WO2010087249A1 - 基板切断方法および電子素子の製造方法 - Google Patents

基板切断方法および電子素子の製造方法 Download PDF

Info

Publication number
WO2010087249A1
WO2010087249A1 PCT/JP2010/050557 JP2010050557W WO2010087249A1 WO 2010087249 A1 WO2010087249 A1 WO 2010087249A1 JP 2010050557 W JP2010050557 W JP 2010050557W WO 2010087249 A1 WO2010087249 A1 WO 2010087249A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cutting
targets
blade
distance
Prior art date
Application number
PCT/JP2010/050557
Other languages
English (en)
French (fr)
Inventor
義治 三枝
菅野 進
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US13/146,374 priority Critical patent/US8470691B2/en
Priority to DE112010000771.3T priority patent/DE112010000771B4/de
Priority to CN201080003706.3A priority patent/CN102265386B/zh
Priority to KR1020117007572A priority patent/KR101240712B1/ko
Publication of WO2010087249A1 publication Critical patent/WO2010087249A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the present invention relates to a substrate cutting method for thinning (chiping) a substrate such as a semiconductor wafer on which a large number of electronic devices are formed, and a method for manufacturing an electronic device using the substrate cutting method.
  • the substrate surface is scratched with a diamond tool, and then mechanically cut by pressing a roller using the cleavage property of the substrate.
  • a braking method and a dicing method in which a substrate is cut by rotating a disk-shaped diamond saw are widely used. Also in the dicing method using a diamond saw, in addition to completely cutting the substrate, cutting is made partway through the substrate and then cutting into chips by braking.
  • a laser beam having a transparent wavelength is condensed by an objective lens optical system and irradiated so as to focus on the inside of the substrate, thereby forming a region having a lower intensity than before irradiation inside the substrate.
  • stealth dicing method has been developed. In this method, an end face with less cutting allowance and less chipping can be obtained.
  • the substrate is not cut and is in a connected state. For this reason, it is necessary to cut the substrate into chips by braking.
  • Patent Document 1 describes a method of cutting a substrate into chips and an apparatus therefor.
  • a groove or work-affected layer is formed in advance on the substrate to be cut by laser, scribe, dicer, or the like, and (2) the tip is on the opposite surface of the groove that is the fracture start point.
  • the substrate is cut by braking by applying an impact force and pushing the blade into the substrate.
  • An object of the present invention is to provide a substrate cutting method capable of determining the cutting state of a substrate and a method for manufacturing an electronic device using the substrate cutting method.
  • the substrate cutting method to which the present invention is applied includes a step of forming a cutting region on a substrate having a plurality of electronic elements formed on one surface and a position on the other surface of the substrate where the cutting region is formed.
  • the step in which the driving unit presses the blade to the corresponding position and the step of pressing the blade the step in which the imaging unit images at least one set of targets formed on one surface of the substrate, and the imaging result of the target
  • the extraction unit extracts a set of targets, and the measurement unit measures a change in the distance between the targets in the step of pressing the blade, and the change in the measured distance between the targets is determined in advance.
  • the set of targets is preferably a set of targets adjacent to each other across the cutting line.
  • the method further includes a step of repeating from the step of pressing the blade when the change amount is smaller than a predetermined set value.
  • a predetermined set value e.g., a predetermined set value.
  • each of the pair of targets is formed by sandwiching a blade pressed against the substrate.
  • the amount of change in the measured distance between the targets is measured by the imaging unit and the measurement unit repeatedly during the period from the reception of the blade pressing start signal from the driving unit to the reception of the blade pressing end signal. It can be characterized by the amount of change in the maximum distance between.
  • the cutting region is a region having a lower strength than that before groove processing or laser processing by groove processing or laser processing.
  • the substrate is preferably affixed to an adhesive sheet, which has the advantage of reducing chip scattering.
  • the method of manufacturing an electronic device to which the present invention is applied is a method of manufacturing an electronic device formed on a substrate, and is cut into a substrate having a plurality of electronic devices formed on one surface.
  • the step of the drive unit pressing the blade to the position corresponding to the position where the cutting region is formed on the other surface of the substrate, and the step of pressing the blade.
  • the determination unit determines the cutting state of the substrate based on the measured amount of change in the distance between the targets and a predetermined set value.
  • the set of targets is preferably a set of targets adjacent to each other across the cutting line.
  • the manufacturing method of an electronic device may be a manufacturing method of a light emitting device (LED).
  • the substrate cutting process can be automated. As a result, the yield of cutting products can be improved, and productivity can be increased and costs can be significantly reduced, compared with methods for determining the state of substrate cutting by conventional human work.
  • FIG. 1 is a diagram illustrating an example of a substrate 10 used in this embodiment.
  • FIG. 1 is a view of the substrate 10 as viewed from the surface, and also shows a metal ring 16 to which an adhesive sheet 15 to which the substrate 10 is attached is attached.
  • the substrate 10 is, for example, a single crystal sapphire substrate having an outer diameter of 4 inches (about 100 mm) and a thickness of 120 ⁇ m.
  • an n-type semiconductor layer made of a group III nitride semiconductor, a light emitting layer, and a p-type semiconductor layer are laminated on the substrate 10 in this order, and a plurality of light emitting diode (LED) elements 11 ( Hereinafter, it is referred to as an LED 11).
  • the substrate 10 is provided with electrodes 12 a and 12 b for supplying current to the respective LEDs 11.
  • Each of the electrodes 12a and 12b has a circular shape with a diameter of 100 ⁇ m, for example.
  • the substrate 10 and the n-type semiconductor layer for example, an intermediate layer or a base layer made of a group III nitride compound is formed, and the n-type semiconductor layer, the light emitting layer, and the p-type semiconductor layer are sequentially stacked.
  • a manufacturing method for example, according to the method described in Japanese Patent Application Laid-Open No. 2008-124060, a plurality of layers having an intermediate layer, an underlayer, an n-type semiconductor layer, a light emitting layer, a p-type semiconductor layer, an electrode, You may prepare the board
  • the outer diameter size (inch) of the substrate 10 and the thickness of the substrate material are arbitrarily selected.
  • the thickness of the substrate material is suitably adjusted in the range of about 50 ⁇ m to 300 ⁇ m by the polishing / grinding process.
  • the substrate material that can be used in the present invention is not particularly limited, and various materials can be selected and used.
  • sapphire, silicon carbide (silicon carbide: SiC), silicon, zinc oxide, magnesium oxide, manganese oxide. , Zirconium oxide, manganese zinc iron oxide, magnesium aluminum oxide, zirconium boride, gallium oxide, indium oxide, lithium gallium oxide, lithium aluminum oxide, neodymium gallium oxide, lanthanum strontium aluminum tantalum, strontium titanium oxide, titanium oxide, hafnium, Tungsten, molybdenum, gallium nitride and the like can be mentioned, among which sapphire and silicon carbide (silicon carbide: SiC) are preferable.
  • the LEDs 11 provided with the electrodes 12a and 12b are arranged on the substrate 10 at regular intervals.
  • a plurality of marks (targets) formed on the substrate 10 are imaged with a camera, and when cutting into chips 20, the distance between them is measured to determine the cutting state of the substrate 10.
  • the electrodes 12a and 12b formed on the substrate 10 are used as an example of the target.
  • the distance between the adjacent electrodes 12a and 12b of the two adjacent chips 20 is measured.
  • the distance dh between the electrode 12a and the electrode 12b adjacent to each other with the blade 57 (see FIG. 2 described later) interposed therebetween that is, adjacent to the cutting line H3 is measured.
  • the distance between the electrodes 12b of the two adjacent chips 20 is measured. For example, the distance dv between the two electrodes 12b adjacent to each other across the cutting line V4 is measured.
  • the substrate 10 is provided with a cutting region 21 having a low intensity formed by irradiating the condensed excimer-excited pulsed laser light along the cutting lines V1 to V7 and H1 to H5. Since the cutting area 21 has a lower strength than before irradiation, it becomes a starting point of destruction when the substrate 10 is cut into the chips 20. A method for forming the cut region 21 having a low intensity by irradiation with excimer-excited pulsed laser light will be described later.
  • FIG. 1 shows a state where the substrate 10 is viewed through the adhesive sheet 15. Since the adhesive sheet 15 is transparent, the target formed on the substrate 10 can be imaged with a camera.
  • the metal ring 16 has an inner diameter of 190 mm and is set to be larger than the diameter of the substrate 10 of 4 inches (about 100 mm).
  • the substrate 10 is affixed inside the metal ring 16 so as not to contact the metal ring 16.
  • the adhesive sheet 15 is pushed up by the cylinder inside the metal ring 16, and is extended. As a result, the gaps between the respective chips 20 are widened to facilitate the mounting work on the package.
  • FIG. 2 is a diagram illustrating an example of a substrate cutting apparatus 50 to which the present embodiment is applied.
  • the substrate cutting apparatus 50 includes a stage 52 that is provided on a base 51 to be installed on a table or the like and is movable on the base 51 in the front-rear direction (referred to as the y direction).
  • the stage 52 includes a ring table 54 formed of a ring-shaped frame that can rotate on the stage 52 (the rotation direction is referred to as a ⁇ -axis direction).
  • the substrate cutting device 50 includes a cradle 53 that is provided on the base 51 and holds the substrate 10 attached to the adhesive sheet 15.
  • the substrate cutting apparatus 50 includes a gate-shaped support body 55 provided on the base body 51.
  • the support body 55 includes a blade holder 56.
  • the blade holder 56 holds the blade 57 at one end.
  • the blade holder 56 is set so as to be movable in the vertical direction (referred to as the z-axis direction) with respect to the base body 51.
  • the blade 57 cuts the substrate 10 by being pushed into the substrate 10.
  • the blade 57 is, for example, a knife having a tip of 60 °, and is made of, for example, high-hardness super steel or zirconia.
  • the width of the blade 57 is set larger than the diameter of the substrate 10.
  • the width of the blade 57 is 110 mm.
  • the cradle 53 is composed of two cradles 53a and 53b arranged to face each other. The respective surfaces of the cradles 53 a and 53 b are made of, for example, super steel so as not to be deformed when the blade 57 is pushed into the substrate 10.
  • the blade 57 When the blade 57 is moved in the direction of the cradle 53 ( ⁇ z-axis direction), the blade 57 is set so as to enter the gap between the cradles 53a and 53b. Further, the surface of the cradle 53 and the surface of the ring table 54 are set so as to be substantially in one plane.
  • the substrate cutting device 50 includes an imaging unit 61 formed of, for example, a CCD camera below the cradle 53.
  • the imaging unit 61 is set so that the substrate 10 on the cradle 53 can be imaged through a gap between the two cradles 53a and 53b.
  • the substrate cutting device 50 includes a display unit 62 that displays image data captured by the imaging unit 61.
  • the substrate cutting device 50 includes a stepping motor for moving the blade holder 56 in the z-axis direction, a motor for moving the stage 52 in the y-axis direction, and a ring table 54 in the ⁇ -axis direction.
  • a driving unit 63 including a motor to be operated and an electronic circuit for controlling these motors.
  • the substrate cutting device 50 extracts a pair of adjacent targets across the cutting line from the image data captured by the imaging unit 61, measures the distance between the targets, and determines the amount of change in the distance between the targets.
  • the control part 64 which determines a cutting condition is provided.
  • FIG. 3 is a block diagram centering on the control unit 64 of the substrate cutting apparatus 50 to which the present embodiment is applied.
  • the control unit 64 includes an extraction unit 66 that extracts a target that matches a pre-registered target shape from the image data captured by the imaging unit 61, a measurement unit 67 that measures a distance between a pair of targets, A determination unit 68 that determines the cutting state from the amount of change with respect to the set value of distance is provided.
  • Image data captured by the imaging unit 61, targets extracted by the extraction unit 66, distances between targets measured by the measurement unit 67, changes to the set values of the distances between targets used by the determination unit 68 to determine the cutting state, etc. Is displayed on the display unit 62.
  • the drive unit 63 is controlled based on the determination result of the determination unit 68. As will be described later, the imaging unit 61, the drive unit 63, and the control unit 64 operate in cooperation.
  • FIGS. 4A to 4D are diagrams for explaining an outline of a substrate cutting method and an electronic device manufacturing method using the substrate cutting method according to the present embodiment.
  • the substrate 10 shown in FIGS. 4A to 4D is a cross-sectional view taken along the line AA ′ of the substrate 10 shown in FIG. In this section, four chips 20 are visible.
  • the chip 20 is formed with an LED 11 and electrodes 12a and 12b as examples of electronic elements.
  • the LED 11 and the electrodes 12a and 12b are formed by a well-known method, the description of the details of the method for forming the LED 11 and the electrodes 12a and 12b is omitted.
  • a cutting region 21 having a low strength is formed in the substrate 10 as shown in FIG.
  • the case where the cutting region 21 is formed along the cutting line H2 will be described.
  • Excimer-excited pulsed laser light 41 condensed by the objective lens 42 is irradiated to the inside of the substrate 10 corresponding to the cutting line H2.
  • the excimer-excited pulse laser beam 41 is scanned while being irradiated on the substrate 10 along the cutting line H2.
  • the material of the substrate 10 is heated and volatilized, so that a cutting region 21 having a low strength that becomes a starting point of destruction at the time of cutting is formed inside the substrate 10 along the cutting line H2.
  • the process of forming the cutting region 21 having a low strength which is the starting point of breakage at the time of cutting, is referred to as the process of forming the cutting region.
  • the excimer-excited pulse laser beam 41 has a wavelength of 355 nm and a pulse period of 10 kHz to 50 kHz.
  • the scanning speed is 50 mm / sec to 300 mm / sec.
  • the excimer excitation pulsed laser beam 41 is scanned with respect to the cutting lines H1, H3 to H5, thereby forming a cutting region 21 having a low intensity inside the substrate 10 corresponding to the cutting lines H1 to H5. Further, similarly, a cutting region 21 having a low strength is formed inside the substrate 10 corresponding to the cutting lines V1 to V7.
  • the surface 10 a on which the LEDs 11 and the like of the substrate 10 are formed is attached to the adhesive surface 15 a of the adhesive sheet 15 attached to the metal ring 16. Since the inner diameter of the metal ring 16 is larger than the outer diameter of the substrate 10, the metal ring 16 is attached so that the substrate 10 is disposed inside the metal ring 16. Here, since the metal ring 16 is also attached to the adhesive surface 15 a of the adhesive sheet 15, the substrate 10 and the metal ring 16 are arranged on the same side with respect to the adhesive sheet 15.
  • the substrate 10 attached to the adhesive sheet 15 and the metal ring 16 holding them are placed on the ring table 54 of the substrate cutting apparatus 50 shown in FIG. To do.
  • the cradles 53a and 53b, the ring table 54, and the blade 57 shown in FIG. 4C show a cross section cut along a plane including the BB ′ line and the z axis in FIG. Therefore, in FIG.4 (c), the acute-angled blade edge
  • the substrate 10 is installed on the cradles 53a and 53b.
  • FIG. 4C as an example, the case where the cutting at the cutting lines H1 and H2 is completed and the cutting is performed at the cutting line H3 is shown.
  • adjustment is made so that the cutting line H3 of the substrate 10 and the position of the blade edge of the blade 57 coincide.
  • the adjustment of the cutting line of the substrate 10 and the position of the blade edge of the blade 57 is performed as follows. Before the substrate 10 is placed on the cradle 53, the mark on the imaging unit 61 is adjusted so that the reference mark provided on the imaging unit 61 matches the position of the blade 57. Thereafter, the substrate 10 is placed on the cradle 53, and the mark and the cutting line H3 of the substrate 10 are matched.
  • the drive unit 63 adjusts the rotation of the substrate 10 in the ⁇ -axis direction using the rotation mechanism of the ring table 54 based on the image data of the substrate 10 from the imaging unit 61, and further uses the moving mechanism of the stage 52. The position of the substrate 10 in the y-axis direction is adjusted.
  • the drive unit 63 moves the blade holder 56 in the ⁇ z-axis direction (toward the substrate 10). Then, the blade 57 attached to the blade holder 56 is moved from the state indicated by the solid line to the state indicated by the wavy line, and is brought into contact (contact) with the back surface 10 b of the substrate 10.
  • the blade 57 is pushed into the substrate 10 by a preset pushing amount b.
  • the pushing amount b is 100 ⁇ m.
  • the pushing amount b means that the position of the substrate 10 in contact with the blade 57 (the position of the substrate 10 indicated by a broken line) is 0, and the blade 57 is moved in the ⁇ z-axis direction. This is the distance that you let go.
  • substrate 10 is cut
  • the blade 57 immediately returns to the original position when the pushing is completed.
  • the process in which the drive unit 63 brings the blade 57 into contact with the cutting line of the substrate 10 and further pushes the blade 57 into the substrate 10 is referred to as a process of pressing the blade.
  • the substrate 10 is cut at the positions of the cutting lines H4 and H5. Further, similarly, by performing a step of pressing the blade at the positions of the cutting lines V1 to V7, the substrate 10 is cut at the positions of the cutting lines V1 to V7. In this way, an electronic element divided into LED chips is manufactured.
  • FIG. 5 is a flowchart of a first method for determining the cutting state of the substrate 10.
  • a first method for determining the cutting state will be described with reference to FIGS. 3, 4 (c), 4 (d), and 5.
  • the case where the substrate 10 is cut along the cutting line H3 will be described as an example. It is assumed that the position of the blade 57 is set so as to contact the cutting line H3.
  • the imaging unit 61 captures an image including the electrode 12a and the electrode 12b sandwiching the cutting line H3 (blade 57) (imaging step) (step 101 in FIG. 5).
  • the extraction unit 66 extracts the image data of the electrodes 12a and 12b sandwiching the cutting line H3 (blade 57) (step 102).
  • the image data of the electrode 12a and the electrode 12b is extracted from the luminance distribution of the image data from the imaging unit 61 based on the electrode shape registered as the target shape.
  • the measuring unit 67 measures (measures) the distance d1 between the electrode 12a and the electrode 12b from the image data of the selected pair of electrodes 12a and 12b (step 103). For example, processing is performed to emphasize the edges of the image data of the selected set of electrodes 12a and 12b, and the distance is measured from the number of pixels between the edges of the set of electrodes 12a and 12b.
  • the measuring unit 67 transmits a measurement end signal for the distance d ⁇ b> 1 to the driving unit 63.
  • the driving unit 63 presses the blade 57 (step 104). Then, the driving unit 63 transmits a blade pressing start signal to the imaging unit 61.
  • the blade 57 is pressed against the substrate 10, the substrate 10 is bent by the blade 57, and the substrate 10 starts to be broken starting from the cutting region 21 having a low strength.
  • the distance between the electrode 12a and the electrode 12b increases as the substrate 10 bends.
  • the blade 57 enters between the chips 20 of the cut substrate 10, and the distance between the electrode 12a and the electrode 12b further increases.
  • the imaging unit 61 receives a blade pressing start signal from the driving unit 63 and captures an image including the target pair of electrodes 12a and 12b (imaging step) (step 105).
  • the extraction unit 66 extracts the same set of image data of the electrode 12a and the electrode 12b extracted in step 102 (step 106).
  • the measurement part 67 measures the distance d2 between 1 set of the electrodes 12a which are targets, and the electrode 12b similarly to step 103 (step 107).
  • the distance d2 is stored in a storage area for storing the distance d2 provided in the measuring unit 67.
  • the measurement unit 67 calculates (measures) the amount of change (d2-d1) in the inter-target distance, which is a value related to the change in the distance between the targets, and transmits it to the determination unit 68.
  • the determination unit 68 determines the cutting state of the substrate 10 (determination step) based on the change amount (d2-d1) of the inter-target distance received from the measurement unit 67 (step 108).
  • the storage area of the determination unit 68 stores a set value d0 as a reference (determination reference) for determining a predetermined cutting state.
  • the set value d0 is set to 30 ⁇ m. If the amount of change (d2-d1) is 0 ⁇ m to 30 ⁇ m, the substrate is not cut, or is incompletely cut in the thickness direction of the substrate 10 (half) If it exceeds 30 ⁇ m, it is determined that the substrate 10 is cut.
  • the cutting state is automatically determined based on a value (set value is 30 ⁇ m in this case) set by the operator as a criterion in 0 to 30 ⁇ m.
  • the set value is preferably set to a value of 100 ⁇ m or less, more preferably a value of 50 ⁇ m or less, and even more desirably a value of 30 ⁇ m or less.
  • this set value may be different at the time of cutting corresponding to the width and length in accordance with the shape of the LED 11, and is preferably set to a numerical value in the range of 1 ⁇ m to 50 ⁇ m.
  • the determination unit 68 determines that the cutting is not performed or is incompletely cut (halved)
  • the determination unit 68 causes the driving unit 63 to place the blade 57 again on the substrate 10.
  • a signal instructing to be pressed may be transmitted (No in step 108).
  • the drive unit 63 repeats the step of pressing the blade 57 against the substrate 10 (Step 104).
  • the pushing amount b of the blade 57 may be set larger than the previous case. This is because it is considered that the substrate 10 cannot be cut with the same pushing amount b.
  • Steps 105 to 107 are performed to automatically determine the cutting state of the substrate 10.
  • the determination unit 68 determines that the substrate 10 has been cut, the series of operations ends. Then, the determination unit 68 transmits a cutting end signal to the driving unit 63. Then, the drive unit 63 moves the stage 52. In this way, for example, the above-described series of operations is repeated for each of the uncut cutting lines H4 and H5 on the substrate 10. Thereby, the cutting is completed for the cutting lines H1 to H5 of the substrate 10.
  • the stage 52 is automatically moved in the -y direction in units of pv. You can make it. Therefore, by using the method for determining the state of cutting the substrate, the cutting lines H1 to H5 are automatically cut. At this time, if the positions of the cutting lines H1 to H5 are image-recognized and the relationship between the positions of the cutting lines H1 to H5 and the position of the blade 57 is automatically finely adjusted, more accurate cutting lines H1 to H5 are obtained.
  • the substrate 10 can be cut at the position.
  • the above-described series of operations is repeated in the order of numbers with respect to the cutting lines V1 to V7 of the substrate 10, thereby cutting the substrate 10 into chips 20. be able to. In this way, the substrate cutting process can be automated.
  • the step 105 for imaging the target is provided after the step 104 for pressing the blade 57.
  • the blade 57 returns to the original position after the blade 57 is pushed down, it can be considered that the inter-target distance d2 of the cut substrate 10 is narrower than when it is most opened.
  • the measured change amount (d2-d1) of the distance between the targets becomes a value smaller than the set value d0, and the substrate cutting process (steps 104 to 108) is unnecessarily repeated.
  • the step 105 for imaging the target is performed simultaneously with the step 104 for pressing the blade 57.
  • the distance d2 between the targets of the cut substrate 10 becomes narrower than when it is opened most, and the amount of change in the distance between targets (d2-d1) May be smaller than the set value d0.
  • FIG. 6 is a flowchart showing a second method for more accurately determining the cutting state of the substrate 10.
  • the difference between the method of FIG. 5 and the method of FIG. 6 is that in FIG. 6, when the imaging unit 61 and the measuring unit 67 receive the blade pressing start signal from the driving unit 63, the blade pressing end signal from the driving unit 63. Until the distance d2 between the targets is repeatedly measured. Then, the maximum distance d3 of the inter-target distance d2 is obtained from the value of the inter-target distance d2 that has been repeatedly measured.
  • the measurement unit 67 sets a storage area for storing the maximum distance d3 included in the measurement unit 67 to 0 (step 201).
  • the imaging unit 61 captures an image including the electrode 12a and the electrode 12b sandwiching the cutting line H3 (blade 57) (imaging process) (step 202).
  • the extraction unit 66 extracts the image data of the electrodes 12a and 12b sandwiching the cutting line H3 (blade 57) (step 203). Then, the extraction unit 66 selects the image data of the pair of electrodes 12a and 12b formed with the cutting line H3 interposed therebetween as a target.
  • the measuring unit 67 measures the distance d1 between the electrode 12a and the electrode 12b from the image data of the selected pair of electrodes 12a and 12b, and stores the distance d1 provided in the measuring unit 67. Store in the area (step 204). Then, the measuring unit 67 transmits a measurement end signal for the distance d ⁇ b> 1 to the driving unit 63.
  • the driving unit 63 presses the blade 57 (step 205). Then, the driving unit 63 transmits a blade pressing start signal to the imaging unit 61. Upon receiving the blade pressing start signal from the drive unit 63, the imaging unit 61 captures images of the electrodes 12a and 12b (imaging step) (step 206). When receiving the image data from the imaging unit 61, the extraction unit 66 extracts the same set of image data of the electrode 12a and the electrode 12b extracted in step 203 (step 207).
  • the measurement part 67 measures the distance d2 between 1 set of the electrodes 12a and 12b which are targets similarly to step 204 (step 208).
  • the distance d2 is compared with d3 stored in the storage area for storing the maximum distance d3 of the measuring unit 67 (step 209). If d3 is smaller than d2, d2 is set as d3 and stored in the storage area for storing the maximum distance d3 of the measuring unit 67 (step 210). If d3 is equal to or larger than d2, the value of the storage area of the maximum distance d3 is left as it is.
  • Step 206 to Step 210 are repeated until the measurement unit 67 receives a blade pressing end signal from the drive unit 63 (Step 211). By doing so, the value of the storage area storing the maximum distance d3 becomes the maximum value of the inter-target distance d2.
  • the driving unit 63 transmits a blade pressing end signal to the measuring unit 67 (step 211). Then, the measurement unit 67 calculates (measures) the amount of change (d3-d1) in the inter-target distance to the determination unit 68 and transmits it to the determination unit 68.
  • the determination unit 68 compares the amount of change in the distance between targets (d3-d1) received from the measurement unit 67 with the set value d0 stored in advance in the storage area of the determination unit 68 (step 212). Then, as described in the first method for determining the cutting state, it is determined whether to press the blade 57 again against the substrate 10 or to end a series of operations based on the set value d0 for determining the cutting state. (Determination step). Thereafter, as described in the first method for determining the cutting state, when the determination unit 68 determines that the cutting state is not cut or is incomplete cutting state (half). The determination unit 68 may transmit a signal instructing the driving unit 63 to press the blade 57 against the substrate 10 again (No in step 212). Then, the drive unit 63 repeats the step of pressing the blade 57 against the substrate 10 (Step 205).
  • the determination unit 68 determines that the substrate 10 has been cut, the series of operations ends. Then, the determination unit 68 transmits a cutting end signal to the driving unit 63. Then, the drive unit 63 moves the stage 52. In this way, for example, the above-described series of operations is repeated for each of the uncut cutting lines H4 and H5 on the substrate 10. Thereby, the cutting is completed for the cutting lines H1 to H5 of the substrate 10.
  • the substrate 10 can be cut into chips 20 by repeating the series of operations described above in the order of numbers with respect to the cutting lines V1 to V7 of the substrate 10.
  • the cutting state of the substrate 10 can be determined more accurately. And the time required for substrate cutting can be shortened by preventing the substrate cutting process from being repeated unnecessarily.
  • the substrate cutting process can be automated.
  • single crystal sapphire is used as the substrate 10, but silicon (Si), SiC, GaAs semiconductors, glass, ceramics, and the like may be used. Even if the substrate 10 is opaque to visible light, the substrate 10 is placed upside down so that the target can be imaged. Further, the LED 11 is formed on the substrate 10 as an example of an electronic element. However, the present invention is not limited to the LED 11, and is not limited to the LED 11, but an integrated circuit such as an LSI or a MEMS (Micro Electro Mechanical Systems) incorporating a mechanical system together with an electric / electronic circuit. ) Etc.
  • the cutting region 21 having a low strength is formed inside the single crystal sapphire substrate 10 by the excimer-excited pulsed laser light 41 and is used as the starting point of the cutting.
  • a groove may be formed on the surface of the substrate 10 by the laser processing, scribing processing, or dicing processing to form the cutting region 21. It suffices if a region serving as a starting point of cutting is formed on the substrate 10.
  • the excimer-excited pulse laser beam 41 one having a wavelength of 266 nm can be used.
  • a CO 2 laser, a YAG (yttrium / aluminum / garnet) laser, or a YLF (lithium / yttrium / fluoride) laser may be used.
  • the electrodes 12a and 12b formed on the substrate surface are used as targets.
  • other patterns may be used, and a dedicated pattern suitable for measuring a distance by image processing is formed. May be.
  • a method using luminance distribution and edge enhancement is used for target extraction and distance measurement between a set of targets, a method using color information or other methods may be used.
  • the front surface 10a of the substrate 10 on which an electronic element such as the LED 11 is formed is attached to the adhesive sheet 15, but the back surface 10b of the substrate 10 may be attached to the adhesive sheet 15.
  • the camera of the imaging unit 61 images the target on the substrate 10 through the adhesive sheet 15 and the substrate 10, but the imaging is not hindered if it is transparent such as single crystal sapphire.
  • the adhesive sheet 15 is attached only to the surface 10a of the substrate 10 so that the chip 20 does not scatter.
  • the adhesive sheet 15 may be attached to the back surface 10b of the substrate 10 simultaneously with the front surface 10a of the substrate 10.
  • an intermediate layer made of AlN having a thickness of about 40 ⁇ m is formed on a single crystal sapphire substrate having an outer diameter of 4 inches (about 100 mm) with reference to the method described in JP-A-2008-124060, and then MOCVD.
  • a plurality of LEDs 11 are formed by forming a base layer made of GaN having a thickness of about 4 ⁇ m, an n-type semiconductor layer, a light emitting layer, a p-type semiconductor layer, an electrode 12a (diameter ⁇ 100 ⁇ m), an electrode 12b (diameter ⁇ 100 ⁇ m), etc.
  • a substrate 10 was prepared. And the back surface 10b of the board
  • Example 1 with respect to one substrate 10 on which a plurality of LEDs 11 are formed, the back surface 10b of the substrate 10 is located at a position corresponding to a street line (cutting line) in which ph and pv shown in FIG. 2, the blade 57 (driving unit 63) described in the substrate cutting apparatus 50 described in FIG. 2 is pressed, and at the time of the pressing, a pair of adjacent electrodes 12a and 12b (target) is imaged across the cutting line.
  • the image is picked up by the unit 61, and then the extraction unit 66 arbitrarily selects (extracts) one set of targets from the image pickup result, and the measuring unit 67 automatically measures the amount of change in the distance between the electrodes when the blade 57 is pressed.
  • Example 2 the same operation as described in Example 1 was performed except that ph shown in FIG. 1 was changed to 240 ⁇ m and pv was changed to 500 ⁇ m, and an operation for cutting the substrate 10 was performed.
  • Comparative Example 1 the same size as the interval between ph and pv performed in Example 1 is used, and the blade 57 (drive) is not employed without employing the automatic measurement and automatic determination process as described in Example 1. This was carried out by a human judgment operation such as observing the cutting situation on the street line when pressing the part 63) and judging cutting or judging cutting with reference to the cutting sound at the time of cutting. In Comparative Example 2, the same human judgment operation as in Comparative Example 1 was performed with the same size as the interval between ph and pv performed in Example 2. These results are summarized in Table 1. In addition, a cutting
  • Example 1 and Example 2 the cutting pass rate was remarkably improved from 99.6% to 99.8% as compared with the substrate cutting methods of Comparative Example 1 and Comparative Example 2. Further, in Comparative Example 1 and Comparative Example 2, as a judgment of the completion of cutting, for example, due to human judgment such as visual observation or listening to cutting sound, the cutting pass rate fluctuates every execution, and the workability is lowered or judged. Due to individual differences, workability was not stable, and the results were unreliable. In Examples 1 and 2, the workability and the reliability of the results were greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

 撮像部が、切断線を挟んで基板上に形成した1組のターゲットの画像を撮像する(S101)。この画像から、抽出部がターゲットを抽出する(S102)。次いで、計測部がターゲット間の距離d1を計測する(S103)。駆動部がブレードを基板に押圧(S104)すると、基板がブレードに押されてたわみ、基板の破壊が始まる。そこで、再び、撮像部がターゲットの画像を撮像し(S105)、この画像から抽出部がターゲットを抽出する(S106)。そして、計測部がターゲット間の距離d2を計測する(S107)。そして、判定部がターゲット間の距離の変化量(d2-d1)から、基板の切断状態を判定する(S108)。それにより、基板をブレーキングによりチップに切断する際、基板の切断状況を判断できる基板切断方法およびその基板切断方法を用いた電子素子の製造方法を提供する。

Description

基板切断方法および電子素子の製造方法
 本発明は、電子素子を多数形成した半導体ウエハ等の基板を薄片化(チップ化)するための基板切断方法およびその基板切断方法を用いた電子素子の製造方法に関する。
 電子素子を形成した半導体ウエハ等の基板を切断してチップ化する方法として、ダイヤモンドツールで基板表面に傷をつけたのち、基板の劈開性を利用して、ローラを押し付けて機械的に切断するブレーキング法や、円盤状のダイヤモンドソーを回転させて基板を切削してするダイシング法が広く用いられている。ダイヤモンドソーを用いるダイシング法でも、基板を完全に切削する場合の他、基板の途中まで切り込みを入れ、その後にブレーキングによりチップに切断することも行われている。
 また、近年、透過性の波長のレーザ光を対物レンズ光学系で集光して基板内部に焦点を結ぶように照射することにより、照射前に比べて強度が低い領域を基板内部に形成する、いわゆるステルスダイシング法が開発されている。この方法では、切り代が少なく、チッピングが少ない端面が得られる。しかし、基板内部に強度の低い領域が形成された状態では、基板は切断されておらず、つながった状態にある。このため、ブレーキングにより基板をチップに切断することが必要である。
 特許文献1には、基板をチップに切断する方法およびそのための装置が記載されている。ここでの方法は、(1)レーザやスクライブ、ダイサー等により、切断する基板に予め破壊の起点となる溝または加工変質層を形成し、(2)破壊起点となる溝の反対面に先端が鋭角のブレードが当接するように調整した後、(3)衝撃力を与えてブレードを基板に押し込むことにより、基板をブレーキングにより切断するものである。
特開2004-39931号公報
 一般に、基板をチップにブレーキングにより切断する際、切断されたチップの飛散を防ぐため、基板は粘着シートに貼り付けられている。
 このため、基板にブレードを押し込んでも、基板が完全に切断されたかどうかの判断がしづらいという問題があった。すなわち、基板が切断されたかどうかを、基板にブレードを押し込む際の基板の画像や、押し込んだときの基板から発した音などにより、作業者が判断していた。そして、基板が切断されていない、または、基板の厚さ方向の一部しか切断されていない(半割)と判断された場合には、再度基板にブレードを押し込む工程を繰り返していた。
 したがって、基板切断は、作業者の経験や勘に依存する面が多く、自動化できないという問題があった。
 本発明の目的は、基板の切断状況を判断できる基板切断方法およびその基板切断方法を用いた電子素子の製造方法を提供することにある。
 発明者らは、基板にブレードを押し込んだ際に、ブレードを押し込む位置を挟んで基板上に形成した1組の目印(ターゲット)間の距離が、基板のゆがみや切断に起因して変化することを利用して、その変化を計測することで、基板の切断状況を判断できることを見いだした。
 すなわち、本発明が適用される基板切断方法は、一方の面に複数の電子素子が形成された基板に切断領域を形成する工程と、基板の他方の面の、切断領域の形成された位置に対応する位置に駆動部がブレードを押圧する工程と、ブレードを押圧する工程に際して、基板の一方の面上に形成された少なくとも1組のターゲットを撮像部が撮像する工程と、ターゲットの撮像結果から、抽出部が1組のターゲットを抽出し、計測部がブレードを押圧する工程におけるターゲット間の距離の変化量を計測する工程と、計測されたターゲット間の距離の変化量と、予め定められた設定値とによって、判定部が基板の切断状況を判定する工程とを含む。さらに、1組のターゲットは、好ましくは切断線を挟んで隣り合う1組のターゲットであることを特徴とする。
 さらに、好ましくは、変化量が予め定められた設定値より小さい場合に、ブレードを押圧する工程から繰り返す工程をさらに含むことを特徴とする。この特徴により基板切断工程のより自動化が図れる。
 また好ましくは、1組のターゲットのそれぞれは、基板に押圧したブレードを挟んで形成されていることを特徴とすることができる。
 また、計測されたターゲット間の距離の変化量は、撮像部および計測部が、駆動部からのブレード押圧開始の信号の受信後からブレード押圧終了の信号の受信までの期間に、繰り返し計測したターゲット間の最大距離における変化量であることを特徴とすることができる。
 さらに、切断領域は、溝加工またはレーザ加工によって溝加工またはレーザ加工前よりも強度が低い領域であることが好ましい。
 またさらに、基板は、粘着シートに貼り付けられていることが好ましく、チップの飛散を軽減できる利点がある。
 他の観点から捉えると、本発明が適用される電子素子の製造方法は、基板上に形成された電子素子の製造方法であって、一方の面に複数の電子素子が形成された基板に切断領域を形成する工程と、基板の他方の面の、切断領域の形成された位置に対応する位置に駆動部がブレードを押圧する工程と、ブレードを押圧する工程に際して、基板の一方の面上に形成された少なくとも1組のターゲットを撮像部が撮像する工程と、ターゲットの撮像結果から、抽出部が1組のターゲットを抽出し、計測部がブレードを押圧する工程におけるターゲット間の距離の変化量を計測する工程と、計測されたターゲット間の距離の変化量と、予め定められた設定値とによって、判定部が基板の切断状況を判定する工程と、を含むことを特徴とする。さらに、1組のターゲットは、好ましくは切断線を挟んで隣り合う1組のターゲットであることを特徴とする。
 ここで、電子素子の製造方法は、発光素子(LED)の製造方法であってよい。
 本発明によって基板切断の状況を判定することにより、基板切断の工程を自動化できる効果がある。これにより、基板切断の状況をこれまでの人的な作業により判定する方法に比べ、切断製品の取得収率が向上し、生産性アップや大幅なコストダウンが実現できる。
本実施の形態に用いる基板の一例を説明する図である。 本実施の形態が適用される基板切断装置の一例を説明する図である。 基板切断装置の制御部を中心としたブロック図である。 本実施の形態における基板切断方法およびその基板切断方法を用いた電子素子の製造方法の概要を説明する図である。 本実施の形態における基板の切断状況を判断する第1の方法のフローチャートである。 本実施の形態における基板の切断状況を判断する第2の方法を示したフローチャートである。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、同一要素には同一符号を用いるものとし、重複する説明は省略する。なお、添付図面では、基板やチップなどを模式的に表しており、正確な縮尺を用いていない。
 図1は、本実施の形態に用いる基板10の一例を説明する図である。この図1は、基板10を表面から見た図であり、基板10を貼り付ける粘着シート15を取り付けた金属リング16を合わせて示している。
 基板10は、例えば、外径4インチ(約100mm)、厚さ120μmの単結晶サファイアの基板である。基板10には、電子素子の一例として、III族窒化物半導体からなるn型半導体層、発光層およびp型半導体層がこの順で積層され、複数の発光ダイオードLED(Light Emitting Diode)素子11(以下ではLED11と呼ぶ)が形成されている。また、基板10には、それぞれのLED11に電流を供給するための電極12aおよび12bが設けられている。電極12aおよび12bは、それぞれ、例えば直径100μmの円形形状をなしている。
 基板10とn型半導体層との間には、例えば、III族窒化物化合物からなる中間層や下地層を成膜して、n型半導体層、発光層、及びp型半導体層を順次積層する製造方法を採用するのが好ましく、例えば特開2008-124060号公報に記載する方法に準じて中間層、下地層、n型半導体層、発光層、p型半導体層および電極等を有する、複数のLED11を備えた基板10を準備してもよい。
 また、基板10の外径サイズ(インチ)や基板材料の厚さは任意に選ばれる。本発明においては、研磨・研削工程により基板材料の厚さを約50μm~300μmの範囲で好適に調整して使用される。
 本発明においては使用できる基板材料としては、特に限定されず、各種材料を選択して用いることができ、例えば、サファイア、炭化ケイ素(シリコンカーバイド:SiC)、シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、酸化ジルコニウム、酸化マンガン亜鉛鉄、酸化マグネシウムアルミニウム、ホウ化ジルコニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン、ハフニウム、タングステン、モリブデン、窒化ガリウム等が挙げられ、中でもサファイア、炭化ケイ素(シリコンカーバイド:SiC)が好ましい。
 電極12aおよび12bが設けられたLED11は、基板10上に一定の間隔で配置されている。チップ20は一例では矩形であり、図1では、幅ph、長さpvとしてそれぞれの間隔で表されている。しかしながら、チップ20のサイズは、任意に選ばれ、例えば、ph=240μm、pv=500μmとする長方形型や、ph=pv=350μmとする正方形型も用いられる。なお、チップ20は、基板10から切断され、それぞれがマウントされてパッケージ(ランプ)に使用される。図1における切断線V1~V7およびH1~H5は、基板10をチップ20に切断する際の切断箇所を示している。
 本実施の形態では、基板10上に形成された複数の目印(ターゲット)をカメラで撮像して、チップ20に切断する際にそれらの間の距離を計測して、基板10の切断状態を判断する。
 ここでは、ターゲットの一例として、基板10上に形成された電極12aおよび12bを使用する。具体的には、チップ20の短辺側を切断する場合(切断線H1~H5)は、隣接する2つのチップ20の隣り合う電極12aと電極12bとの距離を計測する。例えば、ブレード57(後述する図2参照)を挟んで隣り合う(すなわち切断線H3を挟んで隣り合う)、電極12aと電極12bの間の距離dhを計測する。また、チップ20の長辺側を切断する場合(切断線V1~V7)は、隣接する2つのチップ20のそれぞれの電極12bの間の距離を計測する。例えば、切断線V4を挟んで隣り合う、2つの電極12bの間の距離dvを計測する。
 さらに、基板10には、切断線V1~V7およびH1~H5に沿って、集光したエキシマ励起のパルスレーザ光を照射して形成された強度が低い切断領域21が設けられている。切断領域21は、照射前に比べ強度が低いので、基板10をチップ20に切断する際の破壊の起点になる。なお、エキシマ励起のパルスレーザ光の照射による強度が低い切断領域21の形成法については後述する。
 基板10は、金属リング16に取り付けられた粘着シート15に貼り付けられている(後述する図4の(b)参照)。粘着シート15は、切断されたチップ20を保持することで、切断後のチップ20の飛散を防止する。ここでは、基板10は、LED11などを形成した表面10a側が、粘着シート15に貼り付けられている。よって、図1では、粘着シート15を通して基板10を見た状態が示されている。なお、粘着シート15は透明であるので、基板10上に形成されたターゲットをカメラで撮像できる。
 また、一例であるが、金属リング16は内径190mmで、基板10の直径4インチ(約100mm)より大きく設定されている。そして、基板10は、金属リング16の内側に、金属リング16に接触しないように貼り付けられている。
 なお、粘着シート15は、基板10がチップ20に切断された後に、金属リング16の内側をシリンダにより押し上げられて、引き延ばされる。これにより、それぞれのチップ20間の隙間が広げられ、パッケージへのマウント作業を容易にする。
 図2は、本実施の形態が適用される基板切断装置50の一例を説明する図である。
 基板切断装置50は、台等の上に設置されるための基体51上に設けられ、基体51上を前後方向(y方向と呼ぶ。)に移動可能なステージ52を備える。このステージ52は、ステージ52上で回転可能(回転方向をθ軸方向と呼ぶ。)なリング状の枠からなるリングテーブル54を備える。このリングテーブル54上には、図1で示した基板10を貼り付けた粘着シート15が取り付けられた金属リング16が設置される。
 さらに、基板切断装置50は、基体51上に設けられ、粘着シート15に貼り付けた基板10を保持する受け台53を備える。
 また、基板切断装置50は、基体51上に設けられた門型の支持体55を備える。この支持体55は、ブレード保持体56を備える。そして、ブレード保持体56は一方の端にブレード57を保持する。なお、ブレード保持体56は、基体51に対して上下方向(z軸方向と呼ぶ)に移動可能に設定されている。
 ブレード57は、基板10に押し込まれることにより基板10を切断する。このため、ブレード57は例えば先端が60°のナイフ状で、例えば高硬度の超鋼またはジルコニアで製作されている。また、ブレード57の幅は基板10の直径より大きく設定されている。例えば、ブレード57の幅は110mmである。
 受け台53は、向かい合わせに配置された2つの受け台53aと53bとから構成されている。受け台53aおよび53bのそれぞれの表面は、基板10にブレード57が押し込まれた際に変形しないよう、例えば超鋼で製作されている。そして、ブレード57を受け台53の方向(-z軸方向)に移動させた際、ブレード57が受け台53aおよび53bの隙間に入るように設定されている。
 さらに、受け台53の表面とリングテーブル54の表面とは、ほぼ1つの平面内にあるように設定されている。
 基板切断装置50は、受け台53の下部に例えばCCDカメラなどから構成される撮像部61を備える。撮像部61は、2つの受け台53aおよび53bの隙間を通して、受け台53上の基板10が撮像できるように設定されている。そして、基板切断装置50は、撮像部61の撮像した画像データを表示する表示部62を備える。
 また、基板切断装置50は、支持体55内に、ブレード保持体56をz軸方向に移動させるためのステッピングモータ、ステージ52をy軸方向に移動させるモータ、リングテーブル54をθ軸方向に回転させるモータおよびこれらのモータを制御する電子回路などからなる駆動部63を備える。
 加えて、基板切断装置50は、撮像部61が撮像した画像データから、切断線を挟んで隣り合う1組のターゲットを抽出し、ターゲット間の距離を計測し、ターゲット間の距離の変化量から切断状況を判定する制御部64を備える。
 図3は、本実施の形態が適用される基板切断装置50の制御部64を中心としたブロック図である。制御部64は、撮像部61が撮像した画像データから、予め登録されたターゲットの形状と一致するターゲットを抽出する抽出部66、1組のターゲット間の距離を計測する計測部67、ターゲット間の距離の設定値に対する変化量から切断状況を判定する判定部68を備える。撮像部61が撮像した画像データ、抽出部66が抽出したターゲット、計測部67が計測したターゲット間の距離、判定部68が切断状況の判定に用いたターゲット間の距離の設定値に対する変化量などは、表示部62に表示される。さらに、判定部68の判定結果に基づいて駆動部63が制御される。後述するように、撮像部61、駆動部63および制御部64は、連携して動作する。
 図4(a)~(d)は、本実施の形態における基板切断方法およびその基板切断方法を用いた電子素子の製造方法の概要を説明する図である。
 なお、図4(a)~(d)に示す基板10は、図1に示した基板10のA-A’断面を示している。この断面では、4つのチップ20が見える。そして、チップ20には、それぞれ電子素子の一例としてのLED11、電極12aおよび12bが形成されている。
 ここでは、LED11、電極12aおよび12bは、よく知られた方法によって形成されるので、LED11、電極12aおよび12bの形成法の詳細については説明を省略する。
 基板10上にLED11などが形成された後、図4(a)に示すように、基板10内に強度が低い切断領域21を形成する。ここでは、例として、切断線H2に沿って切断領域21を形成する場合を説明する。
 対物レンズ42で集光したエキシマ励起のパルスレーザ光41を、切断線H2に対応した基板10の内部に照射する。このとき、エキシマ励起のパルスレーザ光41は、基板10上を切断線H2に沿って、照射されながら走査される。これにより、基板10の材料が加熱されて揮散することで、切断線H2に沿って、切断の際に破壊の起点となる強度が低い切断領域21が基板10の内部に形成される。ここでは、切断の際に破壊の起点となる強度が低い切断領域21を形成する工程を、切断領域を形成する工程と呼ぶ。
 なお、一例であるが、エキシマ励起のパルスレーザ光41は、波長355nmで、パルス周期10kHz~50kHzとした。また、走査速度は50mm/sec~300mm/secである。
 同様にして、エキシマ励起のパルスレーザ光41の走査を切断線H1、H3~H5について行うことにより、切断線H1~H5に対応した基板10の内部に強度が低い切断領域21を形成する。
 さらに、同様にして、切断線V1~V7に対応した基板10の内部に強度が低い切断領域21を形成する。
 次に、図4(b)に示すように、金属リング16に取り付けた粘着シート15の粘着面15aに、基板10のLED11などが形成された表面10aを貼り付ける。なお、金属リング16の内径は基板10の外径より大きいので、金属リング16の内側に基板10が配置されるように貼り付ける。
 ここで、金属リング16も粘着シート15の粘着面15aに貼り付けられているので、基板10と金属リング16とは粘着シート15に対して、同じ側に配置されている。
 さて次に、図4(c)に示すように、粘着シート15に貼り付けた基板10とそれらを保持する金属リング16とを、図2に示した基板切断装置50のリングテーブル54上に設置する。ここで、図4(c)に示す受け台53aおよび53b、リングテーブル54、ブレード57は、図2のB-B’線とz軸とを含む面で切断した断面を示している。したがって、図4(c)では、ブレード57の鋭角の刃先断面が見えている。
 前述したように、リングテーブル54の表面と受け台53aおよび53bの表面とは1つの平面になるように設定されているので、基板10は、受け台53aおよび53b上に設置されている。
 図4(c)では、一例として、切断線H1およびH2での切断が終了し、切断線H3で切断する場合を示している。ここでは、基板10の切断線H3とブレード57の刃先の位置とが一致するように調整されている。
 なお、基板10の切断線とブレード57の刃先の位置との調整は次のように行われる。基板10を受け台53に設置する前に、撮像部61に設けられた基準となるマークとブレード57の位置とが一致するように、撮像部61のマークを調整する。その後、基板10を受け台53に設置して、このマークと基板10の切断線H3とを一致させる。このとき、駆動部63は、撮像部61からの基板10の画像データにより、リングテーブル54の回転機構を用いて基板10のθ軸方向の回転を調整し、さらにステージ52の移動機構を用いて基板10のy軸方向の位置を調整する。
 この後、図4(c)に示すように、駆動部63は、ブレード保持体56を-z軸方向に(基板10に向けて)移動させる。そして、ブレード保持体56に取り付けられたブレード57を実線で示す状態から波線で示す状態へと移動させ、基板10の裏面10bに接触(当接)させる。
 次に、図4(d)に示すように、ブレード57を予め設定された押し込み量bだけ、基板10に押し込む。一例としての押し込み量bは100μmである。
 なお、押し込み量bとは、図4(d)に示すように、ブレード57が当接した基板10の位置(破線で示す基板10の位置)を0として、ブレード57を-z軸方向に移動させた距離をいう。
 すると、切断線H3に対応する基板10内には、切断の起点となる強度が低い切断領域21が形成されているので、基板10が切断線H3の位置で切断される。
 ブレード57は、押し込みが終了すると、直ちに元の位置に戻る。
 ここでは、駆動部63がブレード57を基板10の切断線に当接させ、さらにブレード57を基板10に押し込む工程を、ブレードを押圧する工程と呼ぶ。
 同様にして、切断線H4およびH5の位置において、ブレードを押圧する工程を行うことで、基板10が切断線H4およびH5の位置で切断される。
 さらに、同様にして、切断線V1~V7の位置において、ブレードを押圧する工程を行うことで、基板10が切断線V1~V7の位置で切断される。
 このようにして、LEDチップに分割された電子素子が製造される。
 次に、本実施の形態における基板切断方法での基板10の切断状況を判断する方法を説明する。
 図5は、基板10の切断状況を判断する第1の方法のフローチャートである。図3、図4(c)、(d)、図5を参照しながら、切断状況を判断する第1の方法を説明する。ここでも、切断線H3で基板10を切断する場合を例として説明する。そして、ブレード57の位置は、切断線H3に当接できるように設定されているとする。
 まず、撮像部61が切断線H3(ブレード57)を挟んだ電極12aおよび電極12bを含む画像を撮像する(撮像する工程)(図5のステップ101)。抽出部66は、撮像部61が撮像した画像データを受信すると、切断線H3(ブレード57)を挟んだ電極12aおよび電極12bの画像データを抽出する(ステップ102)。例えば、撮像部61からの画像データの輝度分布から、ターゲットの形状として登録された電極の形状に基づいて、電極12aおよび電極12bの画像データを取り出す。その電極12aおよび電極12bの画像データから、ブレード57を挟んで形成されている、すなわち切断線H3を挟んで形成されている1組の電極12aおよび電極12bの画像データをターゲットとして選択する。
 次に、計測部67が、選択された1組の電極12aと電極12bとの画像データから、電極12aと電極12bとの間の距離d1を計測する(計測する工程)(ステップ103)。例えば、選択された1組の電極12aおよび電極12bの画像データのエッジを強調するように処理し、1組の電極12aと電極12bとのエッジ間の画素数から距離を計測する。そして、その距離d1の値を計測部67が備える距離d1を格納する記憶領域に記憶する。そして、計測部67は、駆動部63に、距離d1の計測終了の信号を送信する。
 次に、図4(d)に示すように、駆動部63は、計測部67からの距離d1の計測終了の信号を受信すると、ブレード57を押圧する(ステップ104)。そして、駆動部63は、撮像部61に、ブレード押圧開始の信号を送信する。
 基板10にブレード57が押圧されると、基板10がブレード57に押されてたわみ、強度が低い切断領域21を起点として、基板10の破壊が始まる。このとき、電極12aと電極12bと間の距離は、基板10がたわむことで広がる。さらに、基板10が切断されると、ブレード57が切断された基板10のチップ20の間に入り込み、電極12aと電極12bと間の距離がさらに広がる。
 このとき、撮像部61は、駆動部63からのブレード押圧開始の信号を受けて、ターゲットである1組の電極12aおよび電極12bを含む画像を撮像する(撮像する工程)(ステップ105)。抽出部66は、撮像部61からの画像データを受信すると、ステップ102で抽出されたものと同じ1組の電極12aおよび電極12bの画像データを抽出する(ステップ106)。
 そして、計測部67が、ステップ103と同様に、ターゲットである1組の電極12aと電極12bとの間の距離d2を計測する(ステップ107)。その距離d2を計測部67が備える距離d2を格納する記憶領域に記憶する。そして、計測部67が、ターゲット間の距離の変化に関わる値である、ターゲット間距離の変化量(d2-d1)を算出(計測する工程)し、判定部68に送信する。
 すると、判定部68が、計測部67から受信したターゲット間距離の変化量(d2-d1)に基づいて、基板10の切断状態を判定する(判定する工程)(ステップ108)。判定部68の記憶領域には予め定められた切断状況を判断する基準(判断基準)として設定値d0が記憶されている。例えば、設定値d0を30μmとする。そして、変化量(d2-d1)の値が、0μm~30μmであれば、切断がされていない状態、または、基板10の厚さ方向に途中まで切断された不完全な切断状態(半割)であると判断し、30μmを超えれば、基板10が切断されていると判断する。つまり、0~30μmの中で作業者が判断基準として設定する値(設定値はこの場合30μm)に基づいて自動的に切断状況を判定する。本発明においては、この設定値としては好ましくは100μm以下の数値、さらに好ましくは50μm以下の数値、さらに望ましくは30μm以下の数値が任意に設定される。また、この設定値はLED11の形状に合わせて幅や長さに対応する切断時において相違させてもよく、好ましくは1μm~50μmの範囲の数値に設定される。
 そして、判定部68が、切断がされていない状態、または、不完全な切断状態(半割)であると判定する場合には、判定部68は、駆動部63に、再度ブレード57を基板10に押圧することを指示する信号を送信してもよい(ステップ108でNo)。すると、駆動部63は、ブレード57を基板10に押圧する工程(ステップ104)を繰り返す。
 なお、再びブレード57を基板10に押圧するときには、ブレード57の押し込み量bを、その前の場合より大きく設定してもよい。同じ押し込み量bでは、基板10が切断できないことが考えられるためである。なお、こののち、ステップ105~ステップ107を行い、基板10の切断の状態を自動的に判定する。
 判定部68が、基板10が切断されていると判定する場合には、一連の操作が終了する。そして、判定部68は、駆動部63に、切断終了の信号を送信する。すると、駆動部63は、ステージ52を移動させる。
 このようにして、例えば、基板10上の未切断の切断線H4およびH5のそれぞれについて上記の一連の操作を繰り返す。これにより、基板10の切断線H1~H5について切断が終了する。
 なお、切断線H1~H5の間隔(ピッチ)であるチップ20の長辺の長さpvを基板切断装置50に設定すれば、ステージ52を、pvを単位として、自動的に-y方向に移動させるようにできる。したがって、上記基板切断の状態を判断する方法を用いることで、切断線H1~H5についての切断が自動的に行なわれる。このとき、切断線H1~H5の位置を画像認識し、切断線H1~H5の位置とブレード57の位置との関係を自動的に微調整するようにすれば、より正確な切断線H1~H5の位置で基板10を切断しうる。
 この後、基板10をリングテーブル54上で自動的に90°回転させた後、上記の一連の操作を、基板10の切断線V1~V7について番号順に繰り返せば、基板10をチップ20に切断することができる。
 このようにすることにより、基板切断の工程を自動化することができる。
 なお、図5のフローチャートに示した基板10の切断状況を判断する第1の方法においては、ターゲットを撮像するステップ105を、ブレード57を押圧するステップ104の後に設けている。しかし、ブレード57を押し下げた後、ブレード57は元の位置に戻るので、切断された基板10のターゲット間距離d2はもっとも開いたときに比べ狭くなっていることが考えられる。このため、計測されたターゲット間距離の変化量(d2-d1)が、設定値d0より小さな値になって、不必要に基板切断の工程(ステップ104~ステップ108)を繰り返すことが考えられる。
 これを防ぐために、ターゲットを撮像するステップ105を、ブレード57を押圧するステップ104と同時に行うことが考えられる。しかし、この場合においても、ターゲットを撮像するステップ105のタイミングによっては、切断された基板10のターゲット間距離d2はもっとも開いたときに比べ狭くなって、ターゲット間距離の変化量(d2-d1)が、設定値d0より小さな値になることが考えられる。
 図6は、より正確に基板10の切断状況を判断する第2の方法を示したフローチャートである。
 図5の方法と図6の方法との違いは、図6では、撮像部61および計測部67が駆動部63からのブレード押圧開始の信号を受信すると、駆動部63からのブレード押圧終了の信号を受信するまで、ターゲット間距離d2の計測を繰り返し行うことにある。そして、繰り返し計測を行ったターゲット間距離d2の値から、ターゲット間距離d2の最大距離d3を求めることにある。
 ここでも、切断線H3で基板10を切断する場合を例として説明する。そして、ブレード57の位置は、切断線H3に当接できるように設定されているとする。
 まず、計測部67は、計測部67に備える最大距離d3を格納する記憶領域を0に設定する(ステップ201)。
 次に、図5のステップ101と同様に、撮像部61が切断線H3(ブレード57)を挟んだ電極12aおよび電極12bを含む画像を撮像する(撮像する工程)(ステップ202)。抽出部66は、撮像部61が撮像した画像データを受信すると、切断線H3(ブレード57)を挟んだ電極12aおよび電極12bの画像データを抽出する(ステップ203)。そして、抽出部66は、切断線H3を挟んで形成されている1組の電極12aおよび電極12bの画像データをターゲットとして選択する。
 次に、計測部67が、選択された1組の電極12aと電極12bとの画像データから、電極12aと電極12bと間の距離d1を計測し、計測部67に備える距離d1を格納する記憶領域に記憶する(ステップ204)。そして、計測部67は、駆動部63に、距離d1の計測終了の信号を送信する。
 すると、駆動部63は、計測部67から距離d1の計測終了の信号を受信すると、ブレード57を押圧する(ステップ205)。そして、駆動部63は、撮像部61に、ブレード押圧開始の信号を送信する。
 撮像部61は、駆動部63からのブレード押圧開始の信号を受信すると、電極12aおよび電極12bの画像を撮像する(撮像する工程)(ステップ206)。抽出部66は、撮像部61からの画像データを受信すると、ステップ203で抽出されたものと同じ1組の電極12aおよび電極12bの画像データを抽出する(ステップ207)。
 そして、計測部67は、ステップ204と同様にして、ターゲットである1組の電極12aと電極12bとの間の距離d2を計測する(ステップ208)。その距離d2を計測部67の最大距離d3を格納する記憶領域に記憶されていたd3と比較する(ステップ209)。d3がd2より小さければ、d2をd3として、計測部67の最大距離d3を格納する記憶領域に記憶する(ステップ210)。d3がd2と同じまたは大きければ、最大距離d3の記憶領域の値をそのままとする。
 計測部67が駆動部63からのブレード押圧終了の信号を受信する(ステップ211)まで、ステップ206~ステップ210が繰り返される。このようにすることにより、最大距離d3を格納する記憶領域の値はターゲット間距離d2の最大値となる。
 駆動部63は、ブレードの押圧が終了すると、ブレード押圧終了の信号を計測部67に送信する(ステップ211)。
 すると、計測部67が、判定部68に、ターゲット間距離の変化量(d3-d1)を算出(計測する工程)し、判定部68に送信する。
 判定部68は、計測部67から受信したターゲット間距離の変化量(d3-d1)と、判定部68の記憶領域に予め格納されていた設定値d0とを比較する(ステップ212)。そして、切断状況を判断する第1の方法で説明したと同様に、切断状態を判断する設定値d0に基づいて、再びブレード57を基板10に押圧するか、一連の操作を終了するかが判定される(判定する工程)。
 この後は、切断状況を判断する第1の方法で説明したと同様に、判定部68が、切断がされていない状態、または、不完全な切断状態(半割)であると判定する場合には、判定部68は、駆動部63に、再度ブレード57を基板10に押圧することを指示する信号を送信してもよい(ステップ212でNo)。すると、駆動部63は、ブレード57を基板10に押圧する工程(ステップ205)を繰り返す。
 判定部68が、基板10が切断されていると判定する場合には、一連の操作が終了する。そして、判定部68は、駆動部63に、切断終了の信号を送信する。すると、駆動部63は、ステージ52を移動させる。
 このようにして、例えば、基板10上の未切断の切断線H4およびH5のそれぞれについて上記の一連の操作を繰り返す。これにより、基板10の切断線H1~H5について切断が終了する。そして、上記の一連の操作を、基板10の切断線V1~V7について番号順に繰り返せば、基板10をチップ20に切断することができる。
 この方法では、ターゲット間距離d2の最大値が得られるので、より正確に基板10の切断状態を判断できる。そして、基板切断の工程を不必要に繰り返すことを防ぐことで、基板切断の所要時間を短くできる。
 以上説明したように、本実施の形態によると、基板10の切断の状態が判断できるので、基板切断の工程を自動化することができる。
 なお、本実施の形態においては、基板10として単結晶サファイアを用いたが、シリコン(Si)、SiC、GaAs系の半導体やガラス、セラミクスなどであってもよい。基板10が可視光に対して不透明であっても、基板10を裏返して設置するので、ターゲットを撮像できる。
 また、基板10上には電子素子の一例としてLED11が形成されているとしたが、LED11に限らず、LSI等の集積回路や、機構系を電気・電子回路とともに組み込んだMEMS(Micro Electro Mechanical Systems)などであってよい。
 また、本実施の形態においては、エキシマ励起のパルスレーザ光41により、単結晶サファイアの基板10の内部に、強度が低い切断領域21を形成して切断の起点とした。しかし、レーザ加工、スクライブ加工、またはダイシング加工によって、基板10の表面に溝を形成して切断領域21としてもよい。基板10に切断の起点となる領域が形成されていればよい。
 なお、エキシマ励起のパルスレーザ光41として、波長266nmのものを用いることができる。また、COレーザやYAG(イットリウム・アルミニウム・ガーネット)レーザ、YLF(リチウム・イットリウム・フロライド)レーザを用いてもよい。
 本実施の形態では、ターゲットとして、基板表面に形成された電極12a、12bを用いたが、他のパタンを用いてもよく、画像処理によって距離を計測するのに適した専用のパタンを形成してもよい。
 さらに、ターゲットの抽出および1組のターゲット間の距離の計測に輝度分布やエッジ強調による方法を用いたが、色情報を用いる方法やその他の方法を用いてもよい。
 さらに、本実施の形態においては、LED11などの電子素子を形成した基板10の表面10aを粘着シート15に貼り付けたが、基板10の裏面10bを粘着シート15に貼り付けてもよい。このとき、撮像部61のカメラは、粘着シート15および基板10を通して、基板10上のターゲットを撮像することになるが、単結晶サファイアなど透明であれば、撮像が妨げられることはない。
 また、本実施の形態においては、チップ20が飛散しないように、粘着シート15を基板10の表面10aにのみ貼り付けた。しかし、硬い単結晶サファイアにブレード57が直接押し当てられることによるブレード57の損傷の防止、切断されたチップ20の飛散や移動の防止、あるいはブレード57を押し込んだときのそりの低減などのため、基板10の表面10aと同時に基板10の裏面10bにも粘着シート15を貼り付けてもよい。
 次に、本発明を、実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 先ず、外径4インチ(約100mm)の単結晶サファイアの基板上に、特開2008-124060号公報に記載する方法を参考に、約40μm厚さのAlNからなる中間層を形成し、次いでMOCVD法で約4μm厚さのGaNからなる下地層、n型半導体層、発光層、p型半導体層、電極12a(径φ100μm)および電極12b(径φ100μm)等を形成し、複数のLED11を備えた基板10を準備した。そして、このLED11を有する基板10の裏面10bを公知な方法で研削及び研磨により、約120μmの厚さまで薄板化した。
 実施例1では、複数のLED11が形成された1枚の基板10に関し、図1に記載のphとpvとをそれぞれ350μmとするストリートライン(切断線)に対応する位置において、基板10の裏面10bに図2で説明した基板切断装置50に記載のブレード57(駆動部63)を押圧し、その押圧の際には、切断線を挟んで隣り合う1組の電極12aおよび12b(ターゲット)を撮像部61により撮像し、次いでその撮像結果から抽出部66が1組のターゲットを任意に選択(抽出)し、そして計測部67によりブレード57を押圧する際の電極間の距離の変化量を自動計測し、判定部68が予め設定しておいた30μmになるまで自動的に判定しながら基板10を切断する操作を実施した。
 次に、実施例2では、図1に記載のphを240μmに、pvを500μmに変えた以外は実施例1に記載の内容と同様な操作を行なって基板10を切断する操作を実施した。
 比較例1では、実施例1で実施したphとpvの間隔と同一なサイズとし、実施例1に記載のような自動的な計測や自動的な判定工程を採用せずに、ブレード57(駆動部63)を押圧した際のストリートライン上の切断状況を観察して切断を判断、または切断時の切断音を参考にして切断を判断する等の人的な判断操作で実施した。
 比較例2では、実施例2で実施したphとpvの間隔と同一なサイズとして、比較例1と同様な人的な判断操作を実施した。これらの結果を表1にまとめる。なお、切断合格率とは、その後の検査において切断予定部分に対する切断された部分の比率である。
Figure JPOXMLDOC01-appb-T000001
 実施例1及び実施例2では、比較例1及び比較例2の基板切断方法と比べて切断合格率が99.6%~99.8%と格段と向上した。また、比較例1及び比較例2では切断完了の判断として、例えば目視や切断音を聞き取るなどの人的判断によるために切断合格率が実施毎に変動する欠点に加え、作業性の低下や判断に関する個人差もあって作業性が安定せず、結果の信頼性が悪かった。実施例1及び2では、作業性や結果の信頼性の点でも大幅にアップした。
10…基板、11…LED、12a、12b…電極、15…粘着シート、16…金属リング、20…チップ、21…切断領域、50…基板切断装置、51…基体、52…ステージ、53…受け台、54…リングテーブル、55…支持体、56…ブレード保持体、57…ブレード、61…撮像部、62…表示部、63…駆動部、64…制御部、66…抽出部、67…計測部、68…判定部

Claims (10)

  1.  一方の面に複数の電子素子が形成された基板に切断領域を形成する工程と、
     前記基板の他方の面の、前記切断領域の形成された位置に対応する位置に駆動部がブレードを押圧する工程と、
     前記ブレードを押圧する工程に際して、前記基板の一方の面上に形成された少なくとも1組のターゲットを撮像部が撮像する工程と、
     前記ターゲットの撮像結果から、抽出部が前記1組のターゲットを抽出し、計測部が前記ブレードを押圧する工程における当該ターゲット間の距離の変化量を計測する工程と、
     前記計測されたターゲット間の距離の変化量と、予め定められた設定値とによって、判定部が前記基板の切断状況を判定する工程と
    を含むことを特徴とする基板切断方法。
  2.  前記1組のターゲットが、切断線を挟んで隣り合う1組のターゲットであることを特徴とする請求項1に記載の基板切断方法。
  3.  前記変化量が予め定められた設定値より小さい場合に、前記ブレードを押圧する工程から繰り返す工程をさらに含むことを特徴とする請求項1に記載の基板切断方法。
  4.  前記1組のターゲットのそれぞれは、前記基板に押圧した前記ブレードを挟んで形成されていることを特徴とする請求項1に記載の基板切断方法。
  5.  前記計測されたターゲット間の距離の変化量は、前記撮像部および前記計測部が、前記駆動部からのブレード押圧開始の信号の受信後からブレード押圧終了の信号の受信までの期間に、繰り返し計測したターゲット間の最大距離における変化量であることを特徴とする請求項1に記載の基板切断方法。
  6.  前記切断領域は、溝加工またはレーザ加工によって当該溝加工または当該レーザ加工前よりも強度が低い領域であることを特徴とする請求項1に記載の基板切断方法。
  7.  前記基板は、粘着シートに貼り付けられていることを特徴とする請求項1に記載の基板切断方法。
  8.  基板上に形成された電子素子の製造方法であって、
     一方の面に複数の電子素子が形成された基板に切断領域を形成する工程と、
     前記基板の他方の面の、前記切断領域の形成された位置に対応する位置に駆動部がブレードを押圧する工程と、
     前記ブレードを押圧する工程に際して、前記基板の一方の面上に形成された少なくとも1組のターゲットを撮像部が撮像する工程と、
     前記ターゲットの撮像結果から、抽出部が前記1組のターゲットを抽出し、計測部が前記ブレードを押圧する工程における当該ターゲット間の距離の変化量を計測する工程と、
     前記計測されたターゲット間の距離の変化量と、予め定められた設定値とによって、判定部が前記基板の切断状況を判定する工程と
    を含むことを特徴とする電子素子の製造方法。
  9.  前記1組のターゲットが、切断線を挟んで隣り合う1組のターゲットであることを特徴とする請求項8に記載の電子素子の製造方法。
  10.  前記電子素子の製造方法が、発光素子(LED)の製造方法であることを特徴とする請求項8に記載の電子素子の製造方法。
PCT/JP2010/050557 2009-01-29 2010-01-19 基板切断方法および電子素子の製造方法 WO2010087249A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/146,374 US8470691B2 (en) 2009-01-29 2010-01-19 Method for cutting substrate and method for manufacturing electronic element
DE112010000771.3T DE112010000771B4 (de) 2009-01-29 2010-01-19 Verfahren zum Schneiden eines Substrats
CN201080003706.3A CN102265386B (zh) 2009-01-29 2010-01-19 基板切断方法及电子元件的制造方法
KR1020117007572A KR101240712B1 (ko) 2009-01-29 2010-01-19 기판 절단 방법 및 전자소자의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-017512 2009-01-29
JP2009017512A JP5121746B2 (ja) 2009-01-29 2009-01-29 基板切断方法および電子素子の製造方法

Publications (1)

Publication Number Publication Date
WO2010087249A1 true WO2010087249A1 (ja) 2010-08-05

Family

ID=42395510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050557 WO2010087249A1 (ja) 2009-01-29 2010-01-19 基板切断方法および電子素子の製造方法

Country Status (6)

Country Link
US (1) US8470691B2 (ja)
JP (1) JP5121746B2 (ja)
KR (1) KR101240712B1 (ja)
CN (1) CN102265386B (ja)
DE (1) DE112010000771B4 (ja)
WO (1) WO2010087249A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161657A1 (en) * 2011-12-27 2013-06-27 Advanced Optoelectronic Technology, Inc. Light emitting diode package and method for making same
US20130171755A1 (en) * 2011-12-30 2013-07-04 Samsung Electronics Co., Ltd. Method of cutting light-emitting device chip wafer by using laser scribing
JP2016043503A (ja) * 2014-08-20 2016-04-04 三星ダイヤモンド工業株式会社 脆性材料基板の分断方法、脆性材料基板分断用の基板保持部材、および、脆性材料基板の分断時に使用する粘着フィルム張設用の枠体

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189477A (ja) * 2010-03-16 2011-09-29 Disco Corp マイクロマシンデバイスの製造方法
KR101279348B1 (ko) * 2011-06-24 2013-07-04 주식회사 에스에프이 엘이디 패키지 트리밍 장치
KR101232832B1 (ko) * 2011-07-29 2013-02-13 조상용 패키지 설비의 브레이킹 장치
JP5862156B2 (ja) * 2011-09-26 2016-02-16 日産自動車株式会社 界磁極用磁石体の製造装置およびその製造方法
DE102012215220A1 (de) * 2012-08-28 2014-03-06 Osram Opto Semiconductors Gmbh Mehoden zur Farbortsteuerung von elektro-optischen Bauteilen mit Konversionselementen
US8809166B2 (en) * 2012-12-20 2014-08-19 Nxp B.V. High die strength semiconductor wafer processing method and system
US9165832B1 (en) * 2014-06-30 2015-10-20 Applied Materials, Inc. Method of die singulation using laser ablation and induction of internal defects with a laser
JP6428113B2 (ja) * 2014-09-30 2018-11-28 三星ダイヤモンド工業株式会社 パターニング基板のブレイク方法並びにブレイク装置
JP6265175B2 (ja) 2015-06-30 2018-01-24 日亜化学工業株式会社 半導体素子の製造方法
US11685133B2 (en) * 2017-02-20 2023-06-27 Etgar Marcus Digital systems and processes for cutting and creasing corrugated cardboards
JP6656597B2 (ja) * 2017-09-11 2020-03-04 日亜化学工業株式会社 発光素子の製造方法
US10516075B2 (en) * 2017-09-11 2019-12-24 Nichia Corporation Method of manufacturing a light emitting element
JP7028607B2 (ja) * 2017-11-06 2022-03-02 株式会社ディスコ 切削装置
JP2019177694A (ja) * 2019-04-10 2019-10-17 三星ダイヤモンド工業株式会社 ブレーク装置
JP7323323B2 (ja) * 2019-04-18 2023-08-08 株式会社ディスコ 分割装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280906A (ja) * 1985-06-07 1986-12-11 三菱電機株式会社 ウエハのブレ−ク装置
JP2006245263A (ja) * 2005-03-03 2006-09-14 Sony Corp 基板ブレイク装置および基板ブレイク方法ならびに半導体装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006070A1 (de) * 1990-02-27 1991-09-12 Braun Ag Verfahren und einrichtung zum zerteilen einer scheibe aus halbleitermaterial
JP3779237B2 (ja) 2002-07-04 2006-05-24 住友電気工業株式会社 基板切断方法及び基板切断装置
JP4238041B2 (ja) * 2003-02-06 2009-03-11 アドバンスト ダイシング テクノロジース リミテッド ダイシング装置、ダイシング方法及び半導体装置の製造方法
JP4694845B2 (ja) 2005-01-05 2011-06-08 株式会社ディスコ ウエーハの分割方法
JP4322881B2 (ja) * 2006-03-14 2009-09-02 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP2008069063A (ja) * 2006-09-15 2008-03-27 Alps Engineering Co Ltd ガラスパネル切断装置
JP2008124060A (ja) 2006-11-08 2008-05-29 Showa Denko Kk Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ
KR20100045135A (ko) * 2008-10-23 2010-05-03 세메스 주식회사 기판 절단 장치 및 이를 이용한 기판 절단 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280906A (ja) * 1985-06-07 1986-12-11 三菱電機株式会社 ウエハのブレ−ク装置
JP2006245263A (ja) * 2005-03-03 2006-09-14 Sony Corp 基板ブレイク装置および基板ブレイク方法ならびに半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161657A1 (en) * 2011-12-27 2013-06-27 Advanced Optoelectronic Technology, Inc. Light emitting diode package and method for making same
US20130171755A1 (en) * 2011-12-30 2013-07-04 Samsung Electronics Co., Ltd. Method of cutting light-emitting device chip wafer by using laser scribing
US9312431B2 (en) * 2011-12-30 2016-04-12 Samsung Electronics Co., Ltd. Method of cutting light-emitting device chip wafer by using laser scribing
JP2016043503A (ja) * 2014-08-20 2016-04-04 三星ダイヤモンド工業株式会社 脆性材料基板の分断方法、脆性材料基板分断用の基板保持部材、および、脆性材料基板の分断時に使用する粘着フィルム張設用の枠体

Also Published As

Publication number Publication date
JP2010177395A (ja) 2010-08-12
DE112010000771T5 (de) 2012-07-26
CN102265386A (zh) 2011-11-30
US8470691B2 (en) 2013-06-25
US20110287608A1 (en) 2011-11-24
KR101240712B1 (ko) 2013-03-11
JP5121746B2 (ja) 2013-01-16
DE112010000771B4 (de) 2015-06-18
KR20110063808A (ko) 2011-06-14
DE112010000771T8 (de) 2012-10-25
CN102265386B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5121746B2 (ja) 基板切断方法および電子素子の製造方法
JP5446325B2 (ja) レーザ加工方法および化合物半導体発光素子の製造方法
TWI550754B (zh) A laser processing apparatus and a substrate having a pattern are provided
JP4640173B2 (ja) ダイシング装置
JP5886603B2 (ja) 光デバイスウエーハの加工方法
US9831128B2 (en) Method of processing a substrate
JP2006229021A (ja) ウエーハの分割方法
JP2006202933A (ja) ウエーハの分割方法
TWI591702B (zh) A method of dividing a patterned substrate
JP2006108273A (ja) ウエーハの分割方法および分割装置
JP2012049164A (ja) 発光デバイスの製造方法
US10727127B2 (en) Method of processing a substrate
JP5623807B2 (ja) 光デバイスウエーハの分割方法
JP2006040988A (ja) ウエーハの分割方法および分割装置
TW201511874A (zh) 雷射加工裝置、及具有圖案之基板之加工條件設定方法
US8759195B2 (en) Optical device wafer processing method
US20180309018A1 (en) Method of processing wafer
JP5940783B2 (ja) 板状物の加工方法
US11072042B2 (en) Wafer and wafer producing method
JP2009277778A (ja) ウエーハの分割方法
JP2011222806A (ja) 光デバイスウエーハの加工方法
JP2007214417A (ja) ウエーハの分割方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003706.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117007572

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13146374

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010000771

Country of ref document: DE

Ref document number: 1120100007713

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735718

Country of ref document: EP

Kind code of ref document: A1