WO2010087207A1 - 低分子量多硫酸化ヒアルロン酸誘導体及びこれを含有する医薬 - Google Patents

低分子量多硫酸化ヒアルロン酸誘導体及びこれを含有する医薬 Download PDF

Info

Publication number
WO2010087207A1
WO2010087207A1 PCT/JP2010/000583 JP2010000583W WO2010087207A1 WO 2010087207 A1 WO2010087207 A1 WO 2010087207A1 JP 2010000583 W JP2010000583 W JP 2010000583W WO 2010087207 A1 WO2010087207 A1 WO 2010087207A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
production example
group
hyaluronic acid
nmr
Prior art date
Application number
PCT/JP2010/000583
Other languages
English (en)
French (fr)
Inventor
一晃 掛樋
洋明 朝井
直宏 林
聡 清水
文孝 後藤
康雄 古賀
崇浩 友安
孝雄 瀧
雄介 加藤
悟 仲里
準二 高場
敦 東
稚子 平野
和成 泉
稔留 樫本
陽子 坂本
隆史 林
勝 西田
Original Assignee
大塚化学株式会社
大塚製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES10735677.6T priority Critical patent/ES2610240T3/es
Priority to KR1020117017561A priority patent/KR101678429B1/ko
Priority to RU2011136250/04A priority patent/RU2519781C2/ru
Priority to US13/143,129 priority patent/US8993536B2/en
Priority to AU2010209200A priority patent/AU2010209200B2/en
Priority to CN201080005887.3A priority patent/CN102300870B/zh
Priority to NZ594854A priority patent/NZ594854A/xx
Priority to EP10735677.6A priority patent/EP2392579B1/en
Application filed by 大塚化学株式会社, 大塚製薬株式会社 filed Critical 大塚化学株式会社
Priority to JP2010539078A priority patent/JP4884559B2/ja
Priority to SG2011054913A priority patent/SG173470A1/en
Priority to MX2011008119A priority patent/MX2011008119A/es
Priority to CA2750188A priority patent/CA2750188C/en
Priority to BRPI1007325A priority patent/BRPI1007325A2/pt
Priority to UAA201110592A priority patent/UA105781C2/uk
Publication of WO2010087207A1 publication Critical patent/WO2010087207A1/ja
Priority to IL213323A priority patent/IL213323A/en
Priority to HK12100063.8A priority patent/HK1159642A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/728Hyaluronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/14Decongestants or antiallergics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates

Definitions

  • the present invention relates to a low molecular weight polysulfated hyaluronic acid derivative (HAPS) useful for the prevention and / or treatment of allergic diseases.
  • HAPS low molecular weight polysulfated hyaluronic acid derivative
  • Hyaluronic acid which is a linear polymer polysaccharide formed by alternately combining ⁇ -DN-acetylglucosamine and ⁇ -D-glucuronic acid, is relatively easily available among mucopolysaccharides. Since it exhibits physicochemical properties and physiological properties, itself or various derivatives thereof are used as pharmaceuticals and cosmetics.
  • polysulfated hyaluronic acid which is a derivative of hyaluronic acid, has kallikrein-kinin system inhibitory activity (Patent Document 1) and phospholipase A2 inhibitory activity (Patent Document 2), and can be used as a therapeutic agent for allergic diseases.
  • Patent Document 3 a strong anti-inflammatory action against selectin-mediated inflammation which is one of adhesion factors (Patent Document 4) and the like are known.
  • Non-patent Document 5 low molecular weight oligopolysulfated hyaluronic acid having a viscosity average molecular weight of 10,000 or less can be used as an active ingredient of cosmetics having excellent skin permeability (Patent Document 5), and polysulfuric acid having 4 to 20 sugars. It has been reported that hydrous hyaluronic acid oligosaccharide has anti-blood coagulation activity and anti-hyaluronidase activity and can be an anticancer agent (Non-patent Document 1).
  • the present invention relates to providing a low molecular weight hyaluronic acid derivative useful for the prevention and / or treatment of allergic diseases free from such problems.
  • low molecular weight polysulfated hyaluronic acid represented by the following general formulas (IA) and (IB) It has been found that the derivative has an antiallergic action and an anti-inflammatory action and does not have an ability to enhance vascular permeability and is useful as a pharmaceutical product.
  • Y represents the following formula (c), (d) or (e):
  • Each independently represents a hydrogen atom or a SO 3 H group (provided that 80 to 100% of the total number of R is SO 3 H groups), and R 1 represents —OH, —OSO 3 H or — NZ 1 Z 2 (wherein Z 1 and Z 2 are each independently a hydrogen atom, —SO 3 H, an optionally substituted lower alkyl group, an optionally substituted aryl group, or an optionally substituted group).
  • Z 1 and Z 2 are each independently a hydrogen atom, —SO 3 H, an optionally substituted lower alkyl group, an optionally substituted aryl group, or an optionally substituted group).
  • n a number from 0 to 15
  • W represents the following formula (f) or (g):
  • Each independently represents a hydrogen atom or a SO 3 H group (provided that 80 to 100% of the total number of R is SO 3 H groups), and R 1 represents —OH, —OSO 3 H or — NZ 1 Z 2 (wherein Z 1 and Z 2 are each independently a hydrogen atom, —SO 3 H, an optionally substituted lower alkyl group, an optionally substituted aryl group, or an optionally substituted group).
  • Z 1 and Z 2 are each independently a hydrogen atom, —SO 3 H, an optionally substituted lower alkyl group, an optionally substituted aryl group, or an optionally substituted group).
  • * denotes a binding site with an oxygen atom.
  • An allergic disease selected from hay fever, allergic rhinitis, allergic conjunctivitis, atopic dermatitis and asthma, comprising a low molecular weight polysulfated hyaluronic acid derivative represented by the formula (I) or a pharmaceutically acceptable salt thereof as an active ingredient
  • Preventive and / or therapeutic agent 2) The preventive and / or therapeutic agent according to 1) above, wherein Y is the formula (d) or (e) in the general formula (IA).
  • n a number from 0 to 15, and X represents the following formula (a) or (b):
  • Y ′ represents the following formula (d) or (e):
  • Each independently represents a hydrogen atom or a SO 3 H group (provided that 80 to 100% of the total number of R is SO 3 H groups), and R 1 represents —OH, —OSO 3 H or — NZ 1 Z 2 (wherein Z 1 and Z 2 are each independently a hydrogen atom, —SO 3 H, an optionally substituted lower alkyl group, an optionally substituted aryl group, or an optionally substituted group).
  • Z 1 and Z 2 are each independently a hydrogen atom, —SO 3 H, an optionally substituted lower alkyl group, an optionally substituted aryl group, or an optionally substituted group).
  • n a number from 0 to 15
  • W represents the following formula (f) or (g):
  • Each independently represents a hydrogen atom or a SO 3 H group (provided that 80 to 100% of the total number of R is SO 3 H groups), and R 1 represents —OH, —OSO 3 H or — NZ 1 Z 2 (wherein Z 1 and Z 2 are each independently a hydrogen atom, —SO 3 H, an optionally substituted lower alkyl group, an optionally substituted aryl group, or an optionally substituted group).
  • Z 1 and Z 2 are each independently a hydrogen atom, —SO 3 H, an optionally substituted lower alkyl group, an optionally substituted aryl group, or an optionally substituted group).
  • * denotes a binding site with an oxygen atom.
  • the low molecular weight polysulfated hyaluronic acid derivative of the present invention or a pharmaceutically acceptable salt thereof has excellent anti-allergic action and anti-inflammatory action and has no ability to enhance vascular permeability, and therefore has side effects. It can be used as a prophylactic and / or therapeutic agent for allergic diseases such as hay fever, allergic rhinitis, allergic conjunctivitis, atopic dermatitis, and asthma, which are small and excellent in safety.
  • the compound group represented by the general formula (IA) where Y is (d) or (e) and the general formula (IB) has the advantage of high stability in aqueous solution and easy formulation.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 1 FIG. 1 H-NMR chart of the compound obtained in Production Example 2.
  • FIG. 1 is a 1 H-NMR chart of a compound obtained in Production Example 8.
  • 1 H-NMR chart of the compound obtained in Production Example 11. 1 H-NMR chart of the compound obtained in Production Example 14.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 27 FIG. 1 H-NMR chart of the compound obtained in Production Example 28.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 29 FIG. 1 H-NMR chart of the compound obtained in Production Example 30.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 31 FIG. 1 H-NMR chart of the compound obtained in Production Example 32.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 34 FIG. 1 H-NMR chart of the compound obtained in Production Example 35.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 36 FIG. 1 H-NMR chart of the compound obtained in Production Example 37.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 30 FIG.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 38 The H. 1 H-NMR chart of the compound obtained in Production Example 39.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 40 FIG. 1 H-NMR chart of the compound obtained in Production Example 41.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 42 FIG. 1 H-NMR chart of the compound obtained in Production Example 43.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 45 FIG. 1 H-NMR chart of the compound obtained in Production Example 46.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 47 FIG. 1 H-NMR chart of the compound obtained in Production Example 48.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 49 The H-NMR chart of the compound obtained in Production Example 50.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 51 FIG. 1 H-NMR chart of the compound obtained in Production Example 52.
  • FIG. 1 H-NMR chart of the compound obtained in Production Example 53 FIG. 1 H-NMR chart of the compound obtained in Production Example 54.
  • FIG. 1 H-NMR chart of Compound 1 1 H-NMR chart of Compound 2 1 H-NMR chart of Compound 3
  • Compound 4 1 H-NMR chart of Compound 5
  • 1 H-NMR chart of Compound 6 1 H-NMR chart of Compound 7 1 H-NMR chart of Compound 8.
  • FIG. 1 H-NMR chart of Compound 26 1 H-NMR chart of Compound 27 1 H-NMR chart of Compound 28.
  • FIG. 1 H-NMR chart of Compound 29 1 H-NMR chart of Compound 30.
  • FIG. 1 H-NMR chart of Compound 31 1 H-NMR chart of Compound 32.
  • FIG. 1 H-NMR chart of Compound 33 1 H-NMR chart of Compound 34.
  • FIG. 1 H-NMR chart of Compound 35 1 H-NMR chart of Compound 36.
  • FIG. 1 H-NMR chart of Compound 37 1 H-NMR chart of Compound 38.
  • FIG. 1 H-NMR chart of Compound 40 1 H-NMR chart of Compound 41 1 H-NMR chart of Compound 42.
  • FIG. 1 H-NMR chart of Compound 43 1 H-NMR chart of Compound 44.
  • FIG. 1 H-NMR chart of Compound 46 1 H-NMR chart of Compound 47 1 H-NMR chart of Compound 48.
  • mold allergic reaction inhibitory effect. ###: p ⁇ 0.01, ##: p ⁇ 0.01, ⁇ : p ⁇ 0.05, *: p ⁇ 0.05, **: P ⁇ 0.01, N 8, mean +/- SE The graph which shows the delayed type allergic reaction inhibitory effect.
  • the low molecular weight polysulfated hyaluronic acid derivative of the present invention is obtained by excessively sulfating the total hydroxyl groups of the hyaluronic acid oligomer.
  • the degree of sulfation is determined by the total number of R in formulas (IA) and (IB) (
  • the ratio (or substitution degree) of the SO 3 H group to the whole oligomer) is 80 to 100%, preferably 90 to 100%.
  • SO 3 H groups may be unevenly in the oligomer, generally those present uniformly throughout the molecule, preferable from the viewpoint of preparation and use.
  • an optionally substituted lower alkyl group is linear or branched alkyl having 1 to 6 carbon atoms (hereinafter abbreviated as “C 1-6 ”), for example, methyl, ethyl, Examples include n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl and the like.
  • C 1-4 alkyl is preferable, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl is more preferable, and methyl, Ethyl.
  • aryl group examples include C 6-14 monocyclic to tricyclic aromatic hydrocarbon ring groups, such as phenyl, naphthyl, and anthracenyl, and preferably phenyl.
  • heteroaryl group examples include a saturated or unsaturated monocyclic or polycyclic heterocyclic group having at least one heteroatom selected from a nitrogen atom, a sulfur atom and an oxygen atom.
  • a 3-6 membered unsaturated heteromonocyclic group having 1 to 4 nitrogen atoms such as pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazolyl, tetrazolyl, tetrahydropyridyl, etc.
  • Examples of the group that can be substituted with the “lower alkyl group” include a halogen atom, a carboxy group, an aryl group, a lower alkoxyl group, an acyl group, and the like, and can be substituted with an “aryl group” and a “heteroaryl group”.
  • Examples of the group include a halogen atom, a carboxy group, a lower alkyl group, a lower alkoxyl group, and an acyl group.
  • halogen atom examples include fluorine, chlorine, bromine, iodine and the like.
  • Acyl groups include CHO, C 1-6 alkyl-carbonyl, C 1-6 alkoxy-carbonyl, arylcarbonyl, aryl-C 1-6 alkylene-carbonyl, heteroarylcarbonyl, heteroaryl-C 1-6 alkylene-carbonyl Groups and the like.
  • C 1-6 alkyl, C 1-6 alkoxy, aryl and heteroaryl include the same groups as described above.
  • C 1-6 alkylene includes linear or branched C 1-6 alkylene such as methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, propylene, methylmethylene, ethylethylene, 1, Examples include 2-dimethylethylene, 1,1,2,2-tetramethylethylene, and preferred are methylene, ethylene, and trimethylene.
  • Examples of the “optionally substituted lower alkyl group” represented by Z 1 and Z 2 include trifluoromethyl, benzyl, 2-, 3- or 4-methylbenzyl, 2-, 3- or 4-methoxybenzyl. , Methoxymethyl, methoxycarbonylmethyl group and the like are preferable, Examples of the “optionally substituted aryl group” include 2-, 3- or 4-methylphenyl, 2-, 3- or 4-methoxyphenyl, 2-, 3- or 4-fluorophenyl, 2-, 3 -Or 4-trifluoromethyl, 2-, 3- or 4-carboxyphenyl group is preferred, As the “optionally substituted aralkyl group”, benzyl, 2-, 3- or 4-methylbenzyl, 2-, 3- or 4-methoxybenzyl and the like are preferable, Examples of the “optionally substituted heteroaryl group” include 2-, 3- or 4-methylpyridyl, 2-, 3- or 4-methoxypyridyl, 2-, 3- or 4-fluoropyridyl, 2-
  • amino acid residue or peptide residue examples include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine Histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, ⁇ -alanine, sarcosine, phenylglycine, N-ethylglycine, Nn-propylglycine, N-isopropylglycine Amino acid residues such as Nn-butylglycine, N-tert-butylglycine, Nn-pentylglycine, Nn-hexylglycine; sarcosylglycine, glycylglycine, glycylglycine
  • n represents a number of 0 to 15, preferably 3 to 9, more preferably 3, 4 or 5. More preferably.
  • the compounds represented by the above general formulas (IA) and (IB) include various isomers such as stereoisomers, optical isomers and hydrates.
  • suitable salts of the low molecular weight polysulfated hyaluronic acid derivative of the present invention are pharmaceutically acceptable salts such as alkali metal salts (for example, sodium salts, potassium salts, etc.), alkaline earths, and the like.
  • Metal salts such as metal salts (eg, magnesium salts, calcium salts), ammonium salts, hydroxides, carbonates or hydrogen carbonates of alkali metals (sodium, potassium, etc.) and alkaline earth metals (magnesium, calcium, etc.)
  • salts with inorganic bases such as organic amines (for example, trimethylamine, triethylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, etc. Can be mentioned.
  • the molecular weight of the low molecular weight polysulfated hyaluronic acid derivative of the present invention or a pharmaceutically acceptable salt thereof varies depending on the kind of the salt, but the average molecular weight is preferably 1500 to 13500.
  • the compound represented by the general formula (IA) or (IB) of the present invention is prepared by converting a low molecular weight hyaluronic acid derivative represented by the general formula (IIA) or (IIB) into Can be manufactured.
  • the raw material compound and the target compound may be appropriate salts as described above.
  • each substituent represented by Z 3 and Z 4 corresponds to Z 1 and Z 2 , and the meaning of each substituent is as described above.
  • Y 1 is the following (c 1 ) or (d 1 ) or (e 1 )
  • W 1 is the following (f 1 ) or (g 1 )
  • This reaction can be carried out by known sulfation reaction, for example, by dissolving compound (IIA) or (IIB) and a sulfating agent in a suitable solvent and reacting under heating.
  • Solvents used here include N, N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, N, N-dimethylacetamide, 1,1,3,3-tetramethylurea, pyridine, N, N-dimethyl.
  • Acrylamide or ionic liquids such as 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-butyl-1-methylpyrrolidinium tetrafluoroborate, 1-butylpyridinium chloride, or a mixed solvent thereof It can be illustrated.
  • the sulfating agent is not particularly limited, but a complex of sulfuric anhydride and pyridine, picoline, 2,6-lutidine, trimethylamine, triethylamine, N, N-dimethylformamide, dioxane, or the like, or sulfuric acid-dicyclohexylcarbodiimide It is preferable to use chlorosulfone or the like.
  • the sulfating agent is preferably used in an amount of 1 to 100 equivalents based on the compound (IIA) or (IIB).
  • an acid catalyst such as trifluoroacetic acid or trifluoromethanesulfonic acid may be added to the reaction system.
  • the reaction temperature and reaction time are not particularly limited, and examples thereof include 0 to 120 ° C. and 30 minutes to 20 days.
  • Y 1 is the formula (d 1 ) or (e 1 ), R 1 ′ is —OH, or the compound in the formula (IIB) wherein R 1 ′ is —OH is It can be produced by the reduction reaction shown in Reaction-2.
  • the raw material compound and the target compound may be appropriate salts as described above.
  • a 1 represents the following (h) or (i) ,
  • a 2 is the following (j) or (k)
  • compound (II-1) or (II-2) can be produced by subjecting compound (III-1) or (III-2) to a reduction reaction in the presence of a reducing agent in a suitable solvent, for example.
  • a suitable solvent for example.
  • the solvent used in this reaction include water, lower alcohols such as methanol, ethanol, isopropanol, butanol, tert-butanol and ethylene glycol, fatty acids such as acetonitrile, formic acid and acetic acid, diethyl ether, tetrahydrofuran, dioxane, Ethers such as monoglyme and diglyme, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform and carbon tetrachloride, N, N-dimethylformamide or a mixed solvent thereof Can be illustrated.
  • Examples of the reducing agent include sodium borohydride, lithium borohydride, potassium borohydride, tetrabutylammonium borohydride, zinc borohydride, lithium trisecondary butyl borohydride, borane analog, diisobutyl hydride.
  • Examples include aluminum and lithium aluminum hydride.
  • the reducing agent is usually used in an amount of about 0.1-fold to 60-fold mol with respect to compound (III-1) or (III-2).
  • amines such as pyridine, trimethylamine, triethylamine and N-ethyldiisopropylamine, inorganic bases such as sodium hydroxide and / or dimethylglyoxime, 2,2′-bipyridyl, 1,10-phenyl Zinc chloride, cobalt chloride (II), samarium chloride (III), cerium chloride (III), titanium chloride (III), iron chloride (II), iron chloride (III), nickel chloride in the presence of a ligand such as nansuloline (II) or the like may be added.
  • This reduction reaction can also be carried out by catalytic hydrogenation in the presence of a transition metal catalyst such as palladium or platinum.
  • This reaction can be carried out usually at about -80 to 100 ° C, preferably about -80 to 70 ° C, but is generally completed in about 30 minutes to 60 hours.
  • Y 1 is formula (d 1 ) or (e 1 ), R 1 ′ is —NZ 3 Z 4 , or in formula (IIB), R 1 ′ is —NZ 3 Z 4 can be produced by a reductive amination reaction represented by the following reaction formula-3.
  • the raw material compound and the target compound may be appropriate salts as described above.
  • a compound (III-1) or (III-2) is reacted with amine (IV) to form a Schiff base in the presence of a reducing agent in an appropriate solvent to form a Schiff base, followed by reduction.
  • amine (IV) is reacted with amine (IV) to form a Schiff base in the presence of a reducing agent in an appropriate solvent to form a Schiff base, followed by reduction.
  • the amine (IV) is usually used in an amount of about 1 to 5 times the amount of the compound (III-1) or (III-2).
  • Examples of the solvent used here include water, lower alcohols such as methanol, ethanol, isopropanol, butanol, tert-butanol and ethylene glycol, fatty acids such as acetonitrile, formic acid and acetic acid, diethyl ether, tetrahydrofuran, dioxane and monoglyme. , Ethers such as diglyme, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform and carbon tetrachloride, N, N-dimethylformamide or a mixed solvent thereof. It can be illustrated.
  • lower alcohols such as methanol, ethanol, isopropanol, butanol, tert-butanol and ethylene glycol
  • fatty acids such as acetonitrile, formic acid and acetic acid
  • diethyl ether die
  • Examples of the reducing agent used here include sodium borohydride, lithium borohydride, potassium borohydride, tetrabutylammonium borohydride, sodium cyanotrihydroborate, sodium triacetoxyhydroborate and the like. it can.
  • the reducing agent is usually used in an amount of about 0.1-fold to 60-fold mol with respect to compound (III).
  • This reaction can be performed usually at about ⁇ 80 to 100 ° C., preferably about ⁇ 80 to 70 ° C., but is generally completed in about 30 minutes to 60 hours.
  • reaction may be performed in the presence of 1 to 50 moles of organic acids or salts thereof.
  • organic acids or salts thereof include acetic acid, trifluoroacetic acid, and alkali metal salts thereof (for example, sodium acetate).
  • amines such as pyridine, trimethylamine, triethylamine and N-ethyldiisopropylamine
  • inorganic bases such as sodium hydroxide and / or dimethylglyoxime
  • 2,2′-bipyridyl 1,10-phenyl Zinc chloride
  • cobalt chloride (II) cobalt chloride
  • samarium chloride (III) cerium chloride (III), titanium chloride (III), iron chloride (II), iron chloride (III), nickel chloride in the presence of a ligand such as nansuloline (II) or the like
  • boric acid may be added to the reaction system of the reaction.
  • Conversion of a compound group composed of even-numbered sugars and a compound group composed of odd-numbered sugars can produce a compound having one less constituent sugar than the starting compound by the following reaction formula-4 or 5.
  • This reaction is an elimination reaction of N-acetylglucosamine by weak alkali heat treatment.
  • Compound (V) is heated and stirred in a borate buffer solution at pH 9.18 according to the method of Reissig et al. (Reissig, JL, et al., J. Biol. Chem., 217, 959 (1955)).
  • Reissig et al. Reissig, JL, et al., J. Biol. Chem., 217, 959 (1955)
  • Reissig, JL, et al., J. Biol. Chem., 217, 959 (1955) Reissig, JL, et al., J. Biol. Chem., 217, 959 (1955)
  • Reissig, JL, et al., J. Biol. Chem., 217, 959 (1955) Reissig, JL, et al., J. Biol. Chem., 217, 959
  • This reaction is a glucuronic acid elimination reaction using ⁇ -glucuronidase.
  • Compound (VIII) can be produced by stirring compound (VII) in an appropriate buffer in the presence of ⁇ -glucuronidase. This reaction can be carried out usually at room temperature to about 60 ° C., preferably about 30 to 40 ° C., but is generally completed in about 30 minutes to 60 hours.
  • Each target compound obtained by the above reaction formulas can be purified by a purification procedure commonly used for various modified polysaccharides.
  • Specific purification operations include gel filtration, neutralization, desalting by dialysis, recovery by precipitation with addition of an organic solvent, recovery by freeze drying, and the like.
  • the compound of the present invention has antiallergic action and anti-inflammatory action and does not show vascular permeability enhancing ability, as shown in the examples below, so that hay fever, allergic rhinitis, allergic conjunctivitis, atopic skin It is useful as a medicament for preventing and / or treating allergic diseases such as inflammation and asthma.
  • a medicament is prepared by formulating the compound of the present invention in the form of a normal medical preparation, and is generally used as a filler, a bulking agent, a binder, a moistening agent, a disintegrant, a surfactant, a lubricant. It is prepared using a diluent or excipient such as an agent.
  • Such medicaments can be selected from various forms according to the purpose of treatment, and representative examples thereof include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories. Agents, injections (solutions, suspensions, etc.), eye drops, ointments, inhalants and the like.
  • the carrier used for molding into a tablet form known ones can be widely used, for example, lactose, sucrose, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose and other excipients, Water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, shellac, methylcellulose, potassium phosphate, polyvinylpyrrolidone and other binders, dry starch, polyoxyethylene sorbitan fatty acid ester, sodium lauryl sulfate, Disintegrants such as monoglyceride stearate, starch and lactose, disintegration inhibitors such as sucrose, stearin, cocoa butter, hydrogenated oil, absorption accelerators such as quaternary ammonium base and sodium lauryl sulfate, humectants such as glycerin and starch , Den Emissions, lactose, kaolin, bentonite,
  • the tablets can be made into tablets with ordinary tablet skin as required, for example, sugar coatings, gelatin-encapsulated tablets, enteric-coated tablets, film-coated tablets, double tablets, and multilayer tablets.
  • excipients such as glucose, lactose, starch, cocoa butter, hydrogenated vegetable oil, kaolin, talc, gum arabic powder
  • examples thereof include binders such as tragacanth powder, gelatin and ethanol, and disintegrants such as laminaran and agar.
  • carrier used for forming into a suppository form known carriers can be widely used.
  • carriers include polyethylene glycol, cacao butter, higher alcohol, higher alcohol ester, gelatin, semi-synthetic glyceride and the like.
  • the solution, emulsion and suspension are sterilized and isotonic with blood.
  • diluents known and widely used diluents can be used, for example, water, ethanol, propylene glycol, ethoxylated isoforms. Examples include stearyl alcohol, polyoxylated isostearyl alcohol, and polyoxyethylene sorbitan fatty acid ester.
  • a sufficient amount of sodium chloride, glucose or glycerin may be included in the medical preparation to prepare an isotonic solution, and a normal solubilizing agent, buffer, soothing agent, etc. may be added.
  • a coloring agent, a preservative, a fragrance, a flavoring agent, a sweetening agent, and other pharmaceuticals may be contained.
  • the amount of the compound of the present invention contained in such a medicament is not particularly limited and can be appropriately selected from a wide range, but it is usually preferable to contain 1 to 70% by weight of the compound of the present invention in the medicament. .
  • an injection it is administered alone or mixed with a normal fluid such as glucose or amino acid and administered intravenously, or further, if necessary, alone intramuscularly, intradermally, subcutaneously or intraperitoneally. Or can be administered. In the case of a suppository, it is administered intrarectally.
  • a normal fluid such as glucose or amino acid
  • the dosage of the above drug may be appropriately selected according to the usage, patient age, sex, disease severity, and other conditions. Usually, 0.001 to 100 mg, preferably 1 to 1 kg body weight per day. 0.001 to 50 mg is administered once to several times. In addition, since the dosage varies depending on various conditions, a dosage smaller than the above range may be sufficient, and a dosage exceeding the above range may be necessary.
  • 1 H-NMR was measured by using AVANCE III 400 (manufactured by BURKER) or AVANCE 500 (manufactured by BURKER) using heavy water (D 2 O) as a solvent.
  • Production Examples 1 to 54 Production of Raw Material Compounds The raw material compounds shown in Tables 1 to 7 were produced by the methods described in Production Examples 1 to 54 below. Mass spectrometry is performed by Voyager DE-PRO (Applied Systems Japan Co., Ltd.).
  • Production Example 2 The target product was obtained by reacting in the same manner as in Production Example 1 except that the raw material was changed to hyaluronic acid oligosaccharide 6-mer (60 mg). (50 mg, white powder) MS [M ⁇ H] ⁇ : 1157.81 1 H-NMR: A chart is shown in FIG.
  • Production Example 4 The target product was obtained by reacting hyaluronic acid oligosaccharide 10-mer (60 mg) in the same manner as in Production Example 1. (48 mg, white powder) MS [M-H] - : 1915.72 1 H-NMR: A chart is shown in FIG.
  • Production Example 5 The target product was obtained by reacting hyaluronic acid oligosaccharide 12-mer (60 mg) in the same manner as in Production Example 1. (60 mg, white powder) MS [M ⁇ H] ⁇ : 2294.98 1 H-NMR: A chart is shown in FIG.
  • Production Example 6 The target product was obtained in the same manner as in Production Example 1 except that the raw material was changed to hyaluronic acid oligosaccharide 14-mer (20 mg). (20 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Hyaluronic acid oligosaccharide 16-mer (10 mg) was dissolved in methanol (0.6 ml) and water (0.3 ml), and sodium borohydride (5 mg) was added and stirred under ice cooling. It returned to room temperature and stirred overnight. The completion of the reaction was confirmed by mass spectrometry. A 10% acetic acid methanol solution (0.1 ml) and water (0.2 ml) were added under ice-cooling, and the mixture was concentrated under reduced pressure. The residue was dissolved in water (1 ml) and filtered through a disk filter (Nihon Pole Corp., 0.45 ⁇ m).
  • Production Example 8 The target product was obtained in the same manner as in Production Example 1 except that the raw material was changed to hyaluronic acid oligosaccharide 18-mer (20 mg). (20 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Hyaluronic acid oligosaccharide 10-mer (20 mg) was dissolved in water (0.8 ml) and cooled on ice.
  • Anthranilic acid (30 mg), boronic acid (40 mg), sodium acetate (80 mg) and sodium cyanotrihydroborate (5 mg) were dissolved in methanol (1 ml) and water (0.2 ml). For 5 hours. The completion of the reaction was confirmed by mass spectrometry. After concentration under reduced pressure, the residue was dissolved in methanol (1 ml) and water (1 ml), and filtered through a disk filter (Nihon Pole Corp., 0.45 ⁇ m).
  • Hyaluronic acid oligosaccharide 10-mer (20 mg) was dissolved in water (0.8 ml) and cooled on ice.
  • Aniline (30 mg), boronic acid (40 mg), sodium acetate (80 mg) and sodium cyanotrihydroborate (5 mg) are dissolved in methanol (1 ml) and water (0.2 ml), and added at 80 ° C. for 5 hours. did.
  • the completion of the reaction was confirmed by mass spectrometry. After concentration under reduced pressure, the residue was dissolved in methanol (1 ml) and water (1 ml), and filtered through a disk filter (Nihon Pole Corp., 0.45 ⁇ m).
  • Production Example 12 The target product was obtained in the same manner as in Production Example 1, except that the raw material was changed to hyaluronic acid oligosaccharide 24-32-mer (10 mg). (10 mg, white powder)
  • Production Example 15 The target product was obtained in the same manner as in Production Example 14 except that the raw material was changed to hyaluronic acid oligosaccharide 6-mer (60 mg). (34 mg, white powder) MS [M ⁇ H] ⁇ : 953.02 1 H-NMR: A chart is shown in FIG.
  • Production Example 17 The target product was obtained in the same manner as in Production Example 14, except that the raw material was changed to hyaluronic acid oligosaccharide 10-mer (10 mg). (8 mg, white powder) MS [M ⁇ H] ⁇ : 1710.28 1 H-NMR: A chart is shown in FIG.
  • Production Example 18 The target product was obtained in the same manner as in Production Example 14 except that the raw material was changed to hyaluronic acid oligosaccharide 12-mer (20 mg). (16 mg, white powder) MS [M ⁇ H] ⁇ : 2090.01 1 H-NMR: A chart is shown in FIG.
  • Production Example 19 The target product was obtained in the same manner as in Production Example 14 except that the raw material was changed to hyaluronic acid oligosaccharide 14-mer (18 mg). (11 mg, white powder) MS [M ⁇ H] ⁇ : 2469.52 1 H-NMR: The chart is shown in FIG.
  • Production Example 20 The target product was obtained in the same manner as in Production Example 14 except that the raw material was changed to hyaluronic acid oligosaccharide 16-mer (7 mg). (5 mg, white powder) MS [M ⁇ H] ⁇ : 2848.59 1 H-NMR: The chart is shown in FIG.
  • Production Example 22 The target product was obtained in the same manner as in Production Example 14, except that the raw material was changed to hyaluronic acid oligosaccharide 20-mer (15 mg). (13 mg, white powder) MS [M ⁇ H] ⁇ : 3604.16 1 H-NMR: A chart is shown in FIG.
  • Production Example 23 The compound (17 mg) obtained in Production Example 1 was mixed with a buffer (sodium chloride aqueous solution (300 mM, 1 ml) and sodium acetate aqueous solution (200 mM, 1 ml), and the pH was adjusted to 5.2 with glacial acetic acid. ) (2 ml), bovine liver ⁇ -glucuronidase Type B-1 (Sigma-Aldrich) (8 mg) was added, and the mixture was incubated at 37 ° C. for 8 hours.
  • a buffer sodium chloride aqueous solution (300 mM, 1 ml) and sodium acetate aqueous solution (200 mM, 1 ml)
  • bovine liver ⁇ -glucuronidase Type B-1 Sigma-Aldrich
  • reaction solution was purified by ultrafiltration (Millipore, Amicon Ultra 4ml 10K Nominal Molecular Weight Limit), and then gel filtration chromatography (G-10, (16 mm x 600 mm, water) for desalting, and the desired fraction was lyophilized to obtain the desired product. (8 mg, white powder) MS [M ⁇ H] ⁇ : 601.18 1 H-NMR: A chart is shown in FIG.
  • Production Example 24 The target product was obtained in the same manner as in Production Example 23 except that the raw material was changed to the compound (11 mg) obtained in Production Example 2. (4 mg, white powder) MS [M ⁇ H] ⁇ : 980.29 1 H-NMR: A chart is shown in FIG.
  • Production Example 25 The target product was obtained in the same manner as in Production Example 23 except that the raw material was changed to the compound (10 mg) obtained in Production Example 3. (8 mg, white powder) MS [M ⁇ H] ⁇ : 1359.37 1 H-NMR: A chart is shown in FIG.
  • Production Example 26 The target product was obtained in the same manner as in Production Example 23 except that the raw material was changed to the compound (30 mg) obtained in Production Example 4. (15 mg, white powder) MS [M-H] ⁇ : 1738.15 1 H-NMR: A chart is shown in FIG.
  • Production Example 27 The target product was obtained in the same manner as in Production Example 23 except that the raw material was changed to the compound (14 mg) obtained in Production Example 5. (7 mg, white powder) MS [M ⁇ H] ⁇ : 2117.50 1 H-NMR: A chart is shown in FIG.
  • Production Example 28 The target product was obtained in the same manner as in Production Example 23 except that the raw material was changed to the compound (10 mg) obtained in Production Example 9. (5 mg, white powder) MS [M-H] ⁇ : 3633.84 1 H-NMR: The chart is shown in FIG.
  • Production Example 29 The target product was obtained in the same manner as in Production Example 23 except that the raw material was changed to the compound (15 mg) obtained in Production Example 15. (9 mg, white powder) MS [M ⁇ H] ⁇ : 777.28 1 H-NMR: The chart is shown in FIG.
  • Production Example 30 The target product was obtained in the same manner as in Production Example 23 except that the raw material was changed to the compound (11 mg) obtained in Production Example 16. (7 mg, white powder) MS [M ⁇ H] ⁇ : 1156.41 1 H-NMR: A chart is shown in FIG.
  • Production Example 31 The target product was obtained in the same manner as in Production Example 23 except that the raw material was changed to the compound (23 mg) obtained in Production Example 17. (15 mg, white powder) MS [M ⁇ H] ⁇ : 1535.07 1 H-NMR: A chart is shown in FIG.
  • Production Example 32 The target product was obtained in the same manner as in Production Example 23 except that the raw material was changed to the compound (14 mg) obtained in Production Example 18. (8 mg, white powder) MS [M ⁇ H] ⁇ : 1914.60 1 H-NMR: A chart is shown in FIG.
  • Production Example 33 The target product was obtained in the same manner as in Production Example 23 except that the raw material was changed to the compound (8 mg) obtained in Production Example 22. (5 mg, white powder) MS [M ⁇ H] ⁇ : 3340.67 1 H-NMR: A chart is shown in FIG.
  • Production Example 35 The target product was obtained in the same manner as in Production Example 34 except that the raw material was changed to unsaturated hyaluronic acid oligosaccharide 6-mer (10 mg). (9 mg, white powder) MS [M ⁇ H] ⁇ : 1139.15 1 H-NMR: A chart is shown in FIG.
  • Production Example 36 The target product was obtained in the same manner as in Production Example 34 except that the raw material was changed to unsaturated hyaluronic acid oligosaccharide 8-mer (10 mg). (10 mg, white powder) MS [M ⁇ H] ⁇ : 1518.49 1 H-NMR: The chart is shown in FIG.
  • Production Example 37 The target product was obtained in the same manner as in Production Example 34 except that the raw material was changed to unsaturated hyaluronic acid oligosaccharide 10-mer (10 mg). (10 mg, white powder) MS [M ⁇ H] ⁇ : 1897.57 1 H-NMR: The chart is shown in FIG.
  • Production Example 38 The target product was obtained in the same manner as in Production Example 34 except that the raw material was changed to unsaturated hyaluronic acid oligosaccharide 12-mer (10 mg). (8 mg, white powder) MS [M ⁇ H] ⁇ : 2276.99 1 H-NMR: A chart is shown in FIG.
  • Production Example 39 The target product was obtained in the same manner as in Production Example 34 except that the raw material was changed to unsaturated hyaluronic acid oligosaccharide 20-mer (12 mg). (10 mg, white powder) MS [M ⁇ H] ⁇ : 379.03 1 H-NMR: A chart is shown in FIG.
  • Production Example 41 The target product was obtained in the same manner as in Production Example 40 except that the raw material was changed to unsaturated hyaluronic acid oligosaccharide 6-mer (10 mg). (7 mg, white powder) MS [M ⁇ H] ⁇ : 935.49 1 H-NMR: A chart is shown in FIG.
  • Production Example 43 The target product was obtained in the same manner as in Production Example 40 except that the raw material was changed to unsaturated hyaluronic acid oligosaccharide 10-mer (10 mg). (7 mg, white powder) MS [M-H] ⁇ : 1693.58 1 H-NMR: The chart is shown in FIG.
  • Production Example 44 The target product was obtained in the same manner as in Production Example 40 except that the raw material was changed to unsaturated hyaluronic acid oligosaccharide 12-mer (10 mg). (6 mg, white powder) MS [M ⁇ H] ⁇ : 2073.41 1 H-NMR: A chart is shown in FIG.
  • Production Example 49 The target product was obtained in the same manner as in Production Example 46 except that phenylalanine was changed to glycylphenylalaninamide. (4 mg, white powder)
  • Production Example 50 The target product was obtained in the same manner as in Production Example 46 except that phenylalanine was changed to phenylalanylglycine. (14 mg, white powder) 1 H-NMR: The chart is shown in FIG.
  • Production Example 52 The target product was obtained in the same manner as in Production Example 45 except that hyaluronic acid oligosaccharide 4-mer was changed to hyaluronic acid oligosaccharide 10-mer and benzylamine was changed to 2-aminopyridine. (12 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Production Example 53 The target product was obtained in the same manner as in Production Example 46 except that hyaluronic acid oligosaccharide 4-mer was changed to hyaluronic acid oligosaccharide 10-mer and phenylalanine was changed to phenylalanylglycylglycine. (5 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Production Example 54 The target product was obtained in the same manner as in Production Example 46 except that hyaluronic acid oligosaccharide 4-mer was changed to hyaluronic acid oligosaccharide 10-mer. (5 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 1 The compound synthesized in Production Example 1 (12 mg) was dissolved in water (1 ml), tributylamine (100 ⁇ l) was added and stirred, and then concentrated under reduced pressure. N, N-dimethylformamide (2 ml) was added and azeotropy was performed twice. The residue was dissolved in N, N-dimethylformamide (1 ml), pyridine / sulfur trioxide (150 mg) was added, and the mixture was stirred at 42 ° C. for 3 hours under a nitrogen atmosphere. After adding water (1 ml) at 4 ° C., a saturated sodium acetate ethanol solution (30 ml) was added for precipitation.
  • Example 2 Compound 2 was obtained in the same manner as in Example 1, except that the raw material was changed to the compound (47 mg) obtained in Production Example 2. (76 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 3 Compound 3 was obtained in the same manner as in Example 1, except that the raw material was changed to the compound (51 mg) obtained in Production Example 3. (108 mg, white powder) [M + 3Na] 3+ : 1210.10 1 H-NMR: A chart is shown in FIG.
  • Example 4 Compound 4 was obtained in the same manner as in Example 1, except that the raw material was changed to the compound synthesized in Production Example 4 (48 mg). (92 mg, white powder) [M + 3Na] 3+ : 1479.73 1 H-NMR: The chart is shown in FIG.
  • Example 5 Compound 5 was obtained in the same manner as in Example 1, except that the raw material was changed to the compound (60 mg) obtained in Production Example 5. (112 mg, white powder) [M + 4Na] 4+ : 1317.74 1 H-NMR: A chart is shown in FIG.
  • Example 6 Compound 6 was obtained in the same manner as in Example 1, except that the raw material was changed to the compound (20 mg) obtained in Production Example 6. (22 mg, white powder) 1 H-NMR: The chart is shown in FIG.
  • the mixture was precipitated by adding saturated sodium acetate ethanol solution (20 ml), stirred with a Voltex mixer, and then cooled and centrifuged (4 ° C., 3000 rpm, 15 minutes). ) To collect the precipitate. After discarding the supernatant again, the residue was dissolved by adding water (1 ml), precipitated with saturated sodium acetate ethanol solution (20 ml), stirred with a Voltex mixer, and then cooled and centrifuged (4 ° C., 3000 rpm, 15 minutes) and the precipitate was collected. The supernatant was discarded, and the residue was dissolved in water (2 ml) and concentrated under reduced pressure.
  • Example 9 Compound 9 was obtained in the same manner as in Example 1, except that the raw material was changed to the compound (39 mg) obtained in Production Example 9. (90 mg, white powder) [M + 5Na] 5+ : 1707.07 1 H-NMR: A chart is shown in FIG.
  • Example 10 Compound 10 was obtained in the same manner as in Example 1, except that the raw material was changed to the compound (24 mg) obtained in Production Example 10. (48 mg, white powder) [M + 3Na] 3+ : 1493.42 1 H-NMR: A chart is shown in FIG.
  • Example 11 Compound 11 was obtained in the same manner as in Example 1, except that the raw material was changed to the compound (17 mg) obtained in Production Example 11. (34 mg, white powder) [M + 3Na] 3+ : 1505.11 1 H-NMR: A chart is shown in FIG.
  • Example 12 Compound 12 was obtained in the same manner as in Example 1, except that the raw material was changed to the compound (10 mg) obtained in Production Example 12. (10 mg, white powder)
  • Example 13 Compound 13 was obtained in the same manner as in Example 1, except that the raw material was changed to the compound (10 mg) obtained in Production Example 13. (21 mg, white powder)
  • Example 14 The compound (18 mg) obtained in Production Example 14 was dissolved in N, N-dimethylformamide (2 ml), pyridine / sulfur trioxide (300 mg) was added, and the mixture was stirred at 42 ° C. for 3 hours under a nitrogen atmosphere. After adding water (1 ml) at 4 ° C., a saturated sodium acetate ethanol solution (25 ml) was added for precipitation. After stirring with a Voltex mixer, cooling centrifugation (4 ° C., 3000 rpm, 15 minutes) was performed. The precipitate was collected. The supernatant was discarded, and water (1 ml) was added to the residue to dissolve it.
  • the mixture was precipitated by adding saturated sodium acetate ethanol solution (20 ml), stirred with a Voltex mixer, and then cooled and centrifuged (4 ° C., 3000 rpm, 15 minutes). ) To collect the precipitate. The supernatant was again discarded, and the residue was dissolved by adding water (1 ml), precipitated by adding saturated sodium acetate ethanol solution (25 ml), stirred with a Voltex mixer, and then cooled and centrifuged (4 ° C., 3000 rpm, 15 minutes) and the precipitate was collected. The supernatant was discarded, and the residue was dissolved in water (2 ml), and then filtered through a disk filter (Nihon Pole Corporation, 0.45 ⁇ m).
  • Example 15 Compound 15 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (34 mg) obtained in Production Example 15. (72 mg, white powder) [M + 3Na] 3+ : 804.83 1 H-NMR: A chart is shown in FIG.
  • Example 16 Compound 16 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (8 mg) obtained in Production Example 16. (11 mg, white powder) [M + 3Na] 3+ : 1074.42 1 H-NMR: A chart is shown in FIG.
  • Example 17 Compound 17 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (8 mg) obtained in Production Example 17. (14 mg, white powder) [M + 3Na] 3+ : 1344.06 1 H-NMR: A chart is shown in FIG.
  • Example 18 Compound 18 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (16 mg) obtained in Production Example 18. (23 mg, white powder) [M + 4Na] 4+ : 1217.00 1 H-NMR: A chart is shown in FIG.
  • Example 19 Compound 19 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (11 mg) obtained in Production Example 19. (9 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 23 Compound 23 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (8 mg) obtained in Production Example 23. (14 mg, white powder) [M + 2Na] 2+ : 793.81 1 H-NMR: A chart is shown in FIG.
  • Example 24 Compound 24 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (4 mg) obtained in Production Example 24. (7 mg, white powder) [M + 2H] 2+ : 1176.25 1 H-NMR: A chart is shown in FIG.
  • Example 25 Compound 25 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (8 mg) obtained in Production Example 25. (11 mg, white powder) [M + 3Na] 3+ : 1076.10 1 H-NMR: A chart is shown in FIG.
  • Example 26 Compound 26 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (15 mg) obtained in Production Example 26. (26 mg, white powder) [M + 3Na] 3+ : 1345.72 1 H-NMR: The chart is shown in FIG.
  • Example 27 Compound 27 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (7 mg) obtained in Production Example 27. (11 mg, white powder) [M + 4Na] 4+ : 1616.67 1 H-NMR: A chart is shown in FIG.
  • Example 28 Compound 28 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (5 mg) obtained in Production Example 28. (7 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 29 Compound 29 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (9 mg) obtained in Production Example 29. (16 mg, white powder) [M + 2H] 2+ : 972.77 1 H-NMR: A chart is shown in FIG.
  • Example 30 Compound 30 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (7 mg) obtained in Production Example 30. (8 mg, white powder) [M + 2H] 2+ : 1377.20 1 H-NMR: A chart is shown in FIG.
  • Example 31 Compound 31 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (15 mg) obtained in Production Example 31. (21 mg, white powder) [M + 3Na] 3+ : 1210.07 1 H-NMR: A chart is shown in FIG.
  • Example 32 Compound 32 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (8 mg) obtained in Production Example 32. (9 mg, white powder) [M + 3H] 3+ : 1458.34 1 H-NMR: A chart is shown in FIG.
  • Example 33 Compound 33 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (5 mg) obtained in Production Example 33. (7 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 34 The compound synthesized in Production Example 36 (7 mg) was dissolved in N, N-dimethylformamide (0.7 ml), and triethylamine / sulfur trioxide (75 mg) and trifluoromethanesulfonic acid (12 ⁇ l) were added. Stir for 48 hours at ° C. After adding water (1 ml) at 0 ° C., a saturated sodium acetate ethanol solution (25 ml) was added for precipitation. After stirring with a Voltex mixer, cooling centrifugation (4 ° C., 3000 rpm, 15 minutes) was performed. The precipitate was collected. The supernatant was discarded, and water (1 ml) was added to the residue to dissolve it.
  • Example 35 Compound 35 was obtained in the same manner as in Example 34 except that the raw material was changed to the compound (10 mg) obtained in Production Example 37. (14 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 36 Compound 36 was obtained in the same manner as in Example 34, except that the raw material was changed to the compound (10 mg) obtained in Production Example 38. (15 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 37 Compound 37 was obtained in the same manner as in Example 34 except that the raw material was changed to the compound (9 mg) obtained in Production Example 41. (11 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 38 Compound 38 was obtained in the same manner as in Example 34 except that the raw material was changed to the compound (12 mg) obtained in Production Example 44. (20 mg, yellow powder) 1 H-NMR: A chart is shown in FIG.
  • Example 40 Compound 40 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (10 mg) obtained in Production Example 46. (16 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 41 Compound 41 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (8 mg) obtained in Production Example 47. (14 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 42 Compound 42 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (7 mg) obtained in Production Example 48. (12 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 44 Compound 44 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (10 mg) obtained in Production Example 50. (24 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 45 Compound 45 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (10 mg) obtained in Production Example 51. (21 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 46 Compound 46 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (12 mg) obtained in Production Example 52. (15 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Example 48 Compound 48 was obtained in the same manner as in Example 14, except that the raw material was changed to the compound (5 mg) obtained in Production Example 54. (9 mg, white powder) 1 H-NMR: A chart is shown in FIG.
  • Reference example 1 From the purchased sodium hyaluronate (BIO Sodium Hyaluronate HA9 manufactured by Shiseido) and bovine testis-derived hyaluronidase (Calbiochem, Hyaluronidase Bovine T 100KU), literature Glycobiology, vol. 12, p. 12, p. The compound 49 was obtained according to the above document Glycobiology, vol. 11, No. 1, pp. 57-64, 2001 using the hyaluronic acid oligosaccharide 4-mer (20 mg) separated according to (21 mg, white powder)
  • Reference example 2 Compound 50 was obtained in the same manner as in Reference Example 1, except that the raw material was changed to hyaluronic acid oligosaccharide 10-mer (43 mg). (86 mg, white powder)
  • Reference example 3 Compound 51 was obtained in the same manner as in Reference Example 1, except that the raw material was changed to hyaluronic acid oligosaccharide 16-mer (75 mg). (80 mg, white powder)
  • Reference example 4 Compound 52 was obtained in the same manner as in Reference Example 1, except that the raw material was changed to hyaluronic acid oligosaccharide 20-mer (23 mg). (42 mg, white powder)
  • Reference Example 5 Compound 53 was obtained in the same manner as in Reference Example 1, except that the raw material was changed to hyaluronic acid oligosaccharide 22-mer (17 mg). (25 mg, white powder)
  • Reference Example 6 Compound 54 was obtained in the same manner as in Reference Example 1, except that the raw material was changed to hyaluronic acid oligosaccharide 24-32-mer (20 mg). (18 mg, white powder)
  • Reference Example 7 Compound 55 was obtained in the same manner as in Reference Example 1, except that the raw material was changed to hyaluronic acid oligosaccharide 34-46-mer (24 mg). (39 mg, white powder) The structures of compounds 49 to 55 are shown in Table 15 below.
  • Test Example 1 Antiallergic action; Guinea pig allergic rhinitis model (nasal obstruction model)
  • Guinea pig allergic rhinitis model (nasal obstruction model)
  • Hartley guinea pigs male, 6-7 weeks of age at the first sensitization
  • the received animals were used for experiments after preliminary breeding for 7 days or more for quarantine and acclimatization.
  • a physiological saline solution containing 1 mg of ovalbumin (OVA) and 10 mg of aluminum hydroxide gel (Alum) in 1 ml was administered subcutaneously to the back of the back of 1 ml per animal.
  • OVA ovalbumin
  • Alum aluminum hydroxide gel
  • test substance was administered into both nasal cavities 10 ⁇ l at 30 minutes before induction.
  • the test substance was dissolved in physiological saline, and a solution having a concentration of 500 ⁇ g / ml was used for administration.
  • a physiological saline was similarly administered to the Control group (non-induced group) and the Saline group (solvent control group).
  • “Flunase” manufactured by GlaxoSmithKline Co., Ltd.
  • Measurement of nasal resistance was performed before induction on the day of induction, 10 minutes after induction, 2, 3, 4, 5, 6 and 7 hours after induction.
  • nasal resistance (nRaw) for 100 breaths was measured, the average value was taken as nRaw at each measurement time, and the increase rate of nRaw was calculated as an index of nasal resistance. .
  • the increase rate (%) of nasal cavity resistance (nRaw) was calculated by the following equation.
  • the evaluation was performed using the area under the curve of the increase rate of nRaw (immediate nasal resistance) 10 minutes after induction and the increase rate of nRaw 3 to 7 hours after the induction (AUC 3-7 hr , delayed nasal resistance).
  • the compound of the present invention exhibits an immediate allergic reaction inhibitory effect and a delayed onset allergic reaction inhibitory effect.
  • Test Example 2 PCA (Passive Cutaneous Anaphylaxis) Inhibitory Effect A Hartley guinea pig (male, 5 weeks old or older) was used in the experiment.
  • Anti-OVA serum obtained by immunizing guinea pigs with OVA was diluted 500 times with physiological saline (solution A).
  • the test substances shown in Table 16 below were diluted to 200 ⁇ g / ml with physiological saline (solution B).
  • Liquid B was mixed with guinea pig anti-OVA serum diluted 250-fold in an equal amount to make the final concentration 100 ⁇ g / ml of test substance and anti-OVA serum 500-fold (liquid C).
  • the compound of the present invention exhibits a PCA inhibitory effect.
  • Test Example 3 Vascular permeability enhancement ability test A Hartley guinea pig (male, 5 weeks old or older) was used in the experiment. The test substance was diluted to 100 ⁇ g / ml with physiological saline. As a control, sulfated hyaluronic acid (a mixture of 4 sugars to about 70 sugars; synthesized according to Examples (Production Example 1) of JP-A-11-147901) was used. 100 ⁇ l of physiological saline or a physiological saline solution of the test substance was injected intradermally into the back of a guinea pig whose hair was shaved after anesthesia with ether.
  • sulfated hyaluronic acid a mixture of 4 sugars to about 70 sugars; synthesized according to Examples (Production Example 1) of JP-A-11-147901
  • a 0.5% Evans blue physiological saline solution was intravenously administered at 1 ml / body. Blood was released within 30 minutes and the skin was peeled off, and the amount of pigment in each spot was quantified by image processing. The results are shown in FIG. 101 to FIG. 103 as the vascular permeability of the test substance when the amount of dye in the spot administered with dextran (dextran sulfate 10000) is 100%.
  • the compound of the present invention unlike the known polymer polysulfated hyaluronic acid, has no ability to enhance blood vessel permeation and does not exhibit a stimulating action as a side effect itself.
  • Test Example 4 Long-term stability (in aqueous solution) About the compound 4 and the compound 50, 1 mg / ml aqueous solution was prepared and the HPLC analysis was conducted. These solutions were stored in a cold place (2 to 8 ° C.) and room temperature, respectively, and subjected to HPLC analysis over 4 months over time to examine the change in the pattern of each peak.
  • Compound 50 is unstable in an aqueous solution, with a second time-dependent increase and a third time-dependent decrease of the three main peaks observed even in cold storage.
  • Compound 4 was found to be stable in an aqueous solution with no change in peak pattern observed for 4 months even at room temperature storage.
  • the compound group in which Y in general formula (IA) is (d) or (e) and the compound group in general formula (IB) are highly stable in an aqueous solution among low molecular weight polysulfated hyaluronic acid derivatives. It is particularly useful as a compound.
  • the low molecular weight polysulfated hyaluronic acid derivative of the present invention or a pharmaceutically acceptable salt thereof has a low ability to enhance vascular permeability, and therefore has low inflammatory side effects and excellent safety, and prevention of allergic diseases and It can be used as a therapeutic agent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Biochemistry (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Otolaryngology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Saccharide Compounds (AREA)

Abstract

 アレルギー性疾患の予防及び/又は治療に有用な低分子量の多硫酸化ヒアルロン酸誘導体の提供。 下記一般式(IA)又は(IB)で表される低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩を有効成分とする花粉症、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎及び喘息から選ばれるアレルギー性疾患の予防及び/又は治療剤。 〔式中、nは0~15の数、Rはそれぞれ独立して水素原子又はSOH基、等〕

Description

低分子量多硫酸化ヒアルロン酸誘導体及びこれを含有する医薬
 本発明は、アレルギー性疾患の予防及び/又は治療に有用な低分子量多硫酸化ヒアルロン酸誘導体(HAPS)に関する。
 β-D-N-アセチルグルコサミンとβ-D-グルクロン酸が交互に結合してできた直鎖状の高分子多糖であるヒアルロン酸は、ムコ多糖類の中でも比較的容易に入手でき、特異な物理化学的性質及び生理的性質を示すことから、それ自体又はその各種誘導体が医薬品や化粧品として使用されている。
 例えば、ヒアルロン酸の誘導体である多硫酸化ヒアルロン酸は、カリクレイン-キニン系の阻害活性(特許文献1)及びホスホリパーゼA2の阻害活性(特許文献2)があり、アレルギー性疾患の治療薬として使用できること(特許文献3)、接着因子の一つであるセレクチン介在性の炎症に対する強い抗炎症作用を示すこと(特許文献4)等が知られている。
 また、粘度平均分子量が10000以下のような、低分子量のオリゴ多硫酸化ヒアルロン酸が皮膚透過性に優れた化粧料の有効成分として使用できること(特許文献5)、及び4~20糖の多硫酸化ヒアルロン酸オリゴ糖が、抗血液凝固活性及び抗ヒアルロニダーゼ活性を有し、抗癌剤となり得る可能性があることが報告されている(非特許文献1)。
特開平11-147901号公報 特開平11-269077号公報 特開平11-335288号公報 特開平8-277224号公報 特開平10-195107号公報
Glycobiology, vol.11, No.1, pp.57-64, 2001
 しかしながら、上記のような多硫酸化ヒアルロン酸及び多硫酸化ヒアルロン酸オリゴマーには、それ自体が血管透過性亢進能等の刺激作用を有することから臨床応用に不適切なものもあり、薬理活性・安全性等の全てを満足するものは少ないのが実情である。
 本発明は、このような問題点のないアレルギー性疾患の予防及び/又は治療に有用な低分子量のヒアルロン酸誘導体を提供することに関する。
 本発明者らは、アレルギー性疾患の予防及び/又は治療に有用な化合物を開発すべく鋭意研究を重ねた結果、下記一般式(IA)及び(IB)で示される低分子量多硫酸化ヒアルロン酸誘導体が、抗アレルギー作用及び抗炎症作用を持ち、かつ血管透過性亢進能を有さず、医薬品として有用であることを見出した。
 すなわち、本発明は、以下の1)~15)に係るものである。
 1)下記一般式(IA):
Figure JPOXMLDOC01-appb-C000001
〔式中、nは0~15の数を示し、Xは次式(a)又は(b):
Figure JPOXMLDOC01-appb-C000002
Yは次式(c)、(d)又は(e):
Figure JPOXMLDOC01-appb-C000003
を示し、Rはそれぞれ独立して水素原子又はSOH基を示し(但し、Rの総数当たり80~100%をSOH基が占める)、Rは-OH、-OSOH又は-NZ(ここで、Z及びZは、独立して水素原子、-SOH、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基又は置換されていてもよいヘテロアリール基を示すか、或いは-NZ全体でアミノ酸残基もしくはペプチド残基を示す。)を示し、*は酸素原子との結合部位を示す。〕、
又は、下記一般式(IB):
Figure JPOXMLDOC01-appb-C000004
〔式中、nは0~15の数を示し、Wは次式(f)又は(g):
Figure JPOXMLDOC01-appb-C000005
を示し、Rはそれぞれ独立して水素原子又はSOH基を示し(但し、Rの総数当たり80~100%をSOH基が占める)、Rは-OH、-OSOH又は-NZ(ここで、Z及びZは、独立して水素原子、-SOH、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基又は置換されていてもよいヘテロアリール基を示すか、或いは-NZ全体でアミノ酸残基もしくはペプチド残基を示す。)を示し、*は酸素原子との結合部位を示す。〕
で表される低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩を有効成分とする花粉症、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎及び喘息から選ばれるアレルギー性疾患の予防及び/又は治療剤。
 2)一般式(IA)において、Yが式(d)又は(e)である、上記1)の予防及び/又は治療剤。
 3)Xが式(a)である、上記2)の予防及び/又は治療剤。
 4)nが3、4又は5である、上記3)の予防及び/又は治療剤。
 5)nが4又は5である、上記3)の予防及び/又は治療剤。
 6)低分子量多硫酸化ヒアルロン酸誘導体が一般式(IB)である、上記1)の予防及び/又は治療剤。
 7)nが3、4又は5である、上記6)の予防及び/又は治療剤。
 8)nが4又は5である、上記6)の予防及び/又は治療剤。
 9)花粉症、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎及び喘息から選ばれるアレルギー性疾患の予防及び/又は治療剤の製造のための上記1)~8)のいずれかの低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩の使用。
 10)上記1)~8)のいずれかの低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩の有効量をヒト又は動物に投与することを特徴とする、花粉症、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎及び喘息から選ばれるアレルギー性疾患の予防及び/又は治療方法。
 11)下記一般式(IA’):
Figure JPOXMLDOC01-appb-C000006
〔式中、nは0~15の数を示し、Xは次式(a)又は(b):
Figure JPOXMLDOC01-appb-C000007
Y’は次式(d)又は(e):
Figure JPOXMLDOC01-appb-C000008
を示し、Rはそれぞれ独立して水素原子又はSOH基を示し(但し、Rの総数当たり80~100%をSOH基が占める)、Rは-OH、-OSOH又は-NZ(ここで、Z及びZは、独立して水素原子、-SOH、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基又は置換されていてもよいヘテロアリール基を示すか、或いは-NZ全体でアミノ酸残基もしくはペプチド残基を示す。)を示し、*は酸素原子との結合部位を示す。〕、
又は、下記一般式(IB):
Figure JPOXMLDOC01-appb-C000009
〔式中、nは0~15の数を示し、Wは次式(f)又は(g):
Figure JPOXMLDOC01-appb-C000010
を示し、Rはそれぞれ独立して水素原子又はSOH基を示し(但し、Rの総数当たり80~100%をSOH基が占める)、Rは-OH、-OSOH又は-NZ(ここで、Z及びZは、独立して水素原子、-SOH、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基又は置換されていてもよいヘテロアリール基を示すか、或いは-NZ全体でアミノ酸残基もしくはペプチド残基を示す。)を示し、*は酸素原子との結合部位を示す。〕
で表される低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩。
 12)一般式(IA’)において、Xが式(a)である、上記11)の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩。
 13)一般式(IB)である、上記11)記載の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩。
 14)nが3、4又は5である、上記12)又は13)の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩。
 15)上記11)、12)、13)又は14)の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩、及び製薬学的に許容される賦形剤を含有する医薬組成物。
 本発明の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩は、優れた抗アレルギー作用及び抗炎症作用を有すると共に、血管透過性亢進能を有さないことから、副作用が少なく安全性に優れる、花粉症、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎及び喘息等の、アレルギー性疾患の予防及び/又は治療剤として使用できる。また、本発明の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩の中でも、特に一般式(IA)のYが(d)又は(e)である化合物群及び一般式(IB)である化合物群は、水溶液中での安定性が高く、製剤化が容易であるという利点を有する。
製造例1で得られた化合物のH-NMRチャート図。 製造例2で得られた化合物のH-NMRチャート図。 製造例3で得られた化合物のH-NMRチャート図。 製造例4で得られた化合物のH-NMRチャート図。 製造例5で得られた化合物のH-NMRチャート図。 製造例6で得られた化合物のH-NMRチャート図。 製造例7で得られた化合物のH-NMRチャート図。 製造例8で得られた化合物のH-NMRチャート図。 製造例9で得られた化合物のH-NMRチャート図。 製造例10で得られた化合物のH-NMRチャート図。 製造例11で得られた化合物のH-NMRチャート図。 製造例14で得られた化合物のH-NMRチャート図。 製造例15で得られた化合物のH-NMRチャート図。 製造例16で得られた化合物のH-NMRチャート図。 製造例17で得られた化合物のH-NMRチャート図。 製造例18で得られた化合物のH-NMRチャート図。 製造例19で得られた化合物のH-NMRチャート図。 製造例20で得られた化合物のH-NMRチャート図。 製造例21で得られた化合物のH-NMRチャート図。 製造例22で得られた化合物のH-NMRチャート図。 製造例23で得られた化合物のH-NMRチャート図。 製造例24で得られた化合物のH-NMRチャート図。 製造例25で得られた化合物のH-NMRチャート図。 製造例26で得られた化合物のH-NMRチャート図。 製造例27で得られた化合物のH-NMRチャート図。 製造例28で得られた化合物のH-NMRチャート図。 製造例29で得られた化合物のH-NMRチャート図。 製造例30で得られた化合物のH-NMRチャート図。 製造例31で得られた化合物のH-NMRチャート図。 製造例32で得られた化合物のH-NMRチャート図。 製造例33で得られた化合物のH-NMRチャート図。 製造例34で得られた化合物のH-NMRチャート図。 製造例35で得られた化合物のH-NMRチャート図。 製造例36で得られた化合物のH-NMRチャート図。 製造例37で得られた化合物のH-NMRチャート図。 製造例38で得られた化合物のH-NMRチャート図。 製造例39で得られた化合物のH-NMRチャート図。 製造例40で得られた化合物のH-NMRチャート図。 製造例41で得られた化合物のH-NMRチャート図。 製造例42で得られた化合物のH-NMRチャート図。 製造例43で得られた化合物のH-NMRチャート図。 製造例44で得られた化合物のH-NMRチャート図。 製造例45で得られた化合物のH-NMRチャート図。 製造例46で得られた化合物のH-NMRチャート図。 製造例47で得られた化合物のH-NMRチャート図。 製造例48で得られた化合物のH-NMRチャート図。 製造例49で得られた化合物のH-NMRチャート図。 製造例50で得られた化合物のH-NMRチャート図。 製造例51で得られた化合物のH-NMRチャート図。 製造例52で得られた化合物のH-NMRチャート図。 製造例53で得られた化合物のH-NMRチャート図。 製造例54で得られた化合物のH-NMRチャート図。 化合物1のH-NMRチャート図。 化合物2のH-NMRチャート図。 化合物3のH-NMRチャート図。 化合物4のH-NMRチャート図。 化合物5のH-NMRチャート図。 化合物6のH-NMRチャート図。 化合物7のH-NMRチャート図。 化合物8のH-NMRチャート図。 化合物9のH-NMRチャート図。 化合物10のH-NMRチャート図。 化合物11のH-NMRチャート図。 化合物14のH-NMRチャート図。 化合物15のH-NMRチャート図。 化合物16のH-NMRチャート図。 化合物17のH-NMRチャート図。 化合物18のH-NMRチャート図。 化合物19のH-NMRチャート図。 化合物20のH-NMRチャート図。 化合物21のH-NMRチャート図。 化合物22のH-NMRチャート図。 化合物23のH-NMRチャート図。 化合物24のH-NMRチャート図。 化合物25のH-NMRチャート図。 化合物26のH-NMRチャート図。 化合物27のH-NMRチャート図。 化合物28のH-NMRチャート図。 化合物29のH-NMRチャート図。 化合物30のH-NMRチャート図。 化合物31のH-NMRチャート図。 化合物32のH-NMRチャート図。 化合物33のH-NMRチャート図。 化合物34のH-NMRチャート図。 化合物35のH-NMRチャート図。 化合物36のH-NMRチャート図。 化合物37のH-NMRチャート図。 化合物38のH-NMRチャート図。 化合物39のH-NMRチャート図。 化合物40のH-NMRチャート図。 化合物41のH-NMRチャート図。 化合物42のH-NMRチャート図。 化合物43のH-NMRチャート図。 化合物44のH-NMRチャート図。 化合物45のH-NMRチャート図。 化合物46のH-NMRチャート図。 化合物47のH-NMRチャート図。 化合物48のH-NMRチャート図。 即時型アレルギー反応抑制効果を示すグラフ。###: p<0.01, ## :p<0.01,  †: p<0.05,  * :p<0.05,  **: P<0.01,N = 8, mean +/- SE 遅発型アレルギー反応抑制効果を示すグラフ。###: p<0.01, ## :p<0.01,  †: p<0.05,  * :p<0.05,  **: P<0.01,N = 8, mean +/- SE 血管透過亢進能を示すグラフ。dex: デキストラン投与のスポット,Control:硫酸化ヒアルロン酸 投与のスポット 血管透過亢進能を示すグラフ。dex: デキストラン投与のスポット,Control:硫酸化ヒアルロン酸 投与のスポット 血管透過亢進能を示すグラフ。dex: デキストラン投与のスポット,Control:硫酸化ヒアルロン酸 投与のスポット
 本発明の低分子量多硫酸化ヒアルロン酸誘導体は、ヒアルロン酸オリゴマーの総水酸基が過剰に硫酸化されたものであるが、硫酸化の程度は、式(IA)及び(IB)のRの総数(オリゴマー全体)当たり、SOH基の占める割合(又は置換度)が、80~100%であるものが挙げられ、90~100%であるものが好ましい。尚、オリゴマーにおけるSOH基は偏在していてもよいが、通常、分子全体に均一に存在するものが、調製及び使用の観点からは好ましい。
 本発明の式(IA)で表される化合物のうち、Yが式(d)又は(e)である化合物(式(IA’))及び式(IB)で表される化合物は、文献未記載の新規化合物である。
 上記式(IA)及び(IB)において、Z及びZで示される、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基、置換されていてもよいヘテロアリール基における、「低級アルキル」としては、直鎖又は分枝状の炭素数1~6(以下、「C1-6」のように略す)のアルキル、例えばメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、n-ヘキシル等が挙げられる。このうち、好ましくは、C1-4アルキルであり、より好ましくは、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチルであり、更に好ましくは、メチル、エチルである。
 「アリール基」としては、C6-14の単環乃至三環式芳香族炭化水素環基が挙げられ、例えばフェニル、ナフチル、アントラセニルが挙げられ、好ましくはフェニルである。
 「ヘテロアリール基」としては、窒素原子、硫黄原子及び酸素原子から選択されるヘテロ原子を少なくとも1つ有する、飽和又は不飽和の単環又は多環複素環式基が挙げられる。
 具体的には、1~4の窒素原子を有する3~6員の不飽和複素単環式基、例えばピロリル、ピロリニル、イミダゾリル、ピラゾリル、ピリジル、ピリミジニル、ピラジニル、ピリダジニル、トリアゾリル、テトラゾリル、テトラヒドロピリジル等;
 1~4の窒素原子を有する3~7員の飽和複素単環式基、例えばピロリジニル、イミダゾリジニル、ピペリジル、ピペラジニル、ホモピペリジル等;
 1~5の窒素原子を有する不飽和縮合複素環式基、例えばインドリル、イソインドリル、イソインドリニル、ベンズイミダゾリル、キノリル、イソキノリル、イミダソピリジル、インダゾリル、ベンゾトリアゾリル、テトラゾロピリジニル、キノキサリニル、ピリジノテトラヒドロピリジル、テトラヒドロイソキノリル、インドリニル、ジヒドロピロロピリジル等;
 1~5の窒素原子を有する飽和縮合複素環式基、例えばピロリジノピペラジニル、キヌクリジニル、ピロリジノピペリジル等;
 酸素原子を有する3~6員の不飽和複素単環式基、例えばピラニル、フリル等;
 酸素原子を有する3~6員の飽和複素単環式基、例えば1H-テトラヒドロピラニル、テトラヒドロフラニル等;
 1又は2の硫黄原子を有する3~6員の不飽和複素単環式基、例えばチエニル等;
 1又は2の酸素原子及び1~3の窒素原子を有する3~6員の不飽和複素単環式基、例えばオキサゾリル、イソオキサゾリル、オキサジアゾリル、オキサジリニル等;
 1又は2の酸素原子及び1~3の窒素原子を有する3~6員の飽和複素単環式基、例えばモルホリニル等;
 1又は2の酸素原子及び1~3の窒素原子を有する飽和縮合複素環式基、例えばベンゾフラザニル、ベンズオキサゾリル、ベンズオキサジアゾリル等;
 1又は2の硫黄原子及び1~3の窒素原子を有する3~6員の不飽和複素単環式基、例えばチアゾリル、チアジアゾリル等;
 1又は2の硫黄原子及び1~3の窒素原子を有する3~6員の飽和複素単環式基、例えばチアゾリジニル等;
 1又は2の硫黄原子及び1~3の窒素原子を有する不飽和縮合複素環式基、例えばベンゾチアゾリル、チアゾロテトラヒドロピリジル等;
 1又は2の酸素原子を有する不飽和縮合複素環式基、例えばベンゾフラニル、ベンゾジオキソリル、クロマニル等;
が挙げられる。
 上記「低級アルキル基」に置換し得る基としては、例えば、ハロゲン原子、カルボキシ基、アリール基、低級アルコキシル基、アシル基等が挙げられ、「アリール基」及び「ヘテロアリール基」に置換し得る基としては、例えば、ハロゲン原子、カルボキシ基、低級アルキル基、低級アルコキシル基、アシル基等が挙げられる。
 ここで、アリール基としてはフェニル、ナフチル等が挙げられ、低級アルキル基としては、上述したC1-6アルキルが挙げられる。
 また、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。
 また、低級アルコキシ基としては、直鎖又は分枝状のC1-6アルコキシ、例えばメトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、n-ペントキシ、n-ヘキソキシ等が挙げられる。このうち、好ましくは、C1-4アルコキシルであり、より好ましくは、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシであり、更に好ましくは、メトキシ、エトキシである。
 アシル基としては、CHO、C1-6アルキル-カルボニル、C1-6アルコキシ-カルボニル、アリールカルボニル、アリール-C1-6アルキレン-カルボニル、ヘテロアリールカルボニル、ヘテロアリール-C1-6アルキレン-カルボニル基等が挙げられる。
 ここで、C1-6アルキル、C1-6アルコキシ、アリール、ヘテロアリールは前記したものと同様の基が挙げられる。また、C1-6アルキレンとしては、直鎖又は分枝状のC1-6アルキレン、例えば、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、プロピレン、メチルメチレン、エチルエチレン、1,2-ジメチルエチレン、1,1,2,2-テトラメチルエチレン等が挙げられ、好ましくは、メチレン、エチレン、トリメチレンである。
 また、「アラルキル基」としては、例えばアリール-C1-6アルキルが挙げられる。ここで、アリール、C1-6アルキルとしては前記と同様の基が例示できるが、好適なアラルキル基としては、ベンジル、フェネチル等が挙げられる。
 当該アラルキル基に置換し得る基としては、上記のアリール基、低級アルキル基に置換し得る基として例示したものが挙げられる。
 Z及びZで示される、「置換されていてもよい低級アルキル基」としては、トリフルオロメチル、ベンジル、2-、3-あるいは4-メチルベンジル、2-、3-あるいは4-メトキシベンジル、メトキシメチル、メトキシカルボニルメチル基等が好ましく、
 「置換されていてもよいアリール基」としては、2-、3-あるいは4-メチルフェニル、2-、3-あるいは4-メトキシフェニル、2-、3-あるいは4-フルオロフェニル、2-、3-あるいは4-トリフルオロメチル、2-、3-あるいは4-カルボキシフェニル基等が好ましく、
 「置換されていてもよいアラルキル基」としては、ベンジル、2-、3-あるいは4-メチルベンジル、2-、3-あるいは4-メトキシベンジル等が好ましく、
 「置換されていてもよいヘテロアリール基」としては、2-、3-あるいは4-メチルピリジル、2-、3-あるいは4-メトキシピリジル、2-、3-あるいは4-フルオロピリジル、2-、3-あるいは4-トリフルオロピリジル、2-、3-あるいは4-カルボキシピリジル基等が好ましい。
 -NZが全体としてアミノ酸残基もしくはペプチド残基を示す場合における、「アミノ酸残基もしくはペプチド残基」としては、例えば、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、β-アラニン、サルコシン、フェニルグリシン、N-エチルグリシン、N-n-プロピルグリシン、N-イソプロピルグリシン、N-n-ブチルグリシン、N-tert-ブチルグリシン、N-n-ペンチルグリシン、N-n-ヘキシルグリシン等のアミノ酸残基;サルコシルグリシン、グリシルグリシン、グリシルサルコシン、サルコシルサルコシン、アラニルグリシン、β-アラニルフェニルアラニン、グリシルフェニルアラニン、フェニルアラニルグリシン、フェニルアラニルフェニルアラニン、グリシルグリシルグリシン、N-エチルグリシルグリシン、N-n-プロピルグリシルグリシン、サルコシルグリシルグリシン、N-エチルグリシルグリシルグリシン、フェニルアラニルグリシルグリシン等のペプチド残基が挙げらる。尚、当該アミノ酸残基もしくはペプチド残基は、末端のカルボキシル基がアミド化されていてもよい。
 式(IA)及び(IB)で表される化合物において、nは0~15の数を示すが、3~9であるのが好ましく、3、4又は5であるのがより好ましく、4又は5であるのがさらに好ましい。
 尚、上記一般式(IA)及び(IB)で表される化合物には、各種立体異性体、光学異性体、水和物等の溶媒和物が包含される。
 また、本発明の低分子量多硫酸化ヒアルロン酸誘導体の好適な塩は、製薬学的に許容される塩であって、例えば、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例えば、マグネシウム塩、カルシウム塩等)等の金属塩、アンモニウム塩、アルカリ金属(ナトリウムやカリウム等)及びアルカリ土類金属(マグネシウムやカルシウム等)の水酸化物、炭酸塩又は炭酸水素塩等の無機塩基との塩、もしくは、有機アミン(例えば、トリメチルアミン、トリエチルアミン等)、ピリジン、キノリン、ピペリジン、イミダゾール、ピコリン、ジメチルアミノピリジン、ジメチルアニリン、N-メチルモルホリン等の有機塩基との塩等を挙げることができる。
 本発明の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩の分子量は、塩の種類によっても異なるが、その平均分子量は、1500~13500であるのが好ましい。
 本発明の一般式(IA)あるいは(IB)で示される化合物は、例えば、下記の反応式-1に示すように、一般式(IIA)あるいは(IIB)で示される低分子量ヒアルロン酸誘導体を硫酸化することにより製造することができる。尚、原料化合物及び目的化合物は、前記した適切な塩であっても良い。
 また、下記式中、Z及びZで示される各置換基は、Z及びZに対応し、各置換基の意味は前述したとおりである。
Figure JPOXMLDOC01-appb-C000011
[式中、Xは次の(a)又は(b
Figure JPOXMLDOC01-appb-C000012
は次の(c)又は(d)又は(e
Figure JPOXMLDOC01-appb-C000013
は次の(f)又は(g
Figure JPOXMLDOC01-appb-C000014
を示し、R'は-OH又は-NZ(ここで、Z及びZは、独立して水素原子、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基又は置換されていてもよいヘテロアリール基を示すか、或いは-NZ全体でアミノ酸残基もしくはペプチド残基を示し、n、X、Y、W、R及び*は前記と同じものを示す。〕
 本反応は、既知の硫酸化反応、例えば化合物(IIA)あるいは(IIB)と硫酸化剤を適当な溶媒に溶解させ、加熱下に反応させることにより行うことができる。
 ここで使用される溶媒としては、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、N,N-ジメチルアセトアミド、1,1,3,3-テトラメチル尿素、ピリジン、N,N-ジメチルアクリルアミド、あるいは、1-エチル-3-メチルイミダゾリウム ヘキサフルオロホスフェート、1-ブチル-1-メチルピロリジニウム テトラフルオロボレート、1-ブチルピリジニウム クロリド等のイオン性液体等、又はこれらの混合溶媒等を例示できる。
 硫酸化剤としては、特に限定されるものではないが、無水硫酸とピリジン、ピコリン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、N,N-ジメチルホルムアミド、ジオキサン等の錯体、若しくは、硫酸-ジシクロヘキシルカルボジイミド、クロロスルホン等を使用するのが好ましい。一般に硫酸化剤は化合物(IIA)あるいは(IIB)に対して1~100等量使用するのが好ましい。また、本反応の系内には、トリフルオロ酢酸やトリフルオロメタンスルホン酸等の酸触媒を添加しても良い。
 反応温度及び反応時間は、特に限定されるものではないが、例えば、0~120℃で、30分~20日が挙げられる。
 式(IIA)中、Yが式(d)又は(e)であり、R'が-OHである化合物、あるいは式(IIB)中、R'が-OHである化合物は、反応-2で示される還元反応により製造することができる。尚、原料化合物及び目的化合物は、前記した適切な塩であっても良い。
Figure JPOXMLDOC01-appb-C000015
[式中、Aは次の(h)又は(i)
Figure JPOXMLDOC01-appb-C000016
は次の(j)又は(k)
Figure JPOXMLDOC01-appb-C000017
を示し、n、X及び*は前記と同じものを示す。]
 すなわち、化合物(III-1)あるいは(III-2)を、例えば適当な溶媒中還元剤の存在下に還元反応に付すことにより化合物(II-1)あるいは(II-2)を製造することができる。
 本反応に使用される溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、ブタノール、tert-ブタノール、エチレングリコール等の低級アルコール類、アセトニトリル、蟻酸、酢酸等の脂肪酸、ジエチルエーテル、テトラヒドロフラン、ジオキサン、モノグライム、ジグライム等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、N,N-ジメチルホルムアミド又はこれらの混合溶媒等を例示できる。
 還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ホウ素カリウム、水素化ホウ素テトラブチルアンモニウム、水素化ホウ素亜鉛、トリ第二ブチル水素化ホウ素リチウム、ボラン類縁体、水素化ジイソブチルアルミニウム、水素化リチウムアルミニウム等を例示できる。
 還元剤は、化合物(III-1)あるいは(III-2)に対して、通常0.1倍モル~60倍モル程度用いられる。
 本反応の系内には、ピリジン、トリメチルアミン、トリエチルアミン、N-エチルジイソプロピルアミン等のアミン類、水酸化ナトリウム等の無機塩基又は/及びジメチルグリオキシム、2,2’-ビピリジル、1,10-フェナンスロリン等のリガンドの存在下、塩化亜鉛、塩化コバルト(II)、塩化サマリウム(III)、塩化セリウム(III)、塩化チタン(III)、塩化鉄(II)、塩化鉄(III)、塩化ニッケル(II)等を添加しても良い。
 なお、本還元反応は、パラジウム、白金などの遷移金属触媒存在下での接触水素化によって行なうこともできる。
 本反応は、通常-80~100℃程度、好ましくは-80~70℃程度にて行なうことができるが、一般に、30分~60時間程度で終了する。
 式(IIA)中、Yが式(d)又は(e)であり、R'が-NZである化合物、あるいは式(IIB)中、R'が-NZである化合物は、次反応式-3で示される還元的アミノ化反応により製造することができる。尚、原料化合物及び目的化合物は、前記した適切な塩であっても良い。
Figure JPOXMLDOC01-appb-C000018
〔式中、A、A、Z及びZは、前記と同じものを示す。〕
 本反応は、例えば、適当な溶媒中、還元剤の存在下、化合物(III-1)又は(III-2)にアミン(IV)を反応させてシッフ塩基を形成させ、次いで還元する、いわゆる還元的アミノ化反応である。
 アミン(IV)は、化合物(III-1)又は(III-2)に対して、通常1倍モル~5倍モル程度用いられる。
 ここで使用される溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、ブタノール、tert-ブタノール、エチレングリコール等の低級アルコール類、アセトニトリル、蟻酸、酢酸等の脂肪酸、ジエチルエーテル、テトラヒドロフラン、ジオキサン、モノグライム、ジグライム等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、N,N-ジメチルホルムアミド又はこれらの混合溶媒等を例示できる。
 ここで使用される還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ホウ素カリウム、水素化ホウ素テトラブチルアンモニウム、シアノトリヒドロホウ酸ナトリウム、トリアセトキシヒドロホウ酸ナトリウム等を例示できる。還元剤は、化合物(III)に対して、通常0.1倍モル~60倍モル程度用いられる。
 本反応は、通常-80~100℃程度、好ましくは-80~70℃程度にて行うことができるが、一般的に、30分~60時間程度で終了する。
 必要に応じて、1倍モル~50倍モルの有機酸類もしくはその塩の存在下で反応を行なってもよい。有機酸類もしくはその塩としては、例えば、酢酸、トリフルオロ酢酸やこれらのアルカリ金属塩(例えば酢酸ナトリウム等)等が挙げられる。
 本反応の系内には、ピリジン、トリメチルアミン、トリエチルアミン、N-エチルジイソプロピルアミン等のアミン類、水酸化ナトリウム等の無機塩基又は/及びジメチルグリオキシム、2,2’-ビピリジル、1,10-フェナンスロリン等のリガンドの存在下、塩化亜鉛、塩化コバルト(II)、塩化サマリウム(III)、塩化セリウム(III)、塩化チタン(III)、塩化鉄(II)、塩化鉄(III)、塩化ニッケル(II)等を添加しても良い。
 また、該反応の反応系内に、適当量のホウ酸を添加しても良い。
 偶数の糖で構成される化合物群と奇数糖で構成される化合物群の変換は、次反応式-4又は5により、原料化合物より構成糖の一つ少ない化合物を製造できる。
Figure JPOXMLDOC01-appb-C000019
[式中、Aは前記と同じものを示す。]
 本反応は、弱アルカリ加熱処理によるN-アセチルグルコサミンの脱離反応である。
 化合物(V)をReissigらの方法(Reissig, J. L., et al., J. Biol. Chem., 217, 959 (1955))に準じて、PH9.18のホウ酸塩緩衝液中で加熱攪拌することで、化合物(VI)を製造できる。
 本反応は、通常50~120℃程度、好ましくは70~90℃程度にて行うことができるが、一般的に、30分~60時間程度で終了する。
Figure JPOXMLDOC01-appb-C000020
[式中、Dは次の(r)又は(s)
Figure JPOXMLDOC01-appb-C000021
を示し、n及び*は前記と同じものを示す。]
 本反応は、β-グルクロニダーゼを用いたグルクロン酸の脱離反応である。
 化合物(VII)を、β-グルクロニダーゼ存在下、適当なバッファー中で攪拌することで、化合物(VIII)を製造できる。
 本反応は、通常室温~60℃程度、好ましくは30~40℃程度にて行うことができるが、一般的に、30分~60時間程度で終了する。
 上記の各反応式で得られる各々の目的化合物は、各種修飾多糖類で常用されている精製操作により精製することができる。具体的な精製操作には、ゲルろ過、中和、透析による脱塩、有機溶媒添加の沈殿操作による回収操作、もしくは凍結乾燥による回収操作等が挙げられる。
 本発明の化合物は、後記実施例に示すように、抗アレルギー作用及び抗炎症作用を持ち、かつ血管透過性亢進能を示さないことから、花粉症、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎及び喘息等のアレルギー性疾患の予防及び/又は治療するための医薬として有用である。
 斯かる医薬は、本発明の化合物を通常の医療製剤の形態に製剤したものであって、通常使用される充填剤、増量剤、結合剤、付湿剤、崩壊剤、表面活性剤、滑沢剤等の希釈剤あるいは賦形剤を用いて調製される。
 このような医薬としては、治療目的に応じて種々の形態の中から選択でき、その代表的なものとして、錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤、坐剤、注射剤(液剤、懸濁剤等)、点眼剤、軟膏剤、吸入剤等が挙げられる。
 錠剤の形態に成形する際に用いられる担体としては、公知のものを広く使用でき、例えば、乳糖、白糖、塩化ナトリウム、ブドウ糖、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース等の賦形剤、水、エタノール、プロパノール、単シロップ、ブドウ糖液、デンプン液、ゼラチン溶液、カルボキシメチルセルロース、セラック、メチルセルロース、リン酸カリウム、ポリビニルピロリドン等の結合剤、乾燥デンプン、ポリオキシエチレンソルビタン脂肪酸エステル、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、デンプン、乳糖等の崩壊剤、白糖、ステアリン、カカオバター、水素添加油等の崩壊抑制剤、第4級アンモニウム塩基、ラウリル硫酸ナトリウム等の吸収促進剤、グリセリン、デンプン等の保湿剤、デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ酸等の吸着剤、精製タルク、ステアリン酸塩、ホウ酸末、ポリエチレングリコール等の滑沢剤等が挙げられる。
 更に錠剤は、必要に応じて通常の錠皮を施した錠剤、例えば、糖衣剤、ゼラチン被包錠、腸溶被錠、フィルムコーティング錠あるいは二重錠、多層錠とすることができる。
 丸剤の形態に成形する際に用いられる担体としては、公知のものを広く使用でき、例えば、ブドウ糖、乳糖、デンプン、カカオ脂、硬化植物油、カオリン、タルク等の賦形剤、アラビアゴム末、トラガント末、ゼラチン、エタノール等の結合剤、ラミナラン、寒天等の崩壊剤等が挙げられる。
 坐剤の形態に成形する際に用いられる担体としては、公知のものを広く使用でき、例えば、ポリエチレングリコール、カカオ脂、高級アルコール、高級アルコールのエステル、ゼラチン、半合成グリセライド等が挙げられる。
 注射剤として調整される場合は、液剤、乳剤、及び懸濁剤は殺菌され、かつ血液と等張であるのが好ましい。これらの液剤、乳剤及び懸濁剤の形態に成形する際に用いられる希釈剤としては、公知の広く用いられているものを使用することができ、例えば、水、エタノール、プロピレングリコール、エトキシ化イソステアリルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル等が挙げられる。なお、この場合、等張性の溶液を調整するのに十分な量の食塩、ブドウ糖或いはグリセリンを医療製剤中に含有させてもよく、また通常の溶解補助剤、緩衝剤、無痛化剤等を、更に必要に応じて、着色剤、保存剤、香料、風味剤、甘味剤等や他の医薬品を含有させても良い。
 斯かる医薬中に含有される本発明化合物の量は、特に限定されず広い範囲内から適宜選択することができるが、通常、医薬中に本発明化合物を1~70重量%含有させるのが好ましい。
 本発明に係る医薬の投与方法としては、特に制限はなく、各種製剤形態、患者の年齢、性別、疾患の状態、その他の条件に応じた方法で投与される。例えば、錠剤、丸剤、液剤、懸濁剤、乳剤、顆粒剤及びカプセル剤の場合には経口投与される。また、注射剤の場合には、単独であるいはブドウ糖、アミノ酸等の通常の補液と混合して静脈内に投与したり、更には必要に応じて、単独で筋肉内、皮内、皮下もしくは腹腔内に投与したりすることができる。坐剤の場合には、直腸内に投与される。
 上記医薬の投与量は、用法、患者の年齢、性別、疾患の程度、その他の条件に応じて適宜選択すればよく、通常、1日あたり体重1kgに対して、0.001~100mg、好ましくは0.001~50mgを1回~数回に分けて投与される。尚、上記投与量は、種々の条件で変動するので、上記範囲より少ない投与量で十分な場合もあるし、また上記範囲を超えた投与量が必要な場合もある。
以下、実施例を掲げて、本発明をより詳細に説明する。
なお、H-NMRは、溶媒として重水(DO)を用い、AVANCEIII 400(BURKER社製)あるいはAVANCE 500(BURKER社製)により測定した。
製造例1~54 原料化合物の製造
 以下の製造例1~54に記載の方法により、表1~7で示される原料化合物を製造した。
 なお、質量分析は、Voyager DE-PRO(アプライドシステムズジャパン株式会社)による。
製造例1
 ヒアルロン酸ナトリウム(資生堂製、BIO Sodium Hyaluronate HA9)とウシ精巣由来ヒアルロニダーゼ(calbiochem社製、Hyaluronidase Bovine T 100KU)から、文献Glycobiology, vol.12, No.7, pp.421-426, 2002に従って分離したヒアルロン酸オリゴ糖4-mer(20mg)を、メタノール(1ml)と水(0.5ml)に溶解し、氷冷下、水素化ホウ素ナトリウム(10mg)を加えて撹拌した。室温に戻して一晩撹拌した。質量分析にて反応の終了を確認した。
 氷冷下で10%酢酸メタノール溶液(0.5ml)と水(1ml)を加えた後、減圧下で濃縮した。10%酢酸メタノール溶液(0.5ml)を加えて共沸した後、メタノール(2ml)を加えて共沸を2回行なった。
 残渣を水(2ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した。ショートカラム(Aldrich社製、Dowex(登録商標)50W x 8 hydrogen form)に通してプロトン化体とした後、減圧濃縮した。AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を凍結乾燥して、目的物を得た。(12mg、白色粉末)
MS[M+Na]:846.21
H-NMR:チャートを図1に示す。
製造例2
 原料をヒアルロン酸オリゴ糖6-mer(60mg)に変えたこと以外、製造例1と同様に反応して、目的物を得た。(50mg、白色粉末)
MS[M-H]:1157.81
H-NMR:チャートを図2に示す。
製造例3
 ヒアルロン酸オリゴ糖8-mer(60mg)を製造例1と同様に反応して、目的物を得た。(51mg、白色粉末)
MS[M-H]:1535.57
H-NMR:チャートを図3に示す。
製造例4
 ヒアルロン酸オリゴ糖10-mer(60mg)を製造例1と同様に反応して、目的物を得た。(48mg、白色粉末)
MS[M-H]:1915.72
H-NMR:チャートを図4に示す。
製造例5
 ヒアルロン酸オリゴ糖12-mer(60mg)を製造例1と同様に反応して、目的物を得た。(60mg、白色粉末)
MS[M-H]:2294.98
H-NMR:チャートを図5に示す。
製造例6
 原料をヒアルロン酸オリゴ糖14-mer(20mg)に変えたこと以外、製造例1と同様にして、目的物を得た。(20mg、白色粉末)
H-NMR:チャートを図6に示す。
製造例7
 ヒアルロン酸オリゴ糖16-mer(10mg)を、メタノール(0.6ml)と水(0.3ml)に溶解し、氷冷下、水素化ホウ素ナトリウム(5mg)を加えて撹拌した。室温に戻して一晩撹拌した。質量分析にて反応の終了を確認した。
 氷冷下で10%酢酸メタノール溶液(0.1ml)と水(0.2ml)を加えた後、減圧下で濃縮した。
 残渣を水(1ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した。AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を凍結乾燥して、目的物を得た。(10mg、白色粉末)
H-NMR:チャートを図7に示す。
製造例8
 原料をヒアルロン酸オリゴ糖18-mer(20mg)に変えたこと以外、製造例1と同様にして、目的物を得た。(20mg、白色粉末)
H-NMR:チャートを図8に示す。
製造例9
 原料をヒアルロン酸オリゴ糖20-mer(42mg)に変えたこと以外、製造例1と同様にして、目的物を得た。(40mg、白色粉末)
H-NMR:チャートを図9に示す。
製造例10
 ヒアルロン酸オリゴ糖10-mer(20mg)を、水(0.8ml)に溶解し、氷冷した。アントラニル酸(30mg)、ボロン酸(40mg)、酢酸ナトリウム(80mg)及びシアノトリヒドロホウ酸ナトリウム(5mg)をメタノール(1ml)と水(0.2ml)に溶解し、この溶液を加えて80℃で5時間撹拌した。質量分析にて反応の終了を確認した。
 減圧下で濃縮した後、残渣をメタノール(1ml)と水(1ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した。ゲルろ過クロマトグラフィー(LH-20、18mm x 500mm、水:メタノール=1:1)を行い精製し、目的の画分を凍結乾燥して、目的物を得た。(24mg、白色粉末)
H-NMR:チャートを図10に示す。
製造例11
 ヒアルロン酸オリゴ糖10-mer(20mg)を、水(0.8ml)に溶解し、氷冷した。アニリン(30mg)、ボロン酸(40mg)、酢酸ナトリウム(80mg)及びシアノトリヒドロホウ酸ナトリウム(5mg)をメタノール(1ml)と水(0.2ml)に溶解し、加えて80℃で5時間撹拌した。質量分析にて反応の終了を確認した。
 減圧下で濃縮した後、残渣をメタノール(1ml)と水(1ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した。ゲルろ過クロマトグラフィー(LH-20、18mm x 500mm、水:メタノール=1:1)を行い精製し、目的の画分を凍結乾燥して、目的物を得た。(17mg、白色粉末)
H-NMR:チャートを図11に示す。
製造例12
 原料をヒアルロン酸オリゴ糖24~32-mer(10mg)に変えたこと以外、製造例1と同様にして、目的物を得た。(10mg、白色粉末)
製造例13
 原料をヒアルロン酸オリゴ糖34~46-mer(10mg)に変えたこと以外、製造例1と同様にして、目的物を得た。(10mg、白色粉末)
製造例1~13の目的物の構造を下記表1に記す。
Figure JPOXMLDOC01-appb-T000001
製造例14
 ヒアルロン酸ナトリウム(資生堂製、BIO Sodium Hyaluronate HA9)とウシ精巣由来ヒアルロニダーゼ(calbiochem社製、Hyaluronidase Bovine T 100KU)から、文献Glycobiology, vol.12, No.7, pp.421-426, 2002に従って分離したヒアルロン酸オリゴ糖4-mer(40mg)を、ホウ酸塩緩衝液(pH9.18)(3ml)に溶解し、80℃にて1時間攪拌した。室温に戻し、メタノール(3ml)を加えた後、減圧濃縮した。残渣を水(2ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した後、AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を濃縮することで白色粉末を得た。
 続いて、得られた白色粉末(25mg)をメタノール(1ml)と水(0.5ml)に溶解し、氷冷下、水素化ホウ素ナトリウム(10mg)を加えて撹拌した。室温に戻して一晩撹拌した。質量分析にて反応の終了を確認した。氷冷下で10%酢酸メタノール溶液(0.2ml)を加えた後、減圧下で濃縮した。残渣を水(2ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した後、AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を凍結乾燥して、目的物を得た。(18mg、白色粉末)
MS[M-H]:573.45
H-NMR:チャートを図12に示す。
製造例15
 原料をヒアルロン酸オリゴ糖6-mer(60mg)に変えたこと以外、製造例14と同様にして、目的物を得た。(34mg、白色粉末)
MS[M-H]:953.02
H-NMR:チャートを図13に示す。
製造例16
 原料をヒアルロン酸オリゴ糖8-mer(10mg)に変えたこと以外、製造例14と同様にして、目的物を得た。(8mg、白色粉末)
MS[M-H]:1331.54
H-NMR:チャートを図14に示す。
製造例17
 原料をヒアルロン酸オリゴ糖10-mer(10mg)に変えたこと以外、製造例14と同様にして、目的物を得た。(8mg、白色粉末)
MS[M-H]:1710.28
H-NMR:チャートを図15に示す。
製造例18
 原料をヒアルロン酸オリゴ糖12-mer(20mg)に変えたこと以外、製造例14と同様にして、目的物を得た。(16mg、白色粉末)
MS[M-H]:2090.01
H-NMR:チャートを図16に示す。
製造例19
 原料をヒアルロン酸オリゴ糖14-mer(18mg)に変えたこと以外、製造例14と同様にして、目的物を得た。(11mg、白色粉末)
MS[M-H]:2469.52
H-NMR:チャートを図17に示す。
製造例20
 原料をヒアルロン酸オリゴ糖16-mer(7mg)に変えたこと以外、製造例14と同様にして、目的物を得た。(5mg、白色粉末)
MS[M-H]:2848.59
H-NMR:チャートを図18に示す。
製造例21
 原料をヒアルロン酸オリゴ糖18-mer(10mg)に変えたこと以外、製造例14と同様にして、目的物を得た。(9mg、白色粉末)
MS[M-H]:3225.70
H-NMR:チャートを図19に示す。
製造例22
 原料をヒアルロン酸オリゴ糖20-mer(15mg)に変えたこと以外、製造例14と同様にして、目的物を得た。(13mg、白色粉末)
MS[M-H]:3604.16
H-NMR:チャートを図20に示す。
 製造例14~22の目的物の構造を下記表2に記す。
Figure JPOXMLDOC01-appb-T000002
製造例23
 製造例1で得られた化合物(17mg)を、バッファー(塩化ナトリウム水溶液(300mM、1ml)及び酢酸ナトリウム水溶液(200mM、1ml)を混合して、氷酢酸にてpHを5.2に調整したもの)(2ml)に溶解し、bovine liver β-glucuronidase Type B-1(Sigma-Aldrich社製)(8mg)を加えて、37℃にて8時間インキュベートした。反応液を限外ろ過(ミリポア社製、Amicon Ultra 4ml 10K Nominal Molecular Weight Limit)して精製した後、AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を凍結乾燥して、目的物を得た。(8mg、白色粉末)
MS[M-H]:601.18
H-NMR:チャートを図21に示す。
製造例24
 原料を製造例2で得られた化合物(11mg)に変えたこと以外、製造例23と同様にして、目的物を得た。(4mg、白色粉末)
MS[M-H]:980.29
H-NMR:チャートを図22に示す。
製造例25
 原料を製造例3で得られた化合物(10mg)に変えたこと以外、製造例23と同様にして、目的物を得た。(8mg、白色粉末)
MS[M-H]:1359.37
H-NMR:チャートを図23に示す。
製造例26
 原料を製造例4で得られた化合物(30mg)に変えたこと以外、製造例23と同様にして、目的物を得た。(15mg、白色粉末)
MS[M-H]:1738.15
H-NMR:チャートを図24に示す。
製造例27
 原料を製造例5で得られた化合物(14mg)に変えたこと以外、製造例23と同様にして、目的物を得た。(7mg、白色粉末)
MS[M-H]:2117.50
H-NMR:チャートを図25に示す。
製造例28
 原料を製造例9で得られた化合物(10mg)に変えたこと以外、製造例23と同様にして、目的物を得た。(5mg、白色粉末)
MS[M-H]:3633.84
H-NMR:チャートを図26に示す。
 製造例23~28の目的物の構造を下記表3に記す。
Figure JPOXMLDOC01-appb-T000003
製造例29
 原料を製造例15で得られた化合物(15mg)に変えたこと以外、製造例23と同様にして、目的物を得た。(9mg、白色粉末)
MS[M-H]:777.28
H-NMR:チャートを図27に示す。
製造例30
 原料を製造例16で得られた化合物(11mg)に変えたこと以外、製造例23と同様にして、目的物を得た。(7mg、白色粉末)
MS[M-H]:1156.41
H-NMR:チャートを図28に示す。
製造例31
 原料を製造例17で得られた化合物(23mg)に変えたこと以外、製造例23と同様にして、目的物を得た。(15mg、白色粉末)
MS[M-H]:1535.07
H-NMR:チャートを図29に示す。
製造例32
 原料を製造例18で得られた化合物(14mg)に変えたこと以外、製造例23と同様にして、目的物を得た。(8mg、白色粉末)
MS[M-H]:1914.60
H-NMR:チャートを図30に示す。
製造例33
 原料を製造例22で得られた化合物(8mg)に変えたこと以外、製造例23と同様にして、目的物を得た。(5mg、白色粉末)
MS[M-H]:3430.67
H-NMR:チャートを図31に示す。
 製造例29~33の目的物の構造を下記表4に記す。
Figure JPOXMLDOC01-appb-T000004
製造例34
 ヒアルロン酸ナトリウム(フードケミファ製、ヒアルロン酸 FCH-SU)とStreptomyces hyalurolyticus由来のヒアルロニダーゼ(アマノエンザイム製、ヒアルノニダーゼ“アマノ”1)から、文献Glycobiology, vol.11, No.1, pp.57-64, 2001に従って分離した不飽和ヒアルロン酸オリゴ糖4-mer(8mg)を、メタノール(2ml)と水(1ml)に溶解し、氷冷下、水素化ホウ素ナトリウム(4mg)を加えて撹拌した。室温に戻して一晩撹拌した。質量分析にて反応の終了を確認した。氷冷下で10%酢酸メタノール溶液(0.2ml)を加えた後、減圧下で濃縮した後、AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を凍結乾燥して、目的物を得た。(3mg、白色粉末)
MS[M-H]:759.61
H-NMR:チャートを図32に示す。
製造例35
 原料を不飽和ヒアルロン酸オリゴ糖6-mer(10mg)に変えたこと以外、製造例34と同様にして、目的物を得た。(9mg、白色粉末)
MS[M-H]:1139.15
H-NMR:チャートを図33に示す。
製造例36
 原料を不飽和ヒアルロン酸オリゴ糖8-mer(10mg)に変えたこと以外、製造例34と同様にして、目的物を得た。(10mg、白色粉末)
MS[M-H]:1518.49
H-NMR:チャートを図34に示す。
製造例37
 原料を不飽和ヒアルロン酸オリゴ糖10-mer(10mg)に変えたこと以外、製造例34と同様にして、目的物を得た。(10mg、白色粉末)
MS[M-H]:1897.57
H-NMR:チャートを図35に示す。
製造例38
 原料を不飽和ヒアルロン酸オリゴ糖12-mer(10mg)に変えたこと以外、製造例34と同様にして、目的物を得た。(8mg、白色粉末)
MS[M-H]:2276.99
H-NMR:チャートを図36に示す。
製造例39
 原料を不飽和ヒアルロン酸オリゴ糖20-mer(12mg)に変えたこと以外、製造例34と同様にして、目的物を得た。(10mg、白色粉末)
MS[M-H]:3792.03
H-NMR:チャートを図37に示す。
 製造例34~39の目的物の構造を下記表5に記す。
Figure JPOXMLDOC01-appb-T000005
製造例40
 ヒアルロン酸ナトリウム(フードケミファ製、ヒアルロン酸 FCH-SU)とStreptomyces hyalurolyticus由来のヒアルロニダーゼ(アマノエンザイム製、ヒアルノニダーゼ“アマノ”1)から、文献Glycobiology, vol.11, No.1, pp.57-64, 2001に従って分離した不飽和ヒアルロン酸オリゴ糖4-mer(10mg)を、ホウ酸塩緩衝液(pH9.18)(1ml)に溶解し、80℃にて1時間攪拌した。室温に戻し、メタノール(3ml)を加えた後、減圧濃縮した。残渣を水(2ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した後、AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を濃縮することで白色粉末を得た。
 続いて、得られた白色粉末(6mg)をメタノール(1ml)と水(0.5ml)に溶解し、氷冷下、水素化ホウ素ナトリウム(10mg)を加えて撹拌した。室温に戻して一晩撹拌した。質量分析にて反応の終了を確認した。氷冷下で10%酢酸メタノール溶液(0.2ml)を加えた後、減圧下で濃縮した。残渣を水(2ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した後、AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を凍結乾燥して、目的物を得た。(4mg、白色粉末)
MS[M-H]:556.77
H-NMR:チャートを図38に示す。
製造例41
 原料を不飽和ヒアルロン酸オリゴ糖6-mer(10mg)に変えたこと以外、製造例40と同様にして、目的物を得た。(7mg、白色粉末)
MS[M-H]:935.49
H-NMR:チャートを図39に示す。
製造例42
 原料を不飽和ヒアルロン酸オリゴ糖8-mer(10mg)に変えたこと以外、製造例40と同様にして、目的物を得た。(6mg、白色粉末)
MS[M-H]:1314.21
H-NMR:チャートを図40に示す。
製造例43
 原料を不飽和ヒアルロン酸オリゴ糖10-mer(10mg)に変えたこと以外、製造例40と同様にして、目的物を得た。(7mg、白色粉末)
MS[M-H]:1693.58
H-NMR:チャートを図41に示す。
製造例44
 原料を不飽和ヒアルロン酸オリゴ糖12-mer(10mg)に変えたこと以外、製造例40と同様にして、目的物を得た。(6mg、白色粉末)
MS[M-H]:2073.41
H-NMR:チャートを図42に示す。
 製造例40~44の目的物の構造を下記表6に記す。
Figure JPOXMLDOC01-appb-T000006
製造例45
 ヒアルロン酸オリゴ糖4-mer(10mg)に、ベンジルアミン(24mg)、ボロン酸(20mg)、酢酸ナトリウム(40mg)及びシアノトリヒドロホウ酸ナトリウム(15mg)をメタノール(0.5ml)と水(0.5ml)に溶解した溶液を加えて50℃で6時間撹拌した。質量分析にて反応の終了を確認した。
 減圧下で濃縮した後、水(2ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した。ゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い精製し、目的の画分を凍結乾燥して、目的物を得た。(8mg、白色粉末)
H-NMR:チャートを図43に示す。
製造例46
 ヒアルロン酸オリゴ糖4-mer(10mg)に、フェニルアラニン(5mg)、酢酸(10μl)、酢酸ナトリウム(10mg)及びシアノトリヒドロホウ酸ナトリウム(10mg)を、メタノール(0.2ml)と水(0.2ml)に溶解した溶液を加えて60℃で6時間撹拌した。質量分析にて反応の終了を確認した。
 減圧下で濃縮した後、残渣にジクロロメタン(5ml)と水(5ml)を加えて抽出した。水相を減圧下で濃縮した後、水(2ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した。ゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い精製し、目的の画分を凍結乾燥して、目的物を得た。(11mg、白色粉末)
H-NMR:チャートを図44に示す。
製造例47
 フェニルアラニンをプロリンに変えたこと以外、製造例46と同様にして、目的物を得た。(8mg、白色粉末)
H-NMR:チャートを図45に示す。
製造例48
 フェニルアラニンをトリプトファンに変えたこと以外、製造例46と同様にして、目的物を得た。(7mg、白色粉末)
H-NMR:チャートを図46に示す。
製造例49
 フェニルアラニンをグリシルフェニルアラニンアミドに変えたこと以外、製造例46と同様にして、目的物を得た。(4mg、白色粉末)
H-NMR:チャートを図47に示す。
製造例50
 フェニルアラニンをフェニルアラニルグリシンに変えたこと以外、製造例46と同様にして、目的物を得た。(14mg、白色粉末)
H-NMR:チャートを図48に示す。
製造例51
 出発物質をヒアルロン酸オリゴ糖4-mer(10mg)からヒアルロン酸オリゴ糖10-mer(20mg)に、またベンジルアミンを4-クロロアニリンに変えたこと以外、製造例45と同様にして、目的物を得た。(10mg、白色粉末)
H-NMR:チャートを図49に示す。
製造例52
 ヒアルロン酸オリゴ糖4-merをヒアルロン酸オリゴ糖10-merに、ベンジルアミンを2-アミノピリジンに変えたこと以外、製造例45と同様にして、目的物を得た。(12mg、白色粉末)
H-NMR:チャートを図50に示す。
製造例53
 ヒアルロン酸オリゴ糖4-merをヒアルロン酸オリゴ糖10-merに、フェニルアラニンをフェニルアラニルグリシルグリシンに変えたこと以外、製造例46と同様にして、目的物を得た。(5mg、白色粉末)
H-NMR:チャートを図51に示す。
製造例54
 ヒアルロン酸オリゴ糖4-merをヒアルロン酸オリゴ糖10-merに変えたこと以外、製造例46と同様にして、目的物を得た。(5mg、白色粉末)
H-NMR:チャートを図52に示す。
 製造例45~54の目的物の構造を下記表7に記す。
Figure JPOXMLDOC01-appb-T000007
実施例1~48 本発明化合物の製造
 以下の実施例1~48に記載の方法により、表8~14で示される本発明化合物を製造した。なお、質量分析は、QSTAR pulsar i(アプライドシステムズジャパン株式会社)による。
実施例1
 製造例1で合成した化合物(12mg)を水(1ml)に溶解し、トリブチルアミン(100μl)を加えて撹拌した後、減圧下で濃縮した。N,N-ジメチルホルムアミド(2ml)を加えて共沸を2回行なった。残渣をN,N-ジメチルホルムアミド(1ml)に溶解し、ピリジン・三酸化硫黄(150mg)を加えて、窒素雰囲気下42℃で3時間撹拌した。
 4℃下、水(1ml)を加えた後、飽和酢酸ナトリウムエタノール溶液(30ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。上清を捨て、残渣に水(1ml)を加えて溶解し、飽和酢酸ナトリウムエタノール溶液(20ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。再度、上清を捨て、残渣に水(1ml)を加えて溶解し、飽和酢酸ナトリウムエタノール溶液(20ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。上清を捨て、残渣を水(2ml)に溶解した後、減圧濃縮した。
 残渣を水(2ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した。AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を凍結乾燥して、化合物1を得た。(24mg、白色粉末)
[M+2Na]2+:994.75
H-NMR:チャートを図53に示す。
実施例2
 原料を製造例2で得られた化合物(47mg)に変えたこと以外、実施例1と同様にして、化合物2を得た。(76mg、白色粉末)
H-NMR:チャートを図54に示す。
実施例3
 原料を製造例3で得られた化合物(51mg)に変えたこと以外、実施例1と同様にして、化合物3を得た。(108mg、白色粉末)
[M+3Na]3+:1210.10
H-NMR:チャートを図55に示す。
実施例4
 原料を製造例4で合成した化合物(48mg)に変えたこと以外、実施例1と同様にして、化合物4を得た。(92mg、白色粉末)
[M+3Na]3+:1479.73
H-NMR:チャートを図56に示す。
実施例5
 原料を製造例5で得られた化合物(60mg)に変えたこと以外、実施例1と同様にして、化合物5を得た。(112mg、白色粉末)
[M+4Na]4+:1317.74
H-NMR:チャートを図57に示す。
実施例6
 原料を製造例6で得られた化合物(20mg)に変えたこと以外、実施例1と同様にして、化合物6を得た。(22mg、白色粉末)
H-NMR:チャートを図58に示す。
実施例7
 製造例7で得られた化合物(10mg)にをN,N-ジメチルホルムアミド(1ml)に溶解し、ピリジン・三酸化硫黄(150mg)を加えて、窒素雰囲気下42℃で3時間撹拌した。
 4℃下、水(1ml)を加えた後、飽和酢酸ナトリウムエタノール溶液(25ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。上清を捨て、残渣に水(1ml)を加えて溶解し、飽和酢酸ナトリウムエタノール溶液(20ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。再度、上清を捨て、残渣に水(1ml)を加えて溶解し、飽和酢酸ナトリウムエタノール溶液(20ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。上清を捨て、残渣を水(2ml)に溶解した後、減圧濃縮した。
 残渣を水(2ml)に溶解し、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した。AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を凍結乾燥して、化合物7を得た。(16mg、白色粉末)
H-NMR:チャートを図59に示す。
実施例8
 原料を製造例8で得られた化合物(20mg)に変えたこと以外、実施例7と同様にして、化合物8を得た。(33mg、白色粉末)
H-NMR:チャートを図60に示す。
実施例9
 原料を製造例9で得られた化合物(39mg)に変えたこと以外、実施例1と同様にして、化合物9を得た。(90mg、白色粉末)
[M+5Na]5+:1707.07
H-NMR:チャートを図61に示す。
実施例10
 原料を製造例10で得られた化合物(24mg)に変えたこと以外、実施例1と同様にして、化合物10を得た。(48mg、白色粉末)
[M+3Na]3+:1493.42
H-NMR:チャートを図62に示す。
実施例11
 原料を製造例11で得られた化合物(17mg)に変えたこと以外、実施例1と同様にして、化合物11を得た。(34mg、白色粉末)
[M+3Na]3+:1505.11
H-NMR:チャートを図63に示す。
実施例12
 原料を製造例12で得られた化合物(10mg)に変えたこと以外、実施例1と同様にして、化合物12を得た。(10mg、白色粉末)
実施例13
 原料を製造例13で得られた化合物(10mg)に変えたこと以外、実施例1と同様にして、化合物13を得た。(21mg、白色粉末)
 化合物1~13の構造を下記表8に記す。
Figure JPOXMLDOC01-appb-T000008
実施例14
 製造例14で得られた化合物(18mg)をN,N-ジメチルホルムアミド(2ml)に溶解し、ピリジン・三酸化硫黄(300mg)を加えて、窒素雰囲気下42℃で3時間撹拌した。
 4℃下、水(1ml)を加えた後、飽和酢酸ナトリウムエタノール溶液(25ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。上清を捨て、残渣に水(1ml)を加えて溶解し、飽和酢酸ナトリウムエタノール溶液(20ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。再度、上清を捨て、残渣に水(1ml)を加えて溶解し、飽和酢酸ナトリウムエタノール溶液(25ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。上清を捨て、残渣を水(2ml)に溶解した後、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した。AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を凍結乾燥して、化合物14を得た。(30mg、白色粉末)
[M+2Na]2+:791.30
H-NMR:チャートを図64に示す。
実施例15
 原料を製造例15で得られた化合物(34mg)に変えたこと以外、実施例14と同様にして、化合物15を得た。(72mg、白色粉末)
[M+3Na]3+:804.83
H-NMR:チャートを図65に示す。
実施例16
 原料を製造例16で得られた化合物(8mg)に変えたこと以外、実施例14と同様にして、化合物16を得た。(11mg、白色粉末)
[M+3Na]3+:1074.42
H-NMR:チャートを図66に示す。
実施例17
 原料を製造例17で得られた化合物(8mg)に変えたこと以外、実施例14と同様にして、化合物17を得た。(14mg、白色粉末)
[M+3Na]3+:1344.06
H-NMR:チャートを図67に示す。
実施例18
 原料を製造例18で得られた化合物(16mg)に変えたこと以外、実施例14と同様にして、化合物18を得た。(23mg、白色粉末)
[M+4Na]4+:1217.00
H-NMR:チャートを図68に示す。
実施例19
 原料を製造例19で得られた化合物(11mg)に変えたこと以外、実施例14と同様にして、化合物19を得た。(9mg、白色粉末)
H-NMR:チャートを図69に示す。
実施例20
 原料を製造例20で得られた化合物(5mg)に変えたこと以外、実施例14と同様にして、化合物20を得た。(8mg、白色粉末)
H-NMR:チャートを図70に示す。
実施例21
 原料を製造例21で得られた化合物(8mg)に変えたこと以外、実施例14と同様にして、化合物21を得た。(11mg、白色粉末)
H-NMR:チャートを図71に示す。
実施例22
 原料を製造例22で得られた化合物(13mg)に変えたこと以外、実施例14と同様にして、化合物22を得た。(14mg、白色粉末)
H-NMR:チャートを図72に示す。
 化合物14~22の構造を下記表9に記す。
Figure JPOXMLDOC01-appb-T000009
実施例23
 原料を製造例23で得られた化合物(8mg)に変えたこと以外、実施例14と同様にして、化合物23を得た。(14mg、白色粉末)
[M+2Na]2+:793.81
H-NMR:チャートを図73に示す。
実施例24
 原料を製造例24で得られた化合物(4mg)に変えたこと以外、実施例14と同様にして、化合物24を得た。(7mg、白色粉末)
[M+2H]2+:1176.25
H-NMR:チャートを図74に示す。
実施例25
 原料を製造例25で得られた化合物(8mg)に変えたこと以外、実施例14と同様にして、化合物25を得た。(11mg、白色粉末)
[M+3Na]3+:1076.10
H-NMR:チャートを図75に示す。
実施例26
 原料を製造例26で得られた化合物(15mg)に変えたこと以外、実施例14と同様にして、化合物26を得た。(26mg、白色粉末)
[M+3Na]3+:1345.72
H-NMR:チャートを図76に示す。
実施例27
 原料を製造例27で得られた化合物(7mg)に変えたこと以外、実施例14と同様にして、化合物27を得た。(11mg、白色粉末)
[M+4Na]4+:1616.67
H-NMR:チャートを図77に示す。
実施例28
 原料を製造例28で得られた化合物(5mg)に変えたこと以外、実施例14と同様にして、化合物28を得た。(7mg、白色粉末)
H-NMR:チャートを図78に示す。
 化合物23~28の構造を下記表10に記す。
実施例29
 原料を製造例29で得られた化合物(9mg)に変えたこと以外、実施例14と同様にして、化合物29を得た。(16mg、白色粉末)
[M+2H]2+:972.77
H-NMR:チャートを図79に示す。
実施例30
 原料を製造例30で得られた化合物(7mg)に変えたこと以外、実施例14と同様にして、化合物30を得た。(8mg、白色粉末)
[M+2H]2+:1377.20
H-NMR:チャートを図80に示す。
実施例31
 原料を製造例31で得られた化合物(15mg)に変えたこと以外、実施例14と同様にして、化合物31を得た。(21mg、白色粉末)
[M+3Na]3+:1210.07
H-NMR:チャートを図81に示す。
実施例32
 原料を製造例32で得られた化合物(8mg)に変えたこと以外、実施例14と同様にして、化合物32を得た。(9mg、白色粉末)
[M+3H]3+:1458.34
H-NMR:チャートを図82に示す。
実施例33
 原料を製造例33で得られた化合物(5mg)に変えたこと以外、実施例14と同様にして、化合物33を得た。(7mg、白色粉末)
H-NMR:チャートを図83に示す。
 化合物29~33の構造を下記表11に記す。
Figure JPOXMLDOC01-appb-T000011
実施例34
 製造例36で合成した化合物(7mg)をN,N-ジメチルホルムアミド(0.7ml)に溶解し、トリエチルアミン・三酸化硫黄(75mg)、トリフルオロメタンスルホン酸(12μl)を加えて、窒素雰囲気下0℃で48時間撹拌した。
 0℃下、水(1ml)を加えた後、飽和酢酸ナトリウムエタノール溶液(25ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。上清を捨て、残渣に水(1ml)を加えて溶解し、飽和酢酸ナトリウムエタノール溶液(25ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。再度、上清を捨て、残渣に水(1ml)を加えて溶解し、飽和酢酸ナトリウムエタノール溶液(25ml)を加えて沈殿化させ、Voltex mixerで撹拌した後、冷却遠心分離(4℃、3000rpm、15分)して、沈殿物を捕集した。上清を捨て、残渣を水(2ml)に溶解した後、ディスクフィルター(日本ポール社製、0.45μm)にてろ過した。AKTAシステム(GEヘルスケア バイオサイエンス株式会社製)を用いてゲルろ過クロマトグラフィー(G-10、16mm x 600mm、水)を行い脱塩し、目的の画分を凍結乾燥して、化合物34を得た。(9mg、白色粉末)
H-NMR:チャートを図84に示す。
実施例35
 原料を製造例37で得られた化合物(10mg)に変えたこと以外、実施例34と同様にして、化合物35を得た。(14mg、白色粉末)
H-NMR:チャートを図85に示す。
実施例36
 原料を製造例38で得られた化合物(10mg)に変えたこと以外、実施例34と同様にして、化合物36を得た。(15mg、白色粉末)
H-NMR:チャートを図86に示す。
 化合物34~36の構造を下記表12に記す。
Figure JPOXMLDOC01-appb-T000012
実施例37
 原料を製造例41で得られた化合物(9mg)に変えたこと以外、実施例34と同様にして、化合物37を得た。(11mg、白色粉末)
H-NMR:チャートを図87に示す。
実施例38
 原料を製造例44で得られた化合物(12mg)に変えたこと以外、実施例34と同様にして、化合物38を得た。(20mg、黄色粉末)
H-NMR:チャートを図88に示す。
 化合物37~38の構造を下記表13に記す。
Figure JPOXMLDOC01-appb-T000013
実施例39
 原料を製造例45で得られた化合物(8mg)に変えたこと以外、実施例14と同様にして、化合物39を得た。(12mg、白色粉末)
H-NMR:チャートを図89に示す。
実施例40
 原料を製造例46で得られた化合物(10mg)に変えたこと以外、実施例14と同様にして、化合物40を得た。(16mg、白色粉末)
H-NMR:チャートを図90に示す。
実施例41
 原料を製造例47で得られた化合物(8mg)に変えたこと以外、実施例14と同様にして、化合物41を得た。(14mg、白色粉末)
H-NMR:チャートを図91に示す。
実施例42
 原料を製造例48で得られた化合物(7mg)に変えたこと以外、実施例14と同様にして、化合物42を得た。(12mg、白色粉末)
H-NMR:チャートを図92に示す。
実施例43
 原料を製造例49で得られた化合物(4mg)に変えたこと以外、実施例14と同様にして、化合物43を得た。(9mg、白色粉末)
H-NMR:チャートを図93に示す。
実施例44
 原料を製造例50で得られた化合物(10mg)に変えたこと以外、実施例14と同様にして、化合物44を得た。(24mg、白色粉末)
H-NMR:チャートを図94に示す。
実施例45
 原料を製造例51で得られた化合物(10mg)に変えたこと以外、実施例14と同様にして、化合物45を得た。(21mg、白色粉末)
H-NMR:チャートを図95に示す。
実施例46
 原料を製造例52で得られた化合物(12mg)に変えたこと以外、実施例14と同様にして、化合物46を得た。(15mg、白色粉末)
H-NMR:チャートを図96に示す。
実施例47
 原料を製造例53で得られた化合物(5mg)に変えたこと以外、実施例14と同様にして、化合物47を得た。(9mg、白色粉末)
H-NMR:チャートを図97に示す。
実施例48
 原料を製造例54で得られた化合物(5mg)に変えたこと以外、実施例14と同様にして、化合物48を得た。(9mg、白色粉末)
H-NMR:チャートを図98に示す。
 化合物39~48の構造を下記表14に記す。
Figure JPOXMLDOC01-appb-T000014
参考例1~7
 表15で示される本発明化合物(既知化合物)を、文献Glycobiology, vol.11, No.1, pp.57-64, 2001に記載の方法に従って製造した。
参考例1
 購入入手したヒアルロン酸ナトリウム(資生堂製、BIO Sodium Hyaluronate HA9)とウシ精巣由来ヒアルロニダーゼ(calbiochem社製、Hyaluronidase Bovine T 100KU)から、文献Glycobiology, vol.12, No.7, pp.421-426, 2002に従って分離したヒアルロン酸オリゴ糖4-mer(20mg)を原料にし、上記文献Glycobiology, vol.11, No.1, pp.57-64, 2001に従って、化合物49を得た。(21mg、白色粉末)
参考例2
 原料をヒアルロン酸オリゴ糖10-mer(43mg)に変えたこと以外、参考例1と同様にして、化合物50を得た。(86mg、白色粉末)
参考例3
 原料をヒアルロン酸オリゴ糖16-mer(75mg)に変えたこと以外、参考例1と同様にして、化合物51を得た。(80mg、白色粉末)
参考例4
 原料をヒアルロン酸オリゴ糖20-mer(23mg)に変えたこと以外、参考例1と同様にして、化合物52を得た。(42mg、白色粉末)
参考例5
 原料をヒアルロン酸オリゴ糖22-mer(17mg)に変えたこと以外、参考例1と同様にして、化合物53を得た。(25mg、白色粉末)
参考例6
 原料をヒアルロン酸オリゴ糖24~32-mer(20mg)に変えたこと以外、参考例1と同様にして、化合物54を得た。(18mg、白色粉末)
参考例7
 原料をヒアルロン酸オリゴ糖34~46-mer(24mg)に変えたこと以外、参考例1と同様にして、化合物55を得た。(39mg、白色粉末)
化合物49~55の構造を下記表15に記す。
Figure JPOXMLDOC01-appb-T000015
試験例1:抗アレルギー作用;モルモットアレルギー性鼻炎モデル(鼻閉モデル)
 実験には、Hartley系モルモット(雄、初回感作時6~7週齢)を用いた。
 入荷した動物は、検疫及び順化のため、7日間以上の予備飼育後、実験に使用した。
 初回感作として、1ml中に卵白アルブミン(OVA)1mg及び水酸化アルミニウムゲル(Alum)10mgを含有する生理食塩水溶液を、動物あたり1ml背部皮下に投与した。初回感作1週間後の1回、又は1週間後と2週間後の2回、10mg/mlのOVA生理食塩水溶液を20μlずつ、マイクロピペットを用いて両側の鼻腔内に投与することで局所感作を行った。
 群分けは、感作終了日の体重及び感作開始日から感作終了日までの体重変動を指標とし、二次元層別無作為抽出法により行なった。
 最終感作1週間後、20mg/mlのOVA生理食塩水溶液を10μlずつ、両側の鼻腔内に投与し、抗原抗体反応を誘発した。Control群(非誘発群)には同様に生理食塩水を投与した。
 被験物質は、誘発30分前に、10μlずつ、両側の鼻腔内に投与した。被験物質は、生理食塩水に溶解し、500μg/mlの濃度の溶液を投与に使用した。Control群(非誘発群)及びSaline群(溶媒対照群)には、同様に生理食塩水を投与した。尚、対照薬(化合物0)として「Flunase」(グラクソ・スミスクライン株式会社製)を使用した。
 鼻腔抵抗の測定は、誘発当日の誘発前、誘発10分後、2、3、4、5、6及び7時間後に行った。各測定時間に1回、それぞれ100呼吸分の鼻腔抵抗(nasal airway resistance, nRaw)を測定し、その平均値を各測定時間におけるnRawとし、nRawの増加率を算出して鼻腔抵抗の指標とした。
 鼻腔抵抗(nRaw)の増加率(%)は次式で求めた。
Figure JPOXMLDOC01-appb-M000001
 評価は、誘発10分後におけるnRawの増加率(即時型鼻腔抵抗)及び誘発後3~7時間におけるnRawの増加率の曲線下面積(AUC3-7hr,遅発型鼻腔抵抗)で行った。
Figure JPOXMLDOC01-appb-M000002
 結果を図99及び図100に示す。
 図99及び図100から、本発明化合物は、即時型アレルギー反応抑制効果を示すとともに、遅発型アレルギー反応抑制効果を示す。
 試験例2:PCA(Passive Cutaneous Anaphylaxis:受動皮膚アナフィラキシー反応)抑制効果
 実験には、Hartley系モルモット(雄、5週齢以上)を用いた。
モルモットにOVAを免疫して得た抗OVA血清を生理食塩水で500倍に希釈した(A液)。
 下記表16に示す被験物質を生理食塩水で200μg/mlに希釈した(B液)。
 B液を250倍に希釈したモルモット抗OVA血清と等量ずつ混合し、最終濃度を被験物質100μg/ml、抗OVA血清500倍にした(C液)。
 エーテル麻酔後に背部剪毛したモルモットの背部に、1スポットあたり100μlの生理食塩水、A液、あるいはC液を皮内注射した。
 約3時間後に、0.2~0.4%のOVAを含む0.5%エバンスブルー生理食塩水溶液を0.8~1ml/bodyで静脈内投与した。
 30分以内に放血して皮を剥ぎ、各スポットの色素量を画像処理により定量した。画像処理において、抗OVA血清のみ投与のスポットの色素量を100%とした時の被験物質による抑制度を調べた。結果を表16に示す。(N = 3 or 6)
Figure JPOXMLDOC01-appb-T000016
 上記表16から本発明化合物はPCA抑制効果を示す。
試験例3:血管透過性亢進能試験
 実験には、Hartley系モルモット(雄、5週齢以上)を用いた。
被験物質を生理食塩水にて100μg/mlに希釈した。
 また、コントロールとして硫酸化ヒアルロン酸(4糖~約70糖の混合物;特開平11-147901号公報の実施例(製造例1)などに従って合成。)を用いた。
 エーテル麻酔後に背部剪毛したモルモットの背部に、1スポットあたり100μlの生理食塩水、あるいは被験物質の生理食塩水溶液を皮内注射した。
 0.5%エバンスブルー生理食塩水溶液を1ml/bodyで静脈内投与した。
 30分以内に放血して皮を剥ぎ、各スポットの色素量を画像処理により定量した。
 結果を、デキストラン(dextran sulfate 10000)投与のスポットの色素量を100%とした時の被験物質の血管透過率として図101~図103に示す。
 図101~図103から、本発明化合物は、公知の高分子の多硫酸化ヒアルロン酸と異なり、血管透過亢進能がなく、それ自体副作用となる刺激作用を示さないことがわかる。
試験例4:長期安定性(水溶液中)
 化合物4及び化合物50について、1mg/ml水溶液を調整し、HPLC分析を行なった。
 これらの溶液を冷所(2~8℃)及び室温でそれぞれ保存し、経時的に4ヶ月までHPLC分析を行い、それぞれのピークのパターン変化を調べた。
HPLC条件:
 カラム:Mightysil RP-18 GP(3μm、4.6x50mm)
 カラム温度:40℃
 移動相A:2mMのTBAPを含む20mM KHPO/MeCN(70:30)
 移動相B:MeCN/2mMのTBAPを含む20mM KHPO(80:20)
 グラジエント条件:Initial;A 100%、B0%
          0分~20分で、A 100→95%、B 0→5%,直線
 流量:1ml/min
 検出:UV(210nm)
 注入量:約5μg/5μl
(TBAP:tetrabutylammonium phosphate)
結果を下記表17に示す。
Figure JPOXMLDOC01-appb-T000017
 上記表17から、化合物50は、冷所保存においても3本認められる主ピークのうちの2本目の経時的増加と3本目の経時的減少が認められ、水溶液中で不安定であるのに対し、化合物4は室温保存においても4ヶ月間ピークパターンに変化は認められず、水溶液中で安定であることがわかった。
 一般式(IA)のYが(d)又は(e)である化合物群及び一般式(IB)である化合物群は、低分子量多硫酸化ヒアルロン酸誘導体の中でも、水溶液中での安定性の高い化合物として、特に有用である。
 本発明の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩は、血管透過性亢進能が少なく、従って炎症性の副作用が少なく安全性に優れた、アレルギー性疾患の予防及び/又は治療剤として使用しうる。

Claims (15)

  1.  下記一般式(IA):
    Figure JPOXMLDOC01-appb-C000022
    〔式中、nは0~15の数を示し、Xは次式(a)又は(b):
    Figure JPOXMLDOC01-appb-C000023
    Yは次式(c)又は(d)又は(e):
    Figure JPOXMLDOC01-appb-C000024
    を示し、Rはそれぞれ独立して水素原子又はSOH基を示し(但し、Rの総数当たり80~100%をSOH基が占める)、Rは-OH、-OSOH又は-NZ(ここで、Z及びZは、独立して水素原子、-SOH、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基又は置換されていてもよいヘテロアリール基を示すか、或いは-NZ全体でアミノ酸残基もしくはペプチド残基を示す。)を示し、*は酸素原子との結合部位を示す。〕、
    又は、下記一般式(IB):
    Figure JPOXMLDOC01-appb-C000025
    〔式中、nは0~15の数を示し、Wは次式(f)又は(g):
    Figure JPOXMLDOC01-appb-C000026
    を示し、Rはそれぞれ独立して水素原子又はSOH基を示し(但し、Rの総数当たり80~100%をSOH基が占める)、Rは-OH、-OSOH又は-NZ(ここで、Z及びZは、独立して水素原子、-SOH、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基又は置換されていてもよいヘテロアリール基を示すか、或いは-NZ全体でアミノ酸残基もしくはペプチド残基を示す。〕
    で表される低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩を有効成分とする花粉症、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎及び喘息から選ばれるアレルギー性疾患の予防及び/又は治療剤。
  2.  一般式(IA)において、Yが式(d)又は(e)である、請求項1記載の予防及び/又は治療剤。
  3.  Xが式(a)である、請求項2記載の予防及び/又は治療剤。
  4.  nが3、4又は5である、請求項3記載の予防及び/又は治療剤。
  5.  nが4又は5である、請求項3記載の予防及び/又は治療剤。
  6.  低分子量多硫酸化ヒアルロン酸誘導体が一般式(IB)である、請求項1記載の予防及び/又は治療剤。
  7.  nが3、4又は5である、請求項6記載の予防及び/又は治療剤。
  8.  nが4又は5である、請求項6記載の予防及び/又は治療剤。
  9.  花粉症、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎及び喘息から選ばれるアレルギー性疾患の予防及び/又は治療剤の製造のための請求項1~8のいずれかに記載の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩の使用。
  10.  請求項1~8のいずれかに記載の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩の有効量をヒト又は動物に投与することを特徴とする、花粉症、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎及び喘息から選ばれるアレルギー性疾患の予防及び/又は治療方法。
  11.  下記一般式(IA’):
    Figure JPOXMLDOC01-appb-C000027
    〔式中、nは0~15の数を示し、Xは次式(a)又は(b):
    Figure JPOXMLDOC01-appb-C000028
    Y’は次式(d)又は(e): 
    Figure JPOXMLDOC01-appb-C000029
    を示し、Rはそれぞれ独立して水素原子又はSOH基を示し(但し、Rの総数当たり80~100%をSOH基が占める)、Rは-OH、-OSOH又は-NZ(ここで、Z及びZは、独立して水素原子、-SOH、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基又は置換されていてもよいヘテロアリール基を示すか、或いは-NZ全体でアミノ酸残基もしくはペプチド残基を示す。)を示し、*は酸素原子との結合部位を示す。〕、
    又は、下記一般式(IB):
    Figure JPOXMLDOC01-appb-C000030
    〔式中、nは0~15の数を示し、Wは次式(f)又は(g):
    Figure JPOXMLDOC01-appb-C000031
    を示し、Rはそれぞれ独立して水素原子又はSOH基を示し(但し、Rの総数当たり80~100%をSOH基が占める)、Rは-OH、-OSOH又は-NZ(ここで、Z及びZは、独立して水素原子、-SOH、置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよいアラルキル基又は置換されていてもよいヘテロアリール基を示すか、或いは-NZ全体でアミノ酸残基もしくはペプチド残基を示す。〕
    で表される低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩。
  12.  一般式(IA’)において、Xが式(a)である、請求項11記載の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩。
  13.  一般式(IB)である、請求項11記載の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩。
  14.  nが3、4又は5である、請求項12又は13記載の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩。
  15.  請求項11、12、13又は14記載の低分子量多硫酸化ヒアルロン酸誘導体又はその製薬学的に許容される塩、及び製薬学的に許容される賦形剤を含有する医薬組成物。
PCT/JP2010/000583 2009-02-02 2010-02-01 低分子量多硫酸化ヒアルロン酸誘導体及びこれを含有する医薬 WO2010087207A1 (ja)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2010539078A JP4884559B2 (ja) 2009-02-02 2010-02-01 低分子量多硫酸化ヒアルロン酸誘導体及びこれを含有する医薬
KR1020117017561A KR101678429B1 (ko) 2009-02-02 2010-02-01 저분자량 다황산화 히알루론산 유도체 및 이를 함유하는 의약
SG2011054913A SG173470A1 (en) 2009-02-02 2010-02-01 Low-molecular polysulfated hyaluronic acid derivative and medicine containing same
AU2010209200A AU2010209200B2 (en) 2009-02-02 2010-02-01 Low-molecular polysulfated hyaluronic acid derivative and medicine containing same
CN201080005887.3A CN102300870B (zh) 2009-02-02 2010-02-01 低分子量多硫酸化透明质酸衍生物和含有它的医药
NZ594854A NZ594854A (en) 2009-02-02 2010-02-01 Low-molecular polysulfated hyaluronic acid derivative and medicine containing same
EP10735677.6A EP2392579B1 (en) 2009-02-02 2010-02-01 Low-molecular polysulfated hyaluronic acid derivative and medicine containing same
ES10735677.6T ES2610240T3 (es) 2009-02-02 2010-02-01 Derivado de ácido hialurónico polisulfatado de bajo peso molecular y medicamento que lo contiene
RU2011136250/04A RU2519781C2 (ru) 2009-02-02 2010-02-01 Низкомолекулярное полисульфатированное производное гиалуроновой кислоты и содержащее его лекарственное средство
US13/143,129 US8993536B2 (en) 2009-02-02 2010-02-01 Low-molecular polysulfated hyaluronic acid derivative and medicine containing same
MX2011008119A MX2011008119A (es) 2009-02-02 2010-02-01 Derivado de acido hialuronico polisulfatado de bajo peso molecular, y medicamento que contiene el mismo.
CA2750188A CA2750188C (en) 2009-02-02 2010-02-01 Low-molecular polysulfated hyaluronic acid derivative and compositions containing same
BRPI1007325A BRPI1007325A2 (pt) 2009-02-02 2010-02-01 "baixo peso molecular de polissulfatados derivados de ácido hialurônico e medicamentos que contenham o mesmo."
UAA201110592A UA105781C2 (uk) 2009-02-02 2010-02-01 Низькомолекулярне полісульфатоване похідне гіалуронової кислоти і лікарський засіб, який його містить
IL213323A IL213323A (en) 2009-02-02 2011-06-02 Causes prevention and / or treatment of an allergic disease containing a low-molecular-weight acid derivative of polysulfate hyaluronic acid, its use or its acceptable medicinal salt, as well as a low-molecular-weight acid derivative of hyaluronic polysulfate and a pharmaceutical preparation containing it
HK12100063.8A HK1159642A1 (zh) 2009-02-02 2012-01-05 低分子多硫酸化的透明質酸衍生物及含有所述物質的藥物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009021820 2009-02-02
JP2009-021820 2009-02-02

Publications (1)

Publication Number Publication Date
WO2010087207A1 true WO2010087207A1 (ja) 2010-08-05

Family

ID=42395469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000583 WO2010087207A1 (ja) 2009-02-02 2010-02-01 低分子量多硫酸化ヒアルロン酸誘導体及びこれを含有する医薬

Country Status (20)

Country Link
US (1) US8993536B2 (ja)
EP (1) EP2392579B1 (ja)
JP (2) JP4884559B2 (ja)
KR (1) KR101678429B1 (ja)
CN (1) CN102300870B (ja)
AR (1) AR075224A1 (ja)
BR (1) BRPI1007325A2 (ja)
CA (1) CA2750188C (ja)
CO (1) CO6362026A2 (ja)
ES (1) ES2610240T3 (ja)
HK (1) HK1159642A1 (ja)
IL (1) IL213323A (ja)
MX (1) MX2011008119A (ja)
MY (1) MY160359A (ja)
NZ (1) NZ594854A (ja)
RU (1) RU2519781C2 (ja)
SG (2) SG173470A1 (ja)
TW (1) TWI539955B (ja)
UA (1) UA105781C2 (ja)
WO (1) WO2010087207A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329673B2 (en) 2008-04-04 2012-12-11 University Of Utah Research Foundation Alkylated semi synthetic glycosaminoglycosan ethers, and methods for making and using thereof
JP2013028541A (ja) * 2011-06-20 2013-02-07 Foundation For Biomedical Research & Innovation α−Klotho/FGF23複合体形成阻害化合物
JP2013528211A (ja) * 2010-06-11 2013-07-08 イムノボ ビー.ブイ. 三糖誘導体及びアジュバントとしてのその使用
WO2013141350A1 (ja) * 2012-03-22 2013-09-26 大塚製薬株式会社 オリゴ糖化合物及びその製造方法とその中間体
JP2014047155A (ja) * 2012-08-30 2014-03-17 Tottori Univ 保護硫酸化オリゴ糖化合物及びその製造方法
US9522162B2 (en) 2011-03-23 2016-12-20 University Of Utah Research Foundation Methods for treating or preventing urological inflammation
US12109225B2 (en) 2018-11-13 2024-10-08 Glycomira Therapeutics, Inc. Methods for potentiating cancer treatment using ionizing radiation

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046511A (ja) * 2010-07-30 2012-03-08 Otsuka Chem Co Ltd 低分子量多硫酸化ヒアルロン酸誘導体を含有する医薬
CN102579478A (zh) * 2012-03-30 2012-07-18 济南康众医药科技开发有限公司 玻璃酸钠在制备药物中的应用
SE538503C2 (en) 2014-11-11 2016-08-16 Tx Medic Ab New dextran sulfate
ITUB20155623A1 (it) * 2015-11-16 2017-05-16 Fidia Farm Spa Processo migliorato per la produzione di HA solfatato di elevata purezza
JP6225321B1 (ja) 2016-08-31 2017-11-08 王子ホールディングス株式会社 ポリ硫酸ペントサンの製造方法
WO2018043667A1 (ja) 2016-08-31 2018-03-08 王子ホールディングス株式会社 酸性キシロオリゴ糖の製造方法及び酸性キシロオリゴ糖
WO2018053111A1 (en) 2016-09-15 2018-03-22 University Of Utah Research Foundation In situ gelling compositions for the treatment or prevention of inflammation and tissue damage
JP6281659B1 (ja) 2017-02-28 2018-02-21 王子ホールディングス株式会社 ポリ硫酸ペントサン、医薬組成物及び抗凝固剤
JP7330893B2 (ja) 2017-03-10 2023-08-22 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル 短時間作用型ヘパリンベースの抗凝集剤化合物及び方法
SG10201913607WA (en) 2017-05-31 2020-03-30 Oji Holdings Corp Moisturizing topical preparation
US11993627B2 (en) 2017-07-03 2024-05-28 The University Of North Carolina At Chapel Hill Enzymatic synthesis of homogeneous chondroitin sulfate oligosaccharides
BR112020004787A2 (pt) 2017-09-12 2020-09-24 Oji Holdings Corporation polissulfato de pentosano, composição farmacêutica, anticoagulante, e, método para produzir polissulfato de pentosano
WO2019090203A1 (en) 2017-11-03 2019-05-09 The University Of North Carolina At Chapel Hill Sulfated oligosaccharides having anti-inflammatory activity
PL3730521T3 (pl) 2017-12-20 2023-10-09 Oji Holdings Corporation Polisiarczan pentozanu i lek zawierający polisiarczan pentozanu
JP7538724B2 (ja) * 2018-06-20 2024-08-22 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル 細胞保護の方法と組成物
WO2024072942A2 (en) 2022-09-29 2024-04-04 Adora Animal Health Corporation Skin penetrating formulations of sulfated glycosaminoglycans and fragments derived therefrom for the treatment of pain and other medical conditions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277224A (ja) 1995-02-07 1996-10-22 Shiseido Co Ltd 抗炎症剤
JPH10195107A (ja) 1997-01-10 1998-07-28 Shiseido Co Ltd オリゴ硫酸化ヒアルロン酸
JPH11147901A (ja) 1997-11-19 1999-06-02 Maruho Co Ltd カリクレイン−キニン系阻害剤
JPH11269077A (ja) 1998-03-19 1999-10-05 Maruho Co Ltd ホスホリパーゼa2阻害用医薬組成物
JPH11335288A (ja) 1998-05-20 1999-12-07 Maruho Co Ltd アレルギー性疾患の予防または治療薬
WO2004011662A1 (ja) * 2002-07-29 2004-02-05 Taisho Pharmaceutical Co., Ltd. セレクチン及びケモカインに作用する過硫酸化オリゴ糖
JP2006517185A (ja) * 2002-10-10 2006-07-20 アベンティス・ファーマ・ソシエテ・アノニム ヘパリン誘導多糖類混合物、その製造およびそれを含有する医薬組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024362A1 (fr) 1995-02-07 1996-08-15 Shiseido Company, Ltd. Agents anti-inflammatoires
US6689748B1 (en) 1998-04-08 2004-02-10 Theoharis C. Theoharides Method of treating mast cell activation-induced diseases with a proteoglycan
WO2000069917A1 (fr) 1999-05-18 2000-11-23 Maruho Kabushikikaisha Compositions medicinales destinees a inhiber le systeme kallikreine-kinine ou la phospholipase a¿2?
US20040171819A1 (en) 2002-10-10 2004-09-02 Aventis Pharma S.A. Mixtures of polysaccharides derived from heparin, their preparation and pharmaceutical compositions containing them
JP5164572B2 (ja) * 2004-08-05 2013-03-21 アイバックス ドラッグ リサーチ インスティテュート エルティーディー. 多硫酸化グリコシド及びその塩

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277224A (ja) 1995-02-07 1996-10-22 Shiseido Co Ltd 抗炎症剤
JPH10195107A (ja) 1997-01-10 1998-07-28 Shiseido Co Ltd オリゴ硫酸化ヒアルロン酸
JPH11147901A (ja) 1997-11-19 1999-06-02 Maruho Co Ltd カリクレイン−キニン系阻害剤
JPH11269077A (ja) 1998-03-19 1999-10-05 Maruho Co Ltd ホスホリパーゼa2阻害用医薬組成物
JPH11335288A (ja) 1998-05-20 1999-12-07 Maruho Co Ltd アレルギー性疾患の予防または治療薬
WO2004011662A1 (ja) * 2002-07-29 2004-02-05 Taisho Pharmaceutical Co., Ltd. セレクチン及びケモカインに作用する過硫酸化オリゴ糖
JP2006517185A (ja) * 2002-10-10 2006-07-20 アベンティス・ファーマ・ソシエテ・アノニム ヘパリン誘導多糖類混合物、その製造およびそれを含有する医薬組成物

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GLYCOBIOLOGY, vol. 11, no. 1, 2001, pages 57 - 64
GLYCOBIOLOGY, vol. 12, no. 7, 2002, pages 421 - 426
JOBE, K.L. ET AL.: "Interleukin-12 release from macrophages by hyaluronan, chondroitin sulfate A and chondroitin sulfate C oligosaccharides", IMMUNOL. LETT., vol. 89, 2003, pages 99 - 109, XP009061828 *
REISSIG. J. L. ET AL., J. BIOL. CHEM., vol. 217, 1955, pages 959
See also references of EP2392579A4
SUZUKI, A. ET AL.: "Preparation and inhibitory activity on hyaluronidase of fully 0-sulfated hyaluro-oligosaccharides", GLYCOBIOLOGY, vol. 11, no. 1, 2001, pages 57 - 64, XP002648213 *
TAKAGAKI, K. ET AL.: "Domain structure of chondroitin sulfate E octasaccharides binding to type V collagen", J. BIOL. CHEM., vol. 277, no. 11, 2002, pages 8882 - 8889, XP002371341 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329673B2 (en) 2008-04-04 2012-12-11 University Of Utah Research Foundation Alkylated semi synthetic glycosaminoglycosan ethers, and methods for making and using thereof
US9549945B2 (en) 2008-04-04 2017-01-24 University Of Utah Research Foundation Use of alkylated semi-synthetic glycosaminoglycosan ethers for the treatment of inflammation
JP2013528211A (ja) * 2010-06-11 2013-07-08 イムノボ ビー.ブイ. 三糖誘導体及びアジュバントとしてのその使用
US9522162B2 (en) 2011-03-23 2016-12-20 University Of Utah Research Foundation Methods for treating or preventing urological inflammation
US10226481B2 (en) 2011-03-23 2019-03-12 University Of Utah Research Foundation Pharmaceutical compositions composed of low molecular weight sulfated hyaluronan
JP2013028541A (ja) * 2011-06-20 2013-02-07 Foundation For Biomedical Research & Innovation α−Klotho/FGF23複合体形成阻害化合物
WO2013141350A1 (ja) * 2012-03-22 2013-09-26 大塚製薬株式会社 オリゴ糖化合物及びその製造方法とその中間体
JPWO2013141350A1 (ja) * 2012-03-22 2015-08-03 大塚製薬株式会社 オリゴ糖化合物及びその製造方法とその中間体
JP2014047155A (ja) * 2012-08-30 2014-03-17 Tottori Univ 保護硫酸化オリゴ糖化合物及びその製造方法
US12109225B2 (en) 2018-11-13 2024-10-08 Glycomira Therapeutics, Inc. Methods for potentiating cancer treatment using ionizing radiation

Also Published As

Publication number Publication date
NZ594854A (en) 2013-03-28
TWI539955B (zh) 2016-07-01
US8993536B2 (en) 2015-03-31
EP2392579A4 (en) 2012-09-26
KR20110117118A (ko) 2011-10-26
CN102300870A (zh) 2011-12-28
RU2519781C2 (ru) 2014-06-20
CO6362026A2 (es) 2012-01-20
EP2392579A1 (en) 2011-12-07
MX2011008119A (es) 2011-08-24
BRPI1007325A2 (pt) 2019-09-24
AU2010209200A1 (en) 2011-06-30
EP2392579B1 (en) 2016-11-23
JPWO2010087207A1 (ja) 2012-08-02
JP2011168591A (ja) 2011-09-01
HK1159642A1 (zh) 2012-08-03
CA2750188A1 (en) 2010-08-05
JP4884559B2 (ja) 2012-02-29
US20110281819A1 (en) 2011-11-17
RU2011136250A (ru) 2013-03-10
IL213323A (en) 2014-12-31
IL213323A0 (en) 2011-07-31
UA105781C2 (uk) 2014-06-25
SG173470A1 (en) 2011-09-29
ES2610240T3 (es) 2017-04-26
MY160359A (en) 2017-02-28
JP5554738B2 (ja) 2014-07-23
AR075224A1 (es) 2011-03-16
SG2014006985A (en) 2014-04-28
TW201032814A (en) 2010-09-16
CA2750188C (en) 2016-11-29
KR101678429B1 (ko) 2016-11-22
CN102300870B (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5554738B2 (ja) 低分子量多硫酸化ヒアルロン酸誘導体及びこれを含有する医薬
JP4861596B2 (ja) ヒアルロン酸オリゴ糖画分およびそれを含む医薬
WO2015103921A1 (zh) Fuc3S4S取代的低聚糖胺聚糖及其制备方法
US8969320B2 (en) Hyaluronic acid derivatives containing groups able to release NO
Wang et al. Characterization of chondroitin sulfates isolated from large hybrid sturgeon cartilage and their gastroprotective activity against ethanol-induced gastric ulcers
JP6248179B2 (ja) 末端2,5−脱水タロース又はその誘導体を含んでなる低分子量グリコサミノグリカン誘導体
US20240041918A1 (en) Oligosaccharide Compound for Inhibiting Intrinsic Coagulation Factor X-Enzyme Complex, and Preparation Method Therefor and Uses Thereof
RU2576033C2 (ru) Составы на основе гиперсулфатированных дисахаридов
JP2012046511A (ja) 低分子量多硫酸化ヒアルロン酸誘導体を含有する医薬
JP6205350B2 (ja) 同じ多糖鎖の4位または6位でバイオテクノロジー的に硫酸化されたコンドロイチン硫酸、およびその調整方法
CN111247174B (zh) 在炎症状态的治疗中的官能化的透明质酸或其衍生物
CN104725532B (zh) 一种精确定量控制肝素/类肝素中硫酸软骨素及硫酸皮肤素含量的方法
CN111423523B (zh) 一种寡糖化合物及其药学上可接受的盐、制备方法及应用
CN111732675A (zh) 透明质酸-氨基葡萄糖接枝共聚物、制法及其应用
CN113388044A (zh) 一种蜗牛糖胺聚糖化合物、其药学上可接受的盐、制备方法及应用
WO2002044218A1 (fr) Compose de derive d&#39;acide hydroxamique et d&#39;acide hyaluronique
WO2024057154A1 (en) Process for conjugation of hyaluronic acid and conjugates of hyaluronic acid so obtained
JP2022550111A (ja) グルコン酸亜鉛およびヒアルロン酸エステルをベースとするヒドロゲル
Thajeel et al. LOCALLY MADE CHITOSAN COVALENTLY LINKED TO INDOMETHACIN: A NOVEL APPROACH TO FORMULATE SUSTAINED RELEASE INDOMETHACIN CAPSULE IN BASRAH
BR112018071394B1 (pt) Polímero de enxerto, métodos para a preparação de um polímero de enxerto e para a preparação de um sistema de dispensação, composição, preenchedor de tecido macio, uso de um polímero de enxerto, e, kit
JP2001302549A (ja) 脂肪酸含有組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005887.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010539078

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735677

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010735677

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010735677

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4449/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010209200

Country of ref document: AU

Date of ref document: 20100201

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13143129

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2750188

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11090783

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20117017561

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/008119

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12011501550

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 594854

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2011136250

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007325

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007325

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110715