JP2010165565A - 非水電解質二次電池及びその製造方法 - Google Patents

非水電解質二次電池及びその製造方法 Download PDF

Info

Publication number
JP2010165565A
JP2010165565A JP2009007017A JP2009007017A JP2010165565A JP 2010165565 A JP2010165565 A JP 2010165565A JP 2009007017 A JP2009007017 A JP 2009007017A JP 2009007017 A JP2009007017 A JP 2009007017A JP 2010165565 A JP2010165565 A JP 2010165565A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
current collector
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009007017A
Other languages
English (en)
Inventor
Masakazu Yamada
雅一 山田
Toshitaka Moriyama
利孝 森山
Takuya Hirobe
卓也 廣部
Tsutomu Nishioka
努 西岡
Yoshiyuki Muraoka
芳幸 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009007017A priority Critical patent/JP2010165565A/ja
Publication of JP2010165565A publication Critical patent/JP2010165565A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】圧壊によって非水電解質二次電池が潰されることがあっても、電池内での内部短絡の発生を防止し、内部短絡に起因する異常発熱のない安全性に優れた非水電解質二次電池を提供することにある。
【解決手段】正極集電体4A上に正極合剤層4Bが形成された正極4、及び負極集電体5A上に負極合剤層5Bが形成された負極5を、多孔質絶縁層6を介して捲回又は積層して電極群8を構成し、正極4の引っ張り伸び率を3.0%以上にする。負極集電体5Aは、負極合剤層5Bが形成されていない露出部を有し、露出部は絶縁性の保護部材10で被覆されている。
【選択図】図2

Description

本発明は、非水電解質二次電池及びその製造方法に関し、特に、圧壊による内部短絡の発生を抑制することが可能な非水電解質二次電池及びその製造方法に関する。
近年、自動車搭載用への要望、または大型工具のDC化の要望に対して、急速充電及び大電流放電可能な小型・軽量な二次電池が要求されている。そのような要求を満たす典型的な電池として、リチウムイオンを吸蔵・放出できる炭素等の材料を負極活物質とし、リチウムイオンと可逆的に電気化学反応するリチウムコバルト複合酸化物等の材料を正極活物質とし、LiClO又はLiPF等のリチウム塩を溶解した非プロトン性の有機溶媒を電解液とする非水電解質二次電池が挙げられる。
この非水電解質二次電池(以下、単に「電池」と言う。)は、正極集電体上に正極活物質が形成された正極、及び負極集電体上に負極活物質が形成された負極が、セパレータ(多孔質絶縁層)を介して捲回又は積層された電極群を、電解液とともに電池ケース内に収容し、当該電池ケースの開口部を封口板で密封した構成をなしている。
ところで、非水電解質二次電池内で内部短絡が起こると、この内部短絡により、電池内に電流が流れ、その結果、電池内の温度が上昇する。内部短絡が起きる要因は様々であるが、特に、圧壊によって電池が潰されると、瞬時に大電流が流れるため、電池内の温度が急激に上昇するおそれがある。
通常、セパレータとして用いられる多孔質絶縁層(例えば、ポリオレフィン層)は、内部短絡によって電池内の温度が上昇して高温になると無孔化し、電流を流さないようにする、所謂シャットダウン機能を備えているが、発熱が激しい場合には、多孔質絶縁層が溶融・収縮して短絡部が拡大してしまうため、異常発熱を抑制することは困難になる。
そこで、このような異常発熱を抑制する方法として、特許文献1には、セパレータを、従来のシャットダウン機能を備えた多孔性絶縁層と、耐熱性多孔質絶縁層(例えば、ポリイミド層、アラミド層等)との積層構造にする方法が記載されている。このような積層構造のセパレータは、本来のシャットダウン機構を維持しつつ、発熱が激しくなってシャットダウン機能が喪失したときには、耐熱性多孔質絶縁層によって短絡部の拡大を防止することで、異常発熱を抑制することができる。
また、特許文献2には、正極活物質の比抵抗を大きくすることによって、内部短絡時に流れる短絡電流の大きさを抑制し、これにより異常発熱を抑制する方法が記載されている。
特開2000−100408号公報 特開2001−297763号公報 特開平5−182692号公報 特開平7−105970号公報
従来の内部短絡に起因する異常発熱を抑制する方法は、いずれも、内部短絡が生じた場合に、短絡時に流れる短絡電流の大きさを抑制するもので、内部短絡の発生を防止する本質的な解決にはなっていない。従って、内部短絡の度合いによっては、異常発熱を十分に抑制することができないおそれもある。また、短絡電流の大きさを抑制する効果を大きくしようとすると、電池本来の性能を損なう結果(例えば、正極活物質の比抵抗を大きくすると、高率放電特性が低下する)となるため、従来の方法で異常発熱を抑制する効果にも一定の限界がある。
本発明は、かかる点に鑑みなされたもので、圧壊によって非水電解質二次電池が潰されることがあっても、電池内での内部短絡の発生を防止し、内部短絡に起因する異常発熱のない安全性に優れた非水電解質二次電池を提供することを目的とする。
本発明に係わる非水電解質二次電池は、正極集電体上に正極合剤層が形成された正極、及び負極集電体上に負極合剤層が形成された負極が、多孔質絶縁層を介して捲回された電極群を備えた非水電解質二次電池であって、正極の引っ張り伸び率は、3.0%以上であり、負極集電体は、負極合剤層が形成されていない露出部を有し、該露出部は絶縁性の保護部材で被覆されていることを特徴とする。
このような構成により、圧壊によって非水電解質二次電池が潰されることがあっても、正極の引っ張り伸び率が大きいために、正極が破断されることはなく、これにより、電池内の内部短絡の発生を防止することができる。加えて、製造工程上のバラツキによって、正極の引っ張り伸び率が不十分なものであった結果、正極が破断したとしても、負極合剤層が形成されていない負極集電体の露出部が絶縁性の保護部材で被覆されているため、破断した正極が負極集電体の露出部に達することはなく、これにより、内部短絡に伴う異常発熱を抑制することができる。
本発明によれば、圧壊によって非水電解質二次電池が潰されることがあっても、正極が破断されることはなく、電池内の内部短絡の発生を防止することができるとともに、製造工程上のバラツキによって、引っ張り伸び率の不十分な正極が破断したとしても、破断した正極が負極集電体の露出部と短絡するのを防止することができる。これにより、内部短絡に起因する異常発熱のない安全性に優れた非水電解質二次電池を提供することができる。
本願出願人は、非水電解質二次電池が圧壊によって潰されたときに、電池内で内部短絡が起きる要因を検討していたところ、電極群を構成する正極、負極、及びセパレータのうち、引っ張り伸び率の最も小さい正極が優先的に破断した結果、正極の破断部がセパレータを突き破って、正極と負極とが短絡していることが分かった。
そこで、正極の引っ張り伸び率を高める方法をさらに検討した結果、正極合剤層を塗布した正極を圧延した後に、所定の温度で熱処理を施すことによって、正極の引っ張り伸び率が大きくなる効果を見出した。なお、通常、正極集電体に正極合剤層を塗布した後、正極合剤層と正極集電体との密着性を向上させる目的で熱処理を行うが(例えば、特許文献3、4等を参照)、この熱処理によって正極の引っ張り伸び率は一時的に大きくなるものの、その後に圧延処理を施すと、引っ張り伸び率は再び低下し、最終的には、正極の引っ張り伸び率を大きくすることはできない。
本願出願人は、この知見に基づき、正極の引っ張り伸び率を所定の値以上にすることによって、圧壊された非水電解質二次電池における内部短絡の発生を抑制する方法を、特願2007−323217号(PCT/JP2008/002114)の出願明細書に開示している。
すなわち、正極集電体上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させた後、正極合剤スラリーが塗布・乾燥された正極を圧延し、然る後、圧延された正極を所定の温度で熱処理することによって、圧延後の正極の引っ張り伸び率を、3.0%以上にすることができる。これにより、圧壊によって非水電解質二次電池が潰されることがあっても、正極が優先的に破断することはないため、電池内の内部短絡の発生を防止することができる。
上記のように、圧延後の熱処理によって正極の引っ張り伸び率を3.0%以上に高めることができるのは、次のようなメカニズムによるものと考えられる。
すなわち、正極の引っ張り伸び率は、正極集電体の表面に正極合剤層が形成されているため、正極集電体自身の固有の引っ張り伸び率で規制されるものではい。通常、正極合剤層の方が正極集電体よりも固いので、圧延後の熱処理を行わなかった正極を伸ばしたとき、正極合剤層に大きなクラックが発生すると同時に、正極が破断する。これは、正極の伸びとともに正極合剤層内の引っ張り応力が増し、正極集電体に加わる引っ張り応力が、大きなクラックの発生した箇所に集中することにより、正極集電体が破断したものと考えられる。
一方、圧延後に熱処理を行った正極を伸ばしたときは、正極合剤層に多数の微小なクラックを発生ながら伸び続け、やがて正極が破断する。これは、正極集電体に加わる引っ張り応力が微小なクラックの発生により分散されるため、クラックの発生と同時に正極が破断されることなく一定の大きさまで伸び続け、引っ張り応力が一定の大きさに達した時点で正極集電体が破断したものと考えられる。
圧延後の熱処理によって得られる正極の引っ張り伸び率は、正極集電体や正極活物質の材料によって大きさが異なるが、例えば、アルミニウムからなる正極集電体に、LiCoOを正極活物質とする正極合剤層が形成された正極の場合、200℃以上の温度で、圧延後の熱処理(180秒)を行うことによって、正極の引っ張り伸び率を3%以上に高めることができる。なお、熱処置温度は、正極集電体の軟化温度よりも高く、結着剤の分解温度よりも低いことが好ましい。
表1は、アルミニウムからなる正極集電体に、LiCoOを正極活物質とする正極合剤層を形成した正極を用いて電池を作製したときの圧壊試験の結果を示した表である。電池1〜4は、正極の圧延後の熱処理条件を、280℃の温度で、熱処理時間を10秒、20秒、120秒、180秒に変えて行ったものである。また、電池5は、圧延後の熱処理を行わなかったものである。
Figure 2010165565
表1に示すように、圧延後の熱処理を行わなかった電池5の正極の引っ張り伸び率は、1.5%であったのに対し、圧延後の熱処理を行った電池1〜4の正極の引っ張り伸び率は、3〜6.5%にそれぞれ大きくなっているのが分かる。そして、各電池に対して、圧壊試験(6φの丸棒を0.1mm/secの速度で電池を押して、電池内で内部短絡が起きた時点での電池の変形量(短絡深さ)を測定)を行った結果、表1に示すように、圧延後の熱処理を行わなかった電池5の短絡深さは5mmであったのに対し、圧延後の熱処理を行った電池1〜4の短絡深さは、8〜10mmと深くなっているのが分かる。すなわち、圧延後に所定の熱処理を行うことによって、正極の引っ張り伸び率を3%以上にすることができ、これにより、圧壊による内部短絡の発生を防止することができる。
なお、圧延後の熱処理温度が高かったり、熱処理時間が長くなると、正極合剤層に含まれる結着剤が溶融し、正極活物質が溶融した結着剤で被覆されると、電池容量が低下するおそれがある。圧延後の熱処理に伴う電池容量の低下を防止するために、上記出願明細書では、正極集電体として、鉄を含有するアルミニウムを用いることが好ましいことを開示している。鉄を含有するアルミニウムからなる正極集電体を用いることによって、所定の正極の引っ張り伸び率を得るのに必要な圧延後の熱処理温度を低く、若しくは、熱処理時間を短くすることができる。これにより、圧延後の熱処理に伴う電池容量の低下を防止することができる。
本願発明者は、圧延後の熱処理によって、正極の引っ張り伸び率を3%以上に高めた正極を備えた非水電解質二次電池を作製して、圧壊に対する安全性を検討していたところ、ある一定の割合で、圧壊により正極が破断し、内部短絡が発生する電池があることが分かった。
正極の引っ張り伸び率は、圧延後に行う熱処理条件で制御することができるが、実際には、かかる熱処理条件だけでなく、例えば、正極集電体の厚みや、正極合剤層に含まれる結着剤の割合等、正極の引っ張り伸び率に影響を与える種々の要因が、製造工程においてバラツキを生じることによって、所期の引っ張り伸び率(3%以上)が得られない場合がある。上記の圧壊により内部短絡が発生した電池は、このような製造工程上のバラツキによって、正極の引っ張り伸び率が所期の値にならず、圧壊に対して十分な引っ張り伸び率を有していなかった結果、正極が破断したことに起因するものと考えられる。
特に、正極に対向して配置されている負極において、負極合剤層の形成されていない負極集電体の露出部(当該露出部に、負極リードが接続されている場合等)を有するが、破断した正極が負極集電体の露出部に達した場合、大きな短絡電流が流れて、電池内が異常発熱するおそれがある。
そこで、本願発明者は、製造工程上のバラツキによって、正極の引っ張り伸び率が不十分なものであった結果、正極が破断したとしても、なお、内部短絡の発生を防止することのできる方法を検討した結果、本発明を想到するに至った。
以下に、本発明の一実施形態について、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されない。また、本実施形態で説明する非水電解質二次電池の構成については、本願出願人による上記出願明細書に記載された構成を適用することができる。
図1は、本発明の一実施形態にける非水電解質二次電池の構成を模式的に示した断面図である。
図1に示すように、正極4及び負極5がセパレータ(多孔質絶縁層)を介して捲回された電極群8が、電解液と共に、電池ケース1内に収容されている。電池ケース1の開口部は、ガスケット3を介して、封口板2によって封口されている。正極4に取り付けられた正極リード4aは、正極端子を兼ねる封口板2に接続され、負極5に取り付けられた負極リード5aは、負極端子を兼ねる電池ケース1に接続されている。
図2は、本実施形態における電極群8の構成を模式的に示した拡大断面図である。
図2に示すように、正極集電体4Aの両面に、正極合剤層4Bが形成され、負極集電体5Aの両面に、負極合剤層5Bが形成され、正極4と負極5との間には、セパレータ6が配されている。
また、負極集電体5は、負極合剤層5Bが形成されていない露出部を有し、露出部には、負極リード11が接続されている。そして、負極集電体5Bの露出部は、絶縁性の保護部材10で被覆されている。
ここで、正極4の引っ張り伸び率は、3.0%以上である。正極4の引っ張り伸び率を3.0%以上にすることによって、圧壊によって非水電解質二次電池が潰されることがあっても、正極4が破断されることはなく、電池内の内部短絡の発生を防止することができる。加えて、製造工程上のバラツキによって、正極4の引っ張り伸び率が不十分(3.0%未満)であったことに起因して正極4が破断したとしても、負極集電体5Aの負極合剤層5Bが形成されていない露出部が絶縁性の保護部材10で被覆されているため、破断した正極4が負極集電体5Aの露出部に達することはなく、これにより、内部短絡に伴う異常発熱を抑制することができる。
ここで、本発明における「引張り伸び率」は、試験片を引っ張り、試験片が破断した時の試験片の伸びた割合をいい、例えば、幅が15mmで、有効部の長さが20mmの極板を、20mm/minの速度で引っ張り、極板が破断した時点での伸び率から求められる。
また、負極集電体5Aの露出部を被覆する絶縁性の保護部材10は、例えば、絶縁テープを露出部を覆うように負極集電体5Aに貼り付けて形成することができる。絶縁テープは、例えば、エポキシフィルムテープ、ポリイミドフィルムテープ、ポリテトラフルオロエチレンテープ、ポリエステルフィルムテープ等の材料を用いることができる。また、露出部を絶縁テープで覆う代わりに、露出部を覆うように絶縁性の樹脂(例えば、エポキシ樹脂、ポリイミド、ポリテトラフルオロエチレン、ポリエステル等)を塗布してもよい。
なお、負極集電体5Aの露出部は、帯状負極5のどの位置に設けられていてもよい。図3は、負極集電体5Aの露出部が、帯状負極5の端部又は中央部に設けられている例を示す。また、負極集電体5Aの露出部は、負極リード11が接続されていない場合も含まれる。
本発明において、図2に示した電極群8を構成する正極4及び負極5については、特にその材料及び製法に制限はないが、以下のような材料及び製法を適用し得る。なお、電極群8は、正極4及び負極5をセパレータ6を介して捲回されたものでなく、積層されたものであっても勿論よい。
正極集電体4Aは、例えば、アルミニウム、ステンレス鋼、チタン等を用いることができる。特に、鉄を含有するアルミニウムを用いると、正極4の圧延後の熱処理温度を低く、若しくは熱処置時間を短くすることができる。なお、正極集電体4A中の鉄の含有量は、1.20〜1.70重量%の範囲することが好ましい。
正極合剤層4Bは、正極活物質の他に、結着剤、導電剤などを含むことができる。正極活物質としては、例えば、リチウム複合金属酸化物を用いることができる。代表的な材料としては、LiCoO2、LiNiO2、LiMnO2、LiCoNiO2等が挙げられる。また、結着剤としては、例えば、ポリビニリデンフルオライド(PVDF)、PVDFの誘導体、又はゴム系結着剤(例えばフッ素ゴム及びアクリルゴム等)が好適に用いられる。また、導電剤としては、例えば、黒鉛等のグラファイト類、アセチレンブラック等のカーボンブラック類等の材料を用いることができる。
正極4は、正極集電体4A上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させた後、正極合剤スラリーが塗布・乾燥された正極集電体4Aを圧延し、然る後、圧延された正極集電体4Aを所定の温度で熱処理することによって得られる。なお、圧延後の熱処理条件は、正極4の引っ張り伸び率が3%以上になるように制御する。ただし、正極4の引っ張り伸び率が10%を超えると、電極群8を捲回により形成する際、正極4が変形して均一な捲回が困難になるため、正極の引っ張り伸び率は、10%以下であることが好ましい。
負極集電体5Aは、例えば、銅、ステンレス鋼、ニッケル等を用いることができる。負極合剤層5Bは、負極活物質の他に、結着剤、導電剤などを含むことができる。負極活物質としては、例えば、黒鉛、炭素繊維等の炭素材料や、SiOx等の珪素化合物等を用いることができる。
負極5は、負極集電体5A上に、負極活物質を含む負極合剤スラリーを塗布・乾燥させた後、負極合剤スラリーが塗布・乾燥された負極集電体5Aを圧延して得る。
なお、本発明における効果を奏するためには、負極5及びセパレータ(多孔質絶縁層)6の引っ張り伸び率は、3%以上であることを要する。
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記実施形態においては、非水電解質二次電池としてリチウムイオン二次電池を例に説明したが、本発明の効果を奏する範囲において、ニッケル水素蓄電池等の他の非水電解質二次電池にも適用することができる。また、本発明は、圧壊による電池内での内部短絡の発生を防止する効果を奏するものであるが、電池の充放電に伴う負極活物質の膨張収縮に起因した電極群の座屈または極板の破断の防止にも適用し得る。
本発明は、大電流放電に適した電極群を備えた非水電解質二次電池に有用で、例えば、高出力を必要とする電動工具や電気自動車などの駆動用電池、大容量のバックアップ用電源、蓄電用電源用電池等に適用できる。
本発明の一実施形態における非水電解質二次電池の構成を示した断面図である。 本発明の一実施形態における電極群の構成を示した拡大断面図である。 本発明の一実施形態における負極の構成を示した平面図である。
1 電池ケース
2 封口板
3 ガスケット
4 正極
4A 正極集電体
4B 正極合剤層
4a 正極リード
5 負極
5A 負極集電体
5B 負極合剤層
5a 負極リード
6 セパレータ
8 電極群
10 絶縁性の保護部材
11 負極リード

Claims (7)

  1. 正極集電体上に正極合剤層が形成された正極、及び負極集電体上に負極合剤層が形成された負極が、多孔質絶縁層を介して捲回又は積層された電極群を備えた非水電解質二次電池であって、
    前記正極の引っ張り伸び率は、3.0%以上であり、
    前記負極集電体は、前記負極合剤層が形成されていない露出部を有し、該露出部は絶縁性の保護部材で被覆されている、非水電解質二次電池。
  2. 前記負極の引っ張り伸び率は、3.0%以上であり、
    前記多孔質絶縁層の引っ張り伸び率は、3.0%以上である、請求項1に記載の非水電解質二次電池。
  3. 前記正極は、前記正極集電体上に正極活物質を含む正極合剤スラリーを塗布・乾燥して形成した正極を圧延した後、所定の温度で熱処理されたものである、請求項1に記載の非水電解質二次電池。
  4. 前記正極集電体は、鉄を含有するアルミニウムからなる、請求項1に記載の非水電解質二次電池。
  5. 前記負極集電体の露出部に、負極リードが接続されている、請求項1に記載の非水電解質二次電池。
  6. 前記絶縁性の保護部材は、絶縁テープからなる、請求項1に記載の非水電解質二次電池。
  7. 正極集電体上に正極合剤層が形成された正極、及び負極集電体上に負極合剤層が形成された負極が、多孔質絶縁層を介して捲回又は積層された電極群を備えた非水電解質二次電池の製造方法であって、
    前記正極は、
    前記正極集電体上に、正極活物質を含む正極合剤スラリーを塗布・乾燥させて、前記正極集電体上に前記正極合剤層を形成する工程(a)と、
    前記正極合剤層が形成された正極を圧延する工程(b)と、
    前記圧延された正極を所定の温度で熱処理する工程(c)と
    により形成され、
    前記工程(c)後の前記正極の引っ張り伸び率は、3.0%以上であり、
    前記負極集電体は、前記負極合剤層が形成されていない露出部を有し、該露出部は絶縁性の保護部材で被覆されている、非水電解質二次電池の製造方法。
JP2009007017A 2009-01-15 2009-01-15 非水電解質二次電池及びその製造方法 Withdrawn JP2010165565A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009007017A JP2010165565A (ja) 2009-01-15 2009-01-15 非水電解質二次電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009007017A JP2010165565A (ja) 2009-01-15 2009-01-15 非水電解質二次電池及びその製造方法

Publications (1)

Publication Number Publication Date
JP2010165565A true JP2010165565A (ja) 2010-07-29

Family

ID=42581578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007017A Withdrawn JP2010165565A (ja) 2009-01-15 2009-01-15 非水電解質二次電池及びその製造方法

Country Status (1)

Country Link
JP (1) JP2010165565A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183539A (ja) * 2016-03-30 2017-10-05 太陽誘電株式会社 電気化学デバイス
WO2018070423A1 (ja) 2016-10-13 2018-04-19 国立研究開発法人産業技術総合研究所 リチウムイオン二次電池及びこれを用いた電気機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183539A (ja) * 2016-03-30 2017-10-05 太陽誘電株式会社 電気化学デバイス
WO2018070423A1 (ja) 2016-10-13 2018-04-19 国立研究開発法人産業技術総合研究所 リチウムイオン二次電池及びこれを用いた電気機器
KR20190062400A (ko) 2016-10-13 2019-06-05 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 리튬 이온 2차 전지 및 이를 이용한 전기 기기
US11289706B2 (en) 2016-10-13 2022-03-29 National Institute Of Advanced Industrial Science And Technology Lithium ion secondary battery and electric device using same

Similar Documents

Publication Publication Date Title
JP4560079B2 (ja) 非水電解質二次電池用正極の製造方法
JP5791718B2 (ja) 集電体、電極構造体、非水電解質電池、蓄電部品
JP5325283B2 (ja) 角形の非水電解質二次電池及びその製造方法
WO2010086910A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP6648088B2 (ja) 二次電池負極集電体用圧延銅箔、それを用いた二次電池負極及び二次電池並びに二次電池負極集電体用圧延銅箔の製造方法
WO2010029675A1 (ja) 非水電解質二次電池及びその製造方法
WO2010086903A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP5279833B2 (ja) 非水電解質二次電池用正極及びその製造方法、並びに該非水電解質二次電池用正極を備えた非水電解質二次電池及びその製造方法
JP5345974B2 (ja) 圧延銅合金箔、並びにこれを用いた負極集電体、負極板及び二次電池
JP2010049909A (ja) 非水電解質二次電池
JP5416077B2 (ja) 圧延銅箔、並びにこれを用いた負極集電体、負極板及び二次電池
JP5369120B2 (ja) 非水電解質二次電池用正極及びその製造方法、並びに該非水電解質二次電池用正極を備えた非水電解質二次電池及びその製造方法
WO2011001636A1 (ja) 非水電解質二次電池及びその製造方法
JP2011023129A (ja) 非水系二次電池用正極板の製造方法およびその製造装置
WO2010082229A1 (ja) 非水電解質二次電池及びその製造方法
JP5097184B2 (ja) 非水電解質二次電池およびその製造方法
JP5143923B2 (ja) 圧延銅箔及びそれを用いた二次電池
JP2010165565A (ja) 非水電解質二次電池及びその製造方法
JP2010003705A (ja) 非水電解質二次電池及びその製造方法、並びに非水電解質二次電池用正極
JP5232813B2 (ja) リチウムイオン二次電池の充電方法
JP2013247017A (ja) 二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池
WO2010084526A1 (ja) 非水電解質二次電池及びその製造方法
JP2010165564A (ja) 非水電解質二次電池の製造方法及び非水電解質二次電池
WO2010086911A1 (ja) 非水電解質二次電池及びその製造方法
KR101042054B1 (ko) 비수전해질 이차전지 및 그의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120806