WO2010089856A1 - Tftアレイ検査方法およびtftアレイ検査装置 - Google Patents

Tftアレイ検査方法およびtftアレイ検査装置 Download PDF

Info

Publication number
WO2010089856A1
WO2010089856A1 PCT/JP2009/051855 JP2009051855W WO2010089856A1 WO 2010089856 A1 WO2010089856 A1 WO 2010089856A1 JP 2009051855 W JP2009051855 W JP 2009051855W WO 2010089856 A1 WO2010089856 A1 WO 2010089856A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
pixel
tft
tft array
gate
Prior art date
Application number
PCT/JP2009/051855
Other languages
English (en)
French (fr)
Inventor
隆治 西原
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2009/051855 priority Critical patent/WO2010089856A1/ja
Priority to JP2010549297A priority patent/JP5224194B2/ja
Priority to CN200980156196.0A priority patent/CN102308202B/zh
Publication of WO2010089856A1 publication Critical patent/WO2010089856A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to a TFT array inspection process performed in a manufacturing process of a liquid crystal substrate or the like, and more particularly, to a TFT array drive when performing a TFT array inspection.
  • a TFT array inspection process is included in the manufacturing process, and the TFT array is inspected for defects in this TFT array inspection process.
  • the TFT array is used as a switching element for selecting a pixel (pixel electrode) of a liquid crystal display device, for example.
  • a substrate including a TFT array for example, a plurality of gate lines functioning as scanning lines are arranged in parallel, and a plurality of source lines described as signal lines are arranged orthogonal to the gate lines.
  • a TFT thin film transistor
  • a pixel (pixel electrode) is connected to the TFT.
  • the liquid crystal display device is configured by sandwiching a liquid crystal layer between a substrate provided with the above TFT array and a counter substrate, and a pixel capacitor is formed between the counter electrode and the pixel electrode provided in the counter substrate.
  • an additional capacitor (Cs) is connected to the pixel electrode.
  • One of the additional capacitors (Cs) is connected to the pixel electrode, and the other is connected to the common line or the gate line.
  • a TFT array configured to be connected to the common line is called a Cs on Com TFT array
  • a TFT array configured to be connected to the gate line is called a Cs on Gate TFT array.
  • a pixel due to a disconnection of a scanning line (gate line) or a signal line (source line), a short circuit between the scanning line (gate line) and the signal line (source line), or a defective TFT characteristic for driving the pixel (pixel).
  • the counter electrode is grounded, a DC voltage of, for example, ⁇ 15V to + 15V is applied to all or part of the gate line at a predetermined interval, and an inspection signal is applied to all or part of the source line. Is performed by applying. (For example, the prior art of patent document 1.)
  • the TFT array inspection apparatus can detect a defect by inputting a driving signal for inspection to the TFT array and detecting the voltage state at that time. Further, the defect detection of the TFT array may be performed by observing the display state of the liquid crystal.
  • the liquid crystal layer and the counter electrode are By attaching the provided inspection jig to the TFT array substrate, it is possible to inspect in the state of a semi-finished product that does not reach the liquid crystal display device.
  • TFT array may have various defects during its manufacturing process. 19 to 21 are equivalent circuits of a TFT array for explaining a defect example.
  • FIG. 19 is a diagram for explaining a defect generated in each element portion constituting the TFT array.
  • a short-circuit defect SD short
  • a short-circuit defect GD short
  • a short circuit defect D-Csshort
  • adjacent defect a defect between adjacent pixels in the horizontal direction (referred to as horizontal PP), a defect between adjacent pixels in the vertical direction (referred to as vertical PP), a short circuit between adjacent source lines (referred to as SSshort), A short circuit (called GGshort) between adjacent gate lines is known.
  • FIG. 20 is a view for explaining adjacent defects in the horizontal direction.
  • the broken lines in FIG. 20 indicate a short-circuit defect (lateral PP) between pixels 12eo and 12ee adjacent in the horizontal direction and a short-circuit defect (SSshort) between source lines So and Se adjacent in the horizontal direction, respectively. Yes.
  • FIG. 21 is a diagram for explaining adjacent defects in the vertical direction.
  • the broken lines in FIG. 21 indicate short-circuit defects (vertical PP1) between pixels 12oo and 12eo adjacent in the vertical direction, short-circuit defects (vertical PP2) between pixels 12oe and 12ee adjacent in the vertical direction, and vertical direction.
  • short-circuit defects (GGshort) between adjacent gate lines Go and Ge are shown.
  • the pixel (ITO electrode) is irradiated with an electron beam, and secondary electrons emitted by this electron beam irradiation are detected and applied to the pixel (ITO electrode).
  • the voltage waveform is changed to a secondary electron waveform and imaged by a signal, whereby the TFT array is electrically inspected.
  • FIG. 22 (a), (b), (e), and (f) show gate signals
  • FIGS. 22 (c), (d), (g), and (h) show source signals.
  • the driving pattern for inspection consists of a + voltage holding time for holding all the pixels at + voltage after turning on the gate within one gate period, and a -voltage holding time for holding the pixels at -voltage after turning on the gate. Holding time. A positive voltage is applied to all pixels in the positive voltage holding time, and a negative voltage is applied to all pixels in the negative voltage holding time.
  • the defect detection is performed by adding the pixel voltage detected in the + voltage holding time and the pixel voltage detected in the ⁇ voltage holding time.
  • the drive patterns in FIGS. 22A to 22D show drive pattern examples in which the time ratio of the + voltage hold time to the ⁇ voltage hold time is 1: 1, and the drive patterns in FIGS. 22E to 22H are shown. Shows an example of a driving pattern in which the time ratio between the + voltage holding time and the -voltage holding time is 3: 1.
  • One gate period of the driving pattern is, for example, 16 msec.
  • the time ratio of the + voltage holding time to the ⁇ voltage holding time is 1: 1: 1, the + voltage holding time is 8 msec, and the + voltage holding time and the ⁇ voltage holding time are When the time ratio is 3: 1, the + voltage holding time is 12 msec.
  • a positive voltage (here 10v) and a negative voltage (here -10v) are alternately applied to all the pixels of the TFT array by the combination of the gate signal and the source signal.
  • the drive pattern detects adjacent defects by using a pattern in which different potentials are applied to adjacent pixels in addition to a pattern in which the same voltage is applied to all pixels.
  • Various inspection patterns can be used as the inspection patterns for detecting adjacent defects. For example, when detecting lateral adjacent defects, a positive voltage pixel (ITO) and a negative voltage pixel (ITO) on the TFT array. The voltage is applied so that the voltage distribution formed by () becomes a vertical stripe pattern. In this vertical stripe pattern, the pixels in the vertical direction of the TFT array have the same voltage, and the adjacent pixel rows in the horizontal direction have different voltages. Thereby, a laterally adjacent defect is detected.
  • ITO positive voltage pixel
  • ITO negative voltage pixel
  • Patent Document 2 JP-A-5-307192 JP 2008-58767 A
  • the electrical defects generated in the TFT array include a defect detected at + voltage holding time and a defect detected at ⁇ voltage holding time depending on the defect type. For example, SD defects are easily detected with a + voltage holding time, and DCs defects are easily detected with a -voltage holding time.
  • a + voltage holding time and a ⁇ voltage holding time are provided within one gate period, and a pixel voltage detected at the + voltage holding time and a pixel voltage detected at the ⁇ voltage holding time are added.
  • Defect detection is performed.
  • one gate period is divided into a plurality of frames, and all pixels are scanned in units of time of each frame to detect pixel voltages. Normally, one gate period includes 10 frames, and a total of 10 detection data are acquired by scanning all pixels in each frame.
  • the defect detection rate is lowered due to the influence of the drive pattern portion that does not contribute to the defect detection on the pixel voltage, and the voltage change of the pixel is the applied voltage of the drive pattern.
  • the defect detection rate is lowered by depending on the retention time.
  • FIG. 23 is a diagram for explaining defect detection by a conventional drive pattern.
  • FIG. 23A shows an example of detecting an SD short-circuit defect
  • FIG. 23B shows an example of detecting a DCs short-circuit defect
  • FIG. 23C shows an example of detecting a GD short-circuit defect.
  • the case where a defect occurs in the center pixel among the nine pixels is shown.
  • the voltage becomes 10 V in the SD short circuit shown in FIG. 23A, and FIG.
  • the DCs short circuit shown in FIG. 5 is 4V, and the GD short circuit shown in FIG. 23C is 13V.
  • the voltage difference between the voltage of the defective pixel and the voltage of the normal pixel in each voltage holding time of the SD defect is 24 V in the + voltage holding time, and 0 V in the ⁇ voltage holding time.
  • the voltage difference obtained in this way is 10 V, and the voltage difference for defect detection decreases.
  • the voltage difference between the defective pixel voltage and the normal pixel voltage at each voltage holding time of the DCs defect is 10V in the + voltage holding time and 14V in the -voltage holding time.
  • the voltage difference obtained in this way becomes 4V, and the voltage difference for defect detection decreases.
  • the voltage difference between the voltage of the defective pixel and the voltage of the normal pixel in each voltage holding time of the GD defect it is 27 V in the + voltage holding time, and 3 V in the ⁇ voltage holding time.
  • the voltage difference obtained by the addition becomes 13V, and the voltage difference for defect detection decreases.
  • the voltage change of the pixel may depend on the holding time of the applied voltage of the drive pattern.
  • switching between + voltage holding time and -voltage holding time within one gate period and applying a voltage as in the prior art is sufficient to detect defects because the holding time is short.
  • the voltage change cannot be obtained, and the detection efficiency of defect detection is lowered.
  • an object of the present invention is to provide a TFT driving pattern that can solve the above-described conventional problems and improve the detection rate of defect detection.
  • the object is to solve the decrease in the defect detection rate due to the pixel voltage detected in the voltage holding time that does not contribute to the defect detection in the + voltage holding time or the ⁇ voltage holding time, and the voltage change of the pixel
  • An object of the present invention is to solve a decrease in the defect detection rate due to the dependency of the voltage applied to the drive pattern on the holding time.
  • the present invention relates to a driving pattern for driving a pixel, a voltage applied to the pixel within one gate period is switched between a positive voltage and a negative voltage, and the positive voltage is held in the pixel.
  • the voltage applied to the pixel within one gate period is set to only one of a positive voltage and a negative voltage, and within one period.
  • the TFT array is driven using a drive pattern that holds one of a positive voltage and a negative voltage for the pixel. By using this drive pattern, either the + voltage or the ⁇ voltage is held in the pixel during the voltage holding time in one gate period.
  • the voltage holding time that does not contribute to defect detection is eliminated, so the influence on the detected pixel voltage due to the voltage holding time that does not contribute to defect detection can be eliminated, and the defect detection rate is increased. Can be improved.
  • the voltage holding time can be increased and the defect detection rate can be improved by using the driving pattern of the present invention.
  • the TFT substrate inspection method of the present invention is a TFT substrate inspection method in which a voltage is applied to the TFT array of the TFT substrate and secondary electrons obtained by electron beam irradiation are detected to inspect defects in the TFT array.
  • the time width for scanning all the pixels of the TFT array is one frame, and one gate period for inspecting the TFT substrate is constituted by a plurality of frames. Therefore, in one gate period, all the pixels of the TFT array are scanned in each of a plurality of frames, and a detection signal can be acquired.
  • the TFT substrate inspection method of the present invention scans all frames included in one gate period to acquire detection signals, and scans frames selected from all frames included in one gate period.
  • the detection signal may be acquired.
  • scanning may be performed in a temporally subsequent frame within one gate period, and defect detection may be performed using a detection signal detected by this scanning.
  • defect detection may be performed using a detection signal detected by this scanning.
  • the inspection method of the TFT substrate of the present invention has a time width for scanning all the pixels of the TFT array as one frame, and is the first in time as a drive pattern for driving the pixels in a gate period including a plurality of frames.
  • a voltage pattern for inverting the positive / negative of the voltage in the remaining period of the first frame and the second and subsequent frames is provided.
  • the gate lines and source lines are arranged in a grid pattern with respect to the TFT array.
  • An on state and an off state of the TFT of the TFT array are controlled by a gate signal applied to the gate line.
  • a voltage having a voltage pattern is applied to the pixel through the on-state TFT, and the applied voltage is held in the pixel.
  • the voltage difference between the normal pixel and the short-circuit defective pixel is increased by offsetting the voltage of the common line connected to the pixel via the additional capacitor to the negative side. By increasing the voltage difference, the detection efficiency of defect detection can be improved.
  • one gate period includes a plurality of frames, and a detection signal is acquired by scanning all pixels in each frame.
  • defect detection is performed based on a detection signal acquired by scanning a temporally subsequent frame.
  • the detection signal obtained by the defect depends on the holding time for holding the applied voltage in the pixel.
  • defect type defect detection by using a detection signal obtained in a later frame in time, a detection signal with a long holding time can be acquired, and detection efficiency can be improved.
  • the TFT substrate inspection apparatus of the present invention applies a voltage to the TFT array of the TFT substrate, detects the voltage state due to the voltage application by secondary electrons obtained by electron beam irradiation, and inspects defects in the TFT array.
  • This is a TFT substrate inspection device.
  • the inspection apparatus of the present invention includes an electron beam source that irradiates an electron beam to a TFT substrate, a detector that detects secondary electrons emitted from the TFT substrate, and an inspection that generates and applies an inspection signal to the TFT array on the TFT substrate.
  • the inspection signal generation unit of the present invention has a time width for scanning all the pixels of the TFT array as one frame, and includes a plurality of frames within one gate period.
  • the first voltage is set to one of the positive voltage and the negative voltage in the initial period of the first frame in a plurality of frames.
  • a test signal having a voltage pattern for inverting the positive / negative of the voltage in the remaining period of the frame and the second and subsequent frames is generated.
  • the defect detection unit of the present invention applies a positive voltage or a negative voltage in the initial period of the first frame to the TFT array pixels using the voltage pattern generated by the inspection signal generation unit, A voltage applied to the pixel is held over the entire time width of the gate period, and a pixel defect is detected based on the pixel voltage acquired by the voltage holding.
  • the voltage holding time that does not contribute to defect detection is eliminated, and therefore, the detection pixel based on the voltage holding time that does not contribute to defect detection.
  • the influence on the voltage can be eliminated, and the defect detection rate can be improved.
  • the voltage change of the pixel depends on the holding time of the applied voltage of the drive pattern
  • the voltage The holding time can be lengthened and the defect detection rate can be improved.
  • FIGS. 7 to 9 are diagrams for explaining a first inspection mode in which one gate period is set to + voltage holding time in a Cs on Com TFT array in which pixels are connected to a common line
  • FIGS. 13 to FIG. 15 are diagrams for explaining a second inspection mode in which one gate period is ⁇ voltage holding time in a Cs on Com TFT array in which pixels are connected to a common line
  • FIGS. 7 to 9 are diagrams for explaining a first inspection mode in which one gate period is set to + voltage holding time in a Cs on Com TFT array in which pixels are connected to a common line
  • FIGS. 13 to FIG. 15 are diagrams for explaining a second inspection mode in which one gate period is ⁇ voltage holding time in a Cs on Com TFT array in which pixels are connected to a common line
  • FIG. 13 to 15 are diagrams in which pixels are connected to gate lines.
  • FIG. 16 to FIG. 18 are diagrams for explaining a third inspection mode in which one gate period is set to + voltage holding time in a Cs on ⁇ Gate type TFT array, and FIGS. 16 to 18 show Cs on Com type TFTs that connect pixels to gate lines. It is a figure for demonstrating the 4th test
  • 2 to 5 are diagrams for explaining the TFT array.
  • FIG. 1 is a schematic view of a TFT array inspection apparatus of the present invention.
  • the TFT array inspection apparatus 1 includes an inspection signal generation unit 4 that generates an inspection signal for array inspection on the TFT substrate 10, a prober 8 that applies the inspection signal generated by the inspection signal generation unit 4 to the TFT substrate 10, and a TFT substrate.
  • the prober 8 includes a prober frame provided with probe pins (not shown).
  • the prober 8 contacts the electrode formed on the TFT substrate 10 by placing the probe pin on the TFT substrate 10 and applies an inspection signal to the TFT array.
  • the mechanism for detecting the voltage application state of the TFT substrate can have various configurations.
  • the configuration shown in FIG. 1 is a detection configuration using an electron beam.
  • An electron beam source 2 that irradiates an electron beam on the TFT substrate 10 and a secondary electron that detects secondary electrons emitted from the TFT substrate 10 by the irradiated electron beam.
  • the secondary electron detector 3 and the secondary electron detector 3 are provided with a signal processing unit 5 that performs signal processing on detection signals from the secondary electron detector 3 and detects a potential state on the TFT substrate 10.
  • the potential state of the TFT array can be detected by detecting the secondary electrons.
  • the defect detection unit 6 detects a defect of the TFT array by comparing with the potential state in the normal state based on the potential state of the TFT array acquired by the signal processing unit 5.
  • a configuration example is shown in which a TFT array defect is detected using a mechanism (2, 3, 5) that detects the voltage application state of the TFT substrate.
  • the TFT substrate constitutes a liquid crystal display device. If there is a display, a liquid crystal is driven by the inspection signal to display a display pattern based on the inspection signal, and this display state is imaged by the image pickup device and image processing is performed on the acquired image to perform defect inspection. The image may be observed visually.
  • a liquid crystal display device is temporarily formed by providing a liquid crystal layer and a counter electrode on a jig for applying an inspection signal, and a defect is generated as described above. An inspection may be performed.
  • the inspection signal generation unit 4 generates an inspection signal inspection pattern for driving the TFT array formed on the TFT substrate 10. This inspection pattern will be described later.
  • the scanning control unit 9 controls the stage 7 and the electron beam source 2 in order to scan the inspection position of the TFT array on the TFT substrate 10.
  • the stage 7 moves the TFT substrate 10 to be placed in the XY direction, and the electron beam source 2 scans the irradiation position of the electron beam by shaking the electron beam irradiating the TFT substrate 10 in the XY direction.
  • the scanning position becomes the detection position.
  • the above-described configuration of the TFT array inspection apparatus is an example, and is not limited to this configuration.
  • FIGS. 2 and 3 for the Cs on Com type TFT array
  • FIGS. 4 and 5 for the case of the Cs on Gate type TFT array. Will be described.
  • the Cs on Com TFT array has a configuration in which one connection end of the additional capacitor (Cs) connected to the pixel electrode is connected to a common line (Cs line). One connection end of the additional capacitor (Cs) connected to the pixel electrode is connected to the gate line (Gate line).
  • FIG. 2 schematically shows the configuration of a Cs on Com TFT array.
  • a TFT is provided in a TFT area 11A in the vicinity of a portion where the gate line 14 and the source line 15 intersect.
  • a Cs line 16 for connecting an additional capacitor (Cs) is provided between adjacent gate lines 14.
  • FIG. 3 shows an equivalent circuit of the Cson-Com type TFT array shown in FIG.
  • the gate line 14 and the source line 15 are illustrated as being driven by being divided into even-numbered and odd-numbered two line groups, respectively.
  • a pixel 12oo is provided in the vicinity of a portion where the odd-numbered gate line 14o and the odd-numbered source line 15o intersect.
  • One end of the pixel (picture element) 12oo is connected to the TFT 11oo, and the other end is connected to the additional capacitor (Cs) 13oo.
  • the other end of the additional capacitor (Cs) 13oo is connected to the Cs line 16.
  • the drain D of the TFT 11oo is connected to the pixel 12oo, the gate G is connected to the odd-numbered gate line 14o, and the source S is connected to the odd-numbered source line 15o.
  • a pixel 12oe is provided in the vicinity of a portion where the odd-numbered gate line 14o and the even-numbered source line 15e intersect.
  • One end of the pixel (pixel) 12oe is connected to the TFT 11oe, and the other end is connected to the additional capacitor (Cs) 13oe.
  • the other end of the additional capacitor (Cs) 13oe is connected to the Cs line 16.
  • the drain D of the TFT 11oe is connected to the pixel 12oe, the gate G is connected to the odd-numbered gate line 14o, and the source S is connected to the even-numbered source line 15e.
  • a pixel 12eo is provided in the vicinity of a portion where the even-numbered gate line 14e and the odd-numbered source line 15o intersect.
  • One end of the pixel 12 is connected to the TFT 11eo, and the other capacitor is connected to the additional capacitor (Cs) 13eo.
  • the other end of the additional capacitor (Cs) 13eo is connected to the Cs line 16.
  • the drain D of the TFT 11eo is connected to a pixel (Pixel) 12eo, the gate G is connected to the even-numbered gate line 14e, and the source S is connected to the odd-numbered source line 15o.
  • a pixel 12ee is provided in the vicinity of a portion where the even-numbered gate line 14e and the even-numbered source line 15e intersect.
  • One end of the pixel 12ee is connected to the TFT 11ee, and the other end is connected to the additional capacitor (Cs) 13ee.
  • the other end of the additional capacitor (Cs) 13ee is connected to the Cs line 16.
  • the drain D of the TFT 11ee is connected to the pixel 12ee, the gate G is connected to the even-numbered gate line 14e, and the source S is connected to the even-numbered source line 15e.
  • the voltage of the odd-numbered source line 15o is applied to the pixel 12oo according to the on-pulse signal of the odd-numbered gate line 14o, and the on-pulse of the odd-numbered gate line 14o is applied to the pixel 12oe.
  • the voltage of the even-numbered source line 15e is applied according to the signal, and the voltage of the odd-numbered source line 15o is applied to the pixel 12eo according to the on-pulse signal of the even-numbered gate line 14e.
  • the voltage of the even-numbered source line 15e is applied to the pixel 12ee according to the on-pulse signal of the even-numbered gate line 14e.
  • FIG. 4 schematically shows the configuration of a Cs on Gate type TFT array.
  • a TFT is provided in a TFT area 11A in the vicinity of a portion where the gate line 14 and the source line 15 intersect.
  • FIG. 5 shows an equivalent circuit of the Cson gate type TFT array shown in FIG.
  • the gate line 14 and the source line 15 are illustrated as being divided into two even-numbered and odd-numbered line groups.
  • a pixel 12oo is provided in the vicinity of a portion where the odd-numbered gate line 14o and the odd-numbered source line 15o intersect.
  • One end of the pixel (picture element) 12oo is connected to the TFT 11oo, and the other end is connected to the additional capacitor (Cs) 13oo.
  • the other end of the additional capacitor (Cs) 13oo is connected to the even-numbered gate line 14e.
  • the drain D of the TFT 11oo is connected to the pixel 12oo, the gate G is connected to the odd-numbered gate line 14o, and the source S is connected to the odd-numbered source line 15o.
  • a pixel 12oe is provided in the vicinity of a portion where the odd-numbered gate line 14o and the even-numbered source line 15e intersect.
  • One end of the pixel (pixel) 12oe is connected to the TFT 11oe, and the other end is connected to the additional capacitor (Cs) 13oe.
  • the other end of the additional capacitor (Cs) 13oe is connected to the even-numbered gate line 14e.
  • the drain D of the TFT 11oe is connected to the pixel 12e, the gate G is connected to the odd-numbered gate line 14o, and the source S is connected to the even-numbered source line 15e.
  • a pixel 12eo is provided in the vicinity of a portion where the even-numbered gate line 14e and the odd-numbered source line 15o intersect.
  • One end of the pixel 12 is connected to the TFT 11eo, and the other end is connected to the additional capacitor (Cs) 13eo.
  • the other end of the additional capacitor (Cs) 13eo is connected to the odd-numbered gate line 14o.
  • the drain D of the TFT 11eo is connected to the pixel 12eo, the gate G is connected to the even-numbered gate line 14e, and the source S is connected to the even-numbered source line 15e.
  • a pixel 12ee is provided in the vicinity of a portion where the even-numbered gate line 14e and the even-numbered source line 15e intersect.
  • One end of the pixel 12ee is connected to the TFT 11ee, and the other end is connected to the additional capacitor (Cs) 13ee.
  • the other end of the additional capacitor (Cs) 13ee is connected to the odd-numbered gate line 14o.
  • the drain D of the TFT 11ee is connected to the pixel 12ee, the gate G is connected to the even-numbered gate line 14e, and the source S is connected to the even-numbered source line 15e.
  • the voltage of the odd-numbered source line 15o is applied to the pixel 12oo according to the on-pulse signal of the odd-numbered gate line 14o, and the on-pulse of the odd-numbered gate line 14o is applied to the pixel 12oe.
  • the voltage of the even-numbered source line 15e is applied according to the signal, and the voltage of the odd-numbered source line 15o is applied to the pixel 12eo according to the on-pulse signal of the even-numbered gate line 14e.
  • the voltage of the even-numbered source line 15e is applied to the pixel 12ee according to the on-pulse signal of the even-numbered gate line 14e.
  • the TFT array inspection apparatus of the present invention drives each pixel by applying an inspection signal to the TFT array, and detects a defect in the TFT array depending on whether the driving state is normal or abnormal.
  • This defect inspection can be performed by detecting the voltage state of the pixel electrode of each pixel in a state where an inspection signal is applied to the TFT array.
  • an electron beam is sequentially scanned with respect to all the pixels to obtain a detection signal for one frame.
  • this electron beam scanning is usually repeated a plurality of times, and a plurality of repetitions are performed as one gate period.
  • FIG. 6 is a diagram for explaining one gate period in the TFT array inspection.
  • FIG. 6 shows an example in which detection signals for 10 frames are acquired within one gate period.
  • a test signal is applied to the TFT to give a predetermined voltage to the pixel, and the voltage of all pixels is detected in each frame from this voltage state.
  • the voltage applied in the initial stage of the first frame is held over all frames within one gate period.
  • the + voltage is held for all frames within one gate period, and the defect detection is performed by detecting the voltage change of the pixel in this + voltage holding state.
  • the defect detection is performed by detecting a voltage change of the pixel in the ⁇ voltage holding state.
  • the grid voltage state is maintained over the entire frame within one gate period, and the pixel in the voltage hold state is maintained.
  • Defect detection is performed by detecting a voltage change.
  • Defect detection is not limited to using detection signals detected in all frames within one gate period, but may be performed using detection signals detected in any one frame or detection signals detected in a plurality of frames.
  • the voltage of the pixel gradually changes, so that the voltage change in the later frame is larger than the initial frame in one gate cycle, so the frame at the end of one gate cycle.
  • the first form is a form in which one gate period of the signal pattern of the inspection signal is set to only the + voltage holding time in the Cs on Com TFT array, and the second form is the inspection signal in the Cs on Com TFT array.
  • the third form is a mode in which one gate period of a signal pattern is only a negative voltage holding time, and the third form is a form in which one gate period of a signal pattern of an inspection signal is only a positive voltage holding time in a Cs on Gate type TFT array.
  • a fourth form is a form in which the signal pattern of the inspection signal is set as a checker pattern in the Cs on Com TFT array and held at a positive voltage or a negative voltage over the entire frame of one gate period.
  • the first mode is a mode in which one gate period of the signal pattern of the inspection signal is set only to the + voltage holding time in the Cs on Com type TFT array.
  • FIG. 7 shows an example of the inspection signal
  • FIG. 8 shows the pixel waveform
  • FIG. 9 shows the voltage state of the pixel.
  • FIG. 7 shows a signal pattern of the inspection signal within one gate period of the present invention.
  • the on-pulse signal of the gate line 14 14o (Go in FIG. 7A), 14e (Ge in FIG. 7B)
  • the voltage applied to the source lines 15 (15o (So in FIG. 7 (c)) and 15e (Se in FIG. 7 (d)) is output at the initial stage of the frame, and the pixel (pixel ) 12 (12oo, 12oe, 12eo, 12ee) is applied to each TFT 11 (11oo, 11oe, 11eo, 11ee).
  • a positive voltage (10 V in this case) is applied to each pixel (pixel) 12 (12oo, 12oe, 12eo, 12ee) by a combination of the voltage of the gate line 14 and the voltage of the source line 15 and switching of the voltages. .
  • One gate period (frame period shown by 1 to 10 in FIG. 7) can be set to an arbitrary time width, but can be set to 16 msec as an example.
  • on-pulse signals are generated on the gate line Go and the gate line Ge (FIGS. 7A and 7B).
  • a positive voltage (+10 V) is applied to the source line So in a period corresponding to the on-pulse signal of the gate line Go (Ge), and then a negative voltage ( ⁇ 14 V) is applied (FIG. 7C).
  • a positive voltage (+10 V) is applied in a period corresponding to the on-pulse signal of the gate line Ge (Go), and then a negative voltage ( ⁇ 14 V) is applied (FIG. 7D).
  • the pixels 12oo, 12ee, 12oe, and 12eo are held at a positive voltage (+ 10V) over the entire frame by the on-pulse signal and the applied voltage.
  • FIG. 8 shows an example of a signal waveform detected by a pixel when a positive voltage is held in the pixel (pixel) over the entire frame
  • FIG. 9 shows a voltage state of the pixel at this time.
  • FIG. 8A shows a pixel waveform in the case of a normal pixel
  • FIG. 9A shows a voltage state of the pixel at this time.
  • the held + voltage (10 V) is detected.
  • FIGS. 8B to 8E show pixel waveforms in the case of a defective pixel
  • FIGS. 9B to 9E show the voltage state of the pixel at this time.
  • FIG. 8B shows a pixel waveform in the case of an SD defect in which the pixel electrode of the pixel and the source line are short-circuited.
  • the pixel waveform voltage becomes (-14V) by the source line voltage (-14V).
  • the normal pixel indicates (+ 10V)
  • the SD defective pixel indicates ( ⁇ 14V).
  • FIG. 8C shows a pixel waveform when there is a defect of poor insulation between the pixel electrode of the pixel and the source line.
  • the normal pixel indicates (+ 10V)
  • the poorly insulated pixel indicates a voltage between (+ 10V) and ( ⁇ 14V).
  • This poor insulation is also referred to as a weak defect because the pixel electrode and the source line have a resistance and are in a conductive state.
  • the pixel waveform voltage gradually decreases from (+10 V) to ( ⁇ 14 V) due to the influence of the source line voltage ( ⁇ 14 V).
  • the detection is performed. can do.
  • FIG. 8D shows a pixel waveform in the case of a DCs defect in which the pixel electrode of the pixel and the Cs line are short-circuited.
  • the normal pixel indicates (+ 10V)
  • the DCs defective pixel indicates ( ⁇ 5V).
  • the pixel waveform voltage becomes ( ⁇ 5V) due to the voltage ( ⁇ 5V) of the Cs line.
  • the voltage difference from the voltage of the normal pixel (+ 10V) is expanded to facilitate the defect detection.
  • FIG. 8E shows a pixel waveform in the case of a GD defect in which the pixel electrode of the pixel and the gate line are short-circuited.
  • the normal pixel indicates (+ 10V)
  • the GD defective pixel indicates ( ⁇ 17V).
  • the pixel waveform voltage becomes ( ⁇ 17V) by the voltage ( ⁇ 17V) of the gate line.
  • the second mode is a mode in which one gate period of the signal pattern of the inspection signal is set to only the ⁇ voltage holding time in the Cs on Com type TFT array.
  • FIG. 10 shows an example of the inspection signal
  • FIG. 11 shows the pixel waveform
  • FIG. 12 shows the voltage state of the pixel.
  • FIG. 10 shows a signal pattern of the inspection signal within one gate period of the present invention.
  • the on-pulse signal of the gate lines 14 (14o (Go in FIG. 10A)) and 14e (Ge in FIG. 10B) is set to the first frame in one gate period.
  • the voltages applied to the source lines 15 (15o (So in FIG. 10C), 15e (Se in FIG. 10D)) at this time are output to the pixels (pixels) at each intersection.
  • 12 (12oo, 12oe, 12eo, 12ee) is applied to each TFT 11 (11oo, 11oe, 11eo, 11ee).
  • a negative voltage (-14V in this case) is applied to each pixel (pixel) 12 (12oo, 12oe, 12eo, 12ee) by the combination of the voltage of the gate line 14 and the voltage of the source line 15 and the switching of the voltages. To do.
  • 1 gate period (frame period shown by 1 to 10 in FIG. 10) can be set to an arbitrary time width, but can be set to 16 msec as an example.
  • on-pulse signals are generated on the gate line Go and the gate line Ge (FIGS. 10A and 10B).
  • a ⁇ voltage ( ⁇ 10 V) is applied to the source line So in a period corresponding to the on-pulse signal of the gate line Go (Ge), and then a + voltage (+10 V) is applied (FIG. 10C).
  • a ⁇ voltage ( ⁇ 10 V) is applied after a ⁇ voltage ( ⁇ 14 V) is applied in a period corresponding to the on-pulse signal of the gate line Ge (Go) (FIG. 10D).
  • the pixels 12oo, 12ee, 12oe, and 12eo are held at a negative voltage (-14V) over the entire frame by the on-pulse signal and the applied voltage.
  • FIG. 11 shows an example of a signal waveform detected by a pixel when a voltage is held in the pixel over the entire frame
  • FIG. 12 shows a voltage state of the pixel at this time.
  • FIG. 11A shows a pixel waveform in the case of a normal pixel
  • FIG. 11A shows a voltage state of the pixel at this time.
  • the held ⁇ voltage ( ⁇ 14V) is detected.
  • FIGS. 11B to 11E show pixel waveforms in the case of a defective pixel
  • FIGS. 12B to 12E show the voltage state of the pixel at this time.
  • FIG. 12B shows a pixel waveform in the case of an SD defect in which the pixel electrode of the pixel and the source line are short-circuited.
  • the pixel waveform voltage becomes (+ 10V) by the source line voltage (+ 10V).
  • the normal pixel indicates ( ⁇ 14V), and the SD defective pixel indicates (+ 10V).
  • FIG. 11C shows a pixel waveform when there is a defect of poor insulation between the pixel electrode of the pixel and the source line.
  • the normal pixel indicates ( ⁇ 14V)
  • the poorly insulated pixel indicates a voltage between ( ⁇ 14V) and (+ 10V).
  • This poor insulation is also referred to as a weak defect because the pixel electrode and the source line have a resistance and are in a conductive state.
  • the pixel waveform voltage gradually increases from (-14V) to (+ 10V) due to the influence of the source line voltage (+ 10V).
  • the present invention since the voltage is held in the pixel (pixel) over the entire frame to detect the voltage change over a long period of one gate period, even if the change in the pixel waveform voltage is small, it is detected. can do.
  • FIG. 11D shows a pixel waveform in the case of a DCs defect in which the pixel electrode of the pixel and the Cs line are short-circuited.
  • the normal pixel indicates ( ⁇ 14V)
  • the DCs defective pixel indicates (+ 5V).
  • the pixel waveform voltage becomes (+ 5V) by the voltage (+ 5V) of the Cs line.
  • the voltage difference from the voltage ( ⁇ 14V) of the normal pixel is expanded to facilitate the defect detection.
  • FIG. 11E shows a pixel waveform in the case of a GD defect in which the pixel electrode of the pixel and the gate line are short-circuited.
  • the normal pixel indicates ( ⁇ 14V)
  • the GD defective pixel indicates ( ⁇ 17V).
  • the pixel waveform voltage becomes ( ⁇ 17V) by the voltage ( ⁇ 17V) of the gate line.
  • the third form is a form in which one gate period of the signal pattern of the inspection signal is set to only the + voltage holding time in the Cs on Gate type TFT array.
  • FIG. 13 shows an example of an inspection signal
  • FIG. 14 shows a pixel waveform
  • FIG. 15 shows a voltage state of the pixel.
  • FIG. 13 shows a signal pattern of the inspection signal within one gate period of the present invention.
  • the on-pulse signal of the gate line 14 14o (Go in FIG. 13 (a)), 14e (Ge in FIG. 13 (b))
  • the voltage applied to the source lines 15 15o (So in FIG. 13 (c)) and 15e (Se in FIG. 13 (d)) is output at the initial stage of the frame, and the pixel (pixel ) 12 (12oo, 12oe, 12eo, 12ee) is applied to each TFT 11 (11oo, 11oe, 11eo, 11ee).
  • a positive voltage (10 V in this case) is applied to each pixel (pixel) 12 (12oo, 12oe, 12eo, 12ee) by a combination of the voltage of the gate line 14 and the voltage of the source line 15 and switching of the voltages. .
  • 1 gate period (frame period indicated by 1 to 10 in FIG. 13) can be set to an arbitrary time width, but as an example, it can be set to 16 msec, for example.
  • on-pulse signals are generated on the gate lines Go and Ge (FIGS. 13A and 13B).
  • a positive voltage (+10 V) is applied to the source line So in a period corresponding to the on-pulse signal of the gate line Go (Ge), and then a negative voltage ( ⁇ 14 V) is applied (FIG. 13C).
  • a + voltage (+10 V) is applied after applying a + voltage (+10 V) in a period corresponding to the on-pulse signal of the gate line Ge (Go) (FIG. 13D).
  • the pixels 12oo, 12ee, 12oe, and 12eo are held at a positive voltage (+ 10V) over the entire frame by the on-pulse signal and the applied voltage.
  • FIG. 14 shows an example of a signal waveform detected by a pixel when the pixel (pixel) holds a positive voltage over the entire frame
  • FIG. 15 shows a voltage state of the pixel at this time.
  • FIG. 14A shows a pixel waveform in the case of a normal pixel
  • FIG. 15A shows a voltage state of the pixel at this time.
  • the held + voltage (10 V) is detected.
  • FIGS. 14B to 14D show pixel waveforms in the case of a defective pixel
  • FIGS. 15B to 15D show the voltage state of the pixel at this time.
  • FIG. 14B shows a pixel waveform in the case of an SD defect in which the pixel electrode of the pixel and the source line are short-circuited.
  • the pixel waveform voltage becomes (-14V) by the source line voltage (-14V).
  • the normal pixel indicates (+ 10V)
  • the SD defective pixel indicates ( ⁇ 14V).
  • FIG. 14C shows a pixel waveform when there is a defect of poor insulation between the pixel electrode of the pixel and the source line.
  • the normal pixel indicates (+ 10V)
  • the poorly insulated pixel indicates a voltage between (+ 10V) and ( ⁇ 14V).
  • This poor insulation is also referred to as a weak defect because the pixel electrode and the source line have a resistance and are in a conductive state.
  • the pixel waveform voltage gradually decreases from (+10 V) to ( ⁇ 14 V) due to the influence of the source line voltage ( ⁇ 14 V).
  • the detection is performed. can do.
  • FIG. 14D shows a pixel waveform in the case of a GD defect in which the pixel electrode of the pixel and the gate line are short-circuited.
  • the normal pixel indicates (+ 10V)
  • the GD defective pixel indicates ( ⁇ 17V).
  • the pixel waveform voltage becomes ( ⁇ 17V) by the voltage ( ⁇ 17V) of the gate line.
  • the form in which one gate period of the signal pattern of the inspection signal is only the ⁇ voltage holding time can be substantially the same as the second form.
  • the fourth mode is a mode in which the signal pattern of the inspection signal is a checker pattern in the Cs on Com type TFT array, and is held at a positive voltage or a negative voltage over the entire frame of one gate period.
  • FIG. 16 shows an example of the inspection signal
  • FIG. 17 shows the pixel waveform
  • FIG. 18 shows the voltage state of the pixel.
  • FIG. 16 shows a signal pattern of the inspection signal within one gate period of the present invention.
  • an on-pulse signal of the gate line 14o (Go in FIG. 16A) is output at the initial stage of the first frame in one gate period, and the source line 15o at this time is output.
  • + 10V applied to (So in FIG. 16 (c)) is applied to the pixel (pixel) 12oo through the TFT 11oo, and ⁇ 14V applied to the source line 15e (Se in FIG. 16 (d)) is applied to the pixel (pixel) 12oe.
  • an on-pulse signal of the gate line 14e (Ge in FIG. 16B) is output at the next stage in the first frame.
  • the source line 15o (FIG. 16C) is output.
  • ⁇ 14V applied to the source line 15e (Se in FIG. 16D) is applied to the pixel 12eo through the TFT 11eo.
  • Applied through TFT11ee the pixels (pixel) 12Ee.
  • each pixel (pixel) 12 (12oo, 12oe, 12eo, 12ee) has a + voltage (here, 10V) and a ⁇ voltage. (Here, ⁇ 14V) is applied two-dimensionally alternately in a grid pattern.
  • One gate period (frame period shown by 1 to 10 in FIG. 16) can be set to an arbitrary time width, but can be set to 16 msec as an example.
  • an on-pulse signal is generated on the gate line Go (FIG. 16 (a)).
  • a positive voltage (+10 V) is applied to the source line So in a period corresponding to the on-pulse signal of the gate line Go, and then a negative voltage ( ⁇ 14 V) is applied (FIG. 16C).
  • the voltage ( ⁇ 14V) is applied at the time corresponding to the on-pulse signal of the gate line Go (FIG. 16D).
  • an on-pulse signal is generated on the gate line Ge (FIG. 16B).
  • the source line So is ⁇ 14V (FIG. 16C)
  • + voltage (+ 10V) is applied to the source line Se in a period corresponding to the on-pulse signal of the gate line Ge.
  • ⁇ voltage is applied (FIG. 16D).
  • the pixels 12oo, 12ee, 12oe, and 12eo are held at a positive voltage (+ 10V) or a negative voltage (-14V) over the entire frame by the on-pulse signal and the applied voltage.
  • FIG. 16 shows an example of a signal waveform detected by a pixel when the positive voltage and the negative voltage are held in a grid pattern over the entire frame
  • FIG. 17 shows the voltage state of the pixel at this time. Show.
  • FIG. 17A shows a pixel waveform in the case of a normal pixel
  • FIG. 18A shows a voltage state of the pixel at this time.
  • the held + voltage (10V) and ⁇ voltage ( ⁇ 14V) are detected.
  • FIGS. 17B and 17C show pixel waveforms in the case of a defective pixel
  • FIGS. 18B to 18E show the voltage states of the pixels at this time.
  • FIG. 17B shows a pixel waveform in the case of a short-circuit defect in which adjacent pixels are short-circuited.
  • adjacent pixels have a voltage obtained by adding the + voltage and the ⁇ voltage.
  • the pixel waveform voltage becomes ( ⁇ 4V) by adding the + voltage (+ 10V) and the ⁇ voltage ( ⁇ 14V).
  • the normal pixel indicates (+ 10V)
  • the short-circuit defective pixel indicates ( ⁇ 4V).
  • FIG. 18B shows the case of short-circuit defects adjacent in the horizontal direction
  • FIG. 18D shows the case of short-circuit defects adjacent in the vertical direction.
  • FIG. 17 (c) shows a pixel waveform in the case where there is an insulation defect between adjacent pixels.
  • the normal pixel indicates (+ 10V)
  • the poorly insulated pixel indicates a voltage between (+ 10V) and ( ⁇ 14V).
  • This poor insulation is in a conductive state with resistance between adjacent pixels.
  • the pixel waveform voltage shows a falling voltage from the + voltage (+ 10V) or an increasing voltage from the ⁇ voltage ( ⁇ 14V) due to the influence of the voltage of the adjacent pixel.
  • the voltage is held in the pixel (pixel) over the entire frame to detect the voltage change over a long period of one gate period, even if the change in the pixel waveform voltage is small, the detection is performed. can do.
  • the present invention can be applied not only to a TFT array inspection process in a liquid crystal manufacturing apparatus, but also to a defect inspection of a TFT array included in an organic EL or various semiconductor substrates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

ピクセルを駆動するための駆動パターンにおいて、1ゲート周期内でピクセルに対して印加する電圧を+電圧あるいは-電圧の一方の電圧のみとし、一周期内においてピクセルに対して+電圧あるいは-電圧の一方の電圧を保持させる駆動パターンを用いてTFTアレイを駆動する。この駆動パターンを用いることによって、1ゲート周期の一周期における電圧保持時間では、ピクセルには+電圧あるいは-電圧の何れか一方の電圧が保持される。これによって、欠陥検出に寄与しない電圧保持時間が削除されるため、この欠陥検出に寄与しない電圧保持時間による検出ピクセル電圧に対する影響を解消することができ、欠陥検出率を向上させることができる。

Description

TFTアレイ検査方法およびTFTアレイ検査装置
 液晶基板等の製造過程等で行われるTFTアレイ検査工程に関し、特に、TFTアレイ検査をする際のTFTアレイ駆動に関する。
 液晶基板や有機EL基板等のTFTアレイが形成された半導体基板の製造過程では、製造過程中にTFTアレイ検査工程を含み、このTFTアレイ検査工程において、TFTアレイの欠陥検査が行われている。
 TFTアレイは、例えば液晶表示装置のピクセル(画素電極)を選択するスイッチング素子として用いられる。TFTアレイを備える基板は、例えば、走査線として機能する複数本のゲートラインが平行に配設されると共に、信号線として記載する複数本のソースラインがゲートラインに直交して配設され、両ラインが交差する部分の近傍にTFT(Thin film  transistor)が配設され、このTFTにピクセル(画素電極)が接続される。
 液晶表示装置は、上記したTFTアレイが設けられた基板と対向基板との間に液晶層を挟むことで構成され、対向基板が備える対向電極と画素電極との間に画素容量が形成される。画素電極には、上記の画素容量以外に付加容量(Cs)が接続される。この付加容量(Cs)の一方は画素電極に接続され、他方は共通ラインあるいはゲートラインに接続される。共通ラインに接続される構成のTFTアレイはCs on Com型TFTアレイと呼ばれ、ゲートラインに接続される構成のTFTアレイはCs on Gate型TFTアレイと呼ばれる。
 このTFTアレイにおいて、走査線(ゲートライン)や信号線(ソースライン)の断線、走査線(ゲートライン)と信号線(ソースライン)の短絡、ピクセル(画素)を駆動するTFTの特性不良による画素欠陥等の欠陥検査は、例えば、対向電極を接地し、ゲートラインの全部あるいは一部に、例えば、-15V~+15Vの直流電圧を所定間隔で印加し、ソースラインの全部あるいは一部に検査信号を印加することによって行っている。(例えば、特許文献1の従来技術。)
 TFTアレイ検査装置は、TFTアレイに検査用の駆動信号を入力し、そのときの電圧状態を検出することで欠陥検出を行うことができる。また、液晶の表示状態を観察することによって、TFTアレイの欠陥検出を行っても良い。液晶の表示状態を観察することによってTFTアレイを検査する場合には、TFTアレイ基板と対向電極との間に液晶層を挟んだ液晶表示装置の状態で検査する他に、液晶層と対向電極を備えた検査治具をTFTアレイ基板に取り付けることによって、液晶表示装置に至らない半製品の状態で検査することもできる。
 TFTアレイには、その製造プロセス中に様々な欠陥が発生する可能性がある。図19~図21は欠陥例を説明するためのTFTアレイの等価回路である。
 図19はTFTアレイを構成する各要素部分で生じる欠陥を説明するための図である。図19中の破線で示す各箇所において、ピクセル12oeとソースライン15eとの間に短絡欠陥(S-Dshort)を示し、ピクセル12eoとゲートライン14eとの間に短絡欠陥(G-Dshort)を示し、ピクセル12eoとCsラインとの間に短絡欠陥(D-Csshort)を示している。
 また、上記した各ピクセルにおける欠陥の他に、隣接するピクセル間で生じる隣接欠陥と呼ばれるものがある。この隣接欠陥として、横方向で隣接するピクセル間の欠陥(横PPと呼ばれる)、縦方向で隣接するピクセル間の欠陥(縦PPと呼ばれる)、隣接するソースライン間の短絡(SSshortと呼ばれる)、隣接するゲートライン間の短絡(GGshortと呼ばれる)が知られている。
 図20は横方向の隣接欠陥を説明するための図である。図20中の破線は、横方向で隣接するピクセル12eoと12eeと間の短絡欠陥(横PP)と、横方向で隣接するソースラインSoとSeとの間の短絡欠陥(SSshort)をそれぞれ示している。
 図21は縦方向の隣接欠陥を説明するための図である。図21中の破線は、縦方向で隣接するピクセル12ooと12eoと間の短絡欠陥(縦PP1)、および、縦方向で隣接するピクセル12oeと12eeと間の短絡欠陥(縦PP2)と、縦方向で隣接するゲートラインGoとGeとの間の短絡欠陥(GGshort)をそれぞれ示している。
 電子線を用いたTFTアレイ検査装置では、ピクセル(ITO電極)に対して電子線を照射し、この電子線照射によって放出される二次電子を検出することによって、ピクセル(ITO電極)に印加された電圧波形を二次電子波形に変えて、信号によるイメージ化し、これによってTFTアレイの電気的検査を行っている。
 前記図19に示すような各ピクセルに生じる欠陥を検査する駆動パターンとしては、例えば、図22示すような検査パターンがある。なお、図22(a),(b),(e),(f)はゲート信号を示し、図22(c),(d),(g),(h)はソース信号を示している。
 検査用の駆動パターンは、一ゲート周期内に、ゲートをオンとした後に全ピクセルを+電圧に保持する+電圧保持時間と、次にゲートをオンとした後にピクセルを-電圧に保持する-電圧保持時間とを備える。+電圧保持時間では全ピクセルに+電圧が印加され、-電圧保持時間では全ピクセルに-電圧が印加され。欠陥検出は、+電圧保持時間で検出されるピクセル電圧と-電圧保持時間で検出されるピクセル電圧とを加算することによって欠陥検出を行っている。
 図22(a)~(d)の駆動パターンは+電圧保持時間と-電圧保持時間との時間比率を1:1とする駆動パターン例を示し、図22(e)~(h)の駆動パターンは+電圧保持時間と-電圧保持時間との時間比率を3:1とする駆動パターン例を示している。
 駆動パターンの一ゲート周期は例えば16msecとし、+電圧保持時間と-電圧保持時間との時間比率が1:1の場合には+電圧保持時間は8msecとなり、+電圧保持時間と-電圧保持時間との時間比率が3:1の場合には+電圧保持時間は12msecとなる。
 このゲート信号とソース信号との組み合わせによって、TFTアレイの全ピクセルに正電圧(ここでは10v)と負電圧(ここでは-10v)を交互に印加する。
 駆動パターンは、全ピクセルに同電圧を印加するパターンの他に、隣接するピクセルに互いに異なる電位が印加されるパターンを用いることによって隣接欠陥を検出する。隣接欠陥を検出するための検査パターンは種々の検査パターンを用いることができ、例えば、横方向隣接欠陥を検出する場合にはTFTアレイ上において+電圧のピクセル(ITO)と-電圧のピクセル(ITO)が形成する電圧分布が縦縞パターンとなるように電圧を印加する。この縦縞パターンは、TFTアレイの縦方向のピクセルを同電圧とし、隣接する横方向のピクセル列同士は異なる電圧としている。これによって、横方向隣接欠陥を検出する。
 また、縦方向隣接欠陥を検出する場合にはTFTアレイ上において+電圧のピクセル(ITO)と-電圧のピクセル(ITO)が形成する電圧分布が横縞パターンとなるように電圧を印加する。この横縞パターンは、TFTアレイの横方向のピクセルを同電圧とし、隣接する縦方向のピクセル列同士は異なる電圧としている。これによって、縦方向隣接欠陥を検出する。(例えば、特許文献2)
特開平5-307192号公報 特開2008-58767号公報
 TFTアレイに発生する電気的欠陥は、欠陥種によって+電圧保持時間で検出される欠陥と-電圧保持時間で検出される欠陥があることが知られている。例えば、SD欠陥は+電圧保持時間で検出され易く、DCs欠陥は-電圧保持時間で検出され易い。
 従来使用される駆動パターンでは、一ゲート周期内に+電圧保持時間と-電圧保持時間を備え、+電圧保持時間で検出されるピクセル電圧と-電圧保持時間で検出されるピクセル電圧とを加算することによって欠陥検出を行っている。TFTアレイ検査は、一ゲート周期内を複数のフレームに分割し、各フレームの時間を単位として全ピクセルを走査してピクセル電圧を検出する。通常、一ゲート周期は10フレームを含んでおり、各フレームにおいて全ピクセルを走査することによって全部で10個の検出データが取得される。
 このような駆動パターンを用いた欠陥検出では、欠陥検出に寄与しない駆動パターン部分がピクセル電圧に与える影響によって欠陥検出率が低下するという問題があり、また、ピクセルの電圧変化が駆動パターンの印加電圧の保持時間に依存することによって、欠陥検出率が低下するという問題がある。
 図23は従来の駆動パターンによる欠陥検出を説明するための図である。図23(a)はSD短絡欠陥を検出する例を示し、図23(b)はDCs短絡欠陥を検出する例を示し、図23(c)はGD短絡欠陥を検出する例を示している。なお、ここでは、9個のピクセルの内で中央のピクセルに欠陥が発生した場合について示している。
 +電圧保持時間と-電圧保持時間で得られる電圧を加算して得られる欠陥ピクセルと正常ピクセルとの電圧差について見ると、図23(a)に示すSD短絡では10Vとなり、図23(b)に示すDCs短絡では4Vとなり、図23(c)に示すGD短絡では13Vとなる。
 SD欠陥の各電圧保持時間における欠陥ピクセルの電圧と正常ピクセルの電圧との電圧差について見ると、+電圧保持時間では24Vであるのに対して、-電圧保持時間では0Vであるため、加算して得られる電圧差は10Vとなり、欠陥検出のための電圧差が減少する。
 DCs欠陥の各電圧保持時間における欠陥ピクセルの電圧と正常ピクセルの電圧との電圧差について見ると、+電圧保持時間では10Vであるのに対して、-電圧保持時間では14Vであるため、加算して得られる電圧差は4Vとなり、欠陥検出のための電圧差が減少する。
 また、GD欠陥の各電圧保持時間における欠陥ピクセルの電圧と正常ピクセルの電圧との電圧差について見ると、+電圧保持時間では27Vであるのに対して、-電圧保持時間では3Vであるため、加算して得られる電圧差は13Vとなり、欠陥検出のための電圧差が減少する。
 このように、+電圧保持時間あるいは-電圧保持時間において、欠陥検出に寄与しない電圧保持時間で検出されるピクセル電圧によって欠陥検出率が低下するという問題がある。
 また、TFTアレイの欠陥種の中には、ピクセルの電圧変化が駆動パターンの印加電圧の保持時間に依存する場合がある。このような欠陥種を検出する場合には、従来のように一ゲート周期内で+電圧保持時間と-電圧保持時間を切り換えて電圧を印加すると、保持時間が短いため欠陥を検出するに十分な電圧変化が得られず、欠陥検出の検出効率が低下する。
 このように、ピクセルの電圧変化が駆動パターンの印加電圧の保持時間に依存することによって、欠陥検出率が低下するという問題がある。
 そこで、本発明は前記した従来の問題点を解決し、欠陥検出の検出率を向上させることができるTFTの駆動パターンを提供することを目的とする。
 より詳細には、+電圧保持時間あるいは-電圧保持時間において、欠陥検出に寄与しない電圧保持時間で検出されるピクセル電圧による欠陥検出率の低下を解決することを目的とし、また、ピクセルの電圧変化が駆動パターンの印加電圧の保持時間に依存することによる欠陥検出率の低下を解決することを目的とする。
 本発明は、ピクセルを駆動するための駆動パターンにおいて、1ゲート周期内でピクセルに対して印加する電圧を+電圧と-電圧とで切り換え、ピクセルに+電圧を保持させる+電圧保持時間と、ピクセルに-電圧を保持させる-電圧保持時間とを備える従来の駆動パターンに代えて、1ゲート周期内でピクセルに対して印加する電圧を+電圧あるいは-電圧の一方の電圧のみとし、一周期内においてピクセルに対して+電圧あるいは-電圧の一方の電圧を保持させる駆動パターンを用いてTFTアレイを駆動する。この駆動パターンを用いることによって、1ゲート周期の一周期における電圧保持時間では、ピクセルには+電圧あるいは-電圧の何れか一方の電圧が保持される。
 本発明の駆動パターンを用いることによって、欠陥検出に寄与しない電圧保持時間が削除されるため、この欠陥検出に寄与しない電圧保持時間による検出ピクセル電圧に対する影響を解消することができ、欠陥検出率を向上させることができる。
 また、ピクセルの電圧変化が駆動パターンの印加電圧の保持時間に依存する場合に、本発明の駆動パターンを用いることによって、電圧保持時間を長くすることができ、欠陥検出率を向上させることができる。
 本発明のTFT基板の検査方法は、TFT基板のTFTアレイに対して電圧を印加し、電子線照射により得られる二次電子を検出してTFTアレイの欠陥を検査するTFT基板の検査方法であり、TFTアレイの全ピクセルを走査する時間幅を1フレームとし、複数のフレームによってTFT基板を検査する1ゲート周期を構成する。したがって、1ゲート周期は複数の各フレームにおいてTFTアレイの全ピクセルの走査が行われ、検出信号を取得することができる。
 本発明のTFT基板の検査方法は、1ゲート周期が備える全フレームについて走査を行って検出信号を取得する形態とする他に、1ゲート周期が備える全フレームの内から選択したフレームについて走査を行って検出信号を取得する形態としてもよい。このとき、1ゲート周期の内で、時間的に後のフレームにおいて走査を行い、この走査で検出した検出信号を用いて欠陥検出を行ってもよい。この時間的に後のフレームの走査で検出される検出信号を用いることによって、欠陥検出に時間を要する欠陥種の検出効率を向上させることができる。
 本発明のTFT基板の検査方法は、TFTアレイの全ピクセルを走査する時間幅を1フレームとし、このフレームを複数含むゲート周期において、ピクセルを駆動するための駆動パターンとして、時間的に第1番目のフレームの初期期間において正電圧又は負電圧の一方の電圧とした後、第1番目のフレームの残余の期間および第2番目以降にフレームにおいて前記電圧の正負を反転させる電圧パターンを備える。
 この電圧パターンを用いて、TFTアレイのピクセルに第1番目のフレームの初期期間の正電圧又は負電圧の一方の電圧を印加した後、1ゲート周期の全時間幅に亘ってピクセルに印加した電圧を保持させる。
 第1番目のフレームの初期期間において、TFTアレイのTFTをオン状態とすることによって、TFTアレイのピクセルに第1番目のフレームの初期期間の正電圧又は負電圧の一方の電圧を印加する。一方、TFTアレイのTFTをオフ状態とすることによって、1ゲート周期の全時間幅に亘ってピクセルに印加した電圧を保持させる。
 また、TFTアレイに対してゲートラインとソースラインを格子状に配列する。ゲートラインに印加するゲート信号によって、TFTアレイのTFTのオン状態とオフ状態を制御する。ソースラインに印加するソース信号によって、オン状態のTFTを介してピクセルに電圧パターンの電圧を印加し、印加した電圧をピクセルに保持させる。
 また、ピクセルに対して付加容量を介して接続される共通ラインの電圧を負側にオフセットさせることによって、正常ピクセルと短絡欠陥ピクセルとの電圧差を増加させる。電圧差を増加させることによって、欠陥検出の検出効率を向上させることができる。
 また、1ゲート周期は複数のフレームを備え、各フレームにおいて全ピクセルを走査することによって検出信号が取得される。1ゲート周期が備える複数のフレームにおいて、時間的に後のフレームの走査で取得した検出信号に基づいて欠陥検出を行う。欠陥種によっては、欠陥によって得られる検出信号はピクセルに印加電圧を保持しておく保持時間に依存するものがある。このような欠陥種の欠陥検出では、時間的に後のフレームで所得される検出信号を用いることによって、長い保持時間による検出信号を取得することができ、検出効率を向上させることができる。
 本発明のTFT基板の検査装置は、TFT基板のTFTアレイに対して電圧を印加し、当該電圧印加による電圧状態を電子線照射により得られる二次電子によって検出し、TFTアレイの欠陥を検査するTFT基板の検査装置である。
本発明の検査装置は、TFT基板に電子線を照射する電子線源と、TFT基板から放出される二次電子を検出する検出器と、TFT基板のTFTアレイに検査信号を生成し印加する検査信号生成部と、検出器の検出信号に基づいてTFTアレイの欠陥を検出する欠陥検出部とを備える。
 本発明の検査信号生成部は、TFTアレイの全ピクセルを走査する時間幅を1フレームとし、1ゲート周期内に複数のフレームを備える。この1ゲート周期において、ピクセルを駆動するための駆動パターンとして、複数のフレームの内で時間的に第1番目のフレームの初期期間において正電圧又は負電圧の一方の電圧とした後、第1番目のフレームの残余の期間および第2番目以降にフレームにおいて前記電圧の正負を反転させる電圧パターンを備える検査信号を生成する。
 本発明の欠陥検出部は、検査信号生成部で生成した電圧パターンを用いて、TFTアレイのピクセルに第1番目のフレームの初期期間の正電圧又は負電圧の一方の電圧を印加した後、1ゲート周期の全時間幅に亘って前記ピクセルに印加した電圧を保持させ、電圧保持によって取得されるピクセル電圧に基づいてピクセルの欠陥を検出する。
 以上説明したように、本発明のTFT基板の検査方法およびTFT基板の検査装置によれば、欠陥検出に寄与しない電圧保持時間が削除されるため、この欠陥検出に寄与しない電圧保持時間による検出ピクセル電圧に対する影響を解消することができ、欠陥検出率を向上させることができる。
 また、本発明のTFT基板の検査方法およびTFT基板の検査装置によれば、ピクセルの電圧変化が駆動パターンの印加電圧の保持時間に依存する場合に、本発明の駆動パターンを用いることによって、電圧保持時間を長くすることができ、欠陥検出率を向上させることができる。
本発明のTFTアレイ検査装置の概略図である。 Cs on Com型TFTアレイの構成を模式的に示す図である。 Cs on Com型TFTアレイの等価回路図である。 Cs on Gate型TFTアレイの構成を模式的に示す図である。 Cs on Gate型TFTアレイの等価回路図である。 TFTアレイ検査における1ゲート周期を説明するための図である。 本発明の第1の形態の検査信号の信号パターンを説明するための信号図である。 本発明の第1の形態の検査信号の信号パターンによるピクセル波形を説明するための信号図である。 本発明の第1の形態の検査信号の信号パターンによるピクセル電圧状態を説明するため図である。 本発明の第2の形態の検査信号の信号パターンを説明するための信号図である。 本発明の第2の形態の検査信号の信号パターンによるピクセル波形を説明するための信号図である。 本発明の第2の形態の検査信号の信号パターンによるピクセル電圧状態を説明するため図である。 本発明の第3の形態の検査信号の信号パターンを説明するための信号図である。 本発明の第3の形態の検査信号の信号パターンによるピクセル波形を説明するための信号図である。 本発明の第3の形態の検査信号の信号パターンによるピクセル電圧状態を説明するため図である。 本発明の第4の形態の検査信号の信号パターンを説明するための信号図である。 本発明の第4の形態の検査信号の信号パターンによるピクセル波形を説明するための信号図である。 本発明の第4の形態の検査信号の信号パターンによるピクセル電圧状態を説明するための図である。 TFTアレイの欠陥を説明するための図である。 横方向隣接欠陥を説明するための図である。 縦方向の隣接欠陥を説明するための図である。 欠陥を検出するための検査パターンを説明するための信号図である。 検査パターンで駆動した際に発生するピクセルの電圧状態を示す図である。
符号の説明
 1…アレイ検査装置
 2…電子線源
 3…二次電子検出器
 4…検査信号生成部
 5…信号処理部
 6…欠陥検出部
 7…ステージ
 8…プローバ
 9…走査制御部
 10…基板
 11A…エリア
 12…ピクセル
 13…付加容量(Cs)
 14…ゲートライン
 15…ソースライン
 16…Csライン。
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。以下、本発明のTFT基板の検査装置の構成例について図1を用いて説明し、本発明のTFT基板の検査態様について図7~図18を用いて説明する。図7~図9はピクセルを共通ラインに接続するCs on Com型TFTアレイにおいて1ゲート周期を+電圧保持時間とする第1の検査態様を説明するための図であり、図10~図12はピクセルを共通ラインに接続するCs on Com型TFTアレイにおいて1ゲート周期を-電圧保持時間とする第2の検査態様を説明するための図であり、図13~図15はピクセルをゲートラインに接続するCs on Gate型TFTアレイにおいて1ゲート周期を+電圧保持時間とする第3の検査態様を説明するための図であり、図16~図18はピクセルをゲートラインに接続するCs on Com型TFTアレイにおいてチェッカーパターンで1ゲート周期を+電圧保持時間とする第4の検査態様を説明するための図である。また、図2~図5はTFTアレイを説明するための図である。
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。
 図1は、本発明のTFTアレイ検査装置の概略図である。
 TFTアレイ検査装置1は、TFT基板10にアレイ検査用の検査信号を生成する検査信号生成部4と、検査信号生成部4で生成した検査信号をTFT基板10に印加するプローバ8と、TFT基板の電圧印加状態を検出する機構(2,3,5)と、検出信号に基づいてTFTアレイの欠陥を検出する欠陥検出部6を備える。
 プローバ8は、プローブピン(図示していない)が設けられたプローバフレームを備える。プローバ8は、TFT基板10上に載置する等によってプローブピンをTFT基板10上に形成した電極に接触させ、TFTアレイに検査信号を印加する。
 TFT基板の電圧印加状態を検出する機構は種々の構成とすることができる。図1に示す構成は、電子線による検出構成であり、TFT基板10上に電子線を照射する電子線源2、照射された電子線によってTFT基板10から放出される二次電子を検出する二次電子検出器3、二次電子検出器3の検出信号を信号処理してTFT基板10上の電位状態を検出する信号処理部5等を備える。
 電子線が照射されたTFTアレイは、印加された検査信号の電圧に応じた二次電子を放出するため、この二次電子を検出することによって、TFTアレイの電位状態を検出することができる。
 欠陥検出部6は、信号処理部5で取得したTFTアレイの電位状態に基づいて、正常状態における電位状態と比較することによってTFTアレイの欠陥を検出する。
 なお、ここでは、TFT基板の電圧印加状態を検出する機構(2,3,5)を用いてTFTアレイの欠陥を検出する構成例を示しているが、TFT基板が液晶表示装置を構成している場合には、検査信号によって液晶を駆動して、検査信号による表示パターンを表示させ、この表示状態を撮像装置で撮像して取得した撮像画像に画像処理することで欠陥検査を行う他、表示像を目視で観察してもよい。また、TFT基板がTFTアレイのみを備える段階の場合には、検査信号を印加する治具に液晶層や対向電極を設けることで一時的に液晶表示装置を構成して、上記のようにして欠陥検査を行っても良い。
 検査信号生成部4は、TFT基板10上に形成されるTFTアレイを駆動する検査信号の検査パターンを生成する。この検査パターンについては後述する。
 走査制御部9は、TFT基板10上のTFTアレイの検査位置を走査するために、ステージ7や電子線源2を制御する。ステージ7は、載置するTFT基板10をXY方向に移動し、また、電子線源2はTFT基板10に照射する電子線をXY方向に振ることで、電子線の照射位置を走査する。走査位置が検出位置となる。
 なお、上記したTFTアレイ検査装置の構成は一例であり、この構成に限られるものではない。
 次に、本発明のTFT基板の検査に用いる検査信号について、Cs on Com型TFTアレイの場合について図2、図3を用いて説明し、Cs on Gate型TFTアレイの場合について図4,図5を用いて説明する。
 ここで、Cs on Com型TFTアレイは、画素電極に接続される付加容量(Cs)の一方の接続端が共通ライン(Csライン)に接続される構成であり、Cs on Gate型TFTアレイは、画素電極に接続される付加容量(Cs)の一方の接続端がゲートライン(Gateライン)に接続される構成である。
 はじめに、Cs on Com型TFTアレイの場合について説明する。
 図2は、Cs on Com型TFTアレイの構成を模式的に示している。TFT基板上には、ゲートライン14とソースライン15とが交差する部分の近傍のTFTエリア11AにTFTが設けられる。また、隣接するゲートライン14の間には、付加容量(Cs)を接続するCsライン16が設けられる。
 図3は、図2に示すCs on Com型TFTアレイの等価回路を示している。図3の等価回路では、ゲートライン14およびソースライン15は、それぞれ偶数番目と奇数番目の2つのライン群に分けて駆動する場合を示している。
 奇数番目のゲートライン14oと奇数番目のソースライン15oとが交差する部分の近傍にはピクセル(画素)12ooが設けられる。ピクセル(画素)12ooの一端はTFT11ooに接続され、他端は付加容量(Cs)13ooに接続される。付加容量(Cs)13ooの他端はCsライン16に接続される。TFT11ooのドレインDはピクセル(画素)12ooに接続され、ゲートGは奇数番目のゲートライン14oに接続され、ソースSは奇数番目のソースライン15oに接続される。
 同様に、奇数番目のゲートライン14oと偶数番目のソースライン15eとが交差する部分の近傍にはピクセル(画素)12oeが設けられる。ピクセル(画素)12oeの一端はTFT11oeに接続され、他端は付加容量(Cs)13oeに接続される。付加容量(Cs)13oeの他端はCsライン16に接続される。TFT11oeのドレインDはピクセル(画素)12oeに接続され、ゲートGは奇数番目のゲートライン14oに接続され、ソースSは偶数番目のソースライン15eに接続される。
 また、偶数番目のゲートライン14eと奇数番目のソースライン15oとが交差する部分の近傍にはピクセル(画素)12eoが設けられる。ピクセル(画素)12eoの一端はTFT11eoに接続され、他端は付加容量(Cs)13eoが接続される。付加容量(Cs)13eoの他端はCsライン16に接続される。TFT11eoのドレインDはピクセル(画素(Pixel)12eoに接続され、ゲートGは偶数番目のゲートライン14eに接続され、ソースSは奇数番目のソースライン15oに接続される。
 また、偶数番目のゲートライン14eと偶数番目のソースライン15eとが交差する部分の近傍にはピクセル(画素)12eeが設けられる。ピクセル(画素)12eeの一端はTFT11eeに接続され、他端は付加容量(Cs)13eeに接続される。付加容量(Cs)13eeの他端はCsライン16に接続される。TFT11eeのドレインDはピクセル(画素)12eeに接続され、ゲートGは偶数番目のゲートライン14eに接続され、ソースSは偶数番目のソースライン15eに接続される。
 したがって、ピクセル(画素)12ooには、奇数番目のゲートライン14oのオンパルス信号に応じて奇数番目のソースライン15oの電圧が印可され、ピクセル(画素)12oeには、奇数番目のゲートライン14oのオンパルス信号に応じて偶数番目のソースライン15eの電圧が印可され、ピクセル(画素)12eoには、偶数番目のゲートライン14eのオンパルス信号に応じて奇数番目のソースライン15oの電圧が印可され、ピクセル(画素)12eeには、偶数番目のゲートライン14eのオンパルス信号に応じて偶数番目のソースライン15eの電圧が印可される。
 次に、Cs on Gate型TFTアレイの場合について説明する。
 図4は、Cs on Gate型TFTアレイの構成を模式的に示している。TFT基板上には、ゲートライン14とソースライン15とが交差する部分の近傍のTFTエリア11AにTFTが設けられる。
 図5は、図4に示すCs on Gate型TFTアレイの等価回路を示している。図5の等価回路では、ゲートライン14およびソースライン15は、それぞれ偶数番目と奇数番目の2つのライン群に分けて駆動する場合を示している。
 奇数番目のゲートライン14oと奇数番目のソースライン15oとが交差する部分の近傍にはピクセル(画素)12ooが設けられる。ピクセル(画素)12ooの一端はTFT11ooに接続され、他端は付加容量(Cs)13ooに接続される。付加容量(Cs)13ooの他端は偶数番目のゲートライン14eに接続される。TFT11ooのドレインDはピクセル(画素)12ooに接続され、ゲートGは奇数番目のゲートライン14oに接続され、ソースSは奇数番目のソースライン15oに接続される。
 同様に、奇数番目のゲートライン14oと偶数番目のソースライン15eとが交差する部分の近傍にはピクセル(画素)12oeが設けられる。ピクセル(画素)12oeの一端はTFT11oeに接続され、他端は付加容量(Cs)13oeに接続される。付加容量(Cs)13oeの他端は偶数番目のゲートライン14eに接続される。TFT11oeのドレインDはピクセル(画素)12oeに接続され、ゲートGは奇数番目のゲートライン14oに接続され、ソースSは偶数番目のソースライン15eに接続される。
 また、偶数番目のゲートライン14eと奇数番目のソースライン15oとが交差する部分の近傍にはピクセル(画素)12eoが設けられる。ピクセル(画素)12eoの一端はTFT11eoに接続され、他端は付加容量(Cs)13eoに接続される。付加容量(Cs)13eoの他端は奇数番目のゲートライン14oに接続される。TFT11eoのドレインDはピクセル(画素)12eoに接続され、ゲートGは偶数番目のゲートライン14eに接続され、ソースSは偶数番目のソースライン15eに接続される。
 また、偶数番目のゲートライン14eと偶数番目のソースライン15eとが交差する部分の近傍にはピクセル(画素)12eeが設けられる。ピクセル(画素)12eeの一端はTFT11eeに接続され、他端は付加容量(Cs)13eeに接続される。付加容量(Cs)13eeの他端は奇数番目のゲートライン14oに接続される。TFT11eeのドレインDはピクセル(画素)12eeに接続され、ゲートGは偶数番目のゲートライン14eに接続され、ソースSは偶数番目のソースライン15eに接続される。
 したがって、ピクセル(画素)12ooには、奇数番目のゲートライン14oのオンパルス信号に応じて奇数番目のソースライン15oの電圧が印可され、ピクセル(画素)12oeには、奇数番目のゲートライン14oのオンパルス信号に応じて偶数番目のソースライン15eの電圧が印可され、ピクセル(画素)12eoには、偶数番目のゲートライン14eのオンパルス信号に応じて奇数番目のソースライン15oの電圧が印可され、ピクセル(画素)12eeには、偶数番目のゲートライン14eのオンパルス信号に応じて偶数番目のソースライン15eの電圧が印可される。
 本発明のTFTアレイ検査装置は、TFTアレイに検査信号を印加することによって各ピクセルを駆動し、その駆動状態が正常であるかあるいは異常であるかによりTFTアレイの欠陥を検出する。この欠陥検査は、TFTアレイに検査信号を印加した状態において、各ピクセルの画素電極の電圧状態を検出することで行うことができる。ピクセルの画素電極の電圧検出は、全ピクセルに対して電子線を順次走査して1フレーム分の検出信号を取得する。欠陥検査では、通常この電子線走査を複数回繰り返し、複数回の繰り返しを1ゲート周期として行う。
 図6はTFTアレイ検査における1ゲート周期を説明するための図である。図6では、1ゲート周期内に10フレーム分の検出信号を取得する例を示している。このとき、1ゲート周期の第1番目のフレームの初期段階において、TFTに検査信号を印加してピクセルに所定電圧を与え、この電圧状態から各フレームにおいて全ピクセルの電圧を検出する。
 本発明は、第1番目のフレームの初期段階で印加した電圧を、1ゲート周期内の全フレームに亘って保持させる。例えば、全ピクセルに対して+電圧を印加した場合には、1ゲート周期内の全フレームに亘って+電圧を保持させ、この+電圧保持状態におけるピクセルの電圧変化を検出することによって欠陥検出を行う。また、全ピクセルに対して-電圧を印加した場合には、1ゲート周期内の全フレームに亘って-電圧を保持させ、この-電圧保持状態におけるピクセルの電圧変化を検出することによって欠陥検出を行う。
 あるいは、また、ピクセルに対して格子状に+電圧と-電圧を印加した場合には、1ゲート周期内の全フレームに亘ってこの格子状の電圧状態を保持させ、この電圧保持状態におけるピクセルの電圧変化を検出することによって欠陥検出を行う。
 欠陥検出は、1ゲート周期内の全フレームで検出した検出信号を用いて行うに限らず、何れかの1フレームで検出した検出信号あるいは複数フレームで検出した検出信号を用いて行ってもよい。
 例えば、欠陥が絶縁不良である場合には、ピクセルの電圧は徐々に変化するため、1ゲート周期内の初期のフレームより後期のフレームの電圧変化が大きくなるため、1ゲート周期の最後にフレームで検出される検出信号を用いることによって欠陥検出の検出効率を向上させることができる。
 以下、本発明による検査信号の信号パターン例について、図7~図18を用いて説明する。ここでは、第1の形態~第4の形態について説明する。
 第1の形態は、Cs on Com型TFTアレイにおいて検査信号の信号パターンの1ゲート周期を+電圧保持時間のみとする形態であり、第2の形態は、Cs on Com型TFTアレイにおいて検査信号の信号パターンの1ゲート周期を-電圧保持時間のみとする形態であり、第3の形態は、Cs on Gate型TFTアレイにおいて検査信号の信号パターンの1ゲート周期を+電圧保持時間のみとする形態であり、第4の形態は、Cs on Com型TFTアレイにおいて検査信号の信号パターンをチェッカーパターンとし1ゲート周期の全フレームに亘って+電圧あるいは-電圧に保持する形態である。
  [第1の形態]
 はじめに、検査信号の信号パターンの第1の形態について説明する。第1の形態は、Cs on Com型TFTアレイにおいて検査信号の信号パターンの1ゲート周期を+電圧保持時間のみとする形態である。図7は検査信号例を示し、図8はピクセル波形を示し、図9はピクセルの電圧状態を示している。
 図7は、本発明の1ゲート周期内における検査信号の信号パターンを示している。図7に示す検査信号の信号パターンでは、例えば、ゲートライン14(14o(図7(a)のGo)、14e(図7(b)のGe))のオンパルス信号を1ゲート周期に第1のフレームの初期段階で出力し、このときのソースライン15(15o(図7(c)のSo)、15e(図7(d)のSe)に印加される電圧を、各交差部分のピクセル(画素)12(12oo,12oe,12eo,12ee)に、各TFT11(11oo,11oe,11eo,11ee)を通して印加する。
 このときの、ゲートライン14の電圧とソースライン15の電圧の組み合わせ、および電圧の切り換えによって、各ピクセル(画素)12(12oo,12oe,12eo,12ee)に+電圧(ここでは10V)を印加する。
 1ゲート周期(図7の1~10で示すフレーム期間)は任意の時間幅とすることができるが、一例として、例えば16msecとすることができる。
 図7の例では、説明の便宜から1ゲート周期を1~10の10個のフレームを備え、この全フレームに亘ってピクセル(画素)に+電圧(+10V)を保持させる。
 第1のフレームの初期段階において、ゲートラインGoとゲートラインGeにオンパルス信号を発生させる(図7(a),(b))。このとき、ソースラインSoには、ゲートラインGo(Ge)のオンパルス信号と対応する期間において+電圧(+10V)を印加した後、-電圧(-14V)を印加する(図7(c))。また、ソースラインSeについても、ゲートラインGe(Go)のオンパルス信号と対応する期間において+電圧(+10V)を印加した後、-電圧(-14V)を印加する(図7(d))。
 上記のオンパルス信号と印加電圧により、全フレームに亘って、ピクセル(画素)12oo,12ee,12oe,12eoは+電圧(+10V)に保持される。
 図8は全フレームに亘ってピクセル(画素)に+電圧を保持させたときに、ピクセルで検出される信号波形例を示し、図9はこのときのピクセルの電圧状態を示している。
 図8(a)は正常ピクセルの場合のピクセル波形を示し、図9(a)はこのときのピクセルの電圧状態を示している。正常ピクセルでは、保持されている+電圧(10V)が検出される。図8(b)~図8(e)は欠陥ピクセルの場合のピクセル波形を示し、図9(b)~図9(e)はこのときのピクセルの電圧状態を示している。
 図8(b)はピクセルの画素電極とソースライン間がショートしたSD欠陥の場合のピクセル波形を示している。このSD欠陥では、ソースラインの電圧(-14V)によってピクセル波形電圧は(-14V)となる。図9(b)では、正常ピクセルは(+10V)を示し、SD欠陥ピクセルは(-14V)を示している。
 図8(c)はピクセルの画素電極とソースライン間の絶縁不良の欠陥がある場合のピクセル波形を示している。図9(c)では、正常ピクセルは(+10V)を示し、絶縁不良ピクセルは(+10V)から(-14V)の間の電圧を示している。この絶縁不良は、画素電極とソースライン間が抵抗を有して導通状態にあり、weakな欠陥とも称される。この絶縁不良欠陥では、ソースラインの電圧(-14V)の影響によって、ピクセル波形電圧は(+10V)から徐々に(-14V)に向かって電圧が降下する。本発明では、全フレームに亘ってピクセル(画素)に+電圧を保持させることによって、1ゲート周期の長い時間に亘る電圧変化を検出するためピクセル波形電圧の変化が小さい場合であっても、検出することができる。
 この電圧変化は、1ゲート周期において後期のフレームで大きくなるため、1ゲート周期の全フレームの電圧変化を検出する代わりに、後期のフレームの電圧変化のみを検出することによって欠陥を検出することができる。
 図8(d)はピクセルの画素電極とCsライン間がショートしたDCs欠陥の場合のピクセル波形を示している。図9(d)では、正常ピクセルは(+10V)を示し、DCs欠陥ピクセルは(-5V)を示している。このDCs欠陥では、Csラインの電圧(-5V)によってピクセル波形電圧は(-5V)となる。なお、ここでは、Csラインの電圧を(-5V)とすることによって、正常ピクセルの電圧(+10V)との電圧差を拡大して、欠陥検出が容易となるようにしている。
 図8(e)はピクセルの画素電極とゲートライン間がショートしたGD欠陥の場合のピクセル波形を示している。図9(e)では、正常ピクセルは(+10V)を示し、GD欠陥ピクセルは(-17V)を示している。このGD欠陥では、ゲートラインの電圧(-17V)によってピクセル波形電圧は(-17V)となる。
  [第2の形態]
 次に、検査信号の信号パターンの第2の形態について説明する。第2の形態は、Cs on Com型TFTアレイにおいて検査信号の信号パターンの1ゲート周期を-電圧保持時間のみとする形態である。図10は検査信号例を示し、図11はピクセル波形を示し、図12はピクセルの電圧状態を示している。
 図10は、本発明の1ゲート周期内における検査信号の信号パターンを示している。図10に示す検査信号の信号パターンでは、例えば、ゲートライン14(14o(図10(a)のGo)、14e(図10(b)のGe)のオンパルス信号を1ゲート周期に第1のフレームの初期段階で出力し、このときのソースライン15(15o(図10(c)のSo)、15e(図10(d)のSe))に印加される電圧を、各交差部分のピクセル(画素)12(12oo,12oe,12eo,12ee)に、各TFT11(11oo,11oe,11eo,11ee)を通して印加する。
 このときの、ゲートライン14の電圧とソースライン15の電圧の組み合わせ、および電圧の切り換えによって、各ピクセル(画素)12(12oo,12oe,12eo,12ee)に-電圧(ここでは-14V)を印加する。
 1ゲート周期(図10の1~10で示すフレーム期間)は任意の時間幅とすることができるが、一例として、例えば16msecとすることができる。
 図10の例では、説明の便宜から1ゲート周期を1~10の10個のフレームを備え、この全フレームに亘ってピクセル(画素)に-電圧(-14V)を保持させる。
 第1のフレームの初期段階において、ゲートラインGoとゲートラインGeにオンパルス信号を発生させる(図10(a),(b))。このとき、ソースラインSoには、ゲートラインGo(Ge)のオンパルス信号と対応する期間において-電圧(-14V)を印加した後、+電圧(+10V)を印加する(図10(c))。また、ソースラインSeについても、ゲートラインGe(Go)のオンパルス信号と対応する期間において-電圧(-14V)を印加した後、+電圧(+10V)を印加する(図10(d))。
 上記のオンパルス信号と印加電圧により、全フレームに亘って、ピクセル(画素)12oo,12ee,12oe,12eoは-電圧(-14V)に保持される。
 図11は全フレームに亘ってピクセル(画素)に-電圧を保持させたときに、ピクセルで検出される信号波形例を示し、図12はこのときのピクセルの電圧状態を示している。
 図11(a)は正常ピクセルの場合のピクセル波形を示し、図11(a)はこのときのピクセルの電圧状態を示している。正常ピクセルでは、保持されている-電圧(-14V)が検出される。図11(b)~図11(e)は欠陥ピクセルの場合のピクセル波形を示し、図12(b)~図12(e)はこのときのピクセルの電圧状態を示している。
 図12(b)はピクセルの画素電極とソースライン間がショートしたSD欠陥の場合のピクセル波形を示している。このSD欠陥では、ソースラインの電圧(+10V)によってピクセル波形電圧は(+10V)となる。図12(b)では、正常ピクセルは(-14V)を示し、SD欠陥ピクセルは(+10V)を示している。
 図11(c)はピクセルの画素電極とソースライン間の絶縁不良の欠陥がある場合のピクセル波形を示している。図12(c)では、正常ピクセルは(-14V)を示し、絶縁不良ピクセルは(-14V)から(+10V)の間の電圧を示している。この絶縁不良は、画素電極とソースライン間が抵抗を有して導通状態にあり、weakな欠陥とも称される。この絶縁不良欠陥では、ソースラインの電圧(+10V)の影響によって、ピクセル波形電圧は(-14V)から徐々に(+10V)に向かって電圧が上昇する。本発明では、全フレームに亘ってピクセル(画素)に-電圧を保持させることによって、1ゲート周期の長い時間に亘る電圧変化を検出するためピクセル波形電圧の変化が小さい場合であっても、検出することができる。
 この電圧変化は、1ゲート周期において後期のフレームで大きくなるため、1ゲート周期の全フレームの電圧変化を検出する代わりに、後期のフレームの電圧変化のみを検出することによって欠陥を検出することができる。
 図11(d)はピクセルの画素電極とCsライン間がショートしたDCs欠陥の場合のピクセル波形を示している。図12(d)では、正常ピクセルは(-14V)を示し、DCs欠陥ピクセルは(+5V)を示している。このDCs欠陥では、Csラインの電圧(+5V)によってピクセル波形電圧は(+5V)となる。なお、ここでは、Csラインの電圧を(+5V)とすることによって、正常ピクセルの電圧(-14V)との電圧差を拡大して、欠陥検出が容易となるようにしている。
 図11(e)はピクセルの画素電極とゲートライン間がショートしたGD欠陥の場合のピクセル波形を示している。図12(e)では、正常ピクセルは(-14V)を示し、GD欠陥ピクセルは(-17V)を示している。このGD欠陥では、ゲートラインの電圧(-17V)によってピクセル波形電圧は(-17V)となる。
  [第3の形態]
 はじめに、検査信号の信号パターンの第3の形態について説明する。第3の形態は、Cs on Gate型TFTアレイにおいて検査信号の信号パターンの1ゲート周期を+電圧保持時間のみとする形態である。図13は検査信号例を示し、図14はピクセル波形を示し、図15はピクセルの電圧状態を示している。
 図13は、本発明の1ゲート周期内における検査信号の信号パターンを示している。図13に示す検査信号の信号パターンでは、例えば、ゲートライン14(14o(図13(a)のGo)、14e(図13(b)のGe))のオンパルス信号を1ゲート周期に第1のフレームの初期段階で出力し、このときのソースライン15(15o(図13(c)のSo)、15e(図13(d)のSe)に印加される電圧を、各交差部分のピクセル(画素)12(12oo,12oe,12eo,12ee)に、各TFT11(11oo,11oe,11eo,11ee)を通して印加する。
 このときの、ゲートライン14の電圧とソースライン15の電圧の組み合わせ、および電圧の切り換えによって、各ピクセル(画素)12(12oo,12oe,12eo,12ee)に+電圧(ここでは10V)を印加する。
 1ゲート周期(図13の1~10で示すフレーム期間)は任意の時間幅とすることができるが、一例として、例えば16msecとすることができる。
 図13の例では、説明の便宜から1ゲート周期を1~10の10個のフレームを備え、この全フレームに亘ってピクセル(画素)に+電圧(+10V)を保持させる。
 第1のフレームの初期段階において、ゲートラインGoとゲートラインGeにオンパルス信号を発生させる(図13(a),(b))。このとき、ソースラインSoには、ゲートラインGo(Ge)のオンパルス信号と対応する期間において+電圧(+10V)を印加した後、-電圧(-14V)を印加する(図13(c))。また、ソースラインSeについても、ゲートラインGe(Go)のオンパルス信号と対応する期間において+電圧(+10V)を印加した後、-電圧(-14V)を印加する(図13(d))。
 上記のオンパルス信号と印加電圧により、全フレームに亘って、ピクセル(画素)12oo,12ee,12oe,12eoは+電圧(+10V)に保持される。
 図14は全フレームに亘ってピクセル(画素)に+電圧を保持させたときに、ピクセルで検出される信号波形例を示し、図15はこのときのピクセルの電圧状態を示している。
 図14(a)は正常ピクセルの場合のピクセル波形を示し、図15(a)はこのときのピクセルの電圧状態を示している。正常ピクセルでは、保持されている+電圧(10V)が検出される。図14(b)~図14(d)は欠陥ピクセルの場合のピクセル波形を示し、図15(b)~図15(d)はこのときのピクセルの電圧状態を示している。
 図14(b)はピクセルの画素電極とソースライン間がショートしたSD欠陥の場合のピクセル波形を示している。このSD欠陥では、ソースラインの電圧(-14V)によってピクセル波形電圧は(-14V)となる。図15(b)では、正常ピクセルは(+10V)を示し、SD欠陥ピクセルは(-14V)を示している。
 図14(c)はピクセルの画素電極とソースライン間の絶縁不良の欠陥がある場合のピクセル波形を示している。図15(c)では、正常ピクセルは(+10V)を示し、絶縁不良ピクセルは(+10V)から(-14V)の間の電圧を示している。この絶縁不良は、画素電極とソースライン間が抵抗を有して導通状態にあり、weakな欠陥とも称される。この絶縁不良欠陥では、ソースラインの電圧(-14V)の影響によって、ピクセル波形電圧は(+10V)から徐々に(-14V)に向かって電圧が降下する。本発明では、全フレームに亘ってピクセル(画素)に+電圧を保持させることによって、1ゲート周期の長い時間に亘る電圧変化を検出するためピクセル波形電圧の変化が小さい場合であっても、検出することができる。
 この電圧変化は、1ゲート周期において後期のフレームで大きくなるため、1ゲート周期の全フレームの電圧変化を検出する代わりに、後期のフレームの電圧変化のみを検出することによって欠陥を検出することができる。
 図14(d)はピクセルの画素電極とゲートライン間がショートしたGD欠陥の場合のピクセル波形を示している。図15(d)では、正常ピクセルは(+10V)を示し、GD欠陥ピクセルは(-17V)を示している。このGD欠陥では、ゲートラインの電圧(-17V)によってピクセル波形電圧は(-17V)となる。
 なお、Cs on Gate型TFTアレイにおいて検査信号の信号パターンの1ゲート周期を-電圧保持時間のみとする形態は、第2の形態とほぼ同様とすることができる。
 [第4の形態]
 次に、検査信号の信号パターンの第4の形態について説明する。第4の形態は、Cs on Com型TFTアレイにおいて検査信号の信号パターンをチェッカーパターンとし1ゲート周期の全フレームに亘って+電圧あるいは-電圧に保持する形態である。図16は検査信号例を示し、図17はピクセル波形を示し、図18はピクセルの電圧状態を示している。
 図16は、本発明の1ゲート周期内における検査信号の信号パターンを示している。図16に示す検査信号の信号パターンでは、例えば、ゲートライン14o(図16(a)のGo)のオンパルス信号を1ゲート周期に第1のフレームの初期段階で出力し、このときのソースライン15o(図16(c)のSo)に印加される+10Vをピクセル(画素)12ooにTFT11ooを通して印加し、ソースライン15e(図16(d)のSe)に印加される-14Vをピクセル(画素)12oeにTFT11oeを通して印加し、次に、ゲートライン14e(図16(b)のGe)のオンパルス信号を第1のフレーム中の次の段階で出力し、このときのソースライン15o(図16(c)のSo)に印加される-14Vをピクセル(画素)12eoにTFT11eoを通して印加し、ソースライン15e(図16(d)のSe)に印加される+10Vをピクセル(画素)12eeにTFT11eeを通して印加する。
 このときの、ゲートライン14の電圧とソースライン15の電圧の組み合わせ、および電圧の切り換えによって、各ピクセル(画素)12(12oo,12oe,12eo,12ee)に+電圧(ここでは10V)と-電圧(ここでは-14V)が二次元的に交互に格子状に印加される。
 1ゲート周期(図16の1~10で示すフレーム期間)は任意の時間幅とすることができるが、一例として、例えば16msecとすることができる。
 図16の例では、説明の便宜から1ゲート周期を1~10の10個のフレームを備え、この全フレームに亘ってピクセル(画素)を+電圧(+10V)あるいは-電圧(-14V)に保持する。
 第1のフレームのはじめの段階で、ゲートラインGoにオンパルス信号を発生させる(図16(a))。このとき、ソースラインSoには、ゲートラインGoのオンパルス信号と対応する期間において+電圧(+10V)を印加した後、-電圧(-14V)を印加し(図16(c))、ソースラインSeには、ゲートラインGoのオンパルス信号と対応する時点において電圧(-14V)を印加する、(図16(d))。
 また、第1のフレーム中の次に段階で、ゲートラインGeにオンパルス信号を発生させる(図16(b))。このとき、ソースラインSoは-14Vであり(図16(c))、ソースラインSeには、ゲートラインGeのオンパルス信号と対応する期間において+電圧(+10V)を印加した後、-電圧(-14V)を印加する(図16(d))。
 上記のオンパルス信号と印加電圧により、全フレームに亘って、ピクセル(画素)12oo,12ee,12oe,12eoは+電圧(+10V)又は-電圧(-14V)に保持される。
 図16は全フレームに亘ってピクセル(画素)に+電圧と-電圧を格子状に保持させたときに、ピクセルで検出される信号波形例を示し、図17はこのときのピクセルの電圧状態を示している。
 図17(a)は正常ピクセルの場合のピクセル波形を示し、図18(a)はこのときのピクセルの電圧状態を示している。正常ピクセルでは、保持されている+電圧(10V)と-電圧(-14V)が検出される。図17(b)、図17(c)は欠陥ピクセルの場合のピクセル波形を示し、図18(b)~図18(e)はこのときのピクセルの電圧状態を示している。
 図17(b)は隣接するピクセル間がショートした短絡欠陥の場合のピクセル波形を示している。この短絡欠陥では、隣接するピクセルは+電圧と-電圧を加算した電圧となる。例えば、+電圧(+10V)と-電圧(-14V)が加算してピクセル波形電圧は(-4V)となる。図18(b)、(d)では、正常ピクセルは(+10V)を示し、短絡欠陥ピクセルは(-4V)を示している。なお、図18(b)は横方向に隣接する短絡欠陥の場合を示し、図18(d)は縦方向に隣接する短絡欠陥の場合を示している。
 図17(c)は隣接するピクセル間の絶縁不良の欠陥がある場合のピクセル波形を示している。図18(c),(e)では、正常ピクセルは(+10V)を示し、絶縁不良ピクセルは(+10V)と(-14V)の間の電圧を示している。この絶縁不良は、隣接するピクセル間が抵抗を有して導通状態にある。この絶縁不良欠陥では、隣接するピクセルの電圧の影響によって、ピクセル波形電圧は+電圧(+10V)からの下降電圧、あるいは、-電圧(-14V)からの上昇電圧を示す。
 本発明では、全フレームに亘ってピクセル(画素)に+電圧を保持させることによって、1ゲート周期の長い時間に亘る電圧変化を検出するためピクセル波形電圧の変化が小さい場合であっても、検出することができる。
 この電圧変化は、1ゲート周期において後期のフレームで大きくなるため、1ゲート周期の全フレームの電圧変化を検出する代わりに、後期のフレームの電圧変化のみを検出することによって欠陥を検出することができる。
 なお、本発明は前記各実施の形態に限定されるものではない。本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。
 本発明は、液晶製造装置におけるTFTアレイ検査工程の他、有機ELや種々の半導体基板が備えるTFTアレイの欠陥検査に適用することができる。

Claims (6)

  1.  TFT基板のTFTアレイに対して電圧を印加し、電子線照射により得られる二次電子を検出してTFTアレイの欠陥を検査するTFT基板の検査方法であって、
     TFTアレイの全ピクセルを走査する時間幅を1フレームとし、
     前記フレームを複数含む1ゲート周期において、
     ピクセルを駆動するための駆動パターンとして、前記複数のフレームの内で時間的に第1番目のフレームの初期期間において正電圧又は負電圧の一方の電圧とした後、前記第1番目のフレームの残余の期間および第2番目以降にフレームにおいて前記電圧の正負を反転させる電圧パターンを備え、
     前記電圧パターンを用いて、TFTアレイのピクセルに前記第1番目のフレームの初期期間の正電圧又は負電圧の一方の電圧を印加した後、前記1ゲート周期の全時間幅に亘って前記ピクセルに印加した電圧を保持させることを特徴とする、TFT基板の検査方法。
  2.  前記第1番目のフレームの初期期間において、
     前記TFTアレイのTFTをオン状態とすることによって、TFTアレイのピクセルに前記第1番目のフレームの初期期間の正電圧又は負電圧の一方の電圧を印加し、
     前記TFTアレイのTFTをオフ状態とすることによって、前記1ゲート周期の全時間幅に亘って前記ピクセルに印加した電圧を保持させることを特徴とする、請求項1に記載のTFT基板の検査方法。
  3.  前記TFTアレイに対してゲートラインとソースラインを格子状に配列し、
     前記ゲートラインに印加するゲート信号によって、TFTアレイのTFTのオン状態とオフ状態を制御し、
     前記ソースラインに印加するソース信号によって、前記オン状態のTFTを介してピクセルに電圧パターンの電圧を印加し、印加した電圧を前記ピクセルに保持させることを特徴とする、請求項2に記載のTFT基板の検査方法。
  4.  前記ピクセルに対して付加容量を介して接続される共通ラインの電圧を負側にオフセットさせることによって、正常ピクセルと短絡欠陥ピクセルとの電圧差を増加させることを特徴とする、請求項1から3の何れか一つに記載のTFT基板の検査方法。
  5.  前記1ゲート周期が備える複数のフレームにおいて、時間的に後のフレームの走査で取得した検出信号に基づいて欠陥検出を行うことを特徴とする、請求項1から4の何れか一つに記載のTFT基板の検査方法。
  6.  TFT基板のTFTアレイに対して電圧を印加し、当該電圧印加による電圧状態を電子線照射により得られる二次電子によって検出し、TFTアレイの欠陥を検査するTFT基板の検査装置であって、
     TFT基板に電子線を照射する電子線源と、
     TFT基板から放出される二次電子を検出する検出器と、
     TFT基板のTFTアレイに検査信号を生成し印加する検査信号生成部と、
     前記検出器の検出信号に基づいてTFTアレイの欠陥を検出する欠陥検出部とを備え、
     前記検査信号生成部は、
     TFTアレイの全ピクセルを走査する時間幅を1フレームとし、
     前記フレームを複数含む1ゲート周期において、
     ピクセルを駆動するための駆動パターンとして、前記複数のフレームの内で時間的に第1番目のフレームの初期期間において正電圧又は負電圧の一方の電圧とした後、前記第1番目のフレームの残余の期間および第2番目以降にフレームにおいて前記電圧の正負を反転させる電圧パターンを備える検査信号を生成し、
     前記欠陥検出部は、
     前記電圧パターンを用いて、TFTアレイのピクセルに前記第1番目のフレームの初期期間の正電圧又は負電圧の一方の電圧を印加した後、前記1ゲート周期の全時間幅に亘って前記ピクセルに印加した電圧を保持させ、当該電圧保持によって取得されるピクセル電圧に基づいてピクセルの欠陥を検出することを特徴とする、TFT基板の検査装置。
PCT/JP2009/051855 2009-02-04 2009-02-04 Tftアレイ検査方法およびtftアレイ検査装置 WO2010089856A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/051855 WO2010089856A1 (ja) 2009-02-04 2009-02-04 Tftアレイ検査方法およびtftアレイ検査装置
JP2010549297A JP5224194B2 (ja) 2009-02-04 2009-02-04 Tftアレイ検査方法およびtftアレイ検査装置
CN200980156196.0A CN102308202B (zh) 2009-02-04 2009-02-04 Tft阵列检查方法以及tft阵列检查装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051855 WO2010089856A1 (ja) 2009-02-04 2009-02-04 Tftアレイ検査方法およびtftアレイ検査装置

Publications (1)

Publication Number Publication Date
WO2010089856A1 true WO2010089856A1 (ja) 2010-08-12

Family

ID=42541780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051855 WO2010089856A1 (ja) 2009-02-04 2009-02-04 Tftアレイ検査方法およびtftアレイ検査装置

Country Status (3)

Country Link
JP (1) JP5224194B2 (ja)
CN (1) CN102308202B (ja)
WO (1) WO2010089856A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095041A (ja) * 2009-10-28 2011-05-12 Shimadzu Corp Tftアレイの検査方法及びtftアレイ検査装置
JP2012194107A (ja) * 2011-03-17 2012-10-11 Shimadzu Corp Tftアレイの欠陥検出方法およびtftアレイの欠陥検出装置
CN104090437B (zh) * 2014-06-26 2016-08-17 京东方科技集团股份有限公司 一种阵列基板、显示装置、母板及其检测方法
WO2024083769A1 (en) * 2022-10-17 2024-04-25 Asml Netherlands B.V. Electrical connection testing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874256B (zh) * 2014-01-24 2015-12-09 南京第壹有机光电有限公司 一种用于oled照明器件的驱动电路
CN106601159A (zh) * 2016-10-26 2017-04-26 京东方科技集团股份有限公司 阵列基板检测装置及检测方法
CN109243343B (zh) * 2018-09-12 2024-04-05 江西兴泰科技股份有限公司 一种电子纸用tft玻璃基板检测方法及装置
CN110176200B (zh) * 2019-06-11 2023-03-21 苏州华兴源创科技股份有限公司 一种面板检测信号的产生方法和系统
JP7396560B2 (ja) * 2021-06-07 2023-12-12 シャープディスプレイテクノロジー株式会社 X線撮像装置及びx線撮像装置の制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758105B2 (ja) * 1992-04-28 1998-05-28 シャープ株式会社 アクティブマトリクス基板の検査方法及び検査装置
JP3425386B2 (ja) * 1998-02-04 2003-07-14 株式会社島津製作所 電子線によるフラットパネルディスプレイのピクセル検査方法及び検査装置
JP2004271516A (ja) * 2003-03-04 2004-09-30 Shimadzu Corp 基板検査装置及び基板検査方法
JP2007227807A (ja) * 2006-02-24 2007-09-06 Shimadzu Corp Tftアレイの検査方法及びtftアレイ検査装置
JP2007232979A (ja) * 2006-02-28 2007-09-13 Shimadzu Corp Tftアレイの検査方法及びtftアレイ検査装置
JP2008058767A (ja) * 2006-09-01 2008-03-13 Shimadzu Corp Tftアレイの検査方法及びtftアレイ検査装置
JP2008089476A (ja) * 2006-10-03 2008-04-17 Shimadzu Corp Tftアレイ検査における電子線走査方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491977B2 (ja) * 2001-02-27 2010-06-30 株式会社島津製作所 Ezフィルタ分光方法及びその装置
JPWO2006120861A1 (ja) * 2005-05-02 2008-12-18 株式会社島津製作所 Tftアレイ基板検査装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758105B2 (ja) * 1992-04-28 1998-05-28 シャープ株式会社 アクティブマトリクス基板の検査方法及び検査装置
JP3425386B2 (ja) * 1998-02-04 2003-07-14 株式会社島津製作所 電子線によるフラットパネルディスプレイのピクセル検査方法及び検査装置
JP2004271516A (ja) * 2003-03-04 2004-09-30 Shimadzu Corp 基板検査装置及び基板検査方法
JP2007227807A (ja) * 2006-02-24 2007-09-06 Shimadzu Corp Tftアレイの検査方法及びtftアレイ検査装置
JP2007232979A (ja) * 2006-02-28 2007-09-13 Shimadzu Corp Tftアレイの検査方法及びtftアレイ検査装置
JP2008058767A (ja) * 2006-09-01 2008-03-13 Shimadzu Corp Tftアレイの検査方法及びtftアレイ検査装置
JP2008089476A (ja) * 2006-10-03 2008-04-17 Shimadzu Corp Tftアレイ検査における電子線走査方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095041A (ja) * 2009-10-28 2011-05-12 Shimadzu Corp Tftアレイの検査方法及びtftアレイ検査装置
JP2012194107A (ja) * 2011-03-17 2012-10-11 Shimadzu Corp Tftアレイの欠陥検出方法およびtftアレイの欠陥検出装置
CN104090437B (zh) * 2014-06-26 2016-08-17 京东方科技集团股份有限公司 一种阵列基板、显示装置、母板及其检测方法
WO2024083769A1 (en) * 2022-10-17 2024-04-25 Asml Netherlands B.V. Electrical connection testing

Also Published As

Publication number Publication date
CN102308202A (zh) 2012-01-04
CN102308202B (zh) 2014-07-09
JPWO2010089856A1 (ja) 2012-08-09
JP5224194B2 (ja) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5224194B2 (ja) Tftアレイ検査方法およびtftアレイ検査装置
JP5034382B2 (ja) Tftアレイの検査方法及びtftアレイ検査装置
JP4831525B2 (ja) Tftアレイの検査方法及びtftアレイ検査装置
JP5628410B2 (ja) 欠陥検査方法、欠陥検査装置、及び基板の製造方法
WO2011070663A1 (ja) Tft基板検査装置およびtft基板検査方法
JP5077538B2 (ja) Tftアレイ検査装置
JP5007925B2 (ja) Tftアレイ検査における電子線走査方法
JP5077544B2 (ja) Tftアレイの検査方法及びtftアレイ検査装置
JP4748392B2 (ja) Tftアレイ基板検査装置
JP4853705B2 (ja) Tftアレイの検査方法及びtftアレイ検査装置
JP5459469B2 (ja) Tftアレイの検査方法、およびtftアレイの検査装置
JP2012078127A (ja) Tftアレイ検査装置およびtftアレイ検査方法
JP5316977B2 (ja) Tftアレイ検査の電子線走査方法およびtftアレイ検査装置
JP5196157B2 (ja) Tftアレイの検査方法及びtftアレイ検査装置
JP5466393B2 (ja) Tftアレイの検査方法及びtftアレイの検査装置
JP5163948B2 (ja) 走査ビーム検査装置、および欠陥検出の信号処理方法
JP4788904B2 (ja) Tftアレイの欠陥検出方法及びtftアレイ欠陥検出装置
JP5423664B2 (ja) Tftアレイ検査装置
JP2007114124A (ja) アレイ基板の検査方法及び装置
JP5408540B2 (ja) Tftアレイの検査方法及びtftアレイ検査装置
JP5532442B2 (ja) Tftアレイの欠陥検出方法およびtftアレイの欠陥検出装置
JP2005149768A (ja) Tftアレイ検査方法及びtftアレイ検査装置
JPH01117261A (ja) 欠陥画素の検査方法
JP2015036630A (ja) 電気光学パネルの検査装置及び検査方法
JP2005203235A (ja) 有機elパネル検査方法及び有機elパネル検査装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156196.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549297

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839633

Country of ref document: EP

Kind code of ref document: A1