected to a vehicle speed detector 21 that detects the vehicle speed of the vehicle on which the compressed air supply system 1 is mounted, and a vehicle speed signal 2 a is input to the ECU 2 from the vehicle speed detector 21.
  • an auxiliary brake switch 22 provided in the vehicle is connected to the ECU 2.
  • the auxiliary brake switch 22 is a switch for detecting an operation amount of an auxiliary brake lever (not shown) operated by the driver of the vehicle.
  • the auxiliary brake refers to a braking device provided in the vehicle separately from a stepping brake (hereinafter referred to as a main brake), and is a retarder 23 in the present embodiment.
  • the auxiliary brake lever has a plurality of operation amounts set according to the required braking force, and the auxiliary brake switch 22 outputs an operation signal 2b corresponding to the operation amount of the auxiliary brake lever to the ECU 2.
  • an electromagnetic retarder 23 is connected to the ECU 2.
  • the ECU 2 calculates a retarder torque request value indicating the braking force of the retarder 23 according to the value of the operation signal 2 b input from the auxiliary brake switch 22.
  • the ECU 2 outputs a retarder control signal 2c to the retarder 23 based on the retarder torque request value, and the retarder 23 brakes the drive shaft of the vehicle based on the retarder control signal 2c.
  • the ECU 2 also receives a vehicle control signal 2d that indicates the amount of operation of the accelerator pedal of the vehicle, the operating state of the transmission, and the like.
  • the engine control signal 2e is output to the engine 303 to perform various controls such as the above.
  • the compressor 4 is connected to the crank pulley 31 of the engine 303 via the auxiliary belt 32 and compresses air by the driving force of the engine 303.
  • Loads 51 to 54 included in the vehicle are connected to the air dryer module 10.
  • a load 51 is a main brake (front wheel)
  • a load 52 is a main brake (rear wheel)
  • a load 53 is a parking brake
  • a load 54 is an accessory driven by compressed air such as a horn or a clutch drive mechanism.
  • Each of the loads 51 to 54 includes a compressed air circuit through which compressed air flows.
  • the load 51 has an air tank 51a
  • the load 52 has an air tank 52a.
  • the air dryer module 10 detects the air pressure in each part of the electromagnetic valves 101, 102, 103 and the air dryer module 10 that are opened and closed by the control of the ECU 2 and outputs pressure detection values 121, 122 to the ECU 2. , 123, 124 are provided.
  • the ECU 2 opens and closes the electromagnetic valves 101 to 103 based on the detection values of the pressure sensors 121 to 123 and the vehicle speed signal 2a and the operation signal 2b described above.
  • the compressor 4 is controlled by air pressure, and an electromagnetic valve 101 is connected to this control line, and loading / unloading of the compressor 4 is switched by opening / closing the electromagnetic valve 101.
  • the compressor 4 In the load state, the compressor 4 is driven by the auxiliary belt 32 to compress the air and applies a load to the crank pulley 31 of the engine 303. On the other hand, the compressor 4 does not apply the load of the engine 303 in the unloaded state.
  • the discharge pipe 41 of the compressor 4 is connected to the inflow pipe 111 of the air dryer module 10, and the dryer 11 is connected to the inflow pipe 111.
  • the dryer 11 has a main body containing a desiccant (not shown), and removes moisture contained in the compressed air discharged from the compressor 4 by the desiccant.
  • the dryer 11 is provided with an exhaust valve 12 (exhaust valve). When the exhaust valve 12 is opened, the compressed air in the main body of the dryer 11 is discharged directly from the exhaust port 112 to the outside.
  • the exhaust valve 12 is controlled by air pressure, and a double check valve 104 is connected to the control line.
  • the exhaust valve 12 is normally closed and is opened only when air pressure is applied from the double check valve 104.
  • the air dryer module 10 includes a governor 13 that is mechanically operated by air pressure to control opening and closing of the exhaust valve 12.
  • the governor 13 operates according to the air pressure in the supply path 106 on the downstream side of the dryer 11, and applies air pressure to the double check valve 104 when the air pressure exceeds a predetermined value.
  • the electromagnetic valve 102 opens and closes under the control of the ECU 2, and applies the air pressure of the supply passage 106 to the double check valve 104 in the valve open state.
  • the double check valve 104 opens the exhaust valve 12 by applying air pressure when either the governor 13 or the electromagnetic valve 102 is opened. Therefore, the exhaust valve 12 is opened when the air pressure in the supply path 106 is higher than a predetermined value and when the electromagnetic valve 102 is opened, and the compressed air is discharged from the exhaust port 112.
  • the exhaust valve 12 when the exhaust valve 12 is opened, the compressed air on the downstream side of the main body of the dryer 11 flows backward in the main body of the dryer 11 and is discharged from the exhaust port 112. At this time, air passing through the main body of the dryer 11 becomes super dry due to rapid decompression, and moisture is taken away from the desiccant in the dryer 11, so that the desiccant is regenerated by opening the exhaust valve 12.
  • the air dryer module 10 includes an output port 113 to which a load 51 (front brake main brake) is connected, an output port 114 to which a load 52 (rear wheel main brake) is connected, and an output to which a load 53 (parking brake) is connected.
  • a port 115 and an output port 116 to which a load 54 (accessories) is connected are provided.
  • a branch chamber 135 is connected to the supply path 106 downstream of the dryer 11 via a pressure reducing valve 131.
  • the branch chamber 135 is connected to a supply path connected to the output port 113 and a supply path connected to the output port 114.
  • the supply path connected to the output port 113 is provided with a protective valve 141, and the supply path connected to the output port 114 is connected to the supply path connected to the output port 114.
  • a protection valve 142 is provided.
  • a pressure reducing valve 132 is connected to the branch chamber 135, and downstream of the pressure reducing valve 132 branches into a supply path connected to the output port 115 and a supply path connected to the output port 116, and protective valves 143 and 144 are provided, respectively. ing.
  • Each of the protection valves 141 to 144 is arranged in parallel with the throttle and the check valve, and closes when a circuit through which compressed air flows is lost in the loads 51 to 54 connected to the corresponding output ports 113 to 116, respectively.
  • a pressure reducing valve 133 is disposed on the downstream side of the protective valve 144 in the supply path that connects the pressure reducing valve 132 to the output port 116, and the compressed air that has been decompressed is supplied to the load 54.
  • a supply path 136 that bypasses the protection valve 143 and is connected to the output port 115 extends in the supply path between the pressure reducing valve 132 and the protection valve 143.
  • the supply path 136 includes a check valve 137 that prevents the backflow of compressed air from the output port 115 to the branch chamber 135, and a throttle 138 that is arranged in series with the check valve 137.
  • the pressure sensor 121 detects the air pressure in the supply path 106
  • the pressure sensor 122 detects the air pressure downstream of the protection valve 141, that is, the output port 113
  • the pressure sensor 123 detects the air pressure in the output port 114
  • the pressure sensor 124 Detects the air pressure at the output port 116.
  • the parking brake device of the vehicle corresponding to the load 53 is allowed to travel after the braking force is released by the air pressure.
  • the parking brake expands the brake shoe with the force of the spring when parking and exerts a braking force, and closes the brake shoe against the spring force by the air pressure supplied from the air dryer module 10 when released. It has become.
  • the load 53 of this embodiment does not include an air tank that stores compressed air, the air dryer module 10 can reliably operate the load 53 without an air tank.
  • the protection valves 141 and 142 are open when the compressed air circuits of the corresponding loads 51 and 52 are sufficiently filled with compressed air, respectively. Accordingly, the compressed air in the main brake air tanks 51 a and 52 a can be supplied from the branch chamber 135 through the pressure reducing valve 132 to the output port 115 through the supply path 136. For this reason, when the air pressure in the air tanks 51a and 52a is sufficiently high, the parking brake can be released by supplying compressed air to the load 53.
  • the ECU 2 opens the electromagnetic valve 103.
  • the command pressure of the electromagnetic valve 103 is applied to the check valve 137, the supply path 136 is closed by the check valve 137, and the compressed air supply path to the output port 115 is shut off.
  • the parking brake cannot be released, but it is preferable not to release the parking brake when the air tanks 51a and 52a used for the main brake have insufficient air pressure. Further, the parking brake can be released when the air pressure in the air tanks 51a and 52a is restored. Therefore, even if there is no air tank for the load 53, the parking brake can be stably operated by the compressed air.
  • the compressed air supply system 1 shown in FIG. 1 is usually based on the detection value of the pressure sensor 121 in order to keep the air pressure inside the air dryer module 10 (for example, the supply path 106) within a predetermined range.
  • the load / unload of the compressor 4 is switched under the control of the ECU 2. Since the air pressure in the air dryer module 10 changes according to the required amount of compressed air of the loads 51 to 54, so to speak, the load / unload of the compressor 4 is switched in response to the requests of the loads 51 to 54.
  • the compressed air supply system 1 changes the braking force of the engine brake of the engine 303 by switching the compressor 4 to the loaded state when the auxiliary brake lever is operated regardless of the demands of the loads 51 to 54. Increases the brake assist operation. Further, when the torque of the engine 303 is required, such as during the acceleration of the vehicle, the compressed air supply system 1 performs an engine assist operation that reduces the load on the engine 303 by keeping the compressor 4 in an unloaded state.
  • the vehicle is provided with a retarder 23 as an auxiliary brake in addition to the main brake and the parking brake, but can also be braked by an engine brake. If the braking force by the engine brake is strong, the requirement of the braking force to the retarder 23 can be reduced correspondingly, so that it is possible to reduce the electric energy consumed by the electromagnetic retarder 23, suppress the heat generation of the retarder 23, and the like. Further, by combining the engine brake with increased braking force with the retarder 23, the demand for braking force on the main brake can be reduced, so that wear of the brake pad, brake disc or brake shoe can be suppressed, and the life can be extended. it can. In recent years, a small displacement engine may be employed.
  • FIG. 2 is a flowchart showing the operation of the compressed air supply system 1.
  • the ECU 2 Prior to the operation described below, the ECU 2 has a set value for determining the retarder torque request value, a set value for determining the engine torque request value, and set values A, B for determining the air pressure in the air dryer module 10.
  • C is preset and stored in a memory (not shown) built in the ECU 2.
  • the set values A, B, and C relating to the air pressure are A ⁇ B ⁇ C in order from the high pressure side.
  • the ECU 2 determines that the air pressure in the air dryer module 10 detected by the pressure sensor 121 is in the range between the set value C and the set value A.
  • the solenoid valve 101 is opened as appropriate to switch between loading and unloading of the compressor 4. For example, when a large amount of compressed air is consumed by the loads 51 to 54, the air pressure in the air dryer module 10 decreases, so the ECU 2 switches the compressor 4 to the loaded state in order to increase the air pressure.
  • the ECU 2 acquires the operation signal 2b output from the auxiliary brake switch 22 at predetermined time intervals (step S12), and based on the operation amount of the auxiliary brake lever (not shown) indicated by the operation signal 2b.
  • the retarder torque request value is calculated (step S13).
  • the ECU 2 determines whether or not the calculated retarder torque request value is equal to or greater than the set value (step S14). If the calculated retarder torque request value is equal to or greater than the set value, the brake assist operation is executed (step S15). .
  • FIG. 3 is a flowchart showing in detail the brake assist operation among the operations of the compressed air supply system 1.
  • the ECU 2 controls the electromagnetic valve 101 to shift the compressor 4 to the load state (step S31).
  • the load for driving the compressor 4 is added to the engine 303, the braking force of an engine brake increases.
  • the ECU 2 holds the load state of the compressor 4.
  • the ECU 2 acquires the detection value of the pressure sensor 121 and determines whether or not the air pressure in the air dryer module 10 is equal to or higher than the set value A (step S32).
  • the ECU 2 controls the electromagnetic valve 102 to temporarily open the exhaust valve 12 to reduce the pressure in the air dryer module 10 (step S33). ).
  • the ECU 2 determines whether or not the air pressure in the air dryer module 10 has become less than the set value B (step S34). Open the valve. If the air pressure in the air dryer module 10 is less than the set value B, the process proceeds to the subsequent step S35.
  • the ECU 2 proceeds to step S35 as it is.
  • step S35 the ECU 2 acquires the operation signal 2b, and then calculates a retarder torque request value based on the operation signal 2b (step S36). Then, the ECU 2 determines the calculated retarder torque request value (step S37). In this determination, it is determined whether or not the state where the retarder torque request value is less than the above set value continues for a predetermined time or more. If this condition is not satisfied, the process returns to step S31, and if the condition is satisfied, Step S11 (FIG. 2) returns to the normal running state. By performing the determination in step S37, the ECU 2 ends the brake assist operation when, for example, the operation amount of the auxiliary brake lever returns to the non-operation state. The reason that the operation continues for a predetermined time or more in step S37 is that frequent load / unload switching occurs due to frequent operation of the auxiliary brake lever or temporary change of the operation signal 2b. This is to prevent it.
  • FIG. 4 is a chart showing an example of a change in air pressure in the air dryer module 10 due to the above operation.
  • the vertical axis of the graph shown in FIG. 4 is the air pressure in the air dryer module 10 detected by the pressure sensor 121 (FIG. 1), and the horizontal axis is the elapsed time.
  • the compressor 4 switches to the load state, and the air pressure increases to the set value A.
  • the compressor 4 switches to the unloaded state.
  • the exhaust valve 12 is opened by the control of the governor 13, and the above-described regeneration operation is performed (from time t2 to time t3).
  • the compressor 4 When the brake assist operation is started at time t4, the compressor 4 is switched to the load state under the control of the ECU 2. As described with reference to the flowchart of FIG. 3, during the execution of the brake assist operation, the compressor 4 maintains the load state under the control of the ECU 2, so that the air pressure in the air dryer module 10 gradually increases and reaches the set value A.
  • the ECU 2 reduces the air pressure of the air dryer module 10 by opening the exhaust valve 12 for a predetermined time while keeping the compressor 4 in the loaded state. Since the ECU 2 opens the exhaust valve 12 once or several times until the air pressure in the air dryer module 10 becomes less than the set value B, the air pressure decreases to the set value B.
  • the air pressure in the air dryer module 10 rises again, but the exhaust valve 12 is intermittently opened under the control of the ECU 2, and the air pressure in the air dryer module 10 is set to a set value. It is kept in the range from B to the set value A.
  • the ECU 2 increases the braking force of the engine brake by maintaining the load state of the compressor 4 while maintaining the air pressure in the air dryer module 10 within a predetermined range.
  • step S16 determines whether or not the vehicle is accelerating based on the vehicle speed signal 2a input from the vehicle speed detector 21 ( In step S16), if the vehicle is accelerating, the compressor 4 is unloaded to execute the engine assist operation (step S17), and the process returns to step S11. If the compressor 4 is already in the unloaded state in step S17, the ECU 2 leaves the compressor 4 in the unloaded state and returns to step S11.
  • step S18 the ECU 2 determines whether the vehicle is decelerating based on the vehicle speed signal 2a (step S18). If the vehicle is decelerating, the vehicle control is performed. It is determined whether or not the engine torque request value calculated based on the signal 2d is greater than or equal to a preset set value (step S19).
  • This engine torque request value is a value that the ECU 2 constantly calculates in order to control the engine 303 by the engine control signal 2e. If the engine torque request value is equal to or greater than the set value (step S19; Yes), the ECU 2 switches to the unload state if the compressor 4 is in the load state to execute the engine assist operation, and the compressor 4 is already in the unload state. If there is, the state is maintained (step S20), and the process returns to step S11. When the engine torque request value is less than the set value (step S19; No), the ECU 2 proceeds to step S22 described later.
  • step S18 when the vehicle is not decelerating (step S18; No), the ECU 2 determines whether or not the vehicle speed is equal to or higher than a preset speed based on the vehicle speed signal 2a (step S21). If so, the process proceeds to step S20. On the other hand, when the vehicle speed is less than the set speed, the process proceeds to step S22. In step S22, the ECU 2 determines whether or not the air pressure detected by the pressure sensor 121 is less than the set value C. If the air pressure is less than the set value C, the ECU 4 switches the compressor 4 to the load state (step S23), and step S24. Migrate to If the air pressure is greater than or equal to the set value C, the process proceeds to step S24.
  • step S24 the ECU 2 determines whether or not the air pressure detected by the pressure sensor 121 is greater than or equal to the set value A. If the air pressure is greater than or equal to the set value A, the compressor 4 is switched to the unload state (step S25), and step S11. Return to. If the air pressure is less than the set value A, the process returns to step S11.
  • FIG. 5 is a diagram showing the correspondence between the state of the vehicle and the execution state of the brake assist operation and the engine assist operation in the compressed air supply system 1.
  • the retarder torque request value of the present embodiment is a negative value since it is a value indicating the torque required for deceleration as a percentage.
  • the retarder torque request value is lower as the significant deceleration is required.
  • the maximum value of the retarder torque request value indicates a case where deceleration is not requested, and is 0%.
  • the set value is set to ⁇ 10%.
  • the ECU 2 determines the retarder torque request value calculated based on the operation signal 2b from the auxiliary brake switch 22, the vehicle acceleration / deceleration state and vehicle speed determined based on the vehicle speed signal 2a, and vehicle control. Based on the engine torque request value obtained based on the signal 2d, it is determined whether to perform a normal traveling operation, a brake assist operation, or an engine assist operation.
  • the ECU 2 executes the brake assist operation and loads 51 to 54 Regardless of the required amount of compressed air and the air pressure in the air dryer module 10, the compressor 4 is forcibly placed in a load state.
  • the acceleration / deceleration state and vehicle speed of the vehicle are determined.
  • the compressor 4 is controlled.
  • the engine assist operation is performed, and the compressor 4 is forced to reduce the load on the engine 303. Is unloaded. Since the main brake is not frequently used during high speed running and acceleration, there is no problem even if the compressor 4 is in an unloaded state. Further, while the vehicle is decelerating, the engine torque request value is discriminated.
  • the engine torque request value is equal to or greater than the set value, the output of the engine 303 is required, so that the engine assist operation is performed and the compressor 4 Is forcibly unloaded.
  • the engine torque request value is less than the set value, control during normal traveling is performed.
  • the compressed air supply system 1 includes the compressor 4 driven by the engine 303, the air dryer module 10 that supplies the compressed air discharged from the compressor 4 to the loads 51 to 54 of the vehicle, and the requirements of the loads 51 to 54. And an ECU 2 that switches between a load state and an unload state of the compressor 4 according to the ECU 2.
  • the ECU 2 requests the compressed air by the loads 51 to 54 and the air dryer module 10.
  • a brake assist operation is performed to put the compressor 4 in the load state regardless of the air pressure.
  • the compressor 4 is put in a load state to apply a load to the engine 303 and increase the braking force of the engine brake.
  • the compressor 4 can be used as an auxiliary brake device to The load on the brake device, the retarder 23 and the like can be reduced. As a result, it is possible to suppress wear of the brake pads, brake discs, or brake shoes constituting the main brake device, and to suppress heat generation of the main brake device, the retarder 23, etc., and to extend the life of these parts. Further, in the brake assist operation, the compressor 4 is loaded by the rotational force of the engine 303 when the engine brake is operated. That is, since the kinetic energy of the running vehicle is regenerated to generate compressed air, the energy use efficiency in the vehicle can be increased.
  • a pressure sensor 121 that detects the air pressure in the air dryer module 10 and outputs it to the ECU 2 is provided.
  • the brake assist operation is performed. Therefore, normally, the brake assist operation is performed only when the braking force is required while stably supplying compressed air. The braking force can be increased efficiently.
  • the ECU 2 can keep the air pressure in the air dryer module 10 within an appropriate range by holding the compressor 4 in the load state and opening the exhaust valve 12 in the brake assist operation. Further, the ECU 2 obtains a retarder torque request value based on the operation signal 2b from the auxiliary brake switch 22 indicating the operation amount of the auxiliary brake lever, and determines whether or not to perform the brake assist operation based on the retarder torque request value. Determine.
  • the ECU 2 performs the engine assist operation while the torque of the engine 303 is required, such as during acceleration of the vehicle and during high speed traveling, and keeps the compressor 4 in the unloaded state, so that the vehicle exhibits high acceleration performance. It becomes possible to do. And even if it suppresses an accelerator opening, since sufficient acceleration performance can be obtained, the improvement of fuel efficiency by suppression of an accelerator opening can be aimed at.
  • a retarder torque request value is obtained from the operation signal 2b of the auxiliary brake switch 22, and based on the retarder torque request value, it is determined whether or not the vehicle requires braking force.
  • the present invention is not limited to this, and for example, it is possible to detect whether or not the vehicle requires braking force based on the detected value by detecting the depression force or the depression amount of the brake pedal.
  • a dedicated switch for instructing the ECU 2 to perform a brake assist operation may be determined based on the state of the clutch of the vehicle, the operating state of the transmission, or the like. And determining that the vehicle requires braking force according to the operation of the switch, and performing a brake assist operation.
  • the ECU 2 has been described as outputting the retarder control signal 2c to the retarder 23 based on the retarder torque request value so as to perform braking by the retarder 23.
  • a request value higher than the calculated retarder torque request value may be output as the retarder control signal 2c to the retarder 23, and the retarder 23 may obtain a weaker braking force.
  • the braking of the retarder 23 and the operation of the engine brake may be interlocked.
  • the exhaust brake valve (not shown) provided in the engine 303 is interlocked and closed. It may be a configuration.
  • the present invention is not limited to this, and the engine assist operation may be performed only during acceleration or high speed traveling, or the engine assist operation may be performed based only on the engine torque request value. Good.
  • FIG. 6 is a diagram showing a configuration of a compressed air supply system 1 according to a second embodiment to which the present invention is applied.
  • the compressed air supply system 1 vehicle compressed air supply device
  • FIG. 6 removes moisture from the compressor 4 (air compressor), the ECU 2 that controls the compressor 4, and the compressed air discharged from the compressor 4.
  • an air dryer module 10 for supplying compressed air to the load of the vehicle.
  • the ECU 2 controls the engine of the vehicle and the operations of the compressor 4 and the air dryer module 10 based on the vehicle speed of the vehicle on which the compressed air supply system 1 is mounted.
  • Loads 51 to 54 included in the vehicle are connected to the air dryer module 10.
  • a load 51 is a main brake (front wheel)
  • a load 52 is a main brake (rear wheel)
  • a load 53 is a parking brake
  • a load 54 is an accessory driven by compressed air such as a horn or a clutch drive mechanism.
  • Each of the loads 51 to 54 includes a compressed air circuit through which compressed air flows
  • the load 51 includes an air tank 51a
  • the load 52 includes an air tank 52a.
  • the air dryer module 10 detects the air pressure in each part of the electromagnetic valves 101, 102, and 103 and the air dryer module 10 that are opened and closed under the control of the ECU 2, and outputs pressure detection values 121, 122, and 123 to the ECU 2. , 124 are provided.
  • the ECU 2 opens and closes the electromagnetic valves 101 to 103 based on the detection values of the pressure sensors 121 to 123.
  • the compressor 4 is connected to the engine via an auxiliary belt (not shown), and compresses air by the driving force of the engine.
  • the compressor 4 is controlled by air pressure, and a solenoid valve 101 is connected to this control line. Switching between a load state in which the compressor 4 compresses air and an unload state in which compression is not performed is performed by opening and closing the solenoid valve 101. It is done.
  • the discharge pipe 41 of the compressor 4 is connected to the inflow pipe 111 of the air dryer module 10, and the air dryer 11 is connected to the inflow pipe 111.
  • the air dryer 11 contains a desiccant 231 in the case 20, and removes foreign matters such as moisture contained in the compressed air discharged from the compressor 4 by the desiccant 231.
  • the air dryer 11 is provided with an exhaust valve 12. When the exhaust valve 12 is opened, the compressed air in the main body of the air dryer 11 is directly discharged to the outside from the exhaust port 112.
  • the exhaust valve 12 is controlled by air pressure, and a double check valve 104 is connected to the control line.
  • the exhaust valve 12 is normally closed and is opened only when air pressure is applied from the double check valve 104.
  • the air dryer module 10 includes a governor 13 that is mechanically operated by air pressure to control opening and closing of the exhaust valve 12.
  • the governor 13 operates in accordance with the air pressure in the supply passage 106 on the downstream side of the air dryer 11, and applies air pressure to the double check valve 104 when the air pressure exceeds a predetermined value.
  • the electromagnetic valve 102 is opened and closed under the control of the ECU 2, and applies the air pressure of the supply passage 106 to the double check valve 104 in the valve open state.
  • the double check valve 104 opens the exhaust valve 12 by applying air pressure when either the governor 13 or the electromagnetic valve 102 is opened. Therefore, the exhaust valve 12 is opened when the air pressure in the supply path 106 is higher than a predetermined value and when the electromagnetic valve 102 is opened, and the compressed air is discharged from the exhaust port 112.
  • the exhaust valve 12 when the exhaust valve 12 is opened while the air pressure in the air dryer module 10 is sufficiently high, the compressed air downstream of the air dryer 11 flows backward in the case 20 of the air dryer 11 and the exhaust port 112. Released from. At this time, air passing through the case 20 becomes super dry due to rapid pressure reduction, and moisture is taken away from the desiccant 231 in the case 20, so that the desiccant 231 is regenerated.
  • the regenerated desiccant 231 has recovered the adsorptive capacity to adsorb moisture, and can remove moisture from the compressed air. This regenerating operation is executed every predetermined time by opening the electromagnetic valve 102 by the ECU 2, or when the air pressure in the air dryer module 10 satisfies a predetermined condition.
  • the air dryer module 10 includes an output port 113 to which a load 51 (front brake main brake) is connected, an output port 114 to which a load 52 (rear wheel main brake) is connected, and an output to which a load 53 (parking brake) is connected.
  • a port 115 and an output port 116 to which a load 54 (accessories) is connected are provided.
  • a branch chamber 135 is connected to the supply path 106 downstream from the air dryer 11 via a pressure reducing valve 131.
  • the branch chamber 135 is connected to a supply path connected to the output port 113 and a supply path connected to the output port 114.
  • the supply path connected to the output port 113 is provided with a protective valve 141, and the supply path connected to the output port 114 is connected to the supply path connected to the output port 114.
  • a protection valve 142 is provided.
  • a pressure reducing valve 132 is connected to the branch chamber 135, and the downstream of the pressure reducing valve 132 branches into a supply path connected to the output port 115 and a supply path connected to the output port 116, and protective valves 143 and 144 are provided, respectively. ing.
  • Each of the protection valves 141 to 144 is arranged in parallel with the throttle and the check valve, and closes when a circuit through which compressed air flows is lost in the loads 51 to 54 connected to the corresponding output ports 113 to 116, respectively.
  • the protective valves 141 and 142 are in the open state when the compressed air circuits of the corresponding loads 51 and 52 are sufficiently filled with compressed air, respectively. Accordingly, the compressed air in the main brake air tanks 51 a and 52 a can be supplied from the branch chamber 135 through the pressure reducing valve 132 to the output port 115 through the supply path 136. For this reason, when the air pressure of the air tanks 51a and 52a is sufficiently high, the compressed brake can be supplied to the load 53 to release the parking brake.
  • the ECU 2 The command pressure of the electromagnetic valve 103 is applied to the check valve 137, the supply path 136 is closed by the check valve 137, and the compressed air supply path to the output port 115 is shut off.
  • the parking brake cannot be released, but it is preferable not to release the parking brake when the air tanks 51a and 52a used for the main brake have insufficient air pressure. Further, the parking brake can be released when the air pressure in the air tanks 51a and 52a is restored. Therefore, even if there is no air tank for the load 53, the parking brake can be stably operated by the compressed air.
  • the compressed air supply system 1 shown in FIG. 6 includes an oil detection sensor 14 that detects oil in the air dryer 11.
  • the desiccant 231 of the air dryer 11 deteriorates with use, and the adsorptive capacity after performing regeneration gradually decreases.
  • the adsorptive capacity of the desiccant 231 becomes insufficient, it is replaced with a new one.
  • an oil detection sensor 14 is provided in the air dryer module 10, the oil in the case 20 is detected by the oil detection sensor 14, and based on the detection result.
  • the replacement time of the desiccant 231 can be determined.
  • the inventors have obtained the knowledge that when the compressor oil flowing into the air dryer 11 from the discharge pipe 41 of the compressor 4 adheres to the surface of the desiccant 231, the adsorption ability on the surface of the desiccant 231 is reduced. Based on this, it is configured to detect the state of the desiccant 231 directly by detecting the oil flowing into the case 20. According to this configuration, by detecting the oil flowing into the case 20, it is possible to detect the oil adhesion state on the surface of the desiccant 231, so that the degree of deterioration of the desiccant 231 can be appropriately determined.
  • the oil detection sensor 14 is connected to the ECU 2, and a signal indicating a detection result of detecting oil in the oil detection sensor 14 is input to the ECU 2.
  • the detection result is acquired based on the result.
  • the ECU 2 includes a display unit 3 (output unit) that displays the detection result of the oil detection sensor 14.
  • Specific examples of the configuration of the display unit 3 include an LED that is switched on / off / flashing according to a detection result, and a liquid crystal display panel that displays the detection result with characters, symbols, and the like.
  • the display unit 3 may be mounted together with the speedometer of the vehicle, or may be disposed in the vicinity of the compressor 4 and the air dryer 11 in the vehicle.
  • the display unit 3 allows a driver, a mechanic to maintain the vehicle, an administrator who manages the vehicle, etc. to visually recognize the oil detection state in the case 20 and to set the desiccant 231 appropriately. Can be judged. For example, a display recommending replacement of the desiccant 231 is made on the display unit 3, and the desiccant 231 is replaced based on this display.
  • FIG. 7 is a cross-sectional view showing a specific configuration example of the air dryer 11.
  • FIG. 7 illustrates a configuration in which an oil mist sensor 141 is provided as a specific example of the oil detection sensor 14 (FIG. 6).
  • the case 20 of the air dryer 11 includes a dryer body 21 and a cartridge cover 22 that covers the dryer body 21 and is fixed by bolts 221.
  • the dryer body 21 is connected to the inflow pipe 111 (FIG. 6), and has an inlet 211 through which compressed air discharged from the discharge pipe 41 of the compressor 4 flows, and a supply path 106 (FIG. 6) from the case 20.
  • a cartridge 23 is accommodated in a hollow cartridge cover 22 fixed to the upper part of the dryer body 21.
  • the cartridge 23 is fixed to the dryer main body 21 by bolts 235 so that compressed air does not leak out of the cartridge 23.
  • a space is formed inside the cartridge 23, and this space is filled with a granular desiccant 231.
  • a check valve 232 that discharges compressed air to the outside of the cartridge 23 is provided at the upper end of the cartridge 23.
  • a filter 234 and a spring 233 that press the desiccant 231 from the check valve 232 side are provided below the check valve 232. It is arranged.
  • an oil filter 24 that collects oil mist in the circulating air is disposed below the cartridge 23 in order to prevent oil from entering the space in which the desiccant 231 is stored.
  • the compressed air that has flowed in from the inlet 211 of the desiccant 231 enters an inflow side air chamber 213 (introduction section) provided in the dryer body 21 and further passes through a flow path (not shown) formed in the dryer body 21.
  • the flow path in the dryer body 21 is connected to the oil filter 24, and the compressed air that has passed through the oil filter 24 reaches the desiccant 231.
  • the compressed air from which oil has been removed by the oil filter 24 and from which moisture has been adsorbed and removed by the desiccant 231 of the cartridge 23 exits the cartridge 23 through the check valve 232 and is provided in the cartridge cover 22. It passes through a flow path (not shown) and flows out of the dryer main body 21 from the outlet 212.
  • an exhaust valve 12 is provided in a flow path through which compressed air flows from the inlet 211 to the cartridge 23.
  • the exhaust valve 12 is a valve for discharging the compressed air in the case 20 to the outside as described above.
  • An exhaust pipe 215 is connected to the lower part of the exhaust valve 12, and a silencer 217 is accommodated in the exhaust pipe 215.
  • a collar 216 is connected to the lower end of the exhaust pipe 215, and a silencer 218 is also housed inside the collar 216.
  • an oil mist sensor 141 is disposed in the inflow side air chamber 213.
  • the oil mist sensor 141 is a sensor that optically measures the concentration of oil droplets (oil mist) drifting in the inflow side air chamber 213.
  • the oil mist sensor 141 includes a light emitting unit (not shown) such as an LED, a light receiving unit (not shown) that receives light emitted from the light emitting unit, and a detection signal that indicates the amount of light received by the light receiving unit. And a signal output unit (not shown).
  • the oil mist sensor 141 measures the concentration of oil mist in the compressed air that flows in from the inlet 211 and is temporarily stored in the inflow side air chamber 213, and outputs a signal indicating the measured value to the ECU 2 (FIG. 6). .
  • the ECU 2 calculates an integrated value of the concentration of oil mist based on a signal input from the oil mist sensor 141, and outputs the calculated value to the display unit 3 according to the integrated value within a predetermined time.
  • this display output for example, in addition to a form in which the measured value of the oil mist sensor 141 is displayed as a numerical value or a bar graph, a symbol is displayed when the measured value of the oil mist sensor 141 exceeds a preset threshold value. And a warning display by turning on / flashing the LED.
  • the ECU 2 performs display output by the display unit 3 when the integrated value of the oil mist concentration within a predetermined time exceeds a preset threshold value.
  • the threshold value in this case is an amount set in advance as an integrated value of the oil mist corresponding to the case where the adsorption capacity of the desiccant 231 is deteriorated by the oil mist.
  • This threshold value is stored in, for example, a memory built in the ECU 2.
  • the compressed air supply system 1 includes the compressor 4 mounted on the vehicle, and the air dryer module 10 that supplies the compressed air discharged from the compressor 4 to the load of the vehicle is connected to the compressor 4. Since the line is provided with an air dryer 11 for removing foreign substances such as moisture contained in compressed air, the air dryer 11 is provided with an oil detection sensor 14, and the display unit 3 for outputting the detection result of the oil detection sensor 14 is provided. By detecting the oil flowing into the air dryer 11, it is possible to directly detect the oil adhesion state on the surface of the desiccant 231.
  • the driver or mechanic of the vehicle can accurately know the degree of deterioration of the desiccant 231 due to the adhesion of oil, and whether or not the desiccant 231 needs to be replaced appropriately.
  • the desiccant 231 can be replaced at an appropriate time.
  • the oil detection sensor 14 is arrange
  • the oil detection sensor 14 is installed in the inflow side air chamber 213 in the vicinity of the introduction portion that guides the compressed air to the desiccant 231 included in the air dryer 11, the oil detection sensor 14 flows into the case 20 from the outside and deteriorates the desiccant 231.
  • the oil detection sensor 14 includes the oil mist sensor 141 that detects the oil mist concentration, the mist-like oil that has flowed into the case 20 can be reliably detected.
  • FIG. 8 is a diagram illustrating a configuration of the compressed air supply system 1 according to the third embodiment.
  • the same components as those in the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the oil detection sensor 14 is provided in a compressed air pipe connected to the downstream side of the air dryer 11. Yes. That is, the oil detection sensor 14 is located outside the case 20 of the air dryer 11 and detects the amount of oil mist in the compressed air that has passed through the desiccant 231 in the case 20.
  • the oil detection sensor 14 is, for example, the oil mist sensor 141 described in the second embodiment, is connected to the ECU 2, measures the concentration of oil mist in the pipe, and outputs a signal indicating the measured value to the ECU 2. .
  • the ECU 2 outputs to the display unit 3 based on information or signals input from the oil detection sensor 14.
  • the ECU 2 is configured such that when the concentration of oil mist within a predetermined time exceeds a preset threshold value, Display output by the display unit 3 is performed.
  • the compressor air that has adhered to the desiccant 231 is mixed with the compressed air that has passed through the cartridge 23, so that it is detected as oil mist by the oil detection sensor 14 provided downstream. Therefore, in the third embodiment, the ECU 2 determines whether the concentration of the oil mist detected by the oil detection sensor 14 exceeds a preset threshold value, and the determination result is displayed on the display unit 3. Output.
  • This threshold value is stored in, for example, a memory built in the ECU 2.
  • the state of the desiccant 231 can be directly detected from the amount of compressor oil mixed with the compressed air on the downstream side of the air dryer 11, and the detected state of the desiccant 231 is output. it can.
  • compressor oil that normally does not leak on the downstream side of the desiccant 231 is detected by the oil detection sensor 14 provided on the downstream side of the desiccant 231, so that the state of the desiccant 231 can be detected reliably and with high accuracy.
  • the oil detection sensor 14 measures oil mist in the compressed air that has passed through the oil filter 24 and the desiccant 231, this measured value directly observed the amount of oil actually attached to the desiccant 231. be equivalent to. For this reason, by providing the oil detection sensor 14 on the downstream side of the desiccant 231, the state of the desiccant 231 can be detected more directly.
  • the oil detection sensor 14 is provided in the pipe immediately downstream of the air dryer 11 as shown in FIG. 8, but the position of the oil detection sensor 14 is the air dryer. 11 is not particularly limited as long as it is downstream of the desiccant 231.
  • the oil detection sensor 14 oil mist sensor 141
  • the oil detection sensor 14 may be provided in the vicinity of the outlet 212 (FIG. 7) of the air dryer 11, or an air tank (not shown) provided in the supply path 106 or the supply path 106.
  • An oil detection sensor 14 may be provided in the inside.
  • the configuration including the oil mist sensor 141 as the oil detection sensor 14 has been described as an example.
  • a sensor that detects contact with liquid oil. May be provided.
  • this case will be described as a fourth embodiment.
  • FIG. 9 is a cross-sectional view illustrating a configuration example of an air dryer 11A according to the fourth embodiment.
  • An air dryer 11A shown in FIG. 9 is a device used in place of the air dryer 11 described above.
  • the air dryer 11 ⁇ / b> A has a case 20 ⁇ / b> A configured by fixing the cartridge cover 22 to the dryer main body 21 ⁇ / b> A, and allows compressed air flowing from an inlet 211 provided in the dryer main body 21 ⁇ / b> A to pass through the cartridge 23 in the cartridge cover 22. This removes moisture from the compressed air.
  • An oil filter 24 is disposed in the flow path of the compressed air from the inlet 211 to the cartridge 23, and the oil contained in the compressed air is collected by the oil filter 24.
  • the dryer body 21A of the air dryer 11A is provided with an oil pan 251 (oil reservoir).
  • the oil pan 251 is a recess that is located below the oil filter 24 and stores the oil collected and dropped by the oil filter 24.
  • the oil pan 251 is formed in the lower part of the inflow side air chamber 252 that stores the compressed air flowing in from the inflow port 211.
  • a drain bolt 253 is disposed at the bottom of the oil pan 251, and the oil in the oil pan 251 can be discharged by opening the drain bolt 253.
  • the oil pan 251 is provided with an oil level detection sensor 26 that detects that the level of the oil stored in the oil pan 251 has risen to a predetermined position.
  • the oil level detection sensor 26 is a sensor corresponding to the oil detection sensor 14 shown in FIG.
  • FIG. 10 is an enlarged cross-sectional view of a main part showing the configuration of the oil level detection sensor 26 in detail.
  • the oil level detection sensor 26 includes a substantially box-shaped sensor main body 261 and an electrode support portion 262 made of an insulator, and two electrodes 263 and 264 are erected from the electrode support portion 262.
  • the electrodes 263 and 264 are composed of rod-shaped conductors, and extend downward in parallel at a predetermined interval.
  • the sensor body 261 incorporates a detection circuit (not shown) that detects that the electrode 263 and the electrode 264 are conducted based on the electrical resistance value between the electrodes 263 and 264.
  • the sensor body 261 is connected to lead wires 267 and 268 that extend through the wall of the dryer body 21A, and these lead wires 267 and 268 are connected to the ECU 2 (FIG. 1).
  • the oil level detection sensor 26 monitors the electric resistance value between the electrodes 263 and 264, and the liquid level of the oil 27 rises in the figure.
  • the electrodes 263 and 264 are both immersed in the oil 27, and the electrical resistance value between the electrodes 263 and 264 changes significantly. Therefore, the oil level detection sensor 26 detects that the liquid level of the oil 27 has risen to the position L based on the electric resistance value between the electrodes 263 and 264, and the detection result is obtained via the lead wires 267 and 268. It outputs to ECU2.
  • an oil level detection sensor 26 having electrodes 263 and 264 is provided on an oil pan 251 provided at the bottom of the case 20 ⁇ / b> A in the air dryer 11, and the oil level detection sensor 26 detects the height of the liquid level of the oil 27. As a result, the amount of oil can be reliably detected.
  • the oil level detection sensor 26 is not configured to monitor the electric resistance value between the electrodes 263 and 264, and the electrode 263 and the lead wire 267, and the electrode 264 and the lead wire 268 are connected. By connecting, the electric resistance value between the electrodes 263 and 264 may be detected in the ECU 2.
  • each of the above-described embodiments shows one aspect to which the present invention is applied, and the present invention is not limited to the above-described embodiment.
  • the oil mist sensor 141 and the oil level detection sensor 26 as the oil detection sensor 14 are provided inside the cases 20 and 20A.
  • the present invention is not limited to this.
  • the oil detection sensor 14 may be provided inside the inflow pipe 111 of the air dryer 11, and the arrangement position thereof is particularly limited as long as the oil contained in the compressed air flowing toward the desiccant 231 can be detected.
  • the configuration including the display unit 3 that outputs the detection result of the oil detection sensor 14 has been described as an example. However, the output form can be arbitrarily changed.
  • the oil detection sensor 14 The detection result may be output by voice or the operation or position of the structure, or a signal indicating the detection result of the oil detection sensor 14 may be output from the ECU 2 to an external device by wire or wirelessly.
  • the detection result of the oil detection sensor 14 may be printed out under the control of the ECU 2.
  • the oil mist sensor 141 and the oil level detection sensor 26 are described as examples of the oil detection sensor 14, but in addition to this, the compressed air flowing into the case 20A is sucked in and compressed.
  • a sensor that collects oil in the air with a filter and detects the amount of the collected oil can be used as the oil detection sensor 14 and is not particularly limited as long as it can detect the oil.
  • FIG. 11 is a diagram showing a configuration of a compressed air supply system 1 according to a fifth embodiment to which the present invention is applied.
  • the ECU 2 controls the engine of the vehicle and the operations of the compressor 4 and the air dryer module 10 based on the vehicle speed of the vehicle on which the compressed air supply system 1 is mounted.
  • the ECU 2 receives information related to the vehicle running status such as information related to the vehicle speed of the vehicle and information related to the vehicle travel distance. Further, the ECU 2 receives information related to the operation status of the air dryer 11.
  • Loads 51 to 54 included in the vehicle are connected to the air dryer module 10.
  • a load 51 is a main brake (front wheel)
  • a load 52 is a main brake (rear wheel)
  • a load 53 is a parking brake
  • a load 54 is an accessory driven by compressed air such as a horn or a clutch drive mechanism.
  • Each of the loads 51 to 54 includes a compressed air circuit through which compressed air flows. The compressed air supplied to the load 51 is stored in the air tank 51a, and the compressed air supplied to the load 52 is stored in the air tank 52a.
  • the air dryer module 10 detects the air pressure in each part of the electromagnetic valves 101, 102, and 103 and the air dryer module 10 that are opened and closed under the control of the ECU 2, and outputs pressure detection values 121, 122, and 123 to the ECU 2. , 124 are provided.
  • the ECU 2 opens and closes the electromagnetic valves 101 to 103 based on the detection values of the pressure sensors 121 to 123.
  • the compressor 4 is connected to the engine via an auxiliary belt (not shown), and compresses air by the driving force of the engine.
  • the compressor 4 is controlled by air pressure, and a solenoid valve 101 is connected to this control line. Switching between a load state in which the compressor 4 compresses air and an unload state in which compression is not performed is performed by opening and closing the solenoid valve 101. It is done.
  • the discharge pipe 41 of the compressor 4 is connected to the inflow pipe 111 of the air dryer module 10, and the air dryer 11 is connected to the inflow pipe 111.
  • the air dryer 11 contains a desiccant 231 in the case 20, and removes foreign matters such as moisture contained in the compressed air discharged from the compressor 4 by the desiccant 231.
  • the air dryer 11 is provided with an exhaust valve 12. When the exhaust valve 12 is opened, the compressed air in the main body of the air dryer 11 is directly discharged to the outside from the exhaust port 112.
  • the exhaust valve 12 is controlled by air pressure, and a double check valve 104 is connected to the control line.
  • the exhaust valve 12 discharge valve
  • the exhaust valve 12 discharge valve
  • the exhaust valve 12 when the exhaust valve 12 is opened while the air pressure in the air dryer module 10 is sufficiently high, the compressed air stored in the downstream of the air dryer 11, for example, in the air tanks 51a and 52a, is air dryer. 11 is discharged from the exhaust port 112 by flowing backward in the case 20. At this time, air passing through the case 20 becomes super dry due to rapid pressure reduction, and moisture is taken away from the desiccant 231 in the case 20, so that the desiccant 231 is regenerated.
  • the regenerated desiccant 231 has recovered the adsorptive capacity to adsorb moisture, and can remove moisture from the compressed air.
  • This regeneration operation is performed by opening the solenoid valve 101 and the solenoid valve 102 by the ECU 2.
  • the regeneration operation of the desiccant 231 is performed at predetermined regeneration intervals (T0) set in advance. As will be described later, the regeneration interval (T0) is updated to an appropriate interval according to the state of the desiccant 231.
  • the output port 113 has an air tank 5 1 a is connected to the output port 114, and an air tank 52 a is connected to the output port 114.
  • a branch chamber 135 is connected to the supply path 106 downstream from the air dryer 11 via a pressure reducing valve 131.
  • the branch chamber 135 is connected to a supply path connected to the output port 113 and a supply path connected to the output port 114.
  • the supply path connected to the output port 113 is provided with a protective valve 141, and the supply path connected to the output port 114 is connected to the supply path connected to the output port 114.
  • a protection valve 142 is provided.
  • a pressure reducing valve 132 is connected to the branch chamber 135, and the downstream of the pressure reducing valve 132 branches into a supply path connected to the output port 115 and a supply path connected to the output port 116, and protective valves 143 and 144 are provided, respectively. ing.
  • Each of the protection valves 141 to 144 is arranged in parallel with the throttle and the check valve, and closes when a circuit through which compressed air flows is lost in the loads 51 to 54 connected to the corresponding output ports 113 to 116, respectively.
  • the protective valves 141 and 142 are in the open state when the compressed air circuits of the corresponding loads 51 and 52 are sufficiently filled with compressed air, respectively. Accordingly, the compressed air in the main brake air tanks 51 a and 52 a can be supplied from the branch chamber 135 through the pressure reducing valve 132 to the output port 115 through the supply path 136. For this reason, when the air pressure of the air tanks 51a and 52a is sufficiently high, the compressed brake can be supplied to the load 53 to release the parking brake.
  • the ECU 2 The command pressure of the electromagnetic valve 103 is applied to the check valve 137, the supply path 136 is closed by the check valve 137, and the compressed air supply path to the output port 115 is shut off.
  • the parking brake cannot be released, but it is preferable not to release the parking brake when the air tanks 51a and 52a used for the main brake have insufficient air pressure. Further, the parking brake can be released when the air pressure in the air tanks 51a and 52a is restored. Therefore, even if there is no air tank for the load 53, the parking brake can be stably operated by the compressed air.
  • FIG. 12 is a cross-sectional view illustrating a specific configuration example of the air dryer 11.
  • the case 20 of the air dryer 11 includes a dryer body 21 and a cartridge cover 22 that covers the dryer body 21 and is fixed by bolts 221.
  • the dryer body 21 is connected to an inflow pipe 111 (FIG. 11), and has an inlet 211 into which compressed air discharged from the discharge pipe 41 of the compressor 4 flows, and a supply path 106 (FIG. 11) through which compressed air is discharged from the case 20. ).
  • the desiccant 231 of the air dryer 11 is performed at a predetermined regeneration interval (T0) set in advance as described above.
  • the regeneration interval (T0) is determined, for example, every predetermined time, or by the integrated ventilation amount of the desiccant 231 or the travel distance (travel time) of the vehicle.
  • the desiccant 231 may be regenerated at intervals.
  • the dew point temperature when the dew point temperature is high, such as at the start of operation or when the outside air temperature decreases, it is preferable to perform regeneration at an interval shorter than a preset regeneration interval (T0).
  • a preset regeneration interval T0
  • the dew point temperature when the dew point temperature is low, such as in winter, regeneration may be performed at an interval longer than a preset regeneration interval (T0).
  • the desiccant 231 deteriorates with use, and the adsorptive capacity of the desiccant 231 gradually decreases.
  • the adsorptive capacity of the desiccant 231 when the adsorptive capacity of the desiccant 231 is decreased, it is preferable to gradually shorten the preset regeneration interval (T0) in accordance with the decrease in the adsorptive capacity.
  • the amount of air that is passed through the desiccant 231 during regeneration according to the state of the desiccant 231, that is, the amount of moisture adsorbed on the desiccant 231 (hereinafter, “regeneration air amount”). Need to be appropriate.
  • the volume of the air tank 51a and the air Depending on the temperature and humidity of the compressed air in the tank 51a, the time for opening the exhaust valve 12 (discharge valve) (regeneration time) and the pressure in the air tank 51a (regeneration pressure) need to be made appropriate. In this way, the regeneration interval, regeneration pressure, regeneration, etc. of the desiccant 231 depending on the amount of moisture adsorbed on the desiccant 231, the degree of deterioration of the desiccant 231, the pressure, humidity, temperature, etc. of the compressed air to be vented during regeneration.
  • the compressed air supply system 1 is provided with a humidity detection sensor 314 in the air tank 51a for storing the compressed air supplied to the load 51, and the desiccant 231 is based on the detection result of the humidity detection sensor 314.
  • the reproduction conditions are optimized, that is, optimized.
  • the humidity level of the compressed air and the state of the desiccant 231 such as the amount of moisture adsorbed by the desiccant 231 are associated in advance based on data obtained through experiments or the like. Information indicating the correspondence relationship is held in the ECU 2.
  • the ECU 2 can detect the state of the desiccant 231 such as the amount of water adsorbed by the desiccant 231 based on the humidity level of the compressed air in the air tank 51a. .
  • the desiccant 231 adsorbing capacity decreases as the desiccant 231 continues to be used, the humidity level of the compressed air after the desiccant 231 is regenerated gradually increases.
  • the degree of decrease in the adsorption capacity of the desiccant 231 and the degree of increase in the humidity level of the compressed air after regenerating the desiccant 231 are previously associated based on data obtained through experiments or the like.
  • the ECU 2 can detect the degree of decrease in the adsorption capacity of the desiccant 231 based on the increasing tendency of the humidity level after the desiccant 231 is regenerated.
  • the state of the desiccant 231 including the amount of moisture adsorbed by the desiccant 231 and the degree of deterioration of the adsorbability of the desiccant 231 will be referred to.
  • the humidity detection sensor 314 is connected to the ECU 2.
  • a signal indicating the detection result of the humidity detection sensor 314 is input to the ECU 2.
  • the detection result of the humidity detection sensor 314 indicates the relative humidity in the air tank 51a, and includes information on temperature.
  • the ECU 2 determines whether or not a preset regeneration timing has arrived (step S101).
  • the preset regeneration timing has passed a preset regeneration interval (T0) or a regeneration interval (Tn) updated by the following processing from the time when the desiccant 231 regeneration processing was performed previously. It is time. If it is determined in step S101 that it is the regeneration timing (step S101: Y), the ECU 2 then sets the humidity level of the compressed air in the air tank 51a in advance based on the detection result of the humidity detection sensor 314. It is determined whether or not the threshold level is exceeded (step S102).
  • the threshold level is set in advance based on a humidity level that requires regeneration of the desiccant 231.
  • step S101 If it is determined in step S101 that it is not the regeneration timing (step S101: N), the process also proceeds to step S102, and it is determined whether the humidity level of the compressed air in the air tank 51a is equal to or higher than a preset threshold level. Determine.
  • step S102 when it is determined that the humidity level of the compressed air in the air tank 51a has not reached the predetermined threshold level (step S102: N), the ECU 2 determines that the regeneration of the desiccant 231 is unnecessary, Returning to the determination in step S101. That is, even when the preset regeneration timing has come, if the humidity level of the compressed air has not reached the predetermined threshold level, the desiccant 231 is not regenerated.
  • step S102 determines whether the humidity level of the compressed air in the air tank 51a has reached a predetermined threshold level. If it is determined in step S102 that the humidity level of the compressed air in the air tank 51a has reached a predetermined threshold level (step S102: Y), then the ECU 2 confirms the regeneration status of the desiccant 231. (Step S103). In step S103, the state of the desiccant 231 is confirmed based on the integrated ventilation amount of the desiccant 231, the number of regenerations, the detection result of the humidity sensor 314 when it has been regenerated in the past, and the like.
  • step S104 the ECU 2 is based on the state of the desiccant 231 confirmed in step S103, the temperature and humidity level in the air tank 51a obtained from the detection result of the humidity detection sensor 314, the volume of the air tank 51a, and the like.
  • the optimum regeneration air amount for regenerating the desiccant 231 is calculated (step S104).
  • the ECU 2 acquires information related to the running state of the vehicle (step S105), and determines whether or not the desiccant 231 can be forcibly regenerated at present (step S106).
  • the ECU 2 determines whether or not the vehicle is currently stopped based on the information on the traveling state of the vehicle acquired in step S ⁇ b> 105, and the vehicle performs a brake assist operation. It is determined whether it is in the middle.
  • the ECU 2 determines that the desiccant 231 can be forcibly regenerated (step S106: Y).
  • the ECU 2 determines whether or not the pressure is sufficiently high (optimal pressure) to regenerate the desiccant 231 efficiently in an appropriate regeneration time based on the optimum air amount calculated in step S104 (Ste S107).
  • the process returns to step S105.
  • the ECU 2 closes the solenoid valve 101 and the solenoid valve 102 in order to put the compressor 4 into a load state, although illustration is omitted. Then, compressed air is supplied to the air tank 51a.
  • step S107 when it is determined in step S107 that the pressure in the air tank 51a is the optimum pressure (step S107: Y), the ECU 2 determines the optimum air amount calculated in step S104, the pressure in the air tank 51a, The solenoid valve 101 and the solenoid valve 102 are opened for a predetermined regeneration time calculated based on the volume of the air tank 51a to regenerate the desiccant 231 (step S108). And after letting the desiccant 231 be, ECU2 acquires the detection result of the humidity detection sensor 314 (step S109).
  • the ECU 2 determines whether or not the humidity level of the compressed air in the air tank 51a has decreased to a preset normal humidity level based on the detection result of the humidity detection sensor 314 acquired in step S109 (step S110).
  • the normal humidity level is set to a reference value for determining whether or not the adsorptive capacity required for the desiccant 231 has been recovered by regeneration.
  • step S110 If it is determined in step S110 that the humidity level of the compressed air in the air tank 51a has decreased to a preset normal humidity level (step S110: Y), then the regenerated humidity level tends to increase. It is determined whether or not (step S111).
  • the determination in step S110 is performed by comparing the detection result of the humidity detection sensor 314 acquired in step S109 with the detection result of the humidity detection sensor 314 after regenerating the desiccant 231 in the past.
  • step S110 determines whether the humidity level of the compressed air in the air tank 51a has been lowered to the preset normal humidity level (step S110: N).
  • a preset regeneration interval (Tn-1) The playback interval (Tn) obtained by shortening by a preset interval (a) is set as a new playback interval, and the process proceeds to step S101.
  • the interval (a) is set based on, for example, a preferable time for shortening the regeneration interval (T0), an integrated ventilation amount, a travel distance, and the like.
  • step S111 when it is determined in step S111 that the humidity level after regeneration tends to increase (step S111: Y), the process proceeds to step S112, the preset regeneration interval is shortened, and the regeneration frequency of the desiccant 231 is increased. To increase.
  • n represents the number of times the reproduction interval (T0) has been updated, and n is an integer of 1 or more.
  • step S112 after updating the reproduction interval, the process returns to step S101 and the above-described processing is repeated. Further, when the humidity level of the compressed air in the regenerated air tank 51a is lowered to the normal value level (step S110: Y) and the humidity level of the compressed air after the regeneration does not show an increasing tendency (step S111: N). The above process is terminated. In this case, when the reproduction timing is updated, the processing may be terminated after the reproduction timing is returned to the initial value (T0). Although not shown, it goes without saying that the process may be repeated by returning to step S101 to regenerate the desiccant 231.
  • the compressed air supply system 1 includes the compressor 4 mounted on the vehicle, and the air dryer module 10 that supplies the compressed air discharged from the compressor 4 to the load of the vehicle is connected to the compressor 4.
  • the air dryer 11 that removes foreign matters such as moisture contained in the compressed air is provided in the line
  • the humidity detection sensor 314 is provided in the air tank 51 a that stores the compressed air supplied to the load 51, and the detection result of the humidity detection sensor 14
  • the state of the desiccant 231 is detected, and the regeneration condition is optimized according to the state of the desiccant 231.
  • step S101 and step S102 when the humidity level of the compressed air in the air tank 51a is less than the threshold level based on the detection result of the humidity detection sensor 314 even when the regeneration timing has arrived. Since the desiccant 231 is not regenerated, it is possible to prevent the desiccant 231 from being unnecessarily regenerated. Even before the regeneration timing arrives, if the detection result of the humidity detection sensor 314 indicates a threshold level or higher, the desiccant 231 is regenerated, so that it depends on the state of the desiccant 231 or the state of the outside air. Thus, it is possible to accurately determine whether or not the desiccant 231 needs to be regenerated.
  • the optimum regeneration air amount is calculated according to the state of the desiccant 231 or the state of the outside air, it is possible to prevent the compressed air from being exhausted to the outside air when the desiccant 231 is regenerated. it can. Further, when the pressure in the air tank 51a does not reach the optimum pressure, the desiccant 231 is regenerated after increasing the pressure, so that the desiccant 231 can be efficiently regenerated.
  • the humidity detection sensor 314 is used to detect the amount of moisture adsorbed by the desiccant 231 and the degree of decrease in the adsorption capacity of the desiccant 231 and monitor the increasing tendency of the humidity level after regeneration. Therefore, it is possible to determine whether the humidity level of the compressed air is high due to insufficient regeneration, or whether the desiccant 231 has deteriorated to an extent that requires replacement. It can also be judged.
  • the humidity level of the compressed air in the air tank 51a is not affected by external factors and is stable.
  • the humidity detection sensor 14 is provided in the air tank 51a, the humidity level of the compressed air after passing through the desiccant 231 can be accurately detected. For this reason, according to the fifth embodiment, it is possible to accurately determine the deterioration of the desiccant 231 based on the detection result of the humidity detection sensor 314 after the desiccant 231 is regenerated.
  • the humidity detection sensor 314 is provided in the air tank 51a.
  • the humidity detection sensor 314 may be provided in the air tank 52a, and the air tank 51a and the air tank 52a.
  • a humidity detection sensor 314 may be provided on both sides. Since such an air tank 51a, 52a for supplying compressed air to the brake is provided in any vehicle, any vehicle can be provided by providing a humidity detection sensor 314 in the air tank 51a, 52a.
  • the present invention can also be easily applied to a compressed air supply system mounted on the vehicle.
  • the drying agent 231 when the drying agent 231 is regenerated, the compressed air stored in the air tank 51a is used.
  • the compressed air stored in the air tank 52a may be used.
  • the compressed air stored in the air tanks 51a and 52a may be used, and is not particularly limited.
  • FIG. 14 is a diagram showing a configuration of a compressed air supply system 200 according to the sixth embodiment.
  • the same components as those in the fifth embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the configuration in which the humidity detection sensor 314 is provided in the air tank 51a that stores the compressed air supplied to the load 51 has been described.
  • the branch branched from the supply path 106 The tube 107 is provided with a humidity detection sensor 315.
  • the humidity detection sensor 315 detects the humidity level and temperature of the compressed air in the air dryer module 10 by the humidity detection sensor 315, and is substantially the same as the flowchart shown in FIG.
  • the regeneration treatment of the desiccant 231 can be performed.
  • the state of the desiccant 231 such as the amount of moisture adsorbed by the desiccant 231 and the degree of deterioration of the desiccant 231 is detected.
  • the regeneration conditions such as the regeneration interval, regeneration pressure, and regeneration time of the desiccant 231 can be made appropriate.
  • the above-described fifth embodiment and sixth embodiment each show one aspect to which the present invention is applied, and the present invention is not limited to the above-described embodiment.
  • the humidity detection sensors 314 and 315 are provided in the air tank 51a or the branch pipe 107 branched from the supply path 106.
  • the positions where the humidity detection sensors are provided are limited to these arrangements. It is not something.
  • a humidity detection sensor may be provided downstream of the desiccant 231 inside the air dryer 11. That is, the arrangement of the humidity detection sensor is not particularly limited as long as it is a position downstream of the desiccant 231 and capable of detecting the humidity of the compressed air after passing through the desiccant 231.
  • FIG. 15 is a diagram showing a configuration of a compressed air supply system 1 according to a seventh embodiment to which the present invention is applied.
  • the ECU 2 controls the engine of the vehicle and the operations of the compressor 4 and the air dryer module 10 based on the vehicle speed of the vehicle on which the compressed air supply system 1 is mounted. Further, a temperature sensor 5 is connected to the ECU 2, and information indicating the temperature detected by the temperature sensor 5 is input.
  • the temperature sensor 5 is a temperature sensor that is disposed in a portion that comes into contact with the outside air of the vehicle, for example, between a mechanism part outside the vehicle body, and is specifically composed of a thermistor or a thermocouple. The corresponding voltage value is output.
  • the temperature sensor 5 is connected to, for example, an ECU that controls an engine or the like in the vehicle, and the outside air temperature detected using the temperature sensor 5 under the control of the ECU is displayed on a speedometer unit (not shown) or the like.
  • the exhaust valve 12 When the exhaust valve 12 is opened while the air pressure in the air dryer module 10 is sufficiently high, the compressed air stored on the downstream side of the air dryer 11 (for example, in the supply passage 106 and the air tanks 51a and 52a) The air dryer 11 flows backward through the case 20 and is discharged from the exhaust port 112. At this time, air passing through the case 20 becomes super dry due to rapid pressure reduction, and moisture is taken away from the desiccant 231 in the case 20, so that the desiccant 231 is regenerated.
  • the regenerated desiccant 231 has recovered the adsorptive capacity to adsorb moisture, and can remove moisture from the compressed air.
  • This regeneration operation is performed by opening the solenoid valve 101 and the solenoid valve 102 by the ECU 2. For example, the ECU 2 performs the regeneration operation at every predetermined time set in advance, predicts the state of the desiccant 231 from the air flow rate in the air dryer 11, and performs the regeneration operation based on the prediction.
  • the case 20 of the air dryer 11 includes a dryer body 21 and a cartridge cover 22 that covers the dryer body 21 and is fixed by bolts 221.
  • the dryer body 21 is connected to an inflow pipe 111 (FIG. 15), and has an inlet 211 into which compressed air discharged from the discharge pipe 41 of the compressor 4 flows, and a supply path 106 (FIG. 15) through which compressed air is discharged from the case 20. ).
  • water of dew condensation water generated by dew condensation may accumulate inside the case 20. If the vehicle is stopped (parked) for a long time in the cold season, water accumulated in the case 20 may be frozen, and there is a concern about damage of each part due to this freezing. For this reason, conventionally, the exhaust valve 12 is opened when the vehicle is stopped, and the moisture in the case 20 is discharged to the outside together with the compressed air.
  • the air dryer module 10 according to the seventh embodiment when the outside air temperature of the vehicle is detected by the temperature sensor 5 connected to the ECU 2 and the outside air temperature falls below a preset temperature, the control of the ECU 2 is performed. Thus, the electromagnetic valve 101 is opened for a predetermined time, and a discharge operation for discharging moisture together with the compressed air to the outside of the case 20 is performed.
  • FIG. 16 is a flowchart showing the operation of the air dryer module 10 including the discharging operation.
  • the ECU 2 detects that the ignition switch of the vehicle has been turned off (step S1; Yes)
  • the ECU 2 detects the outside air temperature by acquiring the output voltage of the temperature sensor 5 (step S2).
  • the ECU 2 determines whether or not the detected outside air temperature is less than 0 degrees Celsius (step S3), and when the outside air temperature is less than 0 ° C. (step S3; Yes), the electromagnetic valve 101 is turned on.
  • a regeneration operation for opening the valve for a predetermined time is performed (step S4), and the moisture accumulated in the case 20 by this regeneration operation is discharged from the exhaust valve 12 together with the compressed air.
  • step S5 shifts each part of the compressed air supply system 1 to a stopped state and stops its own operation.
  • step S5 when the outside air temperature detected by the temperature sensor 5 is 0 degree Celsius or higher (step S3; No), the operation is stopped as it is in step S5.
  • the compressed air supply system 1 includes the compressor 4 mounted on the vehicle, and the air dryer module 10 that supplies the compressed air discharged from the compressor 4 to the load of the vehicle is provided in the discharge line of the compressor 4.
  • An air dryer 11 that removes foreign substances such as moisture contained in the compressed air, and an exhaust valve 12 that discharges moisture and the like accumulated in the air dryer 11 together with the compressed air are detected by the ECU 2 to detect the temperature.
  • the exhaust valve 12 is opened to discharge moisture and the like accumulated in the air dryer 11 to the outside. For this reason, only when there is a possibility that the moisture in the air dryer 11 is frozen, the moisture accumulated in the air dryer 11 is discharged to the outside together with the compressed air. The amount of compressed air consumed can be reduced.
  • the exhaust valve 12 is opened so that moisture accumulated in the air dryer 11 is discharged to the outside.
  • the discharging operation is not performed during the operation of the vehicle or the vehicle.
  • the regeneration operation of the desiccant 231 is performed under the control of the ECU 2, and the moisture in the case 20 is discharged together with the compressed air during the regeneration operation. Water can be removed without opening the valve 12. For this reason, since the frequency
  • the ECU 2 is connected to a temperature sensor 5 mounted on the vehicle, and when the outside air temperature detected by the temperature sensor 5 falls below a preset temperature, the exhaust valve 12 is opened to open the air dryer. Since the water accumulated in 11 is discharged to the outside, the possibility of freezing is determined based on the outside air temperature, and the water is discharged together with the compressed air only when there is a risk of freezing, thus preventing freezing. However, it is possible to suppress the consumption of compressed air related to the discharge of moisture.
  • step S3 when the outside air temperature when the ignition switch of the vehicle is switched off is 0 ° C. or higher (step S3; No), the ECU 2 periodically stops after stopping in step S5.
  • the ECU 2 may monitor the outside air temperature, and when the outside air temperature becomes less than 0 ° C., the moisture accumulated in the air dryer 11 may be discharged to the outside.
  • the ECU 2 and the temperature sensor 5 are energized every predetermined time, and the ECU 2 is activated. It is determined whether or not the outside air temperature is less than 0 ° C. based on the output voltage of the temperature sensor 5.
  • the operation is stopped again.
  • Each part of the supply system 1 is activated and the solenoid valve 101 is opened for a predetermined time by the same operation as in step S4.
  • the parts including the ECU 2 are stopped. May be.
  • the ECU 2 may be activated at regular intervals to perform the operations of steps S2 to S5 in FIG.
  • the outside air temperature is 0 ° C. or higher when the ignition switch is turned off, and the outside air temperature subsequently drops below 0 ° C., the moisture accumulated in the air dryer 11 is prevented from freezing. it can.
  • the temperature sensor 5 provided at a position in contact with the outside air in the vehicle is connected to the ECU 2 and the ECU 2 detects the outside air temperature using the temperature sensor 5.
  • the temperature sensor 5 is connected to an ECU that controls an engine or the like in the vehicle, and information indicating the outside air temperature detected by the ECU using the temperature sensor 5 is input from the ECU to the ECU 2. You may make it do.
  • movement is performed by control of ECU2, and a water
  • the present invention is not limited to this.
  • the temperature detection is performed a plurality of times every predetermined time, and the average value or the integrated value of the detected temperatures or the change rate of the temperature change is obtained and obtained.
  • the reproduction operation may be performed when the set value corresponds to a preset condition.
  • the temperature may be detected by a temperature sensor provided in the air dryer module 10, and the regenerating operation may be performed based on whether or not the detected temperature is lower than a preset temperature.
  • the temperature sensor in this case may detect the temperature of the compressed air in a flow path through which the compressed air flows in the air dryer module 10, for example, and the arrangement location in this case is the downstream side of the air dryer 11 such as the supply path 106. However, it may be on the upstream side, may be the air dryer 11 itself, a branch pipe branched from the existing pipe, and a temperature sensor may be provided in this branch pipe. In addition, a temperature sensor that detects the outside air temperature of the air dryer module 10 may be provided, and the location of the temperature sensor is not particularly limited, for example, a pipe constituting the air dryer module 10 or the outer surface of the air dryer 11.
  • the air dryer module 10 when a humidity sensor for detecting the humidity of the compressed air is provided on the downstream side of the air dryer 11 to determine the state of the desiccant 231, the temperature detected by the humidity sensor is determined by the ECU 2. And the regenerating operation may be performed based on this temperature.
  • the humidity sensor for detecting the state of the desiccant 231 can be effectively used to prevent freezing of condensed water and the like.
  • the load connected to the air dryer module 10 is not limited to the main brake device, the parking brake, and the accessories, and any device that uses compressed air may be connected.
  • the configuration can be arbitrarily changed.
  • the vehicle to which the compressed air supply device for a vehicle of the present invention is applied is not particularly limited, and may be any of a large vehicle, a small vehicle, a special vehicle, a towing vehicle, a two-wheeled vehicle, or a three-wheeled vehicle.
  • the form is arbitrary.
  • This regeneration operation is performed at a predetermined regeneration timing such as when the electromagnetic valve 102 is opened by the ECU 2 at a preset time or when the air pressure in the air dryer module 10 satisfies a preset condition. It is executed at (predetermined timing).
  • the desiccant 231 of the air dryer 11 deteriorates with use, and the adsorptive capacity after performing regeneration gradually decreases.
  • One cause of the deterioration of the desiccant 231 is that the compressor oil that flows into the air dryer 11 from the discharge pipe 41 of the compressor 4 adheres to the surface of the desiccant 231.
  • the desiccant 231 is made of a porous material such as silica gel. When oil adheres to the surface of the desiccant 231, countless holes on the surface of the desiccant 231 are blocked with oil, and the amount of moisture adsorbed decreases.
  • the humidity detection sensor 314 is provided in the air tank 51a for storing the compressed air supplied to the load 51, and the desiccant 231 is regenerated by the humidity detection sensor 314. The humidity of the compressed air is detected, and the replacement time of the desiccant 231 can be determined based on the detection result.
  • the humidity detection sensor 314 is connected to the ECU 2, and a signal indicating the detection result of the humidity detection sensor 314 is input to the ECU 2.
  • ECU2 acquires the information regarding the humidity level of the compressed air in the air tank 51a based on the signal which shows the input detection result.
  • the detection result of the humidity detection sensor 314 indicates the relative humidity in the air tank 51a, and includes information on temperature.
  • the ECU 2 includes a display unit 3 (output unit) that displays the detection result of the humidity detection sensor 314.
  • the ECU 2 acquires a detection result based on the input signal.
  • the configuration of the display unit 3 includes an LED that is switched on / off / flashing according to a detection result, and a liquid crystal display panel that displays the detection result with characters, symbols, and the like.
  • the display unit 3 may be mounted together with the speedometer of the vehicle, or may be disposed in the vicinity of the compressor 4 and the air dryer 11 in the vehicle.
  • the display unit 3 allows a driver, a mechanic to maintain the vehicle, an administrator who manages the vehicle, etc. to visually recognize the detection result of the humidity detection sensor 314, and to appropriately replace the desiccant 231. Can be judged.
  • the deterioration of the desiccant 231 can be determined based on the detection result of the humidity detection sensor 314.
  • the deterioration of the desiccant 231 means that even if the desiccant 231 is regenerated, the compressed air supply system 1 cannot recover the adsorptive capacity required for the desiccant 231 to a desired level. It means becoming.
  • the ECU 2 determines whether or not a preset regeneration timing has arrived (step S201). If it is not currently the regeneration timing (step S201: N), then the ECU 2 determines whether the humidity level of the compressed air in the air tank 51a is equal to or higher than a preset threshold level based on the detection result of the humidity detection sensor 314. It is determined whether or not (step S202).
  • the threshold level is set in advance based on a humidity level that requires regeneration of the desiccant 231.
  • step S202: N When it is determined that the humidity level of the compressed air is less than the predetermined threshold level (step S202: N), the process returns to the determination of step S201. If it is determined that the humidity level is equal to or higher than the compressed air humidity level (step S202: N), the ECU 2 then checks the regeneration status of the desiccant 231 (step S203). In step S203, for example, the integrated ventilation amount of the air dryer 11 is confirmed. Next, the ECU 2 checks the running state of the vehicle (step S204), and determines whether or not the desiccant 231 can be regenerated at present based on the running state of the vehicle (step S205).
  • the ECU 2 determines whether or not the vehicle is currently stopped, and whether or not the pressure in the air tanks 51a and 52a is sufficient to regenerate the preset desiccant 231. In addition, it is determined whether or not the desiccant 231 can be regenerated based on whether or not the vehicle is performing a brake assist operation. Here, when the vehicle is not stopped and the pressure in the air tanks 51a and 52a is sufficient to regenerate the desiccant 231, and the vehicle is not in the brake assist operation, the desiccant 231 is used. It is determined that it can be reproduced (step S205: Y).
  • step S205 when it is determined that the desiccant 231 can be regenerated at present (step S205: Y), the ECU 2 opens the electromagnetic valve 101 and the electromagnetic valve 102 to set a predetermined predetermined value. Regardless of the regeneration timing, the desiccant 231 is regenerated (step S206). However, when it is determined in step S201 that a predetermined reproduction timing set in advance has arrived (step S201: Y), the running state is confirmed (step S204), and reproduction is possible (step S205: Y) Reprocessing of the desiccant 231 is performed (step S206).
  • step S206 after regenerating the desiccant 231, the ECU 2 determines whether or not the desiccant 231 has deteriorated based on the detection result of the humidity detection sensor 314 (step S207). Specifically, the ECU 2 determines whether or not the desiccant 231 has deteriorated based on whether or not the humidity level of the compressed air in the air tank 51a has decreased to a preset normal humidity level (step). S207).
  • the normal humidity level is set to a reference value for determining whether or not the adsorptive capacity required for the desiccant 231 has been recovered by regeneration.
  • step S207 If it is determined in step S207 that the humidity level of the compressed air has decreased to a preset normal humidity level (step S207: Y), it can be determined that the adsorptive capacity of the desiccant 231 has been recovered by regeneration. Therefore, the ECU 2 determines that the desiccant 231 has not deteriorated, outputs a determination result indicating that the desiccant 231 has not deteriorated, to the display unit 3, and the desiccant 231 has deteriorated on the display unit 3. Display corresponding to the case where it is not present is performed (step S208).
  • step S207 determines that the desiccant 231 has deteriorated, outputs a determination result indicating that the desiccant 231 has deteriorated, to the display unit 3, and the desiccant 231 has deteriorated on the display unit 3. Display corresponding to the case (step S209).
  • the ECU 2 functions as a deterioration determination unit that determines the deterioration of the desiccant 231.
  • step S207 when it is determined in step S207 that the humidity level of the compressed air has not been lowered to the preset normal humidity level (step S207: N), the detection result of the humidity detection sensor 314 and the traveling state of the vehicle are related. Based on the information and / or information on the operation status of the air dryer 11, it may be configured to determine whether or not the replacement time of the desiccant 231 has arrived.
  • the information related to the traveling state of the vehicle for example, information related to the traveling time of the vehicle is cited.
  • examples of the information regarding the operation status of the air dryer 11 include information regarding the integrated ventilation amount of the air dryer-11. However, the integrated ventilation amount is obtained from the ventilation amount (volume) of compressed air that has passed through the air dryer 11, the ventilation pressure, and the ventilation time.
  • the humidity level of the compressed air in the air tank 51a does not reach the normal humidity level even after the drying agent 231 is regenerated regardless of the predetermined regeneration timing set in advance.
  • the time has passed, or when the integrated ventilation amount of the air dryer 11 exceeds a predetermined amount the adsorption capacity of the desiccant 231 cannot be recovered by regeneration, and the desiccant 231 should be replaced. It can be determined that the deterioration has occurred. And it is good also as a structure which outputs the determination result to the display part 3, and notifies the driver
  • the desiccant 231 is regenerated, and based on the change in the humidity level of the compressed air in the air tank 51a, the regeneration of the desiccant 231 is insufficient or the degree of deterioration of the desiccant 231 is dry It may be configured to determine whether or not the agent 231 needs to be replaced.
  • the humidity level of the compressed air in the air tank 51a does not reach the normal humidity level even after the desiccant 231 is regenerated even though the integrated ventilation amount of the air dryer 11 does not exceed the predetermined amount.
  • the desiccant 231 is regenerated again (or a plurality of times) and the regeneration of the desiccant 231 is insufficient based on the change in the humidity level of the compressed air in the air tank 51a. It is good also as a structure which discriminate
  • step S201 when the preset reproduction timing has arrived (step S201: Y), the process proceeds to step S204. However, the process may proceed to determination in step S202. Even when the preset regeneration timing arrives, if the humidity level of the compressed air is less than the threshold level, it may be determined that it is not necessary to regenerate the desiccant 231 and the number of regenerations may be optimized.
  • the ECU 2 switches the compressor 4.
  • the solenoid valve 101 and the solenoid valve 1 are set to be in a loaded state. 02 is preferably closed to sufficiently increase the air pressure in the air tanks 51a and 52a.
  • the compressed air supply system 1 includes the compressor 4 mounted on the vehicle, and the air dryer module 10 that supplies the compressed air discharged from the compressor 4 to the vehicle load is a compressor. 4, an air dryer 11 for removing foreign substances such as moisture contained in the compressed air is provided in the discharge line of the compressor 4, and a humidity detection sensor 314 is installed in the air tank 51 a for storing the compressed air supplied to the load 51.
  • the display unit 3 that determines deterioration of the desiccant 231 based on the detection result of the humidity detection sensor 314 after the desiccant 231 is regenerated, and outputs the determination result. By doing so, the driver and mechanic of the vehicle can know the degree of deterioration of the desiccant 231 accurately, The necessity of 231 exchange can be appropriately determined.
  • the desiccant 231 when the humidity level detected by the humidity detection sensor 314 is equal to or higher than the threshold level, the desiccant 231 is regenerated and forcibly regenerated regardless of the predetermined regeneration timing. Based on the detection result of the humidity detection sensor 314, the deterioration of the desiccant 231 is determined. For this reason, it can be prevented that the desiccant 231 is deteriorated when the humidity level of the compressed air is high due to insufficient regeneration of the desiccant 231.
  • the humidity level of the compressed air in the air tank 51a is not affected by external factors and is stable.
  • the humidity detection sensor 14 since the humidity detection sensor 14 is provided in the air tank 51a, the humidity level of the compressed air after passing the desiccant 231 can be detected accurately. Therefore, according to the eighth embodiment, it is possible to accurately determine the deterioration of the desiccant 231 based on the detection result of the humidity detection sensor 314 after the desiccant 231 is regenerated.
  • the humidity detection sensor 314 is provided in the air tank 51a.
  • the humidity detection sensor 314 may be provided in the air tank 52a, and the air tank 51a and the air tank 52a A humidity detection sensor 314 may be provided on both sides.
  • any vehicle can be provided by providing a humidity detection sensor 314 in the air tank 51a, 52a.
  • the present invention can also be easily applied to a compressed air supply system mounted on the vehicle.
  • the configuration in which the humidity detection sensor 314 is provided in the air tank 51a for storing the compressed air supplied to the load 51 has been described.
  • the humidity detection sensor 315 is provided in the branch pipe 107 branched from the line.
  • the deterioration determination process of the desiccant 231 can be performed using the detection result of the humidity detection sensor 16 in substantially the same manner as the flowchart shown in FIG.
  • the humidity detection sensor 315 is provided downstream of the desiccant 231, and the deterioration of the desiccant 231 is detected based on the detection result of the humidity detection sensor 315 after the desiccant 231 is regenerated. Since the display unit 3 for determining and outputting the determination result is provided, by outputting the detection result, the driver or mechanic of the vehicle can control the desiccant 231 as in the eighth embodiment. The degree of deterioration can be accurately known, and it is possible to appropriately determine whether or not the desiccant 231 needs to be replaced.
  • the humidity detection sensors 314 and 315 are provided in the air tank 51a or the branch pipe 107 branched from the supply path 106.
  • the positions where the humidity detection sensors are provided are limited to these arrangements. It is not something.
  • a humidity detection sensor may be provided downstream of the desiccant 231 inside the air dryer 11, and the humidity of the compressed air after passing through the desiccant 231 can be detected downstream of the desiccant 231. If it is a position, arrangement
  • the configuration including the display unit 3 that outputs the detection results of the humidity detection sensors 314 and 315 has been described as an example.
  • the output form can be arbitrarily changed, for example, humidity detection
  • the detection results of the sensors 314 and 315 may be output by voice or the operation or position of the structure.
  • a signal indicating the detection results of the humidity detection sensors 314 and 315 is output from the ECU 2 to an external device by wire or wirelessly.
  • the detection results of the humidity detection sensors 314 and 315 may be printed out under the control of the ECU 2.
  • the ECU 2 has been described as determining whether the desiccant 231 has deteriorated or whether it needs to be replaced.
  • the detection of the humidity detection sensors 314 and 315 is simply performed by comparison with the normal value level. The detection result may be displayed when the result is higher than the normal value level.
  • FIG. 15 is a diagram showing a configuration of a compressed air supply system 1 according to a tenth embodiment to which the present invention is applied.
  • the compressed air supply system 1 vehicle compressed air supply device
  • FIG. 15 is a device that supplies compressed air for driving to, for example, an air brake device mounted on a large vehicle such as a truck or a bus.
  • Compressor 4 air compressor
  • ECU 2 that controls the compressor 4
  • the dryer module 10 is provided.
  • the ECU 2 controls the engine of the vehicle and the operations of the compressor 4 and the air dryer module 10 based on the vehicle speed of the vehicle on which the compressed air supply system 1 is mounted.
  • a temperature sensor (outside air temperature detection sensor) 5 is connected to the ECU 2 and information indicating the temperature detected by the temperature sensor 5 is input.
  • the temperature sensor 5 is a temperature sensor that is disposed in a portion that comes into contact with the outside air of the vehicle, for example, between a mechanism portion outside the vehicle body, and is specifically composed of a thermistor or a thermocouple. The corresponding voltage value is output. Further, the ECU 2 is input with information related to the vehicle running speed, such as information related to the vehicle speed of the vehicle, information related to the vehicle travel distance, and information related to the operating status of the air dryer 11.
  • the air dryer module 10 is connected to loads 51 to 54 included in the vehicle.
  • Each of the loads 51 to 54 includes a compressed air circuit through which compressed air flows.
  • the loads 51 to 53 constitute the brake device described above.
  • the load 51 is a main brake (front wheel)
  • the load 52 is a main brake (rear wheel)
  • the load 53 is a parking brake.
  • the load 54 is an accessory driven by compressed air such as a horn or a clutch drive mechanism.
  • the loads 51 and 52 (main brake) require a larger amount of air during operation than the other loads 53 and 54 (parking brakes and accessories). For this reason, air tanks 51a and 52a capable of temporarily storing compressed air dried by the air dryer module 10 are provided between the air dryer module 10 and the loads 51 and 52, respectively.
  • the air dryer module 10 detects the air pressure in each part of the electromagnetic valves 101, 102, and 103 and the air dryer module 10 that are opened and closed under the control of the ECU 2, and outputs pressure detection values 121, 122, and 123 to the ECU 2. , 124 are provided.
  • the ECU 2 opens and closes the electromagnetic valves 101 to 103 based on the detection values of the pressure sensors 121 to 123.
  • the compressor 4 is connected to the engine via an auxiliary belt (not shown), and compresses air by the driving force of the engine.
  • the compressor 4 is controlled by air pressure, and a solenoid valve 101 is connected to this control line. Switching between a load state in which the compressor 4 compresses air and an unload state in which compression is not performed is performed by opening and closing the solenoid valve 101. It is done.
  • the discharge pipe 41 of the compressor 4 is connected to the inflow pipe 111 of the air dryer module 10, and the air dryer 11 is connected to the inflow pipe 111.
  • the air dryer 11 contains a desiccant 231 in the case 20, and removes foreign matters such as moisture contained in the compressed air discharged from the compressor 4 by the desiccant 231.
  • An exhaust valve 12 is provided between the compressor 4 and the air dryer 11, and when the exhaust valve 12 is opened, the compressed air in the main body of the air dryer 11 is discharged directly from the exhaust port 112 to the outside.
  • the exhaust valve 12 is controlled by air pressure, and a double check valve 104 is connected to the control line.
  • the exhaust valve 12 is normally closed and is opened only when air pressure is applied from the double check valve 104.
  • the air dryer module 10 includes a governor 13 that is mechanically operated by air pressure to control opening and closing of the exhaust valve 12.
  • the governor 13 operates according to the air pressure in the supply passage 106 on the downstream side of the air dryer 11 and opens when the air pressure exceeds a predetermined value to apply air pressure to the double check valve 104.
  • the electromagnetic valve 102 is opened and closed under the control of the ECU 2, and applies the air pressure of the supply passage 106 to the double check valve 104 in the valve open state.
  • the double check valve 104 opens the exhaust valve 12 by applying air pressure when either the governor 13 or the electromagnetic valve 102 is opened. Therefore, the exhaust valve 12 is opened when the air pressure in the supply path 106 is higher than a predetermined value and when the electromagnetic valve 102 is opened, and the compressed air is discharged from the exhaust port 112.
  • the air dryer module 10 when the exhaust valve 12 is opened while the air pressure in the air dryer module 10 is sufficiently high, the air is stored in the downstream side of the air dryer 11 (for example, in the supply passage 106 and the air tanks 51a and 52a).
  • the compressed air flows back through the case 20 of the air dryer 11 and is discharged from the exhaust port 112.
  • air passing through the case 20 becomes super dry due to rapid pressure reduction, and moisture is taken away from the desiccant 231 in the case 20, so that the desiccant 231 is regenerated.
  • the regenerated desiccant 231 has recovered the adsorptive capacity to adsorb moisture, and can remove moisture from the compressed air.
  • This regeneration operation is performed at a predetermined regeneration timing such as when the electromagnetic valve 102 is opened by the ECU 2 at a preset time or when the air pressure in the air dryer module 10 satisfies a preset condition. It is executed at (predetermined timing).
  • the ECU 2 and the electromagnetic valve 102 function as a regeneration unit that regenerates the desiccant 231 of the air dryer 11.
  • the air dryer module 10 includes an output port 113 to which a load 51 (front brake main brake) is connected, an output port 114 to which a load 52 (rear wheel main brake) is connected, and an output to which a load 53 (parking brake) is connected. A port 115 and an output port 116 to which a load 54 (accessories) is connected are provided. An air tank 51a is connected to the output port 113, and an air tank 52a is connected to the output port 114.
  • a branch chamber 135 is connected to the supply path 106 downstream from the air dryer 11 via a pressure reducing valve 131.
  • the branch chamber 135 is connected to a supply path connected to the output port 113 and a supply path connected to the output port 114.
  • the supply path connected to the output port 113 is provided with a protective valve 141, and the supply path connected to the output port 114 is connected to the supply path connected to the output port 114.
  • a protection valve 142 is provided.
  • a pressure reducing valve 132 is connected to the branch chamber 135, and the downstream of the pressure reducing valve 132 branches into a supply path connected to the output port 115 and a supply path connected to the output port 116, and protective valves 143 and 144 are provided, respectively. ing.
  • Each of the protection valves 141 to 144 is arranged in parallel with the throttle and the check valve, and closes when a circuit through which compressed air flows is lost in the loads 51 to 54 connected to the corresponding output ports 113 to 116, respectively.
  • a pressure reducing valve 133 is disposed on the downstream side of the protective valve 144 in the supply path that connects the pressure reducing valve 132 to the output port 116, and the compressed air that has been decompressed is supplied to the load 54.
  • a supply path 136 that bypasses the protection valve 143 and is connected to the output port 115 extends in the supply path between the pressure reducing valve 132 and the protection valve 143.
  • the supply path 136 includes a check valve 137 that prevents the backflow of compressed air from the output port 115 to the branch chamber 135, and a throttle 138 that is arranged in series with the check valve 137.
  • the pressure sensor 121 detects the air pressure in the supply path 106
  • the pressure sensor 122 detects the air pressure downstream of the protection valve 141, that is, the output port 113
  • the pressure sensor 123 detects the air pressure in the output port 114
  • the pressure sensor 124 Detects the air pressure at the output port 115.
  • the parking brake device of the vehicle corresponding to the load 53 is allowed to travel after the braking force is released by the air pressure.
  • the parking brake is configured to exert a braking force by expanding the brake shoe with the spring force during parking, and closes the brake shoe against the spring force by the air pressure supplied from the air dryer module 10 when released. It has become.
  • the load 53 of the tenth embodiment does not include an air tank for storing compressed air, the air dryer module 10 shown in FIG. 15 can reliably operate the load 53 without an air tank. is there.
  • the protection valves 141 and 142 are open when the compressed air circuits of the corresponding loads 51 and 52 are sufficiently filled with compressed air, respectively. Accordingly, the compressed air in the main brake air tanks 51 a and 52 a can be supplied from the branch chamber 135 through the pressure reducing valve 132 to the output port 115 through the supply path 136. For this reason, when the air pressure in the air tanks 51a and 52a is sufficiently high, the parking brake can be released by supplying compressed air to the load 53.
  • the ECU 2 opens the solenoid valve 103, the command pressure of the solenoid valve 103 is given to the check valve 137, and the supply path 136 is closed by the check valve 137.
  • the compressed air supply path to the output port 115 is blocked.
  • the parking brake cannot be released, but it is preferable not to release the parking brake when the air tanks 51a and 52a used for the main brake have insufficient air pressure. Further, the parking brake can be released when the air pressure in the air tanks 51a and 52a is restored. Therefore, even if there is no air tank for the load 53, the parking brake can be stably operated by the compressed air.
  • FIG. 12 is a cross-sectional view illustrating a specific configuration example of the air dryer 11.
  • the case 20 of the air dryer 11 includes a dryer body 21 and a cartridge cover 22 that covers the dryer body 21 and is fixed by bolts 221.
  • the dryer main body 21 is connected to an inflow pipe 111 (FIG. 15), and has an inlet 211 into which compressed air discharged from the discharge pipe 41 of the compressor 4 flows, and a supply path 106 (see FIG. And an outlet 212 connected to 15).
  • a cartridge 23 is accommodated in a hollow cartridge cover 22 fixed to the upper part of the dryer body 21.
  • the cartridge 23 is fixed to the dryer main body 21 by bolts 235 so that compressed air does not leak out of the cartridge 23.
  • a space is formed inside the cartridge 23, and this space is filled with a granular desiccant 231.
  • a check valve 232 that discharges compressed air to the outside of the cartridge 23 is provided at the upper end of the cartridge 23.
  • a filter 234 and a spring 233 that press the desiccant 231 from the check valve 232 side are provided below the check valve 232. It is arranged.
  • an oil filter 24 that collects oil mist in the circulating air is disposed below the cartridge 23 in order to prevent oil from entering the space in which the desiccant 231 is stored.
  • the compressed air that has flowed in from the inlet 211 of the desiccant 231 enters the inflow side air chamber 213 provided in the dryer main body 21, and further passes through a flow path (not shown) formed in the dryer main body 21 to the cartridge 23. Inflow.
  • the flow path in the dryer body 21 is connected to the oil filter 24, and the compressed air that has passed through the oil filter 24 reaches the desiccant 231.
  • the compressed air from which oil has been removed by the oil filter 24 and from which moisture has been adsorbed and removed by the desiccant 231 of the cartridge 23 exits the cartridge 23 through the check valve 232 and is provided in the cartridge cover 22. It passes through a flow path (not shown) and flows out of the dryer main body 21 from the outlet 212.
  • an exhaust valve 12 is provided in a flow path through which compressed air flows from the inlet 211 to the cartridge 23.
  • the exhaust valve 12 is a valve for discharging the compressed air in the case 20 to the outside as described above.
  • An exhaust pipe 215 is connected to the lower part of the exhaust valve 12, and a silencer 217 is accommodated in the exhaust pipe 215.
  • a collar 216 is connected to the lower end of the exhaust pipe 215, and a silencer 218 is also housed inside the collar 216.
  • the desiccant 231 of the air dryer 11 deteriorates with use, and the adsorptive capacity after performing regeneration gradually decreases.
  • the deterioration of the desiccant 231 means that even if the desiccant 231 is regenerated, the compressed air supply system 1 cannot recover the adsorptive capacity required for the desiccant 231 to a desired level. It means becoming.
  • One cause of the deterioration of the desiccant 231 is that the compressor oil that flows into the air dryer 11 from the discharge pipe 41 of the compressor 4 adheres to the surface of the desiccant 231.
  • the desiccant 231 is made of a porous material such as silica gel.
  • a humidity detection sensor is provided on the downstream side of the desiccant 231, the humidity of the compressed air after the desiccant 231 is regenerated is detected by the humidity detection sensor, and the detected value is compared with a predetermined threshold value.
  • the replacement time of the desiccant 231 can be determined.
  • the detection value of the humidity detection sensor differs greatly depending on the environment (for example, air flow rate and ambient temperature) of the mounting position of the sensor. In many cases, it may be difficult to accurately determine the replacement timing of the desiccant 231 based on the detection value of the sensor.
  • the threshold value can be changed and set according to the position where the humidity detection sensor is attached, and the detection of the humidity detection sensor is possible regardless of the attachment position of the humidity detection sensor.
  • the replacement time of the desiccant 231 can be accurately determined from the value.
  • FIG. 18 is a schematic diagram showing each position where the humidity detection sensor is attached.
  • the loads 51 and 52 are the main brakes as described above.
  • the main brakes include the brake valve 61 connected to the air tank 51a (51b) via the connecting pipe 60, and the connecting pipe 62 and the brake valve 61, respectively.
  • Front brake chambers 64a and 64b and rear brake chambers 65a and 65b connected via 63 are provided.
  • the brake valve 61 is provided with a brake pedal 61a for operating the brake valve 61. When the brake pedal 61a is depressed, the brake valve 61 is opened, and the compressed air in the air tank 51a (51b) is transferred to the front brake.
  • the brake is operated by driving each brake shoe (not shown) guided to the chambers 64a and 64b and the rear brake chambers 65a and 65b.
  • a humidity detection sensor 14 is disposed in a supply path 106 that connects the air dryer 11 and the air tank 51 a (51 b), and the humidity detection sensor 14 is connected to the ECU 2 via a harness 66.
  • a signal indicating the detection value of the humidity detection sensor 14 is input to the ECU 2, and the ECU 2 acquires information regarding the humidity of the compressed air in the supply path 106 based on the input signal indicating the detection value.
  • the detection value of the humidity detection sensor 14 indicates the relative humidity value of the air in the supply path 106 and includes information related to temperature.
  • the ECU 2 includes a display unit 67 that displays the detection value of the humidity detection sensor 14.
  • the display unit 67 As a specific configuration of the display unit 67, an LED that is switched on / off / flashing according to the detection value, and a detection value as a character And a liquid crystal display panel that displays with symbols or the like.
  • the display unit 67 may be mounted in the passenger compartment together with the speedometer of the vehicle, or may be disposed in the vicinity of the compressor 4 and the air dryer 11 in the vehicle. With this display unit 67, a driver, a mechanic who maintains the vehicle, an administrator who manages the vehicle, etc. can visually recognize the detection value of the humidity detection sensor 14, and the replacement time of the desiccant 231 is appropriate. Can be judged.
  • the humidity sensor 14 includes (1) the supply passage 106 that connects the air dryer 11 and the air tank 51a (51b), for example, (2) the tank central portion 70 of the air tank 51a (or 51b), (3) The tank inner surface 71 of the air tank 51a, (4) the brake valve 61, and (5) the connecting pipe 62 that connects the brake valve 61 and the front brake chamber 64a can be attached.
  • the detection value by the humidity detection sensor 14 varies greatly depending on the environment of the mounting position of the humidity detection sensor 14. Specifically, the detected humidity value varies greatly at a place where the air flow velocity is fast, and the detected humidity value is stable at a place where the air flow velocity is slow.
  • the humidity value detected by the influence of the outside air temperature is likely to fluctuate.
  • the humidity detection sensor 14 is provided at a position where the detected humidity value greatly fluctuates, the threshold value ⁇ for determining the deterioration of the desiccant 231 from the humidity value is a large value (for example, 80%). ).
  • the threshold value ⁇ when the humidity detection sensor 14 is provided at a position where the detected humidity value is stabilized is set to a value (for example, 60%) sufficiently smaller than the above-described threshold value ⁇ .
  • the threshold value ⁇ when the humidity detection sensor 14 is provided at this position is larger than the threshold value ⁇ .
  • a value smaller than the threshold value ⁇ (for example, 70%) is set.
  • the ECU 2 since the threshold value corresponding to the position is set in the ECU 2 according to the position where the humidity detection sensor 14 is attached, the ECU 2 compares the threshold value with the humidity value detected by the humidity detection sensor 14. Thus, regardless of the mounting position of the humidity detection sensor 14, it is possible to accurately determine the replacement time of the desiccant 231 from the humidity value detected by the humidity detection sensor 14.
  • threshold values ⁇ to ⁇ corresponding to the respective mounting positions (1) to (5) are stored in advance, and when the vehicle manufacturer or vehicle mechanic attaches the humidity detection sensor 14 to the vehicle, By selecting an attachment position and inputting it to the ECU 2, a threshold corresponding to the flow rate of the compressed air at the attachment position is set.
  • the humidity detection sensor 14 is demonstrated as what is provided in the supply path 106 which connects the air dryer 11 and the air tank 51a (51b).
  • the ECU 2 determines whether or not a preset regeneration timing has arrived (step S301). If it is not currently the regeneration timing (step S301: No), the ECU 2 determines whether the humidity value of the compressed air in the supply path 106 detected by the humidity detection sensor 14 is equal to or higher than a predetermined regeneration reference value set in advance. It discriminate
  • This regeneration reference value is a value that requires the regeneration of the desiccant 231 because the compressed air is not sufficiently dried by the desiccant 231.
  • the process returns to the determination in step S301.
  • the ECU 2 confirms the accumulated ventilation amount of the air dryer 11, for example, to regenerate the desiccant 231. The situation is confirmed (step S303).
  • the ECU 2 confirms the traveling state of the vehicle (step S304), and determines whether or not the desiccant 231 can be regenerated at present based on the traveling state of the vehicle (step S305). Specifically, the ECU 2 determines whether or not the vehicle is currently stopped, whether or not the pressure in the air tanks 51a and 52a is sufficient to regenerate the desiccant 231 set in advance. It is determined whether or not regeneration of the desiccant 231 is possible based on whether or not the brake assist operation is in progress.
  • the desiccant 231 can be regenerated.
  • the pressure in the air tanks 51a and 52a is not sufficient to regenerate the preset desiccant 231 regardless of the traveling state of the vehicle, or when the vehicle is in a brake assist operation Is determined that the desiccant 231 cannot be regenerated.
  • step S305 When it is determined in step S305 that the desiccant 231 can be regenerated at present (step S305: YeS30), the ECU 2 regenerates the desiccant 231 regardless of a predetermined regeneration timing set in advance (Ste S306). Specifically, the ECU 2 opens the electromagnetic valve 102, and the compressed air stored in the downstream side of the air dryer 11 (for example, in the supply path 106 and the air tanks 51 a and 52 a) is used as the case 20 of the air dryer 11. The inside flows backward and is discharged from the exhaust port 112. As a result, air passing through the case 20 becomes super dry due to rapid pressure reduction, and moisture is taken away from the desiccant 231 in the case 20, so that the desiccant 231 is regenerated.
  • the ECU 2 opens the electromagnetic valve 102, and the compressed air stored in the downstream side of the air dryer 11 (for example, in the supply path 106 and the air tanks 51 a and 52 a) is used as the case 20 of the air dryer 11. The inside
  • step S301 when it is determined in step S301 that the predetermined reproduction timing set in advance has arrived (step S301: YeS30), the running state is also confirmed (step S304), and reproduction is possible (step S305). : YeS30), a regeneration process of the desiccant 231 is performed (step S306).
  • the ECU 2 obtains the outside air temperature, and corrects the threshold set corresponding to the flow rate of the compressed air at the mounting position of the humidity detection sensor 14 based on the outside air temperature (step S307).
  • the threshold value is a value used to determine the deterioration of the desiccant 231 (whether the adsorptive capacity required for the desiccant 231 has been recovered by regeneration) from the humidity value detected by the humidity detection sensor 14. Yes, it is set corresponding to the position where this humidity detection sensor 14 is attached.
  • the ECU 2 stores a correction threshold value obtained by correcting a reference threshold value at a reference temperature (for example, 25 ° C.) by a change in the outside air temperature as a map associated with the outside air temperature, and a correction corresponding to the outside air temperature. Read and set the threshold.
  • a reference temperature for example, 25 ° C.
  • the relationship between the outside air temperature and the correction threshold value is such that if the outside air temperature increases, the correction threshold value changes greatly, and if the outside air temperature decreases, the correction threshold value changes accordingly. Is set.
  • the threshold value is corrected based on the outside air temperature, it is possible to quickly cope with a change in season and weather, and it is possible to accurately determine the replacement time of the desiccant 231 in any weather condition.
  • the correction amount based on the temperature change is not constant depending on each of the threshold values ⁇ to ⁇ , and for the threshold value ⁇ set to a large value, the correction amount based on the temperature change is set to a large value and set to a small value.
  • the threshold value ⁇ it is desirable to set the correction amount based on the temperature change small. According to this configuration, since the threshold value corresponding to the mounting position of the humidity detection sensor 14 and the surrounding environment is set, the replacement timing of the desiccant 231 can be determined more accurately.
  • the ECU 2 acquires the humidity value detected by the humidity detection sensor 14, and determines whether or not the desiccant 231 has deteriorated based on this humidity value (step S ⁇ b> 308). . Specifically, the ECU 2 determines whether or not the humidity value of the compressed air in the supply path 106 has fallen below the threshold value corrected in step S307. If it is determined in step S308 that the humidity value of the compressed air has fallen below the corrected threshold value (step S308: YeS30), it can be determined that the adsorptive capacity of the desiccant 231 has been recovered by regeneration.
  • the ECU 2 determines that the desiccant 231 has not deteriorated, outputs a determination value indicating that the desiccant 231 has not deteriorated, to the display unit 67, and the desiccant 231 has deteriorated on the display unit 67. Display corresponding to the case where it is not present is performed (step S309).
  • step S308 determines that the desiccant 231 has deteriorated, outputs a determination value indicating that the desiccant 231 has deteriorated, to the display unit 67, and the desiccant 231 has deteriorated on the display unit 67. Display corresponding to the case (step S310).
  • step S308 the ECU 2 functions as a deterioration determination unit that determines the deterioration of the desiccant 231.
  • the air dryer 11 that is provided in the discharge line of the compressor 4 and removes moisture contained in the compressed air, and the desiccant 231 of the air dryer 11 are attached downstream.
  • the humidity detection sensor 14 is provided, and the desiccant 231 is regenerated at a predetermined timing, and the detection value of the humidity detection sensor 14 after the desiccant 231 is regenerated is determined according to the mounting position of the humidity detection sensor 14.
  • the threshold value set corresponding to the flow rate of the compressed air at this position the deterioration of the desiccant 231 can be determined regardless of the mounting position of the humidity detection sensor 14.
  • the replacement time can be accurately determined.
  • the threshold value is large when the humidity detection sensor 14 is mounted at a position where the flow rate of compressed air is high and the humidity value fluctuates greatly, the flow rate of compressed air is low, and the humidity value is stable.
  • the position is set to be small, it is set small, so that the deterioration of the desiccant 231 can be accurately determined, and the replacement time of the desiccant 231 can be accurately determined.
  • the outside temperature detection sensor 5 for detecting the outside temperature is provided, and the threshold value is corrected according to the detected outside temperature, so that it is possible to respond quickly to changes in season and weather,
  • the replacement time of the desiccant 231 can be accurately determined under any weather conditions.
  • the correction amount is adjusted according to the magnitude of the flow rate of the compressed air, so that a threshold value can be appropriately set for each attachment position, and the replacement timing of the desiccant 231 can be more accurately set. I can judge.
  • the humidity detection sensor 14 includes (1) a supply path 106 connecting the air dryer 11 and the air tank 51a (51b), (2) a tank central portion 70 of the air tank 51a (or 51b), and (3) an air tank 51a.
  • the threshold value when the threshold value is corrected, the correction threshold value stored in the ECU 2 in association with the outside air temperature is read and set. However, the ECU 2 calculates the correction threshold value based on the outside air temperature, It is good also as a structure which sets this value by calculating.
  • the load connected to the air dryer module 10 is not limited to the main brake device, the parking brake, and the accessories, and any device that uses compressed air may be connected.
  • the configuration can be arbitrarily changed.
  • the vehicle to which the compressed air supply device for a vehicle of the present invention is applied is not particularly limited, and may be any of a large vehicle, a small vehicle, a special vehicle, a towing vehicle, a two-wheeled vehicle, or a three-wheeled vehicle.
  • the form is arbitrary.
  • Compressed air supply system (Vehicle compressed air supply system) 2 ECU (control unit) 3 Display section (output section) 303 Engine 4 Compressor (Air compressor) 10 Air dryer module (compressed air supply unit) 11 Air dryer 12 Exhaust valve (exhaust valve) 23 Retarder (auxiliary brake device) 51 to 54 Load 121 Pressure sensor 141 Oil mist sensor (concentration sensor) 213 Inlet air chamber (introduction part) 251 Oil pan (oil reservoir) 314, 315 Humidity detection sensor 5 Temperature sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

 空気圧縮機の動作を制御することによりエンジン性能を制御し、車両の性能向上を図ることを課題とする。 車両のエンジン3により駆動され、負荷51~54に圧縮空気を供給するコンプレッサー4をECU2によって制御し、負荷51~54の要求に応じてコンプレッサー4のロード状態とアンロード状態とを切り替えるとともに、車両が制動力を必要とする場合には、負荷51~54の要求に関わらずコンプレッサー4をロード状態にする。

Description

圧縮空気供給システム、車両用圧縮空気供給装置、及び、空気圧縮機の制御方法
 本発明は、車両に搭載された空気圧縮機により圧縮空気を供給する圧縮空気供給システム、車両用圧縮空気供給装置、及び、空気圧縮機の制御方法に関する。
 従来、車両用の空気圧縮機から吐出された圧縮空気をエアータンクに貯留し、車両の負荷に供給する場合に、エアータンクの圧力不足を防ぐため、車両又は進路の状況に応じて空気圧縮機をロード状態に切り替える装置が知られている(例えば、特許文献1~4参照)。特許文献1の制御装置は、エアータンクの圧力を検出し、この圧力の変化に基づいてブレーキが頻繁に使用される状況であると判別した場合に、空気圧縮機をロード状態にする。
 また、従来、車両に搭載された空気圧縮機から吐出された圧縮空気をタンクに貯留して負荷に供給する構成において、空気圧縮機とタンクの間に、圧縮空気の水分を吸着する吸着剤(乾燥剤)を有する乾燥器を設けた装置が知られている(例えば、特許文献2参照)。特許文献1に開示された装置は、空気圧縮機のアンロード中に吸着剤の再生を行い、これにより、継続して圧縮空気の水分を除去できるようにしている。
 さらに、このエアードライヤーの内部には、結露水等が溜まることがあり、寒冷期においては結露水がエアードライヤー内部で凍結してしまう懸念がある。そこで、従来、エアードライヤー内にヒーターを設けて、凍結によるエアードライヤーの動作不良を解消した装置が提案された(例えば、特許文献3参照)。しかしながら、ヒーターを設けた構成では凍結により動作不良となった弁等を加温して動作可能な状態にすることができるが、凍結そのものを防止することは困難である。
 また、エアードライヤー内の乾燥剤を再生させる再生動作において、エアードライヤー内の結露水等が圧縮空気とともに排出されることを利用して、結露水を排出することで凍結を防止する装置が提案されている(例えば、特許文献2参照)。この種の装置では、エアードライヤーに溜まった水そのものを排出してしまうため凍結を確実に防止できる。
 特許文献4に開示された装置は、空気圧縮機のアンロード中に乾燥剤の再生を行い、これにより、継続して圧縮空気の水分を除去できるようにしている。
 また、従来、トラックやバス等の大型車両では、ブレーキチャンバーを作動させる作動流体として圧縮空気を用いたエアー式のブレーキ装置が採用され、この種のブレーキ装置では、各ブレーキチャンバーに圧縮空気を供給する車両用圧縮空気供給装置が搭載されている。
 この車両用圧縮空気供給装置は、空気圧縮機を備え、この空気圧縮機から吐出された圧縮空気をエアータンクに貯留し、このエアータンク内の圧縮空気を必要に応じて各ブレーキチャンバーに供給するように構成され、空気圧縮機とエアータンクの間には、圧縮空気の水分を吸着する吸着剤(乾燥剤)を有するエアードライヤーが設けられている(例えば、特許文献4参照)。この特許文献1に開示された装置は、空気圧縮機のアンロード中に吸着剤の再生を行い、これにより、継続して圧縮空気の水分を除去できるようにしている。
特開2003-276591号公報 特開昭63-194717号公報 実開平01-77830号公報 特表平5-505758号公報
 ところで、車両に搭載される空気圧縮機の多くはエンジンによって駆動され、エンジンの負荷になるので、エンジンの加速能力やエンジンブレーキの制動力に影響を与えることが考えられるが、このような観点から空気圧縮機を制御する提案は無かった。
 そこで本発明は、空気圧縮機の動作によるエンジン性能への影響を制御することにより、車両の性能向上を図ることを第一の目的とする。
 さらに、上記従来の装置においては、継続使用に伴って吸着剤の劣化が進むと、上記のように再生を行っても吸着能が回復しにくくなるので、吸着剤を定期的に交換することが一般的である。吸着剤の交換時期の見極めは、車両の走行距離を目安とする方法や、乾燥器における気圧及び通気量に基づいて吸着剤の状態を推定する手法が用いられてきたが、いずれも吸着剤の状態を推定する方法であるため、吸着剤の交換時期を必要な時期よりも早めてしまうことがあった。
 そこで本発明は、空気圧縮機から吐出された圧縮空気の水分を除去するための乾燥剤の交換時期を、正確に判断できるようにすることを第二の目的とする。
 また、上記従来の装置においては、例えば、車両の走行距離や、乾燥器における気圧及び通気量に基づいて吸着剤の状態を推定し、この推定結果に基づいて乾燥剤の再生間隔が設定されており、乾燥剤の状態に応じて再生条件を変更することは行われていなかった。
 そこで本発明は、空気圧縮機から吐出された圧縮空気の水分を除去するための乾燥剤の現実の状態を検知し、乾燥剤の再生を適正に行うことを第三の目的とする。
 ところで、エアードライヤー内に溜まった結露水等の水分を排出する際には圧縮空気を消費するので、水分の排出を頻繁に行うと多くの圧縮空気を消費してしまう。
 そこで本発明は、エアードライヤーに溜まった水分の凍結を防止するとともに、この水分の排出に要する圧縮空気の消費量を節約することを第四の目的とする。
 また、従来の圧縮空気供給装置では、継続使用に伴って吸着剤の劣化が進むと、上記のように再生を行っても吸着能が回復しにくくなるため、吸着剤を定期的に交換することが一般的である。吸着剤の交換時期の見極めは、車両の走行距離を目安とする方法や、エアードライヤーにおける気圧及び通気量に基づいて吸着剤の状態を推定する手法が用いられてきたが、いずれも吸着剤の状態を推定する方法であるため、吸着剤の交換時期を必要な時期よりも早めてしまうことがあった。
 これを解消するために、乾燥剤の下流に湿度検知センサーを設け、乾燥剤が再生された後の湿度検知センサーの検知値(湿度値)によって、吸着剤の劣化を判別し、乾燥剤の交換時期を正確に判断する構成が想定される。しかしながら、湿度検知センサーの検知値は、このセンサーの取り付けられた位置の環境(空気流量や周囲温度)によって異なることが判明している。更に、上記センサーの取付位置は、車両によって異なることが多く、当該センサーの検知値によって乾燥剤の交換時期を正確に判断することが難しいといった事態が想定される。
 そこで、本発明は、湿度検知センサーの取付位置にかかわらず、空気圧縮機から吐出された圧縮空気の水分を除去するための乾燥剤の交換時期を正確に判断できるようにすることを第五の目的とする。
 上記第一の目的を達成するために、本発明は、車両のエンジンにより駆動される空気圧縮機と、該空気圧縮機から吐出した圧縮空気を前記車両の負荷に供給する圧縮空気供給部と、前記負荷の要求に応じて前記空気圧縮機のロード状態とアンロード状態とを切り替える制御部とを備え、前記制御部は、前記車両が制動力を必要とする場合に、前記負荷の要求に関わらず前記空気圧縮機をロード状態にすること、を特徴とする圧縮空気供給システムを提供する。
 また本発明は、上記圧縮空気供給システムにおいて、前記圧縮空気供給部における空気圧を検出して前記制御部に出力する圧力センサーを備え、前記制御部は、前記圧縮空気供給部における空気圧が所定範囲内となるよう前記空気圧縮機のロード状態とアンロード状態とを切り替える動作を行い、前記車両が制動力を必要とする場合には前記圧縮空気供給部における空気圧に関わらず前記空気圧縮機をロード状態にすること、を特徴とする。
 また本発明は、上記圧縮空気供給システムにおいて、前記制御部は、前記車両が制動力を必要とする場合に、前記空気圧縮機をロード状態に保持するとともに、前記圧縮空気供給部に設けた排気弁を開弁させることにより前記圧縮空気供給部における空気圧を上記所定範囲内に保持すること、を特徴とする。
 また本発明は、上記圧縮空気供給システムにおいて、前記制御部は、前記車両が備える補助ブレーキ装置の作動を指示する操作に基づき、前記車両が制動力を必要とする場合か否かを判別すること、を特徴とする。
 また本発明は、上記圧縮空気供給システムにおいて、前記制御部は、前記車両の加速中及び高速走行中の少なくともいずれかに、前記空気圧縮機をアンロード状態にすること、を特徴とする。
 さらに、本発明は、車両のエンジンにより駆動され、前記車両の負荷に圧縮空気を供給する空気圧縮機の制御方法であって、前記負荷の要求に応じて前記空気圧縮機のロード状態とアンロード状態とを切り替えるとともに、前記車両が制動力を必要とする場合には、前記負荷の要求に関わらず前記空気圧縮機をロード状態にすること、を特徴とする空気圧縮機の制御方法を提供する。
 上記第二の目的を達成するため、本発明は、車両に搭載する空気圧縮機を備え、該空気圧縮機から吐出した圧縮空気を車両の負荷に供給する車両用圧縮空気供給装置において、前記空気圧縮機の吐出ラインに、圧縮空気に含まれる水分等の異物を除去するエアードライヤー
を設け、該エアードライヤーにオイル検知センサーを設け、該オイル検知センサーの検知結果を出力する出力部を備えたこと、を特徴とする車両用圧縮空気供給装置を提供する。
 また本発明は、上記車両用圧縮空気供給装置において、前記オイル検知センサーは、前記エアードライヤーのケース内部に配置されることを特徴とする。
 また本発明は、上記車両用圧縮空気供給装置において、前記オイル検知センサーは、前記エアードライヤーが有する乾燥剤へ圧縮空気を導く導入部近傍に設置されることを特徴とする。
 また本発明は、上記車両用圧縮空気供給装置において、前記オイル検知センサーは、オイルミスト濃度を検知する濃度センサーで構成されることを特徴とする。
 また本発明は、上記車両用圧縮空気供給装置において、前記オイル検知センサーは、前記エアードライヤーにおけるケース底部のオイル溜り部に設けられた電極で構成されることを特徴とする。
 上記第三の目的を達成するために、本発明は、車両に搭載する空気圧縮機を備え、該空気圧縮機から吐出した圧縮空気を車両の負荷に供給する車両用圧縮空気供給装置において、前記空気圧縮機の吐出ラインに設けられ、前記圧縮空気に含まれる水分等の異物を除去するエアードライヤーと、前記エアードライヤーにおける乾燥剤を所定の再生条件で再生させる再生手段と、前記乾燥剤の下流に設けられる湿度検知センサーと、を備え、前記湿度検知センサーの検知結果に基づいて、前記再生条件が最適化されることを特徴とする車両用圧縮空気供給装置を提供する。
 また、本発明は、上記車両用圧縮空気供給装置において、前記負荷に供給される圧縮空気を貯留するエアータンクを備え、前記湿度センサーは前記エアータンクに設けられること、を特徴とする。
 また、本発明は、上記車両用圧縮空気供給装置において、前記再生条件は、前記乾燥剤を再生させる頻度に関する条件を含むこと、を特徴とする。
 また、本発明は、上記車両用圧縮空気供給装置において、前記再生条件は、前記乾燥剤を再生させる際の通気量に関する条件を含むこと、を特徴とする。
 また、本発明は、上記車両用圧縮空気供給装置において、前記検知結果が、前記乾燥剤が再生された後の湿度レベルが予め設定された閾値レベル以上の場合及び、前記湿度レベルが増加傾向にあることを示す場合のいずれか又は両方に該当する場合は前記再生条件が最適化されること前記再生条件を最適化すること、を特徴とする。
 上記第四の目的を達成するため、本発明は、車両に搭載する空気圧縮機を備え、該空気圧縮機から吐出した圧縮空気を車両の負荷に供給する車両用圧縮空気供給装置において、前記空気圧縮機の吐出ラインに設けられ、前記圧縮空気に含まれる水分等の異物を除去するエアードライヤーと、前記エアードライヤー内に溜まった水分等を圧縮空気とともに排出する排出弁と、を備え、温度の検出を行い、検出した温度が予め設定された条件に該当する場合に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする車両用圧縮空気供給装置。
 また本発明は、前記車両の動作が停止される際に、排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする。
 また本発明は、前記車両が搭載した外気温度センサーに接続され、この外気温度センサーにより検出した外気温度が予め設定された温度を下回った場合に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする。
 また本発明は、前記エアードライヤーの下流側の圧縮空気の流路に設けられ、圧縮空気の湿度を検出する湿度センサーを備え、前記温度センサーにより検出した圧縮空気の温度が予め設定された温度を下回った場合に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする。
 上記第二の目的を達成するために、本発明は、車両に搭載する空気圧縮機を備え、該空気圧縮機から吐出した圧縮空気を車両の負荷に供給する車両用圧縮空気供給装置において、前記空気圧縮機の吐出ラインに設けられ、前記圧縮空気に含まれる水分等の異物を除去するエアードライヤーと、前記エアードライヤーにおける乾燥剤を所定のタイミングで再生させる再生手段と、前記乾燥剤の下流に設けられる湿度検知センサーと、前記再生手段により前記乾燥剤が再生された後の前記湿度検知センサーの検知結果を出力する出力部と、を備えたことを特徴とする車両用圧縮空気供給装置を提供する。
 また、本発明は、上記車両用圧縮空気供給装置において、前記負荷に供給される圧縮空気を貯留するエアータンクを備え、前記湿度検知センサーは前記エアータンクに設けられること、を特徴とする。
 また、本発明は、上記車両用圧縮空気供給装置において、前記湿度検知センサーにより検知された湿度レベルが、予め設定された閾値以上の湿度レベルを示す場合、前記所定のタイミングに関わらず前記乾燥剤を再生させ、この再生後に前記湿度検知センサーにより検知された検知結果を前記出力部から出力すること、を特徴とする。
 また、本発明は、上記車両用圧縮空気供給装置において、前記検知結果と共に、前記車両の走行状況に関する情報および/又は前記エアードライヤーの動作状況に関する情報を用いて、前記乾燥剤の交換時期を判定する判定手段を備えたこと、を特徴とする。
 本発明によれば、車両の制動を必要とする場合に、車両のエンジンにより駆動される空気圧縮機をロード状態とすることでエンジンに負荷を加えることにより、補助ブレーキ装置としてのエンジンブレーキの制動力を増大させることができる。
 また、本発明によれば、空気圧縮機からの圧縮空気から水分等を除去するエアードライヤーにおける油分を検知し、その検知結果が出力されるので、水分等を除去する吸着材の吸着性能を劣化させる油分の存在を直接的に監視して、吸着剤の状態を判断することができ、吸
着材を適正な時期に交換できる。
 さらに、本発明によれば、空気圧縮機からの圧縮空気から水分等を除去するエアードライヤーにおける乾燥剤の下流の湿度を検知し、乾燥剤の現実の状態に基づいて、乾燥剤の再生条件を最適化することができる。
 また、本発明によれば、エアードライヤーにおける水分の凍結を確実に防止しつつ、この水分の排出に係る圧縮空気の消費量を抑えることができる。
 さらに、本発明によれば、空気圧縮機からの圧縮空気から水分等を除去するエアードライヤーにおける乾燥剤の下流の湿度を検知し、乾燥剤が再生された後の検知結果が出力されるので、水分等を除去する乾燥剤の吸着性能の劣化を判断することができ、乾燥剤を適正な時期
に交換できる。
 上記第五の目的を達成するため、本発明は、車両に搭載する空気圧縮機を備え、該空気圧縮機から吐出した圧縮空気を車両の負荷に供給する車両用圧縮空気供給装置において、前記空気圧縮機の吐出ラインに設けられて前記圧縮空気に含まれる水分等の異物を除去するエアードライヤーと、このエアードライヤーの乾燥剤の下流に取り付けられる湿度検知センサーと、前記エアードライヤーの乾燥剤を所定のタイミングで再生させる再生手段と、この再生手段により前記乾燥剤が再生された後の前記湿度検知センサーの検知値を、前記湿度検知センサーの取付位置での圧縮空気の流速に対応して設定された閾値と比較して当該乾燥剤の劣化を判定する劣化判定手段とを備えることを特徴とする。
 この構成において、前記閾値は、前記湿度検知センサーが前記圧縮空気の流速が速い位置に取り付けられた場合は大きく、前記圧縮空気の流速が遅い位置に取り付けられた場合は小さく設定される構成としても良い。
 また、外気温度を検知する外気温度検知センサーを備え、検知された外気温度に応じて前記閾値を補正する補正手段を備える構成としても良い。
 また、前記補正手段は、前記圧縮空気の流速の大きさに応じて補正量を調整する構成としても良い。
本発明の第1の実施の形態に係る圧縮空気供給システムの構成を示す図である。 圧縮空気供給システムの動作を示すフローチャートである。 圧縮空気供給システムの動作を示すフローチャートである。 圧縮空気供給システムの動作による空気圧変化の一例を示す図表である。 圧縮空気供給システムの動作を示す図である。 本発明の第2の実施の形態に係る圧縮空気供給システムの構成を示す図である。 エアードライヤーの構成を示す断面図である。 第3の実施の形態に係る圧縮空気供給システムの構成を示す図である。 第4の実施の形態に係るエアードライヤーの構成を示す断面図である。 油面検知センサーの構成を詳細に示す要部拡大断面図である。 本発明の第5の実施の形態に係る圧縮空気供給システムの構成を示す図である。 エアードライヤーの構成を示す断面図である。 乾燥剤の再生処理を示すフローチャートである。 本発明の第6の実施の形態に係る圧縮空気供給システムの構成を示す図である。 本発明の実施の形態に係る圧縮空気供給システムの構成を示す図である。 エアードライヤーモジュールの動作を示すフローチャートである。 劣化判定処理を示すフローチャートである。 湿度検知センサーの取り付けられる位置を示す模式図である。 湿度検知センサーの取付位置と閾値との関係を示す関係図である。 エアードライヤーモジュールの動作を示すフローチャートである。
[第1の実施の形態]
 以下、図面を参照して本発明の実施の形態について説明する。
 図1は、本発明を適用した実施の形態に係る圧縮空気供給システム1の構成を示す図である。この図1には、圧縮空気供給システム1の回路構成とともに、圧縮空気供給システム1が搭載された車両のエンジン303、車速検出器21、補助ブレーキスイッチ22、及びリターダ23を合わせて図示する。
 図1に示す圧縮空気供給システム1は、コンプレッサー4(空気圧縮機)と、コンプレッサー4を制御するECU2(制御部)と、コンプレッサー4から吐出された圧縮空気の水分を除去して、上記車両の負荷に圧縮空気を供給するエアードライヤーモジュール10(圧縮空気供給部)と、を備えて構成される。
 ECU2には、圧縮空気供給システム1を搭載する車両の車速を検出する車速検出器21が接続され、車速検出器21から車速信号2aがECU2に入力される。また、ECU2には、上記車両が備える補助ブレーキスイッチ22が接続される。補助ブレーキスイッチ22は、上記車両の運転者が操作する補助ブレーキレバー(図示略)の操作量を検出するスイッチである。ここで、補助ブレーキとは、上記車両が足踏み式ブレーキ(以下、主ブレーキという)とは別に備える制動装置を指し、本実施の形態ではリターダ23である。補助ブレーキレバーは、求める制動力に応じて複数段階の操作量が設定され、補助ブレーキスイッチ22は、補助ブレーキレバーの操作量に応じた操作信号2bをECU2に出力する。
 さらに、ECU2には、電磁式のリターダ23が接続されている。ECU2は、補助ブレーキスイッチ22から入力される操作信号2bの値に応じて、リターダ23の制動力を示すリターダトルク要求値を算出する。ECU2は、リターダトルク要求値に基づいてリターダ制御信号2cをリターダ23に出力し、リターダ23は、リターダ制御信号2cに基づいて上記車両の駆動軸を制動する。
 また、ECU2には、上記車両のアクセルペダルの操作量や変速装置の動作状態等を示す車両制御信号2dが入力され、ECU2は、車両制御信号2dに基づいてエンジン303の燃料噴射制御、点火制御等の各種制御を行うため、エンジン303に対してエンジン制御信号
2eを出力する。
 コンプレッサー4は、補機ベルト32を介してエンジン303のクランクプーリー31に連結され、エンジン303の駆動力によって空気を圧縮する。
 エアードライヤーモジュール10には、上記車両が備える負荷51~54が接続されている。負荷51は主ブレーキ(前輪)、負荷52は主ブレーキ(後輪)、負荷53はパーキングブレーキであり、負荷54は、ホーンやクラッチ駆動機構等の圧縮空気で駆動されるアクセサリー類である。負荷51~54はそれぞれ圧縮空気が流れる圧縮空気回路を備え、さらに、負荷51はエアータンク51aを有し、負荷52はエアータンク52aを有する。
 また、エアードライヤーモジュール10は、ECU2の制御によって開閉される電磁弁101、102、103、及び、エアードライヤーモジュール10の各部における空気圧を検出して、検出値をECU2に出力する圧力センサー121、122、123、124を備えている。ECU2は、圧力センサー121~123の検出値と、上述した車速信号2a及び操作信号2bとに基づいて、電磁弁101~103を開閉させる。
 コンプレッサー4は空気圧で制御され、この制御ラインには電磁弁101が接続されており、電磁弁101の開閉によってコンプレッサー4のロード/アンロードが切り替えられる。ロード状態では、コンプレッサー4は補機ベルト32により駆動されて空気を圧縮し、エンジン303のクランクプーリー31に負荷を与える。これに対し、アンロード状態では、コンプレッサー4はエンジン303の負荷を与えない。
 コンプレッサー4の吐出管41はエアードライヤーモジュール10の流入管111に接続され、流入管111には乾燥器11が接続されている。乾燥器11は、乾燥剤(図示略)を収容した本体を有し、この乾燥剤によってコンプレッサー4から吐出された圧縮空気に含まれる水分を除去する。乾燥器11には排気バルブ12(排気弁)が設けられ、この排気バルブ12が開くと乾燥器11の本体内の圧縮空気が排気口112から直接外部へ排出される。排気バルブ12は空気圧で制御され、その制御ラインにはダブルチェックバルブ104が接続されている。排気バルブ12は通常時は閉鎖され、ダブルチェックバルブ104から空気圧が加わった場合のみ開弁する。
 エアードライヤーモジュール10は、空気圧により機械的に動作して排気バルブ12の開閉を制御するガバナ13を備えている。ガバナ13は、乾燥器11の下流側の供給路106における空気圧に従って動作し、この空気圧が所定の値を超えた場合にダブルチェックバルブ104に空気圧を与える。
 一方、電磁弁102は、ECU2の制御により開閉し、開弁状態において供給路106の空気圧をダブルチェックバルブ104に与える。
 ダブルチェックバルブ104は、ガバナ13または電磁弁102のいずれか一方が開いた場合に排気バルブ12に空気圧を与えて開弁させる。従って、排気バルブ12は、供給路106の空気圧が所定の値より高い場合、及び、電磁弁102が開いた場合に開弁して、圧縮空気を排気口112から放出する。
 ここで、排気バルブ12が開弁すると乾燥器11の本体よりも下流側の圧縮空気が、乾燥器11の本体内を逆流して排気口112から放出される。このとき乾燥器11の本体を通る空気は急速な減圧によってスーパードライとなり、乾燥器11の乾燥剤から水分を奪うので、排気バルブ12を開弁することで乾燥剤が再生される。
 エアードライヤーモジュール10は、負荷51(前輪の主ブレーキ)が接続される出力ポート113、負荷52(後輪の主ブレーキ)が接続される出力ポート114、負荷53(パーキングブレーキ)が接続される出力ポート115、及び、負荷54(アクセサリー類)が接続される出力ポート116を備えている。
 乾燥器11の下流の供給路106には、減圧弁131を介して分岐室135が接続されている。分岐室135には、出力ポート113に繋がる供給路及び出力ポート114に繋がる供給路が接続され、出力ポート113に繋がる供給路には保護弁141が設けられ、出力ポート114に繋がる供給路には保護弁142が設けられている。また、分岐室135には減圧弁132が接続され、減圧弁132の下流は出力ポート115に繋がる供給路と出力ポート116に繋がる供給路とに分岐し、それぞれ、保護弁143、144が設けられている。
 各保護弁141~144は、絞り及びチェック弁と並列に配置され、それぞれ対応する出力ポート113~116に接続された負荷51~54において圧縮空気が流れる回路が失陥したときに閉鎖する。
 また、減圧弁132から出力ポート116に繋がる供給路には、保護弁144の下流側に減圧弁133が配置され、負荷54に対して減圧した圧縮空気を供給する構成である。
 さらに、減圧弁132と保護弁143との間の供給路には、保護弁143をバイパスして出力ポート115に繋がる供給路136が延びている。供給路136には、出力ポート115から分岐室135への圧縮空気の逆流を防止する逆止弁137と、逆止弁137に対して直列に配された絞り138とを有する。
 圧力センサー121は供給路106の空気圧を検出し、圧力センサー122は保護弁141の下流側、すなわち出力ポート113の空気圧を検出し、圧力センサー123は出力ポート114の空気圧を検出し、圧力センサー124は出力ポート116の空気圧を検出する。これらの検出値は各圧力センサー121~124からECU2へ随時出力される。
 ところで、負荷53に相当する上記車両のパーキングブレーキ装置は、空気圧により制動力が解除されて走行可能となる。具体的には、上記パーキングブレーキは駐車時にスプリングの力でブレーキシューを拡げて制動力を発揮し、解除時にはエアードライヤーモジュール10から供給される空気圧によりスプリングの力に抗してブレーキシューを閉じる構成となっている。
 本実施の形態の負荷53は圧縮空気を貯留するエアータンクを備えていないが、エアードライヤーモジュール10は、エアータンクなしで負荷53を確実に動作させることが可能である。
 すなわち、保護弁141、142は、それぞれ、対応する負荷51、52の圧縮空気回路に圧縮空気が充分に満たされているとき、開弁状態にある。従って、主ブレーキ用のエアータンク51a、52aの圧縮空気を、分岐室135から減圧弁132を経て、供給路136を通して出力ポート115に供給できる。このため、エアータンク51a、52aの空気圧が十分に高い状態では、負荷53へ圧縮空気を供給してパーキングブレーキを解除できる。
 一方、圧力センサー122、123で検出されたエアータンク51a、52aの空気圧が十分でない場合、ECU2は電磁弁103を開弁する。電磁弁103の指令圧は逆止弁137に与えられ、逆止弁137により供給路136が閉鎖され、出力ポート115への圧縮空気の供給経路が遮断される。この場合、パーキングブレーキは解除不能となるが、主ブレーキに使用するエアータンク51a、52aの空気圧が不十分な場合はパーキングブレーキを解除しない方が好ましい。また、エアータンク51a、52aの空気圧が回復すればパーキングブレーキを解除できるようになる。従って、負荷53用のエアータンクが無くても、圧縮空気により安定してパーキングブレーキを動作させることができる。
 図1に示す圧縮空気供給システム1は、通常、エアードライヤーモジュール10内部(例えば、供給路106)の空気圧を、予め定められた所定範囲内に保つため、圧力センサー121の検出値に基づいて、ECU2の制御によりコンプレッサー4のロード/アンロードを切り替える。エアードライヤーモジュール10内の空気圧は、負荷51~54の圧縮空気の要求量に応じて変化するので、いわば、負荷51~54の要求に対応して、コンプレッサー4のロード/アンロードを切り替える。
 この動作に加え、圧縮空気供給システム1は、補助ブレーキレバーが操作された場合に、負荷51~54の要求に関わらずコンプレッサー4をロード状態に切り替えることで、エンジン303のエンジンブレーキの制動力を増すブレーキアシスト動作を行う。
 さらに、圧縮空気供給システム1は、上記車両の加速中などエンジン303のトルクを必要とする場合に、コンプレッサー4をアンロード状態に保ってエンジン303の負荷を軽減するエンジンアシスト動作を実行する。
 上記車両は主ブレーキとパーキングブレーキに加え、補助ブレーキとしてリターダ23を備えているが、さらに、エンジンブレーキによる制動を行える。エンジンブレーキによる制動力が強ければ、その分、リターダ23への制動力の要求を軽減できるため、電磁式のリターダ23が消費する電力エネルギーの低減、リターダ23の発熱の抑制等を実現できる。また、制動力を増したエンジンブレーキをリターダ23と組み合わせることで、主ブレーキに対する制動力の要求を低減できるので、ブレーキパッド、ブレーキディスクあるいはブレーキシューの摩耗を抑制し、長寿命化を図ることができる。
 また、近年では小排気量のエンジンが採用されることがあるが、そのような車両において上記のブレーキアシスト動作を行えば、エンジン排気量の低下に伴うエンジンブレーキの制動力の低下を補うことができ、有用である。以下、図2から図4の各図を参照して、ブレーキアシスト動作及びエンジンアシスト動作の詳細について説明する。
 図2は、圧縮空気供給システム1の動作を示すフローチャートである。
 以下に説明する動作に先立ち、ECU2には、リターダトルク要求値を判別する設定値、エンジントルク要求値を判別する設定値、及び、エアードライヤーモジュール10内の空気圧を判別する設定値A、B、Cが予め設定され、ECU2が内蔵するメモリー(図示略)に記憶されている。空気圧に関する設定値A、B、Cは、高圧側から順にA≧B≧Cである。
 上記車両が通常走行をしている間(ステップS11)、ECU2は、圧力センサー121により検出されるエアードライヤーモジュール10内の空気圧が上記の設定値C以上設定値A未満の範囲になるように、電磁弁101を適宜開弁させて、コンプレッサー4のロード/アンロードを切り替える。例えば、負荷51~54によって圧縮空気が多く消費された場合にはエアードライヤーモジュール10内の空気圧が低下するため、ECU2は、空気圧を高めるべくコンプレッサー4をロード状態に切り替える。
 通常走行中、ECU2は、所定時間毎に、補助ブレーキスイッチ22が出力する操作信号2bを取得して(ステップS12)、操作信号2bにより示される補助ブレーキレバー(図示略)の操作量に基づいて、リターダトルク要求値を算出する(ステップS13)。
 ここで、ECU2は、算出したリターダトルク要求値が、上記の設定値以上であるか否かを判別し(ステップS14)、設定値以上である場合は、ブレーキアシスト動作を実行する(ステップS15)。
 図3は、圧縮空気供給システム1の動作のうちブレーキアシスト動作を詳細に示すフローチャートである。
 このブレーキアシスト動作において、ECU2は、電磁弁101を制御してコンプレッサー4をロード状態に移行させる(ステップS31)。これにより、エンジン303にはコンプレッサー4を駆動するための負荷が加わるため、エンジンブレーキの制動力が増大する。既にコンプレッサー4がロード状態にある場合、ECU2は、コンプレッサー4のロード状態を保持する。
 その後、ECU2は、圧力センサー121の検出値を取得して、エアードライヤーモジュール10内の空気圧が設定値A以上であるか否かを判別する(ステップS32)。エアードライヤーモジュール10内の空気圧が設定値A以上である場合、ECU2は、電磁弁102を制御して排気バルブ12を一時的に開放させて、エアードライヤーモジュール10内の圧力を低下させる(ステップS33)。
 続いて、ECU2は、エアードライヤーモジュール10内の空気圧が設定値B未満になったか否かを判別し(ステップS34)、設定値B未満になっていなければステップS33に戻って再び排気バルブ12を開弁させる。また、エアードライヤーモジュール10内の空気圧が設定値B未満であれば、続くステップS35に移行する。
 一方、エアードライヤーモジュール10内の空気圧が予め設定された設定値A以上でない場合(ステップS32;No)、ECU2はそのままステップS35に移行する。
 ステップS35で、ECU2は操作信号2bを取得し、続いて、操作信号2bに基づいてリターダトルク要求値を算出する(ステップS36)。
 そして、ECU2は、算出したリターダトルク要求値の判別を行う(ステップS37)。この判別では、リターダトルク要求値が上記の設定値未満の状態が所定時間以上継続しているか否かを判別し、この条件を満たさない場合はステップS31に戻り、上記条件を満たした場合は、ステップS11(図2)の通常走行状態に戻る。このステップS37の判別を行うことで、ECU2は、例えば、補助ブレーキレバーの操作量が非操作状態に戻った場合に、ブレーキアシスト動作を終了する。ステップS37で所定時間以上継続していることを条件にしているのは、補助ブレーキレバーの頻回の操作や操作信号2bの一時的な変化により、頻繁なロード/アンロードの切り替えが起きるのを防ぐためである。
 図4は、上記動作によるエアードライヤーモジュール10内の空気圧変化の一例を示す図表である。
 この図4に示すグラフ縦軸は圧力センサー121(図1)により検出されたエアードライヤーモジュール10内の空気圧であり、横軸は経過時間である。
 図4中に時刻t1~t4で示す通常走行中、ECU2の制御により、エアードライヤーモジュール10内の空気圧が設定値C未満になるとコンプレッサー4がロード状態に切り替わり、空気圧が上昇して設定値Aに達するとコンプレッサー4がアンロード状態に切り替わる。また、通常走行中は、空気圧が設定値Aに達する毎にガバナ13の制御により排気バルブ12が開弁され、上述した再生動作が行われる(時刻t2からt3)。
 そして、時刻t4でブレーキアシスト動作が開始されると、ECU2の制御によってコンプレッサー4がロード状態に切り替えられる。
 図3のフローチャートで説明したように、ブレーキアシスト動作の実行中、コンプレッサー4はECU2の制御によってロード状態を保持するので、エアードライヤーモジュール10内の空気圧は次第に上昇して設定値Aに達する。ここでECU2は、コンプレッサー4をロード状態に保ったまま、排気バルブ12を所定時間だけ開弁させてエアードライヤーモジュール10の空気圧を低下させる。ECU2は、エアードライヤーモジュール10内の空気圧が設定値B未満になるまで排気バルブ12を1回ないし数回開弁するので、空気圧は設定値Bまで低下する。ここで、コンプレッサー4はロード状態を保っているのでエアードライヤーモジュール10内の空気圧は再び上昇するが、ECU2の制御によって排気バルブ12が間欠的に開弁され、エアードライヤーモジュール10の空気圧は設定値B以上設定値A以下の範囲に保たれる。
 このように、ブレーキアシスト動作において、ECU2は、エアードライヤーモジュール10内の空気圧を所定の範囲に保ちながら、コンプレッサー4のロード状態を保つことで、エンジンブレーキの制動力を増大させる。
 図1のステップS14においてリターダトルク要求値が設定値未満であった場合、ECU2は、車速検出器21から入力される車速信号2aに基づいて、車両が加速中であるか否かを判別し(ステップS16)、加速中である場合はエンジンアシスト動作を実行すべくコンプレッサー4をアンロード状態にして(ステップS17)、ステップS11に戻る。ステップS17でコンプレッサー4が既にアンロード状態である場合、ECU2はコンプレッサー4をアンロード状態のままにしてステップS11に戻る。
 また、車両が加速中でない場合(ステップS16;No)、ECU2は、車速信号2aに基づいて車両が減速中であるか否かを判別し(ステップS18)、減速中である場合は、車両制御信号2dに基づいて算出されるエンジントルク要求値が予め設定された設定値以上であるか否かを判別する(ステップS19)。このエンジントルク要求値は、エンジン制御信号2eによりエンジン303を制御するためにECU2が常時算出する値である。エンジントルク要求値が設定値以上である場合(ステップS19;Yes)、ECU2は、エンジンアシスト動作を実行すべくコンプレッサー4がロード状態であればアンロード状態に切り替え、既にコンプレッサー4がアンロード状態である場合はその状態を保ち(ステップS20)、ステップS11に戻る。また、エンジントルク要求値が設定値未満である場合(ステップS19;No)、ECU2は、後述するステップS22に移行する。
 一方、車両が減速中でない場合(ステップS18;No)、ECU2は、車速信号2aに基づいて、車速が予め設定された設定速度以上であるか否かを判別し(ステップS21)、設定速度以上である場合は上記のステップS20に移行する。これに対し、車速が設定速度未満の場合は、ステップS22に移行する。
 ステップS22で、ECU2は、圧力センサー121が検出した空気圧が設定値C未満であるか否かを判別し、設定値C未満の場合はコンプレッサー4をロード状態に切り替えて(ステップS23)、ステップS24に移行する。また、空気圧が設定値C以上である場合は、そのままステップS24に移行する。
 ステップS24で、ECU2は圧力センサー121が検出した空気圧が設定値A以上であるか否かを判別し、設定値A以上の場合はコンプレッサー4をアンロード状態に切り替えて(ステップS25)、ステップS11に戻る。また、空気圧が設定値A未満である場合は、そのままステップS11戻る。
 図5は、圧縮空気供給システム1における車両の状態とブレーキアシスト動作及びエンジンアシスト動作の実行状態との対応を示す図である。なお、本実施の形態のリターダトルク要求値は、減速のために要求されるトルクを百分率で示した値であるから、負の値である。大幅な減速が要求される場合ほどリターダトルク要求値は低い。リターダトルク要求値の最大値は、減速が要求されない場合を示し、0%である。設定値は、例えば、-10%に設定される。
 図5に示すように、ECU2は、補助ブレーキスイッチ22からの操作信号2bに基づいて算出したリターダトルク要求値、車速信号2aに基づいて判別した車両の加減速の状態と車速、及び、車両制御信号2dに基づいて求めたエンジントルク要求値に基づいて、通常走行の動作を行うか、ブレーキアシスト動作を行うか、エンジンアシスト動作を行うかを決定する。
 リターダトルク要求値が設定値未満である場合、すなわち、補助ブレーキレバーの操作によって設定値よりも大幅に減速するよう要求された場合には、ECU2は、ブレーキアシスト動作を実行し、負荷51~54による圧縮空気の要求量、及び、エアードライヤーモジュール10内の空気圧に関わらず、コンプレッサー4を強制的にロード状態にする。
 一方、リターダトルク要求値が設定値以上の場合、車両の加減速状態及び車速が判別され、加速も減速もしていない場合で車速が低速(例えば、時速50km/h未満)であれば、通常走行用のコンプレッサー4の制御が行われる。一方、加速中、及び、加速も減速もしておらず車速が高速(例えば、時速50km/h以上)の場合、エンジンアシスト動作が行われ、エンジン303の負荷を軽減するためにコンプレッサー4は強制的にアンロード状態とされる。なお、高速走行及び加速の最中に主ブレーキが多用されることは無いので、コンプレッサー4をアンロード状態としても問題はない。
 また、車両の減速中は、エンジントルク要求値の判別が行われ、エンジントルク要求値が設定値以上の場合は、エンジン303の出力が求められているので、エンジンアシスト動作が行われ、コンプレッサー4は強制的にアンロード状態とされる。これに対し、エンジントルク要求値が設定値未満の場合は通常走行中の制御が行われる。
 このように、圧縮空気供給システム1は、エンジン303により駆動されるコンプレッサー4と、コンプレッサー4から吐出した圧縮空気を車両の負荷51~54に供給するエアードライヤーモジュール10と、負荷51~54の要求に応じてコンプレッサー4のロード状態とアンロード状態とを切り替えるECU2とを備え、ECU2により、車両が制動力を必要とする場合に、負荷51~54による圧縮空気の要求やエアードライヤーモジュール10内の空気圧に関わらず、コンプレッサー4をロード状態にするブレーキアシスト動作を行う。これにより、車両の制動を必要とする場合にコンプレッサー4をロード状態とすることでエンジン303に負荷を加え、エンジンブレーキの制動力を増すので、コンプレッサー4を補助ブレーキ装置として利用して車両の主ブレーキ装置やリターダ23等への負荷を軽減できる。ひいては、主ブレーキ装置を構成するブレーキパッドやブレーキディスク、或いはブレーキシューの摩耗を抑えることができ、主ブレーキ装置やリターダ23等の発熱を抑制でき、これら各部の長寿命化を図ることができる。
 さらに、ブレーキアシスト動作ではエンジンブレーキ作動時のエンジン303の回転力によってコンプレッサー4をロードする。つまり、走行中の車両の運動エネルギーを回生して圧縮空気を生み出すので、車両におけるエネルギーの利用効率を高めることができる。
 また、エアードライヤーモジュール10における空気圧を検出してECU2に出力する圧力センサー121を備え、ECU2は、通常走行中は圧力センサー121で検出した空気圧が設定値C以上設定値A未満となるようコンプレッサー4のロード/アンロードを切り替え、車両が制動力を必要とする場合にはブレーキアシスト動作を行うので、通常時は圧縮空気を安定供給しながら、制動力が必要な場合のみブレーキアシスト動作を行って、効率よく制動力を高めることができる。
 さらに、ECU2は、ブレーキアシスト動作においてコンプレッサー4をロード状態に保持するとともに、排気バルブ12を開弁させることによりエアードライヤーモジュール10における空気圧を適正な範囲内に保つことができる。
 また、ECU2は、補助ブレーキレバーの操作量を示す補助ブレーキスイッチ22からの操作信号2bに基づいて、リターダトルク要求値を求め、このリターダトルク要求値を基準としてブレーキアシスト動作を行うか否かを判別する。このため、車両の制動力が必要とされていない場合、或いは、補助ブレーキレバーの操作により要求される制動力が小さい場合は、ブレーキアシスト動作を行わない。これにより、無駄なブレーキアシスト動作を防ぐことができるので、例えば、加速中にブレーキアシスト動作を行ってしまうことがないので、ブレーキアシスト動作によって燃料の消費量が増大することがなく、燃料消費の効率を低下させるおそれはない。
 さらに、ECU2は、車両の加速中及び高速走行中のようにエンジン303のトルクが求められる間はエンジンアシスト動作を行い、コンプレッサー4をアンロード状態に保持するので、上記車両が高い加速性能を発揮することが可能になる。そして、アクセル開度を抑制しても十分な加速性能を得られるため、アクセル開度の抑制による燃費効率の向上を図ることができる。
 なお、上述した実施の形態は、本発明を適用した一態様を示すものであって、本発明は上記実施の形態に限定されない。例えば、上記実施の形態では、補助ブレーキスイッチ22の操作信号2bからリターダトルク要求値を求め、このリターダトルク要求値に基づいて、上記車両が制動力を必要としているか否かを判別する構成としたが、本発明はこれに限定されるものではなく、例えば、ブレーキペダルの踏力や踏み込み量を検出し、検出値に基づいて、上記車両が制動力を必要としているか否かを判別してもよい。また、上記車両のクラッチの状態や、変速装置の動作状態等に基づいて上記車両が制動力を必要としているか否かを判別してもよく、ECU2に対してブレーキアシスト動作を指示する専用のスイッチを設け、このスイッチの操作に応じて上記車両が制動力を必要としていると判定し、ブレーキアシスト動作を実行してもよい。
 さらに、上記実施の形態において、ECU2は、リターダトルク要求値に基づいてリターダ制御信号2cをリターダ23に出力し、リターダ23による制動を行わせるものとして説明したが、例えば、ブレーキアシスト動作によるエンジンブレーキの増強を加味して、算出したリターダトルク要求値より高い要求値をリターダ制御信号2cとしてリターダ23に出力し、リターダ23によってより弱い制動力を得るようにしてもよい。また、上記実施の形態において、リターダ23の制動とエンジンブレーキの作動とが連動するようになっていてもよく、この場合、エンジン303に設けられた排気ブレーキ弁(図示略)が連動して閉じる構成であってもよい。
 また、上記実施の形態では、車両の加速中、高速走行中、及び、減速時においてエンジンに対するトルクの要求値が設定値以上の場合に、エンジンアシスト動作を行う場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、加速中や高速走行中のいずれか一方にのみエンジンアシスト動作を行ってもよいし、エンジントルク要求値のみに基づいてエンジンアシスト動作を行ってもよい。
[第2の実施の形態]
 図6は、本発明を適用した第2の実施の形態に係る圧縮空気供給システム1の構成を示す図である。
 この第2の実施の形態において、上記第1の実施の形態と同様に構成される各部には同符号を付して説明を省略する。
 図6に示す圧縮空気供給システム1(車両用圧縮空気供給装置)は、コンプレッサー4(空気圧縮機)と、コンプレッサー4を制御するECU2と、コンプレッサー4から吐出された圧縮空気の水分を除去して、上記車両の負荷に圧縮空気を供給するエアードライヤーモジュール10と、を備えて構成される。
 ECU2は、圧縮空気供給システム1を搭載する車両の車速等に基づいて、上記車両のエンジンを制御するとともに、コンプレッサー4及びエアードライヤーモジュール10の動作を制御する。
 エアードライヤーモジュール10には、上記車両が備える負荷51~54が接続されている。負荷51は主ブレーキ(前輪)、負荷52は主ブレーキ(後輪)、負荷53はパーキングブレーキであり、負荷54は、ホーンやクラッチ駆動機構等の圧縮空気で駆動されるアクセサリー類である。負荷51~54はそれぞれ圧縮空気が流れる圧縮空気回路を備え、負荷51はエアータンク51aを備え、負荷52はエアータンク52aを備える。
 エアードライヤーモジュール10は、ECU2の制御によって開閉される電磁弁101、102、103、及び、エアードライヤーモジュール10の各部における空気圧を検出して、検出値をECU2に出力する圧力センサー121、122、123、124を備えている。ECU2は、圧力センサー121~123の検出値に基づいて、電磁弁101~103を開閉させる。
 コンプレッサー4は、図示しない補機ベルトを介してエンジンに連結され、エンジンの駆動力によって空気を圧縮する。コンプレッサー4は空気圧で制御され、この制御ラインには電磁弁101が接続されており、電磁弁101の開閉によって、コンプレッサー4が空気を圧縮するロード状態と、圧縮を行わないアンロード状態とが切り替えられる。
 コンプレッサー4の吐出管41はエアードライヤーモジュール10の流入管111に接続され、流入管111にはエアードライヤー11が接続されている。エアードライヤー11は、ケース20に乾燥剤231を収容しており、この乾燥剤231によってコンプレッサー4から吐出された圧縮空気に含まれる水分等の異物を除去する。
 エアードライヤー11には排気バルブ12が設けられ、この排気バルブ12が開くとエアードライヤー11の本体内の圧縮空気が排気口112から直接外部へ排出される。排気バルブ12は空気圧で制御され、その制御ラインにはダブルチェックバルブ104が接続されている。排気バルブ12は通常時は閉鎖され、ダブルチェックバルブ104から空気圧が加わった場合のみ開弁する。
 エアードライヤーモジュール10は、空気圧により機械的に動作して排気バルブ12の開閉を制御するガバナ13を備えている。ガバナ13は、エアードライヤー11の下流側の供給路106における空気圧に従って動作し、この空気圧が所定の値を超えた場合にダブルチェックバルブ104に空気圧を与える。
 一方、電磁弁102は、ECU2の制御により開閉され、開弁状態において供給路106の空気圧をダブルチェックバルブ104に与える。
 ダブルチェックバルブ104は、ガバナ13または電磁弁102のいずれか一方が開いた場合に排気バルブ12に空気圧を与えて開弁させる。従って、排気バルブ12は、供給路106の空気圧が所定の値より高い場合、及び、電磁弁102が開いた場合に開弁して、圧縮空気を排気口112から放出する。
 ここで、エアードライヤーモジュール10内の空気圧が十分に高い状態で、排気バルブ12が開弁すると、エアードライヤー11よりも下流側の圧縮空気がエアードライヤー11のケース20内を逆流して排気口112から放出される。このときケース20を通る空気は急速な減圧によってスーパードライとなり、ケース20内の乾燥剤231から水分を奪うので、乾燥剤231が再生される。再生後の乾燥剤231は、水分を吸着する吸着能が回復しており、圧縮空気の水分を除去可能となっている。この再生動作は、ECU2によって電磁弁102を開弁させることで、予め設定された時間毎、或いは、エアードライヤーモジュール10内の空気圧等が予め設定された条件を満たした場合に実行される。
 エアードライヤーモジュール10は、負荷51(前輪の主ブレーキ)が接続される出力ポート113、負荷52(後輪の主ブレーキ)が接続される出力ポート114、負荷53(パーキングブレーキ)が接続される出力ポート115、及び、負荷54(アクセサリー類)が接続される出力ポート116を備えている。
 エアードライヤー11より下流の供給路106には、減圧弁131を介して分岐室135が接続されている。分岐室135には、出力ポート113に繋がる供給路及び出力ポート114に繋がる供給路が接続され、出力ポート113に繋がる供給路には保護弁141が設けられ、出力ポート114に繋がる供給路には保護弁142が設けられている。また、分岐室135には減圧弁132が接続され、減圧弁132の下流は出力ポート115に繋がる供給路と出力ポート116に繋がる供給路とに分岐し、それぞれ、保護弁143、144が設けられている。各保護弁141~144は、絞り及びチェック弁と並列に配置され、それぞれ対応する出力ポート113~116に接続された負荷51~54において圧縮空気が流れる回路が失陥したときに閉鎖する。
 保護弁141、142は、それぞれ、対応する負荷51、52の圧縮空気回路に圧縮空気が充分に満たされているとき、開弁状態にある。従って、主ブレーキ用のエアータンク51a、52aの圧縮空気を、分岐室135から減圧弁132を経て、供給路136を通して出力ポート115に供給できる。このため、エアータンク51a、52aの空気圧が十分に高い状態では、負荷53へ圧縮空気を供給してパーキングブレーキを解除できる一方、エアータンク51a、52aの空気圧が十分でない場合、ECU2は電磁弁103を開弁し、電磁弁103の指令圧は逆止弁137に与えられ、逆止弁137により供給路136が閉鎖され、出力ポート115への圧縮空気の供給経路が遮断される。この場合、パーキングブレーキは解除不能となるが、主ブレーキに使用するエアータンク51a、52aの空気圧が不十分な場合はパーキングブレーキを解除しない方が好ましい。また、エアータンク51a、52aの空気圧が回復すればパーキングブレーキを解除できるようになる。従って、負荷53用のエアータンクが無くても、圧縮空気により安定してパーキングブレーキを動作させることができる。
 さらに、図6に示す圧縮空気供給システム1は、エアードライヤー11におけるオイルを検知するオイル検知センサー14を備えている。
 エアードライヤー11の乾燥剤231は使用に伴って劣化し、再生を行った後の吸着能が次第に低下する。乾燥剤231の吸着能が不十分になると新しいものに交換されるが、コスト及び工数の面で、適正な交換時期を見極め、交換頻度を必要最小限に抑えることが望ましい。そこで、本第2の実施の形態の圧縮空気供給システム1は、エアードライヤーモジュール10にオイル検知センサー14を設け、このオイル検知センサー14によってケース20内のオイルを検知し、その検知結果に基づいて乾燥剤231の交換時期を判定できるようになっている。
 すなわち、発明者らは、コンプレッサー4の吐出管41からエアードライヤー11に流れ込むコンプレッサーオイルが乾燥剤231の表面に付着すると、乾燥剤231の表面における吸着能が低下するとの知見を得、この知見に基づき、ケース20に流入したオイルを検知することで、乾燥剤231の状態をいわば直接的に検出する構成とした。この構成によれば、ケース20に流入したオイルを検知することで、乾燥剤231の表面におけるオイルの付着状態を検知できるので、乾燥剤231の劣化の度合いを適正に判断できる。
 そして、図6の圧縮空気供給システム1では、オイル検知センサー14はECU2に接続され、オイル検知センサー14においてオイルを検知した検知結果を示す信号がECU2に入力され、ECU2は、入力された信号に基づいて検知結果を取得する。さらに、ECU2には、オイル検知センサー14の検知結果を表示する表示部3(出力部)を備えている。表示部3の具体的な構成としては、検知結果に応じて点灯/消灯/点滅が切り替わるLEDや、検知結果を文字や記号等により表示する液晶表示パネルが挙げられる。この表示部3は、上記車両のスピードメータとともに実装されてもよいし、上記車両においてコンプレッサー4やエアードライヤー11の近傍に配置されてもよい。この表示部3により、運転者や、上記車両を整備する整備士、上記車両を管理する管理者等が、ケース20におけるオイルの検知状態を視認することができ、乾燥剤231の交換時期を適正に判断できる。例えば、表示部3において乾燥剤231の交換を推奨する表示がなされ、この表示に基づいて乾燥剤231が交換される。
 図7は、エアードライヤー11の具体的な構成例を示す断面図である。
 図7には、オイル検知センサー14(図6)の一具体例として、オイルミストセンサー141を設けた構成を図示する。図7に示すように、エアードライヤー11のケース20は、ドライヤー本体21と、ドライヤー本体21に被さってボルト221により固定されたカートリッジカバー22とで構成される。ドライヤー本体21は、流入管111(図6)に接続され、コンプレッサー4の吐出管41から吐出された圧縮空気が流入する流入口211と、ケース20から供給路106(図6)とを有する。
 ドライヤー本体21の上部に固定された中空のカートリッジカバー22には、カートリッジ23が収容される。カートリッジ23は、ボルト235によって、カートリッジ23の外に圧縮空気が漏れないようにドライヤー本体21に固定されている。
 カートリッジ23の内部には空間が形成され、この空間に粒状の乾燥剤231が充填されている。また、カートリッジ23の上端部には、圧縮空気をカートリッジ23外へ排出するチェック弁232が設けられ、チェック弁232の下方には、乾燥剤231をチェック弁232側から押さえるフィルター234及びスプリング233が配設されている。
 また、カートリッジ23の下部には、乾燥剤231が収容された空間へのオイルの進入を防ぐため、流通する空気中のオイルミストを捕集するオイルフィルター24が配置されている。
 乾燥剤231の流入口211から流入した圧縮空気は、ドライヤー本体21に設けられた流入側気室213(導入部)に入り、さらにドライヤー本体21内に形成された流路(図示略)を通ってカートリッジ23に流入する。ここで、ドライヤー本体21内の流路はオイルフィルター24に繋がっており、オイルフィルター24を通った圧縮空気が乾燥剤231に到達する構成となっている。
 そして、オイルフィルター24により油分を除去され、カートリッジ23の乾燥剤231によって水分が吸着除去された圧縮空気は、チェック弁232を通ってカートリッジ23の外に出て、カートリッジカバー22内に設けられた流路(図示略)を通り、流出口212からドライヤー本体21の外に流出する。
 ドライヤー本体21において、流入口211からカートリッジ23へ圧縮空気が流れる流路には、排気バルブ12が設けられている。排気バルブ12は、上述したようにケース20内の圧縮空気を外部へ排出する弁である。排気バルブ12の下部には排気管215が接続され、排気管215内には消音器217が収容されている。また、排気管215の下端にはカラー216が連結されており、カラー216の内部にも消音器218が収容されている。上述した再生動作により排気バルブ12が開弁すると、ケース20内の圧縮空気は排気管215とカラー216を通って、カラー216の下端に開口する排気口112から排出される。このとき圧縮空気は勢いよく排気口112から外気中に排出されるので、周囲に大きな騒音をもたらさないように、消音器217、218によって気流音を抑制している。
 そして、図7に示す構成においては、流入側気室213に、オイルミストセンサー141が配置されている。オイルミストセンサー141は、流入側気室213内を漂う油滴(オイルミスト)の濃度を光学的に計測するセンサーである。具体的には、オイルミストセンサー141は、LED等の発光部(図示略)と、この発光部が発した光を受光する受光部(図示略)と、受光部が受光した光量を示す検知信号を出力する信号出力部(図示略)とを有する。オイルミストセンサー141は、流入口211から流入していったん流入側気室213に貯留される圧縮空気におけるオイルミストの濃度を計測して、計測値を示す信号を、ECU2(図6)に出力する。
 ECU2は、オイルミストセンサー141から入力される信号に基づいて、オイルミストの濃度の積算値を算出し、所定時間内の積算値に応じて、表示部3に表示出力する。
 この表示出力の形態としては、例えば、オイルミストセンサー141の計測値を数値やバーグラフ等により表示する形態のほか、オイルミストセンサー141の計測値が予め設定された閾値を超えた場合に、記号の表示やLEDの点灯・点滅により警告表示を行う形態等がある。
 好ましい例としては、ECU2は、所定時間内におけるオイルミストの濃度の積算値が、予め設定された閾値を超えた場合に、表示部3による表示出力を行う。この場合の閾値は、オイルミストによって乾燥剤231の吸着能が劣化した場合に相当するオイルミストの積算値として、予め設定された量である。この閾値は、例えば、ECU2が内蔵するメモリーに格納されている。
 このように、圧縮空気供給システム1は、車両に搭載されたコンプレッサー4を備え、コンプレッサー4から吐出した圧縮空気を車両の負荷に供給するエアードライヤーモジュール10をコンプレッサー4に接続し、コンプレッサー4の吐出ラインに、圧縮空気に含まれる水分等の異物を除去するエアードライヤー11を設け、エアードライヤー11にオイル検知センサー14を設け、オイル検知センサー14の検知結果を出力する表示部3を備えたので、エアードライヤー11に流入したオイルを検知することで、乾燥剤231の表面におけるオイルの付着状態を直接的に検知できる。そして、その検知結果を出力することで、上記車両の運転者や整備者が、オイルの付着による乾燥剤231の劣化の度合いを正確に知ることができ、乾燥剤231の交換の要否を適切に判断でき、適切な時期に乾燥剤231を交換できる。
 また、オイル検知センサー14は、エアードライヤー11のケース20内部に配置されるので、エアードライヤー11に流入したオイルを高精度で確実に検知できる。
 さらにまた、オイル検知センサー14は、エアードライヤー11が有する乾燥剤231へ圧縮空気を導く導入部近傍の流入側気室213に設置されるので、外部からケース20に流入し、乾燥剤231の劣化の原因となるオイルを確実に検出できる。
 さらにまた、上記圧縮空気供給システム1においては、オイル検知センサー14として、オイルミスト濃度を検知するオイルミストセンサー141で構成されるので、ケース20に流入したミスト状のオイルを確実に検知できる。
[第3の実施の形態]
 図8は、第3の実施の形態における圧縮空気供給システム1の構成を示す図である。
 この第3の実施の形態において、上記第2の実施の形態と同様に構成される各部には同符号を付して説明を省略する。
 第3の実施の形態の圧縮空気供給システム1では、上述した第2の実施の形態とは異なり、オイル検知センサー14が、エアードライヤー11の下流側に接続された圧縮空気の配管に設けられている。
 すなわち、オイル検知センサー14は、エアードライヤー11のケース20の外に位置して、ケース20内の乾燥剤231を通り抜けた圧縮空気におけるオイルミスト量を検出する。オイル検知センサー14は、例えば、第2の実施の形態で説明したオイルミストセンサー141であり、ECU2に接続され、上記配管におけるオイルミストの濃度を計測し、計測値を示す信号をECU2に出力する。
 この第3の実施の形態で、ECU2は、オイル検知センサー14から入力される情報または信号に基づいて、表示部3に出力を行う。具体的な出力形態は第2の実施の形態で説明したように種々あるが、好ましい例としては、ECU2は、所定時間内におけるオイルミストの濃度が、予め設定された閾値を超えた場合に、表示部3による表示出力を行う。
 上述のように、乾燥剤231にコンプレッサーオイルが付着すると、乾燥剤231の表面における水分の吸着を阻害し、結果として乾燥剤231の吸着能が低下する。この減少が進行すると、カートリッジ23を通過した圧縮空気に、乾燥剤231に付着したコンプレッサーオイルが混ざるので、下流に設けたオイル検知センサー14によってオイルミストとして検出される。そこで、本第3の実施の形態では、オイル検知センサー14によって検出されたオイルミストの濃度が、予め設定された閾値を超えたか否かをECU2によって判別し、この判別結果を表示部3により表示出力する。この閾値は、例えば、ECU2が内蔵するメモリーに格納されている。
 この第3の実施の形態によれば、エアードライヤー11の下流側において圧縮空気に混ざるコンプレッサーオイルの量から、乾燥剤231の状態を直接検知することができ、検知した乾燥剤231の状態を出力できる。また、乾燥剤231の下流側においては通常は漏れ出ないコンプレッサーオイルを、乾燥剤231の下流側に設けたオイル検知センサー14により検出するので、確実かつ高精度で乾燥剤231の状態を検知できる。さらに、このオイル検知センサー14は、オイルフィルター24及び乾燥剤231を通った圧縮空気中のオイルミストを測定するので、この測定値は、実際に乾燥剤231に付着したオイルの量を直接観測したに等しい。このため、オイル検知センサー14を乾燥剤231の下流側に設けることで、乾燥剤231の状態をより直接的に検知できる。
 なお、この第3の実施の形態では、図8に示すようにエアードライヤー11のすぐ下流側の配管にオイル検知センサー14を設けた構成を例示したが、オイル検知センサー14の位置は、エアードライヤー11の乾燥剤231よりも下流側であれば特に限定されない。例えば、エアードライヤー11の流出口212(図7)の近傍にオイル検知センサー14(オイルミストセンサー141)を設けてもよいし、供給路106や、供給路106に設けたエアータンク(図示略)の中にオイル検知センサー14を設けてもよい。
 また、上記の第1及び第3の実施の形態では、オイル検知センサー14としてオイルミストセンサー141を備えた構成を例に挙げて説明したが、例えば、液状のオイルに接触することを検知するセンサーを設けてもよい。
 以下、この場合について第4の実施の形態として説明する。
[第4の実施の形態]
 図9は、第4の実施の形態に係るエアードライヤー11Aの構成例を示す断面図である。本第4の実施の形態において、上記第2の実施の形態と同様に構成される部分には同符号を付して説明を省略する。
 図9に示すエアードライヤー11Aは、上述したエアードライヤー11に代えて用いられる装置である。エアードライヤー11Aは、ドライヤー本体21Aにカートリッジカバー22を固定して構成されるケース20Aを有し、ドライヤー本体21Aに設けられた流入口211から流入する圧縮空気をカートリッジカバー22内のカートリッジ23に通すことで、圧縮空気の水分を除去する。また、流入口211からカートリッジ23へ至る圧縮空気の流路にはオイルフィルター24が配置され、圧縮空気に含まれるオイルはオイルフィルター24によって捕集される。
 エアードライヤー11Aのドライヤー本体21Aには、オイルパン251(オイル溜り部)が設けられている。オイルパン251は、オイルフィルター24の下方に位置して、オイルフィルター24により捕集されて落下したオイルを貯留する凹部である。オイルパン251は、流入口211から流入した圧縮空気を貯留する流入側気室252の下部に形成されている。オイルパン251の底部にはドレインボルト253が配設され、このドレインボルト253を開放することでオイルパン251のオイルを排出できる。
 そして、オイルパン251には、オイルパン251に貯留されたオイルの液面が所定の位置まで上昇したことを検知する油面検知センサー26が配置されている。油面検知センサー26は、図6に示すオイル検知センサー14に相当するセンサーである。
 図10は、油面検知センサー26の構成を詳細に示す要部拡大断面図である。
 油面検知センサー26は、略箱形のセンサー本体261と、絶縁体により構成される電極支持部262とを備え、この電極支持部262から2本の電極263、264が立設されている。電極263、264は棒状の導体により構成され、所定の間隔を開けて平行に下方に延びている。センサー本体261には、電極263、264間の電気抵抗値に基づき、電極263と電極264とが導通したことを検知する検知回路(図示略)が内蔵されている。また、センサー本体261には、ドライヤー本体21Aの壁を貫通して外に延びるリード線267、268が接続され、これらリード線267、268は、ECU2(図1)に接続される。
 オイルフィルター24から落下したオイル27がオイルパン251に貯留される間、油面検知センサー26は電極263、264間の電気抵抗値の監視を行い、オイル27の液面が上昇して図中の位置Lまで上昇すると、電極263、264がともにオイル27に浸って、電極263、264間の電気抵抗値が顕著に変化する。従って、油面検知センサー26は、電極263、264間の電気抵抗値に基づいてオイル27の液面が位置Lまで上昇したことを検知し、その検知結果を、リード線267、268を介してECU2に出力する。
 この場合、流入口211から流入して乾燥剤231へ流れた圧縮空気に含まれていたオイルの量を直接検知することができ、乾燥剤231の表面におけるオイルの付着状態を直接的に検知できる。そして、その検知結果をECU2によって表示部3から出力することで、上記車両の運転者や整備者が、オイルの付着による乾燥剤231の劣化の度合いを正確に知ることができ、乾燥剤231の交換の要否を適切に判断できる。
 また、エアードライヤー11におけるケース20Aの底部に設けられたオイルパン251に、電極263、264を有する油面検知センサー26を設け、この油面検知センサー26によってオイル27の液面の高さを検知するので、オイルの量を確実に検知できる。
 なお、本第4の実施の形態において、油面検知センサー26が電極263、264間の電気抵抗値を監視する構成とせず、電極263とリード線267、及び、電極264とリード線268とを接続して、ECU2において電極263、264間の電気抵抗値を検出してもよい。
 また、上述した各実施の形態は、本発明を適用した一態様を示すものであって、本発明は上記実施の形態に限定されない。例えば、上記実施の形態では、オイル検知センサー14としてのオイルミストセンサー141及び油面検知センサー26を、ケース20、20Aの内部に設けた構成としたが、本発明はこれに限定されるものではなく、エアードライヤー11の流入管111内部にオイル検知センサー14を設けてもよく、その配設位置は、乾燥剤231に向けて流れる圧縮空気に含まれるオイルを検知できる位置であれば、特に限定されない。また、上記実施の形態では、オイル検知センサー14の検知結果を出力する表示部3を備えた構成を例に挙げて説明したが、出力形態は任意に変更可能であり、例えば、オイル検知センサー14の検知結果を音声や構造物の動作または位置により出力してもよく、ECU2から外部の装置に対してオイル検知センサー14の検知結果を示す信号を有線または無線により出力してもよく、プリンターをECU2に接続した場合に、ECU2の制御によってオイル検知センサー14の検知結果が印刷出力されるようにしてもよい。さらに、上記実施の形態において、オイル検知センサー14の例としてオイルミストセンサー141及び油面検知センサー26を例に挙げて説明したが、この他に、ケース20Aに流入する圧縮空気を吸い込んで該圧縮空気中のオイルをフィルターにより捕集し、捕集したオイル量を検出するセンサーを、オイル検知センサー14として用いることも可能であり、オイルを検知できるものであれば特に限定されない。
[第5の実施の形態]
 図11は、本発明を適用した第5の実施の形態に係る圧縮空気供給システム1の構成を示す図である。本第5の実施の形態において、上記第1の実施の形態と同様に構成される部分には同じ符号を付して説明を省略する。
 ECU2は、圧縮空気供給システム1を搭載する車両の車速等に基づいて、上記車両のエンジンを制御するとともに、コンプレッサー4及びエアードライヤーモジュール10の動作を制御する。但し、ECU2には、車両の車速等に関する情報や、車両の走行距離に関する情報等の車両の走行状況に関する情報が入力される。また、ECU2には、エアードライヤー11の動作状況に関する情報が入力される。
 エアードライヤーモジュール10には、上記車両が備える負荷51~54が接続されている。負荷51は主ブレーキ(前輪)、負荷52は主ブレーキ(後輪)、負荷53はパーキングブレーキであり、負荷54は、ホーンやクラッチ駆動機構等の圧縮空気で駆動されるアクセサリー類である。負荷51~54はそれぞれ圧縮空気が流れる圧縮空気回路を備えている。また、負荷51に供給される圧縮空気はエアータンク51aに貯留され、負荷52に供給される圧縮空気はエアータンク52aに貯留される。
 エアードライヤーモジュール10は、ECU2の制御によって開閉される電磁弁101、102、103、及び、エアードライヤーモジュール10の各部における空気圧を検出して、検出値をECU2に出力する圧力センサー121、122、123、124を備えている。ECU2は、圧力センサー121~123の検出値に基づいて、電磁弁101~103を開閉させる。
 コンプレッサー4は、図示しない補機ベルトを介してエンジンに連結され、エンジンの駆動力によって空気を圧縮する。コンプレッサー4は空気圧で制御され、この制御ラインには電磁弁101が接続されており、電磁弁101の開閉によって、コンプレッサー4が空気を圧縮するロード状態と、圧縮を行わないアンロード状態とが切り替えられる。
 コンプレッサー4の吐出管41はエアードライヤーモジュール10の流入管111に接続され、流入管111にはエアードライヤー11が接続されている。エアードライヤー11は、ケース20に乾燥剤231を収容しており、この乾燥剤231によってコンプレッサー4から吐出された圧縮空気に含まれる水分等の異物を除去する。
 エアードライヤー11には排気バルブ12が設けられ、この排気バルブ12が開くとエアードライヤー11の本体内の圧縮空気が排気口112から直接外部へ排出される。排気バルブ12は空気圧で制御され、その制御ラインにはダブルチェックバルブ104が接続されている。排気バルブ12(排出弁)は通常時は閉鎖され、ダブルチェックバルブ104から空気圧が加わった場合のみ開弁する。
 ここで、エアードライヤーモジュール10内の空気圧が十分に高い状態で、排気バルブ12が開弁すると、エアードライヤー11よりも下流側、例えば、エアータンク51a、52a内に貯留された圧縮空気がエアードライヤー11のケース20内を逆流して排気口112から放出される。このときケース20を通る空気は急速な減圧によってスーパードライとなり、ケース20内の乾燥剤231から水分を奪うので、乾燥剤231が再生される。再生後の乾燥剤231は、水分を吸着する吸着能が回復しており、圧縮空気の水分を除去可能となっている。この再生動作は、ECU2によって電磁弁101および電磁弁102を開弁させることで行われる。乾燥剤231の再生動作は予め設定された所定の再生間隔(T0)毎に行われる。なお、後述する様に、この再生間隔(T0)は乾燥剤231の状態に応じて適正な間隔に更新される。
出力ポート113にはエアータンク5
1aが接続され、出力ポート114には、エアータンク52aが接続される。
 エアードライヤー11より下流の供給路106には、減圧弁131を介して分岐室135が接続されている。分岐室135には、出力ポート113に繋がる供給路及び出力ポート114に繋がる供給路が接続され、出力ポート113に繋がる供給路には保護弁141が設けられ、出力ポート114に繋がる供給路には保護弁142が設けられている。また、分岐室135には減圧弁132が接続され、減圧弁132の下流は出力ポート115に繋がる供給路と出力ポート116に繋がる供給路とに分岐し、それぞれ、保護弁143、144が設けられている。各保護弁141~144は、絞り及びチェック弁と並列に配置され、それぞれ対応する出力ポート113~116に接続された負荷51~54において圧縮空気が流れる回路が失陥したときに閉鎖する。
 保護弁141、142は、それぞれ、対応する負荷51、52の圧縮空気回路に圧縮空気が充分に満たされているとき、開弁状態にある。従って、主ブレーキ用のエアータンク51a、52aの圧縮空気を、分岐室135から減圧弁132を経て、供給路136を通して出力ポート115に供給できる。このため、エアータンク51a、52aの空気圧が十分に高い状態では、負荷53へ圧縮空気を供給してパーキングブレーキを解除できる一方、エアータンク51a、52aの空気圧が十分でない場合、ECU2は電磁弁103を開弁し、電磁弁103の指令圧は逆止弁137に与えられ、逆止弁137により供給路136が閉鎖され、出力ポート115への圧縮空気の供給経路が遮断される。この場合、パーキングブレーキは解除不能となるが、主ブレーキに使用するエアータンク51a、52aの空気圧が不十分な場合はパーキングブレーキを解除しない方が好ましい。また、エアータンク51a、52aの空気圧が回復すればパーキングブレーキを解除できるようになる。従って、負荷53用のエアータンクが無くても、圧縮空気により安定してパーキングブレーキを動作させることができる。
 図12は、エアードライヤー11の具体的な構成例を示す断面図である。
 図12において、図7と同様に構成される各部には同符号を付して説明を省略する。
 図12に示すように、エアードライヤー11のケース20は、ドライヤー本体21と、ドライヤー本体21に被さってボルト221により固定されたカートリッジカバー22とで構成される。ドライヤー本体21は、流入管111(図11)に接続され、コンプレッサー4の吐出管41から吐出された圧縮空気が流入する流入口211と、ケース20から圧縮空気が吐出する供給路106(図11)とを有する。
 ところで、エアードライヤー11の乾燥剤231は、上述したように予め設定された所定の再生間隔(T0)で行われる。この再生間隔(T0)は、例えば、所定の時間毎、あるいは、乾燥剤231の積算通気量や、車両の走行距離(走行時間)等により定められる。しかしながら、乾燥剤231の状態によっては、予め設定された再生間隔(T0)よりも短い間隔で乾燥剤231を再生することが好ましい場合もあれば、予め設定された再生間隔(T0)よりも長い間隔で乾燥剤231を再生してもよい場合もある。例えば、運転開始時や外気温低下時等、露点温度が高い場合には予め設定された再生間隔(T0)より短い間隔で再生を行うことが好ましい。一方、冬季等、露点温度が低い場合には、予め設定された再生間隔(T0)よりも長い間隔で再生を行ってもよい。また、乾燥剤231は使用により劣化が進み、乾燥剤231の吸着能が徐々に低下していく。乾燥剤231の吸着能が低下している場合には、吸着能の低下の応じて、予め設定された再生間隔(T0)を徐々に短くしていくことが好ましい。この様に、乾燥剤231の再生条件において、まず、乾燥剤231の再生間隔(再生頻度)を適正にする必要がある。
 また、乾燥剤231を再生させる場合、乾燥剤231の状態、すなわち、乾燥剤231に吸着されている水分量に応じて、再生時に乾燥剤231に通気させるエア量(以下、「再生エア量」という)を適正にする必要がある。また、例えば、エアータンク51aに貯留された圧縮空気をエアードライヤー11に逆流させて、乾燥剤231の再生を行う場合、乾燥剤231を効率よく再生するには、エアータンク51aの容積と、エアータンク51a内の圧縮空気の温度、湿度に応じて、排気バルブ12(排出弁)を開弁させる時間(再生時間)と、エアータンク51a内の圧力(再生圧力)を適正にする必要が生じる。この様に、乾燥剤231に吸着された水分量、乾燥剤231の劣化の程度、再生時に通気させる圧縮空気の圧力、湿度、温度等に応じて、乾燥剤231の再生間隔や再生圧力、再生時間等の再生条件を適正にすることが好ましい。そこで、本実施の形態の圧縮空気供給システム1は、負荷51に供給する圧縮空気を貯留するエアータンク51a内に湿度検知センサー314を設け、この湿度検知センサー314の検知結果に基づいて乾燥剤231の再生条件を適正に、すなわち、最適化するようになっている。但し、本実施の形態では、圧縮空気の湿度レベルと、乾燥剤231に吸着された水分量等の乾燥剤231の状態とは実験等により得られたデータに基づき予め対応付けられており、この対応関係を示す情報はECU2に保有されている。従って、湿度検知センサー314の検知結果に基づいて、ECU2はエアータンク51a内の圧縮空気の湿度レベルに基づいて乾燥剤231に吸着された水分量等の乾燥剤231の状態を検知することができる。また、乾燥剤231の継続使用に伴い、乾燥剤231の吸着能が低下していくと、乾燥剤231を再生させた後の圧縮空気の湿度レベルが徐々に増加していく。本実施の形態では、乾燥剤231の吸着能の低下の程度と、乾燥剤231を再生させた後の圧縮空気の湿度レベルの増加の程度とは実験等により得られたデータに基づき予め対応付けられており、この対応関係を示す情報はECU2に保有されている。従って、乾燥剤231を再生させた後の湿度レベルの増加傾向に基づいて、ECU2は、乾燥剤231の吸着能の低下の程度を検知することができる。以下、乾燥剤231に吸着された水分量や、乾燥剤231の吸着能の劣化の程度を含めて、乾燥剤231の状態という。
 次に、図13を参照して、ECU2の制御の下で行われる乾燥剤231の再生処理について説明する。但し、図11に示す様に、湿度検知センサー314はECU2に接続されている。また、湿度検知センサー314の検知結果を示す信号はECU2に入力される。ここで、湿度検知センサー314の検知結果は、エアータンク51a内の相対湿度を示し、温度に関する情報も含まれる。
 まず、ECU2は、予め設定された再生タイミングが訪れたか否かを判別する(ステップS101)。ここで、予め設定された再生タイミングとは、前に乾燥剤231の再生処理を行った時点から予め設定された再生間隔(T0)又は、以下の処理により更新された再生間隔(Tn)を経た時点である。
 ステップS101において、再生タイミングであると判別した場合(ステップS101:Y)、次に、ECU2は、湿度検知センサー314の検知結果に基づいて、エアータンク51a内の圧縮空気の湿度レベルが予め設定された閾値レベル以上か否かを判別する(ステップS102)。ここで、閾値レベルは、乾燥剤231の再生が必要な湿度レベルに基づいて予め設定される。また、ステップS101において、再生タイミングではないと判別された場合(ステップS101:N)もステップS102に移行し、エアータンク51a内の圧縮空気の湿度レベルが予め設定された閾値レベル以上か否かを判別する。
 次に、エアータンク51a内の圧縮空気の湿度レベルが所定の閾値レベルに達していないと判別した場合(ステップS102:N)、ECU2は、乾燥剤231の再生は不要であると判別して、ステップS101の判別に戻る。すなわち、予め設定された再生タイミングが訪れた場合であっても、圧縮空気の湿度レベルが所定の閾値レベルに達していない場合、乾燥剤231の再生は行われない。
 一方、ステップS102において、エアータンク51a内の圧縮空気の湿度レベルが所定の閾値レベルに達していると判別した場合(ステップS102:Y)、次に、ECU2は乾燥剤231の再生状況を確認する(ステップS103)。ステップS103では、乾燥剤231の積算通気量や、再生回数、過去に再生された際の湿度検知センサー314の検知結果等に基づいて乾燥剤231の状態を確認する。次いで、ステップS104において、ECU2は、ステップS103において確認した乾燥剤231の状態と、湿度検知センサー314の検知結果から得られるエアータンク51a内の温度、湿度レベルと、エアータンク51aの容積等に基づいて、乾燥剤231を再生させるために最適な再生エア量を算出する(ステップS104)。
 次に、ECU2は、車両の走行状態に関する情報を取得し(ステップS105)、現在、乾燥剤231を強制的に再生させることが可能か否かを判別する(ステップS106)。ここで、ECU2は、乾燥剤231の強制再生において、ステップS105において取得した車両の走行状況に関する情報に基づいて、現在、車両が停止中であるか否かを判別すると共に、車両がブレーキアシスト動作中であるか否かを判別する。そして、車両が停止中でなく、ブレーキアシスト動作中でもない場合、ECU2は、乾燥剤231を強制的に再生させることができると判別する(ステップS106:Y)。次いで、ECU2は、ステップS104で算出した最適エア量に基づいて、適正な再生時間で、効率よく、乾燥剤231を再生させるに十分な高圧(最適圧力)になっているか否かを判別する(ステップS107)。ここで、エ
アータンク51a内の圧力が最適圧力に達していないと判別した場合(ステップS107:N)、ステップS105に戻る。但し、ステップS107において、エアータンク51a内の圧力が最適圧力に達していない場合、図示は省略したが、ECU2はコンプレッサー4をロード状態とすべく、電磁弁101および電磁弁102を閉弁して、エアータンク51aに圧縮空気を供給する。
 一方、ステップS107において、エアータンク51a内の圧力が最適圧力であると判別した場合(ステップS107:Y)、ECU2は、ステップS104で算出された最適エア量と、エアータンク51a内の圧力と、エアータンク51aの容積とに基づいて算出される所定の再生時間だけ電磁弁101および電磁弁102を開弁して、乾燥剤231を再生させる(ステップS108)。
 そして、乾燥剤231をさせた後、ECU2は湿度検知センサー314の検知結果を取得する(ステップS109)。次いで、ECU2は、ステップS109において取得した湿度検知センサー314の検知結果に基づいてエアータンク51a内の圧縮空気の湿度レベルが予め設定された湿度正常値レベルまで下がったか否かを判別する(ステップS110)。ここで、湿度正常値レベルは、再生により乾燥剤231に要求される吸着能が回復しているか否かを判別するための基準となる値に設定される。
 ステップS110において、エアータンク51a内の圧縮空気の湿度レベルが予め設定された湿度正常値レベルまで下がったと判別した場合(ステップS110:Y)、次に、再生後の湿度レベルが増加傾向にあるか否かを判別する(ステップS111)。ここで、ステップS110の判別は、ステップS109において取得した湿度検知センサー314の検知結果と、過去に乾燥剤231を再生した後の湿度検知センサー314の検知結果との比較により行う。
 一方、ステップS110においてエアータンク51a内の圧縮空気の湿度レベルが予め設定された湿度正常値レベルまで下がっていないと判定した場合(ステップS110:N)、予め設定された再生間隔(Tn-1)を予め設定された間隔(a)だけ短くした再生間隔(Tn)を新たな再生間隔として、ステップS101に移行する。但し、この間隔(a)は、例えば、再生間隔(T0)を短くするのに好ましい時間、積算通気量、走行距離等に基づいて設定される。
 また、ステップS111において、再生後の湿度レベルが増加傾向にあると判別した場合(ステップS111:Y)も、ステップS112に移行し、予め設定された再生間隔を短くし、乾燥剤231の再生頻度を高める。但し、上記において、nは再生間隔(T0)の更新を行った回数を示し、nは1以上の整数である。ステップS112において、再生間隔を更新した後、ステップS101に戻り、上述した処理を繰り返す。
 また、再生後のエアータンク51a内の圧縮空気の湿度レベルが正常値レベルまで下がり(ステップS110:Y)、再生後の圧縮空気の湿度レベルが増加傾向を示していない場合(ステップS111:N)、上記処理を終了する。この場合、再生タイミングが更新されている場合、再生タイミングを初期値(T0)に戻した上で処理を終了してもよい。また、図示はしていないが、ステップS101に戻り、上記処理を繰り返し行い、乾燥剤231の再生処理を行ってよいのは勿論である。
 このように、圧縮空気供給システム1は、車両に搭載されたコンプレッサー4を備え、コンプレッサー4から吐出した圧縮空気を車両の負荷に供給するエアードライヤーモジュール10をコンプレッサー4に接続し、コンプレッサー4の吐出ラインに、圧縮空気に含まれる水分等の異物を除去するエアードライヤー11を設け、負荷51に供給する圧縮空気を貯留するエアータンク51a内に湿度検知センサー314を設け、湿度検知センサー14の検知結果に基づいて乾燥剤231の状態を検知し、乾燥剤231の状態に応じて再生条件が最適化される。
 また、ステップS101およびステップS102に示した様に、再生タイミングが到来した場合でも、湿度検知センサー314の検知結果に基づいて、エアータンク51a内の圧縮空気の湿度レベルが閾値レベルに満たない場合には、乾燥剤231の再生を行わないので、乾燥剤231を不必要に再生することを防止することができる。また、再生タイミングが到来する前であっても、湿度検知センサー314の検知結果が閾値レベル以上を示す場合は、乾燥剤231の再生を行うので、乾燥剤231の状態あるいは外気の状態等に応じて乾燥剤231の再生の要否を的確に判断することができる。また、乾燥剤231の状態あるいは外気の状態等に応じて、最適な再生エア量を算出しているので、乾燥剤231の再生時に圧縮空気が無駄に外気に排出されるのを防止することができる。また、エアータンク51a内の圧力が最適圧力に達していない場合には、圧力を高めた上で乾燥剤231の再生を行うので、乾燥剤231の再生を効率よく行うことができる。
 また、この様に、湿度検知センサー314を用いて、乾燥剤231の吸着された水分量や、乾燥剤231の吸着能の低下の程度を検知し、再生後の湿度レベルの増加傾向を監視しているので、再生が不十分なために圧縮空気の湿度レベルが高いのか、乾燥剤231が交換を要する程度にまで劣化しているのかを判別することができ、乾燥剤231の劣化を適切に判断することもできる。
 また、エアータンク51a内の圧縮空気の湿度レベルは、外部要因の影響を受けにくく安定している。上記第5の実施の形態では、エアータンク51a内に湿度検知センサー14を設けているので、乾燥剤231を通過した後の圧縮空気の湿度レベルを精度よく検知することができる。このため、上記第5の実施の形態によれば、乾燥剤231が再生された後の湿度検知センサー314の検知結果に基づいて、乾燥剤231の劣化を精度よく判定することができる。
 但し、上記第5の実施の形態では、エアータンク51a内に湿度検知センサー314を設ける構成としたが、湿度検知センサー314はエアータンク52a内に設けてもよく、エアータンク51aおよびエアータンク52aの双方に湿度検知センサー314を設けてもよい。この様な負荷、特にブレーキに圧縮空気を供給するエアータンク51a、52aは、どの様な車両にも備えられるため、エアータンク51a、52a内に湿度検知センサー314を設けることにより、どの様な車両に搭載される圧縮空気供給システムにおいても本発明を容易に適用することができる。
 また、上記の説明では、乾燥剤231の再生を行う際に、エアータンク51aに貯留された圧縮空気を用いるものとして説明したが、エアータンク52aに貯留された圧縮空気を用いてもよく、双方のエアータンク51a、52aに貯留された圧縮空気を用いてもよく、特に限定されるものではない。
[第6の実施の形態]
 図14は、第6の実施の形態に係る圧縮空気供給システム200の構成を示す図である。本第6の実施の形態において、上記第5の実施の形態と同様に構成される部分には同じ符号を付して説明を省略する。第5の実施の形態では、負荷51に供給する圧縮空気を貯留するエアータンク51a内に湿度検知センサー314を設ける構成について説明したが、第2の実施の形態では、供給路106から分岐した分岐管107に湿度検知センサー315を設ける構成としている。
 本第6の実施の形態では、湿度検知センサー315により、エアードライヤーモジュール10内の圧縮空気の湿度レベルおよび温度を検知する以外は、図13に示すフローチャートと略同様に、湿度検知センサー315の検知結果を用いて乾燥剤231の再生処理を行うことができる。この様に、湿度検知センサー315の検知結果に基づいて、乾燥剤231に吸着された水分量、乾燥剤231の劣化の程度等の乾燥剤231の状態を検知し、乾燥剤231の状態に応じて、乾燥剤231の再生間隔や再生圧力、再生時間等の再生条件を適正にすることができる。
 上述した上記第5の実施の形態および第6の実施の形態は、それぞれ本発明を適用した一態様を示すものであって、本発明は上記実施の形態に限定されない。例えば、上記実施の形態では、エアータンク51a内又は、供給路106から分岐した分岐管107に湿度検知センサー314、315を設ける構成としたが、湿度検知センサーを設ける位置はこれらの配置に限定されるものではない。例えば、エアードライヤー11の内部の乾燥剤231の下流に湿度検知センサーを設けてもよい。すなわち、湿度検知センサーの配置は、乾燥剤231の下流であって、乾燥剤231を通過した後の圧縮空気の湿度を検知することのできる位置であれば特に限定されるものではない。
[第7の実施の形態]
 図15は、本発明を適用した第7の実施の形態に係る圧縮空気供給システム1の構成を示す図である。
本第7の実施の形態において、上記第1の実施の形態等と同様に構成される部分には同じ符号を付して説明を省略する。
 ECU2は、圧縮空気供給システム1を搭載する車両の車速等に基づいて、上記車両のエンジンを制御するとともに、コンプレッサー4及びエアードライヤーモジュール10の動作を制御する。また、ECU2には温度センサー5が接続され、この温度センサー5により検出された温度を示す情報が入力される。温度センサー5は、例えば車体外側の機構部の間など、車両の外気に接触する部分に配置された温度センサーであり、具体的には、サーミスターや熱電対で構成され、ECU2から外気温度に応じた電圧値を出力する。
 温度センサー5は、例えば上記車両においてエンジン等を制御するECUに接続され、このECUの制御により温度センサー5を用いて検出された外気温度が、スピードメーターユニット(図示略)等に表示される。
 エアードライヤーモジュール10内の空気圧が十分に高い状態で、排気バルブ12が開弁すると、エアードライヤー11よりも下流側(例えば、供給路106やエアータンク51a、52a内)に貯留された圧縮空気がエアードライヤー11のケース20内を逆流して排気口112から放出される。このときケース20を通る空気は急速な減圧によってスーパードライとなり、ケース20内の乾燥剤231から水分を奪うので、乾燥剤231が再生される。再生後の乾燥剤231は、水分を吸着する吸着能が回復しており、圧縮空気の水分を除去可能となっている。この再生動作は、ECU2によって電磁弁101および電磁弁102を開弁させることで行われる。例えば、ECU2は、再生動作を、予め設定された所定の時間毎に行ったり、エアードライヤー11における通気量等から乾燥剤231の状態を予測し、この予測に基づいて再生動作を行ったりする。
 図12に示すように、エアードライヤー11のケース20は、ドライヤー本体21と、ドライヤー本体21に被さってボルト221により固定されたカートリッジカバー22とで構成される。ドライヤー本体21は、流入管111(図15)に接続され、コンプレッサー4の吐出管41から吐出された圧縮空気が流入する流入口211と、ケース20から圧縮空気が吐出する供給路106(図15)とを有する。
 エアードライヤーモジュール10では、ケース20内部において結露により生じた結露水の水等が溜まることがある。寒冷期に、車両が長時間停止(駐車)されると、ケース20内に溜まった水が凍結する可能性があり、この凍結による各部の損傷が懸念される。このため、従来は、車両の停止時に排気バルブ12を開弁して、圧縮空気と共にケース20内の水分を外部へ排出していた。
 本第7の実施の形態に係るエアードライヤーモジュール10では、ECU2に接続された温度センサー5によって車両の外気温度を検出し、この外気温度が予め設定された温度を下回った場合に、ECU2の制御によって電磁弁101を所定時間開弁させ、圧縮空気とともに水分をケース20外へ排出する排出動作を行う。
 図16は、排出動作を含むエアードライヤーモジュール10の動作を示すフローチャートである。
 ECU2は、車両のイグニッションスイッチがオフに切り替えられたことを検知すると(ステップS1;Yes)、温度センサー5の出力電圧を取得することによって外気温度を検出する(ステップS2)。続いて、ECU2は、検出した外気温度が摂氏0度未満であるか否かを判別し(ステップS3)、外気温度が0℃未満である場合には(ステップS3;Yes)、電磁弁101を所定時間開弁させる再生動作を行い(ステップS4)、この再生動作によってケース20内に溜まった水分を排気バルブ12から圧縮空気とともに排出する。その後、ECU2は、圧縮空気供給システム1の各部を停止状態に移行させるとともに自身の動作を停止する(ステップS5)。一方、温度センサー5により検出した外気温度が摂氏0度以上であった場合(ステップS3;No)、そのままステップS5で動作を停止する。
 このように、圧縮空気供給システム1は、車両に搭載するコンプレッサー4を備え、該コンプレッサー4から吐出した圧縮空気を車両の負荷に供給するエアードライヤーモジュール10が、コンプレッサー4の吐出ラインに設けられ、圧縮空気に含まれる水分等の異物を除去するエアードライヤー11と、エアードライヤー11内に溜まった水分等を圧縮空気とともに排出する排気バルブ12と、を備え、ECU2によって温度の検出を行い、検出した温度が予め設定された温度を下回った場合に、排気バルブ12を開弁させてエアードライヤー11内に溜まった水分等を外部へ排出する。
 このため、エアードライヤー11内の水分が凍結する可能性がある場合のみ、エアードライヤー11に溜まった水分を圧縮空気とともに外部へ排出するので、エアードライヤーにおける凍結を確実に防止しつつ、水分の排出に係る圧縮空気の消費量を抑えることができる。
 また、上記車両のイグニッションがオフに切り替えられ、車両が動作を停止する際に、排気バルブ12を開弁させてエアードライヤー11内に溜まった水分等を外部へ排出するので、凍結が起きにくい走行中や車両の動作中には排出動作を行わない。さらに、車両の動作中にはECU2の制御によって乾燥剤231の再生動作が行われ、この再生動作時にケース20内の水分が圧縮空気とともに排出されるので、動作中に水分の排出を目的として排気バルブ12を開弁しなくても水分を除去できる。このため、水分を圧縮空気とともに排出する動作の実行回数を必要最小限に抑えることができるので、水分の排出に係る圧縮空気の消費量を抑えることができる。
 特に、車両が停止する際にエアードライヤーモジュール10内の圧縮空気を消費すると、駐車中にエアードライヤーモジュール10に蓄えられる圧縮空気が減ってしまう。このため、駐車前の圧縮空気の消費量を最小限に抑えることで、車両始動時に十分な圧縮空気を利用できることが多くなるという利点がある。
 さらに、ECU2には、車両が搭載している温度センサー5が接続され、この温度センサー5により検出した外気温度が予め設定された温度を下回った場合に、排気バルブ12を開弁させてエアードライヤー11内に溜まった水分等を外部へ排出するので、外気温度に基づいて凍結の可能性の有無を判別し、凍結のおそれがある場合のみ水分を圧縮空気とともに排出するので、凍結を確実に防止しつつ、水分の排出に係る圧縮空気の消費量を抑えることができる。
 また、図16に示す動作において、車両のイグニッションスイッチがオフに切り替えられたときの外気温度が0℃以上であった場合に(ステップS3;No)、ECU2がステップS5で停止した後、定期的にECU2が外気温度を監視し、外気温度が0℃未満になった際にエアードライヤー11に溜まった水分等を外部へ排出する構成としてもよい。
 具体的には、ステップS3で外気温度が0℃以上であって、ECU2がステップS5で停止した場合には、予め設定された時間毎にECU2及び温度センサー5に通電され、ECU2が起動して温度センサー5の出力電圧に基づいて外気温度が0℃未満か否かを判別し、外気温度が0℃以上であれば再び停止し、外気温度が0℃未満であった場合には、圧縮空気供給システム1の各部を起動させてステップS4と同様の動作によって電磁弁101を所定時間開弁させ、ケース20内に溜まった水分等を排気バルブ12から排出してからECU2を含む各部を停止させてもよい。言い換えれば、ステップS5でECU2が停止した後、車両が停止している間、一定時間毎にECU2が起動して図16のステップS2~S5の動作を行ってもよい。この場合、イグニッションスイッチがオフに切り替えられた時点では外気温度が0℃以上であり、その後に外気温度が低下して0℃未満になった場合に、エアードライヤー11に溜まった水分の凍結を防止できる。
 但し、車両のイグニッションスイッチがオフに切り替えられてから、図16の動作により1回でも電磁弁101を開弁させた後は、エアードライヤー11に溜まった水分等がすでに排出されているので、さらなる排出を行う必要がない。このため、図16の動作によって電磁弁101を開弁させた後は、再び車両のイグニッションがオンに切り替えられるまで、ECU2への定期的な通電を行わないようにすればよい。
 なお、上記第7の実施の形態では、車両において外気に触れる位置に設けられた温度センサー5がECU2に接続され、ECU2が温度センサー5を用いて外気温度を検出する構成としたが、本発明はこれに限定されず、温度センサー5が、上記車両においてエンジン等を制御するECUに接続され、このECUが温度センサー5を用いて検出した外気温度を示す情報が、上記ECUからECU2に入力されるようにしてもよい。
 また、上記第7の実施の形態では、温度センサー5を用いて検出した温度が予め設定された温度(0℃)を下回った場合に、ECU2の制御により再生動作を行って水分を排出する例について説明したが、本発明はこれに限定されず、例えば、一定時間毎の温度検出を複数回行い、複数回の検出温度の平均値や積算値、或いは、温度変化の変化率を求め、求めた値が予め設定された条件に該当する場合に、再生動作を行うようにしてもよい。
 また、温度センサー5に代えて、エアードライヤーモジュール10に設けた温度センサーによって温度を検出し、その検出した温度が予め設定された温度を下回るか否かに基づいて再生動作を行ってもよい。この場合の温度センサーは、例えば、エアードライヤーモジュール10において圧縮空気が流れる流路において、圧縮空気の温度を検出してもよく、この場合の配置場所は、供給路106などエアードライヤー11の下流側でも上流側でもよく、エアードライヤー11自体であってもよく、既存の配管から分岐する分岐管を設けて、この分岐管に温度センサーを設けてもよい。また、エアードライヤーモジュール10の外気温度を検出する温度センサーを設けてもよく、その配置場所は、例えば、エアードライヤーモジュール10を構成する配管やエアードライヤー11の外面が挙げられるが、特に限定されない。
 さらにまた、エアードライヤーモジュール10において、エアードライヤー11の下流側に、乾燥剤231の状態を判別するために圧縮空気の湿度を検出する湿度センサーを設けた場合、この湿度センサーが検出する温度をECU2によって取得し、この温度に基づいて再生動作を行ってもよい。この場合、乾燥剤231の状態を検出するための湿度センサーを有効に活用して、結露水等の凍結を防止できる。
 また、エアードライヤーモジュール10に接続される負荷は、主ブレーキ装置、パーキングブレーキ、及び、アクセサリー類に限定されず、圧縮空気を使用する機器類であれば何を接続してもよく、その他の細部構成についても任意に変更可能である。また、本発明の車両用圧縮空気供給装置の適用対象となる車両についても特に限定は無く、大型車両、小型車両、特殊車両、牽引車両、二輪車あるいは三輪車のいずれであってもよく、その規模及び形態は任意である。
[第8の実施の形態]
 図11において、エアードライヤーモジュール10内の空気圧が十分に高い状態で、排気バルブ12が開弁すると、エアードライヤー11よりも下流側の圧縮空気がエアードライヤー11のケース20内を逆流して排気口112から放出される。このときケース20を通る空
気は急速な減圧によってスーパードライとなり、ケース20内の乾燥剤231から水分を奪うので、乾燥剤231が再生される。再生後の乾燥剤231は、水分を吸着する吸着能が回復しており、圧縮空気の水分を除去可能となっている。この再生動作は、ECU2によって電磁弁102を開弁させることで、予め設定された時間毎、或いは、エアードライヤーモジュール10内の空気圧等が予め設定された条件を満たした場合等の所定の再生タイミング(所定のタイミング)で実行される。
 ところで、エアードライヤー11の乾燥剤231は使用に伴って劣化し、再生を行った後の吸着能が次第に低下する。乾燥剤231の劣化の原因の一つには、コンプレッサー4の吐出管41からエアードライヤー11に流れ込むコンプレッサーオイルが乾燥剤231の表面に付着することが挙げられる。乾燥剤231は、シリカゲル等の多孔質材料からなる。乾燥剤231の表面にオイルが付着すると、乾燥剤231の表面に無数にある孔がオイルで塞がれ、水分の吸着量が低下する。この様な場合、乾燥剤231を再生しても、乾燥剤231に要求される吸着能を回復することができず、新しいものに交換する必要がある。しかし、コストおよび工数の面で、適正な交換時期を見極め、交換頻度を必要最小限に抑えることが望ましい。そこで、本実施の形態の圧縮空気供給システム1は、負荷51に供給する圧縮空気を貯留するエアータンク51a内に湿度検知センサー314を設け、この湿度検知センサー314によって乾燥剤231が再生された後の圧縮空気の湿度を検知し、その検知結果に基づいて乾燥剤231の交換時期を判定できるようになっている。
 湿度検知センサー314はECU2に接続され、湿度検知センサー314の検知結果を示す信号がECU2に入力される。ECU2は、入力された検知結果を示す信号に基づいて、エアータンク51a内の圧縮空気の湿度レベルに関する情報を取得する。ここで、湿度検知センサー314の検知結果は、エアータンク51a内の相対湿度を示し、温度に関する情報も含まれる。ECU2は、湿度検知センサー314の検知結果を表示する表示部3(出力部)を備えている。ECU2は、入力された信号に基づいて検知結果を取得する。表示部3の具体的な構成としては、検知結果に応じて点灯/消灯/点滅が切り替わるLEDや、検知結果を文字や記号等により表示する液晶表示パネルが挙げられる。この表示部3は、上記車両のスピードメータとともに実装されてもよいし、上記車両においてコンプレッサー4やエアードライヤー11の近傍に配置されてもよい。この表示部3により、運転者や、上記車両を整備する整備士、上記車両を管理する管理者等が、湿度検知センサー314の検知結果を視認することができ、乾燥剤231の交換時期を適正に判断できる。但し、次に説明する様に、湿度検知センサー314の検知結果に基づいて、乾燥剤231の劣化を判定することができる。
 ここで、乾燥剤231の劣化とは、乾燥剤231の再生を行っても、当該圧縮空気供給システム1において、乾燥剤231に要求される吸着能を望ましいレベルにまで回復することのできない状態になったことを指す。
 次に、図17を参照して、ECU2による乾燥剤231の劣化判定処理について説明する。
 まず、ECU2は、予め設定された再生タイミングが到来したか否かを判定する(ステップS201)。現在、再生タイミングではない場合(ステップS201:N)、次に、ECU2は、湿度検知センサー314の検知結果に基づいて、エアータンク51a内の圧縮空気の湿度レベルが予め設定された閾値レベル以上か否かを判別する(ステップS202)。ここで、閾値レベルは、乾燥剤231の再生が必要な湿度レベルに基づいて予め設定される。
 圧縮空気の湿度レベルが所定の閾値レベルに満たないと判別された場合(ステップS202:N)、ステップS201の判別に戻る。圧縮空気の湿度レベル以上であると判別した場合(ステップS202:N)、次に、ECU2は、乾燥剤231の再生状況を確認する(ステップS203)。ステップS203では、例えば、エアードライヤー11の積算通気量を確認する。次いで、ECU2は、車両の走行状態等を確認し(ステップS204)、車両の走行状態等に基づいて、現在、乾燥剤231を再生させることが可能か否かを判別する(ステップS205)。ここで、詳細には、ECU2は、現在、車両が停止中であるか否か、エアータンク51a、52a内の圧力が予め設定された乾燥剤231を再生するために十分な圧力であるか否か、車両がブレーキアシスト動作中であるか否かに基づいて、乾燥剤231の再生が可能か否かを判別する。ここで、車両が停止中でなく、かつ、エアータンク51a、52a内の圧力が乾燥剤231を再生するために十分な圧力であり、更に、車両がブレーキアシスト動作中でもない場合、乾燥剤231を再生させることができると判別する(ステップS205:Y)。車両が走行中である場合、エアータンク51a、52a内の圧力が予め設定された乾燥剤231を再生するために十分な圧力に満たない場合、車両がブレーキアシスト動作中である場合の、いずれか一に該当する場合は、乾燥剤231を再生させることができないと判別する。
 ステップS205において、現在、乾燥剤231を再生させることが可能であると判別した場合(ステップS205:Y)、ECU2は、電磁弁101および電磁弁102を開弁して、予め設定された所定の再生タイミングに関わらず、乾燥剤231を再生させる(ステップS206)。但し、ステップS201において、予め設定された所定の再生タイミングが到来したと判別された場合(ステップS201:Y)も、走行状態を確認し(ステップS204)、再生可能になった場合(ステップS205:Y)、乾燥剤231の再生処理を行う(ステップS206)。
 そして、ステップS206において、乾燥剤231を再生させた後、湿度検知センサー314の検知結果に基づいてECU2は乾燥剤231が劣化したか否かを判別する(ステップS207)。具体的には、ECU2は、乾燥剤231が劣化したか否かを、エアータンク51a内の圧縮空気の湿度レベルが予め設定された湿度正常値レベルまで下がったか否かに基づいて判別する(ステップS207)。湿度正常値レベルは、再生により乾燥剤231に要求される吸着能が回復しているか否かを判別するための基準となる値に設定される。
 ステップS207において、圧縮空気の湿度レベルが予め設定された湿度正常値レベルまで下がったと判別された場合(ステップS207:Y)、再生により乾燥剤231の吸着能は回復していると判断できる。このため、ECU2は、乾燥剤231は劣化していないと判定
して、乾燥剤231が劣化していないことを示す判定結果を表示部3に出力し、表示部3に乾燥剤231が劣化していない場合に対応する表示を行わせる(ステップS208)。
 一方、ステップS207において、圧縮空気の湿度レベルが予め設定された湿度正常値レベルまで下がっていない場合(ステップS207:N)、再生を行っても乾燥剤231に要求される吸着能が回復していないため、乾燥剤231が劣化している可能性が高い。このため、ECU2は、乾燥剤231が劣化していると判定して、乾燥剤231が劣化していることを示す判定結果を表示部3に出力し、表示部3に乾燥剤231が劣化している場合に対応する表示を行わせる(ステップS209)。この様に、ステップS207において、ECU2は乾燥剤231の劣化を判定する劣化判定手段として機能している。
 但し、上記ステップS207において、圧縮空気の湿度レベルが予め設定された湿度正常値レベルまで下がっていないと判別した場合(ステップS207:N)、湿度検知センサー314の検知結果と、車両の走行状況に関する情報および/又はエアードライヤー11の動作状況に関する情報に基づいて、乾燥剤231の交換時期が到来したか否かを判定させる構成としてもよい。ここで、車両の走行状況に関する情報として、例えば、車両の走行時間に関する情報が挙げられる。また、エアードライヤー11の動作状況に関する情報として、例えば、エアードライヤ-11の積算通気量に関する情報が挙げられる。但し、積算通気量は、エアードライヤー11を通過した圧縮空気の通気量(体積)と通気圧力と通気時間とによって求められる。
 乾燥剤231を予め設定された所定の再生タイミングに関わらず、再生させた後もエアータンク51a内の圧縮空気の湿度レベルが湿度正常値レベルに達しない場合であって、車両の走行時間が所定時間を越えていた場合、若しくはエアードライヤー11の積算通気量が所定量を超えていた場合に、再生によっては乾燥剤231の吸着能を回復することができず、乾燥剤231が交換すべき程度にまで劣化していると判定することができる。そして、その判定結果を表示部3に出力し、乾燥剤231の交換時期が到来したことを車両の運転者や整備者に報知させる構成としてもよい。
 また、車両の走行時間が所定時間を越えていないにも関わらず、乾燥剤231を再生させた後もエアータンク51a内の圧縮空気の湿度レベルが湿度正常値レベルに達しない場合には、再度(又は複数回)、乾燥剤231を再生させて、エアータンク51a内の圧縮空気の湿度レベルの変化に基づいて、乾燥剤231の再生が不十分なのか、乾燥剤231の劣化の程度が乾燥剤231の交換を要する程度に達しているのか否かを判別する構成としてもよい。同様に、エアードライヤー11の積算通気量が所定量を超えていないにも関わらず、乾燥剤231を再生させた後もエアータンク51a内の圧縮空気の湿度レベルが湿度正常値レベルに達しない場合には、再度(又は複数回)、乾燥剤231を再生させて、エアータンク51a内の圧縮空気の湿度レベルの変化に基づいて、乾燥剤231の再生が不十分なのか、乾燥剤231の劣化の程度が乾燥剤231の交換を要する程度に達しているのか否かを判別する構成としてもよい。
 また、ステップS201において、予め設定された再生タイミングが到来した場合(ステップS201:Y)、ステップS204の処理に移行するものとして説明したが、ステップS202の判別に移行してもよい。予め設定された再生タイミングが到来した場合でも、圧縮空気の湿度レベルが閾値レベルに満たない場合には、乾燥剤231を再生させる必要がないと判別して、再生回数を適正化してもよい。
 また、図17において、図示は省略したが、ステップS206において、エアータンク51a、52a内の圧力が予め設定された乾燥剤231を再生するために十分な圧力に満たない場合、ECU2はコンプレッサー4をロード状態とすべく、電磁弁101および電磁弁1
02を閉弁して、エアータンク51a、52a内の空気圧を十分に高めることが好ましい。
 以上説明した第8の実施の形態によれば、圧縮空気供給システム1は、車両に搭載されたコンプレッサー4を備え、コンプレッサー4から吐出した圧縮空気を車両の負荷に供給するエアードライヤーモジュール10をコンプレッサー4に接続し、コンプレッサー4の吐出ラインに、圧縮空気に含まれる水分等の異物を除去するエアードライヤー11を設け、負荷51に供給する圧縮空気を貯留するエアータンク51a内に湿度検知センサー314を設け、乾燥剤231が再生された後の湿度検知センサー314の検知結果に基づいて、乾燥剤231の劣化を判定し、その判定結果を出力する表示部3を備えたので、その検知結果を出力することで、上記車両の運転者や整備者が、乾燥剤231の劣化の度合いを正確に知ることができ、乾燥剤231の交換の要否を適切に判断できる。
 また、上記実施の形態では、湿度検知センサー314により検知された湿度レベルが閾値レベル以上である場合に、所定の再生タイミングに関わらず、乾燥剤231を再生させ、強制的に再生された後の湿度検知センサー314の検知結果に基づいて、乾燥剤231の劣化を判定している。このため、乾燥剤231の再生が不十分なために圧縮空気の湿度レベルが高い場合に、乾燥剤231が劣化していると判定するのを防止することができる。
 また、エアータンク51a内の圧縮空気の湿度レベルは、外部要因の影響を受けにくく安定している。上記第8の実施の形態では、エアータンク51a内に湿度検知センサー14を設けているので、乾燥剤231を通過した後の圧縮空気の湿度レベルを精度よく検知することができる。このため、上記第8の実施の形態によれば、乾燥剤231が再生された後の湿度検知センサー314の検知結果に基づいて、乾燥剤231の劣化を精度よく判定することができる。
 また、乾燥剤231を再生させた後の、湿度検知センサー314の検知結果と共に、車両の走行状況に関する情報や、エアードライヤー11の動作状況に関する情報を用いて、乾燥剤231の交換時期が到来したか否かを判定することで、乾燥剤231の劣化の状態や、乾燥剤231の交換の要否をより正確に判断することができる。
 但し、上記第8の実施の形態では、エアータンク51a内に湿度検知センサー314を設ける構成としたが、湿度検知センサー314はエアータンク52a内に設けてもよく、エアータンク51aおよびエアータンク52aの双方に湿度検知センサー314を設けてもよい。この様な負荷、特にブレーキに圧縮空気を供給するエアータンク51a、52aは、どの様な車両にも備えられるため、エアータンク51a、52a内に湿度検知センサー314を設けることにより、どの様な車両に搭載される圧縮空気供給システムにおいても本発明を容易に適用することができる。
[第9の実施の形態]
 第8の実施の形態では、負荷51に供給する圧縮空気を貯留するエアータンク51a内に湿度検知センサー314を設ける構成について説明したが、第9の実施の形態では、図14において、供給路106から分岐した分岐管107に湿度検知センサー315を設ける構成としている。
 本第9の実施の形態では、図17に示すフローチャートと略同様に、湿度検知センサー16の検知結果を用いて乾燥剤231の劣化判定処理を行うことができる。
 上記第9の実施の形態によれば、乾燥剤231の下流に湿度検知センサー315を設け、乾燥剤231が再生された後の湿度検知センサー315の検知結果に基づいて、乾燥剤231の劣化を判定し、その判定結果を出力する表示部3を備えたので、その検知結果を出力することで、第8の実施の形態と同様に、上記車両の運転者や整備者が、乾燥剤231の劣化の度合いを正確に知ることができ、乾燥剤231の交換の要否を適切に判断できる。
 上述した上記第8の実施の形態および第9の実施の形態は、それぞれ本発明を適用した一態様を示すものであって、本発明は上記実施の形態に限定されない。例えば、上記実施の形態では、エアータンク51a内又は、供給路106から分岐した分岐管107に湿度検知センサー314、315を設ける構成としたが、湿度検知センサーを設ける位置はこれらの配置に限定されるものではない。例えば、エアードライヤー11の内部の乾燥剤231の下流に湿度検知センサーを設けてもよく、乾燥剤231の下流であって、乾燥剤231を通過した後の圧縮空気の湿度を検知することのできる位置であれば湿度検知センサーの配置は特に限定されるものではない。
 また、上記実施の形態では、湿度検知センサー314、315の検知結果を出力する表示部3を備えた構成を例に挙げて説明したが、出力形態は任意に変更可能であり、例えば、湿度検知センサー314、315の検知結果を音声や構造物の動作または位置により出力しても
よく、ECU2から外部の装置に対して湿度検知センサー314、315の検知結果を示す信号を有線または無線により出力してもよく、プリンターをECU2に接続した場合に、ECU2の制御によって湿度検知センサー314、315の検知結果が印刷出力されるようにしてもよい。また、上記実施の形態では、ECU2において乾燥剤231の劣化の判断や、交換の要否を判断するものとして説明したが、単に、正常値レベルとの比較により、湿度検知センサー314、315の検知結果が正常値レベルよりも高い場合にその検知結果を表示
する構成としてもよい。
[第10の実施の形態]
 以下、図面を参照して本発明の第10の実施の形態について説明する。
 図15は、本発明を適用した第10の実施の形態に係る圧縮空気供給システム1の構成を示す図である。
本第10の実施の形態において、上記第1の実施の形態等と同様に構成される部分には同じ符号を付して説明をする。
 図15に示す圧縮空気供給システム1(車両用圧縮空気供給装置)は、例えば、トラックやバス等の大型車両に搭載されるエアー式ブレーキ装置等に駆動用の圧縮空気を供給する装置であり、コンプレッサー4(空気圧縮機)と、コンプレッサー4を制御するECU2と、コンプレッサー4から吐出された圧縮空気の水分を除去して、上記車両の負荷(例えばブレーキ装置)に乾燥した圧縮空気を供給するエアードライヤーモジュール10とを備えて構成される。
 ECU2は、圧縮空気供給システム1を搭載する車両の車速等に基づいて、上記車両のエンジンを制御するとともに、コンプレッサー4及びエアードライヤーモジュール10の動作を制御する。また、ECU2には温度センサー(外気温度検知センサー)5が接続され、この温度センサー5により検知された温度を示す情報が入力される。温度センサー5は、例えば車体外側の機構部の間など、車両の外気に接触する部分に配置された温度センサーであり、具体的には、サーミスターや熱電対で構成され、ECU2に外気温度に応じた電圧値を出力する。また、ECU2には、車両の車速等に関する情報、車両の走行距離に関する情報等の車両の走行状況に関する情報及びエアードライヤー11の動作状況に関する情報が入力されている。
 エアードライヤーモジュール10には、上記車両が備える負荷51~54が接続され、これら負荷51~54はそれぞれ圧縮空気が流れる圧縮空気回路を備えている。負荷51~53は、上記したブレーキ装置を構成するものであり、本実施形態では、負荷51は主ブレーキ(前輪)、負荷52は主ブレーキ(後輪)、負荷53はパーキングブレーキである。また、負荷54は、ホーンやクラッチ駆動機構等の圧縮空気で駆動されるアクセサリー類である。負荷51、52(主ブレーキ)は、作動時に要する空気量が他の負荷53、54(パーキングブレーキ、アクセサリー類)に比べて大きい。このため、エアードライヤーモジュール10と、負荷51、52との間には、それぞれエアードライヤーモジュール10で乾燥された圧縮空気を一時的に貯留可能なエアータンク51a、52aが設けられ、これらエアータンク51a、52aに貯留された圧縮空気が各負荷51、52に供給される。
 エアードライヤーモジュール10は、ECU2の制御によって開閉される電磁弁101、102、103、及び、エアードライヤーモジュール10の各部における空気圧を検出して、検出値をECU2に出力する圧力センサー121、122、123、124を備えている。ECU2は、圧力センサー121~123の検出値に基づいて、電磁弁101~103を開閉させる。
 コンプレッサー4は、図示しない補機ベルトを介してエンジンに連結され、エンジンの駆動力によって空気を圧縮する。コンプレッサー4は空気圧で制御され、この制御ラインには電磁弁101が接続されており、電磁弁101の開閉によって、コンプレッサー4が空気を圧縮するロード状態と、圧縮を行わないアンロード状態とが切り替えられる。
 コンプレッサー4の吐出管41はエアードライヤーモジュール10の流入管111に接続され、流入管111にはエアードライヤー11が接続されている。エアードライヤー11は、ケース20に乾燥剤231を収容しており、この乾燥剤231によってコンプレッサー4から吐出された圧縮空気に含まれる水分等の異物を除去する。
 コンプレッサー4とエアードライヤー11との間には排気バルブ12が設けられ、この排気バルブ12が開くとエアードライヤー11の本体内の圧縮空気が排気口112から直接外部へ排出される。排気バルブ12は空気圧で制御され、その制御ラインにはダブルチェックバルブ104が接続されている。排気バルブ12は通常時は閉鎖され、ダブルチェックバルブ104から空気圧が加わった場合のみ開弁する。
 エアードライヤーモジュール10は、空気圧により機械的に動作して排気バルブ12の開閉を制御するガバナ13を備えている。ガバナ13は、エアードライヤー11の下流側の供給路106における空気圧に従って動作し、この空気圧が所定の値を超えた場合に開いてダブルチェックバルブ104に空気圧を与える。
 一方、電磁弁102は、ECU2の制御により開閉され、開弁状態において供給路106の空気圧をダブルチェックバルブ104に与える。
 ダブルチェックバルブ104は、ガバナ13または電磁弁102のいずれか一方が開いた場合に排気バルブ12に空気圧を与えて開弁させる。従って、排気バルブ12は、供給路106の空気圧が所定の値より高い場合、及び、電磁弁102が開いた場合に開弁して、圧縮空気を排気口112から放出する。
 ここで、エアードライヤーモジュール10内の空気圧が十分に高い状態で、排気バルブ12が開弁すると、エアードライヤー11よりも下流側(例えば、供給路106やエアータンク51a、52a内)に貯留された圧縮空気がエアードライヤー11のケース20内を逆流して排気口112から放出される。このときケース20を通る空気は急速な減圧によってスーパードライとなり、ケース20内の乾燥剤231から水分を奪うので、乾燥剤231が再生される。再生後の乾燥剤231は、水分を吸着する吸着能が回復しており、圧縮空気の水分を除去可能となっている。この再生動作は、ECU2によって電磁弁102を開弁させることで、予め設定された時間毎、或いは、エアードライヤーモジュール10内の空気圧等が予め設定された条件を満たした場合等の所定の再生タイミング(所定のタイミング)で実行される。なお、本実施形態では、ECU2及び電磁弁102がエアードライヤー11の乾燥剤231を再生する再生手段として機能する。
 エアードライヤーモジュール10は、負荷51(前輪の主ブレーキ)が接続される出力ポート113、負荷52(後輪の主ブレーキ)が接続される出力ポート114、負荷53(パーキングブレーキ)が接続される出力ポート115、及び、負荷54(アクセサリー類)が接続される出力ポート116を備えている。出力ポート113にはエアータンク51aが接続され、出力ポート114には、エアータンク52aが接続される。
 エアードライヤー11より下流の供給路106には、減圧弁131を介して分岐室135が接続されている。分岐室135には、出力ポート113に繋がる供給路及び出力ポート114に繋がる供給路が接続され、出力ポート113に繋がる供給路には保護弁141が設けられ、出力ポート114に繋がる供給路には保護弁142が設けられている。また、分岐室135には減圧弁132が接続され、減圧弁132の下流は出力ポート115に繋がる供給路と出力ポート116に繋がる供給路とに分岐し、それぞれ、保護弁143、144が設けられている。各保護弁141~144は、絞り及びチェック弁と並列に配置され、それぞれ対応する出力ポート113~116に接続された負荷51~54において圧縮空気が流れる回路が失陥したときに閉鎖する。
 また、減圧弁132から出力ポート116に繋がる供給路には、保護弁144の下流側に減圧弁133が配置され、負荷54に対して減圧した圧縮空気を供給する構成である。
 さらに、減圧弁132と保護弁143との間の供給路には、保護弁143をバイパスして出力ポート115に繋がる供給路136が延びている。供給路136には、出力ポート115から分岐室135への圧縮空気の逆流を防止する逆止弁137と、逆止弁137に対して直列に配された絞り138とを有する。
 圧力センサー121は供給路106の空気圧を検出し、圧力センサー122は保護弁141の下流側、すなわち出力ポート113の空気圧を検出し、圧力センサー123は出力ポート114の空気圧を検出し、圧力センサー124は出力ポート115の空気圧を検出する。これらの検出値は各圧力センサー121~124からECU2へ随時出力される。
 負荷53に相当する上記車両のパーキングブレーキ装置は、空気圧により制動力が解除されて走行可能となる。具体的には、上記パーキングブレーキは駐車時にスプリングの力でブレーキシューを拡げて制動力を発揮し、解除時にはエアードライヤーモジュール10から供給される空気圧によりスプリングの力に抗してブレーキシューを閉じる構成となっている。本第10の実施の形態の負荷53は圧縮空気を貯留するエアータンクを備えていないが、この図15に示すエアードライヤーモジュール10は、エアータンクなしで負荷53を確実に動作させることが可能である。
 すなわち、保護弁141、142は、それぞれ、対応する負荷51、52の圧縮空気回路に圧縮空気が充分に満たされているとき、開弁状態にある。従って、主ブレーキ用のエアータンク51a、52aの圧縮空気を、分岐室135から減圧弁132を経て、供給路136を通して出力ポート115に供給できる。このため、エアータンク51a、52aの空気圧が十分に高い状態では、負荷53へ圧縮空気を供給してパーキングブレーキを解除できる。
 一方、エアータンク51a、52aの空気圧が十分でない場合、ECU2は電磁弁103を開弁し、電磁弁103の指令圧は逆止弁137に与えられ、逆止弁137により供給路136が閉鎖され、出力ポート115への圧縮空気の供給経路が遮断される。この場合、パーキングブレーキは解除不能となるが、主ブレーキに使用するエアータンク51a、52aの空気圧が不十分な場合はパーキングブレーキを解除しない方が好ましい。また、エアータンク51a、52aの空気圧が回復すればパーキングブレーキを解除できるようになる。従って、負荷53用のエアータンクが無くても、圧縮空気により安定してパーキングブレーキを動作させることができる。
 図12は、エアードライヤー11の具体的な構成例を示す断面図である。
 図12に示すように、エアードライヤー11のケース20は、ドライヤー本体21と、ドライヤー本体21に被さってボルト221により固定されたカートリッジカバー22とで構成される。ドライヤー本体21は、流入管111(図15)に接続され、コンプレッサー4の吐出管41から吐出された圧縮空気が流入する流入口211と、ケース20から圧縮空気を流出して供給路106(図15)に接続される流出口212とを有する。
 ドライヤー本体21の上部に固定された中空のカートリッジカバー22には、カートリッジ23が収容される。カートリッジ23は、ボルト235によって、カートリッジ23の外に圧縮空気が漏れないようにドライヤー本体21に固定されている。
 カートリッジ23の内部には空間が形成され、この空間に粒状の乾燥剤231が充填されている。また、カートリッジ23の上端部には、圧縮空気をカートリッジ23外へ排出するチェック弁232が設けられ、チェック弁232の下方には、乾燥剤231をチェック弁232側から押さえるフィルター234及びスプリング233が配設されている。
 また、カートリッジ23の下部には、乾燥剤231が収容された空間へのオイルの進入を防ぐため、流通する空気中のオイルミストを捕集するオイルフィルター24が配置されている。
 乾燥剤231の流入口211から流入した圧縮空気は、ドライヤー本体21に設けられた流入側気室213に入り、さらにドライヤー本体21内に形成された流路(図示略)を通ってカートリッジ23に流入する。ここで、ドライヤー本体21内の流路はオイルフィルター24に繋がっており、オイルフィルター24を通った圧縮空気が乾燥剤231に到達する構成となっている。
 そして、オイルフィルター24により油分を除去され、カートリッジ23の乾燥剤231によって水分が吸着除去された圧縮空気は、チェック弁232を通ってカートリッジ23の外に出て、カートリッジカバー22内に設けられた流路(図示略)を通り、流出口212からドライヤー本体21の外に流出する。
 ドライヤー本体21において、流入口211からカートリッジ23へ圧縮空気が流れる流路には、排気バルブ12が設けられている。排気バルブ12は、上述したようにケース20内の圧縮空気を外部へ排出する弁である。排気バルブ12の下部には排気管215が接続され、排気管215内には消音器217が収容されている。また、排気管215の下端にはカラー216が連結されており、カラー216の内部にも消音器218が収容されている。
 上述した再生動作により排気バルブ12が開弁すると、ケース20内の圧縮空気は排気管215とカラー216を通って、カラー216の下端に開口する排気口112から排出される。このとき圧縮空気は勢いよく排気口112から外気中に排出されるので、周囲に大きな騒音をもたらさないように、消音器217、218によって気流音を抑制している。
 ところで、エアードライヤー11の乾燥剤231は使用に伴って劣化し、再生を行った後の吸着能が次第に低下する。ここで、乾燥剤231の劣化とは、乾燥剤231の再生を行っても、当該圧縮空気供給システム1において、乾燥剤231に要求される吸着能を望ましいレベルにまで回復することのできない状態になったことを指す。乾燥剤231の劣化の原因の一つには、コンプレッサー4の吐出管41からエアードライヤー11に流れ込むコンプレッサーオイルが乾燥剤231の表面に付着することが挙げられる。
 乾燥剤231は、シリカゲル等の多孔質材料からなる。乾燥剤231の表面にオイルが付着すると、乾燥剤231の表面に無数にある孔がオイルで塞がれ、水分の吸着量が低下する。この様な場合、乾燥剤231を再生しても、乾燥剤231に要求される吸着能を回復することができず、新しいものに交換する必要がある。これに対し、エアードライヤー11の乾燥剤231を交換するには、コストや工数がかかるため、適正な交換時期を見極め、交換頻度を必要最小限に抑えることが望ましい。
 このため、乾燥剤231の下流側に湿度検知センサーを設け、この湿度検知センサーによって乾燥剤231が再生された後の圧縮空気の湿度を検知し、その検知値と所定の閾値とを比較することで、乾燥剤231の交換時期を判断することができる。一方、湿度検知センサーの検知値は、このセンサーの取付位置の環境(例えば、空気流量や周囲温度)によって大きく異なることが実験等により判明しており、更に、湿度検知センサーの取付位置は、車両の種類によって異なることが多く、当該センサーの検知値によって乾燥剤231の交換時期を正確に判断することが難しいこともある。そこで、本実施形態では、湿度検知センサーが取り付けられた位置に応じて、上記閾値の大きさを変更して設定可能に構成され、湿度検知センサーの取付位置に関わらず、当該湿度検知センサーの検知値から乾燥剤231の交換時期を正確に判断できるようになっている。
 図18は、湿度検知センサーの取り付けられる各位置を示す模式図である。
 負荷51、52は上述のように主ブレーキであり、この主ブレーキは、エアータンク51a(51b)に連結管60を介して接続されるブレーキバルブ61と、このブレーキバルブ61にそれぞれ連結管62、63を介して接続されるフロントブレーキチャンバー64a、64b、及び、リアブレーキチャンバー65a、65bとを備える。
 ブレーキバルブ61には、当該ブレーキバルブ61を操作するブレーキペダル61aが設けられており、このブレーキペダル61aを踏み込むと、ブレーキバルブ61が開放し、エアータンク51a(51b)内の圧縮空気がフロントブレーキチャンバー64a、64b、及び、リアブレーキチャンバー65a、65bに導かれて、各ブレーキシュー(図示略)を駆動させることでブレーキが作動する。
 この図18では、エアードライヤー11とエアータンク51a(51b)とを繋ぐ供給路106には、湿度検知センサー14が配設されており、この湿度検知センサー14は、ハーネス66を介してECU2に接続されている。これにより、湿度検知センサー14の検知値を示す信号がECU2に入力され、ECU2は、入力された検知値を示す信号に基づいて、供給路106内の圧縮空気の湿度に関する情報を取得する。
 湿度検知センサー14の検知値は、供給路106内の空気の相対湿度値を示し、温度に関する情報も含まれる。ECU2は、湿度検知センサー14の検知値を表示する表示部67を備え、この表示部67の具体的な構成としては、検知値に応じて点灯/消灯/点滅が切り替わるLEDや、検知値を文字や記号等により表示する液晶表示パネルが挙げられる。この表示部67は、車両のスピードメータとともに車室内に実装されてもよいし、車両においてコンプレッサー4やエアードライヤー11の近傍に配置されてもよい。この表示部67により、運転者や、上記車両を整備する整備士、上記車両を管理する管理者等が、湿度検知センサー14の検知値を視認することができ、乾燥剤231の交換時期を適正に判断できる。
 本構成では、湿度検知センサー14は、(1)エアードライヤー11とエアータンク51a(51b)とを繋ぐ供給路106のほか、例えば、(2)エアータンク51a(もしくは51b)のタンク中央部70、(3)エアータンク51aのタンク内面71、(4)ブレーキバルブ61、(5)ブレーキバルブ61とフロントブレーキチャンバー64aとを接続する連結管62のいずれかに取り付けることが可能になっている。
 湿度検知センサー14による検知値は、上述のように、この湿度検知センサー14の取付位置の環境によって大きく異なる。具体的には、空気の流速が早い場所では検知される湿度値の変動が大きく、空気の流速が遅い場所では、検知される湿度値が安定している。また、配管部やタンクの表面近くでは、外気温度の影響によって検知される湿度値が変動しやすい状況にある。本実施形態では、図19に示すように、(1)エアードライヤー11とエアータンク51a(51b)とを繋ぐ供給路106、(4)ブレーキバルブ61、及び、(5)ブレーキバルブ61とフロントブレーキチャンバー64aとを接続する連結管62に取り付けた場合には、空気の流速が早く、外気温度の影響を受けやすい。このため、このような検知される湿度値が大きく変動する位置に湿度検知センサー14を設けた場合に、この湿度値から乾燥剤231の劣化を判定するための閾値αは大きな値(例えば80%)に設定される。
 一方、(2)エアータンク51a(もしくは51b)のタンク中央部70では、空気の流速が遅く、外気温度の影響も受けにくいため、検知される湿度値が安定して出力される。このため、検知される湿度値が安定する位置に湿度検知センサー14を設けた場合の閾値βは、上記した閾値αよりも十分小さな値(例えば60%)に設定される。また、(3)エアータンク51aのタンク内面71は、空気の流速が遅いが外気温度の影響も受けやすいため、この位置に湿度検知センサー14を設けた場合の閾値γは、上記閾値βより大きく閾値αよりも小さな値(例えば70%)に設定されている。これらの閾値α~γは、外気温度が基準温度(例えば25℃)における基準閾値であり、外気温度が変動する場合には、基準閾値が補正される。
 本実施形態では、湿度検知センサー14が取り付けられた位置に応じて、当該位置に対応する閾値がECU2に設定されるため、ECU2が当該閾値と湿度検知センサー14が検知する湿度値とを比較することにより、湿度検知センサー14の取付位置に関わらず、当該湿度検知センサー14の検知する湿度値から乾燥剤231の交換時期を正確に判断できる。
 ECU2には、各取付位置(1)~(5)に対応する閾値α~γが予め記憶されており、車両メーカーまたは車両整備士が、当該車両に湿度検知センサー14を取り付けた際に、この取付位置を選択してECU2に入力することにより、当該取付位置での圧縮空気の流速に対応する閾値が設定される。
 次に、図120を参照して、ECU2による乾燥剤231の劣化判定処理について説明する。ここでは、湿度検知センサー14は、エアードライヤー11とエアータンク51a(51b)とを繋ぐ供給路106に設けられているものとして説明する。
 まず、ECU2は、予め設定された再生タイミングが到来したか否かを判定する(ステップS301)。現在、再生タイミングではない場合(ステップS301:No)、ECU2は、湿度検知センサー14が検知した供給路106内の圧縮空気の湿度値が、予め設定された
所定の再生基準値以上か否かを判別する(ステップS302)。この再生基準値は、圧縮空気が乾燥剤231で十分に乾燥されていないため、この乾燥剤231の再生が必要とされる値である。この判別において、検知された圧縮空気の湿度値が所定の再生基準値に満たないと判別された場合(ステップS302:No)、ステップS301の判別に戻る。また、圧縮空気の湿度値が所定の再生基準値以上であると判別した場合(ステップS302:YeS30)、ECU2は、例えば、エアードライヤー11の積算通気量を確認することにより、乾燥剤231の再生状況を確認する(ステップS303)。
 次いで、ECU2は、車両の走行状態等を確認し(ステップS304)、車両の走行状態等に基づいて、現在、乾燥剤231を再生させることが可能か否かを判別する(ステップS305)。詳細には、ECU2は、現在、車両が停止中であるか否か、エアータンク51a、52a内の圧力が予め設定された乾燥剤231を再生するために十分な圧力であるか否か、車両がブレーキアシスト動作中であるか否かに基づいて、乾燥剤231の再生が可能か否かを判別する。
 ここで、例えば、車両が停止中でなく、かつ、エアータンク51a、52a内の圧力が乾燥剤231を再生するために十分な圧力であり、更に、車両がブレーキアシスト動作中でもない場合には、乾燥剤231を再生させることができると判別される。一方、車両の走行状態によらず、エアータンク51a、52a内の圧力が予め設定された乾燥剤231を再生するために十分な圧力に満たない場合、または、車両がブレーキアシスト動作中である場合には、乾燥剤231を再生させることができないと判別される。
 ステップS305において、現在、乾燥剤231を再生させることが可能であると判別した場合(ステップS305:YeS30)、ECU2は、予め設定された所定の再生タイミングに関わらず、乾燥剤231を再生させる(ステップS306)。具体的には、ECU2は、電磁弁102を開弁し、エアードライヤー11よりも下流側(例えば、供給路106やエアータンク51a、52a内)に貯留された圧縮空気をエアードライヤー11のケース20内を逆流して排気口112から放出させる。これにより、ケース20を通る空気は急速な減圧によってスーパードライとなり、ケース20内の乾燥剤231から水分を奪うため、乾燥剤231が再生される。また、ステップS301において、予め設定された所定の再生タイミングが到来したと判別された場合(ステップS301:YeS30)にも、走行状態を確認し(ステップS304)、再生可能になった場合(ステップS305:YeS30)、乾燥剤231の再生処理を行う(ステップS306)。
 次に、ECU2は、外気温度を取得し、この外気温度に基づいて、湿度検知センサー14の取付位置での圧縮空気の流速に対応して設定された閾値を補正する(ステップS307)。ここで、閾値は、湿度検知センサー14が検知した湿度値から乾燥剤231の劣化(再生により乾燥剤231に要求される吸着能が回復しているか否か)を判定するのに用いられる値であり、この湿度検知センサー14が取り付けられた位置に対応して設定されている。
 具体的には、ECU2には、基準温度(例えば25℃)における基準閾値を、外気温度の変化によって補正した補正閾値が外気温度と対応付けたマップとして記憶されており、外気温度に対応する補正閾値を読み出して設定する。本構成では、外気温度と補正閾値との関係は、外気温度が上昇すれば、これに連れて補正閾値は大きく変化し、外気温度が低下すれば、これに連れて補正閾値が小さく変化するよう設定されている。このように、外気温度に基づいて上記閾値が補正されるため、季節や天候の変化に迅速に対応することができ、いかなる天候状態であっても乾燥剤231の交換時期を正確に判断できる。
 また、本実施形態では、温度変化に基づく補正量は、各閾値α~γによって一定ではなく、大きな値に設定された閾値αでは、温度変化に基づく補正量を大きく設定し、小さな値に設定された閾値βでは、温度変化に基づく補正量を小さく設定することが望ましい。この構成によれば、湿度検知センサー14の取付位置及び周囲環境に対応した閾値が設定されるため、乾燥剤231の交換時期をより正確に判断できる。
 次に、ECU2は、乾燥剤231を再生させた後、湿度検知センサー14の検知する湿度値を取得し、この湿度値に基づいて乾燥剤231が劣化したか否かを判別する(ステップS308)。具体的には、ECU2は、供給路106内の圧縮空気の湿度値が、上記ステップS307にて補正された閾値未満に下がったか否かを判別する。
 ステップS308において、圧縮空気の湿度値が補正された閾値未満に下がったと判別された場合(ステップS308:YeS30)、再生により乾燥剤231の吸着能は回復していると判断できる。このため、ECU2は、乾燥剤231は劣化していないと判定して、乾燥剤231が劣化していないことを示す判定値を表示部67に出力し、表示部67に乾燥剤231が劣化していない場合に対応する表示を行わせる(ステップS309)。
 一方、ステップS308において、圧縮空気の湿度値が補正された閾値未満に下がっていないと判別された場合(ステップS308:No)、再生を行っても乾燥剤231に要求される吸着能が回復していないため、乾燥剤231が劣化している可能性が高い。このため、ECU2は、乾燥剤231が劣化していると判定して、乾燥剤231が劣化していることを示す判定値を表示部67に出力し、表示部67に乾燥剤231が劣化している場合に対応する表示を行わせる(ステップS310)。この様に、ステップS308において、ECU2は乾燥剤231の劣化を判定する劣化判定手段として機能している。
 以上、説明したように、本実施形態によれば、コンプレッサー4の吐出ラインに設けられて圧縮空気に含まれる水分を除去するエアードライヤー11と、このエアードライヤー11の乾燥剤231の下流に取り付けられる湿度検知センサー14とを備え、乾燥剤231を所定のタイミングで再生させるとともに、当該乾燥剤231が再生された後の湿度検知センサー14の検知値を、湿度検知センサー14の取付位置に応じて、この位置での圧縮空気の流速に対応して設定された閾値と比較することにより、湿度検知センサー14の取付位置に関わらず、当該乾燥剤231の劣化を判定することができ、乾燥剤231の交換時期を正確に判断できる。
 また、本実施形態によれば、閾値は、湿度検知センサー14が圧縮空気の流速が速く、湿度値が大きく変動する位置に取り付けられた場合は大きく、圧縮空気の流速が遅く、湿度値が安定する位置取り付けられた場合は小さく設定されるため、乾燥剤231の劣化を正確に判定することができ、乾燥剤231の交換時期を正確に判断できる。
 また、本実施形態によれば、外気温度を検知する外気温度検知センサー5を備え、検知された外気温度に応じて閾値を補正するため、季節や天候の変化に迅速に対応することができ、いかなる天候状態であっても乾燥剤231の交換時期を正確に判断できる。
 また、本実施形態によれば、圧縮空気の流速の大きさに応じて補正量を調整するため、取付位置ごとに適正に閾値を設定することができ、乾燥剤231の交換時期をより正確に判断できる。
 また、上述した第10の実施の形態は、本発明を適用した一態様を示すものであって、本発明は上記第10の実施の形態に限定されない。例えば、湿度検知センサー14は、(1)エアードライヤー11とエアータンク51a(51b)とを繋ぐ供給路106、(2)エアータンク51a(もしくは51b)のタンク中央部70、(3)エアータンク51aのタンク内面71、(4)ブレーキバルブ61、(5)ブレーキバルブ61とフロントブレーキチャンバー64aとを接続する連結管62のいずれかに取り付けることが可能としているが、これに限るものではなく、他の位置に取り付けても構わないのは勿論である。
 また、本実施形態では、閾値を補正する場合、外気温度と関係づけてECU2に記憶された補正閾値を読み出して設定する構成として説明したが、ECU2が外気温度に基づいて補正閾値を算出し、この算出して値を設定する構成としても良い。
 また、エアードライヤーモジュール10に接続される負荷は、主ブレーキ装置、パーキングブレーキ、及び、アクセサリー類に限定されず、圧縮空気を使用する機器類であれば何を接続してもよく、その他の細部構成についても任意に変更可能である。また、本発明の車両用圧縮空気供給装置の適用対象となる車両についても特に限定は無く、大型車両、小型車両、特殊車両、牽引車両、二輪車あるいは三輪車のいずれであってもよく、その規模及び形態は任意である。
 1 圧縮空気供給システム(車両用圧縮空気供給装置)
 2 ECU(制御部)
 3 表示部(出力部)
 303 エンジン
 4 コンプレッサー(空気圧縮機)
 10 エアードライヤーモジュール(圧縮空気供給部)
 11 エアードライヤー
 12 排気バルブ(排気弁)
 23 リターダ(補助ブレーキ装置)
 51~54 負荷
 121 圧力センサー
 141 オイルミストセンサー(濃度センサー)
 213 流入側気室(導入部)
 251 オイルパン(オイル溜り部)
 314、315 湿度検知センサー
 5 温度センサー

Claims (28)

  1.  車両のエンジンにより駆動される空気圧縮機と、該空気圧縮機から吐出した圧縮空気を前記車両の負荷に供給する圧縮空気供給部と、前記負荷の要求に応じて前記空気圧縮機のロード状態とアンロード状態とを切り替える制御部とを備え、前記制御部は、前記車両が制動力を必要とする場合に、前記負荷の要求に関わらず前記空気圧縮機をロード状態にすること、を特徴とする圧縮空気供給システム。
  2.  前記圧縮空気供給部における空気圧を検出して前記制御部に出力する圧力センサーを備え、前記制御部は、前記圧縮空気供給部における空気圧が所定範囲内となるよう前記空気圧縮機のロード状態とアンロード状態とを切り替える動作を行い、前記車両が制動力を必要とする場合には前記圧縮空気供給部における空気圧に関わらず前記空気圧縮機をロード状態にすること、を特徴とする請求項1記載の圧縮空気供給システム。
  3.  前記制御部は、前記車両が制動力を必要とする場合に、前記空気圧縮機をロード状態に保持するとともに、前記圧縮空気供給部に設けた排気弁を開弁させることにより前記圧縮空気供給部における空気圧を上記所定範囲内に保持すること、を特徴とする請求項2記載の圧縮空気供給システム。
  4.  前記制御部は、前記車両が備える補助ブレーキ装置の作動を指示する操作に基づき、前記車両が制動力を必要とする場合か否かを判別すること、を特徴とする請求項1から3のいずれかに記載の圧縮空気供給システム。
  5.  前記制御部は、前記車両の加速中及び高速走行中の少なくともいずれかに、前記空気圧縮機をアンロード状態にすること、を特徴とする請求項1から4のいずれかに記載の圧縮空気供給システム。
  6.  車両のエンジンにより駆動され、前記車両の負荷に圧縮空気を供給する空気圧縮機の制御方法であって、前記負荷の要求に応じて前記空気圧縮機のロード状態とアンロード状態とを切り替えるとともに、前記車両が制動力を必要とする場合には、前記負荷の要求に関わらず前記空気圧縮機をロード状態にすること、を特徴とする空気圧縮機の制御方法。
  7.  車両に搭載する空気圧縮機を備え、該空気圧縮機から吐出した圧縮空気を車両の負荷に供給する車両用圧縮空気供給装置において、前記空気圧縮機の吐出ラインに、圧縮空気に含まれる水分等の異物を除去するエアードライヤーを設け、該エアードライヤーにオイル検知センサーを設け、該オイル検知センサーの検知結果を出力する出力部を備えたこと、を特徴とする車両用圧縮空気供給装置。
  8.  前記オイル検知センサーは、前記エアードライヤーのケース内部に配置されることを特徴とする請求項7記載の車両用圧縮空気供給装置。
  9.  前記オイル検知センサーは、前記エアードライヤーが有する乾燥剤へ圧縮空気を導く導入部近傍に設置されることを特徴とする請求項7または8記載の車両用圧縮空気供給装置。
  10.  前記オイル検知センサーは、オイルミスト濃度を検知する濃度センサーで構成されることを特徴とする請求項7から9のいずれかに記載の車両用圧縮空気供給装置。
  11.  前記オイル検知センサーは、前記エアードライヤーにおけるケース底部のオイル溜り部に設けられた電極で構成されることを特徴とする請求項7から9のいずれかに記載の車両用圧縮空気供給装置。
  12.  車両に搭載する空気圧縮機を備え、該空気圧縮機から吐出した圧縮空気を車両の負荷に供給する車両用圧縮空気供給装置において、前記空気圧縮機の吐出ラインに設けられ、前記圧縮空気に含まれる水分等の異物を除去するエアードライヤーと、前記エアードライヤーにおける乾燥剤を所定の再生条件で再生させる再生手段と、前記乾燥剤の下流に設けられる湿度検知センサーと、を備え、前記湿度検知センサーの検知結果に基づいて、前記再生条件が最適化されることを特徴とする車両用圧縮空気供給装置。
  13.  請求項12記載の車両用圧縮空気供給装置において、前記負荷に供給される圧縮空気を貯留するエアータンクを備え、前記湿度センサーは前記エアータンクに設けられること、を特徴とする車両用圧縮空気供給装置。
  14.  請求項12又は13記載の車両用圧縮空気供給装置において、前記再生条件は、前記乾燥剤を再生させる頻度に関する条件を含むこと、
     を特徴とする車両用圧縮空気供給装置。
  15.  請求項12~14のいずれか一項に記載の車両用圧縮空気供給装置において、前記再生条件は、前記乾燥剤を再生させる際の通気量に関する条件を含むこと、を特徴とする車両用圧縮空気供給装置。
  16.  請求項12~15のいずれか一項に記載の車両用圧縮空気供給装置において、前記検知結果が、前記乾燥剤が再生された後の湿度レベルが予め設定された閾値レベル以上の場合及び、前記湿度レベルが増加傾向にあることを示す場合のいずれか又は両方に該当する場合は前記再生条件が最適化されること、を特徴とする車両用圧縮空気供給装置。
  17.  車両に搭載する空気圧縮機を備え、該空気圧縮機から吐出した圧縮空気を車両の負荷に供給する車両用圧縮空気供給装置において、前記空気圧縮機の吐出ラインに設けられ、前記圧縮空気に含まれる水分等の異物を除去するエアードライヤーと、前記エアードライヤー内に溜まった水分等を圧縮空気とともに排出する排出弁と、を備え、温度の検出を行い、検出した温度が予め設定された条件に該当する場合に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする車両用圧縮空気供給装置。
  18.  前記車両の動作が停止される際に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする請求項17記載の車両用圧縮空気供給装置。
  19.  前記車両が搭載した外気温度センサーに接続され、この外気温度センサーにより検出した外気温度が予め設定された温度を下回った場合に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする請求項17または18記載の車両用圧縮空気供給装置。
  20.  前記エアードライヤーの下流側の圧縮空気の流路に設けられ、圧縮空気の湿度を検出する湿度センサーを備え、前記温度センサーにより検出した圧縮空気の温度が予め設定された温度を下回った場合に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする請求項17または18記載の車両用圧縮空気供給装置。
  21.  車両に搭載する空気圧縮機を備え、該空気圧縮機から吐出した圧縮空気を車両の負荷に供給する車両用圧縮空気供給装置において、前記空気圧縮機の吐出ラインに設けられ、前記圧縮空気に含まれる水分等の異物を除去するエアードライヤーと、前記エアードライヤーにおける乾燥剤を所定のタイミングで再生させる再生手段と、前記乾燥剤の下流に設けられる湿度検知センサーと、前記再生手段により前記乾燥剤が再生された後の前記湿度検知センサーの検知結果を出力する出力部と、を備えたことを特徴とする車両用圧縮空気供給装置。
  22.  請求項21記載の車両用圧縮空気供給装置において、前記負荷に供給される圧縮空気を貯留するエアータンクを備え、
     前記湿度検知センサーは前記エアータンクに設けられること、を特徴とする車両用圧縮空気供給装置。
  23.  請求項21又は22に記載の車両用圧縮空気供給装置において、前記湿度検知センサーにより検知された湿度レベルが、予め設定された閾値以上の湿度レベルを示す場合、前記所定のタイミングに関わらず前記乾燥剤を再生させ、この再生後に前記湿度検知センサーにより検知された検知結果を前記出力部から出力すること、を特徴とする車両用圧縮空気供給装置。
  24.  請求項21~23のいずれか一項に記載の車両用圧縮空気供給装置において、前記検知結果と共に、前記車両の走行状況に関する情報および/又は前記エアードライヤーの動作状況に関する情報を用いて、前記乾燥剤の交換時期を判定する判定手段を備えたこと、を特徴とする車両用圧縮空気供給装置。
  25.  車両に搭載する空気圧縮機を備え、該空気圧縮機から吐出した圧縮空気を車両の負荷に供給する車両用圧縮空気供給装置において、前記空気圧縮機の吐出ラインに設けられ、前記圧縮空気に含まれる水分等の異物を除去するエアードライヤーと、前記エアードライヤー内に溜まった水分等を圧縮空気とともに排出する排出弁と、を備え、温度の検出を行い、検出した温度が予め設定された条件に該当する場合に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする車両用圧縮空気供給装置。
  26.  前記車両の動作が停止される際に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする請求項25記載の車両用圧縮空気供給装置。
  27.  前記車両が搭載した外気温度センサーに接続され、この外気温度センサーにより検出した外気温度が予め設定された温度を下回った場合に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする請求項25または26記載の車両用圧縮空気供給装置。
  28.  前記エアードライヤーの下流側の圧縮空気の流路に設けられ、圧縮空気の湿度を検出する湿度センサーを備え、前記温度センサーにより検出した圧縮空気の温度が予め設定された温度を下回った場合に、前記排出弁を開弁させて前記エアードライヤー内に溜まった水分等を外部へ排出することを特徴とする請求項25または26記載の車両用圧縮空気供給装置。
PCT/JP2010/052795 2009-02-23 2010-02-23 圧縮空気供給システム、車両用圧縮空気供給装置、及び、空気圧縮機の制御方法 WO2010095754A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10743877.2A EP2399793B1 (en) 2009-02-23 2010-02-23 Compressed air supply system, compressed air supply device for vehicle, and method of controlling air compressor
CN201510717541.0A CN105398437B (zh) 2009-02-23 2010-02-23 车辆用压缩空气供给装置
US13/202,611 US9050957B2 (en) 2009-02-23 2010-02-23 Compressed air supply system, compressed air supply device for vehicle, and method of controlling air compressor
CN201080017933.1A CN102421647B (zh) 2009-02-23 2010-02-23 压缩空气供给系统、车辆用压缩空气供给装置及空气压缩机的控制方法
US14/686,835 US9815446B2 (en) 2009-02-23 2015-04-15 Compressed air supply system, compressed air supply device for vehicle, and method of controlling air compressor

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2009-039220 2009-02-23
JP2009039220A JP5430969B2 (ja) 2009-02-23 2009-02-23 圧縮空気供給システム、及び、空気圧縮機の制御方法
JP2009041671A JP2010195171A (ja) 2009-02-25 2009-02-25 車両用圧縮空気供給装置
JP2009-041671 2009-02-25
JP2009-070348 2009-03-23
JP2009070348A JP5410798B2 (ja) 2009-03-23 2009-03-23 車両用圧縮空気供給装置、及び、車両用圧縮空気供給装置の制御方法
JP2009-073494 2009-03-25
JP2009073494A JP5410802B2 (ja) 2009-03-25 2009-03-25 車両用圧縮空気供給装置、及び、車両用圧縮空気供給装置の制御方法
JP2009078518A JP2010229897A (ja) 2009-03-27 2009-03-27 車両用圧縮空気供給装置
JP2009-078518 2009-03-27
JP2009173228A JP5497357B2 (ja) 2009-07-24 2009-07-24 車両用圧縮空気供給装置
JP2009-173228 2009-07-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/202,611 A-371-Of-International US9050957B2 (en) 2009-02-23 2010-02-23 Compressed air supply system, compressed air supply device for vehicle, and method of controlling air compressor
US14/686,835 Division US9815446B2 (en) 2009-02-23 2015-04-15 Compressed air supply system, compressed air supply device for vehicle, and method of controlling air compressor

Publications (1)

Publication Number Publication Date
WO2010095754A1 true WO2010095754A1 (ja) 2010-08-26

Family

ID=42634029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052795 WO2010095754A1 (ja) 2009-02-23 2010-02-23 圧縮空気供給システム、車両用圧縮空気供給装置、及び、空気圧縮機の制御方法

Country Status (4)

Country Link
US (2) US9050957B2 (ja)
EP (1) EP2399793B1 (ja)
CN (3) CN105398442B (ja)
WO (1) WO2010095754A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102431506A (zh) * 2011-08-30 2012-05-02 瑞立集团瑞安汽车零部件有限公司 一种车辆电控空气处理系统、气动系统和车辆
CN104477154A (zh) * 2014-12-31 2015-04-01 中联重科股份有限公司 一种制动控制方法、装置及系统
CN106004843A (zh) * 2016-06-27 2016-10-12 中国重汽集团济南动力有限公司 一种电动汽车气压制动系统
CN106103995A (zh) * 2014-05-14 2016-11-09 威伯科有限公司 用于运行车辆的压缩空气系统的方法
CN106457129A (zh) * 2014-05-09 2017-02-22 纳薄特斯克汽车零部件有限公司 压缩空气干燥装置、压缩空气干燥装置的控制方法以及车辆
JP2017105430A (ja) * 2015-12-11 2017-06-15 現代自動車株式会社Hyundai Motor Company 圧縮機制御方法および装置
CN108116381A (zh) * 2018-01-09 2018-06-05 中北大学 气压式制动能量回收利用辅助启动制动系统
CN109249919A (zh) * 2018-09-29 2019-01-22 中车资阳机车有限公司 一种具有空重转换功能的液压制动控制单元
WO2020138390A1 (ja) * 2018-12-28 2020-07-02 ナブテスコオートモーティブ株式会社 空気供給システム
WO2020138392A1 (ja) * 2018-12-28 2020-07-02 ナブテスコオートモーティブ株式会社 空気供給システム
WO2023085435A1 (ja) * 2021-11-15 2023-05-19 ナブテスコオートモーティブ株式会社 空気供給システム、空気供給システムの制御方法、及び空気供給システムの制御プログラム

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105398442B (zh) 2009-02-23 2020-04-07 纳博特斯克自动株式会社 车辆用压缩空气供给装置
CN102658003B (zh) * 2012-04-25 2014-12-10 十堰市华迪汽车零部件有限公司 用于车辆的空气处理装置
EP3162645B1 (en) * 2014-06-24 2019-04-03 Nabtesco Automotive Corporation Brake system and brake control method
CN105216781A (zh) * 2014-07-01 2016-01-06 阿达力科技有限公司 车辆动力调整装置
JP6662774B2 (ja) * 2014-07-11 2020-03-11 ナブテスコオートモーティブ株式会社 パーキングブレーキシステム
DE102014113597A1 (de) * 2014-09-19 2016-03-24 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren zur Steuerung eines Druckluftsystems, sowie Druckluftsystem und Fahrzeug
CN104842985B (zh) * 2015-04-14 2017-12-01 中航爱维客汽车有限公司 气压制动供气控制装置及轻型客车
CN106394532B (zh) * 2015-07-31 2019-05-17 比亚迪股份有限公司 车辆制动和转向的组合系统
US10023169B2 (en) * 2015-09-25 2018-07-17 New York Air Brake, LLC Sleep mode for an air dryer
US9916697B2 (en) * 2015-10-19 2018-03-13 Strategic Solutions, LLC Automatic usage tracker for respirator
DE102015118744A1 (de) * 2015-11-02 2017-05-04 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Druckluftaufbereitungseinrichtung und Verfahren zum Betreiben einer solchen
CN105383466A (zh) * 2015-11-25 2016-03-09 南京浦镇海泰制动设备有限公司 一种用于轨道车辆的风源装置
CN105329229A (zh) * 2015-11-25 2016-02-17 北汽福田汽车股份有限公司 汽车及其制动系统
US10436226B2 (en) * 2016-02-24 2019-10-08 Emerson Climate Technologies, Inc. Compressor having sound control system
DE102016002241A1 (de) * 2016-02-25 2017-08-31 Wabco Gmbh Druckluftversorgungsanlage eines Fahrzeugs
EP3402586B1 (en) * 2016-03-23 2021-06-30 New York Air Brake LLC Adsorption drying unit and method of operating the same
US9744496B1 (en) * 2016-04-15 2017-08-29 Beko Technologies Gmbh Method for controlling an adsorption dryer for the treatment of compressed gas
WO2017187829A1 (ja) * 2016-04-27 2017-11-02 アイシン精機株式会社 エアサスペンション装置のドライヤ再生方法
TWI574214B (zh) * 2016-05-05 2017-03-11 China Steel Corp Compressed air production guidelines
JP6523230B2 (ja) * 2016-09-09 2019-05-29 ファナック株式会社 オイルミスト濃度管理装置、オイルミスト管理システム及びオイルミスト管理方法
KR101964919B1 (ko) * 2017-05-26 2019-08-13 주식회사 만도 주차 제어 장치 및 그 방법
DE102017124383A1 (de) * 2017-10-19 2019-04-25 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Luftaufbereitungseinrichtung für Kraftfahrzeuge
CN107933543B (zh) * 2017-12-28 2024-01-19 东风商用车有限公司 一种车用空气压缩机控制系统及其控制方法
WO2020068728A1 (en) * 2018-09-25 2020-04-02 Hendrickson Usa, L.L.C. Pilot operated regulator with adjustable minimum delivery pressure
JP7436388B2 (ja) * 2018-12-28 2024-02-21 ナブテスコオートモーティブ株式会社 空気供給システム
EP3932525A4 (en) * 2019-02-25 2022-12-14 Nabtesco Automotive Corporation AIR SUPPLY SYSTEM, CONTROL METHOD FOR AIR SUPPLY SYSTEM AND CONTROL PROGRAM FOR AIR SUPPLY SYSTEM
EP3932526A4 (en) * 2019-02-25 2022-12-14 Nabtesco Automotive Corporation AIR SUPPLY SYSTEM, CONTROL METHOD FOR AN AIR SUPPLY SYSTEM AND CONTROL PROGRAM FOR AN AIR SUPPLY SYSTEM
CN113766963A (zh) * 2019-02-25 2021-12-07 纳博特斯克汽车零部件有限公司 空气供给系统、空气供给系统的控制方法及空气供给系统的控制程序
JPWO2020175467A1 (ja) * 2019-02-25 2021-12-23 ナブテスコオートモーティブ株式会社 空気供給システム、空気供給システムの制御方法、及び空気供給システムの制御プログラム
US20200277959A1 (en) * 2019-02-28 2020-09-03 Bendix Commercial Vehicle Systems Llc Controller Apparatus and Method for a Compressed Air System
US11370405B2 (en) 2019-11-19 2022-06-28 Bendix Commercial Vehicle Systems Llc System, controller and method for air charging
US20230063569A1 (en) * 2020-02-18 2023-03-02 Volvo Truck Corporation Automatic selectable trailer connection
JP2021139343A (ja) * 2020-03-06 2021-09-16 ナブテスコ株式会社 鉄道車両用空気圧縮装置、鉄道車両用空気圧縮装置の制御方法
CN112498325B (zh) * 2020-12-12 2022-04-26 中国民用航空飞行学院 一种机场主力泡沫消防车应急气制动系统
JP7435575B2 (ja) 2021-10-28 2024-02-21 トヨタ自動車株式会社 ブレーキ状態推定装置及びこれを備えた車両、ブレーキ状態推定方法、並びにプログラム
CN114572172B (zh) * 2022-02-15 2022-11-29 东风汽车股份有限公司 一种制动系统保压控制方法、记录媒体及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194717A (ja) 1987-02-04 1988-08-11 Nippon Air Brake Co Ltd 圧縮空気源装置
JPS6477830A (en) 1987-09-18 1989-03-23 Hitachi Ltd Carrier head
JPH028680U (ja) * 1988-06-30 1990-01-19
JPH0549548U (ja) * 1991-12-09 1993-06-29 日野自動車工業株式会社 エアタンクの水溜り警報装置
JPH05505758A (ja) 1990-04-12 1993-08-26 アライド シグナル インコーポレイテッド 湿度制御装置を備えた空気乾燥機用のチャージ/パージ制御装置
JPH11504294A (ja) * 1995-04-29 1999-04-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 車両の圧縮空気装置用圧縮空気供給装置並びに該圧縮空気供給装置の制御方法
JP2000064962A (ja) * 1998-07-22 2000-03-03 American Standard Inc 空気圧縮機の作動状態監視装置、空気圧縮機の作動パラメ―タ作動状態監視装置及び空気圧縮機の作動制御方法
JP2003276591A (ja) 2002-03-25 2003-10-02 Hino Motors Ltd エアコンプレッサの制御装置
JP2005066470A (ja) * 2003-08-25 2005-03-17 Hino Motors Ltd 車両用圧縮空気の浄化装置
JP2008213764A (ja) * 2007-03-07 2008-09-18 Nissan Diesel Motor Co Ltd 圧縮空気供給装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1980550A (en) * 1932-06-06 1934-11-13 Melvin A Boblee Automobile
US3602610A (en) * 1970-02-19 1971-08-31 Worthington Corp Control system for rotary compressors
SE396445B (sv) * 1975-06-23 1977-09-19 Atlas Copco Ab Forfarande och en anordning for reglering av trycket hos ett arbetsmedium levererat av en av en drivmotor deriven kompressor
US4088375A (en) * 1975-12-15 1978-05-09 M. L. Miller Automatic skid and spin control system for vehicle brakes and method
DE2618440A1 (de) * 1976-04-27 1977-11-10 Sullair Europ Corp Verfahren und vorrichtung zur steuerung des betriebs eines verdichters
JPS6059541B2 (ja) 1977-07-30 1985-12-25 新日本製鐵株式会社 高温ガス中の水蒸気量の測定装置
US4351409A (en) * 1980-11-14 1982-09-28 General Motors Corporation Vehicle drive system with energy storage and retrieval
JPS5812861A (ja) * 1981-07-17 1983-01-25 Diesel Kiki Co Ltd 自動車用エア配管系の圧力制御装置
JPS6075321A (ja) 1983-10-01 1985-04-27 Nippon Air Brake Co Ltd 圧縮空気乾燥装置における乾燥剤の良否判定方法
JPS60102920A (ja) 1983-11-08 1985-06-07 Nippon Air Brake Co Ltd 圧縮空気乾燥方法
JPS6338693A (ja) * 1986-07-31 1988-02-19 Nippon Air Brake Co Ltd 鉄道車両用調圧方法
US4863355A (en) * 1987-03-20 1989-09-05 Tokico Ltd. Air compressor having control means to select a continuous or intermittent operation mode
JPH01140161U (ja) 1988-03-22 1989-09-26
US4900098A (en) * 1988-11-08 1990-02-13 Navistar International Transportation Corp. Electro-pneumatic tractor-trailer brake system
JPH04118129U (ja) 1991-03-28 1992-10-22 日産デイーゼル工業株式会社 エアドライヤの再生装置
JPH0549548A (ja) 1991-08-28 1993-03-02 Tokyo Electric Co Ltd 調理器
JPH0526136U (ja) 1991-09-17 1993-04-06 日野自動車工業株式会社 エアドライヤの乾燥剤交換時期表示装置
US5257008A (en) 1991-09-26 1993-10-26 Allied-Signal Inc. Compressed air system with warning mechanism for air dryer service life indication
JPH07311167A (ja) 1994-05-19 1995-11-28 Mitsubishi Heavy Ind Ltd 飽和蒸気の水分測定装置
JP3753752B2 (ja) 1994-12-08 2006-03-08 高砂熱学工業株式会社 乾式減湿装置におけるロータの劣化診断方法とロータの交換時期の予測方法
SE504412C2 (sv) * 1995-09-22 1997-02-03 Volvo Ab Lufttorkningsanordning i ett tryckluftsystem samt metod för regenerering av ett i lufttorkningsanordningen ingående torkmedel
US5678900A (en) * 1995-12-19 1997-10-21 Grau Gmbh Unloader for a source of air under pressure on vehicles
GB9619535D0 (en) * 1996-09-19 1996-10-30 Wabco Automotive Uk An air drier
US6447573B1 (en) * 1997-03-19 2002-09-10 Trico Manufacturing Company Apparatus and method for lubricant condition control and monitoring
DE19737051B4 (de) * 1997-08-26 2007-02-15 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren und Vorrichtung zur Steuerung wenigstens einer Komponente einer pneumatischen Bremsanlage eines Fahrzeugs
US6036449A (en) * 1998-03-24 2000-03-14 Cummins Engine Company, Inc. Air compressor control
GB9912681D0 (en) * 1999-06-02 1999-07-28 Wabco Automotive Uk Vehicle air braking systems
US6379122B1 (en) * 1999-11-10 2002-04-30 Ingersoll-Rand Company System and method for automatic thermal protection of a fluid compressing system
US7043412B1 (en) * 2000-09-22 2006-05-09 Bendix Commercial Vehicle Systems Llc Method and apparatus for predicting vehicle air system performance and recommending air system components
SE0100238L (sv) * 2001-01-29 2002-07-30 Haldex Brake Prod Ab Modulär lufttillförsel
GB0113205D0 (en) 2001-05-31 2001-07-25 Wabco Automotive Uk Ltd Regeneration of air dryer
JP2003060268A (ja) 2001-08-21 2003-02-28 Mitsubishi Electric Corp 固体レーザ装置
JP2004036488A (ja) 2002-07-03 2004-02-05 Honda Motor Co Ltd 炭化水素吸着材の状態判定装置
US7784879B2 (en) * 2002-07-16 2010-08-31 Haldex Brake Corporation Electronic control air management with parking brake and trailer supply control
JP2004170056A (ja) 2002-10-30 2004-06-17 Sanyo Electric Co Ltd 空気調和機
US7632076B2 (en) * 2005-03-02 2009-12-15 Bendix Commercial Vehicle Systems Llc Air supply system control
DE102006019865C5 (de) * 2006-04-28 2012-05-03 Haldex Brake Products Gmbh Kartusche, Druckluftaufbereitungsanlage und Verfahren zum Betrieb einer Druckluftaufbereitungsanlage
JP5278888B2 (ja) 2007-05-10 2013-09-04 ナブテスコオートモーティブ株式会社 エアドライヤおよび圧縮空気供給システム
CN105398442B (zh) 2009-02-23 2020-04-07 纳博特斯克自动株式会社 车辆用压缩空气供给装置
US8467950B1 (en) * 2012-02-08 2013-06-18 Bendix Commercial Vehicle Systems Llc Air demand adjusted compressor control

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194717A (ja) 1987-02-04 1988-08-11 Nippon Air Brake Co Ltd 圧縮空気源装置
JPS6477830A (en) 1987-09-18 1989-03-23 Hitachi Ltd Carrier head
JPH028680U (ja) * 1988-06-30 1990-01-19
JPH05505758A (ja) 1990-04-12 1993-08-26 アライド シグナル インコーポレイテッド 湿度制御装置を備えた空気乾燥機用のチャージ/パージ制御装置
JPH0549548U (ja) * 1991-12-09 1993-06-29 日野自動車工業株式会社 エアタンクの水溜り警報装置
JPH11504294A (ja) * 1995-04-29 1999-04-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 車両の圧縮空気装置用圧縮空気供給装置並びに該圧縮空気供給装置の制御方法
JP2000064962A (ja) * 1998-07-22 2000-03-03 American Standard Inc 空気圧縮機の作動状態監視装置、空気圧縮機の作動パラメ―タ作動状態監視装置及び空気圧縮機の作動制御方法
JP2003276591A (ja) 2002-03-25 2003-10-02 Hino Motors Ltd エアコンプレッサの制御装置
JP2005066470A (ja) * 2003-08-25 2005-03-17 Hino Motors Ltd 車両用圧縮空気の浄化装置
JP2008213764A (ja) * 2007-03-07 2008-09-18 Nissan Diesel Motor Co Ltd 圧縮空気供給装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102431506A (zh) * 2011-08-30 2012-05-02 瑞立集团瑞安汽车零部件有限公司 一种车辆电控空气处理系统、气动系统和车辆
CN106457129B (zh) * 2014-05-09 2019-09-06 纳博特斯克汽车零部件有限公司 压缩空气干燥装置、压缩空气干燥装置的控制方法以及车辆
CN106457129A (zh) * 2014-05-09 2017-02-22 纳薄特斯克汽车零部件有限公司 压缩空气干燥装置、压缩空气干燥装置的控制方法以及车辆
CN106103995A (zh) * 2014-05-14 2016-11-09 威伯科有限公司 用于运行车辆的压缩空气系统的方法
CN104477154A (zh) * 2014-12-31 2015-04-01 中联重科股份有限公司 一种制动控制方法、装置及系统
JP2017105430A (ja) * 2015-12-11 2017-06-15 現代自動車株式会社Hyundai Motor Company 圧縮機制御方法および装置
CN106004843A (zh) * 2016-06-27 2016-10-12 中国重汽集团济南动力有限公司 一种电动汽车气压制动系统
CN108116381B (zh) * 2018-01-09 2024-03-26 中北大学 气压式制动能量回收利用辅助启动制动系统
CN108116381A (zh) * 2018-01-09 2018-06-05 中北大学 气压式制动能量回收利用辅助启动制动系统
CN109249919A (zh) * 2018-09-29 2019-01-22 中车资阳机车有限公司 一种具有空重转换功能的液压制动控制单元
WO2020138390A1 (ja) * 2018-12-28 2020-07-02 ナブテスコオートモーティブ株式会社 空気供給システム
JPWO2020138390A1 (ja) * 2018-12-28 2021-11-04 ナブテスコオートモーティブ株式会社 空気供給システム
JPWO2020138392A1 (ja) * 2018-12-28 2021-11-11 ナブテスコオートモーティブ株式会社 空気供給システム
WO2020138392A1 (ja) * 2018-12-28 2020-07-02 ナブテスコオートモーティブ株式会社 空気供給システム
JP7476111B2 (ja) 2018-12-28 2024-04-30 ナブテスコオートモーティブ株式会社 空気供給システム
JP7476110B2 (ja) 2018-12-28 2024-04-30 ナブテスコオートモーティブ株式会社 空気供給システム
WO2023085435A1 (ja) * 2021-11-15 2023-05-19 ナブテスコオートモーティブ株式会社 空気供給システム、空気供給システムの制御方法、及び空気供給システムの制御プログラム

Also Published As

Publication number Publication date
EP2399793B1 (en) 2020-01-15
CN102421647B (zh) 2015-12-02
CN105398442B (zh) 2020-04-07
EP2399793A1 (en) 2011-12-28
CN105398437A (zh) 2016-03-16
EP2399793A4 (en) 2014-04-30
CN105398442A (zh) 2016-03-16
US20150217744A1 (en) 2015-08-06
CN105398437B (zh) 2022-05-27
CN102421647A (zh) 2012-04-18
US9050957B2 (en) 2015-06-09
US20120153711A1 (en) 2012-06-21
US9815446B2 (en) 2017-11-14

Similar Documents

Publication Publication Date Title
WO2010095754A1 (ja) 圧縮空気供給システム、車両用圧縮空気供給装置、及び、空気圧縮機の制御方法
US10434464B2 (en) Compressed-air drying device, method for controlling compressed-air drying device, and vehicle
JP5410802B2 (ja) 車両用圧縮空気供給装置、及び、車両用圧縮空気供給装置の制御方法
JP5410798B2 (ja) 車両用圧縮空気供給装置、及び、車両用圧縮空気供給装置の制御方法
JP5762754B2 (ja) 車両用圧縮空気供給装置
JP5497357B2 (ja) 車両用圧縮空気供給装置
JP5595900B2 (ja) 車両用圧縮空気供給装置
JP6356735B2 (ja) 車両用圧縮空気供給装置
JP2010229897A (ja) 車両用圧縮空気供給装置
JP5961203B2 (ja) 車両用圧縮空気供給装置
JP5830514B2 (ja) 車両用空気圧縮供給装置、車両用空気圧縮供給システム、及び、車両用空気圧縮供給装置の制御方法
JP7476111B2 (ja) 空気供給システム
EP3932523A1 (en) Air supply system, control method for air supply system, and control program for air supply system
EP3932526A1 (en) Air supply system, control method for air supply system, and control program for air supply system
EP3904169B1 (en) Air supply system
JP7476110B2 (ja) 空気供給システム
JP2010195171A (ja) 車両用圧縮空気供給装置
WO2023127803A1 (ja) 空気供給システム、空気供給システムの制御方法、及び空気供給システムの制御プログラム
WO2020138393A1 (ja) 空気供給システム
CN113766964A (zh) 空气供给系统、空气供给系统的控制方法及空气供给系统的控制程序

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017933.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010743877

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13202611

Country of ref document: US