WO2010071097A1 - ジフルオロビス(オキサラト)リン酸リチウム溶液の製造方法 - Google Patents
ジフルオロビス(オキサラト)リン酸リチウム溶液の製造方法 Download PDFInfo
- Publication number
- WO2010071097A1 WO2010071097A1 PCT/JP2009/070803 JP2009070803W WO2010071097A1 WO 2010071097 A1 WO2010071097 A1 WO 2010071097A1 JP 2009070803 W JP2009070803 W JP 2009070803W WO 2010071097 A1 WO2010071097 A1 WO 2010071097A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- oxalato
- difluorobis
- phosphate
- mass
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 55
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229910019142 PO4 Inorganic materials 0.000 title claims abstract description 53
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title claims abstract description 53
- 239000010452 phosphate Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 84
- -1 lithium hexafluorophosphate Chemical compound 0.000 claims abstract description 50
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000005049 silicon tetrachloride Substances 0.000 claims abstract description 34
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 28
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 229910001386 lithium phosphate Inorganic materials 0.000 claims description 30
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 239000003125 aqueous solvent Substances 0.000 claims description 9
- 150000005678 chain carbonates Chemical class 0.000 claims description 4
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 27
- 239000002253 acid Substances 0.000 abstract description 25
- 239000011255 nonaqueous electrolyte Substances 0.000 abstract description 13
- 239000000654 additive Substances 0.000 abstract description 11
- 150000001805 chlorine compounds Chemical class 0.000 abstract description 10
- 230000000996 additive effect Effects 0.000 abstract description 9
- 150000007513 acids Chemical class 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 26
- 238000005481 NMR spectroscopy Methods 0.000 description 26
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 19
- 239000000460 chlorine Substances 0.000 description 19
- 229910052801 chlorine Inorganic materials 0.000 description 19
- 239000000243 solution Substances 0.000 description 18
- 239000000706 filtrate Substances 0.000 description 14
- 230000010354 integration Effects 0.000 description 12
- 238000004448 titration Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- WEVYAHXRMPXWCK-FIBGUPNXSA-N acetonitrile-d3 Chemical compound [2H]C([2H])([2H])C#N WEVYAHXRMPXWCK-FIBGUPNXSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- RDOGTTNFVLSBKG-UHFFFAOYSA-N 1,2-difluoro-3-methoxybenzene Chemical compound COC1=CC=CC(F)=C1F RDOGTTNFVLSBKG-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- QYIOFABFKUOIBV-UHFFFAOYSA-N 4,5-dimethyl-1,3-dioxol-2-one Chemical compound CC=1OC(=O)OC=1C QYIOFABFKUOIBV-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6571—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/64—Liquid electrolytes characterised by additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the present invention relates to a method for producing a difluorobis (oxalato) lithium phosphate solution used for an additive for non-aqueous electrolyte batteries.
- Difluorobis (oxalato) lithium phosphate is used as an additive for non-aqueous electrolyte batteries such as lithium ion batteries and lithium ion capacitors.
- a method for producing lithium difluorobis (oxalato) phosphate a method in which lithium hexafluorophosphate is reacted in an organic solvent in the presence of a reaction aid containing SiCl 4 is known (Patent Document 1).
- An object of the present invention is to provide a method for industrially producing a difluorobis (oxalato) lithium phosphate solution that can be an effective additive in a non-aqueous electrolyte battery and contains a small amount of chlorine compounds and free acids. .
- the present invention mixes lithium hexafluorophosphate and oxalic acid in a non-aqueous solvent so that the molar ratio of lithium hexafluorophosphate to oxalic acid is in the range of 1: 1.90 to 1: 2.10. Furthermore, silicon tetrachloride is added thereto and reacted so that the molar ratio of lithium hexafluorophosphate to silicon tetrachloride is in the range of 1: 0.95 to 1: 1.10.
- a method for producing a difluorobis (oxalato) lithium phosphate solution (first method) is provided.
- the first method is a method for producing lithium difluorobis (oxalato) phosphate (second method), characterized in that the temperature at which silicon tetrachloride is added and reacted is in the range of 30 ° C. to 50 ° C. May be.
- the non-aqueous solvent is at least one solvent selected from the group consisting of cyclic carbonates, chain carbonates, cyclic esters, and chain esters.
- Difluorobis (oxalato) It may be a production method (third method) of a lithium phosphate solution.
- a lithium difluorobis (oxalato) phosphate solution that can be an effective additive for improving the performance of a non-aqueous electrolyte battery can be produced industrially at low cost.
- the method for producing a difluorobis (oxalato) lithium phosphate solution of the present invention is characterized in that lithium hexafluorophosphate and oxalic acid are mixed in a non-aqueous solvent, and silicon tetrachloride is further added thereto for reaction. To do.
- the oxalic acid used for the production of the lithium difluorobis (oxalato) phosphate of the present invention a commercially available dihydrate can be used.
- the drying method is not particularly limited, and methods such as heating and vacuum drying can be used.
- the water content in the dried oxalic acid is preferably 300 ppm by mass or less. If the water concentration exceeds 300 ppm by mass, lithium hexafluorophosphate and lithium difluorobis (oxalato) phosphate are hydrolyzed, which is not preferable.
- the non-aqueous solvent used in the production of the lithium difluorobis (oxalato) phosphate according to the present invention is at least one solvent selected from the group consisting of cyclic carbonates, chain carbonates, cyclic esters, and chain esters, for example.
- Specific examples include cyclic carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate, cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone, methyl acetate, propion A chain ester such as methyl acid can be mentioned.
- These solvents are preferably dehydrated.
- the method of dehydration is not particularly limited, and for example, a method of adsorbing water with synthetic zeolite or the like can be used.
- the water concentration in the non-aqueous solvent used in the present invention is preferably 100 ppm by mass or less. When the water concentration exceeds 100 mass ppm, lithium hexafluorophosphate and lithium difluorobis (oxalato) phosphate are hydrolyzed, which is not preferable.
- the nonaqueous solvent used for this invention may be used individually by 1 type, and may mix and use two or more types by arbitrary combinations and arbitrary ratios according to a use.
- the concentration of lithium hexafluorophosphate in the non-aqueous solvent used in the present invention is not particularly limited and can be any concentration, but the lower limit is preferably 1%, more preferably 5%, The upper limit is preferably in the range of 35%, more preferably 30%. Below 1%, the resulting difluorobis (oxalato) lithium phosphate solution is dilute and is not economical because it requires concentration for a long time to be used as the electrolyte of a non-aqueous electrolyte battery. On the other hand, if it exceeds 35%, it is not preferable because the viscosity of the solution increases and it is difficult to carry out the reaction smoothly.
- the molar ratio in mixing lithium hexafluorophosphate and oxalic acid is preferably in the range of 1: 1.90 to 1: 2.10, more preferably in the range of 1: 1.95 to 1: 2.05. It is.
- the amount of oxalic acid is less than 1.90 moles per mole of lithium hexafluorophosphate, a large amount of non-volatile chlorine compounds are produced as by-products, so it is used as an additive for non-aqueous electrolyte batteries. It becomes difficult. If the amount of oxalic acid is more than 2.10 moles with respect to 1 mole of lithium hexafluorophosphate, the free acid concentration increases, making it difficult to use as an additive for non-aqueous electrolyte batteries.
- Silicon tetrachloride is preferably added and reacted so that the molar ratio of lithium hexafluorophosphate to silicon tetrachloride falls within the range of 1: 0.95 to 1:10. More preferably, the addition is carried out in a molar ratio of 1: 1.00 to 1: 1.05. If the amount of silicon tetrachloride added is less than 0.95 mol per 1 mol of lithium hexafluorophosphate, a large amount of the intermediate product lithium tetrafluoro (oxalato) phosphate is contained, so difluorobis (oxalato) The purity of lithium phosphate is lowered, which is not preferable. When 1 mol of lithium hexafluorophosphate is added in excess of 1.10 mol of silicon tetrachloride, a large amount of non-volatile chlorine compounds are produced as by-products. It becomes difficult to use.
- the temperature at which silicon tetrachloride is added and reacted is preferably in the range of 30 ° C to 50 ° C. More preferably, it is in the range of 35 ° C to 45 ° C. If the temperature at the time of reaction exceeds 50 ° C., the chlorine compound concentration in the resulting solution will increase, making it difficult to use as an additive for non-aqueous electrolyte batteries. Moreover, when it exceeds 50 degreeC, there are many volatilization amounts of silicon tetrachloride, and it is not preferable. When the temperature at the time of reaction is lower than 30 ° C., the reactivity is lowered, so that it is necessary to lengthen the reaction time, which is not economical.
- the method for adding silicon tetrachloride is not particularly limited, and may be carried out under any conditions according to the situation. For example, a method of pumping using an inert gas, a method of introducing using a metering pump, etc. Can be mentioned.
- the addition time of silicon tetrachloride is not particularly limited and may be any time, but it is preferably added over 1 to 10 hours. When the addition time is less than 1 hour, the amount of silicon tetrachloride that volatilizes unreacted is large, which is not preferable. If the introduction time exceeds 10 hours, it takes a long time, which is not economical. After completion of the addition of silicon tetrachloride, the reaction is preferably continued for about 1 to 3 hours.
- the reaction since the product lithium difluorobis (oxalato) phosphate is hydrolyzed by moisture, the reaction is preferably carried out in an atmosphere not containing moisture.
- the reaction is preferably performed in an inert gas atmosphere such as nitrogen.
- HCl, SiF 4 , or SiCl 4 contained in the lithium difluorobis (oxalato) phosphate obtained by the reaction can be removed by reducing the pressure in the reactor.
- An insoluble matter can be removed by filtering after the reduced pressure treatment.
- the difluorobis (oxalato) lithium phosphate solution obtained after the reduced pressure treatment and filtration contains a chlorine compound, free acid, or lithium tetrafluoro (oxalato) phosphate that is not removed by the reduced pressure treatment and filtration.
- chlorine is about 5 mass ppm or less in terms of chlorine concentration per 1% by mass of lithium difluorobis (oxalato) phosphate for chlorine compounds
- chlorine is about 250 mass ppm or less in terms of acid concentration in terms of hydrofluoric acid for free acids.
- a difluorobis (oxalato) lithium phosphate solution with less compound and free acid can be obtained.
- the chlorine concentration is higher than 5 ppm by mass or the acid concentration is higher than 250 ppm by mass, it is difficult to use as an additive for non-aqueous electrolyte batteries.
- a method for preparing the difluorobis (oxalato) lithium phosphate solution obtained in the present invention for use as an electrolyte for a non-aqueous electrolyte battery is not particularly limited, and difluorobis ( Oxalato) By adding the non-aqueous solvent, the main electrolyte, or other additives so as to have a predetermined concentration in the lithium phosphate solution, a desired electrolyte solution for a non-aqueous electrolyte battery can be obtained.
- the primary electrolyte to be added LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiPF 3 (C 3 F 7 ) 3 , LiB (CF 3 ) 4 , LiBF 3 (C 2 F 5 ), etc. Electrolyte lithium salt.
- additives to be added include lithium tetrafluoro (oxalato) phosphate, lithium difluoro (oxalato) borate, cyclohexylbenzene, biphenyl, t-butylbenzene, vinylene carbonate, vinylethylene carbonate, difluoroanisole, and fluoroethylene.
- Examples include carbonate, propane sultone, dimethyl vinylene carbonate and the like compounds having an effect of preventing overcharge, an effect of forming a negative electrode film, and an effect of protecting the positive electrode.
- silicon tetrachloride 87.5 g was placed in a flask with a cock, and a septum was attached to the mouth.
- the molar ratio of lithium hexafluorophosphate to silicon tetrachloride is 1.00: 1.03.
- silicon tetrachloride was pumped into the mixed liquid of lithium hexafluorophosphate, oxalic acid and diethyl carbonate using the cannula and dropped over 1 hour.
- SiF 4 and HCl gas were generated. The generated gas was passed through a can filled with soda lime and absorbed. Undissolved oxalic acid dissolved and the reaction proceeded. After completion of the addition, stirring was continued for 1 hour to complete the reaction.
- the concentration of acid contained in the titration method was measured.
- the acid concentration was divided by the difluorobis (oxalato) lithium phosphate concentration and converted per 1% by mass, it was found to be 90 mass ppm in terms of hydrofluoric acid.
- the chlorine concentration in this sample was measured by the same method as in Example 1, divided by the difluorobis (oxalato) lithium phosphate concentration, and converted to 1% by mass, resulting in 0.7 ppm by mass.
- the acid concentration was examined by titration, it was found to be 105 ppm by mass in terms of hydrofluoric acid.
- the chlorine concentration in this sample was measured by the same method as in Example 1, divided by the difluorobis (oxalato) lithium phosphate concentration, and converted to 1% by mass, resulting in 0.8 ppm by mass.
- the acid concentration was examined by titration, it was found to be 120 mass ppm in terms of hydrofluoric acid.
- the reaction temperature was 25 ° C., and others were synthesized in the same manner as in Example 1. However, since the reactivity was low, the reaction was performed for 24 hours after adding silicon tetrachloride. NMR measurement was performed in the same manner as in Example 1. From the NMR integration ratio, the content contained in the filtrate was calculated. 32% by mass of lithium difluorobis (oxalato) phosphate and 4% by mass of lithium tetrafluoro (oxalato) phosphate were contained. The yield of lithium difluorobis (oxalato) phosphate was 75% based on the charged amount of lithium hexafluorophosphate.
- the chlorine concentration in this sample was measured by the same method as in Example 1, and divided by the difluorobis (oxalato) lithium phosphate concentration, which was converted to 1 mass%, it was 0.9 mass ppm.
- concentration of the contained acid was examined by titration, it was found to be 200 ppm by mass in terms of hydrofluoric acid.
- the chlorine concentration in this sample was measured by the same method as in Example 1, divided by the difluorobis (oxalato) lithium phosphate concentration, and converted to 1% by mass, resulting in 4.1 ppm by mass.
- concentration of the contained acid was examined by titration, it was found to be 90 ppm by mass in terms of hydrofluoric acid.
- silicon tetrachloride was placed in a flask with a cock, and a septum was attached to the mouth.
- the molar ratio of lithium hexafluorophosphate to silicon tetrachloride is 1.00: 1.04.
- silicon tetrachloride was pumped into the mixed liquid of lithium hexafluorophosphate, oxalic acid and ethyl methyl carbonate using a cannula, and dropped over 1 hour.
- SiF 4 and HCl gas were generated. The generated gas was passed through a can filled with soda lime and absorbed. Undissolved oxalic acid dissolved and the reaction proceeded. After completion of the addition, stirring was continued for 1 hour to complete the reaction.
- Ethyl methyl carbonate was distilled off from the resulting reaction solution under reduced pressure conditions of 50 ° C. and 133 Pa. Thereafter, the three-necked flask was placed in a glove box, and the ethyl methyl carbonate solution was filtered with a membrane filter. A few drops of the filtrate were taken in an NMR tube, an internal standard was added, acetonitrile-d3 was added and dissolved, and then NMR measurement was performed. From the NMR integration ratio, the content contained in the filtrate was calculated. It contained 37% by mass of lithium difluorobis (oxalato) phosphate and 2% by mass of lithium tetrafluoro (oxalato) phosphate. The yield of lithium difluorobis (oxalato) phosphate was 85% based on the charged amount of lithium hexafluorophosphate.
- Fluorescent X-ray measurement was performed to measure the concentration of contained chlorine compounds. The chlorine concentration in the sample was determined. When the chlorine concentration in this sample was divided by the difluorobis (oxalato) lithium phosphate concentration and converted per 1% by mass, it was 0.7 ppm by mass.
- the concentration of the acid contained by the titration method was measured.
- the acid concentration was divided by the difluorobis (oxalato) lithium phosphate concentration and converted per 1% by mass, it was found to be 90 mass ppm in terms of hydrofluoric acid.
- the chlorine concentration in this sample was measured by the same method as in Example 1, divided by the difluorobis (oxalato) lithium phosphate concentration, and converted to 1% by mass, resulting in 0.8 ppm by mass.
- the acid concentration was examined by titration, it was found to be 500 ppm by mass in terms of hydrofluoric acid.
- the chlorine concentration in this sample was measured by the same method as in Example 1, divided by the difluorobis (oxalato) lithium phosphate concentration, and converted to 1% by mass, which was 80 ppm by mass.
- the acid concentration was examined by titration, it was found to be 5 ppm by mass in terms of hydrofluoric acid.
- the chlorine concentration in this sample was measured by the same method as in Example 1, divided by the difluorobis (oxalato) lithium phosphate concentration, and converted to 1% by mass, which was 70 ppm by mass.
- the acid concentration was examined by titration, it was found to be 10 mass ppm in terms of hydrofluoric acid.
- the chlorine concentration in this sample was measured by the same method as in Example 1, and divided by the difluorobis (oxalato) lithium phosphate concentration, which was converted to 1 mass%, it was 0.9 mass ppm.
- the acid concentration was examined by titration, it was found to be 450 mass ppm in terms of hydrofluoric acid.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Secondary Cells (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Primary Cells (AREA)
Abstract
Description
シュウ酸98.6gを用い、ヘキサフルオロリン酸リチウムとシュウ酸のモル比は1.00:2.19とした他は実施例1と同様に合成した。実施例1と同様にNMR測定した。NMRの積分比から、ろ液に含まれる含有率を計算した。ジフルオロビス(オキサラト)リン酸リチウムが33質量%、テトラフルオロ(オキサラト)リン酸リチウムが3質量%含まれていた。ジフルオロビス(オキサラト)リン酸リチウムの収率はヘキサフルオロリン酸リチウムの仕込み量基準で81%であった。このサンプル中の塩素濃度を実施例1と同じ方法で測定し、ジフルオロビス(オキサラト)リン酸リチウム濃度で割り、1質量%あたりに換算したところ、0.8質量ppmとなった。滴定により、酸の濃度を調べたところ、フッ酸換算で500質量ppmであることが分かった。
四塩化ケイ素99.4gを用い、ヘキサフルオロリン酸リチウムと四塩化ケイ素のモル比は1.00:1.17とした他は実施例1と同様に合成した。実施例1と同様にNMR測定した。NMRの積分比から、ろ液に含まれる含有率を計算した。ジフルオロビス(オキサラト)リン酸リチウムが33質量%、テトラフルオロ(オキサラト)リン酸リチウムが0.5質量%含まれていた。ジフルオロビス(オキサラト)リン酸リチウムの収率はヘキサフルオロリン酸リチウムの仕込み量基準で80%であった。このサンプル中の塩素濃度を実施例1と同じ方法で測定し、ジフルオロビス(オキサラト)リン酸リチウム濃度で割り、1質量%あたりに換算したところ、80質量ppmとなった。滴定により、酸の濃度を調べたところ、フッ酸換算で5質量ppmであることが分かった。
シュウ酸81.5gを用い、ヘキサフルオロリン酸リチウムとシュウ酸のモル比は1.00:1.81とした他は実施例1と同様に合成した。実施例1と同様にNMR測定した。NMRの積分比から、ろ液に含まれる含有率を計算した。ジフルオロビス(オキサラト)リン酸リチウムが28質量%、テトラフルオロ(オキサラト)リン酸リチウムが8質量%含まれていた。ジフルオロビス(オキサラト)リン酸リチウムの収率はヘキサフルオロリン酸リチウムの仕込み量基準で71%であった。このサンプル中の塩素濃度を実施例1と同じ方法で測定し、ジフルオロビス(オキサラト)リン酸リチウム濃度で割り、1質量%あたりに換算したところ、70質量ppmとなった。滴定により、酸の濃度を調べたところ、フッ酸換算で10質量ppmであることが分かった。
四塩化ケイ素73.9gを用い、ヘキサフルオロリン酸リチウムと四塩化ケイ素のモル比は1.00:0.87とした他は実施例1と同様に合成した。実施例1と同様にNMR測定した。NMRの積分比から、ろ液に含まれる含有率を計算した。ジフルオロビス(オキサラト)リン酸リチウムが25質量%、テトラフルオロ(オキサラト)リン酸リチウムが11質量%含まれていた。ジフルオロビス(オキサラト)リン酸リチウムの収率はヘキサフルオロリン酸リチウムの仕込み量基準で60%であった。このサンプル中の塩素濃度を実施例1と同じ方法で測定し、ジフルオロビス(オキサラト)リン酸リチウム濃度で割り、1質量%あたりに換算したところ、0.9質量ppmとなった。滴定により、酸の濃度を調べたところ、フッ酸換算で450質量ppmであることが分かった。
Claims (3)
- 非水溶媒中にヘキサフルオロリン酸リチウムとシュウ酸を、シュウ酸に対するヘキサフルオロリン酸リチウムのモル比が1:1.90~1:2.10の範囲に入るように、混合し、さらにこれに四塩化ケイ素を、四塩化ケイ素に対するヘキサフルオロリン酸リチウムのモル比が1:0.95~1:1.10の範囲に入るように、添加して反応させることを特徴とするジフルオロビス(オキサラト)リン酸リチウム溶液の製造方法。
- 四塩化ケイ素を添加して反応させる際の温度が30℃~50℃の範囲であることを特徴とする、請求項1に記載のジフルオロビス(オキサラト)リン酸リチウム溶液の製造方法。
- 非水溶媒が環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステルからなる群から選ばれた少なくとも一種類以上の溶媒であることを特徴とする、請求項1又は2のいずれか1項に記載のジフルオロビス(オキサラト)リン酸リチウム溶液の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/121,586 US8088518B2 (en) | 2008-12-16 | 2009-12-14 | Method for producing lithium difluorobis (oxalato) phosphate solution |
EP09833400.6A EP2383276B1 (en) | 2008-12-16 | 2009-12-14 | Method for producing lithium difluorobis(oxalato)phosphate solution |
KR1020117011507A KR101223084B1 (ko) | 2008-12-16 | 2009-12-14 | 디플루오로비스(옥살라토)인산 리튬 용액의 제조 방법 |
CN200980145463.4A CN102216311B (zh) | 2008-12-16 | 2009-12-14 | 二氟双(草酸根)合磷酸锂溶液的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008319834A JP5315971B2 (ja) | 2008-12-16 | 2008-12-16 | ジフルオロビス(オキサラト)リン酸リチウム溶液の製造方法 |
JP2008-319834 | 2008-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010071097A1 true WO2010071097A1 (ja) | 2010-06-24 |
Family
ID=42268767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/070803 WO2010071097A1 (ja) | 2008-12-16 | 2009-12-14 | ジフルオロビス(オキサラト)リン酸リチウム溶液の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8088518B2 (ja) |
EP (1) | EP2383276B1 (ja) |
JP (1) | JP5315971B2 (ja) |
KR (1) | KR101223084B1 (ja) |
CN (1) | CN102216311B (ja) |
WO (1) | WO2010071097A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013180174A1 (ja) * | 2012-05-30 | 2013-12-05 | セントラル硝子株式会社 | シュウ酸を配位子とする金属錯体精製物及び該金属錯体の非水溶媒精製溶液の製造方法 |
JP2014107222A (ja) * | 2012-11-29 | 2014-06-09 | Toyota Industries Corp | リチウムイオン二次電池 |
WO2016002772A1 (ja) * | 2014-07-02 | 2016-01-07 | セントラル硝子株式会社 | 精製イオン性錯体の製造方法及びイオン性錯体 |
WO2016002773A1 (ja) * | 2014-07-02 | 2016-01-07 | セントラル硝子株式会社 | 精製イオン性錯体の製造方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5578341B2 (ja) * | 2011-01-25 | 2014-08-27 | 株式会社村田製作所 | 非水電解液二次電池 |
KR101395663B1 (ko) * | 2012-03-09 | 2014-05-15 | (주)켐트로스 | 리튬 디플루오로비스(옥살라토)인산염, 리튬 테트라플루오로(옥살라토)인산염 또는 이들의 혼합물의 제조방법 |
JP6031828B2 (ja) * | 2012-05-30 | 2016-11-24 | セントラル硝子株式会社 | テトラフルオロ(オキサラト)リン酸塩溶液の製造方法 |
JP2014122185A (ja) * | 2012-12-21 | 2014-07-03 | Central Glass Co Ltd | 有機化合物を配位子とするイオン性金属錯体塩の製造方法 |
JP5773226B2 (ja) * | 2013-02-04 | 2015-09-02 | トヨタ自動車株式会社 | リチウムイオン二次電池の製造方法 |
JP6098684B2 (ja) * | 2015-08-12 | 2017-03-22 | セントラル硝子株式会社 | 非水電解液二次電池用電解液及びそれを用いた非水電解液二次電池 |
JP6761178B2 (ja) * | 2016-12-02 | 2020-09-23 | セントラル硝子株式会社 | ジフルオロリン酸リチウムの製造方法 |
CN110858665B (zh) * | 2018-08-24 | 2021-10-01 | 张家港市国泰华荣化工新材料有限公司 | 一种锂离子电池电解液及其应用 |
CN108910919B (zh) * | 2018-09-05 | 2020-09-29 | 九江天赐高新材料有限公司 | 一种电子级二氟双草酸磷酸锂的制备方法 |
US10847840B2 (en) | 2018-10-30 | 2020-11-24 | Uchicago Argonne, Llc | Additives for lithium batteries and methods |
KR102660204B1 (ko) | 2018-11-28 | 2024-04-25 | 에스케이이노베이션 주식회사 | 고순도의 세슘 플루오로 옥살레이토 포스페이트를 제조하는 방법 |
CN109742447B (zh) * | 2018-12-28 | 2022-06-03 | 江苏国泰超威新材料有限公司 | 一种二氟双草酸磷酸锂溶液的制备方法 |
CN111943983B (zh) * | 2019-05-17 | 2023-01-31 | 微宏动力系统(湖州)有限公司 | 一种草酸根合磷酸锂溶液的制备方法 |
CN111943985B (zh) * | 2019-05-17 | 2023-01-31 | 微宏动力系统(湖州)有限公司 | 一种草酸根合磷酸锂盐类化合物的合成方法 |
KR102164920B1 (ko) | 2019-09-18 | 2020-10-13 | (주)켐트로스 | 리튬 디플루오로비스(옥살라토)인산염의 제조방법 |
WO2021210934A1 (ko) | 2020-04-16 | 2021-10-21 | (주)켐트로스 | 리튬 디플루오로비스(옥살라토)인산염 1,4-다이옥산 용매화물, 그의 제조방법 및 그를 포함하는 전해액 조성물 |
CN113717227A (zh) * | 2020-05-26 | 2021-11-30 | 恒大新能源技术(深圳)有限公司 | 二氟双草酸磷酸锂及其衍生物的制备方法、电解液和二次电池 |
CN112591727B (zh) * | 2020-11-30 | 2022-04-29 | 东莞东阳光科研发有限公司 | 一种二氟磷酸锂的制备方法 |
KR20220082421A (ko) | 2020-12-10 | 2022-06-17 | 임광민 | 디플루오로비스(옥살라토)인산리튬의 제조방법 |
KR20230007149A (ko) | 2021-07-05 | 2023-01-12 | 제이투에이치바이오텍 (주) | 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)을 이용한 고순도 리튬 디플루오로비스(옥살라토)인산염 (lithium Difluoro bis(oxlato)phospholate, LDFBOP)의 제조방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003137890A (ja) * | 2001-11-05 | 2003-05-14 | Central Glass Co Ltd | イオン性金属錯体の合成法 |
JP2008288049A (ja) * | 2007-05-18 | 2008-11-27 | Toyota Central R&D Labs Inc | リチウムイオン二次電池 |
JP2008305574A (ja) * | 2007-06-05 | 2008-12-18 | Toyota Central R&D Labs Inc | リチウムイオン二次電池 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19933898A1 (de) * | 1999-07-22 | 2001-02-01 | Chemetall Gmbh | Tris(oxalato)phosphate, Verfahren zu deren Herstellung und deren Verwendung |
DE60143070D1 (de) * | 2000-10-03 | 2010-10-28 | Central Glass Co Ltd | Elektrolyt für elektrochemische Vorrichtung |
US6849752B2 (en) * | 2001-11-05 | 2005-02-01 | Central Glass Company, Ltd. | Process for synthesizing ionic metal complex |
JP3907483B2 (ja) * | 2002-01-18 | 2007-04-18 | セントラル硝子株式会社 | イオン性金属錯体の合成法 |
JP5277550B2 (ja) * | 2007-03-12 | 2013-08-28 | セントラル硝子株式会社 | ジフルオロリン酸リチウムの製造方法及びこれを用いた非水電解液電池 |
-
2008
- 2008-12-16 JP JP2008319834A patent/JP5315971B2/ja active Active
-
2009
- 2009-12-14 EP EP09833400.6A patent/EP2383276B1/en active Active
- 2009-12-14 KR KR1020117011507A patent/KR101223084B1/ko active IP Right Grant
- 2009-12-14 WO PCT/JP2009/070803 patent/WO2010071097A1/ja active Application Filing
- 2009-12-14 CN CN200980145463.4A patent/CN102216311B/zh active Active
- 2009-12-14 US US13/121,586 patent/US8088518B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003137890A (ja) * | 2001-11-05 | 2003-05-14 | Central Glass Co Ltd | イオン性金属錯体の合成法 |
JP3907446B2 (ja) | 2001-11-05 | 2007-04-18 | セントラル硝子株式会社 | イオン性金属錯体の合成法 |
JP2008288049A (ja) * | 2007-05-18 | 2008-11-27 | Toyota Central R&D Labs Inc | リチウムイオン二次電池 |
JP2008305574A (ja) * | 2007-06-05 | 2008-12-18 | Toyota Central R&D Labs Inc | リチウムイオン二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2383276A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013180174A1 (ja) * | 2012-05-30 | 2013-12-05 | セントラル硝子株式会社 | シュウ酸を配位子とする金属錯体精製物及び該金属錯体の非水溶媒精製溶液の製造方法 |
JP2014005269A (ja) * | 2012-05-30 | 2014-01-16 | Central Glass Co Ltd | シュウ酸を配位子とする金属錯体精製物及び該金属錯体の非水溶媒精製溶液の製造方法 |
TWI472531B (zh) * | 2012-05-30 | 2015-02-11 | Central Glass Co Ltd | A method for producing a purified solution of a metal complex of oxalic acid as a seat and a nonaqueous solvent of the metal complex |
JP2014107222A (ja) * | 2012-11-29 | 2014-06-09 | Toyota Industries Corp | リチウムイオン二次電池 |
WO2016002772A1 (ja) * | 2014-07-02 | 2016-01-07 | セントラル硝子株式会社 | 精製イオン性錯体の製造方法及びイオン性錯体 |
WO2016002773A1 (ja) * | 2014-07-02 | 2016-01-07 | セントラル硝子株式会社 | 精製イオン性錯体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2383276B1 (en) | 2014-04-23 |
EP2383276A4 (en) | 2013-07-31 |
US20110183219A1 (en) | 2011-07-28 |
US8088518B2 (en) | 2012-01-03 |
CN102216311A (zh) | 2011-10-12 |
CN102216311B (zh) | 2014-06-04 |
KR20110086102A (ko) | 2011-07-27 |
JP5315971B2 (ja) | 2013-10-16 |
KR101223084B1 (ko) | 2013-01-17 |
EP2383276A1 (en) | 2011-11-02 |
JP2010143835A (ja) | 2010-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5315971B2 (ja) | ジフルオロビス(オキサラト)リン酸リチウム溶液の製造方法 | |
KR101395663B1 (ko) | 리튬 디플루오로비스(옥살라토)인산염, 리튬 테트라플루오로(옥살라토)인산염 또는 이들의 혼합물의 제조방법 | |
JP6031828B2 (ja) | テトラフルオロ(オキサラト)リン酸塩溶液の製造方法 | |
CN109742447B (zh) | 一种二氟双草酸磷酸锂溶液的制备方法 | |
CN108910919B (zh) | 一种电子级二氟双草酸磷酸锂的制备方法 | |
US20240279259A1 (en) | Lithium difluoro-bis(oxalate)phosphate, preparation method therefor, and application thereof | |
CN109678694A (zh) | 一种四氟草酸磷酸锂的制备方法 | |
KR20180094631A (ko) | 디플루오로인산리튬의 제조방법 | |
KR100971065B1 (ko) | 리튬이온전지용 전해액의 제조방법 및 이를 사용한리튬이온전지 | |
CN112919441B (zh) | 一种联产二氟磷酸锂和二氟二草酸磷酸锂的方法 | |
CN115583974B (zh) | 一种二氟双草酸磷酸锂的制备方法 | |
CN111606952A (zh) | 四氟草酸磷酸锂的制备方法、非水电解液和电池 | |
KR102209974B1 (ko) | 리튬 테트라플루오로(옥살라토)인산염의 제조방법 | |
US20230187700A1 (en) | 1,4-dioxane slovate of lithium difluorobis(oxalato)phosphate, method for preparing the same, and electrolyte composition comprising the same | |
CN113845101B (zh) | 一种二氟磷酸锂及其制备方法和应用 | |
CN110845524B (zh) | 一种用有机酰氧基硅烷制备特定锂盐的方法 | |
CN111943983B (zh) | 一种草酸根合磷酸锂溶液的制备方法 | |
KR102164920B1 (ko) | 리튬 디플루오로비스(옥살라토)인산염의 제조방법 | |
KR102660204B1 (ko) | 고순도의 세슘 플루오로 옥살레이토 포스페이트를 제조하는 방법 | |
CN113753875B (zh) | 一种二氟双草酸磷酸锂的制备方法 | |
CN118026224A (zh) | 一种焦硫酸锂的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980145463.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09833400 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13121586 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117011507 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009833400 Country of ref document: EP |