WO2010061519A1 - Esd保護デバイス及びその製造方法 - Google Patents

Esd保護デバイス及びその製造方法 Download PDF

Info

Publication number
WO2010061519A1
WO2010061519A1 PCT/JP2009/005463 JP2009005463W WO2010061519A1 WO 2010061519 A1 WO2010061519 A1 WO 2010061519A1 JP 2009005463 W JP2009005463 W JP 2009005463W WO 2010061519 A1 WO2010061519 A1 WO 2010061519A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
protection device
esd protection
discharge
electrode
Prior art date
Application number
PCT/JP2009/005463
Other languages
English (en)
French (fr)
Inventor
足立淳
浦川淳
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2010510573A priority Critical patent/JPWO2010061519A1/ja
Priority to CN2009801479985A priority patent/CN102224648B/zh
Publication of WO2010061519A1 publication Critical patent/WO2010061519A1/ja
Priority to US13/115,221 priority patent/US8455918B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/20Means for starting arc or facilitating ignition of spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs

Definitions

  • the present invention relates to an ESD protection device and a method for manufacturing the same, and more particularly, to a technique for improving ESD characteristics and reliability of an ESD protection device in which discharge electrodes are arranged to face each other in a cavity of an insulating substrate.
  • ESD Electro-Static Discharge
  • a charged conductive object such as a human body
  • another conductive object such as an electronic device
  • ESD causes problems such as damage and malfunction of electronic devices. In order to prevent this, it is necessary to prevent an excessive voltage generated during discharge from being applied to the circuit of the electronic device.
  • An ESD protection device is used for such an application, and is also called a surge absorbing element or a surge absorber.
  • the ESD protection device is disposed, for example, between the signal line of the circuit and the ground (ground). Since the ESD protection device has a structure in which a pair of discharge electrodes are spaced apart from each other, the ESD protection device has a high resistance in a normal use state, and a signal does not flow to the ground side. On the other hand, when an excessive voltage is applied, for example, when static electricity is applied from an antenna such as a mobile phone, a discharge occurs between the discharge electrodes of the ESD protection device, and the static electricity can be guided to the ground side. Thereby, a voltage due to static electricity is not applied to a circuit subsequent to the ESD device, and the circuit can be protected.
  • the ESD protection device shown in the exploded perspective view of FIG. 8 and the cross-sectional view of FIG. 9 is a discharge electrode in which a cavity 5 is formed in a ceramic multilayer substrate 7 on which an insulating ceramic sheet 2 is laminated and is electrically connected to an external electrode 1.
  • 6 is disposed oppositely in the cavity 5, and the discharge gas is confined in the cavity 5.
  • a voltage causing dielectric breakdown is applied between the discharge electrodes 6, a discharge occurs between the discharge electrodes 6 in the cavity 5, and an excessive voltage is guided to the ground by the discharge, thereby protecting the subsequent circuit.
  • the ESD responsiveness is likely to fluctuate due to variations in the interval between the discharge electrodes.
  • region which a discharge electrode opposes it is difficult to implement
  • the present invention intends to provide an ESD protection device that can easily adjust and stabilize ESD characteristics and a method for manufacturing the same.
  • the present invention provides an ESD protection device configured as follows.
  • the ESD protection device comprises (a) an insulating substrate, (b) a cavity formed inside the insulating substrate, and (c) at least a pair of discharge electrodes having an exposed portion exposed in the cavity. (D) having an external electrode formed on the surface of the insulating substrate and connected to the discharge electrode.
  • An auxiliary electrode in which conductive powder is dispersed is formed along a bottom surface and a top surface that form the cavity between the exposed portions of the discharge electrode.
  • the auxiliary electrode for generating creeping discharge is formed on both the bottom surface and the top surface of the cavity, the ESD response can be further improved as compared with the case where the auxiliary electrode is formed only on one side. it can.
  • an interval between the bottom surface forming the cavity and the top surface is equal to a thickness of the discharge electrode.
  • the insulating substrate is a ceramic substrate.
  • the auxiliary electrode has an insulating material dispersed together with the conductive powder.
  • the present invention provides a method for manufacturing an ESD protection device configured as follows.
  • the auxiliary electrode is formed by attaching the conductive powder to the one main surface of the first insulating layer and the one main surface of the second insulating layer in a dispersed state, respectively.
  • a cavity that exposes at least part of the discharge electrode and part of each of the pair of discharge electrodes is formed between the first insulating layer and the second insulating layer in the stacked body. Is done.
  • a cavity forming layer made of a disappearing material is formed on at least a part of the auxiliary electrode to be exposed between the discharge electrodes in the second step.
  • the third step after the second insulating layer is also disposed on the cavity forming layer, at least a part of the cavity forming layer is eliminated to form the cavity.
  • the cavity forming layer prevents the auxiliary electrode from being peeled off, and the cavity can be formed reliably.
  • the cavity forming layer is formed using, for example, a material such as a resin paste or a carbon paste that disappears during firing of the stack obtained in the fourth step.
  • the auxiliary electrode is formed by electrophotography.
  • Example 1 It is sectional drawing of an ESD protection device.
  • Example 1 It is sectional drawing which shows the manufacturing process of an auxiliary electrode.
  • Example 1 It is the schematic of a paste.
  • Example 1 It is sectional drawing of an ESD protection device.
  • Example 2 It is a principal part expanded sectional view of an auxiliary electrode.
  • Example 3 It is a principal part expanded sectional view of an auxiliary electrode.
  • Comparative Example 1 It is a principal part expanded sectional view of an auxiliary electrode.
  • Comparative Example 2 It is a disassembled perspective view of an ESD protection device.
  • Conventional example It is sectional drawing of an ESD protection device.
  • Conventional example It is sectional drawing of an ESD protection device. (Conventional example)
  • Example 1 An ESD protection device 10 of Example 1 will be described with reference to FIGS.
  • FIG. 1 is a cross-sectional view of the ESD protection device 10.
  • the ESD protection device 10 has a cavity 13 formed inside a substrate body 12 of an insulating substrate such as a ceramic multilayer substrate or a resin substrate.
  • the hollow part 13 it arrange
  • the ends 16k and 18k of the discharge electrodes 16 and 18 are formed to face each other with a space therebetween.
  • the discharge electrodes 16 and 18 extend to the outer peripheral surface of the substrate body 12 and are connected to external electrodes 22 and 24 formed on the surface of the substrate body 12.
  • the external electrodes 22 and 24 are used for mounting the ESD protection device 10.
  • conductive powder 60 is contained in the insulating material forming the substrate main body 12 in regions indicated by chain lines along the top surface 13 p and the bottom surface 13 s forming the cavity portion 13.
  • Dispersed auxiliary electrodes 14p and 14s are formed.
  • the ESD protection device 10 when a voltage of a predetermined level or more is applied between the external electrodes 22 and 24, a discharge occurs between the opposing discharge electrodes 16 and 18 in the cavity 13.
  • This discharge is a creeping discharge that occurs mainly along the interface between the cavity 13 and the substrate body 12.
  • the auxiliary electrodes 14s and 14p including the conductive powder 60 are formed along the bottom surface 13s and the top surface 13p that form the cavity 13, so that the electrons easily move and discharge more efficiently. A phenomenon can be caused. Therefore, it is possible to reduce the variation in the ESD response due to the variation in the interval between the discharge electrodes. Therefore, adjustment and stabilization of the ESD characteristics are facilitated.
  • auxiliary electrodes 14p and 14s are made of an insulating material together with the conductive powder, contact between the conductive powder is prevented by the insulating material, so that occurrence of a short circuit is suppressed. Furthermore, when the insulating material is made of the same material as the substrate body, the adhesion between the auxiliary electrode and the substrate body is improved.
  • the discharge electrodes 16 and 18 are formed such that the ends 16k and 18k exposed in the cavity 13 are included in the same plane, and a bottom surface 13s that forms the cavity 13 on both sides with respect to the same plane, and A top surface 13p is formed.
  • Ceramic green sheet A ceramic green sheet for forming the substrate body 12 is produced.
  • a material (BAS material) having a composition centered on Ba, Al, and Si is used as the ceramic material.
  • Each raw material is prepared and mixed so as to have a predetermined composition, and calcined powder obtained by calcining at 800 ° C. to 1000 ° C. is pulverized for 12 hours with a zirconia ball mill to obtain ceramic powder.
  • An organic solvent such as toluene and echinene is added to and mixed with the ceramic powder after calcination of the BAS material.
  • a binder and a plasticizer are added and mixed to obtain a slurry.
  • the slurry thus obtained is molded onto a PET film by a doctor blade method to obtain a ceramic green sheet having an arbitrary thickness (10 ⁇ m to 50 ⁇ m).
  • Electrode paste An electrode paste for forming the discharge electrodes 16 and 18 is prepared.
  • An electrode paste is obtained by adding a solvent to a binder resin composed of 80 wt% Cu powder having an average particle diameter of about 2 ⁇ m and ethyl cellulose, and stirring and mixing.
  • the resin paste used for forming the cavity 13 is prepared.
  • the resin paste consists only of a resin and a solvent, and is produced by the same method as the electrode paste.
  • the resin material for example, a resin that disappears upon burning, decomposition, melting, vaporization, or the like, such as PET, polypropylene, ethyl cellulose, or an acrylic resin, is used.
  • discharge electrodes 14p and 14s are formed on the surfaces 11p and 11s, which are one main surface of the ceramic green sheets 11a and 11b, by screen printing or electrophotography.
  • the ceramic green sheets 11a and 11b on which the auxiliary electrodes 14p and 14s are formed are prepared as a top surface side 11a and a bottom surface side 11b.
  • Typical types of pastes for forming auxiliary electrodes are prepared by the following methods.
  • the paste 50 is obtained by preparing Cu powder 60 having an average particle diameter of about 3 ⁇ m at a predetermined ratio, adding a binder resin and a solvent 70, stirring and mixing. Resin and solvent are 70 wt%, and the remaining 30 wt% is Cu powder.
  • the paste 50 has a lower viscosity (30 Pa ⁇ s) than a normal electrode paste (80 Pa ⁇ s). Since the paste 50 has a low content of the Cu powder 60, the paste 50 maintains insulation even after firing.
  • the paste 52 is made of Al 2 O 3 coated Cu powder 64 having an average particle diameter of about 3 ⁇ m, in which the Cu powder 61 is coated with an Al 2 O 3 coating layer 62, at a predetermined ratio. It is obtained by adding the binder resin and the solvent 72, stirring and mixing. Resin and solvent 72 are 50 wt%, and the remaining 50 wt% is Al 2 O 3 coated Cu powder 64.
  • the paste 52 has a lower viscosity (30 Pa ⁇ s) than a normal electrode paste (80 Pa ⁇ s). Since the paste 52 uses the Al 2 O 3 coated Cu powder 64, the insulating property is maintained even after firing.
  • the paste 54 is prepared by mixing Cu powder 60 having an average particle diameter of about 3 ⁇ m and BAS material calcined ceramic powder 66 at a predetermined ratio, and adding a binder resin and a solvent 74. Obtained by stirring and mixing. Resin and solvent 74 are 40 wt%, Cu powder 60 is 40 wt%, and ceramic powder 66 is 20 wt%.
  • the paste 54 has a lower viscosity (30 Pa ⁇ s) than a normal electrode paste (80 Pa ⁇ s). Since the paste 54 includes the ceramic powder 66 in addition to the Cu powder 60, the paste 54 maintains insulation even after firing.
  • the paste 56 is prepared by blending Al 2 O 3 coated Cu powder 64 having an average particle diameter of about 3 ⁇ m and BAS material calcined ceramic powder 66 at a predetermined ratio to obtain a binder resin. And solvent 76 are added, and the mixture is stirred and mixed. Resin and solvent 76 are 40 wt%, Al 2 O 3 coated Cu powder 64 is 50 wt%, and ceramic powder 66 is 10 wt%.
  • the paste 56 has a lower viscosity (30 Pa ⁇ s) than a normal electrode paste (80 Pa ⁇ s).
  • the paste 56 uses Al 2 O 3 coated Cu powder 65 and ceramic powder 67 and maintains insulation even after firing.
  • the auxiliary electrode is formed by applying an auxiliary electrode forming paste on a ceramic green sheet by screen printing.
  • auxiliary electrode itself remains insulative after firing.
  • the toner is prepared as follows. 1. Cu powder (average particle size 3 ⁇ m) and resin are mixed, and the surface of the Cu powder is coated with a resin using a surface treatment machine. 2. Above 1. The sample is classified to remove fine powder and coarse powder. 3. 2. The capsule Cu powder obtained by the above operation and the external additive are mixed, and the external additive is uniformly adhered to the surface of the capsule Cu powder by a surface treatment machine. 4). 3. above. The capsule Cu powder obtained by the above operation and a carrier are mixed to obtain a toner as a developer.
  • the auxiliary electrode is formed as follows. 1. The photoreceptor is charged uniformly. 2. The photosensitive member charged by the LED is irradiated with light on the shape of the auxiliary electrode to form a latent image. 3. A developing bias is applied to develop the toner on the photoreceptor. The amount of toner applied can be controlled by the magnitude of the developing bias. 4). The photosensitive member on which the pattern of the auxiliary electrode is developed and the ceramic green sheet are stacked, and the toner is transferred to the ceramic green sheet. 5. The ceramic green sheet on which the auxiliary electrode pattern is transferred is placed in an oven to fix the toner, thereby obtaining a ceramic green sheet on which the auxiliary electrode pattern is formed.
  • auxiliary electrode itself remains insulative after firing.
  • an auxiliary electrode in which the conductive powder is uniformly dispersed can be easily manufactured, and a short-circuit can be prevented by reliably maintaining the interval between the particles of the conductive powder. Responsiveness can be realized.
  • auxiliary electrode itself remains insulative after firing.
  • Discharge electrode formation, cavity formation As shown in FIG. 2, an electrode paste is applied by screen printing on the ceramic green sheet 11b on which the discharge electrode 14s on the bottom side is formed, and discharge is generated between the tips 16k and 18k. Discharge electrodes 16 and 18 having a gap are formed.
  • the discharge electrode was formed in a strip shape so that the width of the discharge electrode was 100 ⁇ m and the discharge gap (distance between the tips of the opposing discharge electrodes) was 30 ⁇ m.
  • a resin paste is applied at a position where a cavity is to be formed to form a cavity forming layer 15.
  • the resin paste disappears by subsequent firing, and a cavity is formed in the portion where the resin paste was present.
  • the ceramic green sheets 11a and 11b are mounted with the surfaces 11p and 11s of the ceramic green sheets 11a and 11b on which the discharge electrodes 16 and 18 are formed facing each other. Laminate and press to form a laminate. At this time, the auxiliary electrode is pressed against the ceramic green sheet by the cavity forming layer. Therefore, it is possible to prevent the auxiliary electrode from peeling off and to reliably form the cavity.
  • the ceramic green sheets were laminated so that the thickness of the laminate was 0.35 mm and the discharge electrode and the cavity were arranged in the center in the thickness direction.
  • Plating Electrolytic Ni and Sn plating is performed on the external electrodes of the chip after firing in the same manner as chip-type components such as LC filters.
  • the ceramic material of the substrate main body 12 is not particularly limited to the above-described materials, and may be any insulating material, such as forsterite added with glass, CaZrO 3 added with glass, Others may be used.
  • the electrode material of the discharge electrodes 16 and 18 is not limited to Cu, but may be Ag, Pd, Pt, Al, Ni, W, or a combination thereof.
  • the conductive powder used for the auxiliary electrode 14 is preferably not only Cu but also at least one metal selected from a transition metal group such as Ni, Co, Ag, Pd, Rh, Ru, Au, Pt, and Ir. .
  • a transition metal group such as Ni, Co, Ag, Pd, Rh, Ru, Au, Pt, and Ir.
  • these metals may be used alone, they can also be used as alloys.
  • oxides of these metals may be used.
  • a semiconductor material such as SiC may be used.
  • inorganic materials and the like Al 2 O 3, ZrO 2, SiO 2 in these metals may be used after coating the mixed calcined material such as BAS. Or what coated organic materials, such as resin, may be used. By using these coat powders, the contact between the conductive powders is inhibited, and the short circuit resistance is improved.
  • the average particle diameter of the conductive powder of the auxiliary electrode is preferably in the range of 0.05 ⁇ m to 10 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 5 ⁇ m.
  • Resin paste was used to form the cavity 13, but carbon or the like may be used as long as it disappears upon firing, not resin.
  • Example 2 An ESD protection device 10a of Example 2 will be described with reference to FIG.
  • the ESD protection device 10a of the second embodiment has substantially the same configuration as the ESD protection device 10 of the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
  • FIG. 4 is a cross-sectional view of the ESD protection device 10a.
  • the height of the cavity 13a formed inside the substrate body 12a is equal to the thickness of the discharge electrodes 16 and 18. That is, the distance between the bottom surface 13 s and the top surface 13 q forming the hollow portion 13 a is equal to the thickness of the discharge electrodes 16 and 18.
  • the height of the cavity 13a can be made equal to the thickness of the discharge electrodes 16 and 18 by adjusting the thickness of the cavity forming layer formed before laminating the ceramic green sheets.
  • Example 3 An ESD protection device 10b of Example 3 will be described with reference to FIG.
  • the ESD protection device 10b of Example 3 has substantially the same configuration as the ESD protection device 10a of Example 2.
  • the thicknesses of the auxiliary electrodes 14r and 14t formed along the top surface 13q and the bottom surface 13s of the cavity portion 13b are the same as those of the ESD protection device 10a of the second embodiment. It is larger than the thickness of the auxiliary electrodes 14p and 14s. By increasing the thickness of the auxiliary electrodes 14p and 14s, it is possible to maintain a constant ESD response even when the discharge repeatedly occurs.
  • the auxiliary electrodes 14q and 14t can be formed thick by increasing the coating amount of the auxiliary electrode paste or by repeatedly forming the auxiliary electrodes. .
  • screen printing was repeated twice to form auxiliary electrodes 14q and 14t.
  • the auxiliary electrodes 16p and 16s were formed by one screen printing.
  • the ESD protection device 10x of Comparative Example 1 is configured in substantially the same manner as the ESD protection device 10 of Example 1, and the height of the cavity 13 formed inside the substrate body 12x. Is larger than the thickness of the discharge electrodes 16, 18.
  • the second embodiment is different from the first embodiment in that the auxiliary electrode 14s is formed only along the bottom surface 13s of the cavity 13 between the discharge electrodes 16 and 18, and the auxiliary electrode is not formed on the top surface 13p side.
  • the ESD protection device 10y of Comparative Example 2 is configured in substantially the same manner as the ESD protection device 10a of Example 2, and the height of the cavity 13a formed inside the substrate body 12y. Is equivalent to the thickness of the discharge electrodes 16, 18.
  • the second embodiment is different from the second embodiment in that the auxiliary electrode 14s is formed only along the bottom surface 13s forming the hollow portion 13a, and the auxiliary electrode is not formed on the top surface 13q side.
  • discharge responsiveness to ESD between discharge electrodes was evaluated with 100 samples.
  • the discharge response to ESD was performed by an electrostatic discharge immunity test defined in IEC standard, IEC61000-4-2. It was examined whether or not discharge occurred between the discharge electrodes of the sample by applying 2 kV to 8 kv by contact discharge.
  • Table 1 The comparison results are shown in Table 1 below.
  • Table 1 a circle indicates that a discharge occurred between the discharge electrodes of the sample and the ESD protection function was activated.
  • the ESD responsiveness can be enhanced by forming discharge electrodes for generating creeping discharge along the bottom surface and the top surface forming the cavity. Therefore, it is possible to reduce the variation in the ESD response due to the variation in the interval between the discharge electrodes. Therefore, adjustment and stabilization of the ESD characteristics are facilitated.

Abstract

 ESD特性の調整や安定化が容易であるESD保護デバイス及びその製造方法を提供する。  (a)絶縁性基板12と、(b)絶縁性基板の内部に形成された空洞部13と、(c)空洞部13内に露出する露出部分を有する、少なくとも一対の放電電極16,18と、(d)絶縁性基板12の表面に形成され、放電電極16,18と接続された外部電極22,24とを有する。放電電極16,18の露出部分の間の空洞部13を形成する底面13s及び天面13pに沿って、絶縁性基板12を形成する絶縁材料中に導電粉末が分散された補助電極14s,14pが形成されている。

Description

ESD保護デバイス及びその製造方法
 本発明は、ESD保護デバイス及びその製造方法に関し、詳しくは、絶縁性基板の空洞部内に放電電極が対向して配置されたESD保護デバイスについてESD特性及び信頼性を向上する技術に関する。
 ESD(Electro-Static Discharge;静電気放電)とは、帯電した導電性の物体(人体等)が、他の導電性の物体(電子機器等)に接触、あるいは充分接近したときに、激しい放電が発生する現象である。ESDにより電子機器の損傷や誤作動などの問題が発生する。これを防ぐためには、放電時に発生する過大な電圧が電子機器の回路に加わらないようにする必要がある。このような用途に使用されるのがESD保護デバイスであり、サージ吸収素子やサージアブソーバとも呼ばれている。
 ESD保護デバイスは、例えば回路の信号線路とグランド(接地)との間に配置する。ESD保護デバイスは、一対の放電電極を離間して対向させた構造であるので、通常の使用状態では高い抵抗を持っており、信号がグランド側に流れることはない。これに対し、例えば携帯電話等のアンテナから静電気が加わる場合のように、過大な電圧が加わると、ESD保護デバイスの放電電極間で放電が起こり、静電気をグランド側に導くことができる。これにより、ESDデバイスよりも後段の回路には、静電気による電圧が印加されず、回路を保護することができる。
 例えば図8の分解斜視図及び図9の断面図に示すESD保護デバイスは、絶縁性セラミックシート2が積層されるセラミック多層基板7内に空洞部5が形成され、外部電極1と導通した放電電極6が空洞部5内に対向配置され、空洞部5に放電ガスが閉じ込められている。放電電極6間で絶縁破壊を起こす電圧が印加されると、空洞部5内において放電電極6間で放電が起こり、その放電により過剰な電圧をグランドへ導き、後段の回路を保護することができる(例えば、特許文献1参照)。
特開2001-43954号公報
 しかし、このようなESD保護デバイスでは、放電電極間の間隔のばらつきによって、ESD応答性が変動し易い。また、放電電極が対向する領域の面積によってESD応答性を調整する必要があるが、その調整には製品サイズ等による制限のため、所望とするESD応答性を実現しにくい場合がある。
 本発明は、かかる実情に鑑み、ESD特性の調整や安定化が容易であるESD保護デバイス及びその製造方法を提供しようとするものである。
 本発明は、上記課題を解決するために、以下のように構成したESD保護デバイスを提供する。
 ESD保護デバイスは、(a)絶縁性基板と、(b)前記絶縁性基板の内部に形成された空洞部と、(c)前記空洞部内に露出する露出部分を有する、少なくとも一対の放電電極と、(d)前記絶縁性基板の表面に形成され、前記放電電極と接続された外部電極とを有する。前記放電電極の前記露出部分の間の前記空洞部を形成する底面及び天面に沿って、導電粉末が分散された補助電極が形成されている。
 上記構成において、外部電極間に所定以上の大きさの電圧が印加されると、対向する放電電極間で放電が発生する。この放電は、主に、空洞部と絶縁性基板の界面に沿って発生する沿面放電である。この沿面、すなわち空洞部を形成する底面及び天面に沿って、導電粉末を含む補助電極が形成されているので、電子の移動が起こりやすく、より効率的に放電現象を生じさせ、ESD応答性を高めることができる。そのため、放電電極間の間隔のばらつきによるESD応答性の変動を小さくすことができる。したがって、ESD特性の調整や安定化が容易になる。
 また、空洞部の底面及び天面の両方に沿面放電を生じさせるための補助電極が形成されているので、一方だけに補助電極が形成される場合に比べると、よりESD応答性を高めることができる。
 好ましくは、前記空洞部を形成する前記底面と前記天面との間隔が、前記放電電極の厚みと同等である。
 この場合、空洞部の高さを低くすることによって、気中放電(放電電極間での放電)よりも沿面放電が生じやすくなり、ESD応答性がさらに高まる。
 好ましくは、前記絶縁性基板がセラミック基板である。
 この場合、ESD保護デバイスの作製が容易である。
 好ましくは、前記補助電極が前記導電粉末とともに絶縁材料が分散されてなる。
 この場合、絶縁材料によって導電粉末間の接触が防止されるので、ショート発生が抑制される。さらに、補助電極と基板本体との密着性が向上する。
 また、本発明は、以下のように構成したESD保護デバイスの製造方法を提供する。
 ESD保護デバイスの製造方法は、(i)第一の絶縁層の一方主面と第二の絶縁層の一方主面とに、それぞれ、導電粉末を分散した状態で付着させて補助電極を形成する、第1の工程と、(ii)前記第一の絶縁層の前記一方主面に、間隔を設けて少なくとも一対の放電電極を、該放電電極の間に前記第一の絶縁層の前記一方主面に形成された前記補助電極の少なくとも一部分が露出するように、形成する、第2の工程と、(iii)前記第一の絶縁層の前記一方主面と前記第二の絶縁層の前記一方主面とが互いに対向した状態で、前記第一の絶縁層と前記第二の絶縁層とを積層する、第3の工程と、(iv)前記第3の工程により得られた積層体の表面に、前記放電電極と接続された外部電極を形成する、第4の工程とを備える。前記積層体の内部において前記第一の絶縁層と前記第二の絶縁層との間に、前記放電電極の少なくとも一部と前記一対の放電電極のそれぞれの一部とが露出する空洞部が形成される。
 上記方法によれば、空洞部を形成する底面及び天面に沿って補助電極を形成することが容易である。
 好ましくは、前記第2の工程において前記放電電極の間に露出させるべき前記補助電極の少なくとも一部分の上に、消失材料からなる空洞部形成層を形成する。前記第3の工程において前記空洞部形成層の上にも前記第二の絶縁層を配置した後、前記空洞部形成層の少なくとも一部を消失させることにより、前記空洞部を形成する。
 この場合、空洞部形成層で補助電極の剥離を防ぎ、確実に空洞部を形成できる。空洞部形成層には、例えば、第4の工程により得られた積層の焼成時に消失する樹脂ペーストやカーボンペーストなどの材料を用いて形成する。
 好ましくは、前記第1の工程において、前記補助電極は電子写真法により形成される。
 この場合、導電粉末が均一に分散している補助電極を容易に作製することができ、導電粉末間の間隔を確実に保つことによりショートを防止することでき、安定したESD応答性を実現することができる。
 本発明によれば、ESDデバイスのESD特性の調整や安定化が容易である。
ESD保護デバイスの断面図である。(実施例1) 補助電極の製造工程を示す断面図である。(実施例1) ペーストの概略図である。(実施例1) ESD保護デバイスの断面図である。(実施例2) 補助電極の要部拡大断面図である。(実施例3) 補助電極の要部拡大断面図である。(比較例1) 補助電極の要部拡大断面図である。(比較例2) ESD保護デバイスの分解斜視図である。(従来例) ESD保護デバイスの断面図である。(従来例)
 以下、本発明の実施の形態について、図1~図6を参照しながら説明する。
 <実施例1> 実施例1のESD保護デバイス10について、図1~図3を参照しながら説明する。図1は、ESD保護デバイス10の断面図である。
 図1に示すように、ESD保護デバイス10は、セラミック多層基板や樹脂基板などの絶縁性基板の基板本体12の内部に空洞部13が形成されている。空洞部13内には、一対の放電電極16,18の先端16k,18k側が露出するように配置されている。放電電極16,18の先端16k,18k側は、互いに間隔を設けて対向するように形成されている。放電電極16,18は、基板本体12の外周面まで延在し、基板本体12の表面に形成された外部電極22,24に接続されている。外部電極22,24は、ESD保護デバイス10を実装するために用いる。
 図1に模式的に示すように、基板本体12には、空洞部13を形成する天面13p及び底面13sに沿う鎖線で示す領域に、基板本体12を形成する絶縁材料中に導電粉末60が分散されている補助電極14p,14sが形成されている。
 ESD保護デバイス10は、外部電極22,24間に所定以上の大きさの電圧が印加されると、空洞部13内において、対向する放電電極16,18間で放電が発生する。この放電は、主に、空洞部13と基板本体12の界面に沿って発生する沿面放電である。この界面のうち、空洞部13を形成する底面13s及び天面13pに沿って、導電粉末60を含む補助電極14s,14pが形成されているので、電子の移動が起こりやすく、より効率的に放電現象を生じさせることができる。そのため、放電電極間の間隔のばらつきによるESD応答性の変動を小さくすことができる。したがって、ESD特性の調整や安定化が容易になる。
 また、補助電極14p,14sが導電粉末とともに絶縁材料からなる場合は、絶縁材料によって導電粉末間の接触が防止されるので、ショート発生が抑制される。さらに、当該絶縁材料が基板本体と同一材料よりなる場合には、補助電極と基板本体との密着性が向上する。
 なお、放電電極16,18は、空洞部13内に露出する先端16k,18k側が同一面内に含まれるように形成されており、この同一面に関して両側に、空洞部13を形成する底面13s及び天面13pが形成される。
 次に、ESD保護デバイス10の製造方法について、図2の要部断面図及び図3の概略図を参照しながら説明する。
 (1)材料の作製
 まず、基板本体12、放電電極16,18、空洞部13を形成するため材料を作製する。
 [セラミックグリーンシート]
 基板本体12を形成するためのセラミックグリーンシートを作製する。セラミック材料には、Ba、Al、Siを中心とした組成からなる材料(BAS材)を用いる。各素材を所定の組成になるよう調合、混合し、800℃~1000℃で仮焼して得られた仮焼粉末を、ジルコニアボールミルで12時間粉砕し、セラミック粉末を得る。このBAS材仮焼後セラミック粉末に、トルエン・エキネンなどの有機溶媒を加え混合する。さらにバインダー、可塑剤を加え混合し、スラリーを得る。このようにして得られたスラリーを、ドクターブレード法によりPETフィルム上へ成形し、任意の厚み(10μm~50μm)のセラミックグリーンシートを得る。
 [電極ペースト]
 放電電極16,18を形成するための電極ペーストを作製する。平均粒径約2μmのCu粉80wt%とエチルセルロース等からなるバインダー樹脂に溶剤を添加し、攪拌、混合することで、電極ペーストを得る。
 [樹脂ペースト]
 空洞部13を形成するために用いる樹脂ペーストを作製する。樹脂ペーストは、樹脂と溶剤のみからなり、電極ペーストと同様の方法にて作製する。樹脂材料には、例えば、PET、ポリプロピレン、エチルセルロース、アクリル樹脂など、焼成時に燃焼、分解、溶融、気化などにより消失する樹脂を用いる。
 (2)補助電極形成
 図2に示すように、セラミックグリーンシート11a,11bの一方主面である表面11p、11sに、スクリーン印刷法もしくは電子写真法により、放電電極14p,14sを形成する。補助電極14p,14sを形成したセラミックグリーンシート11a,11bは、天面側用11aと底面側用11bの2枚を準備する。
 (a)スクリーン印刷法による補助電極形成方法
 スクリーン印刷法による場合は、補助電極形成用のペーストを作製し、作製したペーストを用いて補助電極を形成する。
 補助電極形成用のペーストの代表的な4種類は、それぞれ、次の方法によって作製する。
 [ペースト作製法(1)-1]
 図3(a)の概略図に示すように、ペースト50は、平均粒径約3μmのCu粉60を所定の割合で調合し、バインダー樹脂と溶剤70を添加し攪拌、混合することで得る。樹脂と溶剤を70wt%とし、残りの30wt%をCu粉とする。ペースト50は、通常の電極ペースト(80Pa・s)よりも低粘度(30Pa・s)の状態にする。このペースト50は、Cu粉60の含有率が低いため、焼成後も絶縁性を保つ。
 [ペースト作製法(1)-2]
 図3(b)の概略図に示すように、ペースト52は、Cu粉61がAl被覆層62で被覆された平均粒径約3μmのAlコートCu粉64を所定の割合で調合し、バインダー樹脂と溶剤72を添加し攪拌、混合することで得る。樹脂と溶剤72を50wt%とし、残りの50wt%をAlコートCu粉64とする。ペースト52は、通常の電極ペースト(80Pa・s)よりも低粘度(30Pa・s)の状態にする。このペースト52は、AlコートCu粉64を用いているため、焼成後も絶縁性を保つ。
 [ペースト作製法(2)-1]
 図3(c)の概略図に示すように、ペースト54は、平均粒径約3μmのCu粉60とBAS材仮焼後セラミック粉66を所定の割合で調合し、バインダー樹脂と溶剤74を添加し、攪拌、混合することで得る。樹脂と溶剤74を40wt%とし、Cu粉60を40wt%、セラミック粉66を20wt%とする。ペースト54は、通常の電極ペースト(80Pa・s)よりも低粘度(30Pa・s)の状態にする。このペースト54は、Cu粉60以外にセラミック粉66を含むため、焼成後も絶縁性を保つ。
 [ペースト作製法(2)-2]
 図3(d)の概略図に示すように、ペースト56は、平均粒径約3μmのAlコートCu粉64とBAS材仮焼後セラミック粉66を所定の割合で調合し、バインダー樹脂と溶剤76を添加し、攪拌、混合することで得る。樹脂と溶剤76を40wt%とし、AlコートCu粉64を50wt%、セラミック粉66を10wt%とする。ペースト56は、通常の電極ペースト(80Pa・s)よりも低粘度(30Pa・s)の状態にする。ペースト56は、AlコートCu粉65とセラミック粉67とを用いており、焼成後も絶縁性を保つ。
 [補助電極形成]
 補助電極は、セラミックグリーンシート上に、スクリーン印刷にて、補助電極形成用ペーストを塗布することにより形成する。
 なお、焼成後も補助電極自体は、絶縁性を保った状態である。
 (b)電子写真法による補助電極形成
 電子写真法により補助電極を形成する場合は、まず、補助電極形成用材料として、導電粉末のトナーに加工し、作製したトナーを用いて補助電極を形成する。
 [トナー作製]
 トナーは次のように作製する。
1.Cu粉(平均粒径3μm)と樹脂を混合し、表面処理機を用いてCu粉の表面に樹脂を被覆する。
2.上記1.のサンプルを分級し、微粉と粗粉を除去する。
3.上記2.の操作によって得られたカプセルCu紛と外添剤を混合し、表面処理機にてカプセルCu紛表面に外添剤を均一に付着させる。
4.上記3.の操作によって得られたカプセルCu紛とキャリアを混合し、現像剤となるトナーを得る。
 [補助電極形成]
 補助電極は次のように形成する。
1.感光体を一様に帯電させる。
2.LEDにて帯電した感光体に、補助電極の形状に光を照射し、潜像を形成する。
3.現像バイアスをかけ、感光体上にトナーを現像する。トナーの塗布量は、現像バイアスの大きさによって制御することができる。
4.補助電極のパターンが現像された感光体とセラミックグリーンシートを重ね、トナーをセラミックグリーンシートに転写する。
5.補助電極のパターンが転写されたセラミックグリーンシートをオーブンに入れ、トナーを定着させ、補助電極のパターンが形成されたセラミックグリーンシートを得る。
 なお、焼成後も補助電極自体は絶縁性を保った状態である。
 電子写真法によれば、導電粉末が均一に分散している補助電極を容易に作製することができ、導電粉末の粒子間の間隔を確実に保つことによりショートを防止することでき、安定したESD応答性を実現することができる。
 (c)インクジェット法による補助電極形成
 インクジェット法による場合は、Cu粒を含有するインク、すなわち補助電極形成用材料を、インクジェット法にてセラミックグリーンシート上に塗布する。
 なお、焼成後も補助電極自体は絶縁性を保った状態である。
 (3)放電電極形成、空洞部形成
 図2に示すように、底面側の放電電極14sを形成したセラミックグリーンシート11b上に、スクリーン印刷にて電極ペーストを塗布し、先端16k,18k間に放電ギャップを有する放電電極16,18を形成する。
 後述する作製例では、放電電極の幅が100μm、放電ギャップ(対向する放電電極の先端間の距離)が30μmとなるように、帯状に放電電極を形成した。
 さらにその上に、空洞部を形成すべき位置に、樹脂ペーストを塗布して、空洞部形成層15を形成する。樹脂ペーストは、後の焼成で消失し、樹脂ペーストがあった部分には空洞部が形成される。樹脂ペーストの塗布量で空洞部形成層15の高さを調整することにより、最終的に基板本体内に形成される空洞部の高さを制御することができる。
 (4)積層、圧着
 図2において矢印11xで示すように、放電電極16,18が形成されたセラミックグリーンシート11a,11bの表面11p、11sが互いに対向した状態で、セラミックグリーンシート11a,11bを積層し、圧着して、積層体を形成する。このとき、空洞部形成層により補助電極はセラミックグリーンシートに押圧される。そのため、補助電極の剥離を防ぎ、確実に空洞部を形成できる。
 後述の作製例では、積層体の厚みが0.35mmとなり、その厚み方向の中央に放電電極と空洞部が配置されるように、セラミックグリーンシートを積層した。
 (5)カット、端面電極塗布
 ESD保護デバイスの複数個分を含むように積層体を形成する場合には、積層体を、LCフィルタのようなチップタイプの部品と同様に金型を用いて切断して、各チップの個片に分割する。後述する作製例では1.0mm×0.5mmになるようにカットした。その後、各チップの端面に電極ペーストを塗布し、外部電極を形成する。
 (6)焼成
 外部電極を形成したチップを、通常の多層部品と同様に、N雰囲気中で焼成する。セラミックグリーンシートの間に挟まれた樹脂ペーストは焼成時に消失し、これによって空洞部13が形成される。ESDに対する応答電圧を下げるため空洞部13にAr、Neなどの希ガスを導入する場合には、セラミック材料の収縮、焼結が行われる温度領域をAr、Neなどの希ガス雰囲気で焼成すればよい。酸化しない電極材料(Agなど)の場合には、大気雰囲気でもかまわない。
 (7)めっき
 焼成後のチップの外部電極上に、LCフィルタのようなチップタイプの部品と同様に、電解Ni、Snメッキを行う。
 以上により、ESD保護デバイスが完成する。
 上記のようにセラミック基板を用いてESD保護デバイスを作製すると、空洞部を形成する底面や天面に沿って放電電極を形成することが容易である。
 基板本体12のセラミック材料は、特に上記した材料に限定されるものでなく、絶縁性のものであればよいため、フォルステライトにガラスを加えたものや、CaZrOにガラスを加えたものなど、他のものを用いてもよい。
 放電電極16,18の電極材料もCuだけでなく、Ag、Pd、Pt、Al、Ni、Wやこれらの組み合わせでもよい。
 補助電極14に用いる導電粉末は、Cuだけでなく、Ni、Co、Ag、Pd、Rh、Ru、Au、Pt、Ir等の遷移金属群より選ばれた少なくとも1種類の金属とすることが望ましい。また、これら金属を単体で用いてもよいが、合金として用いることも可能である。さらに、これらの金属の酸化物を用いてもよい。又は、SiCのような半導体材料でもよい。
 また、これらの金属にAl、ZrO、SiOなどの無機材料や、BASのような混合仮焼材料をコートしたものを用いてもよい。もしくは、樹脂などの有機材料をコートしたものを用いてもよい。これらのコート粉を用いることで導電粉末同士の接触を阻害し、ショート耐性を向上させる。
 補助電極の導電粉末の平均粒子径は、0.05μm~10μmの範囲が好ましく、さらに好ましい範囲は、0.1μm~5μmである。粒径が小さいほど空洞部に露出される導電粉末の表面積が大きくなり、放電開始電圧の低下とESDに対する応答特性向上及び劣化の低減を得られる。
 空洞部13を形成するために樹脂ペーストを用いたが、樹脂でなくともカーボンなど、焼成で消失するものならばよい。
 <実施例2> 実施例2のESD保護デバイス10aについて、図4を参照しながら説明する。
 実施例2のESD保護デバイス10aは、実施例1のESD保護デバイス10と略同じ構成である。以下では、実施例1と同じ構成部分には同じ符号を用いて、実施例1との相違点を中心に説明する。
 図4は、ESD保護デバイス10aの断面図である。図4に示すように、ESD保護デバイス10aは、基板本体12aの内部に形成された空洞部13aの高さが、放電電極16,18の厚みと同等である。すなわち、空洞部13aを形成する底面13sと天面13qとの間隔は、放電電極16,18の厚みと同等である。
 空洞部13aの高さは、セラミックグリーンシートを積層する前に形成する空洞部形成層の厚みを調整することによって、放電電極16,18の厚みと同等とすることができる。
 <実施例3> 実施例3のESD保護デバイス10bについて、図5を参照しながら説明する。
 図5の断面図に示すように、実施例3のESD保護デバイス10bは、実施例2のESD保護デバイス10aと略同じ構成である。
 実施例2と異なり、図5に模式的に示すように、空洞部13bの天面13q及び底面13sに沿って形成される補助電極14r,14tの厚みが、実施例2のESD保護デバイス10aの補助電極14p,14sの厚みより大きい。補助電極14p,14sを厚くすることによって、放電が繰り返し起こった場合にも、一定のESD応答性を維持することができる。
 例えば、補助電極用ペーストの塗布量を増やしたり、補助電極の形成を繰り返して重ねることで、補助電極14q,14tを厚く形成することができる。。後述する実施例3の作製例では、スクリーン印刷を2回繰り返して補助電極14q,14tを形成した。なお、実施例1の作製例では、スクリーン印刷1回で補助電極16p,16sを形成した。
 <比較例1> 比較例1のESD保護デバイス10xについて、図6を参照しながら説明する。
 図6の断面図に示すように、比較例1のESD保護デバイス10xは、実施例1のESD保護デバイス10と略同様に構成され、基板本体12xの内部に形成される空洞部13の高さは放電電極16,18の厚みよりも大きい。ただし、放電電極16,18の間の空洞部13の底面13sに沿ってのみに補助電極14sが形成され、天面13p側に補助電極が形成されていない点が、実施例1とは異なる。
 <比較例2> 比較例2のESD保護デバイス10yについて、図7を参照しながら説明する。
 図7の断面図に示すように、比較例2のESD保護デバイス10yは、実施例2のESD保護デバイス10aと略同様に構成され、基板本体12yの内部に形成される空洞部13aの高さは、放電電極16,18の厚みと同等である。ただし、空洞部13aを形成する底面13sに沿ってのみ補助電極14sが形成され、天面13q側に補助電極が形成されていない点が、実施例2とは異なる。
 <作製例>
 比較例1、2と実施例1~3のESD保護デバイスを作製し、ESD特性を比較した。
 具体的には、放電電極間のESDに対する放電応答性を100個ずつの試料にて評価した。ESDに対する放電応答性は、IECの規格、IEC61000-4-2に定められている、静電気放電イミュニティ試験によって行った。接触放電にて2kV~8kv印加して試料の放電電極間で放電が生じるかどうかを調べた。
 比較結果を次の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中において、○印は、試料の放電電極間で放電が生じ、ESD保護機能が作動したことを示す。
 表1の実施例1と比較例1との比較や、実施例2と比較例2との比較から、放電電極を空洞部の底面及び天面に沿って形成することで、底面のみに形成する場合よりもESD放電応答性の向上を得られることが分かる。
 また、表1の比較例1と比較例2との比較や、実施例1と実施例2との比較から、実施例2のように空洞部高さを放電電極厚みと同等にすることで、すなわち比較例1や実施例1よりも低くすることで、ESD放電応答性の向上を得られることが分かる。これは、空洞部の高さを低くすることによって、気中放電(放電電極間での放電)よりも沿面放電が生じやすくなるためであると考えられる。
 表1の実施例2、3のように補助電極配置構造(底面と天面への配置)と空洞部高さ最適化を併用することで、さらなるESD放電応答性の向上を得られることが分かる。
 <まとめ> 以上に説明したように、空洞部を形成する底面及び天面に沿って、沿面放電を生じさせるための放電電極を形成することで、ESD応答性を高めることができる。そのため、放電電極間の間隔のばらつきによるESD応答性の変動を小さくすことができる。したがって、ESD特性の調整や安定化が容易になる。
 なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。
 10,10a,10b,10x,10y ESD保護デバイス
 12 基板本体(絶縁性基板)
 13,13a 空洞部
 13p,13q 天面
 13s 底面
 14p,14q,14s,14t 補助電極
 15 空洞部形成層
 16 放電電極
 18 放電電極
 60 Cu粉(導電粉末)
 64 AlコートCu粉(導電粉末)

Claims (7)

  1.  絶縁性基板と、
     前記絶縁性基板の内部に形成された空洞部と、
     前記空洞部内に露出する露出部分を有する、少なくとも一対の放電電極と、
     前記絶縁性基板の表面に形成され、前記放電電極と接続された外部電極と、
    を有するESD保護デバイスであって、
     前記放電電極の前記露出部分の間の前記空洞部を形成する底面及び天面に沿って、導電粉末が分散された補助電極が形成されていることを特徴とする、ESD保護デバイス。
  2.  前記空洞部を形成する前記底面と前記天面との間隔が、前記放電電極の厚みと同等であることを特徴とする、請求項1に記載のESD保護デバイス。
  3.  前記絶縁性基板がセラミック基板であることを特徴とする、請求項1又は2に記載のESD保護デバイス。
  4.  前記補助電極が前記導電粉末とともに絶縁材料が分散されてなることを特徴とする、請求項1乃至3のいずれか一つに記載のESD保護デバイス。
  5.  第一の絶縁層の一方主面と第二の絶縁層の一方主面とに、それぞれ、導電粉末を分散した状態で付着させて補助電極を形成する、第1の工程と、
     前記第一の絶縁層の前記一方主面に、間隔を設けて少なくとも一対の放電電極を、該放電電極の間に前記第一の絶縁層の前記一方主面に形成された前記補助電極の少なくとも一部分が露出するように、形成する、第2の工程と、
     前記第一の絶縁層の前記一方主面と前記第二の絶縁層の前記一方主面とが互いに対向した状態で、前記第一の絶縁層と前記第二の絶縁層とを積層する、第3の工程と、
     前記第3の工程により得られた積層体の表面に、前記放電電極と接続された外部電極を形成する、第4の工程と、
    を備え、
     前記積層体の内部において前記第一の絶縁層と前記第二の絶縁層との間に、前記放電電極の少なくとも一部と前記一対の放電電極のそれぞれの一部とが露出する空洞部が形成されることを特徴とする、ESD保護デバイスの製造方法。
  6.  前記第2の工程において前記放電電極の間に露出させるべき前記補助電極の少なくとも一部分の上に、消失材料からなる空洞部形成層を形成し、
     前記第3の工程において前記空洞部形成層の上にも前記第二の絶縁層を配置した後、前記空洞部形成層の少なくとも一部を消失させることにより、前記空洞部を形成することを特徴とする、請求項5に記載のESD保護デバイスの製造方法。
  7.  前記第1の工程において、前記補助電極は電子写真法により形成されることを特徴とする、請求項5又は6に記載のESD保護デバイスの製造方法。
PCT/JP2009/005463 2008-11-26 2009-10-19 Esd保護デバイス及びその製造方法 WO2010061519A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010510573A JPWO2010061519A1 (ja) 2008-11-26 2009-10-19 Esd保護デバイス及びその製造方法
CN2009801479985A CN102224648B (zh) 2008-11-26 2009-10-19 Esd保护器件及其制造方法
US13/115,221 US8455918B2 (en) 2008-11-26 2011-05-25 ESD protection device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008301643 2008-11-26
JP2008-301643 2008-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/115,221 Continuation US8455918B2 (en) 2008-11-26 2011-05-25 ESD protection device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010061519A1 true WO2010061519A1 (ja) 2010-06-03

Family

ID=42225411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005463 WO2010061519A1 (ja) 2008-11-26 2009-10-19 Esd保護デバイス及びその製造方法

Country Status (4)

Country Link
US (1) US8455918B2 (ja)
JP (1) JPWO2010061519A1 (ja)
CN (1) CN102224648B (ja)
WO (1) WO2010061519A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043576A1 (ja) * 2010-09-30 2012-04-05 Tdk株式会社 静電気対策素子
WO2013011821A1 (ja) * 2011-07-15 2013-01-24 株式会社村田製作所 Esd保護デバイスおよびその製造方法
JP2013114788A (ja) * 2011-11-25 2013-06-10 Panasonic Corp 静電気対策部品の製造方法および静電気対策部品
WO2013088801A1 (ja) 2011-12-12 2013-06-20 Tdk株式会社 静電気対策素子
JP5221794B1 (ja) * 2012-08-09 2013-06-26 立山科学工業株式会社 静電気保護素子とその製造方法
WO2013129270A1 (ja) * 2012-02-29 2013-09-06 株式会社村田製作所 Esd保護デバイスおよびその製造方法
WO2014034435A1 (ja) * 2012-08-26 2014-03-06 株式会社村田製作所 Esd保護デバイスおよびその製造方法
WO2014141988A1 (ja) * 2013-03-15 2014-09-18 Tdk株式会社 静電気対策素子
US20150155246A1 (en) * 2012-08-13 2015-06-04 Murata Manufacturing Co., Ltd. Esd protection device
KR20160076887A (ko) * 2014-12-23 2016-07-01 삼성전기주식회사 정전기 방전 보호 소자 및 그 제조 방법
JP2017228523A (ja) * 2016-06-24 2017-12-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. 複合電子部品及びその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5437769B2 (ja) * 2009-10-16 2014-03-12 田淵電機株式会社 サージ吸収素子
JP5557060B2 (ja) * 2010-02-04 2014-07-23 株式会社村田製作所 Esd保護装置の製造方法
US8885324B2 (en) 2011-07-08 2014-11-11 Kemet Electronics Corporation Overvoltage protection component
US9142353B2 (en) 2011-07-08 2015-09-22 Kemet Electronics Corporation Discharge capacitor
TWI517227B (zh) * 2012-02-24 2016-01-11 Amazing Microelectronic Corp Planetary Discharge Microchannel Structure and Its Making Method
KR101593078B1 (ko) 2012-02-29 2016-03-22 가부시키가이샤 무라타 세이사쿠쇼 Esd 보호 디바이스 및 그 제조방법
US9177931B2 (en) 2014-02-27 2015-11-03 Globalfoundries U.S. 2 Llc Reducing thermal energy transfer during chip-join processing
WO2015190404A1 (ja) * 2014-06-13 2015-12-17 株式会社村田製作所 静電気放電保護デバイスおよびその製造方法
WO2015198833A1 (ja) * 2014-06-24 2015-12-30 株式会社村田製作所 静電気放電保護デバイスおよびその製造方法
KR101585604B1 (ko) * 2015-07-01 2016-01-14 주식회사 아모텍 감전보호용 컨택터 및 이를 구비한 휴대용 전자장치
WO2017002476A1 (ja) * 2015-07-01 2017-01-05 株式会社村田製作所 Esd保護デバイスおよびその製造方法
DE102015116278A1 (de) * 2015-09-25 2017-03-30 Epcos Ag Überspannungsschutzbauelement und Verfahren zur Herstellung eines Überspannungsschutzbauelements
US10134720B1 (en) 2016-02-16 2018-11-20 Darryl G. Walker Package including a plurality of stacked semiconductor devices having area efficient ESD protection
KR102163418B1 (ko) * 2018-11-02 2020-10-08 삼성전기주식회사 적층 세라믹 커패시터
DE102019125819A1 (de) * 2019-04-17 2020-10-22 Taiwan Semiconductor Manufacturing Co., Ltd. Halbleiterverarbeitungsvorrichtung und verfahren unter einsatz einer elektrostatischen entladungs-(esd)- verhinderungsschicht

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208845A (ja) * 1997-01-22 1998-08-07 Matsushita Electric Ind Co Ltd サージ吸収器
JPH11354926A (ja) * 1998-06-12 1999-12-24 Murata Mfg Co Ltd セラミック電子部品の製造方法
JP2000277229A (ja) * 1999-03-23 2000-10-06 Tokin Corp 表面実装型サージ吸収素子の製造方法
JP2001345161A (ja) * 2000-05-31 2001-12-14 Mitsubishi Materials Corp チップ型サージアブソーバおよびその製造方法
JP2005276666A (ja) * 2004-03-25 2005-10-06 Mitsubishi Materials Corp サージアブソーバ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368389U (ja) * 1989-11-07 1991-07-04
JPH0697626B2 (ja) * 1989-12-25 1994-11-30 岡谷電機産業株式会社 放電型サージ吸収素子
JPH071750Y2 (ja) * 1990-03-30 1995-01-18 岡谷電機産業株式会社 放電型サージ吸収素子
JP2001043954A (ja) 1999-07-30 2001-02-16 Tokin Corp サージ吸収素子及びその製造方法
JP2002329872A (ja) 2001-04-25 2002-11-15 Kaho Kagi Kofun Yugenkoshi 過渡過電圧保護素子の材料
JP2003059616A (ja) * 2001-08-21 2003-02-28 Sakurai New Research:Kk サージ吸収素子
JP2004014466A (ja) 2002-06-11 2004-01-15 Mitsubishi Materials Corp チップ型サージアブソーバ及びその製造方法
CN101542856B (zh) 2007-05-28 2012-05-30 株式会社村田制作所 静电放电保护装置
EP2242154B1 (en) * 2008-02-05 2017-12-06 Murata Manufacturing Co. Ltd. Esd protection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208845A (ja) * 1997-01-22 1998-08-07 Matsushita Electric Ind Co Ltd サージ吸収器
JPH11354926A (ja) * 1998-06-12 1999-12-24 Murata Mfg Co Ltd セラミック電子部品の製造方法
JP2000277229A (ja) * 1999-03-23 2000-10-06 Tokin Corp 表面実装型サージ吸収素子の製造方法
JP2001345161A (ja) * 2000-05-31 2001-12-14 Mitsubishi Materials Corp チップ型サージアブソーバおよびその製造方法
JP2005276666A (ja) * 2004-03-25 2005-10-06 Mitsubishi Materials Corp サージアブソーバ

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934205B2 (en) 2010-09-30 2015-01-13 Tdk Corporation ESD protection device
WO2012043576A1 (ja) * 2010-09-30 2012-04-05 Tdk株式会社 静電気対策素子
CN103140997A (zh) * 2010-09-30 2013-06-05 Tdk株式会社 抗静电元件
KR101403163B1 (ko) * 2010-09-30 2014-06-03 티디케이가부시기가이샤 정전기 대책 소자
TWI427880B (zh) * 2010-09-30 2014-02-21 Tdk Corp Electrostatic countermeasure components
JP5382235B2 (ja) * 2010-09-30 2014-01-08 Tdk株式会社 静電気対策素子
CN103650267A (zh) * 2011-07-15 2014-03-19 株式会社村田制作所 Esd保护装置及其制造方法
JP5637314B2 (ja) * 2011-07-15 2014-12-10 株式会社村田製作所 Esd保護デバイスおよびその製造方法
US9386673B2 (en) 2011-07-15 2016-07-05 Murata Manufacturing Co., Ltd. ESD protection device and method for producing same
JPWO2013011821A1 (ja) * 2011-07-15 2015-02-23 株式会社村田製作所 Esd保護デバイスおよびその製造方法
WO2013011821A1 (ja) * 2011-07-15 2013-01-24 株式会社村田製作所 Esd保護デバイスおよびその製造方法
KR101555047B1 (ko) * 2011-07-15 2015-09-23 가부시키가이샤 무라타 세이사쿠쇼 Esd 보호 디바이스 및 그 제조방법
JP2013114788A (ja) * 2011-11-25 2013-06-10 Panasonic Corp 静電気対策部品の製造方法および静電気対策部品
WO2013088801A1 (ja) 2011-12-12 2013-06-20 Tdk株式会社 静電気対策素子
KR20140074395A (ko) 2011-12-12 2014-06-17 티디케이가부시기가이샤 정전기 대책 소자
US9380687B2 (en) 2011-12-12 2016-06-28 Tdk Corporation ESD protection device
KR101596909B1 (ko) 2012-02-29 2016-02-23 가부시키가이샤 무라타 세이사쿠쇼 Esd 보호 디바이스 및 그 제조방법
US9373954B2 (en) 2012-02-29 2016-06-21 Murata Manufacturing Co., Ltd. ESD protection device and method for producing the same
KR20140114056A (ko) * 2012-02-29 2014-09-25 가부시키가이샤 무라타 세이사쿠쇼 Esd 보호 디바이스 및 그 제조방법
WO2013129270A1 (ja) * 2012-02-29 2013-09-06 株式会社村田製作所 Esd保護デバイスおよびその製造方法
JPWO2013129270A1 (ja) * 2012-02-29 2015-07-30 株式会社村田製作所 Esd保護デバイスおよびその製造方法
JP5221794B1 (ja) * 2012-08-09 2013-06-26 立山科学工業株式会社 静電気保護素子とその製造方法
US20150155246A1 (en) * 2012-08-13 2015-06-04 Murata Manufacturing Co., Ltd. Esd protection device
JP5733480B2 (ja) * 2012-08-26 2015-06-10 株式会社村田製作所 Esd保護デバイスおよびその製造方法
WO2014034435A1 (ja) * 2012-08-26 2014-03-06 株式会社村田製作所 Esd保護デバイスおよびその製造方法
US9466970B2 (en) 2012-08-26 2016-10-11 Murata Manufacturing Co., Ltd. ESD protection device and method for manufacturing the same
WO2014141988A1 (ja) * 2013-03-15 2014-09-18 Tdk株式会社 静電気対策素子
JP5954490B2 (ja) * 2013-03-15 2016-07-20 Tdk株式会社 静電気対策素子
KR102048103B1 (ko) * 2014-12-23 2019-11-22 삼성전기주식회사 정전기 방전 보호 소자 및 그 제조 방법
KR20160076887A (ko) * 2014-12-23 2016-07-01 삼성전기주식회사 정전기 방전 보호 소자 및 그 제조 방법
JP2017228523A (ja) * 2016-06-24 2017-12-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. 複合電子部品及びその製造方法
US10477660B2 (en) 2016-06-24 2019-11-12 Samsung Electro-Mechanics Co., Ltd. Complex electronic component and method for manufacturing the same

Also Published As

Publication number Publication date
CN102224648B (zh) 2013-09-18
CN102224648A (zh) 2011-10-19
JPWO2010061519A1 (ja) 2012-04-19
US20110222203A1 (en) 2011-09-15
US8455918B2 (en) 2013-06-04

Similar Documents

Publication Publication Date Title
WO2010061519A1 (ja) Esd保護デバイス及びその製造方法
WO2010061550A1 (ja) Esd保護デバイス及びその製造方法
KR101072673B1 (ko) Esd 보호 디바이스
KR101254212B1 (ko) Esd 보호 디바이스
KR101392455B1 (ko) Esd 보호 디바이스 및 그 제조 방법
JP5262624B2 (ja) Esd保護デバイス及びその製造方法
US9590417B2 (en) ESD protective device
WO2011145598A1 (ja) Esd保護デバイス
US8711537B2 (en) ESD protection device and method for producing the same
US20110216456A1 (en) Esd protection device
JP4893371B2 (ja) バリスタ素子
USRE47147E1 (en) ESD protection device and method for producing the same
WO2011065043A1 (ja) 静電気保護用ペースト、静電気保護部品及びその製造方法
JP5561370B2 (ja) Esd保護デバイスおよびその製造方法
WO2014188792A1 (ja) Esd保護装置
JP2009117735A (ja) 静電気対策部品およびその製造方法
JPWO2015190404A1 (ja) 静電気放電保護デバイスおよびその製造方法
WO2013038892A1 (ja) Esd保護デバイスおよびその製造方法
US10057970B2 (en) ESD protection device
JP2010027636A (ja) 静電気対策部品
JPWO2014168140A1 (ja) Esd保護装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147998.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010510573

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828769

Country of ref document: EP

Kind code of ref document: A1