WO2011001636A1 - 非水電解質二次電池及びその製造方法 - Google Patents

非水電解質二次電池及びその製造方法 Download PDF

Info

Publication number
WO2011001636A1
WO2011001636A1 PCT/JP2010/004190 JP2010004190W WO2011001636A1 WO 2011001636 A1 WO2011001636 A1 WO 2011001636A1 JP 2010004190 W JP2010004190 W JP 2010004190W WO 2011001636 A1 WO2011001636 A1 WO 2011001636A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
current collector
temperature
electrode current
secondary battery
Prior art date
Application number
PCT/JP2010/004190
Other languages
English (en)
French (fr)
Inventor
村岡芳幸
宇賀治正弥
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2010800122901A priority Critical patent/CN102356486A/zh
Priority to US13/124,580 priority patent/US20110244325A1/en
Priority to JP2011501035A priority patent/JPWO2011001636A1/ja
Priority to EP10793810A priority patent/EP2421076A4/en
Publication of WO2011001636A1 publication Critical patent/WO2011001636A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a manufacturing method thereof.
  • Such a non-aqueous electrolyte secondary battery (hereinafter sometimes simply referred to as “battery”) includes an electrode group in which a porous insulating layer is provided between a positive electrode and a negative electrode.
  • This electrode group is provided together with an electrolytic solution in a battery case made of stainless steel, iron plated with nickel, or metal such as aluminum, and the battery case is hermetically sealed using a cover plate (Patent Document 1). ).
  • Patent Document 2 proposes to roll a laminate in which a mixture layer is applied on both sides of a current collector using a roll heated to around 80 to 140 ° C.
  • the present invention has been made in view of the above points, and an object of the present invention is to increase the capacity of the nonaqueous electrolyte secondary battery while ensuring safety.
  • the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a porous insulating layer disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • the positive electrode has a positive electrode current collector and a positive electrode mixture layer provided on at least one surface of the positive electrode current collector, and the tensile elongation of the positive electrode is 3.0% or more.
  • the positive electrode current collector contains iron, and the porosity of the positive electrode mixture layer is 17% or less.
  • Such a method for manufacturing a non-aqueous electrolyte secondary battery includes the following steps. First, a positive electrode current collector containing iron is prepared. Next, a positive electrode mixture slurry containing a positive electrode active material and a binder is provided on the surface of the positive electrode current collector, and the positive electrode mixture slurry is dried. Thereafter, the positive electrode current collector provided with the positive electrode active material and the binder on the surface is rolled at a predetermined temperature. Then, heat treatment is performed on the rolled positive electrode current collector.
  • the predetermined temperature during rolling is not less than the first temperature and less than the second temperature
  • the first temperature is a temperature at which the elastic modulus of the binder starts to decrease
  • the second temperature is the tension of the positive electrode current collector This is the temperature at which the elongation is minimum.
  • the positive electrode current collector provided with the positive electrode active material and the binder on the surface is rolled at a temperature not lower than the first temperature and lower than the second temperature.
  • the tensile elongation of the positive electrode can be 3% or more. Therefore, it is possible to prevent the positive electrode from being cut off during charging or crushing, so that the safety of the nonaqueous electrolyte secondary battery can be ensured.
  • the elastic modulus of the positive electrode binder decreases during rolling. Therefore, the capacity of the nonaqueous electrolyte secondary battery can be increased.
  • the positive electrode current collector contains iron. Therefore, the heat treatment temperature in the heat treatment after rolling can be lowered, and the heat treatment time in the heat treatment after rolling can be shortened.
  • the positive electrode current collector may contain 1.2 mass% or more of iron with respect to aluminum.
  • the second temperature can be increased when the iron content in the positive electrode current collector is reduced.
  • the temperature during rolling can be increased. Therefore, the elastic modulus of the positive electrode can be further reduced, so that the capacity of the nonaqueous electrolyte secondary battery can be further increased.
  • the tensile elongation of the positive electrode is a value measured according to the following method in this specification. First, a positive electrode for measurement (width is 15 mm and length in the longitudinal direction is 20 mm) is prepared. Next, one end in the longitudinal direction of the measurement positive electrode is fixed, and the other end in the longitudinal direction of the measurement positive electrode is pulled at a speed of 20 mm / min along the longitudinal direction. Then, the length in the longitudinal direction of the measurement positive electrode immediately before breaking is measured, and the tensile elongation rate of the positive electrode in the longitudinal direction is calculated using the length and the length in the longitudinal direction of the measurement positive electrode before pulling.
  • the “porosity of the positive electrode mixture layer” is a ratio of the total volume of the gaps existing in the positive electrode mixture layer to the total volume of the positive electrode mixture layer in the present specification. Calculated.
  • Porosity 1- (Volume of component 1 + Volume of component 2 + Volume of component 3) / (Volume of positive electrode mixture layer)
  • the volume of the positive electrode mixture layer is calculated by measuring the thickness of the positive electrode mixture layer with a scanning electron microscope and then cutting the positive electrode into a predetermined dimension.
  • Component 1 is a component that dissolves in an acid in the positive electrode mixture
  • Component 2 is a component that does not dissolve in the acid in the positive electrode mixture and has thermal volatility
  • Component 3 is a component in the positive electrode mixture. It is a component that is insoluble in an acid and has heat non-volatility. The volume of component 1 to component 3 is calculated by the following method.
  • the positive electrode cut to a predetermined size is separated into a positive electrode current collector and a positive electrode mixture layer.
  • the weight of the positive electrode mixture is measured.
  • the positive electrode mixture is dissolved with an acid and separated into a component dissolved in the acid and a component not dissolved in the acid.
  • the component dissolved in the acid is qualitatively quantitatively analyzed using X-ray fluorescence and structurally analyzed by the X-ray diffraction method, and the lattice constant and molecular weight of the component are calculated from the result of the qualitative quantitative analysis and the result of the structural analysis. . In this way, the volume of component 1 can be calculated.
  • thermogravimetric analysis for the component not dissolved in the acid, first, the component is weighed. Next, the components are qualitatively analyzed using gas chromatography / mass spectrometry, followed by thermogravimetric analysis. Thereby, the component which has heat volatility among the components which did not melt
  • thermogravimetric analysis from the results of qualitative analysis by gas chromatography and mass spectrometry, the components that did not dissolve in the acid Among them, the composition of components having thermal volatility is known). Then, the weight of the component having thermal volatility among the components not dissolved in the acid is calculated from the result of the thermogravimetric analysis of the sample and the result of the thermogravimetric analysis of the standard sample. The volume of component 2 is calculated using the calculated weight and the true density of the component having thermal volatility among the components not dissolved in the acid.
  • the weight of the component can be determined.
  • the volume of component 3 is calculated using the weight thus obtained and the true specific gravity of the component that does not have thermal volatility among the components not dissolved in the acid.
  • a non-aqueous electrolyte secondary battery having excellent safety and high capacity can be provided.
  • FIG. 1A is a cross-sectional view when a positive electrode not subjected to heat treatment after rolling is pulled
  • FIG. 1B is a cross-sectional view when a positive electrode subjected to heat treatment after rolling is pulled.
  • FIG. 2 is a table showing the results of examining the relationship between the tensile elongation of the positive electrode after rolling and after the heat treatment after rolling when a foil made of aluminum is used as the positive electrode current collector.
  • FIG. 3 shows a case where a foil made of an aluminum alloy containing iron is used as a positive electrode current collector, and after the rolling and the heat treatment after the rolling are performed by changing the temperature after the rolling and the temperature of the heat treatment after the rolling.
  • FIG. 4 is a graph showing the results of examining the relationship between the temperature during heat treatment or the temperature during rolling and the tensile elongation.
  • FIG. 5 is a diagram schematically showing the temperature dependence of the state of the aluminum alloy containing iron.
  • FIG. 6 is a graph showing another result of examining the relationship between the temperature during heat treatment or the temperature during rolling and the tensile elongation.
  • FIG. 7 is a cross-sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of an electrode group in one embodiment of the present invention.
  • FIG. 9 is a graph showing the temperature dependence of the elastic modulus of the positive electrode binder.
  • FIG. 10 is a table summarizing the results obtained in the examples.
  • the packing density of the positive electrode active material in the positive electrode mixture layer is increased, the flexibility of the positive electrode is decreased, and as a result, the performance and safety of the nonaqueous electrolyte secondary battery are decreased.
  • the flexibility of the positive electrode decreases, it becomes difficult to deform following the deformation of the negative electrode during the charge / discharge (deformation of the negative electrode due to expansion and contraction of the negative electrode active material). Therefore, the positive electrode may be cut off during charging / discharging, leading to performance degradation of the nonaqueous electrolyte secondary battery.
  • the positive electrode breaks the broken positive electrode may pass through the porous insulating layer and come into contact with the negative electrode, causing an internal short circuit.
  • a wound electrode group an electrode group formed by winding a positive electrode and a negative electrode through a porous insulating layer
  • the positive electrode is cut during winding. There is a case. Therefore, the production yield of the nonaqueous electrolyte secondary battery is reduced, and further, an internal short circuit is caused.
  • Patent Document 3 discloses a method for improving the flexibility of the positive electrode in WO2009 / 019861 (hereinafter referred to as “Patent Document 3”).
  • a positive electrode mixture slurry containing a positive electrode active material, a conductive agent and a binder is applied onto the surface of the positive electrode current collector and then dried.
  • a positive electrode current collector having a positive electrode active material, a conductive agent, a binder, and the like provided on the surface is manufactured.
  • this positive electrode current collector (positive electrode current collector provided with a positive electrode active material, a conductive agent, a binder, and the like on the surface) is rolled and then heat-treated.
  • the positive electrode current collector provided with the positive electrode active material, the conductive agent, the binder and the like on the surface is rolled and then heat treated (simply referred to as “heat treatment after rolling” or “heat treatment after rolling”).
  • the tensile elongation of the positive electrode can be made larger than the value before the heat treatment.
  • the tensile elongation of the positive electrode can be made larger than the value before heat treatment by the heat treatment after rolling due to the following mechanism.
  • FIG. 1 (a) and 1 (b) are cross-sectional views of the positive electrode
  • FIG. 1 (a) is a cross-sectional view of the positive electrode that has not been heat-treated after rolling
  • FIG. 1 (b) is a view after rolling. It is sectional drawing when the positive electrode which heat-processed was pulled.
  • the tensile elongation rate of the positive electrode is not regulated by the inherent tensile elongation rate of the positive electrode current collector itself because the positive electrode mixture layer is formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer has a lower tensile elongation than the positive electrode current collector. Therefore, when the positive electrode 44 not subjected to the heat treatment after rolling is extended, as shown in FIG. 1A, a large crack 49 is generated in the positive electrode mixture layer 44B and at the same time, the positive electrode 44 is broken.
  • the positive electrode current collector 4A is softened, so that the positive electrode 4 continues to grow while generating a large number of minute cracks 9 in the positive electrode mixture layer 4B ( As shown in FIG. 1B, the positive electrode 4 is eventually broken.
  • the positive electrode current collector 4A is considered to have broken.
  • the applicant of the present invention can reduce the heat treatment temperature in the heat treatment after rolling by using a positive electrode current collector made of an aluminum alloy containing iron in Patent Document 3, and the heat treatment in the heat treatment after rolling. It discloses that the time can be shortened.
  • the temperature in the heat treatment after rolling is preferably higher, and the heat treatment time in the heat treatment after rolling is preferably longer.
  • the binder of the positive electrode may be melted and cover the positive electrode active material. Cause a decline.
  • the inventors of the present application conducted a heat treatment after rolling a positive electrode current collector provided with a positive electrode active material, a conductive agent, a binder, and the like on the surface using a roll heated to a high temperature. It was thought that the flexibility of the positive electrode could be secured while increasing the capacity of the nonaqueous electrolyte secondary battery. Therefore, the inventors of the present invention produced a positive electrode using this technique, and measured the tensile elongation of the produced positive electrode.
  • As the positive electrode current collector a foil made of aluminum and a foil made of an aluminum alloy containing iron were prepared. The results are shown in FIGS.
  • the tensile elongation of the positive electrode may not increase even when heat treatment after rolling is performed, as shown in FIG. Specifically, when rolling is performed using a roll heated to 80 ° C., the positive electrode is pulled by the heat treatment after rolling regardless of whether the heat treatment temperature after rolling is 190 ° C. or 250 ° C. The growth rate has increased. However, when rolling is performed using a roll heated to 160 ° C., if the heat treatment temperature after rolling is 190 ° C., the tensile elongation of the positive electrode does not increase even if the heat treatment after rolling is performed.
  • the tensile elongation of the positive electrode was increased by the heat treatment after rolling.
  • the tensile elongation of the positive electrode was increased by the heat treatment after rolling.
  • a foil made of an aluminum alloy containing iron is used as the positive electrode current collector, if the temperature during rolling is relatively low, the tensile elongation of the positive electrode can be increased by performing heat treatment after rolling. It has been found that if the temperature at the time is relatively high, the tensile elongation of the positive electrode cannot be increased unless heat treatment after rolling is performed at a temperature of 250 ° C. or higher.
  • a positive electrode current collector made of an aluminum alloy containing iron was prepared, and the positive electrode current collector was heat-treated at 80 to 200 ° C., and then the tensile elongation of the positive electrode current collector was measured. Then, the tensile elongation of the positive electrode current collector was minimized at the temperature T min as indicated by the line 11 in FIG.
  • the following three experimental positive electrodes were prepared, and the temperature dependence of the tensile elongation of the experimental positive electrode was examined.
  • the first experimental positive electrode was produced according to the following method. First, a positive electrode active material, a conductive agent, a binder, etc. are provided on the surface of the positive electrode current collector, and then a positive electrode current collector provided with a positive electrode active material, a conductive agent, a binder, etc. on the surface. Heat treatment was performed at 80 to 200 ° C. In this way, a first experimental positive electrode was produced, and the relationship between the temperature of the heat treatment and the tensile elongation of the first experimental positive electrode was examined. Then, the tensile elongation of the first experimental positive electrode was minimized at the temperature T min as indicated by the line 12 in FIG.
  • the second experimental positive electrode was produced according to the following method. First, a positive electrode active material, a conductive agent, a binder, and the like are provided on the surface of the positive electrode current collector, and then a positive electrode active material, a conductive agent, and a binder are formed on the surface using a roll heated to 80 to 160 ° C. The positive electrode current collector provided with the agent and the like was rolled. In this way, a second experimental positive electrode was produced, and the relationship between the roll temperature (shown as “temperature during rolling” in FIG. 4) and the tensile elongation of the second experimental positive electrode was examined. It was. Then, as shown by the line 13 in FIG.
  • the tensile elongation of the second experimental positive electrode decreased as the rolling temperature increased if the rolling temperature was less than T min.
  • T was equal to or higher than T min, no change was observed in the tensile elongation of the positive electrode even when the temperature during rolling increased.
  • a third experimental positive electrode was produced according to the following method. First, a positive electrode active material, a conductive agent, a binder, and the like are provided on the surface of the positive electrode current collector, and then a positive electrode active material, a conductive agent, and a binder are formed on the surface using a roll heated to 80 to 160 ° C. The positive electrode current collector provided with the agent or the like was rolled, and then the rolled positive electrode current collector was heat-treated at 190 ° C. In this way, a third experimental positive electrode was produced, and the relationship between the roll temperature and the tensile elongation of the third experimental positive electrode was examined. Then, the tensile elongation of the third experimental positive electrode is larger than the tensile elongation of the second experimental positive electrode when the rolling temperature is lower than T min as shown by the line 14 in FIG. It was.
  • the inventors of the present application have confirmed that the tensile elongation of the positive electrode is improved by rolling at a temperature of T min or higher and then heat-treating at a temperature of 250 ° C. or higher.
  • the temperature dependence of the tensile elongation of the positive electrode current collector and the first to third experimental positive electrodes is illustrated with an emphasis on being constant. Therefore, the temperature dependence of the tensile elongation of the positive electrode current collector is not limited to the shape of the line 11, and the temperature dependence of the first to third experimental positive electrodes is not limited to the shape of the lines 12 to 14, respectively.
  • FIG. 5 is a diagram schematically showing the temperature dependence of the state of the aluminum alloy containing iron.
  • the present inventors consider the reason why the softening temperature of the aluminum alloy containing iron is lower than the softening temperature T m (Al) of pure aluminum.
  • the aluminum alloy containing iron changes from a solid solution of iron and aluminum to an intermetallic compound of iron and aluminum (for example, Fe 3 Al) at a temperature lower than the softening temperature T m (Al) of pure aluminum.
  • the aluminum crystal particles become coarse. Therefore, the softening temperature of the aluminum alloy containing iron is lower than the softening temperature T m (Al) of pure aluminum.
  • the temperature at which the solid solution changes to the intermetallic compound is a temperature T min at which the tensile elongation of the positive electrode current collector is minimized as shown in FIG. Therefore, when rolled at a temperature lower than the temperature Tmin, the positive electrode current collector is mainly a solid solution of iron and aluminum. Therefore, even if aluminum undergoes work hardening by rolling, the tensile elongation of the positive electrode is increased by heat treatment after rolling. The rate can be increased. However, when rolled at a temperature equal to or higher than the temperature T min , the positive electrode current collector is changing from a solid solution to an intermetallic compound, so that the generation of the intermetallic compound starts and at the same time aluminum causes work hardening by rolling. .
  • the inventors of the present application conducted a similar experiment using positive electrode current collectors having different iron contents, and found that the temperature Tmin depends on the iron content in the positive electrode current collector. .
  • the experimental results are shown in FIG.
  • the temperature dependence of the tensile elongation of the positive electrode current collector shifts to a lower temperature side when the iron content in the positive electrode current collector is increased (line 11 ⁇ line 21), and the iron content in the positive electrode current collector is decreased. Then, it shifted to the high temperature side (line 11 ⁇ line 31). That is, the temperature T min at which the tensile elongation rate of the positive electrode current collector is minimized is lower when the iron content in the positive electrode current collector is higher, and higher when the iron content in the positive electrode current collector is lower. I understood. Specifically, the temperature T min at which the tensile elongation of the positive electrode current collector becomes the minimum was around 100 ° C. when the positive electrode current collector contained 1.5 mass% iron with respect to aluminum. When the positive electrode current collector contained 1.2 mass% of iron with respect to aluminum, the temperature was around 130 ° C.
  • the temperature dependence of the tensile elongation of the third experimental positive electrode shifts to a lower temperature side when the iron content in the positive electrode current collector is increased (line 14 ⁇ line 24), and the iron dependence of the positive electrode current collector is increased.
  • the content rate was lowered, it shifted to the high temperature side (line 14 ⁇ line 34).
  • FIG. 6 illustrates the temperature dependence of the tensile elongation of the positive electrode current collector or the third experimental positive electrode, focusing on the relationship between the iron content in the positive electrode current collector and the temperature Tmin. ing. Therefore, the temperature dependence of the tensile elongation of the positive electrode current collector is not limited to the shapes of the wires 11, 21 and 31. Further, the shapes of the lines 11, 21 and 31 may be equal to each other as shown in FIG. 6, but may be slightly different from each other. The same was true for the temperature dependence of the tensile elongation of the third experimental positive electrode.
  • the temperature dependence of the tensile elongation of the positive electrode current collector made of aluminum was shifted to a higher temperature side than the line 31 in FIG. That is, the temperature T min at which the tensile elongation of the positive electrode current collector made of aluminum is minimized is higher than the roll temperature (80 to 160 ° C.). Therefore, if a foil made of aluminum is used as the positive electrode current collector, as shown in FIG. 2, even if the roll is heated to 80 to 160 ° C., the tensile elongation of the positive electrode is increased by the heat treatment after rolling. It is thought.
  • the inventors of the present application further suppressed the decrease in battery capacity during heat treatment after rolling in order to increase the capacity of the nonaqueous electrolyte secondary battery without reducing the flexibility of the positive electrode.
  • the positive electrode should be manufactured according to the following method. First, a positive electrode current collector made of an aluminum alloy containing iron is prepared. Next, a positive electrode active material, a binder, a conductive agent, and the like are provided on the surface of the positive electrode current collector, and heated to 80 to 160 ° C. The positive electrode current collector having a positive electrode active material, a binder, a conductive agent, and the like provided on the surface is rolled using the rolled roll, and then the rolled positive electrode is heat treated.
  • FIG. 7 is a cross-sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the electrode group in the present embodiment.
  • the electrode group 8 is housed in the battery case 1 together with the electrolyte (not shown).
  • An opening is formed in the battery case 1, and the opening is sealed by a sealing plate 2 through a gasket 3.
  • the positive electrode 4 and the negative electrode 5 are wound through the porous insulating layer 6.
  • the positive electrode mixture layer 4B is provided on both surfaces of the positive electrode current collector 4A, and the positive electrode lead 4a is connected to the exposed portion of the positive electrode current collector 4A.
  • the negative electrode mixture layer 5B is provided on both surfaces of the negative electrode current collector 5A, and the negative electrode lead 5a is connected to the exposed portion of the negative electrode current collector 5A.
  • the positive electrode lead 4a is connected to the sealing plate 2 (also serving as a positive electrode terminal), and the negative electrode lead 5a is connected to the battery case 1 (also serving as a negative electrode terminal).
  • the positive electrode active material filling density in the positive electrode mixture layer 4B is higher than that in the past in order to meet the recent demand for higher capacity of the nonaqueous electrolyte secondary battery.
  • the porosity is lower than the conventional one, for example, 17% or less. Therefore, the positive electrode mixture layer 4B becomes harder than before.
  • the tensile elongation of the positive electrode 4 is 3% or more. Therefore, when such a positive electrode 4 is pulled, as shown in FIG. 1B, the positive electrode current collector 4A extends while generating minute cracks 9 in the positive electrode mixture layer 4B.
  • the positive electrode 4 does not break the positive electrode current collector 4A at the same time as the first crack occurs in the positive electrode mixture layer 4B, but the positive electrode mixture layer for a while after the first crack occurs. While generating cracks in 4B, the positive electrode current collector 4A continues to grow without breaking.
  • the tensile elongation of the positive electrode 4 is preferably 10% or less. This is because if the tensile elongation of the positive electrode 4 exceeds 10%, the positive electrode 4 may be deformed when the positive electrode 4 is wound.
  • the positive electrode current collector 4A in the present embodiment is made of an aluminum alloy containing iron.
  • the positive electrode current collector 4A contains 1.2% by mass or more of iron with respect to aluminum, it is possible to prevent a decrease in battery capacity due to heat treatment after rolling, and the positive electrode current collector 4A has 1% of aluminum with respect to aluminum. If the iron content is less than 5% by mass, the capacity can be increased. Therefore, the positive electrode current collector 4A preferably contains 1.2% by mass or more of iron with respect to aluminum, and contains 1.2% by mass or more and 1.5% by mass or less of iron with respect to aluminum. If so, it is more preferable.
  • Such a positive electrode 4 is produced according to the following method.
  • a positive electrode current collector 4A made of an aluminum alloy containing iron is prepared. At this time, the positive electrode current collector 4A only needs to contain 1.2 mass% or more of iron with respect to aluminum.
  • a positive electrode mixture slurry containing a positive electrode active material, a binder, and a conductive agent is provided on both surfaces of the positive electrode current collector 4A (step (a)). Thereafter, the positive electrode mixture slurry is dried (step (b)).
  • the positive electrode current collector provided with the positive electrode active material, the binder and the conductive agent on both surfaces is rolled at a predetermined temperature (step (c)).
  • a positive electrode current collector provided with a positive electrode active material, a binder and a conductive agent on both surfaces may be rolled while being irradiated with hot air, infrared rays or heating wire.
  • a positive electrode current collector provided with an adhesive and a conductive agent may be rolled while performing IH (InductionInHeating), and a positive electrode active material and a binder are bonded on both surfaces using a roll heated to a predetermined temperature.
  • the positive electrode current collector provided with the agent and the conductive agent may be rolled.
  • a positive electrode current collector provided with a positive electrode active material, a binder and a conductive agent on both surfaces is rolled using a roll heated to a predetermined temperature, the heat treatment time can be shortened. , Energy loss can be suppressed. Therefore, it is preferable to roll a positive electrode current collector provided with a positive electrode active material, a binder, and a conductive agent on both surfaces using a roll heated to a predetermined temperature.
  • the predetermined temperature in the rolling step is less than above T 1 T min.
  • T 1 first temperature
  • FIG. 9 shows the temperature dependence of the elastic modulus of the positive electrode binder. Examination of the temperature dependence of the elastic modulus of the positive electrode binder, the elastic modulus, the temperature of the positive electrode binder begins to fall to rise to around T 1, the temperature of the positive electrode of the binder is further increased further descend. Therefore, if the predetermined temperature is less than T 1 in the rolling process, the elastic modulus of the positive electrode of the binder is hardly lowered, it is difficult to provide a high capacity non-aqueous electrolyte secondary battery. Therefore, the predetermined temperature in the rolling step is above T 1.
  • the temperature at which the elastic modulus starts to decrease is about 50 ° C. regardless of the material. Therefore, the temperature T 1 may be around 50 ° C., preferably 50 ° C. or more.
  • the temperature T min (second temperature) is a temperature at which the tensile elongation rate of the positive electrode current collector 4A is minimized. If the predetermined temperature in the rolling process is equal to or higher than T min , as shown in FIGS. 4 and 6, even if heat treatment after rolling is performed on the rolled positive electrode current collector, the tensile elongation of the positive electrode is increased. It's difficult to make it bigger. Therefore, the said predetermined temperature in a rolling process is less than Tmin .
  • a pressure of 1.0 ton / cm or more and 1.8 ton / cm or less may be applied.
  • the rolling step heat treatment is performed on the rolled positive electrode current collector (step (d)).
  • the rolled positive electrode current collector may be irradiated with hot air, infrared rays, or heating wire, or the rolled positive electrode current collector may be subjected to IH, and heated to the heat treatment temperature shown below.
  • the roll may be brought into contact with the rolled positive electrode current collector.
  • a roll heated to the heat treatment temperature shown below is brought into contact with the rolled positive electrode current collector.
  • the positive electrode current collector 4A in this embodiment contains iron, the positive electrode current collector 4A has a lower temperature than a positive electrode current collector made of only aluminum. Easy to soften. Therefore, the temperature in the heat treatment after rolling may be not less than the softening temperature (about 160 ° C.) of the positive electrode current collector 4A and not more than the melting temperature (about 200 ° C.) of the positive electrode binder. Thereby, the tensile elongation of the positive electrode can be set to a desired value while suppressing the melting and decomposition of the binder of the positive electrode. Thus, the positive electrode 4 in this embodiment can be produced.
  • the predetermined temperature in the rolling process is preferably high, that is, the iron content in the positive electrode current collector is preferably low.
  • the heat treatment temperature in the heat treatment after rolling is preferably low, that is, the iron content in the positive electrode current collector is preferably high. Since the positive electrode current collector in the present embodiment contains 1.2 mass% or more and 1.5 mass% or less of iron with respect to aluminum, the battery capacity is reduced in the heat treatment after rolling while increasing the capacity. Can be suppressed.
  • the heat treatment time in the heat treatment step after rolling is not particularly limited and can be set as appropriate. As an example of the heat treatment time, it may be 0.1 second to 5 hours, or 10 seconds to 1 hour.
  • the positive electrode current collector in which the positive electrode active material and the binder are provided on both surfaces is rolled at a temperature of T 1 or more and less than T min .
  • the positive electrode current collector 4A can be rolled with a positive electrode active material and a binder provided on both surfaces without forming an intermetallic compound between aluminum and iron,
  • the tensile elongation of the positive electrode 4 can be increased to 3% or more by heat treatment after rolling. That is, it is possible to suppress a decrease in flexibility of the positive electrode due to an increase in capacity.
  • the tensile elongation of the positive electrode 4 can be 3% or more while increasing the capacity. Therefore, the tensile elongation rate of the positive electrode 4 becomes as large as the tensile elongation rate of the negative electrode 5 or the porous insulating layer 6. Thereby, the electrode group 8 can be produced without cutting the positive electrode 4. Furthermore, since the positive electrode 4 is deformed following the expansion and contraction of the negative electrode active material during charging and discharging, it is possible to prevent the electrode group from buckling or the electrode plate from breaking. In addition, at the time of crushing, it is possible to prevent the positive electrode from breaking before the negative electrode and breaking through the porous insulating layer, thereby preventing an internal short circuit from occurring. Thus, in this embodiment, a high-capacity nonaqueous electrolyte secondary battery in which yield and safety are ensured can be provided.
  • the positive electrode, the negative electrode, the porous insulating layer, and the nonaqueous electrolyte material in the present embodiment will be described.
  • the positive electrode, negative electrode, porous insulating layer, and non-aqueous electrolyte materials in the present embodiment are not limited to the following representative examples.
  • the positive electrode current collector 4A may be a foil or plate made of an aluminum alloy containing iron, and a plurality of holes may be formed in the foil or plate.
  • the positive electrode mixture layer 4B can include a binder, a conductive agent, and the like in addition to the positive electrode active material.
  • a positive electrode active material for example, a lithium composite metal oxide can be used. Typical materials include LiCoO 2 , LiNiO 2 , LiMnO 2 or LiCoNiO 2 .
  • the binder for example, PVDF, a derivative of PVDF, or a rubber-based binder (for example, fluororubber and acrylic rubber) is preferably used.
  • the conductive agent for example, a material such as graphite such as graphite or carbon black such as acetylene black can be used.
  • the volume occupied by the binder in the positive electrode mixture layer 4B is preferably 1% or more and 6% or less with respect to the volume occupied by the positive electrode active material in the positive electrode mixture layer 4B.
  • the volume occupied by the conductive agent in the positive electrode mixture layer 4B is preferably 1% or more and 6% or less with respect to the volume occupied by the positive electrode active material in the positive electrode mixture layer 4B. Thereby, even if the porosity of the positive electrode mixture layer 4B is 17% or less, it is possible to suppress a decrease in cycle characteristics without accompanying a decrease in battery capacity.
  • the negative electrode current collector 5A for example, a plate made of copper, stainless steel, nickel, or the like can be used, and a plurality of holes may be formed in the plate.
  • the negative electrode mixture layer 5B can contain a binder and the like in addition to the negative electrode active material.
  • a carbon material such as graphite or carbon fiber, or a silicon compound such as SiO x can be used.
  • Such a negative electrode 5 is produced as follows, for example. First, after preparing a negative electrode mixture slurry containing a negative electrode active material and a binder, the negative electrode mixture slurry is applied on both surfaces of the negative electrode current collector 5A and dried. Next, the negative electrode current collector provided with the negative electrode active material on both surfaces is rolled. In addition, you may heat-process at predetermined temperature and predetermined time after rolling.
  • the porous insulating layer 6 examples include a microporous thin film, a woven fabric, or a non-woven fabric that has a large ion permeability and has a predetermined mechanical strength and insulating properties.
  • a microporous thin film such as polypropylene or polyethylene. Since polyolefin is excellent in durability and has a shutdown function, the safety of the nonaqueous electrolyte secondary battery can be improved.
  • the microporous thin film may be a single layer film made of one material, or a composite film or a multilayer film made of two or more materials. Also good.
  • the non-aqueous electrolyte contains an electrolyte and a non-aqueous solvent that dissolves the electrolyte.
  • non-aqueous solvent a known non-aqueous solvent can be used.
  • 1 type such as cyclic carbonate ester, chain
  • 1 type such as cyclic carbonate ester, chain
  • 2 or more types may be mixed and used for it.
  • electrolyte examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lithium lower aliphatic carboxylate, LiCl, LiBr , LiI, chloroborane lithium, borates or imide salts may be used alone or in combination of two or more.
  • the amount of electrolyte dissolved in the non-aqueous solvent is preferably 0.5 mol / m 3 or more and 2 mol / m 3 or less.
  • the non-aqueous electrolyte includes an additive having a function of increasing the charge / discharge efficiency of the battery by decomposing on the negative electrode to form a film having high lithium ion conductivity on the negative electrode. You may go out.
  • an additive having such a function for example, one kind such as vinylene carbonate (VC), vinyl ethylene carbonate (VEC) or divinyl ethylene carbonate may be used alone, or two or more kinds may be used. May be used in combination.
  • a cylindrical lithium ion secondary battery has been described as an example of a nonaqueous electrolyte secondary battery.
  • a prismatic lithium ion secondary battery or a nickel hydride storage battery can be used within the scope of the effects of the present invention.
  • the present invention can also be applied.
  • the current collection in the nonaqueous electrolyte secondary battery may be performed via the lead as described above, or may be performed via the current collector plate. If the current is collected via the current collecting plate, the resistance during current collection can be reduced.
  • the porosity of the positive electrode mixture layer is low. Specifically, the porosity of the positive electrode mixture layer is preferably 15% or less, and more preferably 10% or less. However, if the porosity of the positive electrode mixture layer is too low, the positive electrode mixture layer is difficult to hold the nonaqueous electrolyte. In order to increase the capacity while ensuring retention of the nonaqueous electrolyte by the positive electrode mixture layer, the porosity of the positive electrode mixture layer is preferably 3% or more.
  • the batteries 1 to 6 were produced according to the following method, and the effects obtained in the above embodiment were verified.
  • Nonaqueous Electrolyte Secondary Battery Manufacturing Method (Battery 1) (Production method of positive electrode) First, polyvinylidene fluoride (PVDF, PVDF is an abbreviation for poly (vinylidene fluoride)) (binder) in a solvent of acetylene black (conductive agent) and N-methylpyrrolidone (NMP, NMP is an abbreviation for N-methylpyrrolidone). The dissolved solution was mixed with LiNi 0.82 Co 0.15 Al 0.03 O 2 (average particle size 10 ⁇ m) (positive electrode active material) to obtain a positive electrode mixture slurry.
  • PVDF polyvinylidene fluoride
  • binder a solvent of acetylene black
  • NMP N-methylpyrrolidone
  • the dissolved solution was mixed with LiNi 0.82 Co 0.15 Al 0.03 O 2 (average particle size 10 ⁇ m) (positive electrode active material) to obtain a positive electrode mixture slurry.
  • the positive electrode current collector provided with a positive electrode active material or the like on both sides was subjected to a pressure of 1.8 ton / cm, and the positive electrode current collector was rolled. Thereby, a positive electrode mixture layer was formed on both surfaces of the positive electrode current collector. At this time, the porosity of the positive electrode mixture layer was 16%.
  • the rolled positive electrode current collector was brought into contact with a roll heated to 190 ° C. (made by Tokuden Corporation) for 1 minute. And it cut
  • flaky artificial graphite 100 parts by weight is mixed with 1 part by weight of a styrene butadiene rubber (binder) and 100 parts by weight of an aqueous solution containing 1% by weight of carboxymethyl cellulose, and mixed. A slurry was obtained.
  • this negative electrode mixture slurry was applied on both sides of a copper foil (negative electrode current collector) having a thickness of 8 ⁇ m and dried. At this time, no negative electrode mixture slurry was provided on the surface of the negative electrode current collector where the negative electrode lead was attached.
  • the negative electrode current collector provided with the negative electrode active material and the like on both sides was rolled and then heat treated at 190 ° C. for 5 hours. And it cut
  • an aluminum positive electrode lead is welded to a portion of the positive electrode current collector where the positive electrode mixture slurry is not provided, and a nickel negative electrode lead is welded to a portion of the negative electrode current collector where the negative electrode mixture slurry is not provided. did. Thereafter, the positive electrode and the negative electrode were opposed to each other so that the positive electrode lead and the negative electrode lead extended in opposite directions, and a polyethylene separator (porous insulating layer) was disposed between the positive electrode and the negative electrode. And the positive electrode and negative electrode which were arrange
  • an upper insulating plate was disposed above the upper surface of the electrode group, and a lower insulating plate was disposed below the lower surface of the electrode group.
  • the negative electrode lead was welded to the battery case and the positive electrode lead was welded to the sealing plate, and the electrode group was housed in the battery case.
  • a non-aqueous electrolyte was injected into the battery case by a decompression method, and the sealing plate was caulked to the opening of the battery case via a gasket. Thereby, the battery 1 was produced.
  • Battery 2 A battery 2 was produced in the same manner as the battery 1 except that the conditions for rolling a positive electrode current collector provided with a positive electrode active material or the like on both sides were changed. Specifically, rolling was performed using a roll heated to 60 ° C., and the pressure in the rolling process was set to 1.6 ton / cm.
  • Battery 3 was produced in the same manner as the battery 1 except that the conditions for rolling a positive electrode current collector provided with a positive electrode active material or the like on both sides were changed. Specifically, rolling was performed using a roll heated to 120 ° C., and the pressure in the rolling process was set to 1.0 ton / cm.
  • Battery 4 A battery 4 was produced in the same manner as the battery 1 except that the conditions for rolling a positive electrode current collector provided with a positive electrode active material or the like on both sides were changed. Specifically, rolling was performed using a roll heated to 150 ° C., and the pressure in the rolling process was set to 0.8 ton / cm.
  • Battery 5 is the same as Battery 1 except that the iron content in the positive electrode current collector is changed and the conditions for rolling the positive electrode current collector provided with the positive electrode active material and the like on both sides are changed.
  • a foil made of an aluminum alloy containing 1.5% by mass of iron with respect to aluminum was used as a positive electrode current collector.
  • Battery 6 A battery 6 was produced in the same manner as the battery 5 except that the conditions for rolling the positive electrode current collector provided with the positive electrode active material and the like on both sides were changed. Specifically, rolling was performed using a roll heated to 120 ° C., and the pressure in the rolling process was set to 1.0 ton / cm.
  • (B) Battery capacity measurement method The battery capacity of the batteries 1 to 6 produced according to the above method was measured under an environment of 25 ° C. Specifically, the battery is charged with a constant current of 1.5 A up to 4.2 V, and then charged with a constant voltage of 4.2 V until the current value reaches 50 mA, then 2 with a constant current of 0.6 A. The capacity when discharged to 5 V was taken as the battery capacity. The result is shown as “capacity” in FIG.
  • FIG. 10 shows the results.
  • the positive electrode mixture layers had the same porosity even though the rolling conditions were different. That is, if the temperature during rolling was high, the porosity of the positive electrode mixture layer could be about 16% without increasing the pressure during rolling so much. The reason is considered to be that when the temperature during rolling becomes high, the elastic modulus of the binder of the positive electrode is lowered.
  • the tensile elongation of the positive electrode was increased by the heat treatment after rolling. Even when the heat treatment was performed, the tensile elongation of the positive electrode was not so large. Therefore, it can be confirmed that the optimum temperature during rolling depends on the iron content in the positive electrode current collector, and that the optimum temperature during rolling can be increased if the iron content in the positive electrode current collector is reduced. Was confirmed.
  • the present invention is useful for a high-capacity nonaqueous electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 非水電解質二次電池は、正極(4)と、負極(5)と、多孔質絶縁層(6)と、非水電解質とを備えている。正極(4)では、正極合剤層(4B)が正極集電体(4A)の少なくとも一方の表面上に設けられている。正極(4)の引っ張り伸び率は3.0%以上であり、正極集電体(4A)は鉄を含んでおり、正極合剤層(4B)の空孔率は17%以下である。

Description

非水電解質二次電池及びその製造方法
 本発明は、非水電解質二次電池及びその製造方法に関する。
 近年、環境問題の点から自動車搭載用電源として使用するために、又は大型工具用電源の直流化の要望に応えるために、急速に充電が可能であるとともに大電流放電が可能な小型且つ軽量な二次電池が要求されている。そのような要求を満たす典型的な二次電池として、非水電解質二次電池を挙げることができる。
 このような非水電解質二次電池(以下では単に「電池」と記すこともある)は、正極と負極との間に多孔質絶縁層が設けられた電極群を備えている。この電極群は、ステンレス製、ニッケルがメッキされた鉄製又はアルミニウムなどの金属製の電池ケース内に電解液とともに設けられており、電池ケースは、蓋板を用いて密閉されている(特許文献1)。
 ところで、昨今、非水電解質二次電池の高容量化が要求されている。非水電解質二次電池を高容量化させる方法の一つとして、合剤層における活物質の充填密度を増加させるという方法を挙げることができる。例えば特許文献2では、80~140℃近傍に熱したロールを用いて、合剤層が集電体の両面に塗布された積層体を圧延させるということが提案されている。
特開平5-182692号公報 特開平5-129020号公報
 しかしながら、合剤層における活物質の充填密度を増加させると、非水電解質二次電池の安全性を確保することが難しい場合があることが分かった。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、安全性を確保しつつ非水電解質二次電池の高容量化を図ることにある。
 本発明の非水電解質二次電池は、正極と、負極と、正極と負極との間に配置された多孔質絶縁層と、非水電解質とを備えている。正極は、正極集電体と、正極集電体の少なくとも一方の表面上に設けられた正極合剤層とを有しており、正極の引っ張り伸び率は、3.0%以上である。正極集電体は鉄を含んでおり、正極合剤層の空孔率は17%以下である。
 このような非水電解質二次電池の製造方法は、次に示す工程を有している。まず、鉄を含む正極集電体を用意する。次に、その正極集電体の表面上に正極活物質及び結着剤が含まれた正極合剤スラリーを設け、その正極合剤スラリーを乾燥させる。その後、正極活物質及び結着剤が表面上に設けられた正極集電体を所定の温度で圧延する。それから、圧延された正極集電体に対して熱処理を施す。圧延時の所定の温度は第1の温度以上第2の温度未満であり、第1の温度は結着剤の弾性率が低下し始める温度であり、第2の温度は正極集電体の引っ張り伸び率が最小となる温度である。
 本発明の非水電解質二次電池の製造方法では、正極活物質及び結着剤が表面上に設けられた正極集電体を第1の温度以上第2の温度未満で圧延するので、その後の熱処理において正極の引っ張り伸び率を3%以上にすることができる。よって、充電時又は圧壊時に正極が切れることを防止できるので、非水電解質二次電池の安全性を確保できる。
 さらに、本発明の非水電解質二次電池の製造方法では、圧延時に正極の結着剤の弾性率が低下する。よって、非水電解質二次電池の高容量化を図ることができる。
 それだけでなく、本発明の非水電解質二次電池の製造方法では、正極集電体に鉄が含まれている。よって、圧延後の熱処理における熱処理温度の低温化を図ることができ、圧延後の熱処理における熱処理時間の短縮化を図ることができる。具体的には、正極集電体がアルミニウムに対して1.2質量%以上の鉄を含有していれば良い。
 本発明の非水電解質二次電池の製造方法では、正極集電体における鉄の含有率が低くなると第2の温度を高くできる。第2の温度が高くなると、圧延時の温度を高くできる。よって、正極の弾性率の更なる低下を図ることができるので、非水電解質二次電池の高容量化を更に図ることができる。
 なお、「正極の引っ張り伸び率」は、本明細書では、次に示す方法に従って測定された値である。まず、測定用正極(幅が15mmであり長手方向における長さが20mmである)を準備する。次に、測定用正極の長手方向における一端を固定し、測定用正極の長手方向における他端を長手方向に沿って20mm/minの速度で引っ張る。そして、破断される直前の測定用正極の長手方向における長さを測定し、その長さと引っ張る前の測定用正極の長手方向における長さとを用いて長手方向における正極の引っ張り伸び率を算出する。
 また、「正極合剤層の空孔率」は、本明細書では、正極合剤層の全体積に対する正極合剤層内に存在する隙間の全体積の割合であり、以下の式を用いて算出される。
 空孔率
=1-(成分1の体積+成分2の体積+成分3の体積)/(正極合剤層の体積)
 ここで、正極合剤層の体積は、走査型電子顕微鏡で正極合剤層の厚みを測定した後に正極を所定の寸法に裁断して算出される。
 成分1は正極合剤のうち酸に溶解する成分であり、成分2は正極合剤のうち酸に溶解しない成分であって且つ熱揮発性を有する成分であり、成分3は正極合剤のうち酸に溶解しない成分であって且つ熱不揮発性を有する成分である。成分1~成分3の体積は次に示す方法で算出される。
 まず、所定の寸法に裁断した正極を正極集電体と正極合剤層とに分離する。次に、正極合剤の重量を測定する。続いて、正極合剤を酸で溶かし、酸に溶解した成分と酸に溶解しなかった成分とに分離する。酸に溶解した成分については、蛍光X線を用いて定性定量分析するとともにX線回折法によって構造解析し、定性定量分析の結果と構造解析の結果とからその成分の格子定数及び分子量を算出する。このようにして成分1の体積を算出することができる。
 一方、酸に溶解しなかった成分については、まず、その成分の重量を量る。次に、ガスクロマトグラフィー・マススペクトロメトリーを用いてその成分を定性分析してから熱重量分析する。これにより、酸に溶解しなかった成分のうち熱揮発性を有する成分は揮発する。しかし、この熱重量分析において、酸に溶解しなかった成分のうち熱揮発性を有する成分の全てが揮発するとは限らない。そのため、得られた熱重量分析の結果(サンプルの熱重量分析の結果)から、酸に溶解しなかった成分のうち熱揮発性を有する成分の重量を算出することは難しい。そこで、酸に溶解しなかった成分のうち熱揮発性を有する成分の標準サンプルを準備して熱重量分析する(ガスクロマトグラフィー・マススペクトロメトリーによる定性分析の結果から、酸に溶解しなかった成分のうち熱揮発性を有する成分の組成が分かっている)。そして、サンプルの熱重量分析の結果と標準サンプルの熱重量分析の結果とから、酸に溶解しなかった成分のうち熱揮発性を有する成分の重量を算出する。算出された重量と酸に溶解しなかった成分のうち熱揮発性を有する成分の真密度とを用いて、成分2の体積が算出される。
 酸に溶解しなかった成分のうち熱揮発性を有する成分の重量が分かれば、サンプルの熱重量分析の結果とその重量とを用いて熱に溶解しなかった成分のうち熱揮発性を有しない成分の重量を求めることができる。このようにして求められた重量と酸に溶解しなかった成分のうち熱揮発性を有しない成分の真比重とを用いて、成分3の体積が算出される。
 本発明によれば、安全性に優れ且つ高容量な非水電解質二次電池を提供できる。
図1(a)は圧延後に熱処理が施されていない正極を引っ張ったときの断面図であり、図1(b)は圧延後に熱処理が施された正極を引っ張ったときの断面図である。 図2は、アルミニウムからなる箔を正極集電体として用いた場合に、圧延後と圧延後の熱処理を行った後とにおける正極の引っ張り伸び率の関係を調べた結果を示す表である。 図3は、鉄を含有するアルミニウム合金からなる箔を正極集電体として用いた場合に、圧延後の温度及び圧延後の熱処理の温度を変えて圧延後と圧延後の熱処理を行った後とにおける正極の引っ張り伸び率の関係を調べた結果を示す表である。 図4は、熱処理時の温度又は圧延時の温度と引っ張り伸び率との関係を調べた結果を示すグラフである。 図5は、鉄を含有するアルミニウム合金の状態の温度依存性を模式的に示す図である。 図6は、熱処理時の温度又は圧延時の温度と引っ張り伸び率との関係を調べた別の結果を示すグラフである。 図7は、本発明の一実施形態に係る非水電解質二次電池の断面図である。 図8は、本発明の一実施形態における電極群の断面図である。 図9は、正極の結着剤の弾性率の温度依存性を示すグラフ図である。 図10は、実施例で得られた結果をまとめた表である。
 本発明の実施形態を説明する前に、本発明を完成させるに至った経緯を説明する。
 上述のように、非水電解質二次電池の高容量化が要求されており、その要求に応えるために合剤層における活物質の充填密度を増加させることが検討されている。
 負極合剤層における負極活物質の充填密度を高くしすぎると、負極におけるリチウムイオンの受け入れが著しく低下するので、リチウムが負極の表面に金属として析出しやすくなり、そのために非水電解質二次電池の安全性の低下を招来する,ということが知られている。一方、正極合剤層における正極活物質の充填密度を増加させても上記不具合は発生しない,と考えられている。そこで、本願発明者らは、非水電解質二次電池の高容量化を図るためには正極合剤層における正極活物質の充填密度を増加させれば良いと考え、特許文献2に開示されている方法を用いて正極合剤層における正極活物質の充填密度を増加させることを検討した。
 しかし、正極合剤層における正極活物質の充填密度が高くなると、正極の柔軟性が低下し、その結果、非水電解質二次電池の性能及び安全性の低下を招来する。例えば、正極は、柔軟性が低下すると、充放電時における負極の変形(負極活物質の膨張及び収縮に起因する負極の変形)に追随して変形しにくくなる。そのため、充放電時に正極が切れる場合があり、非水電解質二次電池の性能低下を招来する。それだけでなく、正極が切れると、切れた正極が多孔質絶縁層を貫通して負極に接触する虞があり、内部短絡の発生を招来する。また、捲回型の電極群(正極と負極とが多孔質絶縁層を介して捲回されて形成された電極群)を作製する場合、正極の柔軟性が低下すると、捲回時に正極が切れる場合がある。そのため、非水電解質二次電池の製造歩留まりの低下を招来し、さらには内部短絡の発生を招来する。
 ところで、本件出願人は、WO2009/019861号公報(以下では「特許文献3」と記す。)に、正極の柔軟性を向上させる方法を開示している。
 すなわち、まず、正極活物質、導電剤及び結着剤を含む正極合剤スラリーを正極集電体の表面上に塗布させてから乾燥させる。これにより、表面上に正極活物質、導電剤及び結着剤等が設けられた正極集電体が作製される。次に、この正極集電体(表面上に正極活物質、導電剤及び結着剤等が設けられた正極集電体)を圧延してから熱処理する。このように表面上に正極活物質、導電剤及び結着剤等が設けられた正極集電体を圧延してから熱処理する(単に「圧延後に熱処理する」又は「圧延後の熱処理」などと記す場合がある)ことにより、正極の引っ張り伸び率を熱処理する前の値よりも大きくすることができる。
 上記のように、圧延後の熱処理によって正極の引っ張り伸び率を熱処理する前の値よりも大きくすることができるのは、次のようなメカニズムによるものと考えられる。
 図1(a)及び(b)は正極の断面図であり、図1(a)は圧延後に熱処理が施されていない正極を引っ張ったときの断面図であり、図1(b)は圧延後に熱処理が施された正極を引っ張ったときの断面図である。
 正極の引っ張り伸び率は、正極集電体の表面に正極合剤層が形成されているため、正極集電体自身の固有の引っ張り伸び率で規制されない。通常、正極合剤層の方が正極集電体よりも引っ張り伸び率が低い。そのため、圧延後の熱処理を行わなかった正極44を伸ばしたときには、図1(a)に示すように、正極合剤層44Bに大きなクラック49が発生すると同時に正極44が破断する。これは、正極44の伸びとともに正極合剤層44B内の引っ張り応力が増し、正極集電体44Aに加わる引っ張り応力が大きなクラック49の発生した箇所に集中することにより、正極集電体44Aが破断したものと考えられる。
 一方、圧延後に熱処理を行った正極4を伸ばしたときは、正極集電体4Aが軟化しているので、正極合剤層4Bに多数の微小なクラック9を発生させながら正極4が伸び続け(図1(b))、やがて正極4が破断する。これは、正極集電体4Aに加わる引っ張り応力が微小なクラック9の発生により分散されるため、正極合剤層4Bにおけるクラック9の発生が正極集電体4Aに及ぼす影響は少なく、クラック9の発生と同時に正極4が破断されることなく一定の大きさまで伸び続け、引っ張り応力が一定の大きさ(正極集電体4Aに固有の引っ張り伸び率に近い値)に達した時点で正極集電体4Aが破断したものと考えられる。
 さらに、本件出願人は、特許文献3に、鉄を含有するアルミニウム合金からなる正極集電体を用いれば、圧延後の熱処理における熱処理温度の低温化を図ることができ、圧延後の熱処理における熱処理時間の短縮化を図ることができるということを開示している。正極の引っ張り伸び率を大きくするためには、圧延後の熱処理における温度は高い方が好ましく、圧延後の熱処理における熱処理時間は長い方が好ましい。しかし、圧延後の熱処理における熱処理温度が高くなると、又は、圧延後の熱処理における熱処理時間が長くなると、正極の結着剤が溶融して正極活物質を被覆する虞があり、その結果、電池容量の低下を引き起こす。電池容量の低下を引き起こすことなく正極の引っ張り伸び率を大きくするためには、鉄を含有するアルミニウム合金からなる正極集電体を用いることが好ましい。
 以上を考慮し、本願発明者らは、高温に熱したロールを用いて表面上に正極活物質、導電剤及び結着剤等が設けられた正極集電体を圧延した後に熱処理を行えば、非水電解質二次電池の高容量化を図りつつ正極の柔軟性を確保できると考えた。そこで、本願発明者らは、この手法を用いて正極を作製し、作製された正極の引っ張り伸び率を測定した。正極集電体としては、アルミニウムからなる箔と鉄を含有するアルミニウム合金からなる箔とを準備した。その結果を図2及び図3に示す。
 正極集電体としてアルミニウムからなる箔を用いた場合、図2に示すように、圧延時の温度に関係なく(ロールの温度に関係なく)圧延後の熱処理を行うと正極の引っ張り伸び率は大きくなった。この結果は、特許文献3に開示の通りである。なお、図2における「圧延後」は圧延後であって圧延後の熱処理を行う前を意味する。図3における「圧延後」も同様である。
 一方、正極集電体として鉄を含むアルミニウム合金からなる箔を用いると、図3に示すように、圧延後の熱処理を行っても正極の引っ張り伸び率が大きくならない場合があった。具体的には、80℃に熱したロールを用いて圧延すると、圧延後の熱処理温度を190℃にした場合であっても250℃にした場合であっても、圧延後の熱処理により正極の引っ張り伸び率は大きくなった。しかし、160℃に熱したロールを用いて圧延すると、圧延後の熱処理温度を190℃にした場合には圧延後の熱処理を行っても正極の引っ張り伸び率は大きくならず、圧延後の熱処理温度を250℃にした場合には圧延後の熱処理により正極の引っ張り伸び率は大きくなった。つまり、正極集電体として鉄を含むアルミニウム合金からなる箔を用いた場合、圧延時の温度が比較的低温であれば、圧延後の熱処理を行えば正極の引っ張り伸び率を大きくできるが、圧延時の温度が比較的高温であれば、250℃以上の温度で圧延後の熱処理を行わなければ正極の引っ張り伸び率を大きくできない,ということが分かった。本願発明者らは、このような結果が得られた理由を特定するために、正極集電体の引っ張り伸び率はある温度において最小の値を示すという知見に基づいて以下に示す実験を行った。その結果を図4に示す。
 まず、鉄を含有するアルミニウム合金からなる正極集電体を準備し、その正極集電体を80~200℃で熱処理した後にその正極集電体の引っ張り伸び率を測定した。すると、正極集電体の引っ張り伸び率は、図4の線11に示すように、温度Tminにおいて最小となった。この正極集電体を用いて、以下の3つの実験用正極を作製し、実験用正極の引っ張り伸び率の温度依存性を調べた。
 第1の実験用正極は、次に示す方法に従って作製された。まず、正極集電体の表面上に正極活物質、導電剤及び結着剤等を設け、次に、表面上に正極活物質、導電剤及び結着剤等が設けられた正極集電体を80~200℃で熱処理した。このようにして第1の実験用正極を作製し、熱処理の温度と第1の実験用正極の引っ張り伸び率との関係を調べた。すると、第1の実験用正極の引っ張り伸び率は、図4の線12に示すように、温度Tminにおいて最小となった。
 第2の実験用正極は、次に示す方法に従って作製された。まず、正極集電体の表面上に正極活物質、導電剤及び結着剤等を設け、次に、80~160℃に熱したロールを用いて表面上に正極活物質、導電剤及び結着剤等が設けられた正極集電体を圧延した。このようにして第2の実験用正極を作製し、ロールの温度(図4には「圧延時の温度」と記している。)と第2の実験用正極の引っ張り伸び率との関係を調べた。すると、第2の実験用正極の引っ張り伸び率は、図4の線13に示すように、圧延時の温度がTmin未満であれば圧延時の温度が上昇するにつれて小さくなったが、圧延時の温度がTmin以上となると圧延時の温度が上昇しても正極の引っ張り伸び率に変化はみられなかった。
 第3の実験用正極は、次に示す方法に従って作製された。まず、正極集電体の表面上に正極活物質、導電剤及び結着剤等を設け、次に、80~160℃に熱したロールを用いて表面上に正極活物質、導電剤及び結着剤等が設けられた正極集電体を圧延し、その後、圧延された正極集電体に対して190℃で熱処理した。このようにして第3の実験用正極を作製し、ロールの温度と第3の実験用正極の引っ張り伸び率との関係を調べた。すると、第3の実験用正極の引っ張り伸び率は、図4の線14に示すように、圧延時の温度がTminよりも低い場合には第2の実験用正極の引っ張り伸び率よりも大きかった。
 但し、本願発明者らは、温度Tmin以上の温度で圧延してから250℃以上の温度で熱処理すれば、正極の引っ張り伸び率が向上することを確認している。
 なお、図4では、正極集電体及び第1の実験用正極の引っ張り伸び率がある温度において最小となること、及び、第2及び第3の実験用正極の引っ張り伸び率がある温度を境に一定となることに重点をおいて、正極集電体及び第1~第3の実験用正極の引っ張り伸び率の温度依存性を図示している。そのため、正極集電体の引っ張り伸び率の温度依存性は線11の形状に限定されず、第1~第3の実験用正極の温度依存性はそれぞれ線12~14の形状に限定されない。
 また、線12、線13及び線14における温度Tminは、図4に示すように線11における温度Tminと同一である場合もあれば、線11における温度Tminと若干(±5℃前後)相異なる場合もあった。
 これらの結果をまとめると、鉄を含有する正極集電体の表面上に正極活物質、導電剤及び結着剤等が設けられたものをTminよりも低い温度で圧延したときには、その圧延の後に190℃で熱処理を行うと正極の引っ張り伸び率は大きくなった。一方、鉄を含有する正極集電体の表面上に正極活物質、導電剤及び結着剤等が設けられたものをTmin以上の温度で圧延したときには、その後、190℃で熱処理しても正極の引っ張り伸び率は殆ど大きくならなかった。その理由として、本願発明者らは、以下に示すことを考えている。
 図5は、鉄を含有するアルミニウム合金の状態の温度依存性を模式的に示す図である。
 まず、鉄を含有するアルミニウム合金の軟化温度が純アルミニウムの軟化温度Tm(Al)よりも低い理由として本願発明者らが考えていることを示す。鉄を含有するアルミニウム合金は、純アルミニウムの軟化温度Tm(Al)よりも低い温度において、鉄とアルミニウムとの固溶体から鉄とアルミニウムとの金属間化合物(例えばFe3Al)へ変化する。このとき、アルミニウム結晶粒子が粗大化する。従って、鉄を含有するアルミニウム合金の軟化温度は、純アルミニウムの軟化温度Tm(Al)よりも低くなる。
 そして、固溶体から金属間化合物へ変化する温度は、図5に示すように、正極集電体の引っ張り伸び率が最小となる温度Tminである。よって、温度Tmin未満の温度で圧延した場合、正極集電体は主に鉄とアルミニウムとの固溶体であるので、圧延によりアルミニウムが加工硬化を起こしても、圧延後の熱処理により正極の引っ張り伸び率を大きくすることができる。しかし、温度Tmin以上の温度で圧延した場合、正極集電体は固溶体から金属間化合物に変化しつつあるので、金属間化合物の生成が始まったと同時にアルミニウムが圧延により加工硬化を起こすことになる。そのため、圧延後に熱処理を行って正極の引っ張り伸び率を高めようとしても、正極集電体が固溶体である場合とは違って鉄が含まれている効果が得にくくなる。よって、圧延後の熱処理における温度を純アルミニウムの軟化温度Tm(Al)以上にしなければ、正極の引っ張り伸び率を大きくすることは難しい。
 また、本願発明者らは、鉄の含有率が互いに異なる正極集電体を用いて同様の実験を行ったところ、温度Tminは正極集電体における鉄の含有率に依存することが分かった。実験結果を図6に示す。
 正極集電体の引っ張り伸び率の温度依存性は、正極集電体における鉄の含有率を高くすると低温側へシフトし(線11→線21)、正極集電体における鉄の含有率を低くすると高温側へシフトした(線11→線31)。つまり、正極集電体の引っ張り伸び率が最小となる温度Tminは、正極集電体における鉄の含有率が高い方が低く、正極集電体における鉄の含有率が低い方が高いということが分かった。具体的には、正極集電体の引っ張り伸び率が最小となる温度Tminは、正極集電体がアルミニウムに対して1.5質量%の鉄を含む場合には100℃前後であったが、正極集電体がアルミニウムに対して1.2質量%の鉄を含む場合には130℃前後であった。
 また、第3の実験用正極の引っ張り伸び率の温度依存性は、正極集電体における鉄の含有率を高くすると低温側へシフトし(線14→線24)、正極集電体における鉄の含有率を低くすると高温側へシフトした(線14→線34)。
 なお、図6では、正極集電体における鉄の含有率と温度Tminとの関係に焦点を当てて、正極集電体又は第3の実験用正極の引っ張り伸び率の温度依存性を図示している。そのため、正極集電体の引っ張り伸び率の温度依存性は、線11,21及び31の形状に限定されない。また、線11,21及び31の形状は、図6に示すように互いに等しい場合もあったが、若干相異なる場合もあった。第3の実験用正極の引っ張り伸び率の温度依存性についても、同様のことが言えた。
 また、図6には不図示であるが、アルミニウムからなる正極集電体の引っ張り伸び率の温度依存性は、図6中の線31よりもさらに高温側へシフトした。つまり、アルミニウムからなる正極集電体の引っ張り伸び率が最小となる温度Tminは、ロールの温度(80~160℃)よりも高かった。よって、アルミニウムからなる箔を正極集電体として用いれば、図2に示すように、80~160℃に熱したロールを用いて圧延しても圧延後の熱処理により正極の引っ張り伸び率が大きくなったと考えられる。
 以上をまとめると、本願発明者らは、正極の柔軟性を低下させることなく非水電解質二次電池の高容量化を図るためには、さらには、圧延後の熱処理における電池容量の低下を抑制するためには、次に示す方法に従って正極を製造すれば良いと考えた。まず、鉄を含有するアルミニウム合金からなる正極集電体を用意し、次に、その正極集電体の表面上に正極活物質、結着剤及び導電剤等を設け、80~160℃に熱したロールを用いて表面上に正極活物質、結着剤及び導電剤等が設けられた正極集電体を圧延し、その後に圧延された正極に熱処理を行う。しかし、このような方法に従って正極を作製すると、圧延後の熱処理を行ったにも関わらず正極の引っ張り伸び率をその熱処理前よりも大きくできない場合があるということが分かった。この新たに生じた課題を検討したところ、正極集電体の引っ張り伸び率が最小となる温度Tmin以上の温度で圧延すると、圧延後の熱処理を行っても正極の引っ張り伸び率を大きくできないことが分かった。また、正極集電体における鉄の含有率を低くすれば正極集電体の引っ張り伸び率が最小となる温度Tminが高くなることも分かった。本願発明者らは、これらをふまえて本発明を完成した。つまり、本発明は、上記新たに生じた課題を解決するものである。以下では、本発明の一実施形態について図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されない。
 図7は、本発明の一実施形態に係る非水電解質二次電池の断面図である。図8は、本実施形態における電極群の断面図である。
 本実施形態に係る非水電解質二次電池では、電極群8が電解質(不図示)とともに電池ケース1内に収容されている。電池ケース1には開口が形成されており、この開口はガスケット3を介して封口板2により封口されている。
 電極群8では、正極4及び負極5が多孔質絶縁層6を介して捲回されている。正極4では、正極集電体4Aの両面上に正極合剤層4Bが設けられており、正極集電体4Aの露出部分に正極リード4aが接続されている。負極5では、負極集電体5Aの両面上に負極合剤層5Bが設けられており、負極集電体5Aの露出部分に負極リード5aが接続されている。正極リード4aは封口板2(正極端子を兼ねる)に接続されており、負極リード5aは電池ケース1(負極端子を兼ねる)に接続されている。以下では、本実施形態における正極4を詳述する。
 本実施形態における正極4では、非水電解質二次電池の高容量化という昨今の要求に応えるため、正極合剤層4Bにおける正極活物質の充填密度は従来よりも高く、正極合剤層4Bの空孔率は従来よりも低く例えば17%以下である。そのため、正極合剤層4Bは従来よりも硬くなる。しかし、正極4の引っ張り伸び率は3%以上である。よって、このような正極4を引っ張ると、図1(b)に示すように、正極合剤層4Bに微小なクラック9を発生させながら、正極集電体4Aが伸びる。このように、正極4は、正極合剤層4Bに最初のクラックが発生すると同時に正極集電体4Aが破断されるのではなく、最初のクラックが発生してからしばらくの間は正極合剤層4Bにクラックを発生させながら正極集電体4Aは破断されずに伸び続ける。また、正極4の引っ張り伸び率は10%以下であることが好ましい。正極4の引っ張り伸び率が10%を超えると、正極4の捲回時に正極4が変形する虞があるからである。
 本実施形態における正極集電体4Aは、鉄を含むアルミニウム合金からなる。正極集電体4Aにおける鉄の含有率が高ければ高いほど、圧延後の熱処理における熱処理時間の短縮化及び熱処理温度の低温化を図ることができるので、圧延後の熱処理時に正極合剤層4B内において結着剤が溶融して正極活物質を被覆することを防止できる。一方、正極集電体4Aにおける鉄の含有率が低ければ低いほど、圧延時の温度を高温にすることができるので、正極合剤層4Bの空孔率を低くすることができる。つまり、正極集電体4Aにおける鉄の含有率は、圧延後の熱処理に起因する容量低下を防止するためには高い方が好ましく、高容量化を図るためには低い方が好ましい。よって、両方の効果を得ることができるように、正極集電体4Aにおける鉄の含有率を最適化すれば良い。正極集電体4Aがアルミニウムに対して1.2質量%以上の鉄を含有していれば圧延後の熱処理に起因する電池容量の低下を防止でき、正極集電体4Aがアルミニウムに対して1.5質量%以下の鉄を含有していれば高容量化を図ることができる。よって、正極集電体4Aは、アルミニウムに対して1.2質量%以上の鉄を含有していることが好ましく、アルミニウムに対して1.2質量%以上1.5質量%以下の鉄を含有していればさらに好ましい。
 このような正極4は、以下に示す方法に従って作製される。
 まず、鉄を含むアルミニウム合金からなる正極集電体4Aを用意する。このとき、正極集電体4Aは、アルミニウムに対して1.2質量%以上の鉄を含有していればよい。
 次に、正極活物質、結着剤及び導電剤を含む正極合剤スラリーを正極集電体4Aの両表面上に設ける(工程(a))。その後、その正極合剤スラリーを乾燥させる(工程(b))。
 続いて、両表面上に正極活物質、結着剤及び導電剤が設けられた正極集電体を所定の温度で圧延する(工程(c))。例えば、両表面上に正極活物質、結着剤及び導電剤が設けられた正極集電体に熱風、赤外線又は電熱線を照射しながら圧延しても良く、両表面上に正極活物質、結着剤及び導電剤が設けられた正極集電体に対してIH(Induction Heating)を行いながら圧延しても良く、所定の温度に熱したロールを用いて両表面上に正極活物質、結着剤及び導電剤が設けられた正極集電体を圧延しても良い。しかし、所定の温度に熱したロールを用いて両表面上に正極活物質、結着剤及び導電剤が設けられた正極集電体を圧延すれば、熱処理時間の短縮化を図ることができるとともに、エネルギー損失を抑制することができる。よって、所定の温度に熱したロールを用いて両表面上に正極活物質、結着剤及び導電剤が設けられた正極集電体を圧延させることが好ましい。
 この圧延工程における上記所定の温度は、T1以上Tmin未満である。まず、図9を用いて温度T1(第1の温度)を説明する。図9には、正極の結着剤の弾性率の温度依存性を示す。正極の結着剤の弾性率の温度依存性を調べると、その弾性率は、正極の結着剤の温度がT1付近まで上昇すると下がり始め、正極の結着剤の温度がさらに高くなると更に低下する。そのため、圧延工程における上記所定の温度がT1未満であれば、正極の結着剤の弾性率は殆ど低下しないので、高容量な非水電解質二次電池を提供することは難しい。よって、圧延工程における上記所定の温度はT1以上である。
 なお、正極の結着剤としては種々の材料が知られているが、弾性率が低下し始める温度は材料に依らず50℃前後である。よって、温度T1は50℃前後であれば良く、50℃以上であれば好ましい。
 温度Tmin(第2の温度)は、上述のように、正極集電体4Aの引っ張り伸び率が最小となる温度である。圧延工程における上記所定の温度がTmin以上であれば、図4及び図6に示すように、圧延された正極集電体に対して圧延後の熱処理を行っても、正極の引っ張り伸び率を大きくすることは難しい。そのため、圧延工程における上記所定の温度はTmin未満である。
 圧延工程における圧力について簡単に記すと、圧延工程における圧力が小さすぎると正極合剤層において正極活物質を高密度に充填させることが難しく、圧延工程における圧力が大きすぎると圧延時に正極の割れを招来する虞がある。そのため、圧延工程では、1.0ton/cm以上1.8ton/cm以下の圧力を加えれば良い。
 圧延工程が終了したら、圧延された正極集電体に対して熱処理を行う(工程(d))。具体的には、圧延された正極集電体に熱風、赤外線又は電熱線を照射しても良いし、圧延された正極集電体にIHを行っても良く、以下に示す熱処理温度に熱したロールを圧延された正極集電体に接触させても良い。圧延工程において記した理由から、以下に示す熱処理温度に熱したロールを圧延された正極集電体に接触させることが好ましい。
 圧延後の熱処理工程における熱処理温度について簡単記すと、本実施形態における正極集電体4Aは鉄を含んでいるので、正極集電体4Aは、アルミニウムのみからなる正極集電体に比べて低温で軟化し易い。よって、圧延後の熱処理における温度は、正極集電体4Aの軟化温度(160℃程度)以上であり、且つ、正極の結着剤の溶融温度(200℃前後)以下であれば良い。これにより、正極の結着剤の溶融及び分解を抑制しつつ、正極の引っ張り伸び率を所望の値にすることができる。このようにして本実施形態における正極4を作製することができる。
 なお、高容量化を図るためには、圧延工程における上記所定の温度は高い方が好ましく、つまり、正極集電体における鉄の含有率は低い方が好ましい。一方、圧延後の熱処理における電池容量の低下を抑制するためには、圧延後の熱処理における熱処理温度は低い方が好ましく、つまり、正極集電体における鉄の含有率は高い方が好ましい。本実施形態における正極集電体はアルミニウムに対して1.2質量%以上1.5質量%以下の鉄を含有しているので、高容量化を図りつつ圧延後の熱処理における電池容量の低下を抑制できる。
 また、圧延後の熱処理工程における熱処理時間については、特に限定されることなく適宜設定可能である。熱処理時間の一例を挙げると、0.1秒以上5時間以下であっても良いし、10秒以上1時間以下であっても良い。
 以上説明したように、本実施形態では、両表面上に正極活物質及び結着剤が設けられた正極集電体をT1以上Tmin未満の温度で圧延する。これにより、圧延時に正極の結着剤の弾性率を低くすることができるので、正極集電体4A上には正極活物質が高密度に充填された正極合剤層4Bを形成することができる。よって、高容量な非水電解質二次電池を提供することができる。それだけでなく、正極集電体4Aにおいてアルミニウムと鉄とが金属間化合物を形成することなく両表面上に正極活物質及び結着剤が設けられた正極集電体を圧延することができるので、圧延後の熱処理により正極4の引っ張り伸び率を3%以上にすることができる。つまり、高容量化に伴う正極の柔軟性の低下を抑制することができる。
 具体的には、本実施形態では、高容量化を図りつつ正極4の引っ張り伸び率を3%以上にすることができる。よって、正極4の引っ張り伸び率は、負極5又は多孔質絶縁層6の引っ張り伸び率と同程度にまで大きくなる。これにより、正極4の切断を伴うことなく電極群8を作製することができる。さらに、充放電時には、負極活物質の膨張及び収縮に追随して正極4が変形するので、電極群の座屈又は極板の破断を防止することができる。それだけでなく、圧壊時には、正極が負極よりも先に破断して多孔質絶縁層を突き破ることを防止できるので、内部短絡が発生することを防止できる。このように、本実施形態では、歩留まり及び安全性が確保された高容量な非水電解質二次電池を提供することができる。
 以下には、本実施形態における正極、負極、多孔質絶縁層及び非水電解質の材料の代表例を記す。本実施形態における正極、負極、多孔質絶縁層及び非水電解質の材料が以下に示す代表例に限定されないことは言うまでもない。
 正極集電体4Aは、鉄が含まれたアルミニウム合金からなる箔又は板であっても良く、その箔又は板に複数の孔が形成されていても良い。
 正極合剤層4Bは、正極活物質の他に、結着剤及び導電剤などを含むことができる。正極活物質としては、例えば、リチウム複合金属酸化物を用いることができる。代表的な材料としては、LiCoO2、LiNiO2、LiMnO2又はLiCoNiO2等が挙げられる。結着剤としては、例えば、PVDF、PVDFの誘導体又はゴム系結着剤(例えばフッ素ゴム及びアクリルゴム等)が好適に用いられる。導電剤としては、例えば、黒鉛等のグラファイト類又はアセチレンブラック等のカーボンブラック類等の材料を用いることができる。
 正極合剤層4Bにおいて結着剤が占める体積は、正極合剤層4Bにおいて正極活物質が占める体積に対して1%以上6%以下であることが好ましい。これにより、圧延後の熱処理時に溶融された結着剤が正極活物質を被覆する面積を最小限に抑えることができるので、圧延後の熱処理に伴う電池容量の低下を防止することができる。それだけでなく、正極合剤層4Bにおいて結着剤が占める体積が正極合剤層4Bにおいて正極活物質が占める体積に対して1%以上であるので、正極活物質を正極集電体に結着させることができる。
 正極合剤層4Bにおいて導電剤が占める体積は、正極合剤層4Bにおいて正極活物質が占める体積に対して1%以上6%以下であることが好ましい。これにより、正極合剤層4Bの空孔率が17%以下であっても、電池容量の低下を伴うことなくサイクル特性の低下を抑制することができる。
 負極集電体5Aは、例えば、銅、ステンレス鋼又はニッケル等からなる板を用いることができ、その板に複数の孔が形成されていても良い。
 負極合剤層5Bは、負極活物質の他に、結着剤などを含むことができる。負極活物質としては、例えば、黒鉛、炭素繊維等の炭素材料又はSiOx等の珪素化合物等を用いることができる。
 このような負極5は、例えば、次のようにして作成される。まず、負極活物質及び結着剤などを含む負極合剤スラリーを調製した後、その負極合剤スラリーを負極集電体5Aの両表面上に塗布して乾燥させる。次に、両表面上に負極活物質が設けられた負極集電体を圧延する。なお、圧延の後、所定温度かつ所定時間で熱処理を施しても良い。
 多孔質絶縁層6としては、大きなイオン透過度を持ち、且つ、所定の機械的強度と絶縁性とを兼ね備えた微多孔薄膜、織布、又は不織布等が挙げられる。特に、多孔質絶縁層6としては、例えばポリプロピレン又はポリエチレン等のポリオレフィンを用いることが好ましい。ポリオレフィンは耐久性に優れ且つシャットダウン機能を有するため、非水電解質二次電池の安全性を向上させることができる。多孔質絶縁層6として微多孔薄膜を用いる場合には、微多孔薄膜は、1種の材料からなる単層膜であってもよく、2種以上の材料からなる複合膜又は多層膜であってもよい。
 非水電解液は、電解質と、電解質を溶解させる非水溶媒とを含む。
 非水溶媒としては、公知の非水溶媒を使用できる。この非水溶媒の種類は特に限定されないが、環状炭酸エステル、鎖状炭酸エステル又は環状カルボン酸エステル等の1種を単独で用いても良く、2種以上を混合して用いても良い。
 電解質としては、例えばLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類又はイミド塩類等の1種を単独で用いても良く、2種以上を組み合わせて用いても良い。非水溶媒に対する電解質の溶解量は、0.5mol/m3以上2mol/m3以下であることが好ましい。
 また、非水電解質は、電解質及び非水溶媒以外に、負極上で分解してリチウムイオン伝導性の高い被膜を負極上に形成することにより電池の充放電効率を高める機能を有する添加剤を含んでいてもよい。このような機能を持つ添加剤としては、例えばビニレンカーボネート(VC;vinylene carbonate)、ビニルエチレンカーボネート(VEC;vinyl ethylene carbonate)又はジビニルエチレンカーボネート等の1種を単独で用いても良く、2種以上を組み合わせて用いても良い。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記実施形態においては、非水電解質二次電池として円筒型のリチウムイオン二次電池を例に説明したが、本発明の効果を奏する範囲において、角形のリチウムイオン二次電池又はニッケル水素蓄電池等にも適用することができる。
 非水電解質二次電池における集電は、上述のようにリードを介して行われても良いし、集電板を介して行われても良い。なお、集電板を介して集電すれば、集電時の抵抗を小さくすることができる。
 高容量化を図るためには、正極合剤層の空孔率は低い方が好ましい。具体的には、正極合剤層の空孔率は、15%以下であることが好ましく、10%以下であればさらに好ましい。しかし、正極合剤層の空孔率が低くなりすぎると、正極合剤層が非水電解質を保持しにくくなる。正極合剤層による非水電解質の保持を確保しつつ高容量化を図るためには、正極合剤層の空孔率は3%以上であることが好ましい。
 本実施例では、電池1~6を以下に示す方法に従って作製し、上記実施形態で得られた効果を検証した。
 1.実験方法
 (a)非水電解質二次電池の作製方法
 (電池1)
 (正極の作製方法)
 まず、アセチレンブラック(導電剤)と、N-メチルピロリドン(NMP,NMPはN-methylpyrrolidoneの略語)の溶剤にポリフッ化ビニリデン(PVDF,PVDFはpoly(vinylidene fluoride)の略語)(結着剤)を溶解した溶液と、LiNi0.82Co0.15Al0.032(平均粒子径は10μm)(正極活物質)とを混合して、正極合剤スラリーを得た。このとき、体積比で(LiNi0.82Co0.15Al0.032):(アセチレンブラック):(ポリフッ化ビニリデン)=100:4.5:4.7となるように、正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを厚さ15μmの住軽アルミニウム箔株式会社製アルミニウム合金箔べスパFS115(A8021H-H18,正極集電体,温度Tmin=130℃)の両面に塗布し、乾燥させた。このとき、正極集電体の表面のうち正極リードが取り付けられる部分には、正極合剤スラリーを設けなかった。
 その後、両面上に正極活物質等が設けられた正極集電体に1.8ton/cmの圧力をかけてその正極集電体を圧延した。これにより、正極集電体の両表面上には正極合剤層が形成された。このとき、正極合剤層の空孔率は16%であった。
 それから、圧延された正極集電体に、190℃に熱したロール(トクデン株式会社製)を1分間接触させた。そして、所定の寸法に裁断した。このようにして正極を得た。
 (負極の作製方法)
 まず、鱗片状人造黒鉛を粉砕した後に分級して、平均粒子径が約20μmである鱗片状人造黒鉛を得た。
 次に、100重量部の鱗片状人造黒鉛に、スチレンブタジエンゴム(結着剤)を1重量部と、カルボキシメチルセルロースを1重量%含む水溶液を100重量部とを加えて混合して、負極合剤スラリーを得た。
 その後、この負極合剤スラリーを厚さ8μmの銅箔(負極集電体)の両面に塗布し、乾燥させた。このとき、負極集電体の表面のうち負極リードが取り付けられる部分には、負極合剤スラリーを設けなかった。
 それから、両面上に負極活物質等が設けられた負極集電体を圧延してから、190℃で5時間熱処理した。そして、厚み0.210mm、幅58.5mm、長さ510mmとなるように裁断した。このようにして、負極を得た。
 (非水電解液の調製方法)
 エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとの体積比が1:1:8である混合溶媒に3wt%のビニレンカーボネートを添加した。この溶液に1.4mol/m3の濃度でLiPF6を溶解し、非水電解液を得た。
 (円筒型電池の作製方法)
 まず、正極集電体のうち正極合剤スラリーを設けなかった部分にアルミニウム製の正極リードを溶接し、負極集電体のうち負極合剤スラリーを設けなかった部分にニッケル製の負極リードを溶接した。その後、正極リードと負極リードとが互いに逆方向に延びるように正極と負極とを互いに対向させ、その正極と負極との間にポリエチレン製のセパレータ(多孔質絶縁層)を配置した。そして、1.2kgの荷重をかけながら、径が3.5mmの巻芯にセパレータを介して配置された正極と負極とを巻き付けた。これにより、捲回型の電極群が作製された。
 次に、電極群の上面よりも上に上部絶縁板を配置し、電極群の下面よりも下に下部絶縁板を配置した。その後、負極リードを電池ケースに溶接するとともに正極リードを封口板に溶接して、電極群を電池ケース内に収納した。その後、減圧方式により電池ケース内に非水電解液を注入して、ガスケットを介して封口板を電池ケースの開口部にかしめた。これにより、電池1を作製した。
 (電池2)
 両面上に正極活物質等が設けられた正極集電体を圧延する条件を変更したこと以外は電池1と同様にして、電池2を作製した。具体的には、60℃に熱したロールを用いて圧延を行い、圧延工程における圧力を1.6ton/cmとした。
 (電池3)
 両面上に正極活物質等が設けられた正極集電体を圧延する条件を変更したこと以外は電池1と同様にして、電池3を作製した。具体的には、120℃に熱したロールを用いて圧延を行い、圧延工程における圧力を1.0ton/cmとした。
 (電池4)
 両面上に正極活物質等が設けられた正極集電体を圧延する条件を変更したこと以外は電池1と同様にして、電池4を作製した。具体的には、150℃に熱したロールを用いて圧延を行い、圧延工程における圧力を0.8ton/cmとした。
 (電池5)
 正極集電体における鉄の含有率を変更したこと、及び、両面上に正極活物質等が設けられた正極集電体を圧延する条件を変更したこと以外は電池1と同様にして、電池5を作製した。具体的には、アルミニウムに対して1.5質量%の鉄が含有されたアルミニウム合金からなる箔を正極集電体とした。また、60℃に熱したロールを用いて圧延を行い、圧延工程における圧力を1.6ton/cmとした。
 (電池6)
 両面上に正極活物質等が設けられた正極集電体を圧延する条件を変更したこと以外は電池5と同様にして、電池6を作製した。具体的には、120℃に熱したロールを用いて圧延を行い、圧延工程における圧力を1.0ton/cmとした。
 (b)電池容量の測定方法
 25℃の環境下において、上記方法に従って作製された電池1~6の電池容量を測定した。具体的には、4.2Vまで1.5Aの定電流で充電を行い、その後、4.2Vの定電圧で電流値が50mAになるまで充電を行った後、0.6Aの定電流で2.5Vまで放電を行ったときの容量を電池容量とした。その結果を図10における「容量」に記す。
 (c)正極の切れの有無
 上記方法に従って作製された電池1~6のそれぞれの電池ケースから電極群を取り出して、正極が切れているか否かを目で確認した。その結果を図10における「正極の切れ」に記す。なお、図10における「正極の切れ」における分母には総電池数を記し、その分子には正極の切れが確認された電池の個数を記している。
 (d)正極の引っ張り伸び率
 上述した正極の引っ張り伸び率の測定方法に従って、作製した電池1~6の正極の引っ張り伸び率を測定した。
 2.結果と考察
 図10に結果を示す。
 電池1~6では、圧延時の条件が相異なるにもかかわらず、正極合剤層の空孔率は互いに同一であった。つまり、圧延時の温度が高ければ、圧延時の圧力をそれほど大きくしなくても正極合剤層の空孔率を16%程度にできた。その理由としては、圧延時の温度が高くなると正極の結着剤の弾性率の低下を引き起こすからである,と考えている。
 電池2~6の結果から、特に電池3の結果と電池6の結果とを比較すると、電池3では、圧延後の熱処理により正極の引っ張り伸び率が大きくなったが、電池6では、圧延後の熱処理を行っても正極の引っ張り伸び率はそれほど大きくならなかった。よって、圧延時の最適な温度は正極集電体における鉄の含有率に依存することを確認でき、また、正極集電体における鉄の含有率が低くなれば圧延時の最適な温度を高くできることを確認できた。
 以上説明したように、本発明は、高容量な非水電解質二次電池に有用である。
 1         電池ケース
 2         封口板
 3         ガスケット
 4       正極
 4A       正極集電体
 4B      正極合剤層
 4a     正極リード
 5     負極
 5A     負極集電体
 5B     負極合剤層
 5a       負極リード
 6     多孔質絶縁層
 8     電極群
 9     クラック

Claims (7)

  1.  正極と、負極と、前記正極と前記負極との間に配置された多孔質絶縁層と、非水電解質とを備えた非水電解質二次電池であって、
     前記正極は、正極集電体と、前記正極集電体の少なくとも一方の表面上に設けられた正極合剤層とを有し、
     前記正極の引っ張り伸び率は、3.0%以上であり、
     前記正極集電体は、鉄を含んでおり、
     前記正極合剤層の空孔率は、17%以下である非水電解質二次電池。
  2.  請求項1に記載の非水電解質二次電池であって、
     前記正極集電体は、アルミニウムに対して1.2質量%以上の鉄を含んでいる非水電解質二次電池。
  3.  請求項1に記載の非水電解質二次電池を製造する方法であって、
     前記正極集電体の表面上に、正極活物質及び結着剤が含まれた正極合剤スラリーを設ける工程(a)と、
     前記工程(a)の後に、前記正極合剤スラリーを乾燥させる工程(b)と、
     前記工程(b)の後に、前記正極活物質及び前記結着剤が表面上に設けられた正極集電体を所定の温度で圧延する工程(c)と、
     前記工程(c)の後に、圧延された正極集電体に対して熱処理を施す工程(d)とを備え、
     前記所定の温度は、第1の温度以上第2の温度未満であり、
     前記第1の温度は、前記結着剤の弾性率が低下し始める温度であり、
     前記第2の温度は、前記正極集電体の引っ張り伸び率が最小となる温度である非水電解質二次電池の製造方法。
  4.  請求項3に記載の非水電解質二次電池の製造方法であって、
     前記正極集電体における鉄の含有率がx1であるときには、前記第2の温度はy1であり、
     前記正極集電体における鉄の含有率が前記x1よりも低いx2であるときには、前記第2の温度は前記y1よりも高いy2である非水電解質二次電池の製造方法。
  5.  請求項4に記載の非水電解質二次電池の製造方法であって、
     前記正極集電体がアルミニウムに対して1.2質量%の鉄を含有しているとき、前記第2の温度は130℃である非水電解質二次電池の製造方法。
  6.  請求項3に記載の非水電解質二次電池の製造方法であって、
     前記工程(c)では、前記所定の温度に熱したロールを用いる非水電解質二次電池の製造方法。
  7.  請求項3に記載の非水電解質二次電池の製造方法であって、
     前記第1の温度は50℃である非水電解質二次電池の製造方法。
PCT/JP2010/004190 2009-06-30 2010-06-24 非水電解質二次電池及びその製造方法 WO2011001636A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800122901A CN102356486A (zh) 2009-06-30 2010-06-24 非水电解质二次电池及其制造方法
US13/124,580 US20110244325A1 (en) 2009-06-30 2010-06-24 Nonaqueous electrolyte secondary battery and method for fabricating the same
JP2011501035A JPWO2011001636A1 (ja) 2009-06-30 2010-06-24 非水電解質二次電池及びその製造方法
EP10793810A EP2421076A4 (en) 2009-06-30 2010-06-24 NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-156062 2009-06-30
JP2009156062 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011001636A1 true WO2011001636A1 (ja) 2011-01-06

Family

ID=43410725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004190 WO2011001636A1 (ja) 2009-06-30 2010-06-24 非水電解質二次電池及びその製造方法

Country Status (6)

Country Link
US (1) US20110244325A1 (ja)
EP (1) EP2421076A4 (ja)
JP (1) JPWO2011001636A1 (ja)
KR (1) KR20110054013A (ja)
CN (1) CN102356486A (ja)
WO (1) WO2011001636A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094100A1 (ja) * 2011-12-22 2013-06-27 パナソニック株式会社 二次電池用正極およびこれを用いた二次電池
WO2014118834A1 (ja) * 2013-01-31 2014-08-07 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
WO2021181888A1 (ja) * 2020-03-11 2021-09-16 パナソニックIpマネジメント株式会社 二次電池用電極およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179499B2 (ja) * 2014-11-27 2017-08-16 トヨタ自動車株式会社 リチウムイオン二次電池用正極の製造方法
KR102022582B1 (ko) * 2015-09-21 2019-09-18 주식회사 엘지화학 안전성이 향상된 전극 및 이를 포함하는 이차전지
KR102158680B1 (ko) * 2017-05-02 2020-09-22 주식회사 엘지화학 이차전지용 양극의 제조방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129020A (ja) 1991-11-01 1993-05-25 Sony Corp 電池電極製造用ホツトプレス装置
JPH05182692A (ja) 1991-12-27 1993-07-23 Sanyo Electric Co Ltd 非水系電解液電池の製造方法
JP2001110403A (ja) * 1999-10-14 2001-04-20 Daiso Co Ltd 電気化学デバイス用電極
JP2003173821A (ja) * 2001-09-28 2003-06-20 Tdk Corp 非水電解質電池
JP2006134762A (ja) * 2004-11-08 2006-05-25 Sony Corp 二次電池
JP2008166413A (ja) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd フレキシブル基板とその製造方法
JP2008282613A (ja) * 2007-05-09 2008-11-20 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2009019861A1 (ja) 2007-08-09 2009-02-12 Panasonic Corporation 非水電解質二次電池及びその製造方法
JP2009048876A (ja) * 2007-08-21 2009-03-05 Hitachi Maxell Ltd 非水二次電池
JP4366451B1 (ja) * 2009-02-02 2009-11-18 パナソニック株式会社 非水電解質二次電池及び非水電解質二次電池の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629290B2 (ja) * 2000-12-26 2011-02-09 トータル ワイヤレス ソリューショオンズ リミテッド リチウムイオンポリマー二次電池
CN100444455C (zh) * 2001-09-21 2008-12-17 Tdk株式会社 锂二次电池
JP2008166142A (ja) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用電極、リチウムイオン二次電池、およびリチウムイオン二次電池用電極の製造方法
CN101335343A (zh) * 2007-06-25 2008-12-31 晟茂(青岛)先进材料有限公司 一种可弯折电池负极材料及其制造方法
CN102165631A (zh) * 2009-02-02 2011-08-24 松下电器产业株式会社 非水电解质二次电池及非水电解质二次电池的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129020A (ja) 1991-11-01 1993-05-25 Sony Corp 電池電極製造用ホツトプレス装置
JPH05182692A (ja) 1991-12-27 1993-07-23 Sanyo Electric Co Ltd 非水系電解液電池の製造方法
JP2001110403A (ja) * 1999-10-14 2001-04-20 Daiso Co Ltd 電気化学デバイス用電極
JP2003173821A (ja) * 2001-09-28 2003-06-20 Tdk Corp 非水電解質電池
JP2006134762A (ja) * 2004-11-08 2006-05-25 Sony Corp 二次電池
JP2008166413A (ja) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd フレキシブル基板とその製造方法
JP2008282613A (ja) * 2007-05-09 2008-11-20 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2009019861A1 (ja) 2007-08-09 2009-02-12 Panasonic Corporation 非水電解質二次電池及びその製造方法
JP2009048876A (ja) * 2007-08-21 2009-03-05 Hitachi Maxell Ltd 非水二次電池
JP4366451B1 (ja) * 2009-02-02 2009-11-18 パナソニック株式会社 非水電解質二次電池及び非水電解質二次電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2421076A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094100A1 (ja) * 2011-12-22 2013-06-27 パナソニック株式会社 二次電池用正極およびこれを用いた二次電池
WO2014118834A1 (ja) * 2013-01-31 2014-08-07 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JPWO2014118834A1 (ja) * 2013-01-31 2017-01-26 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
WO2021181888A1 (ja) * 2020-03-11 2021-09-16 パナソニックIpマネジメント株式会社 二次電池用電極およびその製造方法

Also Published As

Publication number Publication date
KR20110054013A (ko) 2011-05-24
US20110244325A1 (en) 2011-10-06
JPWO2011001636A1 (ja) 2012-12-10
CN102356486A (zh) 2012-02-15
EP2421076A4 (en) 2012-11-07
EP2421076A1 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP6141859B2 (ja) 安全性と安定性が向上したリチウム二次電池
JP4366451B1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2010086910A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP5325283B2 (ja) 角形の非水電解質二次電池及びその製造方法
JP5498386B2 (ja) 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
WO2011001636A1 (ja) 非水電解質二次電池及びその製造方法
JP5279833B2 (ja) 非水電解質二次電池用正極及びその製造方法、並びに該非水電解質二次電池用正極を備えた非水電解質二次電池及びその製造方法
JP5369120B2 (ja) 非水電解質二次電池用正極及びその製造方法、並びに該非水電解質二次電池用正極を備えた非水電解質二次電池及びその製造方法
WO2010131427A1 (ja) 非水電解質二次電池及びその製造方法
JP5232813B2 (ja) リチウムイオン二次電池の充電方法
KR101154771B1 (ko) 비수전해질 이차전지 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012290.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011501035

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117005881

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13124580

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010793810

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE