WO2010082229A1 - 非水電解質二次電池及びその製造方法 - Google Patents

非水電解質二次電池及びその製造方法 Download PDF

Info

Publication number
WO2010082229A1
WO2010082229A1 PCT/JP2009/000104 JP2009000104W WO2010082229A1 WO 2010082229 A1 WO2010082229 A1 WO 2010082229A1 JP 2009000104 W JP2009000104 W JP 2009000104W WO 2010082229 A1 WO2010082229 A1 WO 2010082229A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
current collector
secondary battery
negative electrode
insulating layer
Prior art date
Application number
PCT/JP2009/000104
Other languages
English (en)
French (fr)
Inventor
向笠靖彦
村岡芳幸
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009800001251A priority Critical patent/CN102037583B/zh
Priority to PCT/JP2009/000104 priority patent/WO2010082229A1/ja
Priority to JP2009518667A priority patent/JPWO2010082229A1/ja
Priority to US12/528,589 priority patent/US8105396B2/en
Publication of WO2010082229A1 publication Critical patent/WO2010082229A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a manufacturing method thereof, and more particularly, to a non-aqueous electrolyte secondary battery capable of suppressing the occurrence of an internal short circuit due to crushing and a manufacturing method thereof.
  • a material such as carbon that can occlude and release lithium ions is used as a negative electrode active material, and a material such as lithium cobalt composite oxide that reversibly electrochemically reacts with lithium ions is used as a positive electrode.
  • a non-aqueous electrolyte secondary battery that uses an aprotic organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved as an electrolyte.
  • This non-aqueous electrolyte secondary battery (hereinafter simply referred to as “battery”) includes a positive electrode in which a positive electrode active material is formed on a positive electrode current collector, and a negative electrode in which a negative electrode active material is formed on a negative electrode current collector.
  • stacked via the separator is accommodated in a battery case with electrolyte solution, and the opening part of the said battery case is sealed with the sealing board.
  • a porous insulating layer for example, a polyolefin layer
  • a so-called shutdown function that prevents a current from flowing when the temperature inside the battery rises due to an internal short circuit and becomes high temperature, so that no current flows.
  • the porous insulating layer melts and contracts and the short-circuit portion expands, so that it is difficult to suppress abnormal heat generation.
  • Patent Document 1 discloses a separator, a porous insulating layer having a conventional shutdown function, and a heat-resistant porous insulating layer (for example, a polyimide layer, an aramid layer, etc.). ) And a method of forming a laminated structure.
  • a laminated separator maintains the original shutdown mechanism, but when heat generation becomes severe and the shutdown function is lost, the heat-resistant porous insulating layer prevents the expansion of the short-circuited portion, thereby generating abnormal heat generation. Can be suppressed.
  • Patent Document 2 describes a method of suppressing the magnitude of a short-circuit current that flows at the time of an internal short circuit by increasing the specific resistance of the positive electrode active material, thereby suppressing abnormal heat generation.
  • All of the conventional methods for suppressing abnormal heat generation due to internal short circuit are those that suppress the magnitude of short circuit current that flows during short circuit when internal short circuit occurs. It is not a solution. Therefore, depending on the degree of internal short circuit, abnormal heat generation may not be sufficiently suppressed. Further, if the effect of suppressing the magnitude of the short-circuit current is increased, the original performance of the battery is impaired (for example, if the specific resistance of the positive electrode active material is increased, the high-rate discharge characteristics are reduced). There is a certain limit to the effect of suppressing abnormal heat generation by this method.
  • the present invention has been made in view of such a point, and even if the nonaqueous electrolyte secondary battery is crushed by crushing, the occurrence of an internal short circuit in the battery is prevented, and abnormal heat generation due to the internal short circuit is prevented.
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery excellent in safety.
  • the nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode in which a positive electrode active material is formed on a positive electrode current collector, and a negative electrode in which a negative electrode active material is formed on a negative electrode current collector through a porous insulating layer.
  • a non-aqueous electrolyte secondary battery comprising a wound or stacked electrode group, the tensile elongation of the positive electrode is 3.0% or more, and the porous insulating layer is made of a material containing an aramid resin It is characterized by that.
  • the porous insulating layer includes an aramid resin having a large frictional force with respect to the positive electrode.
  • the porous insulating layer moves following the fractured positive electrode, whereby the position of the fracture surface of the positive electrode can be maintained at the end of the porous insulating layer.
  • the nonaqueous electrolyte secondary battery even if the nonaqueous electrolyte secondary battery may be crushed by crushing, the positive electrode is not broken, and the occurrence of an internal short circuit in the battery can be prevented. Even if the positive electrode having an insufficient tensile elongation rate breaks due to this variation, the broken positive electrode does not reach the negative electrode, and an internal short circuit in the battery can be prevented. Thereby, the nonaqueous electrolyte secondary battery excellent in the safety
  • FIG. 1 is a cross-sectional view showing a configuration of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing the configuration of the electrode group in one embodiment of the present invention.
  • FIG. 3 (a) is a diagram showing a fracture state of the positive electrode due to crushing when a separator not containing aramid resin is used, and
  • FIG. 3 (b) is a crushing when a separator containing aramid resin is used. It is the figure which showed the fracture state of the positive electrode by.
  • the applicant of the present application has been studying factors that cause an internal short circuit in the battery when the nonaqueous electrolyte secondary battery is crushed by crushing.
  • the positive electrode, negative electrode, and separator constituting the electrode group the applicant As a result of the preferential breakage of the positive electrode with the smallest elongation rate, it was found that the broken portion of the positive electrode broke through the separator and the positive electrode plate and the negative electrode plate were short-circuited.
  • the tensile elongation of the positive electrode is temporarily increased by this heat treatment, but if the rolling treatment is performed after that, the tensile elongation decreases again, and eventually the tensile elongation of the positive electrode is increased. Can not.
  • the applicant of the present application has proposed a method for suppressing the occurrence of internal short-circuit in a collapsed nonaqueous electrolyte secondary battery by setting the tensile elongation of the positive electrode to a predetermined value or more, as disclosed in Japanese Patent Application No. 2007-323217. No. (PCT / JP2008 / 002114).
  • the positive electrode current collector coated with and dried with the positive electrode mixture slurry is rolled, and then rolled.
  • the tensile elongation of the positive electrode after rolling can be increased to 3.0% or more.
  • the tensile elongation rate of the positive electrode can be increased to 3.0% or more by the heat treatment after rolling due to the following mechanism.
  • the tensile elongation of the positive electrode is not limited by the inherent tensile elongation of the positive electrode current collector itself because the positive electrode mixture layer is formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer has a lower tensile elongation than the positive electrode current collector, when the positive electrode that has not been heat-treated after rolling is stretched, a large crack is generated in the positive electrode mixture layer, and at the same time, the positive electrode Break. This is because the tensile stress in the positive electrode mixture layer increases with the elongation of the positive electrode, and the tensile stress applied to the positive electrode current collector is concentrated at the location where the large crack occurs, thereby causing the positive electrode current collector to break. It is done.
  • the positive electrode current collector when the positive electrode that has been heat-treated after rolling is stretched, the positive electrode current collector is softened. Therefore, the positive electrode mixture layer continues to grow while generating a lot of minute cracks, and eventually the positive electrode breaks. This is because the tensile stress applied to the positive electrode current collector is dispersed by the generation of minute cracks, so there is little effect on the current collector due to the generation of cracks in the positive electrode mixture layer, and the positive electrode is broken simultaneously with the occurrence of cracks. It is considered that the positive electrode current collector was broken when the tensile stress reached a constant value (a value close to the tensile elongation rate specific to the current collector).
  • the tensile elongation of the positive electrode obtained by the heat treatment after rolling varies depending on the material of the positive electrode current collector and the positive electrode active material.
  • LiCoO 2 is used as the positive electrode active material for the positive electrode current collector made of aluminum.
  • the tensile elongation of the positive electrode can be increased to 3% or more by performing a heat treatment (180 seconds) after rolling at a temperature of 200 ° C. or higher.
  • the heat treatment temperature is preferably higher than the softening temperature of the positive electrode current collector and lower than the decomposition temperature of the binder.
  • Table 1 is a table showing a result of a crushing test when a battery was manufactured using a positive electrode in which a positive electrode mixture layer containing LiCoO 2 as a positive electrode active material was formed on a positive electrode current collector made of aluminum.
  • the batteries 1 to 4 were obtained by changing the heat treatment conditions after rolling the positive electrode at a temperature of 280 ° C. and changing the heat treatment time to 10 seconds, 20 seconds, 120 seconds, and 180 seconds.
  • the battery 5 was not subjected to heat treatment after rolling.
  • the short-circuit depth of the battery 5 that was not subjected to the heat treatment after rolling was 5 mm
  • the short-circuit depth of the batteries 1 to 4 that were subjected to the heat treatment after rolling was as shown in Table 1. It can be seen that the depth is as deep as 8-10 mm. That is, by performing a predetermined heat treatment after rolling, the tensile elongation of the positive electrode can be increased to 3% or more, thereby preventing the occurrence of an internal short circuit due to crushing.
  • the above-mentioned application specification discloses that it is preferable to use aluminum containing iron as the positive electrode current collector.
  • the heat treatment temperature after rolling necessary for obtaining a predetermined tensile elongation of the positive electrode can be lowered or the heat treatment time can be shortened. Thereby, the fall of the battery capacity accompanying the heat processing after rolling can be prevented.
  • the inventor of the present application has made a non-aqueous electrolyte secondary battery including a positive electrode having a positive electrode tensile elongation increased to 3% or more by heat treatment after rolling, and has examined safety against crushing. It was found that there was a battery in which the positive electrode was broken by crushing and an internal short circuit occurred at a certain rate.
  • the tensile elongation of the positive electrode can be controlled by the heat treatment conditions performed after rolling, but actually, not only the heat treatment conditions but also the thickness of the positive electrode current collector and the binder contained in the positive electrode mixture layer, for example.
  • Various factors that affect the tensile elongation of the positive electrode such as the proportion of the agent, may cause variations in the manufacturing process, and the desired tensile elongation (for example, about 3%) may not be obtained.
  • a battery in which an internal short circuit has occurred due to the above-mentioned crushing does not have the expected tensile elongation of the positive electrode due to such variations in the manufacturing process, and does not have a sufficient tensile elongation against crushing. As a result, it is considered that the positive electrode was broken.
  • the inventor of the present application is a method that can prevent the occurrence of an internal short circuit even if the positive electrode breaks as a result of insufficient tensile elongation of the positive electrode due to variations in the manufacturing process. As a result of study, the present invention has been conceived.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a nonaqueous electrolyte secondary battery in one embodiment of the present invention.
  • an electrode group 8 in which a positive electrode 4 and a negative electrode 5 are wound through a separator (porous insulating layer) is accommodated in a battery case 1 together with an electrolytic solution.
  • the opening of the battery case 1 is sealed with a sealing plate 2 via a gasket 3.
  • the positive electrode lead 4a attached to the positive electrode 4 is connected to the sealing plate 2 that also serves as the positive electrode terminal, and the negative electrode lead 5a attached to the negative electrode 5 is connected to the battery case 1 that also serves as the negative electrode terminal.
  • FIG. 2 is an enlarged cross-sectional view schematically showing the configuration of the electrode group 8 in the present embodiment.
  • the positive electrode mixture layer 4B is formed on both surfaces of the positive electrode current collector 4A, and the negative electrode mixture layer 5B is formed on both surfaces of the negative electrode current collector 5A.
  • a separator 6 is disposed between them.
  • the tensile elongation of the positive electrode 4 is 3.0% or more
  • the separator 6 is made of a material containing an aramid resin.
  • the separator 6 is In addition, the broken positive electrode 4 can be prevented from reaching the negative electrode 5 by using a material containing an aramid resin having a large frictional force.
  • tensile elongation in the present invention refers to the ratio of elongation of the test piece when the test piece is pulled and the test piece is broken, for example, a pole having a width of 15 mm and an effective portion length of 20 mm. The plate is pulled at a speed of 20 mm / min, and the elongation is obtained when the electrode plate is broken.
  • FIG. 3A is a view showing a state in which the positive electrode 4 is broken by crushing when a separator 6 made of a material not containing an aramid resin (for example, a polyolefin layer) is used. Since the frictional force is small with respect to the positive electrode 4 and it is easy to slip, the separator 6 does not move following the broken positive electrode 4, and the broken positive electrode 4 reaches the negative electrode 5, causing an internal short circuit.
  • aramid resin for example, a polyolefin layer
  • FIG. 3B is a diagram showing a state in which the positive electrode 4 is broken by crushing when the separator 6 made of a material containing an aramid resin is used. Since the frictional force is large, the separator 6 moves following the broken positive electrode 4, whereby the position of the fracture surface of the positive electrode 4 can be maintained at the end of the separator 6. As a result, since the broken positive electrode 4 can be prevented from reaching the negative electrode 5, the occurrence of an internal short circuit can be prevented.
  • an aramid resin is sometimes used as a material for the separator 6 that is not easily broken by an external force from the viewpoint of excellent strength.
  • the separator 6 made of a material containing an aramid resin is used as a positive electrode. This was made by paying attention to the property that the frictional force against 4 is large. Therefore, the separator in the present invention only needs to contain an aramid resin to such an extent that a certain frictional force can be exerted.
  • a material containing 20 wt% or more of an aramid resin it is preferable to use a separator made of (including a material containing only an aramid resin).
  • Examples of the aramid resin include poly (paraphenylene terephthalamide), poly (parabenzamide), poly (4,4′-benzanilide terephthalamide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide).
  • Poly (2-chloroparaphenylene terephthalamide) polyphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide can be used.
  • the separator 6 may be composed of a first separator made of a material containing an aramid resin in the present invention and a second separator having a shutdown function that becomes a non-porous layer at a high temperature.
  • the first separator needs to be disposed between the positive electrode 4 and the negative electrode 5 in contact with the positive electrode 4.
  • the separator which consists of polyolefin resin, such as polyethylene and a polypropylene, can be used, for example.
  • the first separator can include an inorganic material.
  • the heat resistance of the heat-resistant layer layer containing an aramid resin
  • the inorganic material include alumina, magnesia, zirconia, titania, yttria, zeolite, silicon nitride, silicon carbide, and the like. These may be used alone or in combination of two or more.
  • the positive electrode 4 and the negative electrode 5 constituting the electrode group 8 shown in FIG. 2 are not particularly limited in materials and manufacturing methods, but the following materials and manufacturing methods can be applied.
  • the electrode group 8 is not formed by winding the positive electrode 4 and the negative electrode 5 with the separator 6 interposed therebetween, but may be formed by stacking them.
  • the positive electrode current collector 4A for example, aluminum, stainless steel, titanium, or the like can be used. In particular, when aluminum containing iron is used, the heat treatment temperature after rolling of the positive electrode 4 can be lowered or the heat treatment time can be shortened.
  • the iron content in the positive electrode current collector 4A is preferably in the range of 1.20 to 1.70% by weight.
  • the positive electrode mixture layer 4B can contain a binder, a conductive agent, and the like in addition to the positive electrode active material.
  • a positive electrode active material for example, a lithium composite metal oxide can be used. Typical materials include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiCoNiO 2 and the like.
  • the binder for example, polyvinylidene fluoride (PVDF), a derivative of PVDF, or a rubber-based binder (for example, fluororubber and acrylic rubber) is preferably used.
  • PVDF polyvinylidene fluoride
  • a material such as graphite such as graphite or carbon black such as acetylene black can be used.
  • the positive electrode 4 is formed by applying and drying a positive electrode mixture slurry containing a positive electrode active material on the positive electrode current collector 4A, and rolling the positive electrode current collector 4A coated with the positive electrode mixture slurry and dried. Thereafter, the rolled positive electrode current collector 4A is obtained by heat treatment at a predetermined temperature.
  • the heat treatment conditions after rolling are controlled so that the tensile elongation of the positive electrode 4 is 3% or more. However, if the tensile elongation rate of the positive electrode 4 exceeds 10%, when the electrode group 8 is formed by winding, the positive electrode 4 is deformed and uniform winding becomes difficult, so the tensile elongation rate of the positive electrode is 10 % Or less is preferable.
  • the negative electrode current collector 5A for example, copper, stainless steel, nickel, or the like can be used.
  • the negative electrode mixture layer 5B can contain a binder, a conductive agent, and the like in addition to the negative electrode active material.
  • a carbon material such as graphite or carbon fiber, or a silicon compound such as SiO x can be used.
  • the negative electrode 5 is obtained by applying and drying a negative electrode mixture slurry containing a negative electrode active material on the negative electrode current collector 5A and then rolling the negative electrode current collector 5A on which the negative electrode mixture slurry has been applied and dried.
  • the tensile elongation of the negative electrode 5 and the separator (porous insulating layer) 6 needs to be 3% or more.
  • a lithium ion secondary battery has been described as an example of a nonaqueous electrolyte secondary battery.
  • nonaqueous electrolyte secondary batteries such as a nickel hydride storage battery can be used within the scope of the effects of the present invention.
  • the present invention also has the effect of preventing the occurrence of internal short circuit in the battery due to crushing, but the electrode group buckling or electrode plate due to the expansion and contraction of the negative electrode active material accompanying the charging and discharging of the battery It can also be applied to the prevention of breakage.
  • the present invention is useful for a non-aqueous electrolyte secondary battery having an electrode group suitable for large current discharge, for example, a driving battery for an electric tool or an electric vehicle that requires high output, a large capacity backup power source
  • the present invention can be applied to a power storage battery.

Abstract

 正極集電体4A上に正極活物質が形成された正極4、及び負極集電体5A上に負極活物質が形成された負極5を、多孔質絶縁層6を介して捲回又は積層して電極群を構成し、正極4の引っ張り伸び率を3.0%以上にし、かつ、多孔質絶縁層6をアラミド樹脂を含む材料で構成する。これにより、圧壊によって非水電解質二次電池が潰されることがあっても、電池内での内部短絡の発生を防止し、内部短絡に起因する異常発熱を抑制することができる。

Description

非水電解質二次電池及びその製造方法 技術の分野
 本発明は、非水電解質二次電池及びその製造方法に関し、特に、圧壊による内部短絡の発生を抑制することが可能な非水電解質二次電池及びその製造方法に関する。
 近年、自動車搭載用への要望、または大型工具のDC化の要望に対して、急速充電及び大電流放電可能な小型・軽量な二次電池が要求されている。そのような要求を満たす典型的な電池として、リチウムイオンを吸蔵・放出できる炭素等の材料を負極活物質とし、リチウムイオンと可逆的に電気化学反応するリチウムコバルト複合酸化物等の材料を正極活物質とし、LiClO又はLiPF等のリチウム塩を溶解した非プロトン性の有機溶媒を電解液とする非水電解質二次電池が挙げられる。
 この非水電解質二次電池(以下、単に「電池」と言う。)は、正極集電体上に正極活物質が形成された正極、及び負極集電体上に負極活物質が形成された負極が、セパレータ(多孔質絶縁層)を介して捲回又は積層された電極群を、電解液とともに電池ケース内に収容し、当該電池ケースの開口部を封口板で密封した構成をなしている。
 ところで、非水電解質二次電池内で内部短絡が起こると、この内部短絡により、電池内に電流が流れ、その結果、電池内の温度が上昇する。内部短絡が起きる要因は様々であるが、特に、圧壊によって電池が潰されると、瞬時に大電流が流れるため、電池内の温度が急激に上昇するおそれがある。
 通常、セパレータとして用いられる多孔質絶縁層(例えば、ポリオレフィン層)は、内部短絡によって電池内の温度が上昇して高温になると無孔化し、電流を流さないようにする、所謂シャットダウン機能を備えているが、発熱が激しい場合には、多孔質絶縁層が溶融・収縮して短絡部が拡大してしまうため、異常発熱を抑制することは困難になる。
 そこで、このような異常発熱を抑制する方法として、特許文献1には、セパレータを、従来のシャットダウン機能を備えた多孔性絶縁層と、耐熱性多孔質絶縁層(例えば、ポリイミド層、アラミド層等)との積層構造にする方法が記載されている。このような積層構造のセパレータは、本来のシャットダウン機構を維持しつつ、発熱が激しくなってシャットダウン機能が喪失したときには、耐熱性多孔質絶縁層によって短絡部の拡大を防止することで、異常発熱を抑制することができる。
 また、特許文献2には、正極活物質の比抵抗を大きくすることによって、内部短絡時に流れる短絡電流の大きさを抑制し、これにより異常発熱を抑制する方法が記載されている。
特開2000-100408号公報 特開2001-297763号公報 特開平5-182692号公報 特開平7-105970号公報
 従来の内部短絡に起因する異常発熱を抑制する方法は、いずれも、内部短絡が生じた場合に、短絡時に流れる短絡電流の大きさを抑制するもので、内部短絡の発生を防止する本質的な解決にはなっていない。従って、内部短絡の度合いによっては、異常発熱を十分に抑制することができないおそれもある。また、短絡電流の大きさを抑制する効果を大きくしようとすると、電池本来の性能を損なう結果(例えば、正極活物質の比抵抗を大きくすると、高率放電特性が低下する)となるため、従来の方法で異常発熱を抑制する効果にも一定の限界がある。
 本発明は、かかる点に鑑みなされたもので、圧壊によって非水電解質二次電池が潰されることがあっても、電池内での内部短絡の発生を防止し、内部短絡に起因する異常発熱のない安全性に優れた非水電解質二次電池を提供することを目的とする。
 本発明に係わる非水電解質二次電池は、正極集電体上に正極活物質が形成された正極、及び負極集電体上に負極活物質が形成された負極が、多孔質絶縁層を介して捲回又は積層された電極群を備えた非水電解質二次電池であって、正極の引っ張り伸び率は、3.0%以上であり、多孔質絶縁層は、アラミド樹脂を含む材料からなることを特徴とする。
 このような構成により、圧壊によって非水電解質二次電池が潰されることがあっても、正極の引っ張り伸び率が大きいために、正極が破断されることはなく、これにより、電池内の内部短絡の発生を防止することができる。加えて、製造工程上のバラツキによって、正極の引っ張り伸び率が不十分なものであった結果、正極が破断したとしても、多孔質絶縁層を、正極に対して摩擦力の大きいアラミド樹脂を含む材料で構成することによって、多孔質絶縁層が破断した正極に追随して移動し、これにより、正極の破断面の位置を多孔質絶縁層の端部で維持することができる。その結果、破断した正極が負極に達するのを防ぐことができるため、内部短絡の発生を防止することができる。
 本発明によれば、圧壊によって非水電解質二次電池が潰されることがあっても、正極が破断されることはなく、電池内の内部短絡の発生を防止することができるとともに、製造工程上のバラツキによって、引っ張り伸び率の不十分な正極が破断したとしても、破断した正極が負極に達することなく、電池内の内部短絡の発生を防止することができる。これにより、内部短絡に起因する異常発熱のない安全性に優れた非水電解質二次電池を提供することができる。
図1は、本発明の一実施形態における非水電解質二次電池の構成を示した断面図である。 図2は、本発明の一実施形態における電極群の構成を示した拡大断面図である。 図3(a)は、アラミド樹脂を含まないセパレータを用いた場合の、圧壊による正極の破断状態を示した図で、図3(b)は、アラミド樹脂を含むセパレータを用いた場合の、圧壊による正極の破断状態を示した図である。
符号の説明
 1   電池ケース
 2   封口板
 3   ガスケット
 4   正極
 4A  正極集電体
 4B  正極合剤層
 4a  正極リード
 5   負極
 5A  負極集電体
 5B  負極合剤層
 5a  負極リード
 6   セパレータ
 8   電極群
 本願出願人は、非水電解質二次電池が圧壊によって潰されたときに、電池内で内部短絡が起きる要因を検討していたところ、電極群を構成する正極、負極、及びセパレータのうち、引っ張り伸び率の最も小さい正極が優先的に破断した結果、正極の破断部がセパレータを突き破って、正極板と負極板とが短絡していることが分かった。
 そこで、正極の引っ張り伸び率を高める方法をさらに検討した結果、正極合剤層を塗布した正極集電体を圧延した後に、所定の温度で熱処理を施すことによって、正極の引っ張り伸び率が大きくなる効果を見出した。なお、通常、正極集電体に正極合剤層を塗布した後、正極合剤層と正極集電体との密着性を向上させる目的で熱処理を行うが(例えば、特許文献3、4等を参照)、この熱処理によって正極の引っ張り伸び率は一時的に大きくなるものの、その後に圧延処理を施すと、引っ張り伸び率は再び低下し、最終的には、正極の引っ張り伸び率を大きくすることはできない。
 本願出願人は、この知見に基づき、正極の引っ張り伸び率を所定の値以上にすることによって、圧壊された非水電解質二次電池における内部短絡の発生を抑制する方法を、特願2007-323217号(PCT/JP2008/002114)の出願明細書に開示している。
 すなわち、正極集電体上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させた後、正極合剤スラリーが塗布・乾燥された正極集電体を圧延し、然る後、圧延された正極集電体を所定の温度で熱処理することによって、圧延後の正極の引っ張り伸び率を、3.0%以上にすることができる。これにより、圧壊によって非水電解質二次電池が潰されることがあっても、正極が優先的に破断することはないため、電池内の内部短絡の発生を防止することができる。
 上記のように、圧延後の熱処理によって正極の引っ張り伸び率を3.0%以上に高めることができるのは、次のようなメカニズムによるものと考えられる。
 すなわち、正極の引っ張り伸び率は、正極集電体の表面に正極合剤層が形成されているため、正極集電体自身の固有の引っ張り伸び率で規制されるものではい。通常、正極合剤層の方が正極集電体よりも引っ張り伸び率が低いので、圧延後の熱処理を行わなかった正極を伸ばしたとき、正極合剤層に大きなクラックが発生すると同時に、正極が破断する。これは、正極の伸びとともに正極合剤層内の引っ張り応力が増し、正極集電体に加わる引っ張り応力が、大きなクラックの発生した箇所に集中することにより、正極集電体が破断したものと考えられる。
 一方、圧延後に熱処理を行った正極を伸ばしたときは正極集電体が軟化しているので、正極合剤層に多数の微小なクラックを発生しながら伸び続け、やがて正極が破断する。これは、正極集電体に加わる引っ張り応力が微小なクラックの発生により分散されるため、正極合剤層のクラック発生による集電体に及ぼす影響は少なく、クラックの発生と同時に正極が破断されることなく一定の大きさまで伸び続け、引っ張り応力が一定の大きさ(集電体固有の引っ張り伸び率に近い値)に達した時点で正極集電体が破断したものと考えられる。
 圧延後の熱処理によって得られる正極の引っ張り伸び率は、正極集電体や正極活物質の材料によって大きさが異なるが、例えば、アルミニウムからなる正極集電体に、LiCoOを正極活物質とする正極合剤層が形成された正極の場合、200℃以上の温度で、圧延後の熱処理(180秒)を行うことによって、正極の引っ張り伸び率を3%以上に高めることができる。なお、熱処置温度は、正極集電体の軟化温度よりも高く、結着剤の分解温度よりも低いことが好ましい。
 表1は、アルミニウムからなる正極集電体に、LiCoOを正極活物質とする正極合剤層を形成した正極を用いて電池を作製したときの圧壊試験の結果を示した表である。ここで、電池1~4は、正極の圧延後の熱処理条件を、280℃の温度で、熱処理時間を10秒、20秒、120秒、180秒に変えて行ったものである。また、電池5は、圧延後の熱処理を行わなかったものである。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、圧延後の熱処理を行わなかった電池5の正極の引っ張り伸び率は、1.5%であったのに対し、圧延後の熱処理を行った電池1~4の正極の引っ張り伸び率は、3~6.5%にそれぞれ大きくなっているのが分かる。そして、各電池に対して、圧壊試験(6φの丸棒を0.1mm/secの速度で電池を押して、電池内で内部短絡が起きた時点での電池の変形量(短絡深さ)を測定)を行った結果、表1に示すように、圧延後の熱処理を行わなかった電池5の短絡深さは5mmであったのに対し、圧延後の熱処理を行った電池1~4の短絡深さは、8~10mmと深くなっているのが分かる。すなわち、圧延後に所定の熱処理を行うことによって、正極の引っ張り伸び率を3%以上にすることができ、これにより、圧壊による内部短絡の発生を防止することができる。
 なお、圧延後の熱処理温度が高かったり、熱処理時間が長くなると、正極合剤層に含まれる結着剤が溶融し、正極活物質が溶融した結着剤で被覆されると、電池容量が低下するおそれがある。圧延後の熱処理に伴う電池容量の低下を防止するために、上記出願明細書では、正極集電体として、鉄を含有するアルミニウムを用いることが好ましいことを開示している。鉄を含有するアルミニウムからなる正極集電体を用いることによって、所定の正極の引っ張り伸び率を得るのに必要な圧延後の熱処理温度を低く、若しくは、熱処理時間を短くすることができる。これにより、圧延後の熱処理に伴う電池容量の低下を防止することができる。
 本願発明者は、圧延後の熱処理によって、正極の引っ張り伸び率を3%以上に高めた正極を備えた非水電解質二次電池を作製して、圧壊に対する安全性を検討していたところ、ある一定の割合で、圧壊により正極が破断し、内部短絡が発生する電池があることが分かった。
 正極の引っ張り伸び率は、圧延後に行う熱処理条件で制御することができるが、実際には、かかる熱処理条件だけでなく、例えば、正極集電体の厚みや、正極合剤層に含まれる結着剤の割合等、正極の引っ張り伸び率に影響を与える種々の要因が、製造工程においてバラツキを生じることによって、所期の引っ張り伸び率(例えば3%程度)が得られない場合がある。上記の圧壊により内部短絡が発生した電池は、このような製造工程上のバラツキによって、正極の引っ張り伸び率が所期の値にならず、圧壊に対して十分な引っ張り伸び率を有していなかった結果、正極が破断したことに起因するものと考えられる。
 そこで、本願発明者は、製造工程上のバラツキによって、正極の引っ張り伸び率が不十分なものであった結果、正極が破断したとしても、なお、内部短絡の発生を防止することのできる方法を検討した結果、本発明を想到するに至った。
 以下に、本発明の一実施形態について、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されない。また、本実施形態で説明する非水電解質二次電池の構成については、本願出願による上記出願明細書に記載された構成を適用することができる。
 図1は、本発明の一実施形態にける非水電解質二次電池の構成を模式的に示した断面図である。
 図1に示すように、正極4及び負極5がセパレータ(多孔質絶縁層)を介して捲回された電極群8が、電解液と共に、電池ケース1内に収容されている。電池ケース1の開口部は、ガスケット3を介して、封口板2によって封口されている。正極4に取り付けられた正極リード4aは、正極端子を兼ねる封口板2に接続され、負極5に取り付けられた負極リード5aは、負極端子を兼ねる電池ケース1に接続されている。
 図2は、本実施形態における電極群8の構成を模式的に示した拡大断面図である。
 図2に示すように、正極集電体4Aの両面に、正極合剤層4Bが形成され、負極集電体5Aの両面に、負極合剤層5Bが形成され、正極4と負極5との間には、セパレータ6が配されている。
 ここで、正極4の引っ張り伸び率は、3.0%以上であり、セパレータ6は、アラミド樹脂を含む材料からなる。
 正極4の引っ張り伸び率を3.0%以上にすることによって、圧壊によって非水電解質二次電池が潰されることがあっても、正極4が破断されることはなく、電池内の内部短絡の発生を防止することができる。加えて、製造工程上のバラツキによって、正極4の引っ張り伸び率が不十分(3.0%未満)であったことに起因して正極4が破断したとしても、セパレータ6を、正極4に対して摩擦力の大きいアラミド樹脂を含む材料で構成することによって、破断した正極4が負極5に達するのを防ぐことができる。
 ここで、本発明における「引張り伸び率」は、試験片を引っ張り、試験片が破断した時の試験片の伸びた割合をいい、例えば、幅が15mmで、有効部の長さが20mmの極板を、20mm/minの速度で引っ張り、極板が破断した時点での伸び率から求められる。
 次に、図3(a)、(b)を参照しながら、アラミド樹脂を含むセパレータ6を採用することによって、破断した正極4が負極5に達するのを防ぐごとができるメカニズムを説明する。
 図3(a)は、アラミド樹脂を含まない材料(例えば、ポリオレフィン層)からなるセパレータ6を用いた場合の、圧壊によって正極4が破断したときの状態を示した図で、従来のセパレータ6は、正極4に対して摩擦力が小さいく滑りやすいため、破断した正極4に追随してセパレータ6は移動せず、破断した正極4は負極5にまで達してしまい、内部短絡を生じる。
 これに対し、図3(b)は、アラミド樹脂を含む材料からなるセパレータ6を用いた場合の、圧壊によって正極4が破断したときの状態を示した図で、セパレータ6は、正極4に対して摩擦力が大きいため、破断した正極4に追随してセパレータ6が移動し、これにより、正極4の破断面の位置をセパレータ6の端部で維持することができる。その結果、破断した正極4が負極5に達するのを防ぐことができるため、内部短絡の発生を防止することができる。
 従来、アラミド樹脂は、強度的に優れているという観点で、外力によって破断しにくいセパレータ6の材料として用いられる場合があったが、本発明は、アラミド樹脂を含む材料からなるセパレータ6が、正極4に対する摩擦力が大きいという性質に着目してなされたものである。それ故に、本発明におけるセパレータは、一定の摩擦力を発揮し得る程度にアラミド樹脂を含むものであればよいが、上記作用効果をより発揮するためには、20wt%以上のアラミド樹脂を含む材料(アラミド樹脂のみの材料も含む)からなるセパレータを用いるのが好ましい。また、セパレータのシャットダウン機能を維持する観点からは、45wt%以下のアラミド樹脂を含む材料を用いることがより好ましい。
 なお、アラミド樹脂としては、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(パラベンズアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(2-クロロパラフェニレンテレフタルアミド)ポリフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド等を用いることができる。
 また、セパレータ6を、本発明におけるアラミド樹脂を含む材料からなる第1のセパレータと、高温時に無孔性の層となるシャットダウン機能を有する第2のセパレータとで構成してもよい。このような積層構造にすることによって、上記作用効果に加え、第1のセパレータを45wt%以上のアラミド樹脂を含む材料で構成した場合でも、第2のセパレータのよってシャットダウン機能を維持することができるという効果を発揮し得る。なお、この場合、第1のセパレータは、正極4に接して正極4と負極5との間に配設されていることを要する。また、第2のセパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂からなるセパレータを用いることができる。また、第1のセパレータは、無機材料を含むことができる。無機材料の添加により、耐熱層(アラミド樹脂を含む層)の耐熱性を高めることができる。無機材料の具体例としては、例えば、アルミナ、マグネシア、ジルコニア、チタニア、イットリア、ゼオライト、窒化珪素、炭化珪素などが挙げられる。これらは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 本発明において、図2に示した電極群8を構成する正極4及び負極5については、特にその材料及び製法に制限はないが、以下のような材料及び製法を適用し得る。なお、電極群8は、正極4及び負極5をセパレータ6を介して捲回されたものでなく、積層されたものであっても勿論よい。
 正極集電体4Aは、例えば、アルミニウム、ステンレス鋼、チタン等を用いることができる。特に、鉄を含有するアルミニウムを用いると、正極4の圧延後の熱処理温度を低く、若しくは熱処置時間を短くすることができる。なお、正極集電体4A中の鉄の含有量は、1.20~1.70重量%の範囲とすることが好ましい。
 正極合剤層4Bは、正極活物質の他に、結着剤、導電剤などを含むことができる。正極活物質としては、例えば、リチウム複合金属酸化物を用いることができる。代表的な材料としては、LiCoO2、LiNiO2、LiMnO2、LiCoNiO2等が挙げられる。また、結着剤としては、例えば、ポリビニリデンフルオライド(PVDF)、PVDFの誘導体、又はゴム系結着剤(例えばフッ素ゴム及びアクリルゴム等)が好適に用いられる。また、導電剤としては、例えば、黒鉛等のグラファイト類、アセチレンブラック等のカーボンブラック類等の材料を用いることができる。
 正極4は、正極集電体4A上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させた後、正極合剤スラリーが塗布・乾燥された正極集電体4Aを圧延し、然る後、圧延された正極集電体4Aを所定の温度で熱処理することによって得られる。なお、圧延後の熱処理条件は、正極4の引っ張り伸び率が3%以上になるように制御する。ただし、正極4の引っ張り伸び率が10%を超えると、電極群8を捲回により形成する際、正極4が変形して均一な捲回が困難になるため、正極の引っ張り伸び率は、10%以下であることが好ましい。
 負極集電体5Aは、例えば、銅、ステンレス鋼、ニッケル等を用いることができる。負極合剤層5Bは、負極活物質の他に、結着剤、導電剤などを含むことができる。負極活物質としては、例えば、黒鉛、炭素繊維等の炭素材料や、SiOx等の珪素化合物等を用いることができる。
 負極5は、負極集電体5A上に、負極活物質を含む負極合剤スラリーを塗布・乾燥させた後、負極合剤スラリーが塗布・乾燥された負極集電体5Aを圧延して得る。
 なお、本発明における効果を奏するためには、負極5及びセパレータ(多孔質絶縁層)6の引っ張り伸び率は、3%以上であることを要する。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記実施形態においては、非水電解質二次電池としてリチウムイオン二次電池を例に説明したが、本発明の効果を奏する範囲において、ニッケル水素蓄電池等の他の非水電解質二次電池にも適用することができる。また、本発明は、圧壊による電池内での内部短絡の発生を防止する効果を奏するものであるが、電池の充放電に伴う負極活物質の膨張収縮に起因した電極群の座屈または極板の破断の防止にも適用し得る。
 本発明は、大電流放電に適した電極群を備えた非水電解質二次電池に有用で、例えば、高出力を必要とする電動工具や電気自動車などの駆動用電池、大容量のバックアップ用電源、蓄電用電源用電池等に適用できる。

Claims (8)

  1.  正極集電体上に正極活物質が形成された正極、及び負極集電体上に負極活物質が形成された負極が、多孔質絶縁層を介して捲回又は積層された電極群を備えた非水電解質二次電池であって、
     前記正極の引っ張り伸び率は、3.0%以上であり、
     前記多孔質絶縁層は、アラミド樹脂を含む材料からなる、非水電解質二次電池。
  2.  前記負極の引っ張り伸び率は、3.0%以上であり、
     前記多孔質絶縁層の引っ張り伸び率は、3.0%以上である、請求項1に記載の非水電解質二次電池。
  3.  前記正極は、前記正極活物質を含む正極合剤スラリーが塗布・乾燥された前記正極集電体を圧延した後、所定の温度で熱処理されたものである、請求項1に記載の非水電解質二次電池。
  4.  前記多孔質絶縁層は、前記アラミド樹脂を含む材料からなる第1の多孔質絶縁層と、高温時に無孔性の層となるシャットダウン機能を有する第2の多孔質絶縁層と、で構成されている、請求項1に記載の非水電解質二次電池。
  5.  前記第1の多孔質絶縁層は、前記正極に接して、該正極と前記負極との間に配設されている、請求項4に記載の非水電解質二次電池。
  6.  前記正極集電体は、鉄を含有するアルミニウムからなる、請求項1に記載の非水電解質二次電池。
  7.  前記正極集電体は、1.20~1.70重量%の範囲の鉄を含有するアルミニウムからなる、請求項6に記載の非水電解質二次電池。
  8.  正極集電体上に正極活物質が形成された正極、及び負極集電体上に負極活物質が形成された負極が、多孔質絶縁層を介して捲回又は積層された電極群を備えた非水電解質二次電池の製造方法であって、
     前記正極は、
      正極集電体上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させる工程と、
      前記正極合剤スラリーが塗布・乾燥された前記正極集電体を圧延する工程と、
      前記圧延された前記正極集電体を所定の温度で熱処理する工程と
     により形成され、
     前記圧延後の前記正極の引っ張り伸び率は、3.0%以上であり、
     前記多孔質絶縁層は、アラミド樹脂を含む材料からなる、非水電解質二次電池の製造方法。
PCT/JP2009/000104 2009-01-14 2009-01-14 非水電解質二次電池及びその製造方法 WO2010082229A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009800001251A CN102037583B (zh) 2009-01-14 2009-01-14 非水电解质二次电池及其制造方法
PCT/JP2009/000104 WO2010082229A1 (ja) 2009-01-14 2009-01-14 非水電解質二次電池及びその製造方法
JP2009518667A JPWO2010082229A1 (ja) 2009-01-14 2009-01-14 非水電解質二次電池の製造方法
US12/528,589 US8105396B2 (en) 2009-01-14 2009-01-14 Nonaqueous electrolyte secondary battery and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000104 WO2010082229A1 (ja) 2009-01-14 2009-01-14 非水電解質二次電池及びその製造方法

Publications (1)

Publication Number Publication Date
WO2010082229A1 true WO2010082229A1 (ja) 2010-07-22

Family

ID=42339499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000104 WO2010082229A1 (ja) 2009-01-14 2009-01-14 非水電解質二次電池及びその製造方法

Country Status (4)

Country Link
US (1) US8105396B2 (ja)
JP (1) JPWO2010082229A1 (ja)
CN (1) CN102037583B (ja)
WO (1) WO2010082229A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5741689B2 (ja) * 2011-07-08 2015-07-01 株式会社村田製作所 全固体電池およびその製造方法
KR102022582B1 (ko) * 2015-09-21 2019-09-18 주식회사 엘지화학 안전성이 향상된 전극 및 이를 포함하는 이차전지
JP6729479B2 (ja) * 2017-04-28 2020-07-22 トヨタ自動車株式会社 積層電池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058127A (ja) * 1998-08-11 2000-02-25 Toshiba Battery Co Ltd ポリマーリチウム二次電池
JP2000323124A (ja) * 1999-05-12 2000-11-24 Hitachi Maxell Ltd 非水二次電池
JP2003068284A (ja) * 2001-08-27 2003-03-07 Mitsubishi Cable Ind Ltd リチウム二次電池用負極およびその製造方法、並びに、リチウム二次電池
JP2003142106A (ja) * 2001-11-07 2003-05-16 Matsushita Electric Ind Co Ltd 負極集電体およびこの集電体を用いた負極板と非水電解液二次電池
JP2006134762A (ja) * 2004-11-08 2006-05-25 Sony Corp 二次電池
JP2006190691A (ja) * 2006-03-08 2006-07-20 Hitachi Maxell Ltd 非水二次電池
JP2006294597A (ja) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2008135262A (ja) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd 非水電解質二次電池負極の製造方法
JP2008186704A (ja) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd 非水系二次電池用正極板および非水系二次電池
JP2008288112A (ja) * 2007-05-18 2008-11-27 Sony Corp 非水電解質二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066161B2 (ja) 1991-12-27 2000-07-17 三洋電機株式会社 非水系電解液電池の製造方法
JPH07105970A (ja) 1993-09-30 1995-04-21 Matsushita Electric Ind Co Ltd 非水電解液二次電池及びその製造法
JP2000100408A (ja) 1998-09-21 2000-04-07 Sumitomo Chem Co Ltd 非水電解液二次電池
JP2001297763A (ja) 2000-04-12 2001-10-26 Japan Storage Battery Co Ltd 非水電解質二次電池
JP4569074B2 (ja) 2003-05-23 2010-10-27 住友化学株式会社 リチウム二次電池の製造方法
US7396612B2 (en) * 2003-07-29 2008-07-08 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP4986629B2 (ja) * 2004-12-10 2012-07-25 パナソニック株式会社 リチウムイオン二次電池およびその製造方法
WO2006068143A1 (ja) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
US9190647B2 (en) * 2005-03-17 2015-11-17 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery with high temperature and storage characteristics
JP2008204835A (ja) * 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd 電気化学素子とその電極の前処理方法および製造方法、前処理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058127A (ja) * 1998-08-11 2000-02-25 Toshiba Battery Co Ltd ポリマーリチウム二次電池
JP2000323124A (ja) * 1999-05-12 2000-11-24 Hitachi Maxell Ltd 非水二次電池
JP2003068284A (ja) * 2001-08-27 2003-03-07 Mitsubishi Cable Ind Ltd リチウム二次電池用負極およびその製造方法、並びに、リチウム二次電池
JP2003142106A (ja) * 2001-11-07 2003-05-16 Matsushita Electric Ind Co Ltd 負極集電体およびこの集電体を用いた負極板と非水電解液二次電池
JP2006134762A (ja) * 2004-11-08 2006-05-25 Sony Corp 二次電池
JP2006294597A (ja) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2006190691A (ja) * 2006-03-08 2006-07-20 Hitachi Maxell Ltd 非水二次電池
JP2008135262A (ja) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd 非水電解質二次電池負極の製造方法
JP2008186704A (ja) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd 非水系二次電池用正極板および非水系二次電池
JP2008288112A (ja) * 2007-05-18 2008-11-27 Sony Corp 非水電解質二次電池

Also Published As

Publication number Publication date
US8105396B2 (en) 2012-01-31
US20110008679A1 (en) 2011-01-13
CN102037583A (zh) 2011-04-27
JPWO2010082229A1 (ja) 2012-06-28
CN102037583B (zh) 2013-07-31

Similar Documents

Publication Publication Date Title
JP4560079B2 (ja) 非水電解質二次電池用正極の製造方法
EP3654422B1 (en) A battery
WO2010086910A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP5325283B2 (ja) 角形の非水電解質二次電池及びその製造方法
JP5498386B2 (ja) 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
WO2010086903A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP2014136821A (ja) 銅合金箔、リチウムイオン二次電池用負極、リチウムイオン二次電池、及び銅合金箔の製造方法
EP3683874A1 (en) A battery
JP5279833B2 (ja) 非水電解質二次電池用正極及びその製造方法、並びに該非水電解質二次電池用正極を備えた非水電解質二次電池及びその製造方法
JP5369120B2 (ja) 非水電解質二次電池用正極及びその製造方法、並びに該非水電解質二次電池用正極を備えた非水電解質二次電池及びその製造方法
WO2010082229A1 (ja) 非水電解質二次電池及びその製造方法
KR20110054013A (ko) 비수성 전해질 2차전지 및 그 제조방법
JP2011023129A (ja) 非水系二次電池用正極板の製造方法およびその製造装置
JP5097184B2 (ja) 非水電解質二次電池およびその製造方法
JP4357825B2 (ja) 電池用正極板およびその製造方法ならびに二次電池
JP5143923B2 (ja) 圧延銅箔及びそれを用いた二次電池
JP2010165565A (ja) 非水電解質二次電池及びその製造方法
JP2010003705A (ja) 非水電解質二次電池及びその製造方法、並びに非水電解質二次電池用正極
JP5232813B2 (ja) リチウムイオン二次電池の充電方法
WO2010084526A1 (ja) 非水電解質二次電池及びその製造方法
JP2013247017A (ja) 二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池
JP2010165564A (ja) 非水電解質二次電池の製造方法及び非水電解質二次電池
WO2010086911A1 (ja) 非水電解質二次電池及びその製造方法
KR101042054B1 (ko) 비수전해질 이차전지 및 그의 제조방법
JP2010165563A (ja) 非水電解質二次電池及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000125.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009518667

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097017090

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12528589

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838199

Country of ref document: EP

Kind code of ref document: A1